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Abstract 

Background: The growing amount of high dimensional biomolecular data has 
spawned new statistical and computational models for risk prediction and disease clas‑
sification. Yet, many of these methods do not yield biologically interpretable models, 
despite offering high classification accuracy. An exception, the top‑scoring pair (TSP) 
algorithm derives parameter‑free, biologically interpretable single pair decision rules 
that are accurate and robust in disease classification. However, standard TSP methods 
do not accommodate covariates that could heavily influence feature selection for the 
top‑scoring pair. Herein, we propose a covariate‑adjusted TSP method, which uses 
residuals from a regression of features on the covariates for identifying top scoring 
pairs. We conduct simulations and a data application to investigate our method, and 
compare it to existing classifiers, LASSO and random forests.

Results: Our simulations found that features that were highly correlated with clini‑
cal variables had high likelihood of being selected as top scoring pairs in the standard 
TSP setting. However, through residualization, our covariate‑adjusted TSP was able to 
identify new top scoring pairs, that were largely uncorrelated with clinical variables. 
In the data application, using patients with diabetes (n = 977) selected for metabo‑
lomic profiling in the Chronic Renal Insufficiency Cohort (CRIC) study, the standard TSP 
algorithm identified (valine‑betaine, dimethyl‑arg) as the top‑scoring metabolite pair 
for classifying diabetic kidney disease (DKD) severity, whereas the covariate‑adjusted 
TSP method identified the pair (pipazethate, octaethylene glycol) as top‑scoring. 
Valine‑betaine and dimethyl‑arg had, respectively, ≥ 0.4 absolute correlation with urine 
albumin and serum creatinine, known prognosticators of DKD. Thus without covariate‑
adjustment the top‑scoring pair largely reflected known markers of disease severity, 
whereas covariate‑adjusted TSP uncovered features liberated from confounding, and 
identified independent prognostic markers of DKD severity. Furthermore, TSP‑based 
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methods achieved competitive classification accuracy in DKD to LASSO and random 
forests, while providing more parsimonious models.

Conclusions: We extended TSP‑based methods to account for covariates, via a simple, 
easy to implement residualizing process. Our covariate‑adjusted TSP method identi‑
fied metabolite features, uncorrelated from clinical covariates, that discriminate DKD 
severity stage based on the relative ordering between two features, and thus provide 
insights into future studies on the order reversals in early vs advanced disease states.

Keywords: Biomarker, Classification, Feature selection, Kidney disease, Metabolomics, 
Order statistics, Ranking algorithm

Background
The ever increasing amount of high-dimensional biomolecular data generated using 
high-throughput technologies has brought a critical need for decision rules that 
would strengthen our understanding of clinical diseases and health outcomes [1–4]. 
A prominent challenge is deriving decision rules that are not only accurate and robust 
across a diverse range of settings but also have ease of biological interpretability for a 
desired future clinic usage. Modern statistical and machine learning methods perme-
ate the literature and frequently achieve high classification accuracy [5–8]. However, 
decision rules that make accurate assessments of patient disease outcomes may do 
so often at the expense of using nonlinear functions of hundreds or even thousands 
of features, which involves estimating a plethora of model parameters. This leads to 
the construction of highly complex decision boundaries for distinguishing between 
different classes of patients, which can be difficult to interpret and characterize in a 
biologically meaningful manner.

We focus on the parameter-free Top-Scoring Pair (TSP) algorithm [9], that has 
the advantage of providing simple and biologically interpretable decision rules. As a 
primer, the TSP algorithm identifies a single pair of features that best discriminates 
between two classes of interest among all possible feature-pairs—the top-scoring 
pair—along a predefined fixed decision boundary, a 45-degree line passing through 
the origin in the space defined by the two features. Measure of discrimination of a 
feature-pair is assessed via a score for which an observed ordering of the two features 
is more prominent in one class than in the other. After the pair of features with the 
maximal score is identified, classification entails assigning a test sample to the class 
for which the test sample’s ordering of the top-scoring pair is most common. As the 
TSP algorithm is concerned with the ordering of features, the method examines the 
ranks of the features within individual profiles prior to identifying the top-scoring 
pair. Since TSP bases selection in a ranks context, the algorithm is highly robust to 
data normalization procedures involving monotonic transformation of raw feature 
values.

The TSP algorithm has been noted for identifying gene-pair markers for diverse 
human disease classification, e.g., cancer, diabetes, and HIV, comparable to stand-
ard classification methods, while using much fewer genes [9, 10]. The K-TSP classi-
fier, based on the top k gene pairs and a majority voting procedure for classification, 
had competitive binary and multi-class prediction accuracy compared to TSP and 
standard methods [11]. In addition, integrating methods such as the support vector 
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machine with the K-TSP algorithm can improve classification performance [12]. How-
ever, the existing TSP methods do not take into account possible covariates that influ-
ence the features, e.g., confounding clinical risk factors, in identifying the top-scoring 
pair and we aim to address this gap.

In this study, we extend the existing TSP and K-TSP methods [9, 13] by using the resid-
uals from a regression of features on covariates of interest to select the top-scoring pairs, 
which differs from the typical practice of using the raw values of features. We demon-
strate that our covariate-adjusted TSP method selects features largely liberated from 
the confounding effects of the covariates, and would thus select a top-scoring pair that 
discriminates outcome classes without influence from known covariates. We conduct a 
simulation study to illustrate the implications of using the features’ residuals as the input 
to the TSP algorithm. Furthermore, we demonstrate the application of our extended TSP 
and K-TSP methods to the novel setting of metabolomics and chronic kidney disease 
(CKD) in patients with diabetes mellitus enrolled in the Chronic Renal Insufficiency 
Cohort (CRIC) study. Recent reviews highlighted key metabolites that differentiated 
cases of diabetic kidney disease (DKD) from healthy controls [14–19] and thus we aim 
to identify top-scoring pairs of metabolite ions that best discriminate between severity 
stages of DKD using a diverse subsample of the CRIC study. Finally, we compare classifi-
cation accuracies of TSP and K-TSP to popular statistical learning methods, i.e., LASSO 
(least absolute shrinkage and selection operator) and random forests [20].

Methods
TSP and K‑TSP: brief review

We briefly review TSP and K-TSP methods. Let X = {X1,X2, . . . ,Xp } denote the p fea-
tures (e.g., metabolites) for an individual profile. The TSP algorithm [9] identifies the 
top-scoring feature pair �∗ among the p features with the maximum absolute difference 
in the probability of Xi < Xj between two classes of individuals, C = 1, 2 . Specifically, we 
calculate the discriminant score of all possible feature pairs i, j ∈ �:
ŝij =

∣∣P
(
Xi < Xj|C = 1

)
− P

(
Xi < Xj|C = 2

)∣∣ and define �∗ = argmax(i,j)∈�ŝij . These 
conditional probabilities are estimated using maximum likelihood from the sample pro-
portions of the observed ordering Xi < Xj between both classes. Accordingly, it is suf-
ficient to know the ranks of features within individual profiles to obtain the scores for all 
feature-pairs ŝij , i, j = 1, 2, . . . , p, i �= j . A feature-pair ( i, j ) achieves perfect discrimina-
tion when ŝij = 1 and no discrimination when ŝij = 0. If multiple pairs achieve the top 
score, ties were broken with a secondary rank-score to select a single top-scoring pair 
[21].

Classification with TSP amounts to observing the ordering of the two features of 
the top-scoring pair ( i, j ) for a test sample. If in the training data P

(
Xi < Xj|C = 1

)
< 

P
(
Xi < Xj|C = 2

)
 , then if we observe Xi < Xj TSP classifies the test sample as class 

C = 2 or if in the test sample Xi ≥ Xj TSP classifies as class C = 1 . Otherwise, if 
P
(
Xi < Xj|C = 1

)
≥ P

(
Xi < Xj|C = 2

)
 in the training data, then if we observe Xi < Xj 

TSP classifies the test sample as class C = 1 or if instead observed as Xi ≥ Xj TSP classi-
fies as class C = 2.
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In practice, the results of TSP may be sensitive to perturbations in the training data 
and a more stable alternative, the K-TSP algorithm [11], may be useful. K-TSP defines 
the set of k disjoint features pairs with the highest scores to be �k = {

(
i1, j1

)
, . . . , (ik , jk)} . 

The set of k disjoint top-scoring pairs is chosen �∗
k = {

(
i∗1, j

∗
1

)
, . . . , (i∗k , j

∗
k )} to maximize 

the score ŝir jr : �∗
k = argmax�k

k∑
r=1

ŝir jr for each value k . From this, we now obtain the 

optimal value k∗ from the set of k values that maximizes the following criterion τ̂KTSP in 
(1) motivated by the concept of analysis of variance [13]:

Classification with K-TSP amounts to observing the ordering of the k top-scoring pairs 
{(i∗1, j∗1), . . . , (i∗k , j∗k )} and taking a simple majority voting rule for a test sample. That is, 
the test sample will be assigned to the class receiving the most votes.

We implemented the TSP and K-TSP algorithms from the “switchbox” R package [22] 
for our statistical analysis. Our optimal value k∗ was selected from a range of k values 2 
to 10 for the K-TSP algorithm.

Covariate‑adjusted TSP method by residualizing the features

For most chronic diseases, there are clinical risk factors known to be associated with 
the outcome of interest. The aforementioned TSP methods do not take into account the 
effects of such variables, Z = {Z1,Z2, . . . ,Zq }, in selecting top-scoring pairs. Therefore, 
these top-scoring pairs may be strongly confounded by Z and we seek to suppress the 
effects of these confounders in the top-scoring pair selection. Our goal is to identify top-
scoring pairs conditional on covariate values, Z:

To operationalize this approach (2), we fit linear regression models with features X 
as outcomes and Z as covariates, and use the model residuals as opposed to feature 
values for selecting the top-scoring pairs. We refer to this data preprocessing step as 
residualizing which largely decorrelates features, X , from the individual covariates, Z . 
In particular, the fitted regression model for feature Xi = {Xi1,Xi2, . . . ,XiN } , such that 
i = 1, 2, . . . , p , is defined as X̂ik = β̂0 + Zk1β̂i1 + Zk2β̂i2 + . . .+ Zkqβ̂iq for the k th indi-
vidual, k = 1, 2, . . . ,N  . We define the residual of the i th feature for the k th individual to 
be eik = Xik − X̂ik in which ei = {ei1, ei2, . . . , eiN } is the set of residuals of the i th feature.

For the context of this paper, we distinguish between two types of features data. The fea-
tures Xi is the data as is and are designated as raw features and the features ei are the resid-
uals of Xi obtained from the residualizing process and are named as residualized features. 
Thus, two types of TSP-based methods were developed and compared in our simulations 
and application setting for feature selection and classification accuracy: (1) non-residual-
ized, trained from the raw Xi , and (2) residualized, trained from the residualized ei.

(1)τ̂KTSP
(
�∗

k

)
=

∑k
r=1 ŝir jr√

V̂ar
(∑k

r=1

[
I
(
Xi∗r <Xj∗r

)]
|C=1

)
+V̂ar

(∑k
r=1

[
I
(
Xi∗r <Xj∗r

)]
|C=2

)

(2)ŝij|Z =|P
(
(Xi|Z) < (Xj|Z)|C = 1

)
− P

(
(Xi|Z) < (Xj|Z)|C = 2

)
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Simulation setup

To evaluate the performance of the residualizing process on selection of the top-scoring 
pair, we conducted two simulation studies. For the first simulation study, we compared 
the effect of residualizing feature pairs that predict the outcome (e.g., disease status) 
through a covariate (e.g., clinical characteristic) versus features pairs that are independ-
ent of said covariate. For the second simulation study, we evaluated the impact of the 
correlation in these feature pairs on their selection as a top-scoring pair for both raw and 
residualized features.

In our first simulation study, we generated feature pairs with strong vs no correlation 
with covariate data, which itself is highly predictive of the outcome. Sample size was 
set to N  = 200 for a binary two class outcome ( Y  ) with values 0 or 1. We considered 
the simple case of a single binary (0 or 1) covariate ( Z ) with a 50% population preva-
lence. We defined the high association between Z and Y  as the probabilistic relationship 
P(Y = 1|Z) = |Z − 0.05| . Two different sets of bivariate data were generated to illus-
trate how residualizing impacts the scores of these feature pairs which, in turn, affects 
whether a feature pair is still likely to be selected as a top-scoring pair after residualizing.

The first set generated was bivariate normal (X1,X2) conditional on Z:

The second set was also bivariate normal (X3,X4) but conditional on Y  and independent 
of Z:

With features (X1,X2,X3,X4) and covariate data Z , we evaluated the posterior probabili-
ties of Y  as P(Y |X1,X2,X3,X4,Z) using Bayes’ theorem, noting that (X1,X2) is condition-
ally independent of Y :

These posterior probabilities constituted Bernoulli probabilities, and were used to gen-
erate the binary outcome Y  . Finally, we calculated the TSP scores for the raw and residu-
alized (on Z ) variants of (X1,X2) and (X3,X4).

In our second simulation study, we generated the feature pairs data similar to the first 
study except we consider a range of correlation values of (X1,X2) and (X3,X4) . In par-
ticular, we consider a grid of correlation values from -1 to 1 in increments of 0.01. For 
each correlation value ρ , we generate our feature pairs as

(
X1

X2

)
|Z=0 ∼ N

[(
0
5

)
,

(
2 0
0 2

)]
;
(
X1

X2

)
|Z=1 ∼ N

[(
5
0

)
,

(
2 0
0 2

)]

(
X3

X4

)
|Y=0 ∼ N

[(
0
2.5

)
,

(
3 0
0 3

)]
;
(
X3

X4

)
|Y=1 ∼ N

[(
2.5
0

)
,

(
3 0
0 3

)]

P(Y |X1,X2,X3,X4,Z) = P(Y |X3,X4,Z) =
P(X3,X4|Y ,Z) ∗ P(Y |Z)

P(X3,X4|Z)

(
X1

X2

)
|Z=0 ∼ N

[(
0
5

)
,

(
2 2ρ
2ρ 2

)]
;

(
X1

X2

)
|Z=1 ∼ N

[(
5
0

)
,

(
2 2ρ
2ρ 2

)]

(
X3

X4

)
|Y=0 ∼ N

[(
0
2.5

)
,

(
3 3ρ
3ρ 3

)]
;

(
X3

X4

)
|Y=1 ∼ N

[(
2.5
0

)
,

(
3 3ρ
3ρ 3

)]
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After assigning the binary outcomes via posterior probabilities of Y  , we calculated the 
TSP scores for the raw and residualized (on Z ) variants of (X1,X2) and (X3,X4) at the 
correlation value ρ.

CRIC study sample

We illustrate a real data application of our extended TSP and K-TSP methods to a 
subsample of the CRIC study. The parent CRIC study [23–25] included a racially and 
ethnically diverse group of adults aged 21–74 years with estimated glomerular filtra-
tion rate (eGFR) between 20 and 70  ml/min/1.73   m2 at baseline, and a broad spec-
trum of kidney disease severity.

Our study sample consisted of 977 CRIC participants with diabetes selected for 
untargeted metabolome profiling [26]. These participants had complete data on the 
baseline characteristics age, race, sex, smoked > 100 cigarettes in lifetime, body mass 
index (BMI), hemoglobin A1c (HbA1c), mean arterial pressure, urine albumin, serum 
creatinine, and angiotensin-converting enzyme (ACE) inhibitor or angiotensin-recep-
tor blockers (ARB) use, which are the selected covariates for our residualizing pro-
cess. Baseline characteristics of our CRIC study sample are displayed in Table 1.

Participants were sampled across CKD stages G2 (eGFR 60–70), G3a (eGFR 45–60), 
G3b (eGFR 30–45) and G4 (eGFR 20–30). The outcome for our analysis is a binary 
indicator of early-stage DKD (stage G2-3b, N = 777) versus advanced-stage DKD 
(stage G4, N = 200). Participants with early-stage DKD had mean (SD) eGFR 44.7 

Table 1 Baseline characteristics of our CRIC study sample (N = 977) selected for untargeted 
metabolome profiling

Values are expressed as mean ± SD or N (%)

CRIC, Chronic Renal Insufficiency Cohort; BMI, body mass index; HbA1c, hemoglobin A1c; ACE, angiotensin-converting 
enzyme; ARB, angiotensin-receptor blocker; eGFR, estimated glomerular filtration rate

Age (years) 59.94 ± 9.43

Race

White 436 (45)

Black 410 (42)

Other 131 (13)

Sex

Male 551 (56)

Female 426 (44)

Smoked > 100 cigarettes

Yes 558 (57)

No 419 (43)

BMI (kg/m2) 34.18 ± 7.94

HbAlc (%) 7.57 ± 1.55

Mean arterial pressure (mmHg) 89.85 ± 13.26

Urine albumin (g/24 h) 0.92 ± 1.81

Serum creatinine (mg/dL) 1.92 ± 0.6

ACE Inhibitor or ARB use

Yes 790 (81)

No 187 (19)

eGFR (ml/min/1.732) 40.61 ± 11.17
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(8.5) ml/min/1.73   m2, while those with advanced-stage DKD had mean (SD) eGFR 
24.8 (3.6) ml/min/1.73  m2.

Metabolomics

Untargeted metabolome profiling in urine was performed for our 977 CRIC samples. 
Assay procedures have been described previously [26, 27], but we briefly recapitulate 
key points here for completeness. Aliquots of urine samples stored at -80 °C and limited 
to less than 3 free thaw cycles were used. Relative metabolite ion abundance was quan-
tified with a MPS3xt autosampler (Gerstel) coupled to an Agilent 6550 Q-TOF mass 
spectrometer (Agilent Technologies) by non-targeted flow injection analysis [27]. Profile 
mass spectra were recorded in 4Ghz acquisition mode from 50 to 1000 m/z in negative 
ionization mode. Raw mass spectrometry data was normalized based on creatinine ion 
abundances. Final annotation of ions was based on accurate mass comparison using 1 
mDa mass tolerance against Human Metabolome Database HMDBv4.0 assuming single 
deprotonation. We consider a final set of 698 annotated metabolite ions for our analysis. 
A single ion could annotate multiple metabolites resulting in ambiguities in the assign-
ments. Therefore, we shall refer to our features as metabolite ions for our study.

As described in “Covariate-adjusted TSP method by residualizing the features" sec-
tion, we consider raw metabolite ions comprising the creatinine-normalized abundances 
as is without residualizing, and the residualized metabolite ions comprising the residuals 
of regressing each creatinine-normalized ion on the aforementioned covariates.

Comparison to other methods: LASSO and random forests

To evaluate the relative prediction performance of the TSP and K-TSP algorithms for 
DKD severity, we compared these methods to LASSO and random forests. The LASSO 
model was tuned to the regularization parameter that minimizes mean tenfold cross-
validated misclassification error for feature selection among the 698 metabolite ions 
[28]. The random forests model was fitted using Breiman’s algorithm, growing 500 
trees and randomly sampling the square root of the total number of available variables 
( 
√
698 ≈ 26 ) as candidates at each split [29]. We implemented the LASSO and random 

forest methods using the R packages glmnet and randomForest, respectively.
Several classification accuracy measures were used for comparing TSP, K-TSP, LASSO, 

and random forests: (1) overall accuracy, i.e., overall proportion correctly classified, (2) 
sensitivity, i.e., proportion correctly classified among those with advanced-stage DKD, 
(3) specificity, i.e., proportion correctly classified among those with early-stage DKD, (4) 
balanced accuracy, i.e., average of sensitivity and specificity, (5) positive predictive value 
(PPV), i.e. proportion that truly have advanced-stage DKD among those classified with 
advanced-stage DKD, and (6) negative predictive value (NPV), i.e. proportion that truly 
have early-stage DKD among those classified with early-stage DKD. To gauge the vari-
ability in the measures, we conducted one-hundred iterations of fivefold cross-validation 
for each of these accuracy measures. One fold is held out as a test set and our models 
are trained on the remaining four folds with our accuracy measures calculated on the 
test set. The four folds in the training data will also each serve as a test set, which would 
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result in accuracy measures from all five folds. The averages of these accuracy measures 
across all five folds are our fivefold cross validated estimates. Since the partition of the 
five folds varies for each iteration, TSP, K-TSP, LASSO, and random forests may select 
different metabolite ion predictors at each iteration.

Results
Simulation results

The results of our first simulation study are plotted in Fig.  1 with the rows corre-
sponding to (X1,X2) and (X3,X4) and columns to their raw and residualized features. 
In total, 96 samples had class Y = 0 (48%) and 104 samples had class Y = 1 (52%). 
Both classes of Y  from the raw (X1,X2) data were mostly well separated by the TSP’s 
fixed decision boundary and this raw pair had a score of 0.64. However, the residu-
alized (X1,X2) exhibited inadequate discrimination of Y  evident in the much lower 
score of 0.07. We can attribute this to the raw (X1,X2) generated conditional on Z 
which is strongly associated with Y  . Residualizing the raw (X1,X2) decorrelates the 
pair from Z , which substantially decreases the capability of (X1,X2) to discriminate 
between the two classes of Y  along TSP’s decision boundary. In practice, if the raw 
values of (X1,X2) are identified as the top-scoring pair, and we know this pair to be 
highly dependent on Z , then residualizing (X1,X2) with Z would most likely drop 
its candidacy as a top-scoring pair and opens the door for another feature pair to be 
selected for best discriminating between the classes of Y .

In contrast, residualizing the raw (X3,X4) with Z did not drastically affect the feature 
pair’s capability to distinguish between both classes of Y  along the decision boundary 

Fig. 1 Comparison of residualizing feature pairs from the first simulation study. Left column: Scatter plots 
of generated feature pairs from our first simulation study (N = 200) conditional on our single “clinical” 
covariate, (X1, X2) , and independent of our single “clinical” covariate, (X3, X4) . Right column: Scatter plots of 
the residualized feature pairs. The two evenly split classes are represented as red and blue and TSP’s decision 
boundary is overlayed on the plots
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based on the small drop in score from 0.38 to 0.33. We can attribute this to the raw 
(X3,X4) generated conditional on Y  and independent on Z , which would likely retain 
(X3,X4) as the top-scoring pair even after residualizing with Z . In summary, residual-
izing captures top-scoring pairs liberated from the extraneous influence of covariates, 
which helps to identify potentially novel markers of outcome.

The results of our second simulation study are plotted in Fig. 2. For the raw (X1,X2) , 
increasing correlation values corresponds to a score decline. Meanwhile, the residual-
ized (X1,X2) has low scores across the range of correlation values, not exceeding 0.2. 
Regardless of how correlated X1 is to X2 , residualizing (X1,X2) with Z would most likely 
eliminate it as a top-scoring pair. Interestingly, the raw and residualized (X3,X4) had sim-
ilar scores with increasing values as correlation between the features increased. Residu-
alizing the raw (X3,X4) with Z did not have a major effect on the feature pair’s capability 
to distinguish between the classes of Y  . Thus even for (highly) correlated feature pairs, 
the residualizing process can identify novel markers of outcome liberated from the influ-
ence of covariates.

TSP and K‑TSP results on CRIC Study with and without residualizing

We apply the TSP and K-TSP algorithms to our CRIC study sample to identify metab-
olite ion pairs that best discriminate between DKD stage severity (early-stage vs 
advanced-stage), with and without residualizing the metabolite ions. Since the use of 
TSP is relatively novel in metabolomics studies, we provide a further extensive evalua-
tion of the TSP algorithm based on discriminating urine samples of patients with type 2 
diabetes mellitus from those of healthy controls on an independent data set in the Addi-
tional file  1. Here, we focus on the results from our CRIC study sample as the CRIC 
study contains one of the largest cohorts of individuals with diabetes in the US, with 
comprehensive data on metabolite and clinical profiles.

Fig. 2 TSP score varying by correlation in feature pairs from the second simulation study. Left: Varying the 
correlation of (X1, X2) , i.e., pair conditional on our single “clinical” covariate. Right: Varying the correlation of 
(X3, X4) , i.e., pair independent of our single “clinical” covariate
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From among the raw metabolite ions, the TSP algorithm identified the metabolite ion 
pair (annotated as valine-betaine, dimethyl-arg) to be the top-scoring pair (score: 0.391) 
in Fig.  3a. As mentioned earlier, a single ion could be annotated as multiple metabo-
lites; the selected top-scoring pair contained an ion that could be annotated as valine or 
betaine, henceforth referred to as valine-betaine. Here, the TSP’s decision rule is that if a 
test patient’s observed raw metabolite ion ordering is valine-betaine < dimethyl-arg then 
the patient will be classified as having early-stage DKD and the reversed ordering for 
advanced-stage DKD. Applying the K-TSP algorithm gave us a total of 10 metabolite ion 
pairs, including (valine-betaine, dimethyl-arg), with score range 0.259–0.391. These 20 
metabolite ions are listed in the correlation heatmap with the clinical variables used for 
the residualizing process in Fig. 3b. The metabolite ions valine-betaine and dimethyl-arg 
have the largest variation explained by the clinical variables with R2 values 0.31 and 0.23, 
respectively. Notably, valine-betaine has a relatively high correlation with urine albumin 
(0.47) and dimethyl-arg a negative correlation for serum creatinine (-0.41), which likely 

Fig. 3 Top‑scoring pairs for discriminating DKD stage from among the raw metabolite ions. a Scatter plot for 
the top pair of raw metabolite ions selected by the TSP algorithm along with TSP’s decision boundary. The 
axes are metabolite ion abundances that were creatinine normalized and natural log transformed. Patients 
had either early‑stage DKD (stage G2‑3b, N = 777) or advanced‑stage DKD (stage G4, N = 200). b Heatmap 
correlation matrix of clinical variables vs raw metabolite ions selected by the K‑TSP algorithm. Single ion can 
annotate to multiple metabolites, which resulted in ambiguity in assignments. Metabolite ion (full annotated 
name): Ion 13: 3,6‑Dihydro‑4‑(4‑methyl‑3‑pentenyl)‑1,2‑dithiin. Ion 17: 13,14,15‑trihydroxy‑9‑oxo‑8,17‑diox
atetracyclo[8.7.0.02,7.011,16]heptadeca‑1(10),2(7),3,5,11,13,15‑heptaen‑5‑yl acetate. Ion 19: 2‑Phenylethyl 
beta‑d‑glucopyranoside
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indicates that in this application, TSP selected metabolites ions with a moderate-high 
correlation with known clinical markers of kidney disease.

After residualizing ions, the TSP algorithm instead identified the metabolite ion 
pair (pipazethate, octaethylene glycol) to be the top-scoring pair (score: 0.25). This 
TSP’s decision rule is that if a test patient’s observed residualized metabolite ion 
ordering is pipazethate < octaethylene glycol then the patient will be classified as hav-
ing early-stage DKD and the reversed ordering for advanced-stage DKD in Fig.  4a. 
Applying the K-TSP algorithm gave us a total of 9 metabolite ion pairs, including 
(pipazethate, octaethylene glycol), with score range 0.158–0.25. These 18 metabo-
lite ions are listed in the correlation heatmap with the clinical variables used for the 
residualizing process in Fig. 4b. The R2 values for these 18 metabolite ions are much 
smaller than those of the 20 metabolite ions selected under the raw metabolomics 

Fig. 4 Top‑scoring pairs for discriminating DKD stage from among the residualized metabolite ions. a Scatter 
plot for the top pair of residualized metabolite ions selected by the TSP algorithm along with TSP’s decision 
boundary. The axes are residuals of metabolite ion abundances that were creatinine normalized and natural 
log transformed. Patients had either early‑stage DKD (stage G2‑3b, N = 777) or advanced‑stage DKD (stage 
G4, N = 200). b Heatmap correlation matrix of clinical variables vs the raw values of residualized metabolite 
ions selected by the K‑TSP algorithm. Single ion can annotate to multiple metabolites, which resulted in 
ambiguity in assignments. Metabolite ion (full annotated name): Ion 10: 3,6‑Dihydro‑4‑(4‑methyl‑3‑pent
enyl)‑1,2‑dithiin. Ion 12: [4‑(5‑hydroxy‑7‑methoxy‑8‑methyl‑4‑oxo‑4H‑chromen‑3‑yl)‑2‑methoxyphenyl]
oxidanesulfonic acid. Ion 16: alpha‑L‑Rhamnopyranosyl‑(1‑ > 3)‑alpha‑d‑galactopyranosyl‑(1–> 3)‑L‑fucose
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setting. Here, pipazethate and octaethylene glycol do not have relatively high corre-
lation values with the clinical variables indicating that these metabolite ions are not 
serving as proxies for clinical markers of kidney disease.

Comparing TSP and K‑TSP to LASSO and random forests

The application of LASSO to our full CRIC study sample identified 127 raw metabolite 
ions that best discriminate DKD severity stages, but zero residualized metabolite ions. 
To compare LASSO’s top metabolite ions with the 20 selected by K-TSP, we list the top 
20 selected raw and residualized metabolite ion predictors by effect size for LASSO. 
Similarly, we selected the top 20 for random forests by mean decrease in Gini index from 
splitting on the metabolite ion, averaged over 500 trees, in the Supplementary Material. 
Three of LASSO’s top 20 raw metabolite ions were also selected under the raw setting 
for K-TSP. Meanwhile, random forests selected both metabolite ions of the raw TSP 
(valine-betaine, dimethyl-arg) in the top 20, with valine-betaine for the raw and residual-
ized settings and dimethyl-arg only for the raw setting. In addition, random forests had 
one of the two metabolite ions in the residualized TSP, pipazethate, in the top 20 for the 
residualized setting.

Results for overall accuracy, sensitivity, specificity, and balanced accuracy of early-
stage DKD vs advanced-stage DKD for our statistical methods with type of metabolite 
ion predictors are displayed in Fig. 5. TSP and K-TSP had lower median cross-validated 
overall accuracy (0.649–0.728) compared to that of LASSO and random forests (0.793–
0.823) with either raw or residualized metabolite ions. However, both LASSO and ran-
dom forests displayed extremely poor sensitivity and high specificity, which indicates 
that the overall accuracy for these two methods is driven by classifying an overwhelm-
ingly large number of patients as having early-stage DKD, regardless of their observed 
DKD stage. In contrast, TSP and K-TSP achieved a more balanced tradeoff of sensitivity 
and specificity and had values closer to their overall accuracy. Notably, we have imbal-
anced classes with 79.5% of our patients with early-stage DKD and we examine balanced 
accuracy for our methods which is preferred over overall accuracy for class imbalance 
data. Here, TSP and K-TSP did have higher median cross-validated balanced accuracy 
(0.566–0.689) compared to that of LASSO and random forests (0.5–0.652) for the raw or 
residualized metabolite ion cases. For positive predictive value, TSP and K-TSP did not 
perform better than LASSO or random forests when using raw metabolite ions; how-
ever, random forests displayed relatively high variability in its cross-validated values, and 
when using residualized metabolite ions, LASSO did not predict advanced-stage DKD 
even once for any patient in all 100 iterations of fivefold cross-validation (hence the 
absence of its boxplot in Fig. 5e). Finally, for negative predictive value, all methods per-
formed reasonably well with TSP and K-TSP taking the lead. Therefore, TSP and K-TSP 
displayed comparatively good classification for patients with early-stage DKD from their 
specificity and NPV performances. Residualized metabolite ions are a valid option as 
predictors for our statistical methods in classification for patients with early-stage DKD. 
In particular, specificity and NPV did not show a notable decrease in performance going 
from using raw metabolite ions to their residualized variants while taking into account 
that the residualized metabolite ions are features much liberated from the effects of con-
founding clinical variables known to be associated with DKD severity.
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Given the imbalanced classes with 20.5% of our sample having advanced-stage DKD, 
we also investigated classification results when lowering our previous optimal Bayes 
threshold of 0.5. For LASSO and random forests we instead use the sample prevalence 
(0.205) as a threshold for prediction (presented as a figure in the Supplementary Mate-
rial). The lower cutoff yielded higher sensitivity for LASSO and random forests, which 
was previously a major concern in Fig.  5b. However, there was a decrease in specific-
ity and PPV. As such, using a cutoff value to improve sensitivity is a trade-off and does 
not necessarily translate to better performance in other accuracy measures of interest. 
Importantly, the TSP methods are agnostic to the threshold used as it based on feature 
ordering and a fixed decision boundary, highlighting another advantage of using TSP 
methods.

Fig. 5 Model prediction results of TSP‑based methods vs LASSO vs random forests. Box plots of model 
prediction performance for DKD stage: 100 iterations of fivefold cross‑validated a overall accuracy, b 
sensitivity, c specificity, d balanced accuracy, e positive predictive value, and f negative predictive value. 
Cutoff value for prediction in LASSO and random forests is 0.5. Boxplot for LASSO using residualized 
metabolite ions not displayed in (e) because method did not predict advanced‑stage DKD even once for 
any patient in all iterations. Model type: (K‑)TSP: (K) Top‑Scoring Pair(s). LASSO: Least Absolute Shrinkage and 
Selection Operator. RF: Random Forests
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Discussion
The large influx of high-dimensional biomolecular data brought about by cutting-edge 
high-throughput technologies unleashes extraordinary potential for improving our 
understanding of the link between biological, in particular metabolic, profiles and clin-
ical diseases. There is a critical need for accurate and robust decision rules based on 
these biological data that are easily interpretable for translation to future clinic use. We 
focused on the TSP (and K-TSP) algorithm that identifies a single pair (and set of pairs) 
of features that best discriminates between two classes of interest among all possible fea-
ture pairs. TSP identifies the feature pair for which an observed ordering of the two fea-
tures is more common in one class than in the other, which allows the top-scoring pair 
to be interpreted as a key metabolic feature discriminating one class to another based on 
feature ordering. Hence, the TSP approach by construction aims to offer insights into 
underlying mechanisms of disease, a salient advantage over other statistical and machine 
learning methods.

A major potential of `omics studies is the possibility to discover “new” insights into 
disease mechanisms and discrimination; hence, interest usually lies in identifying mark-
ers that are associated with disease status after adjustment for known clinical factors. 
Previous studies utilizing TSP methods have not accounted for possible covariates in 
the selection of the top-scoring pairs. We provide an extension of the TSP algorithm 
for removing much of the extraneous effects that covariates could have on the features, 
so as to capture a top-scoring pair largely independent of covariates. We implement a 
residualizing process, and demonstrate via simulation and application that using the 
residuals from a regression of features on covariates known to be highly associated 
with the outcome, and then applying the TSP algorithm to these residuals, could iden-
tify potentially novel pairs compared to simply using the raw (unresidualized) features. 
In fact in our data application, the top-scoring pairs using the raw features were valine 
(or betaine) and dimethyl-arginine, known amino acids linked to albuminuria [18, 30], a 
potent risk factor for CKD. As a result, this pair could simply reflect a known underlying 
CKD marker, as seen in Fig. 3b. Conversely, the top-scoring pair from the residualized 
analysis were pipezethate [31], a non-narcotic antitussive agent, and octaethylene glycol 
[32–35], a member of the class of polyethylene glycols, found in osmotic laxatives. Thus 
these residualized metabolite ions, are potentially new markers, and could offer insights 
into drug metabolism and CKD. We note that these markers do not imply a causal link 
with disease outcome, but rather indicate reversals in marker ordering for disease stage 
states. Notably, the idea of using residuals to adjust for covariates has been considered in 
classical discriminant analysis [36–39], and more recently for decision trees [40]. Since 
this adjustment can be seen as a data preprocessing step; it can be applicable prior to any 
machine learning training step. However, to our knowledge, our use of residuals for the 
TSP algorithm is novel.

TSP and K-TSP are classification methods, hence we evaluated and compared their 
classification accuracy of DKD stage using metabolite ion predictors to more conven-
tional statistical learning methods, i.e., LASSO and random forests. Based on the bal-
anced accuracy metric, TSP and K-TSP outperform LASSO and random forests. Both 
TSP and K-TSP performed moderately and well in specificity and negative predictive 
value, respectively, suggesting that these methods can accurately identify a healthier or 
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less severe disease group. Furthermore, using residualized metabolite ions yielded simi-
lar specificity and negative predictive value results for TSP and K-TSP.

We acknowledge limitations and future directions of our work. We evaluated a binary 
class outcome since the TSP and K-TSP algorithms were developed as binary classification 
methods. However, methods exist for multi-class classification [41, 42], which could be easily 
extended to our setting. In particular, for our DKD setting, multi-class would allow us to use 
residualized features to discriminate between different levels of kidney (dys)function among 
patients with diabetes; given the relatively small cell sizes we leave this to future work using 
a larger cohort. In addition, our residualizing process involves the use of linear regression to 
obtain the residuals of the features and more complex statistical models could be fitted to 
obtain the residuals, especially if there is notable evidence of heteroscedasticity. However, the 
linear regression models have simple implementation and have the residuals orthogonal to the 
covariates, which is beneficial for capturing cleaner features.

Conclusion
In summary, in this work we extended the TSP-algorithms to account for clinical 
covariates, via a simple, easy to implement residualizing process. The TSP and K-TSP 
algorithms have the advantage of deriving parameter-free decision rules that best dis-
criminate the class outcome of interest by examining just the ordering of feature pairs. 
Thus, they yield parsimonious classifiers that are biologically interpretable in the `omics 
setting. We demonstrated the utility of our residualizing approach for TSP via simula-
tion and real application to the novel metabolite-DKD context. The residualized metab-
olite ion top-scoring pairs, being largely uncorrelated to clinical covariates, represent 
potentially independent markers for best discriminating disease stage. These metabolite 
ions could serve to motivate hypotheses for future studies, for instance, laboratory stud-
ies could further examine the selected pairs to confirm or refute the order reversals in 
the disease vs non-disease states.
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