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ABSTRACT OF THE DISSERTATION 
 

Characterizing the Neural Basis of Individual Differences in Behaviors Using Large-scale, 
Population-based Neuroimaging Studies 

 
by 
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Doctor of Philosophy in Cognitive Science 
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Much of our understanding of the neural basis of behavioral differences are attributable 

to studies conducted with magnetic resonance imaging (MRI). Despite its critical role in 

cognitive neuroscience, MRI findings lack generalizability for translational uses due to the small 

and homogeneous samples of traditional MRI studies. To improve on the generalizability issue, 

large-scale, population-based neuroimaging studies are conducted where MRI data are collected 

in thousands of participants that are systematically sampled to represent the general population. 

Now, we have a unique opportunity to harness the statistical power afforded by population-based 
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neuroimaging studies to characterize and quantify the behavioral relevance of MRI measures at 

the population level. 

The goal of this work is to take advance of a population-based neurodevelopmental study, 

the Adolescent Brain Cognitive Development (ABCD) Study, to shed light on the optimal fMRI 

design and analysis pipelines for the detection of behaviorally relevant brain signals. In Chapter 

2, I challenged the traditional statistical mapping approach of MRI analysis which assumed that 

the behavioral differences are explained by sparse, localized brain regions. I demonstrated that at 

a large, population level, the effects of the association between brain activations and behavioral 

differences are not sparse but distributed across the cortex (Chapter 2). Aggregating the small 

effect sizes across the whole cortex can greatly increase the magnitude of the behavioral 

associations detected by fMRI tasks. This finding is consistent with the observation that 

behavioral differences are associated with individual differences in distributed, functional brain 

networks whose activities are measured by functional connectivity (FC), the pairwise correlation 

of activation across brain regions. In Chapter 3, I carried out a systematic investigation of the 

optimal fMRI paradigms for the detection of behaviorally relevant FC patterns by quantifying 

the behavioral prediction performance of FC patterns derived from resting-state fMRI and task 

fMRI. Results showed that behaviorally relevant functional brain signals are better captured by 

task fMRI paradigms where participants are engaged in cognitive tasks that assess similar mental 

constructs as the behavior of interest. These results suggest that carefully designed fMRI tasks 

and advanced statistical methods that capture the distributed effect sizes of the brain are more 

useful for the study of brain-behavior relationships at the population level
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Chapter 1 Overview 
1.1 Introduction 
 

Individual differences in complex behavioral traits have important implications for life 

outcomes such as career options, social status, and mental health outcomes. Much scientific 

effort and resources have been dedicated to understanding the neurological bases of complex 

behavioral traits. Due to its noninvasiveness and its sensitivity to different tissue types of the 

brain, human magnetic resonance imaging (MRI) is well-suited to understand the 

neurobiological processes that support cognitive processes and offers promising avenues for 

discovering and identifying biomarkers that are important for mental health and cognitive 

outcomes (Woo et al., 2017; Gratton et al., 2020; Sui et al., 2020). However, despite its 

prevalence in the cognitive and clinical neuroscience literature, the translational utility of MRI is 

still limited. No MRI biomarkers have been developed that reliably detect individual differences 

in cognitive and mental health outcomes, let alone risks for psychiatric disorders.  

One factor that hinders the translational utility of MRI tools is the lack of replicability 

(Button et al., 2013) in MRI studies. A useful biomarker needs to consistently and accurately 

capture individual differences in cognitive process or risk for a psychiatric disorder across 

individuals. Findings from MRI studies, however, often fail to replicate in independent samples. 

The low power of small samples (Cremer, Wager, & Yarkoni, 2017) and publication bias 

(Button et al., 2013) may have contributed to such limited replication across MRI studies. 

Traditional MRI studies are conducted with small sample sizes, resulting in large standard errors 

and imprecise effect size estimates (Varoquaux, 2018). Because most studies are underpowered 

to detect the true effects, effect sizes in MRI studies that are publishable are likely to be inflated 

(by chance) and do not reflect the population level effects (Yarkoni & Braver, 2010). Such 

inflated effect sizes (Reddan, Lindquist & Wager, 2017) and publication bias have exacerbated 
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the replicability issue of MRI findings. As a result, despite the rapid development of MRI tools 

and applications, the lack of unbiased, generalizable effect size estimates of brain-behavior 

associations still hinders the development of MRI biomarkers. 

The focus on group comparisons instead of individual differences may also have limited 

the translational utility of MRI. The translational utility of MRI tools relies on the precise 

measurement and prediction at the individual level, but MRI studies have traditionally focused 

on identifying and reporting group differences and not individual differences. While quantifying 

group differences between patients and controls is critical to the understanding of the average 

effect of disease status on brain structures and functions, group comparisons are not informative 

at identifying and predicting individual differences. The variance in individuals is up to four 

times larger than in groups (Fisher et al., 2018) and greater statistical power is required to detect 

any individual differences (Dubois & Adolphs, 2016). Therefore, significant brain regions may 

be informative at differentiating between case and control but would provide limited information 

in identifying and predicting individuals. In order to improve the translational utility of MRI 

findings, MRI studies need to shift from group comparisons to the identification of structural and 

functional brain patterns that reliably capture individual differences in cognitive and mental 

health outcomes. Advocating the importance of understanding the neural correlates of trait 

variability, Yarkoni and Braver (2010) argued for the use of (1) large sample sizes, (2) normative 

samples, and (3) predictive modeling techniques. 

Recognizing the limitations of small sample sizes and the group comparison approach, 

more MRI researchers are embracing the “Big Data” era of neuroimaging by contributing to the 

development of large, multi-site neuroimaging studies. Large, population-based neuroimaging 

studies, such as the UK Biobank and the Adolescent Brain Cognitive Development (ABCD) 
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Study, collect longitudinal imaging and non-imaging data in thousands of participants from 

multiple local communities and offer unprecedented statistical power to detect MRI features that 

are informative of individual differences in cognitive and mental health outcomes. The 

availability of large MRI databases is enabling neuroimaging researchers to reliably estimate the 

effect size of brain-behavior associations, addressing the inflated effect size issue of traditional 

MRI studies.   

Large population-based neuroimaging studies have advanced the field of cognitive 

neuroscience by revolutionizing the methodology and the characterization of brain-behavior 

associations. Among the many scientific advances inspired by population-based neuroimaging 

studies, this thesis focuses on two topics: (1) the predictive modeling framework and (2) and the 

characterization of the relationship between behaviors and the distributed brain functions. 

The large sample size and the statistical power afforded by population-based 

neuroimaging studies have allowed researchers to adopt new analysis frameworks for 

characterizing brain-behavior relationships. Predictive modeling framework (Gabrieli, Ghosh, 

Whitfield-Gabrieli, 2015; Finn & Rosenberg, 2021) is one of the exciting new analysis 

frameworks that aims to reconcile the lack of replicability of neuroimaging findings (Varoquaux 

& Poldrack, 2019). Instead of mapping behavioral functions in the brain, large neuroimaging 

studies allow researchers to characterize the neural basis of behavioral differences at the 

population level and use it to predict cognitive and mental health outcomes in new, unseen 

individuals. Not only can the predictive modeling framework be applied to establish the 

generalizability of any research findings by testing and validating these findings in new dataset 

and participants (Rosenberg & Finn, 2022), it also allows researchers to quantify the translational 

utility of neuroimaging findings, which is critical for the advance of neuroimaging biomarkers 
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for risks for cognitive and psychiatric diseases. Fueled by population-based neuroimaging 

studies, researchers have able to use individual differences in brain structure and functions to 

predict behavioral differences such as age (Dosenbach et al., 2010), cognitive abilities (Sripada 

et al., 2019, Moutoussis et al., 2021, Zhang et al., 2021), and mental health outcomes (Challis et 

al., 2015, Kim et al., 2016, Thomas et al., 2020). 

Not only do population-based neuroimaging studies enable methodological advances in 

neuroimaging, new scientific discoveries and observations are also being made. One observation 

is that behavioral functions, especially higher-order cognitive processes, are supported by 

distributed brain networks. In contrast to being localized within pre-defined regions of interest 

(ROIs) as previously reported in traditional MRI studies, behaviorally relevant brain regions and 

networks identified in large sample MRI studies appear to be distributed across the whole brain 

(Baum et al., 2020; Sripada et al., 2020) with each brain region exerting a small effect on 

individual variability in cognitive and mental health outcomes (Poldrack et al. 2017). In UK 

Biobank, individual brain regions and networks that are highly statistically significant only 

explain 1% of trait variability (Smith & Nichols, 2017). Distributed brain patterns that span 

multiple pre-defined regions and networks are better at predicting individual variability in 

complex behavioral traits compared to single regions of interest (Chang et al., 2015; Sripada et 

al., 2020). These new observations offer new opportunities and challenges to refine and further 

our understanding on the contribution of brain structures and functions on the individual 

variability in cognitive and mental health outcomes. 

1.2 Aims 
 

This thesis characterizes the utility of different fMRI measures in understanding 

individual differences in cognitive outcomes by taking advantage of the predictive modeling 
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framework, the small effect size observation evident in population-based neuroimaging studies, 

and the large and diverse sample of the ABCD. With the goal of estimating the generalizable 

association between fMRI measures and individual differences in cognitive outcomes, I focused 

on quantifying the predictive performance of an MRI measure on individual differences in 

cognitive traits and behaviors, which is operationalized as the out-of-sample variance explained 

by an MRI phenotype on a cognitive outcome variable estimated using cross-validations. 

This thesis was divided into two steps: (1) investigating the distribution of the 

generalizable association between fMRI measures and behaviors and (2) quantifying the 

functionally relevant information in different fMRI measures. In Chapter 1 (Zhao et al., 2021), I 

quantified the generalizable association between MRI measures and trait variability using a novel 

multivariate statistical method, the Bayesian polyvertex score (PVSB), that aggregates the 

distributed, sub-threshold effect sizes across the whole cortex for out of sample behavioral 

prediction. Using the PVSB, we were able to double the out-of-sample variance explained by 

task-based fMRI activations on individual variability in cognitive performance in ABCD. 

Comparing the predictive performance of the PVSB and the traditional MRI analysis method, I 

was able to show that individual variability in complex behavioral traits is associated with 

distributed patterns of brain activation and can be better captured by multivariate methods. This 

study is published in Cerebral Cortex.  

In Chapter 2, I focused on quantifying the generalizable behavioral association of FC 

measures. Different from task-evoked activations where statistical thresholding often yields 

sparse, localized maps of behaviorally relevant activation patterns, the FC analysis framework 

adopts a distributed, network approach where the connections between brain areas are explicitly 

modeled and investigated for their behavioral relevance. As interests grow in understanding the 
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behavioral associations of FC patterns, more studies have focused on characterizing the optimal 

fMRI paradigms to derive functionally relevant FC patterns - specifically, whether resting-state 

fMRI or task fMRI provides better estimates of FC signals that are relevant for behavioral 

differences. In Chapter 2, I conducted a systematic examination of the behavioral relevance of 

resting-state and task-derived FC measures with four sets of analysis. First, I compared the 

prediction performance of resting-state FC and FC measures derived from three fMRI tasks on 

two behavioral outcome measures to assess which fMRI paradigm captures more behaviorally 

relevant FC patterns. Then, I decomposed the FC signal of task fMRI data to understand whether 

the behavioral prediction effect of task-derived FC measures is driven by the task-elicited FC 

changes in response to cognitive demands or the task-invariant FC component. To contextualize 

the behavioral prediction effect of task-derived FC measures to the behavioral prediction 

performance of task-evoked activation patterns examined in Chapter 1, I compared and 

quantified the shared and unique behavioral variance explained by the task-derived FC and task-

evoked activation measures. Lastly, I examined how the amount of usable data and the 

adjustment of sociodemographic differences across individuals might impact the magnitude of 

the observed behavioral prediction accuracy of FC and task-evoked activation measures. These 

two factors have been previously hypothesized to moderate the behavioral prediction 

performance of fMRI measures. 
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Chapter 2 Individual differences in cognitive performance are better predicted by global rather 
than localized BOLD activity patterns across the cortex 

 
2.1 Abstract 
 

Despite its central role in revealing the neurobiological mechanisms of behavior, 

neuroimaging research faces the challenge of producing reliable biomarkers for cognitive 

processes and clinical outcomes. Statistically significant brain regions, identified by mass 

univariate statistical models commonly used in neuroimaging studies, explain minimal 

phenotypic variation, limiting the translational utility of neuroimaging phenotypes. This is 

potentially due to the observation that behavioral traits are influenced by variations in 

neuroimaging phenotypes that are globally distributed across the cortex and are therefore not 

captured by thresholded, statistical parametric maps commonly reported in neuroimaging studies. 

Here, we developed a novel multivariate prediction method, the Bayesian polyvertex score 

(PVSB), that turns a unthresholded statistical parametric map into a summary score that 

aggregates the many but small effects across the cortex for prediction. By explicitly assuming a 

globally distributed effect size pattern and operating on the mass univariate summary statistics, it 

was able to achieve higher out-of-sample variance explained than mass univariate and popular 

multivariate methods while still preserving the interpretability of a generative model. Our 

findings suggest that the neural basis of complex behaviors may rest in the global patterning of 

effect size variation of neuroimaging phenotypes, rather than in localized, candidate brain 

regions and networks. 

2.2 Introduction 
 

Neuroimaging is central to the search for neurobiological mechanisms of cognitive 

processes and psychopathology. However, by far, neuroimaging studies that aim to reveal the 

biological correlates of phenotypic variations have limited success in the identification of reliable 
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biomarkers for clinical diagnoses or cognitive functions. One of many reasons for this challenge 

is the reliance on statistical thresholds and mass univariate statistical models for many 

neuroimaging studies. In traditional neuroimaging analyses, the association between an imaging 

phenotype and phenotypic variation is assessed with mass univariate statistical models where the 

associative effect is estimated independently at each measured unit of the brain data, e.g. vertex, 

voxel, or region of interest. The magnitude of the generalizable brain-behavior association is 

usually inferred from the effect size estimates of only the most significant vertices/ROIs using 

the mass univariate estimators. Such an approach assumes that the underlying true association is 

sparse and localized in the cortex, and hence that clusters of vertices/ROIs with minimum p-

values (min-p) form the basis of generalizable signals. Although study designs and covariates are 

controlled for in mass univariate statistical models used to detect brain-behavior associations, the 

resulting regions only explain minimal variation in behavior (Stanfield et al. 2008; Poldrack et al. 

2017). With a sample size of more than 14,000 participants, Smith and Nichols (Smith and 

Nichols 2017) demonstrated that a statistically significant imaging composite measure, surviving 

Bonferroni correction of 14 million tests, explained less than 1% of the variance in behavior.  

In reaction to the difficulty in finding reproducible, localized brain-behavior associations 

using mass univariate models, neuroimaging researchers have turned to multivariate machine 

learning methods that utilize all available imaging features for behavioral prediction, where the 

most predictive imaging features are interpreted post hoc (Dosenbach et al., 2010; Lebedev et al. 

2014; Niu et al. 2019). This multivariate machine learning approach has shown success at 

capturing generalizable brain-behavior associations (Kragel et al. 2018; Sui et al. 2020), 

including applications in understanding individual variability in brain maturation (Brown et al. 

2012), intelligence (Finn et al. 2015), emotional processing (Chang et al. 2015), and symptoms 
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of psychiatric disorder (Rosenberg et al. 2018), to name a few. However, many machine learning 

models rely on the raw imaging phenotype (Smith et al. 2015; Sripada et al. 2019; Hong et al. 

2020), which prevents cross-study applications of mass univariate statistics. Some multivariate 

statistical methods also lack one important benefit of the statistical parametric brain mapping 

approach, i.e. the unbiased estimation and interpretation of a brain-behavior association with 

proper control for confounds. The concern of black-box applications of multivariate prediction 

methods has arisen (Davatzikos 2019; Efron 2020) due to the data-driven approach and the lack 

of hypothesis-driven, generative models, and cautious interpretation of predictive models is 

needed since the predictive features can be ephemeral rather than important and generalizable 

(Scheinost et al. 2019; Efron 2020).  

Inspired by the success of the field of genetics in implementing generative models to 

identify generalizable genotype-phenotype mapping (Visscher et al. 2017; Efron 2020), we 

introduce a novel multivariate prediction method, the polyvertex score (PVS), that captures the 

many generalizable effect sizes across all vertices. It has several innovations. First, the PVS is a 

generative model that explicitly takes a global prior such that all vertices contribute to the 

observed brain-behavior association. No statistical threshold or dimension reduction of the 

imaging phenotype is necessary for the calculation of the PVS. Second, the PVS can be 

thresholded to reflect the user’s hypothesis on the underlying signal sparsity of a brain-behavior 

association of interest. Comparing the predictive performance of PVSs of varying statistical 

thresholds yields empirical insights into the true sparseness of a brain-behavior association. Last 

but not least, the PVS can be applied directly to statistical parametric maps derived from mass 

univariate analysis, setting it apart from existing multivariate statistical methods. It can be 



 13 
 

deployed in smaller sample studies to boost predictive power when the mass univariate summary 

statistics can be obtained from large neuroimaging consortiums.   

For comparison purpose, two versions of the PVS were developed. The mass univariate 

PVS (PVSU) is a summary measure of all the mass univariate effect sizes across the cortex, 

which are readily available for most neuroimaging analyses. The Bayesian PVS, on the other 

hand, is a multivariate extension of the PVSU that accounts for correlation across vertices as well 

as the non-sparseness of the brain signal on behavior. Previous research have shown that 

ignoring the correlation structure among vertices results in biased estimation of the parameter of 

interest (Thompson et al. 2015), limiting the ability of mass-univariate approaches to localize 

effects and to make accurate predictions. The PVSB (Figure 1) incorporates the covariance 

structure of the imaging phenotype during parameter estimation. Leveraging the unprecedented 

large sample size of the Adolescent Brain Cognitive Development (ABCD) Study, we 

demonstrated the utility of the PVSB as a reliable multivariate method with great out-of-sample 

prediction performance, by comparing it to the PVSU, the min-p, and popular multivariate 

methods, including lasso regression, random forest, and support vector regression with linear 

kernel. In addition to its good predictive performance, the property of the PVSB enable us to 

demonstrate that the generalizable brain-behavior association is distributed in the global 

patterning of effect sizes across the cortex. 

2.3 Methods 
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Figure 2.1 Overview of the PVSB and the PVSU algorithms. Ten-fold cross validation was 
performed to obtain a PVSB for each individual. For each fold, mass univariate summary 
statistics, 𝛽"!, were obtained from the training set which contained 90% of the complete sample. 
Posterior mean effect sizes at each vertex, 	𝛽"$ , were approximated by multiplying the mass 
univariate beta estimates, 𝛽"!, by the inverse of the correlation structure of the brain, D, and a 
shrinkage factor that accounts for the number of vertices, V, and the total signal of the brain-
behavior association, S. The PVSB were subsequently calculated for the test set participants by 
multiplying their imaging phenotype with the 	𝛽"$ . Simulations were conducted at three levels of 
total explainable signal, six levels of study sample size, and four levels of proportion of non-null 
vertices, yielding 60 instantiations of simulation conditions with 100 iterations per condition.  

We assume the relationship between a behavioral phenotype of interest and the imaging 

phenotype is captured by a general linear model. Specifically, let 𝑁	denote the number of 

participants and let 𝑉	denote the number of vertices. Then  

𝒚 = 	)𝒙#𝛽#

$

#%&

+ 𝜺				(1) 

where 𝒚	is a standardized 𝑁	𝑥	1 vector of behavioral phenotypes, 𝒙𝒗 is standardized	𝑁	𝑥	1	vector 

of imaging data, and 𝛽# is the association parameter for the 𝑣th voxel, 𝑣 = 1,…𝑉. More 

generally, the regression model (1) will also include covariates of no interest, which we omit 

here for simplicity of exposition. 

It is often not possible to estimate model (1) directly, as there are a greater number of 

vertices than participants, 𝑉 > 𝑁, and the desired associations with the behavioral phenotype is 

instead usually estimated using a mass-univariate regression approach across individual voxels. 
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𝒚 = 	𝒙𝒗𝛽# + 𝛆𝒗, 𝑣 = 1,… , 𝑉.					(2)  

Let  𝑿 = (𝒙𝟏, … , 𝒙𝑽) denote the 𝑁	𝑥	𝑉 matrix of standardized imaging phenotypes and 𝜷 =

(𝛽&, … , 𝛽$)* the 𝑉	𝑥	1 vector of association parameters of interest. The mass-univariate brain 

mapping model (2) omits information contained in the correlation across columns of 𝑿 when 

estimating 𝜷. In a least-squares framework, this is equivalent to assuming that the sample 

correlation matrix of the brain phenotype, 𝑿*𝑿 = 𝑰, the 𝑉	𝑥	𝑉	identity matrix. The least-squares 

estimates of 𝜷 based on mass-univariate model (2) thus take the form 

 𝜷;! 	= 	𝑿*𝒚.					(3)	  

Independent estimation of the parameter estimate at each vertex allows for estimation when 𝑉 >

𝑁 and otherwise reduces the computational demand and produces more stable estimates when 

the voxels are highly correlated with each other when 𝑁 > 𝑉.  

Recent debates on reproducibility and small effect sizes in neuroimaging research are 

based on such mass-univariate estimates from the brain mapping framework.  However, ignoring 

the correlation structure among vertices results in biased estimation of 𝜷 as described in 

Thompson et al. (2015), limiting the ability of mass-univariate approaches to localize effects and 

to make accurate predictions. Moreover, the magnitude of the generalizable brain-behavior 

association is usually inferred from the effect size estimates of only the most significant 

vertices/ROIs using the mass univariate estimators (3). Such an approach assumes that the 

underlying true association is sparse and localized in the cortex, and hence that clusters of 

vertices/ROIs with minimum p-values (min-p) form the basis of generalizable signals. However, 

emerging evidence from large consortia such as ABCD indicates that the explanatory power of 

the brain on behavior is non-sparse, and thus cannot be captured solely by the most significant 

vertices/ROIs. In order to generalize the effect sizes of the whole brain phenotype, we need a 
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prediction framework that accounts for correlation across voxels as well as the non-sparseness of 

the brain signal on behavior. Rooted in this brain mapping approach, we propose the Bayesian 

polyvertex score (PVSB) estimation and prediction framework. 

Empirical Bayes estimation of parameter of interest 

To tackle the correlated signal of the imaging phenotype at each vertex, we developed a 

Bayesian approach where the correlation information across vertices is incorporated into the 

parameter estimation process. Similar frameworks have been proposed in the field of genetics 

(Vilhjálmsson et al. 2015). Let 𝒚	denotes standardized 𝑁	𝑥	1 vector of behavioral phenotypes, 

𝑿 = (𝒙𝟏, … , 𝒙𝑽) denote the 𝑁	𝑥	𝑉 matrix of standardized imaging phenotypes and 𝜷 =

(𝛽&, … , 𝛽$)* the 𝑉	𝑥	1 vector of association parameters of interest. The intuition behind the 

formulation of the PVSB is to estimate the posterior expectation of the multivariate linear 

regression coefficients 𝜷 from model (1) utilizing the mass-univariate estimator 𝜷;! from (3) and 

a regularized estimator of its 𝑉	𝑥	𝑉 correlation matrix.  

To do so, we assume that the residuals 𝜺 are independent and normally distributed with 

constant variance, 𝜺	~	𝑁+(𝟎, 𝜎,𝑰), and give an independent normal prior with constant variance 

for the regression coefficients, 𝜷	~	𝑁$(𝟎, 𝛿,𝑰). It is easy to show that the posterior distribution 

of 𝜷	|	𝒚, 𝑿, 𝛿,, 𝜎, is again multivariate normal with expectation 

𝐸(𝜷" 	|𝒚, 𝑿, 𝛿,, 𝜎,) 	= (		𝑫 +	
𝜎,

𝛿, 	𝑰)
-&	𝜷;!				(4) 

where 𝑫 =	𝑿*	𝑿 is the 	𝑉	𝑥	𝑉	correlation matrix of	𝜷;!. We can thus express the vertexwise 

posterior mean effect sizes of the brain phenotype under model (1) by weighting the mass 

univariate beta estimates 	𝜷;! with a factor that accounts for the observed correlation structure of 
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the cortex 𝑫 and the per-vertex variance explained 𝛿,. Since we do not know 𝛿, and 𝜎,a priori, 

we use plug-in estimators based on the summary statistics from the mass univariate model. We 

accomplish this using a method-of-moments estimator of the variance explained per vertex 

(Schwartzman et al. 2017):  

𝑆,$ = 𝑚G/00H𝑧,JJJ − 1L				(6) 

where 𝑧,JJJ	is the mean of the squared z-statistics of the mass univariate regressions across vertices, 

and the 𝑚G/00	is the estimated effective number of vertices: 𝑚G/00is calculated as the number of 

vertices,	𝑉	divided by the second spectral moment of the correlation matrix 𝑫. Then the 

estimated per-vertex variance explained is given by 𝛿,$ =	𝑆,$/	𝑉 and the estimated residual 

variance is given by 𝜎,$ = (1 −	𝑆,$	).  Thus, our Empirical Bayes estimator for 𝜷 is given by 

𝜷;" = (	𝑫 +
	𝜎,$

𝛿,$
𝑰)-&𝜷;!				(7) 

The benefits of implementing this Empirical Bayes parameter estimation are twofold: 1) the 

procedure takes into account the correlation of the brain phenotype across vertices, and 2) the 

total estimated signal of the brain-behavior relationship is incorporated as a data-driven 

regularization parameter.  

Behavioral prediction  

Polyvertex scores 

Motivated by the success of PRS, a polyvertex score (PVS) can be calculated from 

neuroimaging data by aggregating the predictive power of all vertices on a given behavioral 

phenotype. We implemented two types of PVS that utilize the mass univariate and Empirical 
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Bayes parameter estimates respectively. A mass univariate PVS (PVSU), based on the mass 

univariate parameter estimates, was computed as the brain phenotype at each vertex for an 

individual multiplied by the mass univariate parameter estimates acquired from an independent 

sample:  

𝑦Q	1$2! =	)𝑋3

$

3

𝛽"!,3 

where 𝑦	is a standardized 𝑁	𝑥	1 vector of behavioral phenotypes, 𝒙𝒗 is 

standardized	𝑁	𝑥	1	vector of imaging data, and 𝛽# is the association parameter for the 𝑣th voxel, 

𝑣 = 1,…𝑉. The PVSU summarizes the effect size at all vertices on individual variability in 

behavior, with the assumption of independence at each vertex. 

Similarly, a Bayesian PVS (PVSB; Figure 1) was calculated using the Empirical Bayes 

parameter estimates:  

𝑦Q1$2" =	)𝑋3

$

3

𝛽"",3 

The PVSB is hypothesized to harness the multivariate effect of an imaging phenotype on 

behavior by accounting for the correlation structure and the total explainable signal of the brain 

phenotype and should therefore yield a superior predictive performance over the PVSU.  

Thresholding based on statistical significance 

To address the possibility that the explanatory power on behaviors is sparse and localized 

in the brain, a canonical assumption of mass univariate statistical models, we tested whether 

thresholding the number of vertices based on statistical significance would improve the 

prediction performance of the PVSB. The thresholding procedure was performed as follows: we 
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ranked the absolute effect sizes for all vertices and removed those ranked lower than a threshold 

proportion. Three levels of thresholding were implemented such that the top 50%, 10% and 1% 

of vertices were retained for the PVSB.  

To link our predictive methods with the canonical statistical inference approach where a 

brain and behavior relationship is established when any single vertex shows a significant 

association with the behavior, we compared our methods with the predictive performance of the 

vertex with the most significant mass univariate z-score which we have referred to as the min-p 

model. A total of six prediction models were examined, namely, the PVSU, the PVSB, PVSB 

50%, PVSB 10%, PVSB 1%, and min-p.  

Out-of-sample variance explained 𝑅, was used to evaluate the predictive accuracy of 

each method. Simulations were performed to assess the predictive performance of the above 

mentioned six methods. The simulation procedure, cross validation scheme, and simulation 

results were shown in the Supplementary Information.  

Empirical Data 

We examined whether functional neuroimaging phenotypes could predict complex 

behaviors with greater predictive power by (1) aggregating over all unthresholded effects across 

the cortex, and (2) incorporating the covariance structure of the imaging phenotype. The PVSB 

and its thresholded variants, the PVSU, and min-p model were implemented to assess the 

predictive power of two fMRI contrasts on two different cognitive tasks using the baseline data 

of the ABCD Study.  

Sample 

The ABCD Study is a population-based longitudinal study across 21 data acquisition sites 

in the U.S. following 11,875 demographically diverse children starting at 9 and 10 years old 
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(Garavan et al. 2018). Participants were recruited through a probability sampling procedure at 

the school level within the defined catchment area of the study’s nationally distributed set of 21 

recruitment sites. The ABCD sample also included a large twin cohort and many siblings. Family 

relatedness was documented and controlled for in the analyses in this paper such that twins and 

siblings from the same family were grouped into the same training or testing set. Study inclusion 

criteria were detailed in Casey et al. (Casey et al. 2018) and Hagler et al. (Hagler et al. 2019). 

Additional data quality control was applied to the complete baseline data of the ABCD Study, 

yielding a final sample of over 6000 participants. Quality control criteria and the descriptive 

characteristics of the final sample were presented in the Supplementary Information. 

With the complete baseline data of the ABCD study, we estimated the predictive 

performance of the vertex-wise 2 back - 0 back contrast from the Emotional N-back fMRI task 

(nBack; Casey et al. 2018) and the correct stop vs. correct go contrast from the Stop Signal Task 

(SST; Logan 1994) on the Total Composite Score from the NIH Toolbox Cognition Battery Ages 

7-17 (TC; Gershon et al. 2013) and the Stop Signal Reaction Time (SSRT) from the SST task 

respectively. NBack-SSRT and SST-TC associations were assessed to examine the specificity of 

prediction. Four brain-behavior associations of interest were examined: nBack predicting TC, 

nBack predicting SSRT, SST predicting TC, and SST predicting SSRT. To account for the 

potential contribution of subcortical regions-of-interests (ROIs) on behavioral variability, a 

whole brain imaging phenotype was created by combining the BOLD activity of the FreeSurfer 

subcortical ROIs (excluding ventricles; Fischl et al. 2002) with the vertexwise fMRI data. The 

predictive performance of these whole brain phenotypes on the above-mentioned four 

associations was also estimated.  
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Ten-fold cross validation was performed for each association. Variance explained 𝑅,, the 

squared Pearson correlation between the observed and predicted behavioral phenotypes, was 

calculated for each association. Rigorous covariate control was applied to the data to ensure that 

the identified brain-behavior associations could not attributable to demographic and 

socioeconomical confounds known to influence brain or behavioral variation. Failing to control 

for these confounds may result in inflated prediction performance for multivariate methods 

(Scheinost et al. 2019). Both brain and behavioral phenotypes were pre-residualized for age, sex, 

race, ethnicity, household income, parental education, household marital status, and scanner ID 

independently within each training and testing set.  

FMRI tasks and processing steps 

The nBack task incorporated facial and emotional processing to the traditional N-back 

task to assess memory and emotional regulation processes. The nBack task consisted of two runs. 

Within each run, participants were shown a series of stimuli and were instructed to indicate if a 

stimulus was the same as or different from the stimulus they saw N items earlier for each 

stimulus. There were two conditions for the nBack task: a 2-back vs fixation condition and a 0-

back vs fixation condition which served as baseline. The 2back – 0back contrast was used in this 

analysis.  

The SST was used to assess the BOLD activity during inhibitory control. Participants 

were instructed to indicate the direction of a left or right arrow as quickly and accurately as 

possible, but were instructed not to respond when a left or right arrow was followed by an 

upward arrow. The full details of the fMRI tasks used in the ABCD Study were documented in 

Casey et al. (Casey et al. 2018). 
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Structural and task-based functional MRI data acquisition were conducted with 3T 

scanners, with multiband echo planar imaging with fast integrated distortion correction, and were 

harmonized across scanner vendors. Preprocessing steps included head motion correction, B0 

distortion correction, resampling with cubic interpolation, between-scan motion correction, and 

automated registration. General linear models implemented in AFNI’s 3dDeconvolve were used 

to estimate task-related activation strength at the individual subject level, with hemodynamic 

response functions modeled using a gamma variate basis function plus its temporal derivative. 

Averaged beta coefficients per participant across two runs were calculated by weighting each run 

with the nominal degrees of freedom of that run, and were used in this analysis. Detailed imaging 

processing and analysis pipelines were described in Hagler et al. (Hagler et al. 2019). 

Behavioral measures 

The NIH Toolbox Cognition Battery Ages 7-17 (NTCB) is a comprehensive suite of 

neuro-behavioral measurements. NTCB consists of seven subtests: the Flanker Inhibitory 

Control and Attention Test, the Picture Sequence Memory Test, the List Sorting Working 

Memory Test, Picture Vocabulary Test, Oral Reading Recognition Test, Dimensional Change 

Card Sorting Test, and Pattern Comparison Processing Speed Test. The Total Composite score 

(TC), the average of all 7 subtests, is a composite index of general cognitive ability and was used 

in this study.  

The SSRT was derived from the behavioral performance measures acquired during the 

SST. It was computed by subtracting the median stop signal delay of all successful stop trials 

from the nth percentile GO reaction time, where n represents the percentage of successful 

inhibitions. 

Multivariate method comparisons 



 23 
 

 To assess the predictive performance of the PVSB relative existing multivariate models, 

we submitted the above-mentioned empirical data to three additional multivariate methods: 

LASSO, random forest, and support vector regression (SVR) with linear kernel, and compared 

their predictive performance with that of the PVSB. These methods were chosen to complement 

PVSB’s statistical emphasis. While LASSO is a parametric regression-based method similar to 

the PVSB, its sparsity assumption sets it aside from the PVSB which assumes a global prior. SVR 

and random forest, on the other hand, are popular nonparametric methods that capture nonlinear 

effects for better prediction. Matlab implementation of these multivariate methods was described 

in the Supplementary Information. To make our results compatible with previous multivariate 

analyses of differing covariates treatments (Finn et al. 2015; Sripada et al. 2019; Cui et al. 2020), 

we repeated these analyses with two additional covariate control schemes. Out-of-sample 

variance explained for all multivariate methods after controlling for (1) age, sex, and scanner ID, 

and (2) age, sex, scanner ID, race and ethnicity, was estimated.  

2.4 Results 
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Figure 2.2 The PVSB demonstrated superior predictive performance compared to the PVSU, and 
min-p (A-C) as well as its thresholded variants (D-F) across various simulated conditions. Figure 
2 showed the mean and 1.96 standard deviation confidence interval of the proportion of total 
variance explained by each method. The advantage of the PVSB over the PVSU and the min-p 
was most prominent at higher levels of total explainable signal (A), larger sample size (B), and 
with increased proportion of non-null vertices (C). When the true signal structure was nonsparse, 
(10%, 50% and 100% of non-null vertices; C), the advantage in prediction accuracy of the PVSB 
was prominent, manifested by its superior, prediction performance compared to the PVSU and 
min-p. Superior predictive performance was established for the PVSB compared to its 
thresholded variants (D-E). When the true signal structure was global, the PVSB outperformed 
its thresholded variants across levels of total explainable signals (D) and across sample sizes (E). 
Sensitivity to the underlying signal structure of the PVSB was estimated with varying simulated 
levels of signal sparsity (F): when the true signal structure was sparse, i.e. the proportion of non-
null vertices was small, the thresholded PVSB at the corresponding level of statistical threshold 
outperformed the unthresholded PVSB, highlighting the sensitivity of the PVSB to the underlying 
signal structure of the simulated brain-behavior association. The complete simulation results 
were reported in Supplementary Materials. 

Simulation results: the PVSB demonstrated superiority at capturing global, distributed 

brain-behavior association patterns 

The reliability of the predictive performance of the PVS framework was established 

across a suite of simulated conditions (Figure 2 and Supplementary Information). The PVSB 

better captured the variance explained in behavior than the PVSU and the min-p (most significant 

Sample SizeTotal Explainable Signal Proportion of non-null vertices
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vertex) across varying levels of magnitude (total explainable signal; Figure 2.A), sample size 

(Figure 2.B), and non-sparseness of the true signal across the cortex (proportion of non-null 

vertices; Figure 2.C).  This shows the benefit of accounting for the correlation structure of the 

brain for behavioral prediction. The PVSB also outperformed its thresholded variants when the 

signal structure was global (Figure 2.D, Figure 2.E). When the true signal structure was sparse, 

thresholding PVSB at the corresponding threshold yielded better performance (Figure 2.F), 

demonstrating the sensitivity of the PVSB to the underlying true signal structure.  

 

Figure 2.3 Decreased predictive performance was associated with more stringently thresholded 
models for the empirical brain-behavior associations. Variance explained, R2, for four brain-
behavior associations (nBack predicting TC, SST predicting SSRT, nBack predicting SSRT, SST 
predicting TC) were examined using the PVSU, PVSB, thresholded variants of the PVSB, and 
min-p. Significant associations were identified for the nBack-TC and SST-SSRT, but not for the 
nBack-SSRT and SST-TC associations. For the two significant associations, the best prediction 
performance was achieved by the PVSB where all vertices where included in the model. 
Predictive performance decreased as more stringent thresholds were applied. All brain and 
behavioral variables were pre-residualized for age and categorical variables including sex, parent 
marital status, highest level of parental education, household income, self-reported race and 
ethnicity, and MRI scanner ID. 
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Empirical results: behavioral variability was better predicted by the unthresholded task 

activation pattern captured by the PVSB 

After establishing the efficacy of the PVSB at capturing global brain-behavior 

associations using simulation, we explored whether individual differences in cognitive processes 

can be better predicted by whole brain rather than thresholded task activation patterns using the 

baseline data from the ABCD Study (Figure 3). For the nBack-TC association, the PVSB 

outperformed the PVSU and min-p, capturing 12.6% compared to 6.9% and 3.5% of the variance 

in the n-Back-TC association. Similar improvement in prediction accuracy was also observed for 

the SST-SSRT association. The PVSB was able to explain 11.7% of the variance in SSRT using 

the vertex-wise BOLD variation of the correct stop vs. correct go contrast from the SST, 

compared to 1.7% and 1.5% for the PVSU and the min-p respectively. The increased predictive 

performance of the PVSB highlights the importance of accounting for the correlation structure of 

the imaging phenotype when measuring the generalizable signal between brain and behavior. 

Interestingly, the imaging contrasts only showed associations with the behaviors that used 

similar underlying cognitive constructs to the fMRI tasks: no associations were found between 

the nBack contrast and SSRT and between the SST contrast and TC. Such specificity has been 

found in other fMRI studies (Rosenberg et al., 2019) and further highlights the benefit of the 

PVSB at capturing effective association patterns without overfitting. 

Thresholding the PVSB at varying statistical thresholds, on the other hand, did not confer 

any advantage for prediction accuracy. For both significant associations, the predictive 

performance of the PVSB decreased as more stringent statistical thresholds were applied.  

Specifically, for the nBack-TC association, decreased predictive performance was found for the 

PVSB 50% (R2=12.4%) and PVSB 10% (R2=9.2%) compared to the PVSB (R2=12.6%). A similar 
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drop in predictive accuracy was found for the SST-SSRT association (PVSB: R2=11.7%, PVSB 

50%: R2=11.5%; PVSB 10%: R2=8.2%). Thresholding based on the vertex-wise p-values resulted 

in decreased prediction accuracy, suggesting that vertices with subthresholded p-values were still 

informative for behavioral prediction. Visualization of the distributed pattern of mass univariate 

statistics (Figure 4A, C) and the posterior mean effect sizes (Figure 4B, D) across the cortex, 

further corroborated our hypothesis that the predictive effect of the brain on complex behavior 

was indeed global and distributed across the cortex. No improvement was observed by including 

subcortical ROIs for prediction, as shown by the comparable predictive performance of the 

cortical imaging phenotype relative to that of the whole brain imaging phenotypes (Table S2).  
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Figure 2.4 Distributed pattern of effects across the cortex for the nBack-TC and SST-SSRT 
associations. Unthresholded vertexwise mass univariate standardized parameter estimates and 
posterior mean effect sizes were displayed for the nBack-TC and SST-SSRT associations. The 
unthresholded mass univariate parameter estimates were used to calculate the PVSU and the 
posterior mean effect sizes were used to calculate the PVSB for each association. For the nBack-
TC association, both mass univariate (A) and posterior mean effect size maps (B) showed 
distributed patterns of association across the cortex, suggesting that the association between 
imaging and behavioral phenotypes were global, spanning the whole cortex. Similar distributed 
patterns were found for the SST-SSRT association. Compared to the mass univariate statistical 
map (C), the posterior mean effect size map (D) of the SST-SSRT association showed greater 
variation in the relative weighting of brain regions on behavioral prediction, potentially 
contributing to the greater prediction accuracy for the PVSB compared to the PVSU for this 
association. Interpretation of the posterior mean effect size maps should be attempted with 
caution as the validity of these effect sizes rests upon the assumption of the global prior such that 
all vertices contribute to brain-behavior associations.   

Multivariate method comparisons 

 The PVSB demonstrated comparable if not superior predictive performance compared to 

other multivariate methods (Table 1). All methods except the SVR with linear kernel explained 

at least 10% of the variance explained of the nBack-TC association after controlling for 
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demographic variables. For the SST-SSRT association, the PVSB explained more than 10% of 

the out-of-sample variance in behavior, while random forest and LASSO achieved only 8% and 

8.7% variance explained respectively. Such difference in prediction accuracy may be due to 

overfitting of the random forest and LASSO to the noisier SST imaging phenotype, highlighting 

the importance of having high quality imaging data in multivariate statistical analysis. More 

stringent covariate control, on the other hand, reduced the predictive performance of all methods 

on the nBack-TC but not the SST-SSRT association (Table S2), suggesting that insufficient 

covariates control would inflate the magnitude of association detected by multivariate statistical 

methods and that such inflation maybe specific to the association of interest.  

Table 2.1 The PVSB demonstrated comparable if not superior generalization performance 
relative to other multivariate methods. The out-of-sample variance explained, R2, of each 
multivariate method was shown for each empirical brain-behavior association. While the PVSB, 
random forest, and LASSO showed comparable predictive performance for the nBack-TC 
association, the PVSB outperformed other multivariate methods for the SST-SSRT association. 
Minimal association was again found for the nBack-SSRT and SST-TC contrasts. 

 

 
 
2.5 Discussion 
 

In this study, we presented the empirical utility of a new multivariate prediction method, 

the Bayesian polyvertex score (PVSB), and showed that greater out-of-sample behavioral 

prediction of imaging phenotypes could be achieved by explicitly modeling the globally 

distributed brain-behavioral associations across the cortex. The PVSB captures the unthresholded, 
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generalizable predictive effect of an imaging phenotype on behavior by calibrating the mass 

univariate summary statistics with the estimated covariance structure of the imaging phenotype 

and a global prior of effect sizes. Using the Emotional N-back and the SST fMRI contrasts from 

the ABCD Study, we demonstrated that greatest predictive performance of fMRI phenotypes on 

complex behaviors can be achieved using the unthresholded multivariate effect size pattern 

captured by the PVSB. Our findings suggested that the predictive power of imaging phenotypes 

on complex behaviors was distributed rather than localized across the cortex, and such global 

effect needs to be explicitly modeled in the statistical methods used by neuroimaging studies in 

order to holistically understand the neural bases of psychiatric disorders and cognitive functions. 

Traditional methods used to analyze brain-behavior relationships aim to detect individual 

brain regions or localized clusters significantly associated with phenotypic variation. Rooted in 

signal detection theory, this brain mapping approach has been fruitful in characterizing the 

explanatory effect of brain regions on behavior but has demonstrated suboptimal replicability 

(Ihnen et al. 2009; King et al. 2019) and therefore limited translational utility for 

psychopathology. When predicting individual differences in phenotypic variation, sparse and 

focal association patterns, captured by statistical thresholding based on p-values, did not confer 

any advantage over the unthresholded association pattern captured by the PVSB. Along with 

other neuroimaging studies that have reported similar distributed association patterns (Gonzalez-

Castillo et al. 2012; Poldrack et al. 2017; Dubois et al. 2018; Bruin et al. 2018; Sripada et al. 

2019), our findings suggest that the power for predicting individual variability in complex 

cognitive behaviors is globally distributed in an imaging phenotype, above and beyond a 

localized and sparse region or network. While lower-level visual motor processes and specialized 

cognitive behaviors may be more accurately captured by localized association patterns (Sereno et 
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al. 1995; Tsao et al. 2003), complex cognitive processes and risk for psychiatric disorders may 

be more accurately predicted by distributed, global patterns of BOLD activation across the 

cortex.  

Our results further demonstrate the importance of moving beyond mass univariate 

statistical models in neuroimaging research (Kragel et al. 2018; Reddan et al. 2017; Smith and 

Nichols 2017). Common fMRI practice assumes that BOLD activity has a localized correlation 

structure. However, long range correlations in BOLD activity across the cortex have been well-

documented by resting-state fMRI research and have demonstrated important behavioral 

implications. Here we found that including the covariance structure of the imaging phenotype 

during parameter estimation greatly improved the predictive performance of functional imaging 

phenotypes. Similar improvement of predictive accuracy of regional cortical morphology on 

cognitive outcomes was shown in children (Palmer et al., in prep). Predictive performance is of 

great importance to the utility of biomarkers on clinical disorders or cognitive processes. As a 

result, neuroimaging studies that aim to generate potential biomarkers using functional 

neuroimaging phenotypes should adopt and develop new statistical methods that estimate the 

multivariate, distributed associative effects between brain and behavior. 

Our results echoed the solution of the small effect size issue adopted by the field of 

genetics. Similar to traditional neuroimaging studies, mass univariate statistical models and 

statistical thresholding are used in genome-wide association studies (GWAS) to localize genetic 

loci that are significantly associated with psychiatric disorders and cognitive processes. With 

thousands of participants and unprecedented statistical power, GWAS-based significant genetic 

loci only account for a fraction of the variance in complex human phenotypes. To resolve this 

issue, polygenic risk scores (PRS; Purcell et al. 2009) were subsequently developed from GWAS 
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to aggregate the small effect sizes across the whole genome, including those non-significant loci 

(Yang et al. 2010; Davies et al. 2011; Le Hellard et al. 2014; Torkamani et al. 2018). By pulling 

together the effects of many informative but not necessarily statistically significant genetic 

variants, the PRS greatly improved the predictive performance of genetic data on stratifying 

psychiatric risk based on the polygenic burden of common variants (Purcell et al. 2009; 

Dudbridge 2013), fueling the discovery that complex behaviors are polygenic (Visscher et al. 

2017; Gibson 2018). Given the similarity of observed small effect sizes of neuroimaging and 

genetics research, individual variability in complex behavior may be attributable to the structural 

and functional differences across the whole brain. Indeed, as our results indicated, complex 

behaviors are polyvertex, with each vertex contributing only minimally to the variance explained 

in behavior and thus not surviving statistical thresholding. To capture the distributed, small 

predictive effects of the brain on behavior, multivariate methods (Chang et al. 2015; Finn et al. 

2015; Bruin et al. 2019) are essential, and a multivariate method that captures the subthreshold 

effect sizes of the imaging data is needed.  

The PVSB is one of many multivariate statistical methods available for neuroimaging 

analyses. While the predictive advantage of various multivariate models is dependent on the 

sample size, imaging features, the magnitude of the effect sizes and other sample characteristics 

(Jollans et al. 2019), our results showed that the predictive accuracy was comparable across 

multivariate methods, with slightly greater performance of the PVSB on the SST-SSRT contrast. 

In addition to its good prediction accuracy, the PVSB confer other advantages. First, following 

the brain mapping approach, the PVSB maps the effect sizes at every vertex without reducing the 

dimensionality of the imaging phenotype, providing the scientific interpretability unavailable to 

nonparametric multivariate methods, making it a useful tool for the neuroimaging community. 
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Second, the PVSB offers empirical insights into the underlying signal structure of a brain-

behavior association of interest. Last, mass univariate summary statistics from large 

neuroimaging dataset can be supplied to the PVSB for prediction in a small independent sample, 

which makes the PVSB a useful tool to harvest the statistical power of large neuroimaging 

consortiums for smaller imaging studies.  

In summary, results from this study suggest that in order for neuroimaging studies to 

identify possible biomarkers for cognitive and clinical outcomes, greater predictive power of the 

functional neuroimaging phenotypes needs to establish, which can be achieved through the 

statistical modeling of global, distributed effects using multivariate statistical methods, one of 

which being the PVSB. Using a large sample from the ABCD study, we have demonstrated the 

utility of employing multivariate parameter estimation and aggregating the effect across a 

functional neuroimaging phenotype for greater predictive power for behavior. With an increasing 

interest in the predictive utility of imaging phenotypes as biomarkers for health and disease, this 

novel work will pave the way for improving our ability to reach this goal. 
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2.8 Supplementary Methods 
 
Simulation Procedure  

We used simulations to assess our novel approach and determine whether different types 

of PVSs perform as expected in certain contexts. In particular, we assessed how varying levels of 

total explainable signal of the brain phenotype, sparseness of the true signal in the brain, and 

sample size influenced the predictive accuracy of the above mentioned PVS methods.  

For each iteration of the simulations, the predictive effect of the brain on behavior at each 

vertex, the true beta coefficient, was simulated as:  

𝛽~T𝑁 U0,
𝛿,$

𝜋 X 	with	probability		𝜋

0	with	probability	1	 − 	𝜋
 

The 𝛽’s were simulated by sampling independently from a standard normal distribution. 

A subset of these true beta coefficients was then set to zero as determined by 1 minus the 

proportion of vertices containing true signal, 𝜋. For example, for an instantiation of 10% vertices 

scenario, 10% of the vertices were randomly assigned to have non-null effects which can account 

for 𝑆 of outcome variations in total, whereas the beta coefficients of the other 90% were set to 

zero.  

The signal sparsity level, was simulated at the levels of 100%, 50%, 10%, 1%, and 0.1% 

vertices. The 0.1% vertices level corresponds to the Min-p assumption where the significant 

effect lies in a single vertex. The total explainable signal of the brain phenotype was simulated at 

the levels of 0.01, 0.05, 0.1, and 0.2. Each combination was simulated independently 100 times, 

giving 2000 iterations in total.  

Then, the simulated behavioral phenotype was calculated as a combination of the effect 

of an empirically collected brain phenotype, 𝑋, and independent noise weighted by the square 
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root of the total explainable signal of that iteration.	The independent noise was sampled at the 

participant level from a standard normal distribution. To make the simulation more realistic, we 

used the empirical brain phenotype data as the independent variables, 𝑋	, which was a 

5855	𝑥	1284 brain matrix of the weighted average of the two runs of the 2-back - 0-back 

contrast of the nBack fMRI task of the baseline data of ABCD (ABCD Data Release 2.0.1; 

NDAR DOI: 10.15154/1504041). The weighting of the two runs were determined by the 

nominal degrees of freedom of each participant. 𝑋 was smoothed at around FWHM 5mm, pre-

residualized by age and categorical variables including sex, parent marital status, highest level of 

parental education, household income, self-reported race and ethnicity, and MRI scanner ID.  

 Within each iteration, two independent samples were randomly drawn at the sample size 

of 100, 500, 1000, 3000, 5000, and at the full sample size, 5855, to estimate the sample size 

dependency of prediction accuracy. Predicted behavioral phenotypes based on nine different 

models were calculated with 10-fold CV. 𝑅,	served as a metric for predictive performance. The 

simulation results comparing the predictive performance of the PVSB, the PVSU, and min-p were 

shown in Figure S1, and the simulation results comparing the effect of thresholding based on 

statistical significance were shown in Figure S2. 

Evaluating the performance of the PVSB and PVSU 

We used 10-fold cross validation to evaluate the generalization performance of the PVSU 

and the PVSB. The same training-testing schema was applied to each fold to ensure the 

independency between estimation and prediction. For the PVSU, at each fold, mass univariate 

beta estimates obtained from the training set, containing 90% of the full sample, were multiplied 

by the imaging phenotype of each test set participant to obtain a PVSU score (the predicted 

behavioral phenotype) for each participant in the test set. This procedure was repeated 10 times 
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yielding a predicted behavioral score for each participant in the full sample. For the PVSB, the 

posterior effect sizes were calculated with the estimated total signal of the brain-behavior 

association, the correlation structure of the imaging phenotype, and the mass univariate beta 

estimates from the training data, and multiplied by the imaging phenotype of each test set 

participant to obtain a predicted PVSB score for each participant. Variance explained, 𝑅, (the 

squared Pearson correlation between the observed and predicted behavior phenotypes) was used 

as a metric for prediction accuracy. 

Empirical data quality control 

Manual quality control was performed to exclude extreme outliers from the baseline data 

of the ABCD Study. Specifically, participants were included in the analysis if they had (1) fMRI 

data not collected by Philips scanners due to incorrect post-processing in the ABCD 2.0.1 

Release, (2) two fMRI runs for the nBack and the SST task, (3) vertexwise cortical data available 

at the time of analysis, (4) hemispheric mean beta-weights within two standard deviation of the 

whole sample mean for each task, (5) at least 200 degrees of freedom over the two runs, (6) met 

task-specific performance criteria (participants with very poor performance accuracy or slow 

reaction times were excluded), and (7) have complete information of the following demographic 

variables: age, sex, parental marital status, highest level of parental education, household 

income, self-reported race and ethnicity, and MRI scanner ID. All imaging and behavioral 

phenotypes were pre-residualized by age and categorical demographic variables including sex, 

parent marital status, highest level of parental education, household income, self-reported race 

and ethnicity, and MRI scanner ID. There were a large number of participants with missing 

income data (N = 1018). For these participants, imputed income was calculated by taking the 

median income level across participants from the same data collection site. Descriptive 
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characteristics of the participants included in the empirical data analyses were reported in 

Supplementary Table 1.  

Multivariate statistical methods implementation 

 The out-of-sample predictive performance of LASSO, random forest, and support vector 

regression (SVR) on the four empirical brain-behavior associations was estimated using 10-fold 

cross validations in MATLAB (2017a). Cross-validation schemes for each brain-behavior 

association was pre-computed to ensure that participants of the same household were grouped 

together in the same training or testing set. All training and testing sets were pre-residualized and 

standardized independently for age, sex, race, ethnicity, household income, parental education, 

household marital status, and scanner ID.  

LASSO was implemented with the lasso command with L1 shrinkage. The regularization 

hyperparameter, lambda, was generated using the default setting in MATLAB (a geometric 

sequence of 100 values) and was selected using 10-fold cross validation within the training set. 

The largest lambda value that yielded the mean squared error (MSE) one standard error of the 

minimum MSE was selected, and was subsequently applied to the whole training set for 

parameter estimation. The parameter estimates were subsequently applied to the test set for 

behavioral prediction. Random forest was implemented with TreeBagger. The ensemble of one 

hundred regression trees trained on the training set were applied to the test set for prediction. For 

the SVR implementation, the training model was estimated using fitrsvm with linear kernel and 

applied to the test set for prediction. 
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2.9 Supplementary Figures & Tables 
 

 
Supplementary Figure 2.1 The PVSB demonstrated superior predictive performance than the 
PVSU and the min-p across most simulated scenarios. The proportion of total explainable signal 
recovered by the PVSU, the PVSB and min-p, with 95% confidence interval, was plotted against 
the simulated sample size at four levels of proportion of non-null vertices, shown in columns, 
and three levels of total explainable signal shown in rows. The PVSB showed comparable to 
superior predictive performance compared to the PVSU .and min-p across at most simulated 
scenarios. The advantage of the PVSB became more prominent with increased sample sizes and 
greater total explainable signals. However, the PVSB suffered from including all vertices for 
prediction when the predictive signal in the brain was extremely sparse, i.e. 1% non-null vertices. 
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Supplementary Figure 2.2 The signal sparsity of the simulated brain-behavior associations can be 
captured by thresholding the PVSB at varying statistical thresholds. The proportion of total signal 
explained by the PVSB, the PVSB 50% (PVSB thresholded at 50% most significant vertices), the 
PVSB 10%, and the PVSB 1%, with 95% confidence interval, was plotted against the simulated 
sample size at four levels of proportion of non-null vertices, shown in columns, and three levels 
of total explainable signal shown in rows. The relative advantage of the PVSB and the 
thresholded PVSBS varied as a function of the signal sparsity level of the simulated brain-
behavior association. When the true signal was not sparse, corresponded to the 50% and 100% 
non-null vertices conditions, the PVSB showed comparable to superior predictive performance 
compared to the thresholded PVSBs. As the true signal of the brain became more sparse, superior 
performance was achieved by thresholding the PVSB at a statistical threshold corresponding to 
the signal sparsity level. 
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Supplementary Table 2.1 Descriptive characteristics of the ABCD Study participants included 
for each of the four empirical brain-behavior associations. This table showed the demographic 
decomposition of participants included in the nBack-TC, SST-SSRT, nBack-SSRT, and SST-TC 
association. The mean and the standard deviation (in brackets) of the continuous variable, age, 
was shown. For the categorical variables (sex, household income, parental education, marital 
status, family relations, and MRI scanner), the mean and the percentage of participants within 
each level of the categorical variable were shown. 

 nBack-TC SST-SSRT nBack-SSRT SST-TC 
N 5855 6152 5850 6048 

Age (mean (SD)) 
126.56 
(9.63) 126.50 (9.66) 126.56 (9.61) 126.54 (9.67) 

Sex = M (%) 2977 (50.8) 3113 (50.6) 2970 (50.8) 3068 (50.7) 
Household income 
(%)         
   [<50K] 438 (31.5) 467 (32.3) 430 (31.0) 458 (32.3) 
   [>=100K] 567 (40.8) 600 (41.5) 576 (41.6) 584 (41.2) 
   [>=50K & <100K] 385 (27.7) 380 (26.3) 379 (27.4) 376 (26.5) 
Parental education 
(%)         
   < HS Diploma 78 (5.1) 76 (4.8) 77 (5.1) 75 (4.9) 
   Bachelor 346 (22.8) 360 (22.8) 349 (23.1) 353 (22.8) 
   HS Diploma/GED 168 (11.1) 199 (12.6) 163 (10.8) 197 (12.7) 
   Post Graduate 
Degree 501 (33.1) 512 (32.4) 500 (33.1) 501 (32.4) 
   Some College 422 (27.9) 432 (27.4) 422 (27.9) 420 (27.2) 
Marital status = yes 
(%) 994 (65.6) 1031 (65.3) 994 (65.8) 1013 (65.5) 
Self-declared 
race/ethnicity (%) 

        

   Asian 122 (2.1) 123 (2.0) 120 (2.1) 123 (2.0) 
   Black 654 (11.2) 731 (11.9) 652 (11.1) 714 (11.8) 
   Hispanic 1140 (19.5) 1188 (19.3) 1131 (19.3) 1166 (19.3) 
   Other 564 (9.6) 590 (9.6) 573 (9.8) 575 (9.5) 
   White 3375 (57.6) 3520 (57.2) 3374 (57.7) 3470 (57.4) 
Family relation (%)         
   Singleton 4587 (88) 4772 (87.5) 4593 (88.1) 4695 (87.5) 
   2 sublings 613 (11.8) 669 (12.3) 609 (11.7) 657 (12.2) 
   3 sublings 14 (0.2) 14 (0.2) 13 (0.2) 13 (0.3) 

Scanner ID (%)         
   HASH03db707f 66 (4.4) 70 (4.4) 66 (4.4) 70 (4.5) 
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Supplementary Table 2.1 Descriptive characteristics of the ABCD Study participants 
included for each of the four empirical brain-behavior associations. Continued. 
 
   HASH11ad4ed5 31 (2.0) 27 (1.7) 31 (2.1) 26 (1.7) 
   HASH1314a204 100 (6.6) 112 (7.1) 100 (6.6) 110 (7.1) 
   HASH311170b9 53 (3.5) 55 (3.5) 53 (3.5) 53 (3.4) 
   HASH31ce566d 4 (0.3) 2 (0.1) 4 (0.3) 2 (0.1) 
   HASH3935c89e 205 (13.5) 210 (13.3) 204 (13.5) 209 (13.5) 
   HASH48f7cbc3 2 (0.1) 3 (0.2) 2 (0.1) 3 (0.2) 
   HASH4b0b8b05 31 (2.0) 38 (2.4) 31 (2.1) 38 (2.5) 
   HASH4d1ed7b1 65 (4.3) 69 (4.4) 69 (4.6) 66 (4.3) 
   HASH5ac2b20b 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 
   HASH5b0cf1bb 150 (9.9) 147 (9.3) 147 (9.7) 147 (9.5) 
   HASH5b2fcf80 42 (2.8) 44 (2.8) 43 (2.8) 43 (2.8) 
   HASH65b39280 101 (6.7) 100 (6.3) 101 (6.7) 100 (6.5) 
   HASH69f406fa 38 (2.5) 40 (2.5) 38 (2.5) 40 (2.6) 
   HASH6b4422a7 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 
   HASH7911780b 48 (3.2) 58 (3.7) 50 (3.3) 53 (3.4) 
   HASH7f91147d 7 (0.5) 7 (0.4) 7 (0.5) 7 (0.5) 
   HASH96a0c182 63 (4.2) 75 (4.7) 66 (4.4) 68 (4.4) 
   HASHa3e45734 50 (3.3) 52 (3.3) 51 (3.4) 49 (3.2) 
   HASHb640a1b8 100 (6.6) 111 (7.0) 101 (6.7) 106 (6.9) 
   HASHc3bf3d9c 53 (3.5) 47 (3.0) 51 (3.4) 47 (3.0) 
   HASHc9398971 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 
   HASHd422be27 79 (5.2) 79 (5.0) 77 (5.1) 78 (5.0) 
   HASHd7cb4c6d 60 (4.0) 49 (3.1) 59 (3.9) 49 (3.2) 
   HASHdb2589d4 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 
   HASHe3ce02d3 19 (1.3) 27 (1.7) 18 (1.2) 27 (1.7) 
   HASHe4f6957a 140 (9.2) 152 (9.6) 134 (8.9) 150 (9.7) 
   HASHe76e6d72 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 
   HASHfeb7e81a 8 (0.5) 5 (0.3) 8 (0.5) 5 (0.3) 
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Supplementary Table 2.2 The out-of-sample variance explained of the cortical and the whole 
brain phenotypes, estimated with all multivariate statistical methods, was reduced when more 
rigorous covariate treatment was applied. For each multivariate model, the out-of-sample 
predictive performance of the cortical and the whole brain imaging phenotypes was shown. 
While the whole brain imaging phenotypes (vertexwise cortical data and subcortical ROIs) failed 
to improve the predictive performance of brain-behavior associations, the prediction accuracy of 
all multivariate methods was inflated when demographics and socioeconomic variables were not 
properly controlled for, demonstrating the importance of covariate control in multivariate 
prediction.  
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Chapter 3 Task fMRI paradigms may capture more behaviorally relevant information than 

resting-state functional connectivity 

3.1 Introduction 
 

An important aim of cognitive neuroscience is to understand how individual differences 

in behavioral attributes are associated with brain structure and function. With the availability of 

large neuroimaging datasets, recent work has pivoted towards building models that predict 

current or future behavior based on neuroimaging measures (Gabrieli, Ghosh, Whitfield-

Gabrieli, 2015; Varoquaux & Poldrack, 2019; Finn & Rosenberg, 2021). Such predictive 

modeling approaches allow us to estimate better the degree to which behavioral differences are 

associated with individual differences in brain structure or function.  

Trait differences can be predicted by individual differences in functional connectivity 

(FC), which measures the correlation of the BOLD response across regions of interests (ROIs) 

across brain regions by calculating the pairwise correlations of fMRI time series (Speer et al., 

2021; Zhang et al., 2021). FC patterns are unique to an individual (Finn et al., 2015; Gratton et 

al., 2018), relatively stable across different mental states (Cole et al., 2014; Finn et al., 2015; 

Gratton et al., 2018), and sensitive to phenotypic differences including age (Dosenbach et al., 

2010; Nielsen et al., 2019), cognitive abilities (Sripada et al., 2019, Moutoussis et al., 2021, 

Zhang et al., 2021; Chen et al., 2022), and mental health outcomes (Challis et al., 2015, Kim et 

al., 2016, Thomas et al., 2020; Chen et al., 2022).  

FC is often estimated during resting-state fMRI acquisitions where participants are not 

engaged in a particular task but are simply instructed to either close their eyes or fixate on a 

crosshair and stay still. While resting-state fMRI has become the most common paradigm used 

for correlating FC patterns with behavioral traits or conditions, there is increasing evidence that 
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rest may not always be the optimal condition to elicit FC patterns that are most relevant to 

differences in behavioral phenotypes in a particular domain (Rosenberg et al., 2016; Greene et 

al., 2018; Jiang et al., 2019; Finn, 2021). Naturalistic tasks or traditional fMRI tasks may have 

more utility for the prediction of trait or state differences as they can elicit cognitive states that 

are directly relevant to the behavioral domain of interest (Finn et al., 2017).  

Direct comparisons between resting-state FC and task-fMRI FC suggest that the latter is better at 

predicting both fMRI attention task performance and trait measures of attention function 

(Rosenberg et al., 2016), measures of general cognitive ability (Greene et al., 2018; Elliot et al., 

2019) and reading comprehension (Jiang et al., 2020). A similar advantage has been shown for 

more passive task fMRI with naturalistic paradigms such that FC during movie-watching 

paradigms outperformed resting-state FC in predicting individual differences in cognitive task 

performance and emotional health (Finn & Bandettini, 2021).  

Why might FC patterns derived from task and naturalistic paradigms be more predictive 

of trait differences than FC patterns derived from rest? Finn and colleagues (Finn et al., 2017; 

Finn & Bandettini, 2021) proposed that task fMRI and naturalistic paradigms are better 

candidates than resting-state for the study of behavioral differences because tasks are tailored to 

engage a particular behavioral domain. Like a cardiac stress test where the heart’s ability to 

respond to external stress is measured by inducing stress in a controlled environment, fMRI tasks 

and naturalistic paradigms can introduce cognitive and emotional challenges to simulate brain 

activity. It follows that an fMRI paradigm that engages the behavioral or cognitive processes 

involved in the behavioral phenotype of interest is likely to amplify brain-behavior relationships 

(Greene et al., 2020; Greene et al., 2018). In other words, the greater behavioral relevance of the 

FC derived from task fMRI paradigms may be attributable to the task effects. 
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Previous studies examining FC during fMRI tasks differ in whether they retain the task 

effects in the fMRI time course for FC estimation (Table 3.1). With an explicit task design, the 

observed time course during a fMRI task can be decomposed into the part that is explained by 

the task, estimated by the task model fit, and the residual. If the task effect is retained 

(Vanderwal et al., 2017; Greene et al., 2018; Gao et al., 2019), the FC estimates, which we label 

task-based FC, capture the FC of the original and complete task fMRI time series. If the task 

effect, estimated by the task model fit, is removed (Arfanakis et al., 2000; Fair et al., 2007), the 

FC measures, which we label the task-model residual-FC, capture the FC of the component of 

the task fMRI time series that is not explained by the task design. The task-model-residual FC 

has also been called “pseudo resting-state connectivity" (Jurkiewicz et al., 2018), “task FC” 

(Cole et al., 2014), “task-based FC” (Cole et al., 2019), and "background connectivity" (Al-

Aidroos et al., 2012) in the literature. Because of its task-invariant nature, task- model-residual 

FC patterns have indeed been shown to resemble resting-state FC patterns (Jurkiewicz et al., 

2018; Cole et al., 2019) and are predictive of behavioral differences across individuals 

(O'Halloran et al., 2018; Varangis, Habeck & Stern, 2020). If the task-model-residual FC does 

capture the same functional brain organization as resting-state FC as previous studies suggest 

(Jurkiewicz et al., 2018; Cole et al., 2019), the reported superior behavioral prediction of the 

task-state FC over resting-state FC may be attributable to the task effects that were removed 

from the task-model-residual FC. We can manipulate data from fMRI tasks to study the 

behavioral sensitivity of the FC pattern of the task effects. By estimating the FC of the task 

model fit, which we call the task-model-fit FC, we can directly assess and compare its 

behavioral relevance against the task-model-residual FC, the task-based FC, and the resting-state 

FC. These comparisons generate new hypotheses on the source of behavioral relevance in the 
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task fMRI data and can provide additional information to guide the optimization of fMRI 

paradigms for the investigation of behavioral phenotypes. 

 
Table 3.1 Glossary for fMRI measures used in this study. 

FMRI 
paradigms 

Names Definition Names in other studies 

Resting-state 
fMRI 

Resting-
state FC 

Pairwise correlation of fMRI activities at rest  

Task-related 
FC measures 

Task-state 
FC 

Pairwise correlation of the complete preprocessed 
task fMRI time series. 

"Task-based FC" (Greene et al., 
2018; Gao et al., 2019) 

Task-model-
fit FC 

Pairwise correlation of task-model-fit time series 
which is the task fMRI time series component 
explained by the task design.  
The task-model-fit time series is derived by 
multiplying the task design matrix by the beta 
estimates of the task condition regressors and their 
temporal derivative. 

 

Task-model-
residual FC 

Pairwise correlation of the task-model-residual 
time series which is the task fMRI time series 
component that can’t be explained by the task 
design.  
The task-model-residual time series is derived by 
subtracting the task-model-fit time series from the 
preprocessed task fMRI time series. 

"Pseudo resting-state 
connectivity" (Jurkiewicz et al., 
2018) 
"Task FC" (Cole et al., 2014) 
"Task-state FC" (Cole et al., 
2019) 
"Background connectivity" (Al-
Aidroos et al., 2012) 

Task-
predicted 
FC 

The task fMRI time series component that is 
predicted by the task design. Derived from the 
preprocessed fMRI time series by multiplying the 
task contrast betas estimates to the preprocessed 
fMRI time series. 

-- 

 

In this study, we leveraged the large sample of the Adolescent Brain Cognitive 

Development (ABCD) Study ® and compared the behavioral prediction performance of resting-

state FC to the task-model-fit FC, task-model-residual FC, and task-based FC derived from the 

Emotional N-back (nBack) task, the Stop Signal Task (SST), and the Monetary Incentive Delay 

(MID) task. We evaluated the out-of-sample prediction performance of each FC measure on two 

behavioral measures. The trait-like behavioral measure of interest was a measure of general 
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cognitive performance, the total composite cognitive score of the NIH Cognition Toolbox. As an 

example of a more proximal, state-sensitive, behavioral measure we chose a behavioral 

inhibition measure derived from the SST fMRI task, the stop-signal reaction time (SSRT). The 

behavioral prediction of the task model parameters, the beta estimates of the task condition 

regressors, was also estimated and contrasted with all task-derived FC measures. We also 

quantified how the prediction performance of FC measures changed with the amount of usable 

data and across sociodemographic variables, which are known to be associated with individual 

variability in cognitive (Korous et al., 2020) and brain outcomes (Farah, 2018; Taylor et al., 

2020). 

3.2 Methods 
 
Participants 
 

The ABCD Study is a longitudinal neuroimaging study that tracks brain and behavioral 

development of 11,880 children starting at 9 and 10 years old. The ABCD study used school-

based recruitment strategies to create a demographically and ethnically diverse cohort (Garavan 

et al., 2018) with an embedded twin cohort and many siblings. Informed consent was obtained 

from parents/caretakers and ass was obtained from the children. Extensive descriptions of the 

recruitment, collection, and processing of the fMRI and the behavioral data of the ABCD study 

can be found in prior publications (Gavaran et al., 2018; Casey et al., 2018; Hagler et al., 2019). 

Participants with complete data across all the behavioral measures and covariates of interest were 

included in the analyses. To ensure accurate characterization of the FC matrices, participants 

were required to have at least 50% of usable data for each of the two runs of each fMRI task, and 

for each of the four resting state fMRI runs. The nBack task had the least number of participants 

that met the inclusion criteria (n = 3034). In order to match the number of participants across 
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fMRI acquisitions for the behavioral prediction analysis, we randomly selected 3034 participants 

from each of the other fMRI acquisitions. Around 50% of the participants are shared between the 

final sample of each acquisition. The additional inclusion criteria and their effect on sample size 

is shown in Supplementary Table 3.1. 

Behavioral measures 

Here, we describe the behavioral measures used in the present study. The full 

neurocognition battery for the ABCD Study is detailed elsewhere (Luciana et al., 2018). The 

NIH Toolbox Cognition Battery measures a range of cognitive domains that show substantial 

development during childhood and adolescence. It consists of seven subtests, including measures 

of vocabulary size (Picture Vocabulary Task), single word reading ability (Oral Reading Task), 

rapid visual processing (Pattern Comparison Processing Speed Test), working memory capacity 

(List Sorting Working Memory Test), episodic memory (Picture Sequence Memory Test), 

attention and inhibitory control (Flanker Task), and cognitive flexibility (Dimensional Change 

Card Sort Task). The composite measure of the NIH Toolbox Cognitive Battery, the Total 

Composite Score is an arithmetic average of the 7 subtests summarizing the cognitive 

performance of an individual across the different cognitive domains. The age-uncorrected score 

of the composite measure, the total composite cognition score, was used as a primary behavioral 

outcome of this study. In the ABCD Study, participants perform the Stop Signal Task (SST) 

during fMRI scans. In this task, participants are instructed to inhibit a prepotent motor response 

to a Go Stimulus in response to a stop signal. A tracking algorithm varies the interval between 

the onset of the Go stimulus and the onset of the Stop stimulus (the Stop Signal Delay) based on 

individual performance. The Stop Signal Reaction Time (SSRT) quantifies the speed of the 

inhibitory process during the SST task, such that lower SSRT reflects more efficient response 
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inhibition. The SSRT was calculated by subtracting participants’ mean stop signal delay (SSD) 

from their mean reaction time during the SST fMRI task. We chose the SSRT as a second 

behavioral outcome because it measures a specific cognitive process, in contrast to the general 

cognitive abilities assessed by the total composite cognition score. In addition, the measure was 

derived directly from performance during the task fMRI session enabling us to assess links 

between task performance and the miscellaneous FC measures obtained during that task. 

Resting-state and task fMRI paradigms 

 The neuroimaging paradigms and acquisition parameters are detailed elsewhere (Casey et 

al., 2018), so a brief overview is provided here. Four 5-minute resting-state fMRI runs were 

acquired during which participants were instructed to fixate on a crosshair. Three task fMRI 

acquisitions were completed after the resting-state fMRI, with two runs of each of the following 

tasks: Emotional N-back task (nBack), Stop Signal Task (SST), and Monetary Incentive Delay 

Task (MID). The order of the tasks was counterbalanced across participants. These tasks have 

been shown to elicit anticipated patterns of brain activation in the ABCD Study baseline data 

consistent with previous literature (Chaarani et al., 2021). 

The nBack engages the neural correlates of working memory and emotional regulation 

processes. To engage working memory, the task includes 0-back and 2-back conditions, 

presented in a block design. For the 2-back condition, participants were instructed to indicate 

with a button press whether the current stimulus matched the stimulus presented 2 trials back. 

For the 0-back condition, a target stimulus was presented at the beginning of the block and 

participants were instructed to press the button when they saw the target. To engage emotion 

regulation, the task stimuli included happy faces, fearful faces, neutral faces, and places, 

presented serially.  
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The SST engages the neural correlates of impulsivity and inhibitory control. In an event-

related design, participants were instructed to indicate the direction of a leftward or rightward 

pointing arrow as quickly as possible. In 16.67% of the trials, the arrow was followed by a stop 

signal represented as an upward arrow, and participants were instructed to withhold their 

response. A tracking algorithm that varied the onset of the stimulus and the onset of the stop 

stimulus (the stop signal delay, SSD) was implemented to ensure approximately 50% successful 

and 50% unsuccessful stop trials.  

The MID probes the neural correlates of reward processing. For each trial, participants 

could either win money, lose money, or earn nothing. Wins and losses were further subdivided 

into small or large amounts. At the start of each trial, participants were prompted with an 

incentive cue of five possible trial types (win $0.20, Win $5, Lose $5, Lose $0.20, $0-no money 

at stake) followed by a jittered anticipation period, during which participants fixated on a 

crosshair. Next, a target appeared to which participants made their button response. The trial 

ended with positive or negative feedback to inform participants about their performance.  

Image acquisition and processing  

Task and resting-state MRI acquisition and preprocessing 

The ABCD MRI data were collected across 21 research sites using GE 750, Siemens 

Prisma, and Philips Achieva and Ingenia 3T scanners. Scanning protocols were harmonized 

across sites. The full details of the ABCD imaging acquisition and preprocessing protocols were 

described in Casey et al. (2018) and Hagler et al. (2019). Briefly, T1w sMRI images (1mm 

isotropic) were acquired with a 3D T1w inversion prepared RF-spoiled gradient echo scan, and 

fMRI acquisitions (rest and task) were collected with multiband EPI with slice acceleration 

factor 6 (2.4 mm isotropic, TR = 800ms). The preprocessing steps for fMRI data included (i) 
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head motion correction, (ii) B0 distortion correction, (iii) gradient warping correction, (iv) 

within-scan motion correction, and (v) registration to T1w structural images. Initial frames 

(Siemens and Philips scanners: 8 TRs; GE DV25: 5 TRs; GE DV26: 16 TRs) were removed 

from the preprocessed task fMRI time course. Motion estimates were filtered to remove the 

effect of respiratory signals (Fair et al., 2018). The preprocessed time courses were normalized 

and sampled onto the cortical surface for each participant. Average time courses were calculated 

for a functionally defined parcellation scheme (Gordon et al., 2016) sampled from the atlas-space 

to individual subspace, and anatomically-defined subcortical ROIs (Fischl et al., 2002).  

Task model parameters, task-based fMRI time series, task-model-fit, and task-model-residual 

time series estimation 

The task effects were estimated at the participant level using a general linear model 

(GLM) that included the stimulus timing for each task condition (Hagler et al., 2019) and the 

temporal derivative to capture any task related changes in the fMRI time course that is not 

captured by our task model. The GLM modeled each task condition with a bivariate gamma 

function and its first temporal derivative along with 4 nuisance regressors for baseline shifts and 

cubic trends and 12 regressors for the six motion estimates and their temporal derivatives. For 

the GLM estimation, time points with framewise displacement (FD) greater than 0.9 mm were 

censored (Siegel et al. 2014 HBM). For the behavioral prediction response of the task model 

parameters, both the beta estimates of the task condition regressors and the temporal derivative 

were included as predictors. 

The task-based time series was the task fMRI time series after preprocessing. The task-

model-fit time series was the component of the preprocessed task fMRI time series that was 

explained by the task design and was calculated by multiplying task design matrix to the beta 
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estimates of task condition regressors and their temporal derivative. The task-model-residual 

time series was the component of the preprocessed task fMRI time series that was not explained 

by the task, calculated by subtracting the task-model-fit time series from the preprocessed task-

based time series.  

FC estimation 

Several additional preprocessing steps were applied to the resting-state and task fMRI 

time series before the estimation of FC to reduce spurious signals that are unlikely to reflect 

neuronal activation. These steps included (1) censoring and residualization and removal of 

signals associated with cerebral white matter, ventricles, white matter, and head motion estimates 

and their squares and derivatives (Power et al., 2014; Satterthwaite et al., 2012), (2) motion 

regression where frames with FD over 0.3mm were excluded (Power et al., 2014), and (3) band-

pass filtering (0.009 and 0.08 Hz) (Hallquist et al., 2013). Additional motion censoring was 

applied to exclude the following time points: time points with FD over 0.2mm, time points that 

were outliers with respect to the spatial variation across the brain, and time periods with less than 

5 contiguous, sub-threshold time points. Average time courses were calculated for 333 cortical 

ROIs (Gordon et al., 2016) and 19 subcortical ROIs (Fischl et al., 2002) for each run and were 

concatenated. Pearson correlation was applied to calculate the pairwise correlation of these 352 

ROIs. The r-to-z transformed correlation matrix formed the FC estimate of each time series.  

Statistical analysis 

Behavioral prediction algorithm 

A nested 10-fold cross validation scheme was used to estimate the out-of-sample 

prediction performance of each set of fMRI measures. Within each training set, the mass 

univariate beta estimates between each fMRI measure and a behavior were estimated using the 
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Fast Efficient Mixed Effects Analysis (FEMA; Fan et al., 2021) where a general linear mixed 

effects model was estimated at each voxel or ROI. Compared to the traditional general linear 

models, FEMA explicitly adjusts for the effects of the nested family structure in the ABCD data 

and the covariates of no interest. The following sociodemographic and imaging acquisition 

variables were included in the FEMA models as covariates: age, biological sex, top 10 genetic 

PCs, highest parental education, household income, scanner ID (MRI device serial number) and 

software version. Mean framewise displacement (FD) and the number of usable time points were 

used as additional covariates for FC measures. A separate analysis was conducted without the 

inclusion of sociodemographic variables as covariates to probe the shared impact of 

sociodemographic variables on the imaging and the behavioral measure. For this analysis, only 

scanner ID and software version were used as covariates, along with mean FD and the number of 

usable time points for FC measures. 

For behavioral prediction, the mass univariate beta estimates from FEMA were entered 

into a singular-value decomposition (SVD) based prediction method to predict the behavioral 

outcome of the unseen, test-set participants. Similar to our previous method, the Bayesian 

polyvertex score (PVSB, Zhao et al., 2021), the SVD-based prediction method applies shrinkage 

to the mass univariate beta estimates to improve out-of-sample prediction performance. The 

shrinkage factor was derived separately for each brain-behavior association with a 5-fold cross 

validation nested within each training set. Within each nested training set, SVD was applied to 

the imaging measure pre-residualized for sociodemographic covariates to approximate the 

covariance structure of the mass univariate beta estimates. From the SVD result, the top k 

singular vectors and their corresponding singular values were used to calculate a shrinkage factor 

that was used to reweight the mass univariate beta estimates from FEMA. One hundred k values 
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were selected at equal distances between 1 and the dimension of the predictor space. The best 

performing k value was selected as the shrinkage factor for the full training set. The reweighted 

mass univariate estimates were then applied to the test set imaging data to calculate the predicted 

behavioral score for each test set participant.  

The predicted behavioral score summarizes the variability in the behavioral outcome that 

is attributable to individual differences of the imaging measure. Squared correlation between the 

predicted and the observed behavioral score was used as the metric for out-of-sample behavioral 

prediction performance of each imaging measure. The ninety-five percent confidence interval of 

the behavioral prediction performance of each fMRI measure was generated with bootstrap 

resampling (Elliot et al., 2019) using the ci_cor function (confintr package) in R. The predicted 

behavioral scores were also used in subsequent analyses to probe the shared and unique 

behavioral variance explained by different FC measures.  

The effect of scan length on behavioral prediction performance 

To investigate how the behavioral prediction performance of FC measures was affected 

by the amount of available data, we quantified the degree to which the behavioral prediction 

performance of FC measures varied as a function of scan length. For fMRI tasks, the task-based, 

task-model-fit, and task-model-residual FC estimates were estimated separately with one run and 

with two runs of task fMRI data, and the change in behavioral prediction performance from one 

run to two runs was quantified with a ninety-five percent confidence interval using bootstrap 

resampling (ci_cor function from confintr package in R). For resting-state fMRI, resting-state FC 

was estimated with one run, two runs, three runs and four runs of data, and the change in 

behavioral prediction performance of each resting-state FC estimate was quantified in the same 

way as the task fMRI. This allowed us to estimate the prediction performance of resting-state FC 
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as if 5 mins, 10 mins, 15 mins, or 20 mins of resting-state fMRI data had been acquired. To 

eliminate any confounds introduced by participants, the effect of scan length was assessed with 

the same cross validation scheme and the same set of participants for each fMRI paradigm. 

Quantification of shared and unique behavioral variance explained by the task-predicted FC and 

the task-residualized FC 

As the task-model-fit FC and task-model-residual FC were derived as complementary 

subcomponents of the same task fMRI time series, we examined if they contained unique 

information for behavioral differences by estimating their shared and unique behavioral variance 

explained. In this set of analysis, we used the predicted behavioral scores of each FC measure on 

each behavior as the predictor because they captured the prediction effects of FC measures on 

behaviors while reducing the predictor dimensionality to a single measure. We first estimated the 

out-of-sample behavioral prediction performance of the predicted behavioral scores of task-

model-fit FC and of the task-model-residual FC individually with generalized additive mixed 

models (GAMMs) with sociodemographic factors as fixed effects covariates and family ID as 

random effects. These univariate models, with only one brain predictor in the model, gave us an 

estimate of the behavioral variance explained by each FC in isolation. Then, we estimated their 

total prediction effect by including the predicted behavioral scores of both FC measures as 

predictors in an augmented model. with sociodemographic factors as fixed effects covariates and 

family ID as random effects.  

The unique variance explained by the task-model-fit FC (unique R2 adjusted for task-

model-residual FC) was calculated as the difference in R2 between the univariate model with the 

predicted behavioral score of the task-model-residual FC as the only FC predictor and the 

augmented model with the predicted scores of both the task-model-fit FC and the task-model-
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residual FC. The unique variance explained by the task-model-residual FC (unique R2 adjusted 

for task-model-fit FC) was estimated as the differences in R2 between the univariate model with 

the predicted behavioral score of the task-model-fit FC and the augmented model. The gamm4 

(gamm4 package) function was used to perform GAMMs in R and the r.squaredGLMM (MuMIn 

package) function was used to estimate the behavioral variance explained (fixed effects pseudo-

r-squared) of the fMRI predictors from GAMMs. 

Quantification of shared and unique behavioral variance explained by the task-model-fit FC and 

the task model parameters 

Both task-model-fit FC and task model parameters capture the task effects on brain 

activity. We assessed whether these two task effects measures explained unique behavioral 

variance by quantifying the shared and unique variance explained of the predicted behavioral 

scores of the task-model-fit FC and the task model parameters. An augmented model that 

included both measures was performed to estimate the total prediction effect of the task-model-

fit FC and the task model parameters. The unique variance explained by the task-model-fit FC 

(unique R2 adjusting for task model parameters) was estimated as the difference in R2 between 

the augmented model and the univariate model with task model parameters. The unique variance 

explained by the task model fit (unique R2  adjusting for task-model-fit FC) was estimated as the 

difference between the augmented model and the univariate model with task-model-fit FC. 

Family relatedness was modeled as a random effect and sociodemographic factors were used as 

fixed effects covariates for all the above-mentioned models.   

The effect of sociodemographic factor adjustment on behavioral prediction performance 

To understand how sociodemographic factor adjustment changes the behavioral 

prediction performance of fMRI measures, we reran the above behavioral prediction models 
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without the adjustment of sociodemographic factors and only including scanner ID, scanner 

software version, mean FD, and the number of usable timepoints as covariates in FEMA. The 

unadjusted mass univariate beta estimates of all FC and task model parameters were used to 

calculate the behavioral prediction performance of all fMRI measures without the adjustment of 

sociodemographic differences in our sample. The prediction performance of each fMRI measure 

with and without sociodemographic adjustment was compared.  

Data Statement 

Data used in the preparation of this article were obtained from the Adolescent Brain 

Cognitive Development (ABCD) Study (https://abcdstudy.org), held in the NIMH Data Archive 

(NDA). 

3.3 Results 
 
Task-predicted FC and task-state FC better predicted individual differences in behaviors than 

resting-state FC and task-residualized FC. 
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Figure 3.1 The task-state FC and task-predicted FC outperformed resting-state FC and task-
residualized FC at predicting individual variabilities in total composite cognition and SSRT. For 
total composite cognition (top row), resting-state FC (rsFC; first column) and the task-model-
residual FC measures (second column) showed similar behavioral prediction performance. Task-
based FC (third column) and task-model-fit FC (fourth column) of the nBack and MID task, on 
the other hand, outperformed resting-state FC and task-model-residualFC explaining behavior 
differences in total composite cognition. For the SSRT (bottom row), only task-derived FC 
measures from the SST task were predictive. All SST task FC measures were predictive of the 
SSRT, while resting-state FC was not. Error bars show the ninety-five percent confidence 
intervals estimated with bootstrap resampling. 

 
Prediction performance of resting-state FC and the three task-derived FC measures on 

individual differences in total composite cognition score and SSRT are shown in Figure 3.1. 

After adjusting for sociodemographic variables, resting-state FC explained 3.6% of the variance 

in total composite cognition. The nBack, SST, and MID task-model-residual FC estimates 

explained 3.3%, 2.1%, and 3.4% of the variance in total composite cognition, respectively. 

Increased behavioral prediction was observed for the task-based FC and the task-model-

fit FC derived from the nBack and the MID task. The nBack task-based FC and task-model-fit 

FC explained 6.2% and 6.7% of the variance in total composite cognition, and the MID task-
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based FC and task-model-fit FC explained 6.4% and 6.4% of the variance in total composite 

cognition. We did not observe an increase in prediction for the SST task-based and the task-

model-fit FC on total composite cognition (SST task-model-fit FC: R2 = 1.4%; SST task-based 

FC: R2 = 2.5%).  

Only FC measures derived from the SST task were significantly predictive of the 

individual differences in SSRT. Among the SST task FC measures, we observed an advantage 

for the SST task-model-fit FC relative to the SST task-model-residual FC. The SST task-model-

fit FC explained 9.5% of the variance in SSRT, while the SST task-model-residual FC explained 

4.9%. We compared the FEMA z-score map of the SST task-model-residual FC on SSRT to the 

effect size map of the SST task-model-fit FC, the SST task-based FC, and the resting-state FC 

(Figure 3.2). The mass univariate beta estimates of the SST task-model-residual FC bore greater 

resemblance to the effect size map of the SST task-model-fit FC than to the resting-state FC, 

suggesting that the SST task-model-residual FC captured a similar predictive pattern as the SST 

task-model-fit FC. 

 

Figure 3.2 The effect size matrices of the SST task FC measures on SSRT were more similar to 
each other than to resting-state FC. 352 ROIs x 352 ROIs effect size matrices, organized by 
functional network, are shown. Each cell corresponds to the mass univariate z-score of each ROI 
pair on SSRT derived from FEMA analyses.   
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Increased scan length moderately improved behavioral prediction performance. 

 

Figure 3.3 For the task-model-residual FC, task-based FC, and task-model-fit FC, a moderate 
increase in prediction of total composite cognition was observed when two runs of fMRI data 
were used to estimate the corresponding FC estimates for all three tasks (top row). The task FC 
measures showed an increase in prediction of the SSRT for two fMRI runs compared to one only 
for the SST task (bottom row). For resting-state FC, the prediction of total composite cognition 
increased from one run to two runs, but not beyond, and there was no change in prediction of the 
SSRT. 

 
The prediction performance of all FC measures as a function of scan length is shown in 

Figure 3.3. For the task-model-residual FC, task-based FC, and task-model-fit FC measures, we 

observed a modest increase in prediction accuracy when two runs of data were used to estimate 

the FC matrix relative to one run. For resting-state FC, we observed a similar increase in 

prediction of total composite cognition (but not SSRT) when two runs of data were used relative 

to one, but the effect plateaued with increased number of scans.  

Task-model-fit FC accounted for the behavioral variance predicted by the task-model-residual 

FC.  
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Table 3.2 The shared and unique variance explained, R2, of the task-model-fit FC and the task-
model-residual FC for each brain-behavior association. 

fMRI 
tasks 

Task-model-fit FC Task-model-residual FC 

R2 Unique R2 adjusted for task-
model-residual FC R2 Unique R2 adjusted for task-

model-fit FC  

Behavior: Total composite cognition 
nBack 6.4% 4.1% 3.1% 0.8% 
SST 1.1% 0.4% 2.0% 1.3% 
MID 6.6% 4.1% 3.1% 0.6% 

Behavior: SSRT 
nBack 0.4% 0.4% 0.2% 0.1% 
SST 7.9% 4.5% 4.5% 1.1% 
MID 0.2% 0.1% 0.3% 0.2% 

 

Given that the task-model-fit FC and task-model-residual FC were derived from 

complementary subcomponents of the task fMRI time series, we examined whether these FC 

measures contributed unique information to behavioral prediction (Table 3.2) by quantifying the 

shared and unique variance explained by the predicted behavioral scores of the two FC measures. 

For the prediction of total composite cognition by the nBack and MID tasks, task-model-residual 

FC contributed minimal unique variance explained (R2 < 1%) after adjusting for task-model-fit 

FC. On the other hand, the nBack and MID task-model-fit FC each explained 4.1% variance in 

total composite cognition after adjusting for task-model-residual FC. Therefore, task-model-fit 

FC predicted unique behavioral variance, while task-model-residual FC did not. By contrast, 

SST task-model-fit FC did not contribute unique variance to predicting total composite 

cognition, while the SST task-model-residual FC uniquely explained 1.3% of the variance. For 

the SST-SSRT association, after adjusting for the shared behavioral variance explained, both the 
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SST task-model-fit FC and the SST task-model-residual FC predicted unique variance in SSRT 

(SST task-model-fit FC: unique R2 = 4.5%; SST task-model-residual FC: unique R2 =1.1%). We 

believe that the unique association between SSRT and the SST task-model-residual FC might be 

attributable to the insufficient modeling and removal of the SST task effect. 

Task model parameters also exhibited a task-specific prediction advantage over the task-model-

residual FC and explained both shared and unique behavioral variance relative to the task-

model-fit FC.  

 
Figure 3.4 Task model parameters outperformed task-model-residual FC at predicting behavioral 
differences. Similar to the task-model-fit FC, task model parameters (yellow) demonstrated task-
specific advantage over the task-model-residual FC in behavioral prediction. The nBack task 
model parameters outperformed task-model-residual FC at predicting individual differences in 
total composite cognition and the SST task model parameters outperformed SST task-model-
residual FC at predicting variabilities in SSRT. With regard to the prediction performance of the 
task model parameters and the task-model-fit FC, the nBack and SST task model parameters 
outperformed task-model-fit FC for behavioral prediction while the MID task-model-fit FC 
outperformed task model parameters at predicting total composite cognition. Further 
investigations revealed that task model parameters and task-model-fit FC explained shared and 
unique information on behavioral variability. 

 



 69 
 

The task model parameters were equally, if not more predictive, than the task-model-fit 

FC and significantly outperformed the task-model-residual FC (Figure 3.4) at predicting 

behavioral differences. For total composite cognition, the nBack task model parameters were 

more predictive than the nBack task-model-fit FC, explaining 8.4% of its variance, and the MID 

task model parameters explained 4.3% of the variance in total composite cognition. For SSRT, 

the SST task model parameters showed the best predictive performance of all fMRI measures, 

explaining 18.2% of the variance and doubling the prediction effect of SST task-model-fit FC.  

Table 3.3 Task model parameters and task-model-fit FC explained both shared and unique 
variance in individual differences in behaviors. The R2 columns display the individual variance 
explained for each fMRI measure, corresponding to the data shown in Figure 3.1 and Figure 3.4. 
The R2 adjusted columns display the unique variance explained after adjusting for the effect of 
the other fMRI measure. 

fMRI 
task 

Task model parameters Task-model-fit FC 

R2 Unique R2 adjusted for 
task-model-fit FC R2 Unique R2 adjusted for task 

model parameters 

Behavior: Total composite cognition 
nBack 8.0% 3.1% 6.4% 1.5% 
SST 1.5% 1.1% 1.3% 0.8% 
MID 4.3% 1.7% 6.4% 3.9% 

Behavior: SSRT 
nBack 0.5% 0.3% 0.4% 0.2% 
SST 16.7% 11.6% 7.6% 2.5% 

MID 0.3% 0.3% 0.4% 0.3% 

 

We next examined whether the task model parameters and task-model-fit FC offered 

redundant functional brain information relevant for behavior by quantifying the unique 

behavioral variance explained by the predicted behavioral score of each brain measure after 

adjusting for the prediction effect of the other (Table 3.3). We observed a decrease in unique 
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variance explained (unique R2) for both measures, suggesting that a proportion of the behavioral 

association was shared between the task model parameters and the task-model-fit FC. Though 

there was this decrease, both measures were uniquely associated with behavior, still explaining 

meaningful variance after adjusting for the effect of the other measure. For example, the nBack 

task model parameters explained 8% of the variance in total composite cognition. After adjusting 

for the effect of the task-model-fit FC, it uniquely explained 3.1% of behavioral variance. The 

nBack task-model-fit FC explained 6.4% of the behavioral variance in total composite cognition, 

and after adjusting for the effect of task model parameters, its unique R2 dropped to 1.5%. 

Adjusting for sociodemographic factors reduced the behavioral prediction performance of FC 

and task model parameters. 

 
 
Figure 3.5 A proportion of the behavioral prediction power of task model parameters and FC 
measures was explained by sociodemographic variation across individuals. The unadjusted 
prediction R2 for total composite cognition (top row) and the SSRT (bottom row) for each fMRI 
measure was partitioned into two components, a variance component that was shared with 
sociodemogaphic factors (shown in gray) and a variance component that was additive to the 
effect of sociodemographic factors (shown in blue), i.e., the prediction effect after adjusting for 
sociodemographic covariates. 
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Sociodemographic variables accounted for a proportion of the unadjusted behavioral 

association of fMRI measures, and the effect was more prominent for the prediction of total 

composite cognition (Figure 3.5). When not controlling for the sociodemographic factors, 

resting-state FC explained 12.7% of the variance in total composite cognition. That number 

dropped to 3.6% after the adjustment for sociodemographic differences. A similar reduction in 

prediction performance was also observed for the task-derived FC measures and task model 

parameters. For the association between the SSRT and the SST task, we observed a more 

moderate effect of sociodemographic adjustment. The SST task model parameters explained 

21.1% of the variability in SSRT without the adjustment of sociodemographic covariates. After 

covarying for sociodemographic factors, the association was 18.2%. 

3.4 Discussion 
 

Characterizing the optimal fMRI measures that capture variance in behavioral differences 

is a critical step to develop reliable neuroimaging biomarkers for the detection and treatment of 

brain and behavioral disorders. This study addressed this issue by comparing the behavioral 

prediction performance of resting-state and task-derived fMRI measures including resting-state 

FC, task-based FC, task-model-fit FC, task-model-residual FC, and task model parameters. 

Previous findings have suggested that task fMRI is better than resting-state fMRI at capturing 

behaviorally relevant FC signals (Rosenberg et al., 2016; Greene et al., 2018; Finn & Bandettini, 

2021). We hypothesized that fMRI tasks better reproduce neural processes required to meet the 

cognitive demands that individuals experience in real life and thus elicit changes in FC patterns 

that are better associated with individual differences in behavioral phenotypes. We found that, 

when an fMRI task captured similar cognitive constructs as the behavior of interest, task-model-
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fit FC and task model parameters were better than resting-state FC and the task-model-residual 

FC component at predicting individual differences in that behavior.   

Behavioral differences are better predicted by FC patterns derived from task fMRI than resting-

state fMRI.  

Consistent with previous findings (Rosenberg et al., 2016; Greene et al., 2018; Finn & 

Bandettini, 2021), we observed an advantage for the task fMRI paradigms over resting-state 

fMRI at predicting individual differences in the total composite cognition score and SSRT. This 

finding corroborates the previous result that task manipulation accentuates the functional 

correlation patterns of the brain that are behaviorally relevant (Cole et al., 2021). While resting-

state fMRI has been indispensable for the characterization of large-scale brain networks and 

provides a convenient paradigm for cross-study data aggregation, task fMRI better captures 

behaviorally relevant FC signals. This behavioral prediction advantage of task-derived FC 

measures is also task-specific, such that only fMRI tasks that evoke relevant cognitive demands 

and content to the behavior of interest confer this advantage (Greene et al., 2018; Finn et al., 

2017). In our study, this was demonstrated by the double dissociation of the nBack and the SST 

task in prediction of total composite cognition and SSRT. The greater association between nBack 

and the total composite cognition could reflect that children with strong working memory 

abilities also performed better on language tasks and tasks on fluid intelligence (Rosenberg et al., 

2020). 

Our analysis further showed that the behavioral prediction advantage of task fMRI 

paradigms is driven by task-elicited FC, that is, changes in FC patterns in response to cognitive 

demand. While task-elicited FC fluctuations are modest compared to the individual-specific 

functional connectome identified at rest (Laumann et al., 2017; Gratton et al., 2018), these task-
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induced modulations improve the modeling and detection of behavioral differences because they 

directly reflect changes in the functional brain patterns when a behavior is being performed.  

Task model parameters are equally, if not more predictive, than the task-model-fit FC, and both 

measures confer complementary information on behavioral differences.  

The task model parameters were equally, if not more predictive, than the task-model-fit 

FC at predicting individual differences of both behavioral measures. The SST task model 

parameters explained approximately 20% of the individual differences in SSRT, which is a 

significantly improvement relative to the SST task-model-fit FC, the best predicting FC measure 

from the same fMRI task. Despite the excitement of using FC measures to behavioral differences 

in the literature, our results suggest that fMRI task activations are at least as good, if not better, 

than FC measures at capturing individual differences in behaviors.  

We also showed that task model parameters and task-model-fit FC contained shared and 

unique information for predicting behavioral differences, an observation consistent with previous 

reports (Larabi et al., 2018; Kowalski et al., 2019). Characterizing the behavioral relevance of 

both task fMRI measures allowed us to uncover unexpected behavioral association patterns with 

fMRI tasks. For example, we did not expect to observe an association between the MID task FC 

and the total composite cognition score given limited theories connecting the two measures.  

However, we found that the MID task-model-fit FC was equally predictive of total 

composite cognition score as the nBack task, a working memory task previously associated with 

cognitive development (Sripada et al., 2020). This unexpected finding was backed by studies 

reporting similar cognitive performance prediction accuracy for FC measures derived from a 

working memory task and a reward processing task that captures similar cognitive constructs as 

the MID task, in the Human Connectome Project (HCP) (Greene et al., 2018; Jiang et al., 2020). 
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As both the task model parameters and task-model-fit FC measures can be readily derived from 

existing task fMRI data, we suggest future studies assess the behavioral relevance of both, as 

they might yield additive information about the neural correlates of complex behavioral 

phenotypes.  

Sociodemographic factors treatment is crucial and yields differential implications for behavioral 

prediction studies of fMRI measures 

Importantly, we found that adjusting for sociodemographic covariates, including age, sex 

at birth, ancestry, ethnicity, income, and education, significantly impacted the behavioral 

prediction effect of FC measures and task model parameters, and such effect was more 

prominent for total composite cognition than for SSRT. This is consistent with previous findings 

that sociodemographic factors account for substantial individual variability in fMRI phenotypes 

(Yaple & Yu, 2020; Rakesh, Zalesky, Whittle, 2021) and in measures of cognitive performance 

(Bradley & Corwyn, 2002; Korous et al., 2020), and that adjusting for sociodemographic factors 

reduces the effect sizes of resting-state FC measures on cognitive task performance (Marek et al., 

2022).  

Controlling for sociodemographic factors can substantially alter estimates of the power of 

brain phenotypes to predict behavioral differences. An investigator’s choice to include these 

variables as covariates, and which to include, should be guided by the specific prediction goal of 

the analysis. Because sociodemographic variables are so robustly linked to both neuroimaging 

and behavioral phenotypes in the ABCD Study, it will probably be necessary to consider the 

pattern of associations across many models to begin to understand the underlying relationships. 

Here we have chosen to present both the model with no adjustment and the model with 

adjustment for all of the sociodemographic variables listed above. For our predictions of the total 
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composite cognition score in the general population, the results suggest robust association 

between this measure and functional brain phenotypes. However, the results with the full model 

(including covariates) suggest that when only differences among peers of the same age, sex, 

ancestry, ethnicity, and parental income/education are considered in the model, the associations 

with functional brain phenotypes are much more modest. This trend was also observed in an 

earlier study of ABCD participants involving structural brain phenotypes (Palmer et al. 2021).  

While these discrepancies in the results can sometimes lead to confusion for scientists and other 

stakeholders, it is important to emphasize that the different models both answer different 

questions about prediction, and raise new questions about the factors that reduce generalizability 

across groups within the population. To address this uncertainty it may be helpful for researchers 

to develop standards for presenting several covariate models in each publication to help readers 

understand better the context of their estimates of prediction from neuroimaging phenotypes (see 

Wagenmakers et al., 2022).  

Limitations 

We used a correlation-based FC estimation framework to quantify the behavioral 

relevance of resting-state and task fMRI data. Graph-theory derived network properties of FC 

measures have also been associated with behavioral outcomes (Liu et al., 2012; Khazaee, 

Ebrahimzadeh, Babajani-Feremi, 2015; Qian et al., 2018) and might have provided evidence for 

additional prediction power. The out-of-sample behavioral prediction in this study could be an 

underestimation of the behavioral relevance of resting-state fMRI and task fMRI data as other 

network-based fMRI properties might introduce additional behavioral prediction power relative 

to the correlation-based FC measures. This limitation, however, would not change our 

conclusions regarding the relative advantage of task-related FC over resting-state FC for 
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capturing behaviorally relevant differences, as all FC measures were processed with the same 

censoring and filtering criteria and were applied to the same prediction pipeline. Similarly, our 

choice of prediction method may also have impacted the reported out-of-sample prediction 

performance. Other analytical methods, such as machine learning based prediction methods, 

could potentially yield different estimates of the behavioral prediction performance of FC 

measures. Also, we limited the scope of the paper by not delving into the identification of 

specific brain regions/networks. Future studies should focus on characterizing the differences 

between the resting-state FC matrix and different task-model-fit FC matrices to understand how 

task manipulation changes the FC patterns of the brain and how these FC differences relate to 

behaviors. 

3.5 Conclusion 
 

In summary, by comparing the behavioral prediction performance of FC measures 

derived from task fMRI to that from resting-state FC, we provide additional evidence that fMRI 

tasks that evoke neural processes relevant to the behavioral phenotypes of interest are better 

predictors of those phenotypes than FC measures from resting-state fMRI. To maximize the 

ability to detect behaviorally relevant FC patterns of the brain, effort should be made to select 

fMRI tasks that recruit similar cognitive processes relevant to the behavioral phenotypes of 

interest. This work provides further support for the utility of the task activation and FC analysis 

frameworks for the identification of functionally relevant brain signals. It also highlights the 

need for consistent reporting of the results of behavioral prediction studies to examine the impact 

of sociodemographic covariates on the prediction, and to describe more clearly the prediction 

context to which the models could be expected to generalize, based on these covariates. 
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3.8 Supplementary Figures & Tables 
 
Supplementary Table 3.1 Additional inclusion criteria and final sample size for each fMRI 
modality. 

Inclusion criteria nBack 
Task 

SST Task MID Task Resting-state 
fMRI 

Number of subjects with usable 
data for the task-state, task-
predicted, and task-residualized FC 

4880 5250 4685 4291 

Number of subjects with well-
defined fMRI task design matrix 

4051 4332 4399 4291 

Number of subjects who passed 
ABCD recommended inclusion 
criteria 

3568 3931 4266 3999 

Number of subjects with complete 
data for behavioral and 
sociodemographic variables 

3034 3414 3575 3463 

Number of subjects used in 
behavioral prediction analysis 

3034 3034 
(randomly 

sampled from N 
= 3414) 

3034 
(randomly 

sampled from N 
= 3575) 

3034 
(randomly 

sampled from N 
= 3463) 
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Supplementary Figure 3.1 The mass univariate effect size maps the associations between total 
composite cognition and each task-related FC measures. 
 

 

  



 87 
 

 
Supplementary Figure 3.2 The mass univariate effect size maps the associations between SSRT 
and each task-related FC measure. 
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Supplementary Figure 3.3 The mass univariate effect size maps the associations between resting-
state FC and each behavioral measure. 
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Supplementary Figure 3.4 A comparison between the effect size maps of resting-state FC and 
task-residualized FC measures. We presented the mass univariate z-scores of resting-state FC 
and task-residualized FC measures on total composite cognition (Panel A) and SSRT (Panel B). 
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Chapter 4 Conclusion 
 

This thesis systematically examined how to maximize the behavioral prediction utility of 

task-based activations and FC measures derived from resting-state and task fMRI paradigms. 

Chapter 2 highlighted the importance of using multivariate methods to aggregate the distributed 

effect sizes of task fMRI activation maps on behaviors. Chapter 3 demonstrated the advantage of 

using task fMRI paradigms to elicit behaviorally relevance task activation and FC patterns. 

Together, both studies implied the importance of fMRI task design at eliciting behaviorally 

meaningful fMRI patterns during fMRI acquisitions. By demonstrating how task fMRI data can 

be better measured and modeled to understand behaviors, this thesis provided some evidence on 

how to take advantage of fMRI acquisitions to derive robust and reliable neuroimaging 

signatures for cognitive and mental health outcomes.  




