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ON THE EXTRE!v!ALS OF A SUBSIDIARY CAPILLARY PROBLEM 

Paul Concus and Robert Finn 

This note refers to the (subsidiary) variational problem for the functional 

¢[ r ], as introduced in [1] and described further in the preceding paper [2]. 

We adopt here the notation and definitions of [2], without further elaboration. 

1. It was proved in [2, §5] that whenever 92 - e1 < TI, the second variation 

I[n] of ¢ is minimized by a rigid translational motion 

(1) n=acos(9-a) 

in a direction a, which is one of four translational directions along which I 

is stationary. 

In the original capillary problem, the boundary angle y is prescribed. The 

extremals for the subsidiary problem must meet the boundary curve L with the 

same angle y. In general it cannot be expected that a rigid motion (1) will 

leave y unvaried; there are however situations in which that occurs, and these 

situations have a special interest. We prove here: 

Theorem. The second variation I of ¢ vanishes for any rigid motion 

of an extremal that leaves y unvaried. Further., I is stationary (its first 

vcu•iation vanishes) 1-n aruJ such motion. 

Proof: The extremal is a circular arc of radius R = n;L cos y; since y 

is unvaried, so is R . 
y 

The extremal meets in two points, denoted as 

2 in Figure 1, with intersection angle y as indicated. 

1 and 



2 

We may characterize the motion as a composition of a rigid translation (l) 

of the center 0 in direction a, and a rotation about 0. Since the rotation 

leaves everything invariant, it can be neglected. 

We focus attention first on the point l, and adopt as parameter to describe 

the motion the arc length s on ~. Referring to Figure l, we find 

(2) y + ~ + T + o = rr/2 

C3) Ps = - cos ~ + sin ~cot a 

(4) P = sin(a+T+o) R 
sin a y 

and thus 

-R 
cos ~ - sin ~ cot a = --:-_Y_,__ { (T + o) cos(a + T + o) + y tan y sin(a + T + 0)} 

sin a s s 

so that 

(5) sin(~- a) = R { ( T + o) cos (a + T + o) + y tan y sin (a + T + o) } . y s s 

For the curvature k1 of ~ at 1 we find from (2) 

(6) kl = - ~s = Y s + CT + o) s · 

We thus obtain from (5) and (2) 

( 7) k = cos(a+y+T+o) +y [1-tany tan(o+T+o)]. 
1 R cos (a + T + o) s 

y 

An analogous discussion now yields 



(8) 
cos(cr-y+T-6) 

k2 = R cos(cr+T-o) + Ys[l+tan y tan(cr+T-o)]. 
y 

3 

These relations hold for any.translation in the direction cr. In the special 

case that ys vanishes at both contact points, we obtain simplified expressions 

for k1,k2, depending only on Ry and on the angles cr, y, T, o. 

We now normalize (as in [2]) by a rotation of coordinates so that T = 0, 

and we place the resulting expressions for k1,k2 into (29) of [2]. A tedious 

but formal calculation then yields I[n] = 0, which was to be proved. Placing 

the indicated cr into (27) of [2], we verify directly that it provides one of 

the four solutions of that relation, and hence is an extremal direction for I. 

2. The question remains, whether I is minimized by the above choice. We 
first 

examine the question~in the particular case, for which ~ is a unit circle and 

r an interior circular arc (Figure 2; we note that r always contains the 

center of ~) . The rigid motion for which the center of r moves on an arc 

concentric to ~ then yields Ys = 0, I= 0 (trivially). 

Since k1 = k2 = 1, we find for a motion of the form (1) 

(9) I = cot Y ( RY 1 
R l - cos y"J 

y 

sin 26 cos 2cr 
1 + cos 26 cos 2cr 

which follows by formal calculation from (29) of [ 2] . In the configuration 

indica tell, (27) of [21 lw s 
TI 1T 

the :t J!. being the roots a = 0, 2 , 1T, roots 
2 2 

those that leave invariant. For the 0, 
lT 

obtain for the y roots 2 we corre-

sponding I 0 , ITI/2 

2 sin 26 = 1 - cos 2 26 
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which is positive if 2o < 1T, so that the "Y-invariant" direction fails to 

minimize. If 2o > TI, then I is in fact minimized among rigid motions, and 

thus I > 0 for any such motion. Nevertheless, r contains a semicircle in 

this case and hence--as shown in §S of [2]--there exist other variations for 

which I < 0. 

We remark that in the indicated configuration there holds 2y +o = TI, hence 

for all situations that occur, we have o + y > TI/2 ( cf. Theorem 7, Lemma 5 in [2]) . 

Geometrically, this means that on the line L joining the centers of the two 

circles, the center of r lies between the intersection of L with r, and 

the intersection point of L with the line tangent to ~ at the intersection 

of ~ with r. 

In all configurations considered, there holds ¢[f] > 0. In fact, ¢[f] > 0 

is a necessary condition for existence of a solution, and in this case a solution 

can be obtained explicitly for any y, as a lower spherical cap. 

3. We consider the configuration of Figure 3, in which the smaller circular 

arc on ~ has radius 1, and the larger arc has radius 1.974, for which one 

computes easily ~ = !,independent of h
0

. Corresponding to the arc r indicated, 

we have 

( 1 0) 

R 
y 

= r2 and 
~ cos y 

¢ = (TI-2y) (2 COS y-1) 
2 cos. y 

1T 
1T cos y + tan y + 2 

which is independent of h. A horizontal translation of r thus yields I = 0. 

Again we have k = k 1 2 (= 0), so (27) of [2] yields once more ~he four roots 

0, - I , ; , 1T. However, in this case the roles of I
0 

and of ITI/ 2 are inter­

changed, and thus it is now the "y-invariant" motion that minimizes I. 
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One verifies easily that in 0 < y < n/2 the value ~ determined by (10) 

is positive. The only other extremal arcs are the reflections of the indicated 

ones, for which ~ is still more positive; we thus conclude from the nonexistence-

existence property that (as in §2) for any TI 
y E (0, zl a corresponding capillary 

~ surface exists. (We note that ~ vanishes when y = 0, so that--regardless of h--

• 

no surface exists in that case.) 

In the configuration indicated, one has 6 + y = n/2. 

4. We consider finally the case of an ellipse. Computer calculations were 

made for the configuration, for which the ratio of minor to major axis is 0.3 

(see Figure 4). It was found that for y ~ 25.2°, there is an extremal r such 
0 

that Ys = 0 for horizontal displacement. Again we have k1 = k2, we obtain 

the same 

minimizes 

four roots of (27) in [2], and we find that they-invariant motion 

I. We again have ~[r] > 0; we verify easily that all extremals are 
0 

symmetric with respect to reflection in an axis of the ellipse, and that for the 

given y the only other possibility is a shifted arc ft 
0 

(as indicated in the 

figure) for which again ~ > 0. Thus, a solution of the capillary problem at 

this value of y exists. 

Corresponding to 

o + y > n/2 . 

r 'we have 
0 

6 + y < n/2, however, for f' 
0 

there holds 

5. The calculations for the ellipse have an independent interest extending 

beyond the above considerations. For each point p of the ellipse, those values 

of y were sought, for which an arc r through p (not exceeding a semicircle), 



r2 
R = ~ y , will meet the ellipse in two points with angle y, y L... cos of radius 

The results are illustrated, qualitatively in Figure 4, quantitatively in 

Figure 5, for an ellipse of semi-major axis a = 1 and semi-minor axis b = 

For each p, a unique y was found. A unique point Po yielded y = 0, 

corresponding to an inscribed circle of radius R r2 From each side of = r . 
0 

this circle emanates a family of extremals with varying y: on the left, y 

increases from zero until TI/2 is attained on the minor axis; on the right, 

y increases to a maximum y ~ 25.2° 
m 

at a corresponding extremal r , then m 

6 

0.3. 

decreases back to zero (which is not attained) at the right vertex. The entire 

configuration is repeated by reflection in the minor axis. 

At r we have dy/ds = 0, hence also dR /ds = 0. The analysis of §1 m y 

thus applies at this point, and forms the basis for §4. 

Figure 5 shows I and ¢ as functions of y; the corresponding x-coordi-

nates on the major axis are indicated on the curves. 

\'le wish to thank Lynne Norikane for programming some of the computer 

calculations. 
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