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Abstract

Background: To use neuropsychological assessments for studying the underlying disease 

processes contributing to dementia, it is crucial that they correspond to MRI-based measures of 

dementia regardless of educational level.

Methods: French 3 City Dijon MRI study cohort members (n=1,782) with assessments of white 

matter lesion volume (WMLV), hippocampal volume (HCV), and cerebrospinal fluid volume 

(CSFV) and 6 waves of neuropsychological assessments over 11 years, including Mini-Mental 

State Examination (MMSE), plus 5 other tests combined using a Z-score or item-response theory 

(IRT-cognition). We evaluated, testing interactions, whether education modified associations of 

MRI markers with intercept or rate of change of MMSE, Z-score composite, or IRT-cognition.
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Results: In linear models, education modified the associations of WMLV and CSFV with MMSE 

and CSFV and Z score composite. In mixed models, education modified the associations of 

WMLV and CSFV with level of MMSE and the association of HCV with slope of MMSE. 

Education also modified the association with CSFV and slope of Z-score composite decline. There 

was no evidence that education modified associations between MRI measures and level or slope of 

IRT-cognition.

Conclusion: Longitudinal analysis of correctly scaled neuropsychological assessments may 

provide unbiased proxies for MRI based measures of dementia risk.

Introduction

Neuropsychological tests offer noninvasive and inexpensive methods to detect elevated 

dementia risk. Exclusive reliance on biomarker-based measures of Alzheimeŕs disease, the 

most frequent cause of dementia, is likely to reduce the diversity and size of human studies 

of the etiology of Alzheimeŕs disease and dementia.1 Analytic approaches to enhance the 

validity of non-invasive assessments of disease progression, e.g., neuropsychological 

assessments, are critical.

Because both progressive biological disease processes and cognitive or brain reserve 

contribute to dementia diagnoses, it is important to evaluate risk factors for both. Brief 

neuropsychological assessments and screening tools, such as the Mini Mental State 

Examination (MMSE), may provide valuable tools for research if these neuropsychological 

measures correspond with underlying progressive pathological processes similarly across 

populations of different educational backgrounds. Prior research suggests, however, that 

education modifies the associations between some neuropsychological tests and pathological 

burden.2–6 If a 1-point difference in neuropsychological test performance does not equate to 

the same magnitude of difference in underlying disease progression for a high or low 

education individuals, the measure will be a biased tool for assessing this underlying 

pathology (Figure 1). Similarly, such a bias will compromise etiologic research on any 

putative risk factor that is correlated with education.

We hypothesized that with optimal neuropsychological measurement and modeling, the 

correspondence between neuroimaging markers of dementia risk and neuropsychological 

assessments would be equivalent regardless of education. We examined the relationships of 

MRI-based biomarkers of brain health with level and change in neuropsychological tests 

characterized using a single measure (MMSE score), a Z-score composite measure of 4 tests, 

and an item-response-theory based composite measure (IRT-Cognition).

Methods:

Population:

The 3 City (3C) Dijon study is a population-based cohort of 4,931 French 

noninstitutionalized individuals (Three-City Study, 2003).7 A total of 2,763 individuals aged 

< 80 years were invited to undergo brain MRI between June 1999 and September 2000. 

Consent rate was high (83%, 2,285 individuals) but because of financial restrictions, only 

1,923 MRI scans were performed. Valid MRI measures for all exposure variables were 
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available for 1,782 participants aged between 65 to 80 years. On average these 1,782 

participants were 1.5 years younger, scored higher on all cognitive tests, and were better 

educated than the entire 3C sample. For example, 46% of MRI participants completed up to 

upper primary school (8 years or less), while 58% of the full sample completed up to upper 

primary school. The cognitive status of all participants was assessed up to 6 times over 11 

years of follow-up. MRIs were completed at baseline.

The 3C study was approved by the Institutional Review Board at Kremlin-Bicêtre University 

Medical Center, Paris, France. All participants gave their written, informed consent to 

participation.

Measures:

MRI acquisition details have been previously reported.8,9 White Matter Lesion Volume 

(WMLV) was estimated from neuroimaging data with an automatic image processing 

method and Hippocampal Volume (HCV) and Cerebral Spinal Fluid Volume (CSFV) were 

estimated with voxel-based morphometry. We normalized CSFV, HCV, and WMLV by 

residualizing against Intracranial Volume (ICV) and rescaling to the standard normal 

distribution. To simplify comparisons, we use Z-score transformed versions of the MRI 

measures.

Education was assessed in 3C as an ordinal variable and dichotomized at the median (upper 

primary school [8 years] or less versus more than 8 years).

At each wave, cognitive testing included the MMSE, Benton visual recognition test, Trail 

Making Tests A and B, and verbal fluency (Isaacs Set Test). The MMSE is a screening test 

that assesses global cognition (working memory, language and praxis, orientation, memory, 

and attention).10 Despite the documented limitations of the MMSE, we used this as a 

reference test because MMSE or variants are extremely common tools for assessing 

dementia risk in epidemiological research studies. The Benton Visual Retention Test 

assesses nonverbal memory and is associated with construction and design copying tasks11; 

the Trail Making Tests12 assess attention, visuomotor tracking and speed, divided attention, 

and cognitive flexibility13, and the Isaacs Set Test reflects both literacy and the ability to 

organize thinking by clustering words from cities, fruits, vegetables, and colors.14

Analysis

We evaluated associations between MRI measures and three cognitive measures. To place all 

3 cognitive outcomes on the same scale, we Z-score transformed MMSE using its baseline 

mean and standard deviation. We also created Z-score composite and IRT-based composite 

measures of cognition. To create the Z-score composite, each measure (including MMSE) 

was first Z-score transformed using its baseline mean and standard deviation. We then 

averaged the Z-scores for the 6 instruments and rescaled to a standard normal distribution in 

the analytic sample.

To estimate the IRT-Cognition measures for each participant, we used confirmatory factor 

analysis as implemented in the lavaan R package (R Version 3.2.3) to estimate a two-

parameter IRT model at each assessment wave.15,16 The model assumes a continuous 
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underlying latent variable (general cognition) and performance on any specific cognitive test 

(item) reflects the influence of the latent variable and item-specific residuals.17 The two-

parameter IRT model can be written for each item as a cumulative normal probability 

function with an item-specific intercept (to distinguish simple from difficult items) and a 

slope parameter that describes the influence of the underlying latent variable on the 

probability of successfully answering that item.17

Following the approach described by Gross et al.18,19, the continuous cognitive assessment 

scores for each test were subdivided into up to 5 categories of approximately equal sample 

size and treated as ordinal endogenous variables for the estimation model. The latent IRT-

Cognition (general cognition) measure was set to have unit variance at baseline. In addition, 

we constrained factor loadings and test thresholds to be the same across visits while freeing 

subsequent means and variances of the latent variables at each study visit after baseline. 

Change in cognitive performance over the course of follow-up is thus reflected in the levels 

of the predicted latent variable at each study visit.

Missingness in single variable responses was addressed using multiple imputation (with 10 

imputed data sets) under the missing at random assumption, such that diagonally weighted 

least squares (WLSMV) estimation on complete data could be used in the estimation of the 

IRT model.20 The final IRT-Cognition measure was scaled to have a mean of 0 and standard 

deviation of 1 at baseline in the analytic sample.

Next, we evaluated whether education modified the associations of WMLV, HCV, and CSFV 

(all residualized against ICV) in linear regression models predicting baseline cognitive 

scores. These models were adjusted for age at first cognitive assessment and sex, and 

included education, one MRI measure, and the interaction of education and the MRI 

measure as predictors. We estimated nine linear regression models: one for each of the three 

MRI measures, for each cognitive outcome (MMSE, Z-score, and IRT-Cognition). We next 

used linear age and sex adjusted growth curve models with individual-level random 

intercepts and slopes to compare whether the associations of each MRI measure with either 

baseline (intercept) or rate of change (slope) in the cognitive outcomes (MMSE, Z-score, or 

IRT-Cognition) were modified by education. We centered follow-up time in these models at 

3.5 years, to avoid estimating intercepts at the extremes of follow-up. Effect modification 

was tested with an interaction term between education and each MRI measure.

To express the magnitude of effect modification (potential education bias) in meaningful 

terms, we used 100 times the ratio of the interaction term to the main effect of the MRI 

measure. If the MRI and neuropsychological assessment had equivalent correspondence for 

low and high education individuals, this ratio would be zero; a value of 100 indicates that the 

effect modification (interaction) in one education group is as large as the main effect in the 

other education group. To avoid over-interpreting trivially small biases that met statistical 

significance criteria or ignoring large biases that were imprecisely estimated, we defined 

evidence of clinically important potential bias as an interaction-to-main effect ratio of 25% 

or greater and applied a p-value threshold of 0.10 on the interaction term in the growth curve 

models. We use a higher p-value criterion than the conventional p<.05 because when 
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evaluating bias, the risk of type 2 error (failing to detect an association) seems more 

important than the risk of type 1 error (incorrectly inferring an association).

To illustrate the effect of interaction bias, we extracted coefficients from the growth curve 

models and depicted the trajectory of (a) the predicted neuropsychological test score as a 

function of the MRI biomarker for low and high education individuals, based on models 

with or without the MRI biomarker by education interaction and (b) the predicted trajectory 

from age 75 to 85 if a sudden 1 standard deviation (SD) shift in the MRI biomarker occurs at 

age 80, for high and low education individuals, again based on models with or without an 

MRI biomarker by education interaction.

All analyses report two-sided tests and 95% confidence intervals.

Results:

Education was associated with baseline values of MMSE, Z-score and IRT-cognition (Table 

1), but not with normalized WMLV (p=0.55), HCV (p=0.63), or CSFV (p=0.26).

In age- and sex-adjusted linear regression models, the associations of WMLV, and CSFV 

with baseline MMSE were modified by education (Table 2). In each case the interaction met 

the criterion for clinically relevant bias, such that the association between the MRI measures 

and MMSE was attenuated or null in people with high levels of education (Table 2, top 

panel). For example, a 1 SD higher WMLV was associated with 0.17 SD lower MMSE 

among individuals with low education, but only 0.04 SD lower MMSE for the high 

education group (p-value for interaction = 0.005).

The main effects of WMLV and HCV on Z-score and IRT-Cognition were significant, and 

education did not modify these associations. Although the main effects of CSFV on Z-score 

and IRT-Cognition were not significant, there was evidence that CSFV had a more extreme 

association with Z-score (interaction p = 0.10) among high education compared to low 

education individuals; there was no evidence for an interaction in predicting IRT-Cognition 

(interaction p = 0.26).

In mixed models of longitudinal trajectories of cognitive variables, we found clinically 

significant education bias in predicting the level of MMSE from WMLV (interaction p = 

0.04) and CSFV (interaction p = 0.09) and in predicting the slope of MMSE decline for 

HCV (interaction p = 0.05). (Figure 2 - blue bars, and eTable 1).

For level of Z-score there was no evidence of bias. For the slope of Z-score decline, there 

was evidence of clinically significant bias for the CSFV measure only (Figure 2 - orange 

bars, and eTable 1, interaction p = 0.06). There was no evidence for significant bias for any 

MRI measure predicting either level or slope of IRT-Cognition (Figure 2 - grey bars, and 

eTable 1).

To illustrate the impact of education interaction in MMSE, Figure 3a and 3b shows predicted 

associations of MMSE (Figure 3a) or IRT-Cognition (Figure 3b) as a function of WMLV for 

high and low education individuals. Higher levels of WMLV are associated with much larger 
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differences in MMSE for low education individuals than high education individuals, whereas 

when the IRT-Cognition measure is used, the differences associated with increases in 

WMLV are nearly parallel. Figure 3c and 3d illustrates a predicted trajectory of MMSE 

(Figure 3c) and IRT-cognition (Figure 3d) from age 75 to 85 years, assuming that WMLV 

suddenly increases by 1 SD at age 80. Such an increase might not be detected for high 

education individuals with the MMSE but would be detectable using the IRT-Cognition 

measure about equally well regardless of level of education.

Discussion

In this longitudinal, population-based study of 1,782 older French adults, we confirmed that 

educational level was an important modifier of the link between MRI-based measures of 

dementia risk and neuropsychological test scores. Every MRI marker predicted MMSE, and 

for two of three MRI markers this association was modified by education level. This 

modification implies that the MMSE is a biased marker of underlying disease progression. 

Bias was generally smaller when evaluating slope (rate of change) in a composite cognitive 

measure instead of MMSE alone, and bias was clinically and statistically negligible for both 

level and slope when using an IRT-based measure of cognition as the outcome.

Our study is consistent with prior research showing that higher education masks the 

association of MMSE with neuroimaging markers associated with dementia risk3,4 or 

cerebrovascular disease5. The current analyses advances previous work in this area by 

examining an IRT-based cognition measure and evaluating links with rate of change in each 

cognitive assessment. We know of only one prior study that has evaluated education 

interactions between a biological marker of dementia risk and change in cognition in a 

population sample6; this study reported plasma β-amyloid was more strongly associated 

with declines in Modified Mini-Mental State Examination Scores in low education 

individuals, consistent with our findings.

A major challenge in interpreting these results is determining whether to conceptualize these 

interactions as bias or as substantive indicators of cognitive reserve. The observed 

interaction effects of brain variables and education on MMSE scores could reflect 

measurement bias of the MMSE. The MMSE has been shown to have ceiling effects such 

that it is less sensitive to individual differences in those with high baseline levels of cognitive 

test performance compared to those with lower baseline cognitive test performance.21. In 

effect, a 1-point difference between MMSE scores of 29 and 30 represents a much larger 

difference in actual cognitive ability than does a 1-point difference between scores of 20 and 

21. A given brain impact on cognition in those with low and high levels of cognitive 

function would correspond to a smaller difference in MMSE score for those with higher 

cognitive function even though the true impact on cognition is the same. Since education is 

strongly related to MMSE score, this would mean that the same brain difference would 

result in a smaller MMSE score difference in those with higher education, which is exactly 

what we observed. The IRT based composite score, in contrast, should not have a different 

scale of measurement for those with low and high cognitive ability so results for that 

measure better reflect true brain effects on cognition in the low and high education groups.
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Brain by education interactions on cognitive test scores also have been interpreted as 

evidence that education preserves function in a meaningful sense despite neurologic damage 

related to AD or other progressive diseases. 2–6 In distinguishing these alternative 

interpretations, we note that a diagnosis of dementia depends on the net impact of multiple 

factors: cognitive reserve; progressive pathologies adversely affecting the brain, such as 

amyloid plaques, tau tangles, or cerebrovascular disease; and neurological or functional 

plasticity facilitating recovery for example in the aftermath of cerebrovascular accidents or 

the gradual accumulation of brain changes consistent with AD. It is important for 

researchers to evaluate the determinants of each of these three processes: the determinants of 

cognitive reserve may be quite different from the determinants of progressive brain disease. 

The appropriate methodological approach differs depending on which of these outcomes is 

of primary interest.

Many studies which fundamentally aim to shed light on the drivers of brain disease must 

rely on measures of cognition or dementia because they do not have direct measures of 

neuropathology. Cognitive reserve may bias the estimates of the effect of a risk factor on 

brain health because reserve weakens the link between neuropathology and cognition or 

dementia diagnoses. This motivates the use of education-adjusted norms when interpreting 

neuropsychological test scores. Using longitudinal analyses has a major advantage over 

norms, however, because applying educational adjustments to scores makes it harder to 

detect effects of education on disease.

The goal of this paper was to evaluate whether using longitudinal analyses of IRT-based 

measurement scales would enable use of neuropsychological assessments as unbiased 

reflections of at least some MRI based measures of disease.

A critical limitation in this study, as in all cognitive aging research, is the lack of a 

conclusively verified, uncontested gold standard for measuring cognition. As a result, 

validation of any cognitive measure is based on indirect approaches, such as demonstrating 

strong associations with correlates of cognition. An important question for future research is 

whether change in IRT-based cognitive composites predict outcomes of greatest relevance to 

patients, such as functional dependence and mortality.

We considered only a few commonly used MRI biomarkers; extension of this work to 

include other biomarkers strongly related to AD is a critical future direction.22 The 3C 

sample does not represent the level of racial/ethnic or linguistic diversity found in many US 

based samples, but this makes the results even more striking: even in a fairly socially 

homogeneous sample, the neuropsychological measures were not operating consistently 

across educational groups. In addition, of the 1,923 people invited to participate in the MRI 

scan, valid measures could only be obtained from 1,784 participants. Participants who did 

not contribute valid MRI data were on average older, lower educated, and performed worse 

on cognitive tests. The analytic sample is therefore likely to represent a healthier subsample 

of the 3C study participants.
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Research on cognitive aging, incidence, and progression of dementia is hampered by the 

lack of unbiased instruments that can be used to measure general cognitive function 

independent of the patient’s socio-economic status and educational background.

The limitations of common neuropsychological assessments have fostered calls for 

increasing reliance on biomarker based disease assessments23, but exclusive reliance on 

biomarkers is expensive and threatens the diversity of research samples1, and most 

biomarker positive people do not go on to develop cognitive impairment or dementia.24 Our 

findings indicate that using IRT-based measurement scales and focusing on rates of change, 

instead of measures based on cross-sectional level of functioning, will enable use of 

neuropsychological assessments as valid proxies for at least some MRI based measures of 

disease. Such approaches will improve the validity of research on determinants of cognitive 

aging and dementia and improve our chances of identifying true causes of disease, rather 

than only determinants of cognitive reserve or biased test performance.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Conceptual model linking education, neuropsychological test scores, and dementia 
diagnoses.
Neuropsychological measures will be biased as tools for evaluating determinants of 

underlying disease if differences in neuropsychological test performance do not equate to the 

same differences in the disease for high or low education individuals. In such a setting, 

education influences neuropsychological test scores independently of underlying disease, so 

any correlates of education will predict neuropsychological test scores even if they have no 

influence on underlying disease pathology. The same biases will apply for any diagnostic 

outcomes that rely on neuropsychological test scores.
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Figure 2: Percent bias of estimated association of neuroimaging markers with intercept or slope 
of MMSE, Z-score composite, and IRT-Cognition by education level.
Bias is expressed as the ratio of the interaction coefficient to the main effect coefficient of 

the neuroimaging marker on each outcome. Estimates are from linear mixed models with 

age and sex adjustment and random intercepts and slopes (regression model coefficients 

shown in Appendix). Estimates that meet the criteria for clinical significance (greater than 

25% and based on interactions with p-value<0.10) are denoted with an *. Note that as a ratio 

measure, the percent bias may be large if either the interaction (the numerator) is large or the 

main effect of the MRI measure on the neuropsychological assessment (the denominator) is 

very small.
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Figure 3: Comparing predicted cognitive outcomes for low and high education individuals based 
on models allowing an education interaction versus models with no interaction.
Models with no interaction assume an identical effect of MRI differences on cognition, 

regardless of education. Figures show predictions for: (a) MMSE as a function of WMLV 

and education, and (b) IRT-Cognition as a function of WMLV and education. For MMSE, 

omitting the education interaction substantially over-estimates WMLV-related change for 

high education individuals but under-estimates WMLV-related change for low education 

individuals; thus, models assuming the association between WMLV and MMSE is similar 

regardless of education are severely misspecified. The misspecification is smaller and non-
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significant in the models using IRT-Cognition. When comparing predicted cognitive 

measures before and after a sudden increase in WMLVplots show predictions for low and 

high education individuals who experience typical age related changes followed by a sudden 

1 SD increase in WMLV at age 80, showing predicted values for (a) MMSE; and (b) IRT-

Cognition. The sudden increase in WMLV would have little impact on the MMSE of high 

education individuals, but would lead to a sudden decline in MMSE in the low education 

individuals. The sudden increase in WMLV would have a similar impact on IRT-Cognition 

for high and low education individuals. This means that the MMSE does not serve to 

identify a sudden increase in WMLV on high education individuals, but the IRT-Cognition 

measures does.
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