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As music distribution has evolved form physical media to digital content, tens of

millions of songs are instantly available to consumers through several online services. In

order to help users search, browse and discover songs from these extensive collections,

music information retrieval systems have been developed to assist in automatically

analyzing, indexing and recommending musical content.

This dissertation proposes machine learning methods for content-based automatic

tagging of music, and evaluates their performance on music annotation and retrieval tasks.

The proposed methods rely on time-series models of the musical signal, to account for
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longer term temporal dynamics of music in addition to timbral textures, and allow to

leverage different types of models and information at multiple time scales in a single

system. Efficient algorithms for estimation and deployment are proposed for all the

considered methods.
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Chapter 1

Introduction

In the last decade, continuous technological advancements have revolutionized

music production, distribution and sharing. Today, online services like iTunes,1 Spotify2

or YouTube3 bring in millions of visitors by offering instant access to tens of million of

songs and music videos. The size of these collections, constantly enriched by new clips

(from established artists as well as less known performers), can be quite disorienting for

the user, and can inhibit finding desired content or discovering new music. For example,

it is not straightforward to find a “live jazz performance with saxophone on a groovy

bass line” unless having already in mind a specific song title or artist name, or simply

decide what to listen next. This have determined a growing interest in music information

retrieval (MIR), which aims at building technology to help users search, browse and

discover music, and, ultimately, to help content providers monetize their catalogues more

effectively.

Commercial MIR systems for search and recommendation can be broadly catego-

rized into two groups, i) systems based on collaborative filtering and ii) systems based

on meta-data and semantic annotations. Collaborative filtering relies on users’ listening

or purchase histories, to make guesses on users’s tastes and provide recommendations.

1http://www.apple.com/itunes
2http://www.spotify.com
3http://www.youtube.com

1
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For examples, Last.fm4 and iTunes are known to use collaborative filtering for their

recommendations [16].

Services based on semantic annotations rely on tags—short textual bits that

describe specific characteristics of music pieces, ranging from genre and instrumentation,

to mood and usage. Tags bridge the gap between music and human semantics, and enable

music search and indexing based on transparent textual descriptions as in standard text

search engine (e.g., by matching the tags in a query to the tags associated to the songs

in a catalogue), or query-by-example recommendation based on semantic similarity

(as opposed to acoustic similarity) to a query song. Historically, these systems have

initially relied on available metadata (e.g. artist biographies, genre annotation, blogs or

critical reviews), or manual labeling from expert musicologist. While solutions based

on expect annotators provide accurate annotations, they are expensive and hard to scale.

For example, the catalogue of the Music Genome Project5 is only a fraction of iTunes

catalogue. More recently, crowd sourcing solutions, such as TagATune [98] and HerdIt

[14], have attempted to scale up manual labeling by inviting non-expert users to engaging

or rewarding games. However, these efforts have not become viral, and by themselves

can cover only a small portion of the songs available in modern music collections.6

In practice, meta-data based solutions and collaborative filters work well on

popular music. Indeed, for popular artists and popular songs, a wealth of information is

easily accessible over the internet, and can be accurately indexed through standard text

search technologies, making meta-data based technique successful. Similarly, popular

content is consumed by a large number of users, and is hence well represented in a

collaborative filter.

Unfortunately, neither of these methodologies handles well the “long tail” of less

4http://www.last.fm
5http://www.pandora.com/about/mgp
6TagATune labeled clips represent less than 0.15% of the iTunes’ collection.
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popular or novel content. For example, relevant meta-data for less popular content is

generally scarce and hard to retrieve, and in many case may be spammy or even absent

(e.g., the only available piece of information being an audio file uploaded on a streaming

service). Similarly, unpopular content is poorly represented in a collaborative filter as

the corresponding historical data is typically limited. As a consequence of this cold start

problem, the long-tail of less popular content will not be recommended even when it

would be rated favorably [59].

This motivates the development of content-based auto-tagging systems [159, 117,

81, 106, 55], i.e., intelligent algorithms that, by analyzing and understanding the acoustic

content of songs, can automatically index them with semantic tags, which can then be

used to improve the search experience and speed up the discovery of desired content.

Several auto-tagging algorithms follow a common recipe based on signal processing and

machine learning, and are trained on a corpus of songs annotated with respect to the tags.

First, each song is is represented as a sequence a of audio features. Successively, a series

of statistical models, one for each tag, is estimated to lean the most predictive patterns

for the tags. The tag models are then used to analyze new songs. In particular, the audio

features of a new song are compared against each tag model, and the tags whose models

fit beast are selected to annotate the song.

Traditionally, auto-taggers uses a bag of feature (BoF) representation of songs

where audio features are treated as independent, which ignores the temporal order or

dynamics between them. This type of representation fails to account for the longer-term

musical dynamics (e.g., tempo and beat) or temporal structures (e.g., riffs and arpeggios),

which are clearly important characteristics of a musical signal.

This dissertation investigates the use of time-series models for automatic tagging

of music. By gluing together consecutive features into sequences, time-series models

capture both instantaneous timbal information as well as temporal dynamics of music.
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1.1 Summary of contributions

This dissertation is divided into two parts. The first part (chapters 2 to 4) investi-

gates the use of a variety of time series models to model tags directly. The second part

(chapters 5 to 8) proposes a high-level music descriptor that can leverage the benefits of

different-models and different-time scales into a single auto-tagger.

Chapter 2 proposes the use of dynamic texture mixture (DTM) models for music

auto-tagging, and shows improvements especially on tags with temporal dynamics that

unfold in the time span of a few seconds. In order to allow efficient estimation, chapter 2

also discusses an efficient hierarchical expectation maximization (HEM) algorithm for

estimating hidden state models.

Chapter 3 investigates the uses of auto regressive mixture models for music auto-

tagging, and studies the tradeoff between performance and efficiency for a variety of

time-series models of different complexities.

Chapter 4 presents a music auto-tagger based on hidden Markov models (HMMs)

mixtures. In particular, chapter 4 proposes the variational HEM algorithm for clustering

HMMs, and compares its performance against existing techniques on a wide range of

applications, also outside the music arena.

Chapter 5 introduces decision fusion, a framework that combines the benefits of

different content-based auto-tagger, by modeling the co-occurrence of their tag predic-

tions.

Chapter 6 proposes the bag of systems (BoS) representation of music, a high-

level descriptor of musical content that uses generative models as musical codewords.

This type of representation allows to combine different types of generative models and

different time scales, and can leverage a large corpus of (unlabeled) music to build a

richer descriptor.
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Chapter 7 introduces the BoS Tree, an efficient data structure to index a large

BoS codebook efficiently, based on a bottom-up hierarchy of codewords. Chapter 7

demonstrates the advantages of the BoS Tree on modeling videos as well.

Finally, chapter 8 proposes a branch and bound search, which is used to navigate

the BoS Tree effectively. More generally, chapter 8 shows that the proposed branch and

bound method allows for fast and accurate approximate nearest neighbor search on a

variety of problems involving high dimensional data.



Chapter 2

Time Series Models for Semantic Mu-
sic Annotation

2.1 Introduction

Recent technologies fueled new trends in music production, distribution and

sharing. As a consequence, an already large corpus of millions of musical pieces

is constantly enriched with new songs (by established artists as well as less known

performers), all of which are instantly available to millions of consumers through online

distribution channels, personal listening devices, etc. This age of music proliferation

created a strong need for music search and discovery engines, to help users find ‘Mellow

Beatles songs’ on a nostalgic night, or satisfy their sudden desire for ‘psychedelic rock

with distorted guitar and deep male vocals,’ without knowing appropriate artists or song

titles. A key scientific challenge in creating this search technology is the development of

intelligent algorithms, trained to map the human perception of music within the coded

confine of computers, to assist in automatically analyzing, indexing and recommending

from this extensive corpus of musical content [69].

This paper concerns automatic tagging of music with descriptive keywords

(e.g., genres, emotions, instruments, usages, etc.), based on the content of the song.

Music annotations can be used for a variety of purposes, such as searching for songs

6
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exhibiting specific qualities (e.g., “jazz songs with female vocals and saxophone”), or

retrieval of semantically similar songs (e.g., generating play-lists based on songs with

similar annotations). Since semantics is a compact, popular medium to describe an

auditory experience, it is essential that a music search and discovery system supports

these semantics-based retrieval mechanisms, to recommend content from a large audio

database.

State-of-the-art music “auto-taggers” represent a song as a “bag of audio features”

(e.g., [159, 117, 81, 106, 55]). The bag-of-features representation extracts audio features

from the song at regular time intervals, but then treats these features independently,

ignoring the temporal order or dynamics between them. Hence, this representation fails

to account for the longer-term musical dynamics (e.g., tempo and beat) or temporal

structures (e.g., riffs and arpeggios), which are clearly important characteristics of a

musical signal.

To address this limitation, one approach is to encode some temporal information

in the features ([29, 107, 159, 81, 106, 55]) and keep using existing, time-independent

models. For example, some of the previous approaches augment the “bag of audio

features” representation with the audio features’ first and second derivatives. While

this can slightly enrich the representation at a short-time scale, it is clear that a more

principled approach is required to model dynamics at a longer-term scale (seconds instead

of milliseconds).

Therefore, in this paper, we explore the dynamic texture (DT) model [54], a

generative time series model that captures longer-term time dependencies, for automatic

tagging of musical content. The DT model represents a time series of audio features as a

sample from a linear dynamical system (LDS), which is similar to the hidden Markov

model (HMM) that has proven robust in music identification [140]. The difference is that

HMMs quantize the audio signal into a fixed number of discrete “phonemes”, while the
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DT has a continuous state space, offering a more flexible model for music.

Since musical time series often show significant structural changes within a single

song and have dynamics that are only locally homogeneous, a single DT would be

insufficiently rich to model individual songs and, therefore, the typical musical content

associated with semantic tags. To address this at the song-level, Barrington et al. [13]

propose to model the audio fragments from a single song as samples from a dynamic

texture mixture (DTM) model [32], for the task of automatic music segmentation. Their

results demonstrated that the DTM provides an accurate segmentation of music into

homogeneous, perceptually similar segments (corresponding to what a human listener

would label as ‘chorus’, ‘verse’, ‘bridge’, etc.) by capturing temporal as well as textural

aspects of the musical signal.

In this paper, we adopt the DTM model to propose a novel approach to the task of

automatic music annotation that accounts for both the timbral content and the temporal

dynamics that are predictive of a semantic tag. We first model each song in a music

database as a DTM, capturing longer-term time dependencies and instantaneous spectral

content at the song-level. Second, the characteristic temporal and timbral aspects of

musical content commonly associated with a semantic tag are identified by learning a

tag-level DTM that summarizes the common features of a (potentially large) set of song-

level DTMs for the tag (as opposed to the tag-level Gaussian mixture models by Turnbull

et al. [159], which do not capture temporal dynamics). Given all song-level DTMs

associated with a particular tag, the common information is summarized by clustering

similar song-level DTs using a novel, efficient hierarchical EM (HEM-DTM) algorithm.

This gives rise to a tag-level DTM with few mixture components.

Experimental results show that the proposed time series model improves annota-

tion and retrieval, in particular for tags with temporal dynamics that unfold in the time

span of a few seconds.
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In summary, this paper brings together a DTM model for music, a generative

framework for music annotation and retrieval, and an efficient HEM-DTM algorithm. We

will focus our discussion on the latter two. For the former, we provide an introduction and

refer to our earlier work [13] for more details. The remainder of this paper is organized

as follows. After an overview of related work on auto-tagging of music in Section 2.2,

we introduce the DTM model in Section 2.3. Next, in Sections 2.4 and 2.5, we present an

annotation and retrieval system for time series data, based on an efficient hierarchical EM

algorithm for dynamic texture mixtures (HEM-DTM). In Sections 2.6 and 2.7, we present

experiments using HEM-DTM for music annotation and retrieval. Finally, Section 2.8

illustrates qualitatively how variations in the acoustic characteristics of semantic tags

affect the parameters of the corresponding DTM models.

2.2 Related Work

The prohibitive cost of manual labeling makes automated semantic understand-

ing of audio content a core challenge in designing fully functional retrieval systems

([57, 117, 81, 107, 168, 27, 148, 159, 106, 55, 15, 126, 60, 150, 29, 160, 167]). To

automatically annotate music with semantic tags, based on audio content, various dis-

criminative machine learning algorithms have been proposed (e.g., multiple-instance

[106], multiple-kernel [15], and stacked [117] SVMs, boosting [55], nearest-neighbor

([126, 60]), embedding methods [150], locally-sensitive hashing [29] and regularized

least-squares [167]). The discriminative framework, however, can suffer from poorly-

or weakly-labeled training data (e.g., positive examples considered as negatives due to

incomplete annotations).

To overcome this problem, unsupervised learning algorithms have been consid-

ered (e.g., K-means[21], vector quantization[140]), ignoring any labels and determining

the classes automatically. The learned clusters, however, are not guaranteed to have any
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connection with the underlying semantic tags of interest.

The labeling problem is compounded since often only a subset of the song’s

features actually manifests the tag the entire song is labeled with (e.g., a song labeled

with “saxophone” may only have a handful of features describing content where a

saxophone is playing). This suggests a generative modeling approach, which is better

suited at handling weakly-labeled data and estimating concept distributions that naturally

emerge around concept-relevant audio content, while down-weighting irrelevant outliers.

More details on how generative models accommodate weakly-labeled data by taking

a multiple instance learning approach is provided by Carneiro et al. [28]. Moreover,

generative models provide class-conditional probabilities, which naturally allows us to

rank tags probabilistically for a song. Generative models have been applied to various

music information retrieval problems. This includes Gaussian mixture models (GMMs) (

[10, 160, 159]), hidden Markov models (HMMs) [140], hierarchical Dirichlet processes

(HDPs) [80], and a codeword Bernoulli average model (CBA) [81]. Generative models

used for automatic music annotation (e.g., GMMs and CBA) usually model the spectral

content (and, sometimes, its first and second instantaneous derivatives) of short-time

windows. These models ignore longer-term temporal dynamics of the musical signal. In

this paper, we adopt dynamic texture mixture models for automatic music annotation.

These generative time-series models capture both instantaneous spectral content, as well

as longer-term temporal dynamics. Compared to HMMs, they have a continuous rather

than discrete state space. Therefore, they do not require to quantize the rich sound of a

musical signal into discrete “phonemes”, making them an attractive model for music.

2.3 Dynamic Texture Mixture Model

In this section, we review the dynamic texture (DT) and dynamic texture mixture

(DTM) models for modeling short audio fragments and whole songs.
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2.3.1 The Dynamic Texture Model

A dynamic texture [54] (DT) is a generative model that takes into account both

the instantaneous acoustics and the temporal dynamics of audio sequences (or audio

fragments) [13]. The model consists of two random variables: yt , which encodes the

acoustic component (audio feature vector) at time t, and xt , a hidden state variable which

encodes the dynamics (evolution) of the acoustic component over time. The two variables

are modeled as a linear dynamical system,

xt = Axt−1 + vt ,

yt = Cxt +wt + ȳ,

where xt ∈ Rn and yt ∈ Rm are real vectors (typically n� m). Using such a model, we

assume that the dynamics of the audio can be summarized by a more parsimonious

hidden state process xt (n < m), which evolves as a first order Gauss-Markov process,

and each observation variable yt is dependent only on the current hidden state xt .

The state transition matrix A ∈ Rn×n encodes the dynamics or evolution of

the hidden state variable (e.g., the evolution of the audio track), and the observation

matrix C ∈ Rm×n encodes the basis functions for representing the audio fragment. The

vector ȳ ∈ Rm is the mean of the dynamic texture (i.e., the mean audio feature vector).

The driving noise process vt is zero-mean Gaussian distributed with covariance Q, i.e.,

vt ∼N (0,Q), with Q ∈ Sn
+, the set of symmetric, positive definite matrices of dimension

n×n. wt is the observation noise and is also zero-mean Gaussian, with covariance R, i.e.,

wt ∼N (0,R), with R ∈ Sm
+. Finally, the initial condition is distributed as x1 ∼N (µ,S),

where µ ∈ Rn is the mean of the initial state, and S ∈ Sn
+ the covariance. The DT is

specified by the parameters Θ = {A,Q,C,R,µ,S, ȳ}.

Intuitively, the columns of C can be interpreted as the principal components (or
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basis functions) of the audio feature vectors over time. Hence, each audio feature vector yt

can be represented as a linear combination of principal components, with corresponding

weights given by the current hidden state xt . In this way, the DT can be interpreted as a

time-varying PCA representation of an audio feature vector time series. Figure 2.1(a)

shows the graphical model of the DT, as it represents a short audio fragment.

2.3.2 The Dynamic Texture Mixture Model

A song is a combination of heterogeneous audio fragments with significant

structural variations, and hence cannot be represented with a single DT model. To

address this lack of global homogeneity, Barrington et al. [13] proposed to represent audio

fragments, extracted from a song, as samples from a dynamic texture mixture (DTM)

[32], effectively modeling the heterogeneous structure of the song. The DTM model [32]

introduces an assignment random variable z∼multinomial(π1, · · · ,πK), which selects

one of K dynamic texture components as the source of an audio fragment. Each mixture

component is parameterized by

Θz = {Az,Cz,Qz,Rz,µz,Sz, ȳz}, (2.1)

and the DTM model is parameterized by Θ = {πz,Θz}K
z=1.

Given a set of audio fragments extracted from a song, the maximum-likelihood

parameters of the DTM can be estimated with recourse to the expectation-maximization

(EM) algorithm, which is an iterative optimization method that alternates between esti-

mating the hidden variables with the current parameters, and computing new parameters

given the estimated hidden variables (the “complete data”). The EM algorithm for DTM

alternates between estimating second-order statistics of the hidden states, conditioned

on each audio fragment, with the Kalman smoothing filter (E-step), and computing
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new parameters given these statistics (M-step). More details are provided by Chan and

Vasconcelos [32].

Figure 2.1(b) illustrates the DTM representation of a song, where each DT

component models homogeneous parts of the song. Previous work by Barrington et

al. [13] has successfully used the DTM for the task of segmenting the structure of a song

into acoustically similar sections (e.g., intro, verse, chorus, bridge, solo, outro). In this

work, we propose that the DTM can also be used as a tag-level annotation model for

music annotation and retrieval.

2.4 Music Annotation and Retrieval with DTMs

In this section we formulate the related tasks of annotation and retrieval of audio

data as a supervised multi-class labeling (SML) problem [28] in the context of time series

DTM models.

2.4.1 Notation

A song Y is represented as a collection of T overlapping time series, i.e., Y =

{y1
1:τ , . . . , yT

1:τ}, where each yt
1:τ , called an audio fragment, represents τ sequential audio

feature vectors extracted by passing a short-time window over the audio signal. The

number of audio fragments, T , depends on the length of the song. The semantic content

of a song with respect to a vocabulary V of size |V | is represented in an annotation

vector c = [c1, . . . , c|V |], where ck > 0 only if there is a positive association between the

song and the tag wk, otherwise ck = 0. Each semantic weight, ck, represents the degree

of association between the song and the tag wk. The data set D is a collection of |D |

song-annotation pairs (Yd, cd).
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2.4.2 Music Annotation

We treat annotation as a supervised multi-class problem [28, 159] in which each

class is a tag w, from a vocabulary V of unique tags (e.g., “bass guitar”, “hip hop”,

“boring”). Each tag wk is modeled with a probability distribution over the space of audio

fragments, i.e., p(yt
1:τ |wk) for k = 1, . . . , |V |, which is a DTM. The annotation task is to

find the subset W = {w1, . . . , wA } ⊆ V of A tags that best describe a novel song Y .

Given the audio fragments of a novel song Y , the most relevant tags are the ones

with highest posterior probability, computed using Bayes’ rule:

p(wk|Y ) =
p(Y |wk) p(wk)

p(Y )
, (2.2)

where p(wk) is the prior of the kth tag and p(Y ) the song prior. To promote annota-

tion using a diverse set of tags, we assume a uniform prior, i.e., p(wk) = 1/|V | for

k = 1, . . . , |V |. To estimate the likelihood term in (5.2), p(Y |wk), we assume that song

fragments, yt
1:τ , are conditionally independent (given wk). To compensate for the inaccu-

racy of this naı̈ve Bayes assumption and keep the posterior from being too “peaked”, one

common solution is to estimate the likelihood term with the geometric average [159] (in

this case, the geometric average of the individual audio fragment likelihoods):

p(Y |wk) =
T

∏
t=1

(
p(yt

1:τ |wk)
) 1

T τ . (2.3)

Note that, besides normalizing by T , we also normalize by the length of the audio

fragment, τ , due to the high dimension of the probability distribution of the DTM time

series model. The likelihood terms p(yt
1:τ |wk) of the DTM tag models can be computed

efficiently with the “innovations” form of the likelihood using the Kalman filter [32],

[147].
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Unlike bag-of-features models that discard any dependency between audio feature

vectors, (2.3) only assumes independence between different sequences of audio feature

vectors (i.e., audio fragments, describing seconds of audio). Correlation within a single

sequence is directly accounted for by the time series model.

The probability that the song Y can be described by the tag wk is

p(wk|Y ) =
∏

T
t=1
(

p(yt
1:τ |wk)

) 1
T τ

∑
|V |
l=1 ∏

T
t=1
(

p(yt
1:τ |wl)

) 1
T τ

, (2.4)

where the song prior p(Y ) = ∑
|V |
l=1 p(Y |wl)p(wl). Finally, the song can be represented

as a semantic multinomial, p = [p1, . . . , p|V |], where each pk = p(wk|Y ) represents

the relevance of the kth tag for the song, and ∑
|V |
i=1 pi = 1. We annotate a song with the

most likely tags according to p, i.e., we select the tags with the largest probability.

2.4.3 Music Retrieval

Given a tag-based query, songs in the database can be retrieved based on their

relevance to this semantic query1. In particular, we determine a song’s relevance to a

query with tag wk based on the posterior probability of the tag, p(wk|Y ), in (2.4). Hence,

retrieval involves rank-ordering the songs in the database, based on the kth entry (pk) of

the semantic multinomials p.

Note that the songs could also be ranked by the likelihood of the song given the

query, i.e., p(Y |wk). However, this tends not to work well in practice because it favors

generic songs that are most similar to the song prior p(Y ), resulting in the same retrieval

result for any query wk. Normalizing by the song prior p(Y ) fixes this problem, yielding

the ranking based on semantic multinomials (assuming a uniform tag prior) described

above.
1Note that although this work focuses on single-tag queries, our representation easily extends to

multiple-tag queries [158].
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2.5 Learning DTM Tag Models with the Hierarchical
EM Algorithm

In this paper, we represent the tag models with dynamic texture mixture models.

In other words, the tag distribution p(yt
1:τ |wk) is modeled with the probability density of

the DTM, which is estimated from the set of training songs associated with the particular

tag. One approach to estimation is to extract all the audio fragments from the relevant

training songs, and then run the EM algorithm [32] directly on this data to learn the tag-

level DTM. This approach, however, requires storing many audio fragments in memory

(RAM) for running the EM algorithm. For even modest-sized databases, the memory

requirements can exceed the RAM capacity of most computers.

To allow efficient training in both computation time and memory requirements,

the learning procedure is split into two steps. First, a song-level DTM model is learned

for each song in the training set using the standard EM algorithm [32]. Next, a tag-level

model is formed by pooling together all the song-level DTMs associated with a tag, to

form a large mixture. However, a drawback of this model aggregation approach is that

the number of DTs in the DTM tag model grows linearly with the size of the training

data, making inference computationally inefficient when using large training sets. To

alleviate this problem, the DTM tag models formed by model aggregation are reduced

to a representative DTM with fewer components by using the hierarchical EM (HEM)

algorithm presented in this section. The HEM algorithm clusters together similar DTs in

the song-level DTMs, thus summarizing the common information in songs associated

with a particular tag. The new DTM tag model allows for more efficient inference, due to

fewer mixture components, while maintaining a reliable representation of the tag-level

model.

Because the database is first processed at the song level, the computation can be
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easily done in parallel (over the songs) and the memory requirement is greatly reduced to

that of processing a single song. The memory requirement for computing the tag-level

models is also reduced, since each song is succinctly modeled by the parameters of

a DTM. Such a reduction in computational complexity also ensures that the tag-level

models can be learned from cheaper, weakly-labeled data (i.e., missing labels, labels

without segmentation data) by pooling over large amounts of audio data to amplify the

appropriate attributes.

In summary, adopting DTM, or time series models in general, as a tag model

for SML annotation requires an appropriate HEM algorithm for efficiently learning the

tag-level models from the song-level models. In the remainder of the section, we present

the HEM algorithm for DTM.

2.5.1 Learning DTM Tag Models

The process for learning a tag-level DTM model from song-level DTMs is il-

lustrated in Figure 2.2. First, all the song-level DTMs with a particular tag are pooled

together into a single large DTM. Next, the common information is summarized by

clustering similar DT components together, forming a new tag-level DTM with fewer

mixture components.

The DT components are clustered using the hierarchical expectation maximization

(HEM) algorithm [164]. At a high level, this is done by generating virtual samples from

each of the song-level component models, merging all the samples, and then running the

standard EM algorithm on the merged samples to form the reduced tag-level mixture.

Mathematically, however, using the virtual samples is equivalent to marginalizing over

the distribution of song-level models. Hence, the tag model can be learned directly and

efficiently from the parameters of the song-level models, without generating any virtual

samples.
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The hierarchical expectation-maximization (HEM) algorithm was originally pro-

posed by Vasconcelos and Lippman [164] to reduce a Gaussian mixture model (GMM)

with a large number of mixture components into a representative GMM with fewer com-

ponents, and has been successful in learning GMMs from large datasets for the annotation

and retrieval of images [28] and music [159]. We next present an HEM algorithm for

mixtures with components that are dynamic textures [33].

2.5.2 HEM Formulation

Formally, let Θ(s) = {π(s)
i ,Θ

(s)
i }K(s)

i=1 denote the combined song-level DTM (i.e.,

after pooling all song-level DTMs for a certain tag) with K(s) components, where Θ
(s)
i are

the parameters for the ith DT component, and π
(s)
i the corresponding component weights,

which are normalized to sum to 1 (i.e., ∑i π
(s)
i = 1). The likelihood of observing an audio

fragment y1:τ with length τ from the combined song-level DTM Θ(s) is given by

p(y1:τ |Θ(s)) =
K(s)

∑
i=1

π
(s)
i p(y1:τ |z(s) = i,Θ(s)), (2.5)

where z(s) ∼multinomial(π(s)
1 , · · ·π(s)

K(s)) is the hidden variable that indexes the mixture

components. p(y1:τ |z(s) = i,Θ(s)) is the likelihood of the audio fragment y1:τ under the

ith DT mixture component.

The goal is to find a tag-level annotation DTM, Θ(a) = {π(a)
j ,Θ

(a)
j }K(a)

j=1, which

represents (7.6) using fewer number of mixture components, K(a), (i.e., K(a) < K(s)).

The likelihood of observing an audio fragment y1:τ from the tag-level DTM Θ(a) is

p(y1:τ |Θ(a)) =
K(a)

∑
j=1

π
(a)
j p(y1:τ |z(a) = j,Θ(a)), (2.6)

where z(a) ∼multinomial(π(a)
1 , · · · ,π(a)

K(a)) is the hidden variable for indexing components
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in Θ(a). Note that we will always use i and j to index the components of the song-

level model, Θ(s), and the tag-level model, Θ(a), respectively. To reduce clutter, we

will also use the short-hand Θ
(s)
i and Θ

(a)
j to denote the ith component of Θ(s) and the

jth component of Θ(a), respectively. For example, we denote p(y1:τ |z(s) = i,Θ(s)) as

p(y1:τ |Θ(s)
i ).

2.5.3 Parameter Estimation

To obtain the tag-level model, HEM [164] considers a set of N virtual observations

drawn from the song-level model Θ(s), such that Ni = Nπ
(s)
i samples are drawn from

the ith component. We denote the set of Ni virtual audio samples for the ith component

as Yi = {y(i,m)
1:τ }

Ni
m=1, where y(i,m)

1:τ ∼ Θ
(s)
i is a single audio sample and τ is the length of

the virtual audio samples (a parameter we can choose). The entire set of N samples is

denoted as Y = {Yi}K(s)

i=1 . To obtain a consistent hierarchical clustering, we also assume

that all the samples in a set Yi are eventually assigned to the same tag-level component

Θ
(a)
j . We denote this as z(a)i = j. The parameters of the tag-level model can then be

estimated by maximizing the likelihood of the virtual audio samples,

Θ
(a)∗ = argmax

Θ(a)
log p(Y |Θ(a)), (2.7)

where

log p(Y |Θ(a)) = log
K(s)

∏
i=1

p(Yi|Θ(a)) (2.8)

= log
K(s)

∏
i=1

K(a)

∑
j=1

π
(a)
j

∫
p(Yi,Xi|z(a)i = j,Θ(a))dXi

= log
K(s)

∏
i=1

K(a)

∑
j=1

π
(a)
j

∫
p(Yi,Xi|Θ(a)

j )dXi (2.9)
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and Xi = {x(i,m)
1:τ }

Ni
m=1 are the hidden state variables corresponding to Yi. Computing the

log-likelihood in (3.5) requires marginalizing over the hidden assignment variables z(a)i

and hidden state variables Xi. Hence, (2.7) can also be solved with recourse to the EM

algorithm [49]. In particular, each iteration consists of

E-Step: Q(Θ(a),Θ̂(a)) = EX ,Z|Y,Θ̂(a)[log p(X ,Y,Z|Θ(a))],

M-Step: Θ̂
(a)∗ = argmax

Θ(a)
Q(Θ(a),Θ̂(a)),

where Θ̂(a) is the current estimate of the tag-level model, p(X ,Y,Z|Θ(a)) is the “complete-

data” likelihood, and EX ,Z|Y,Θ̂(a) is the conditional expectation with respect to the current

model parameters.

As is common with the EM formulation, we introduce a hidden assignment

variable zi, j, which is an indicator variable for when the audio sample set Yi is assigned to

the jth component of Θ(a), i.e., when z(a)i = j. The complete-data log-likelihood is then

log p(X ,Y,Z|Θ(a)) (2.10)

=
K(s)

∑
i=1

K(a)

∑
j=1

zi, j logπ
(a)
j + zi, j log p(Yi,Xi|Θ(a)

j ).

The Q function is then obtained by taking the conditional expectation of (3.6), and using

the law of large numbers to remove the dependency on the virtual samples. The result is

a Q function that depends only on the parameters of the song-level DTs Θ
(s)
i . For the

detailed derivation of HEM for DTM, we refer the reader to our earlier work [33, 34].

The HEM algorithm for DTM is summarized in Algorithm 1. In the E-step, the

expectations in (3.13) are computed for each song-level component Θ
(s)
i and current

tag-level component Θ̂
(a)
j . These expectations can be computed using “suboptimal filter

analysis” or “sensitivity analysis” [65] on the Kalman smoothing filter (see Appendix
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A and [33]). Next, the probability of assigning the song-level component Θ
(s)
i to the

tag-level component Θ
(a)
j is computed according to (3.14), and the expectations are

aggregated over all the song-level DTs in (3.16). In the M-step, the parameters for each

tag-level component Θ̂
(a)
j are recomputed according to the update equations in (2.14).

Note that the E- and M-steps for HEM-DTM are related to the standard EM algorithm for

DTM. In particular, the song-level DT components Θ
(s)
i take the role of the “data-points”

in standard EM. This is manifested in the E-step of HEM as the expectation with respect

to Θ
(s)
i , which averages over the possible values of the “data-points”. Given the aggregate

expectations, the parameter updates in the M-step of HEM and EM are identical.

2.6 Music Datasets

In this section we describe the music collection and the audio features used in our

experiments.

2.6.1 CAL500 Database

The CAL500 [159] dataset consists of 502 popular Western songs from the last 50

years from 502 different artists. Each song has been annotated by at least 3 humans, using

a semantic vocabulary of 149 tags that describe genres, instruments, vocal characteristics,

emotions, acoustic characteristics, and song usages. CAL500 provides hard binary

annotations, which are 1 when a tag applies to the song and 0 when the tag does not apply.

We find empirically that accurately fitting the HEM-DTM model requires a significant

number of training examples, due to the large number of parameters in the model. Hence,

we restrict our attention to the 78 tags with at least 50 positively associated songs.
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2.6.2 Swat10k Database

Swat10k [156] is a collection of over ten thousand songs from 4,597 different

artists, weakly labeled from a vocabulary of 18 genre tags, 135 sub-genre tags and 475

other acoustic tags. The song-tag associations are mined from Pandora’s website. Each

song is labeled with 2 to 25 tags. As for CAL500, we restrict our attention to the tags

(125 genre tags and 326 acoustic tags) with at least 50 positively associated songs.

2.6.3 Audio Features

Mel-frequency cepstral coefficients (MFCCs) [103] are a popular feature for

content-based music analysis, which concisely summarize the short-time content of an

acoustic waveform by using the discrete cosine transform (DCT) to decorrelate the bins of

a Mel-frequency spectrum2. In Section 2.3.1 we noted how the DT model can be viewed

as a time-varying PCA representation of the audio feature vectors. This suggests that we

can represent the Mel-frequency spectrum over time as the output of the DT model yt . In

this case, the columns of the observation matrix C (a learned PCA matrix) are analogous

to the DCT basis functions, and the hidden states xt are the coefficients (analogous to

the MFCCs). The advantage of learning the PCA representation, rather than using the

standard DCT basis, is that different basis functions (C matrices) can be learned to best

represent the particular song or semantic tag of interest. Hence, the DT can focus on the

frequency structure that is relevant for modeling the particular tag. Another advantage

of learning the basis functions is that it may allow a much smaller-sized state transition

matrix: using the DCT basis functions instead of the learned ones may require more basis

functions to capture the timbral information and hence a higher-dimensional state vector.

Estimating a smaller-sized state transition matrix is more efficient and expected to be

less prone to overfitting. The benefits of learning the basis functions will be validated in

2This decorrelation is usually convenient in that it reduces the number of parameters to be estimated.
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Section 2.7.3 (see, e.g., Table 2.7). Also, note that since the DT explicitly models the

temporal evolution of the audio features, we do not need to include their instantaneous

derivatives (as in the MFCC deltas).

In our experiments, we use 34 Mel-frequency bins, computed from half overlap-

ping, 46ms windows of audio. The Mel-frequency bins are represented in a dB scale,

which accurately accounts for the human auditory response to acoustic stimuli. Each

audio fragment is described by a time series yt
1:τ of τ = 450 sequential audio feature

vectors, which corresponds to 10 seconds. Song-level DTM models are learned from a

dense sampling of audio fragments of 10 seconds, extracted every 1 second.

2.7 Experimental Evaluation

In this section we present results on music annotation and retrieval using the

DTM model.

2.7.1 Experimental Setup

We set the state-space dimension n = 7, as in the work by Barrington et al. [13].

Song-level DTMs are learned with K(s) = 16 components to capture enough of the tempo-

ral diversity present in each song, using EM-DTM [32]. Tag-level DTMs are learned by

pooling together all song-level models associated with a given tag and reducing the result

to a DTM with K(a) = 2 components with HEM-DTM. We keep K(a) low to prevent

HEM-DTM from overfitting (compared to HEM-GMM, HEM-DTM requires estimating

significantly more parameters per mixture component). Section 2.7.3 illustrates that the

system is fairly robust for reasonable variations in these parameters.

The EM-DTM algorithm to estimate song-level DTMs follows an iterative “com-

ponent splitting” procedure. First, a one-component mixture is estimated by initializing

parameters randomly and running EM till convergence. Then, the number of components
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is increased by splitting this component and EM is run to convergence again. This

process of splitting components and re-running EM for a mixture with more compo-

nents is repeated until the desired number of components is obtained. When splitting a

component, new components are initialized by replicating the component and slightly

perturbing — randomly and differently for each new component — the poles of the state

transition matrix, A. We follow a growing schedule of {1, 2, 4, 8, 16} mixture compo-

nents. The single component of the initial mixture is learned from a set of randomly

selected fragments of the song, using the method proposed by Doretto et al. [54]. This

“component splitting” procedure for EM-DTM was found to be quite robust to different

initializations. More details can be found in earlier work by Chan et al. [32]. The tag-level

DTMs (with K(a) = 2 components) are learned by running 10 trials of the HEM-DTM

algorithm. Each trial is initialized by randomly selecting 2 mixture components from the

aggregated song-level mixtures. The final parameter estimates are obtained from the trial

that achieves the highest likelihood. This procedure proved robust as well.

To investigate the advantage of the DTM’s temporal representation, we compare

the auto-tagging performance of HEM-DTM to the hierarchically trained Gaussian

mixture models (HEM-GMM) [159], the CBA model [81], the boosting approach [55],

and the SVM approach [106]. We follow the original procedure for training HEM-GMM

and CBA, with the modification that the CBA codebook is constructed using only songs

from the training set. We report performance also for direct-EM model estimation (EM-

DTM), which learns each tag-level DTM model using the standard EM algorithm for

DTM [32] directly on a subsampled set of all audio fragments associated with the tag.

Empirically, we found that due to RAM requirements a single run of EM-DTM only

manages to process about 1% of the data (i.e., audio fragments) that HEM-DTM can

process, when estimating a tag model from approximately 200 training examples, on a

modern laptop with 4GB of RAM. In contrast, HEM-DTM, through the estimation of
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intermediate models, can pool over a much richer training data set, both in the number

of songs and in the density of audio fragments sampled within each song. Finally, we

compare to model aggregation DTM (AGG-DTM), which estimates each tag-level model

by aggregating all the song-level DTM models associated with the tag. A drawback of

this technique is that the number of DTs in the tag-level DTM models grows linearly

with the size of the training set, resulting in drawn out delays in the evaluation stage. All

reported metrics are the results of 5-fold cross validation where each song appeared in

the test set exactly once.

2.7.2 Evaluation of Annotation and Retrieval

Annotation performance is measured following the procedure described by Turn-

bull et al. [159]. Test set songs are annotated with the 10 most likely tags in their semantic

multinomial (Eq. 2.4). Annotation accuracy is reported by computing precision, recall

and F-score for each tag3, and then averaging over all tags. Per-tag precision is the

probability that the model correctly uses the tag when annotating a song. Per-tag recall is

the probability that the model annotates a song that should have been annotated with the

tag. Precision, recall and F-score measure for a tag w are defined as:

P =
|wC|
|wA|

, R =
|wC|
|wH |

, F = 2
(
(P)−1 +(R)−1)−1

, (2.15)

where |wH | is the number of tracks that have w in the ground truth, |wA| is the number of

times our annotation system uses w when automatically tagging a song, and |wC| is the

number of times w is correctly used. In case a tag is never selected for annotation, the

corresponding precision (that otherwise would be undefined) is set to the tag prior from

3We compute annotation metrics on a per-tag basis, as our goal is to build an automatic tagging
algorithm with high stability over a wide range of semantic tags. Per-song metrics may get artificially
inflated by consistently annotating songs with a small set of highly frequent tags, while ignoring less
common tags.



26

Table 2.1. Annotation and retrieval results for various algorithms on CAL500.

Annotation Retrieval

Model P R F-score AROC MAP P10

HEM-GMM [159] 0.49 0.23 0.26 0.66 0.45 0.47

CBA [81] 0.41 0.24 0.25 0.69 0.47 0.49

Boosting [55] 0.37 0.17 0.20 0.69 0.47 0.49

SVM [106] 0.38 0.24 0.25 0.66 0.45 0.48

HEM-DTM 0.47 0.25 0.30 0.69 0.48 0.53
AGG-DTM 0.34 0.23 0.21 0.69 0.47 0.50

EM -DTM 0.46 0.24 0.28 0.65 0.44 0.49

the training set, which equals the performance of a random classifier.

To evaluate retrieval performance, we rank-order test songs for each single-

tag query in our vocabulary, as described in Section 2.4. We report mean average

precision (MAP), area under the receiver operating characteristic curve (AROC) and

top-10 precision (P10), averaged over all the query tags. The ROC curve is a plot of true

positive rate versus false positive rate as we move down the ranked list. The AROC is

obtained by integrating the ROC curve, and it is upper bounded by 1. Random guessing

would result in an AROC of 0.5. The top-10 precision is the fraction true positives in the

top-10 of the ranking. MAP averages the precision at each point in the ranking where a

song is correctly retrieved.

2.7.3 Results on CAL500

Annotation and retrieval results on the CAL500 data set are presented in Table 5.1.

For all metrics, except for precision, the best performance is observed with HEM-DTM.

For retrieval, while some other methods show a comparable AROC score, HEM-DTM

clearly improves the top of the ranked list compared to any other method. The higher

precision-at-10 score demonstrates this. The results also show that sub-sampling of the

training set for direct-EM estimation (EM-DTM) degrades the performance, compared
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Table 2.2. Annotation and retrieval performance as a function of K(s) and K(a), respec-
tively.

(a) K(a) = 2

K(s) 2 4 8 16

MAP 0.4748 0.4768 0.4804 0.4834

F-score 0.2785 0.2886 0.2963 0.3002

(b) K(s) = 16

K(a) 2 4 8 16

MAP 0.4834 0.4796 0.4820 0.4798

F-score 0.3002 0.2940 0.2942 0.2872

to HEM estimation (HEM-DTM). Aggregating the song-level DTMs associated with

a tag (AGG-DTM) is also inferior. Figure 6.7 plots the precision-recall curves, for

annotation, for all methods. At low recall (shorter, more selective annotations), (H)EM-

DTM outperforms any other method. At higher recall, HEM-GMM catches up. In future

work, we will investigate whether combining DTM- and GMM-based annotations can

make for a more accurate auto-tagger.

To illustrate how different values of K(s) and K(a) (the number of components

in the song and tag mixture models, respectively) affect the system’s performance, we

vary K(s) in {2, 4, 8, 16} while fixing K(a) = 2, and, vice versa, vary K(a) in {2, 4, 8, 16}

while fixing K(s) = 16. Annotation and retrieval results are reported in Table 2.2, showing

that performance is fairly robust within a reasonable parameter range.

We expect DTMs to be particularly beneficial for tags with characteristic temporal

dynamics (e.g., tempo, rhythm, etc.) that unfold in the time span of a few seconds. Tags

that are modeled adequately already by instantaneous spectral characteristics within a

window of 50ms (e.g., timbre) may not benefit much, as well as tags that might require a

global, structured song model.

To illustrate this point, Table 6.7 lists annotation (F-score) and retrieval (MAP)
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results for a subset of the CAL500 vocabulary.

DTMs prove suitable for tags with significant temporal structure, e.g., vocal

characteristics and instruments such as electric or acoustic guitar, by capturing the

attack/sustain/decay/release profile of the instruments. DTMs also capture the temporal

characteristics of a “fast” song — expected to unfold “fast”, i.e., within a few seconds —

and significantly improve upon GMMs, which cannot model these characteristics. For

“slow” songs, on the other hand, DTMs are not picking up any additional information

that GMMs do not capture already. The same is observed when predicting tags such as

“light beat” and “mellow”, already well described by timbre information (as evidenced

by the high GMM performance), or “weak” and “sad”, where neither DTMs nor GMMs

are capturing strongly predictive acoustic characteristics. While, for some tags, this may

indicate that “timbre tells all”, for others, capturing more specific characteristics might

require modeling structure at a much longer time scale or higher level. This will be a

topic of future research.

It should also be noted that the increased modeling power of DTMs, compared

to GMMs, requires more training data to reliably estimate them. This is discussed in

more detail later in this section. Especially when training data is more noisy (e.g., for

more subjective tags), significantly more examples will be required to make stand out

the salient attributes HEM-DTM is trying to capture. This may explain why DTMs

improve over GMMs for “positive feelings” (over 170 examples in CAL500) but not

for “negative feelings (less than 80 examples). The same consideration holds for the

usage tags “driving” and “going to sleep”, which respectively appear 141 and 56 times in

CAL500. So, while DTMs can capture a superset of the information modeled by GMMs,

they may still perform worse for some tags, for this reason. Another factor to keep in

mind when observing worse DTM than GMM performance is the more limited modeling

power of DTMs when no clear temporal dynamics are present. Indeed, the absence of
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Table 2.3. Annotation and retrieval results for some tags with HEM-DTM and HEM-
GMM.

Tag HEM-DTM HEM-GMM [159]

F-score MAP F-score MAP

HEM-DTM outperforms HEM-GMM

female lead vocals 0.58 0.69 0.42 0.44

male lead vocals 0.44 0.87 0.08 0.81

backing vocals 0.30 0.47 0.09 0.44

emotional vocals 0.37 0.42 0.05 0.27

vocal harmonies 0.21 0.21 0.10 0.15

pop 0.32 0.36 0.31 0.35

acoustic guitar 0.44 0.44 0.31 0.43

electric guitar 0.32 0.37 0.14 0.33

fast 0.40 0.48 0.20 0.42

positive feelings 0.30 0.51 0.10 0.48

driving 0.29 0.38 0.29 0.33

HEM-DTM under-performs HEM-GMM

light beat 0.36 0.58 0.53 0.61

mellow 0.34 0.41 0.37 0.49

slow 0.45 0.60 0.44 0.62

weak 0.22 0.26 0.26 0.25

sad 0.13 0.23 0.28 0.30

negative feelings 0.27 0.29 0.32 0.30

going to sleep 0.27 0.33 0.35 0.36

clear regularities in the temporal dynamics will result in a degenerate linear dynamical

system (e.g., A = 0), reducing each DT component to a Gaussian component. Clearly,

a DTM with 2 Gaussian components is a less rich timbre model than a GMM with 16

mixture components (as proposed by Turnbull et al. [159]). Estimating a DTM with as

many mixture components, on the other hand, is prone to overfitting. This would result

in a poorer timbre model as well.

Table 2.4 reports automatic 10-tag annotations for some songs from the CAL500

music collection, with HEM-DTM and HEM-GMM. Table 2.5 and 2.6 show the top-10
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retrieval results for the queries “acoustic guitar” and “female lead vocals” respectively,

both for HEM-DTM and HEM-GMM. For “acoustic guitar”, it is noted that both GMM

and DTM make some “acceptable” mistakes. For example, “Golden brown”, by The

Stranglers, has a harpsichord, and Aaron Neville’s “Tell it like it is” has clean electric

guitar.

We investigate how the size of the training set affects the quality of the resulting

models. As suggested earlier, reliably estimating the more powerful but also more

complex DTM models is expected to require more training examples, compared to

estimating GMM models. Figure 2.4 illustrates this. In Figure 2.4(a), we consider all

149 CAL500 tags and plot the relative retrieval performance of HEM-DTM, compared

to HEM-GMM, for tag subsets of different minimal cardinality. The cardinality of a

tag is defined as the number of examples in the data set that are associated with the tag.

The minimal cardinality of a set of tags is determined by its tag with lowest cardinality.

The plot shows that DTM modeling provides a bigger performance boost, over GMMs,

when more examples are available for a tag. This is confirmed in Figure 2.4(b). This

experiment is restricted to the 10 CAL500 tags that have cardinality of 150 or more. For

each tag, the size of the training set is varied from 25 to 150, by random subsampling.

Finally, the average retrieval performance (over these 10 tags) is reported as a function

of the training set size, both for HEM-DTM and HEM-GMM. Initially, a larger training

set benefits both methods. However, while GMM performance levels off beyond 100

training examples, DTM performance keeps improving. Additional training examples

keep leveraging more of the DTM’s extra modeling potential, widening the gap between

DTM and GMM performance.

Finally, we validate our claim that learning the observation matrix C (i.e., the basis

functions for the Mel-spectrum), rather than using the standard DCT basis, is beneficial

as it combines a better representation of the features of the Mel-spectrum with a more
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compact model of the temporal dynamics that are characteristic for a particular song or

semantic tag of interest. In Table 2.7, we compare HEM-DTM, with a learned C-matrix,

with HEM-DTM-DCT, where we modify the DT model to fix the observation matrix C

to be the DCT basis functions. We report annotation and retrieval performance for an

experimental setup similar to the one in Table 5.1, with n = 7, K(s) = 16 and K(a) = 2.

For HEM-DTM-DCT, the first n = 7 DCT bases (ordered by frequency) are selected.

We also analyze the effect of a higher-dimensional DCT basis for HEM-DTM-DCT,

by increasing n to 13. HEM-DTM outperforms both HEM-DTM-DCT variants, which

illustrates that learning the observation matrix C improves the performance over using

a standard DCT basis. The small difference in performance between HEM-DTM-DCT

for n = 7 and n = 13, respectively, suggests that overfitting on the (higher-dimensional)

hidden state process may be neutralizing the benefits of a larger (fixed) basis, which

allows to better represent the Mel-frequency spectrum, for n = 13.

2.7.4 Results on Swat10k

HEM-DTM scales well to larger music collections, like this data set. It efficiently

estimates tag models from a large number of examples by breaking the problem down

into intermediate steps. The annotation and retrieval results on Swat10k, presented

in Table 2.8, demonstrate that this procedure to estimate DTMs is also accurate. On

Swat10k, DTMs outperform GMMs for every performance metric reported4, except for

precision on the “acoustic” tags. The annotation results are obtained by annotating songs

with the two most likely “genre” tags (ideally one main genre and one sub-genre), and

with the 10 most likely acoustic tags. Precision-recall curves are shown in Figure 2.5,

4Swat10k is weakly labeled, i.e., song annotations are incomplete. Given enough positive training
examples, this doesn’t affect the estimation of generative models (see, e.g., [159, 28]), like GMM and
DTM. For evaluation purposes, while this still allows relative comparisons, it will reduce the absolute
value of some performance metrics, e.g., MAP and P10 that evaluate positive song-tag associations at the
top of the ranking.
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confirming the overall dominance of HEM-DTM over HEM-GMM for the annotation

task. In summary, for both Swat10k tag categories, DTMs successfully capture temporal

dynamics over a few seconds as well as instantaneous timbre information, providing

more accurate models.

2.8 Discussion on the DTM model’s parameters

illustrate qualitatively how variations in the acoustic characteristics of semantic

tags are reflected in different DTM model parameters. We show how the dynamics of

a musical tag affect the state transition matrix A and how the structure of the obser-

vation matrix C specializes for different tags. We also present some two-dimensional

embeddings of tag models, showing that qualitatively similar musical tags give rise to

qualitatively similar DTM models.

2.8.1 State Transition Matrix: Temporal Dynamics

Doretto et al. [53] describe the link between the location of the poles5 of the state

transition matrix, A, and the dynamics of the LDS. The higher a normalized frequency

(i.e., the wider the angle between each of the conjugate poles and the positive real axis),

the faster and more distinct the associated dynamics. On the other hand, if all the poles

are on the positive real axis, there are no dynamics connected with the modes of the

system. Secondly, the distances of the poles from the origin control the durations of the

corresponding modes of the system. Poles closer to the origin require stronger excitement

for their mode to persist in the system.

Figure 2.6(a) sketches the poles of the mixture components of the DTM models

for the tags “Fast” and “Slow” respectively, from the experiment of Section 2.7. The
5Consider the decomposition A = PΛP−1, where Λ is a diagonal matrix containing the eigenvalues of

A, and P is an orthogonal matrix whose columns are the corresponding eigenvectors. The eigenvalues are
the poles of the system. The eigenvectors determine the corresponding modes, describing the system’s
characteristic oscillations.
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location of the poles in the polar plane is in agreement with the intuition that the former

is characterized by faster dynamics while the latter coincides with smoother variations.

Figure 2.6(b) shows the location of the poles for some of the tags in the upper portion of

Table 6.7, for which HEM-DTM shows improvements over HEM-GMM. HEM-DTM

associates some distinct normalized frequencies with these tags. Finally, Figure 2.6(c)

(top row) plots the poles for different types of guitar (electric, distorted electric and

bass) and piano. The figure illustrates that acoustically similar instruments have similar

dynamics. For example, the locations of the poles of acoustic guitar and clean electric

guitar are fairly similar. Also, the various types of guitar show similar dynamics, while

“Piano” is characterized by noticeably different normalized frequencies.

2.8.2 Observation Matrix: Instantaneous Spectral Content

While the state transition matrix, A, encodes rhythm and tempo, the observation

matrix, C, accounts for instantaneous timbre. In particular, a DT model generates features

into the subspace6 spanned by the columns of the observation matrix.

The bottom row of Figure 2.6(c) displays the first three basis vectors for the guitar

tags and the piano tag in the top row. Each semantic tag is modeled by distinct basis

functions that fit its particular music qualities and timbre. In contrast, the DCT basis

functions used for MFCCs are fixed a priori. When modeling Mel-frequency spectra as

the output of a DTM model, dimensionality reduction and model estimation are coupled

together. On the other hand, for MFCCs, the DCT is performed before model estimation

and is not adapted to specific audio sequences.
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2.8.3 The DTM: Timbre and Dynamics

For a more intuitive interpretation, Figure 2.7 represents the audio feature sub-

spaces — whose first three basis functions are depicted in the bottom row of Figure

2.6(c) — for the previous guitar and piano tags as a point in a two-dimensional embed-

ding. The relative positions of the points reflect the Martin distance ([1, 38]) between the

DTs for the corresponding tags, which is related to the difference in principal angles of

the observation matrices [170].

The figure indicates that DTM tag models corresponding to qualitatively similar

tags generate audio features in similar subspaces. For example, note that the guitar-

type models are well separated from the piano model along the horizontal axis, while

smaller variations along the vertical coordinate are observed between the different types

of guitars.

Tag-level DTMs (combining state transitions with an observation model) simulta-

neously model both the timbre and dynamics of a tag. In this subsection, we qualitatively

examine how similar/different the resulting models are for different tags. In particular,

t-SNE [162] is used to embed tag models in a two-dimensional space, based on the

Kullback-Leibler (KL) divergence between DTMs. The KL divergence between two

DTs can be computed efficiently with a recursive formula [35]. The KL divergence be-

tween two mixture models, not analytically tractable in exact form, can be approximated

efficiently (see, e.g., [79]).

Figure 2.8 shows two-dimensional embeddings for different groups of tags,

learned from CAL500. Figure 2.8(a) displays the embedding for “emotion” and “acous-

tic characteristics” tags. Qualitatively, the resulting embedding is consistent with the

semantic meaning of the different tags. For example, the top-left protuberance of the

cloud gathers tags associated with smooth acoustic sensations: from low-energy and
6This is exactly true when the observation noise is ignored or negligible, i.e., R→ 0.
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romancing sounds, to relaxing, slow sonorities. In the bottom of the cloud prevails a

sense of happiness, that, marching to the right of the plot, turns into energy, excitement

and heavy beats.

Similarly, Figure 2.8(b) provides the two-dimensional embedding for tags of the

category “genre”. In the center of the cloud, there is a strong rock and pop influence,

usually characterized by the sound of electric guitars, the beat of drums and melodies

sung by male lead vocalists. Moving toward the top-left of the graph, music fills up with

emotions typical of blues and finally evolves to more sophisticated jazzy sounds. In the

bottom, we find hip hop, electronica and dance music, more synthetic sonorities often

diffused in night clubs.

2.9 Conclusions

In this work, we have proposed a novel approach to automatic music annotation

and retrieval that captures temporal (e.g., rhythmical) aspects as well as timbral content.

In particular, our approach uses the dynamic texture mixture model, a generative time

series model for musical content, as a tag-level annotation model. To learn the tag-level

DTMs, we use a two-step procedure: 1) learn song-level DTMs from individual songs

using the EM algorithm (EM-DTM); 2) learn the tag-level DTMs using a hierarchical

EM algorithm (HEM-DTM) to summarize the common information shared by song-level

DTMs associated with a tag. This hierarchical learning procedure is efficient and easily

parallelizable, allowing DTM tag models to be learned from large sets of weakly-labeled

songs (e.g., up to 2200 songs per tag in our experiments).

Experimental results demonstrate that the new DTM tag model improves accuracy

over current bag-of-features approaches (e.g., GMMs, shown on the first line of Table 5.1),

which do not model the temporal dynamics in a musical signal. In particular, we see

significant improvements in tags with temporal structures that span several seconds, e.g.,
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vocal characteristics, instrumentation, and genre. This leads to more accurate annotation

at low recall, and improvements in retrieval at the top of the ranked-list. While, in theory,

DTMs are a more general model than GMMs (as a DTM with degenerate temporal

dynamics is equivalent to a GMM), we observe that in some cases GMMs are favorable.

For musical characteristics that do not have distinctive long-term temporal dynamics,

a GMM with more mixture components may be better suited to model pure timbre

information, since it apriori ignores longer-term dynamics. A DTM with the same

number of components, on the other hand, may overfit to the temporal dynamics of

the training data, resulting in a poorer timbre model. Preventing overfitting by using a

DTM with less mixture components apriori limits its flexibility as a pure timbre model

though. This suggests that further gains are possible by using both DTM (longer-term

temporal) and GMM (short-term timbre) annotation models. Future work will address

this topic by developing criteria for selecting a suitable annotation model for a specific

tag, or by combining results from multiple annotation models using the probabilistic

formalism inherent in the generative models. Finally, our experiments show that DTM

tag models perform significantly better when more training data is available. As an

alternative to supplying more data, future work will consider learning DTM tag models

using a Bayesian approach, e.g., by specifying suitable (data-driven) prior distributions

on the DTM parameters, thus reducing the amount of training data required to accurately

model the musical tag.
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Figure 2.1. Dynamic texture music model: (a) a single DT represents a short audio frag-
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locations) of the DT components in the top part of (b) are to visually suggest that each
DT is characterized by a distinct set of parameters, to produce a specific type of audio
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Algorithm 1. HEM algorithm for DTM

1: Input: combined song-level DTM {π(s)
i ,Θ

(s)
i }K(s)

i=1 , number of virtual samples N.
2: Initialize tag-level DTM {π̂(a)

j ,Θ̂
(a)
j }K(a)

j=1.
3: repeat
4: {E-step} Compute expectations using sensitivity analysis for each Θ

(s)
i and Θ̂

(a)
j

x̂(i)t| j = E
y|Θ(s)

i

[
E

x|y,Θ̂(a)
j
[xt ]

]
,

P̂(i)
t,t| j = E

y|Θ(s)
i

[
E

x|y,Θ̂(a)
j
[xtxT

t ]

]
,

P̂(i)
t,t−1| j = E

y|Θ(s)
i

[
E

x|y,Θ̂(a)
j
[xtxT

t−1]

]
,

Ŵ (i)
t| j = E

y|Θ(s)
i

[
(yt − ˆ̄y(a)j )E

x|y,Θ̂(a)
j
[xt ]

T
]
,

Û (i)
t| j = E

y|Θ(s)
i

[
(yt − ˆ̄y(a)j )(yt − ˆ̄y(a)j )T

]
,

û(i)t = E
y|Θ(s)

i
[yt ] ,

`i| j = E
Θ
(s)
i
[log p(y1:τ |Θ̂(a)

j )].

(2.11)

5: {E-step} Compute assignment probability and weighting:

ẑi, j =
π̂
(a)
j exp

(
Ni`i| j

)
∑

K(a)

j′=1 π̂
(a)
j′ exp

(
Ni`i| j′

) , ŵi, j = ẑi, jNi = ẑi, jπ
(s)
i N. (2.12)

6: {E-step} Compute aggregate expectations for each Θ̂
(a)
j :

N̂ j = ∑i ẑi, j, η j = ∑i ŵi, jP̂
(i)
1,1| j,

M̂ j = ∑i ŵi, j, γ j = ∑i ŵi, j ∑
τ
t=1 û(i)t ,

ξ j = ∑i ŵi, jx̂
(i)
1| j, β j = ∑i ŵi, j ∑

τ
t=1 x̂(i)t| j,

Φ j = ∑i ŵi, j ∑
τ
t=1 P̂(i)

t,t| j, Ψ j = ∑i ŵi, j ∑
τ
t=2 P̂(i)

t,t−1| j,

ϕ j = ∑i ŵi, j ∑
τ
t=2 P̂(i)

t,t| j, φ j = ∑i ŵi, j ∑
τ
t=2 P̂(i)

t−1,t−1| j,

Λ j = ∑i ŵi, j ∑
τ
t=1Û (i)

t| j , Γ j = ∑i ŵi, j ∑
τ
t=1Ŵ (i)

t| j .

(2.13)

7: {M-step} Recompute parameters for each component Θ̂
(a)
j :

Ĉ(a)
j = Γ jΦ

−1
j , R̂(a)

j = 1
τM̂ j

(Λ j−Ĉ(a)
j Γ j), Â(a)

j = Ψ jφ
−1
j ,

Q̂(a)
j = 1

(τ−1)M̂ j
(ϕ j− Â(a)

j ΨT
j ), µ̂

(a)
j = 1

M̂ j
ξ j, Ŝ(a)j = 1

M̂ j
η j− µ̂

(a)
j (µ̂

(a)
j )T ,

π̂
(a)
j =

N̂ j

K(s) , ˆ̄y(a)j = 1
τM̂ j

(γ j−Ĉ(a)
j β j).

(2.14)

8: until convergence
9: Output: tag-level DTM {π̂(a)

j ,Θ̂
(a)
j }K(a)

j=1.
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Table 2.4. Automatic 10-tag annotations for different songs. CAL500 ground truth
annotations are marked in bold.

Kool and the Gang - “Funky stuff”

HEM-DTM
danceable, positive feelings, driving, party,
cheerful, happy, energy, light, catchy, light-
hearted

HEM-GMM
weak, alternative, synthesized, danceable, major,
cold, indifferent, driving, synthesizer, unromantic

Stevie Ray Vaughan - “Pride and joy”

HEM-DTM
drum set, romantic, emotional vocals, recom-
mended, positive, like, cheerful, emotional, light,
alternative

HEM-GMM
weak, alternative, synthesized, synthesizer, not
happy, unromantic, negative feelings, major, indif-
ferent, cold

The Beach Boys - “I get around”

HEM-DTM
synthesizer, synthesized, party, electronica,
danceable, heavy beat, arousing, rough, pop, fast

HEM-GMM
synthesized, electronica, synthesizer, pop, party,
cold, happy, danceable, heavy beat, uptight

The Police - “Every little thing she does is magic”

HEM-DTM
classic rock, driving, energy, fast, male lead vo-
cals, electric guitar, electric, indifferent, powerful,
rough

HEM-GMM
boring, major, acoustic, driving, not likeable, fe-
male lead vocals, recording quality, cold, synthe-
sized, pop , guitar

R.E.M. - “Camera”

HEM-DTM
romantic, piano, touching, tender, pop, pleasant,
positive, backing vocals, light beat, calming

HEM-GMM
weak, alternative, major, piano, synthesized, syn-
thesizer, pop, female lead vocals, backing vocals,
not likeable
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Table 2.5. Top-10 retrieved songs for “acoustic guitar”. Songs with acoustic guitar are
marked in bold.

Rank HEM-DTM

1 The Zombies “Beechwood park”

2 James Taylor “Fire and rain”
3 Arlo Guthrie “Alice’s restaurant massacree”
4 Crosby, Stills, Nash & Young “Teach your children”
5 American Music Club “Jesus hands”
6 Donovan “Catch the wind”
7 Smokey Robinson & The Miracles “Ooo baby baby”

8 Aaron Neville “Tell it like it is”

9 The Animals “I’m crying”

10 10cc “For you and I”

Rank HEM-GMM

1 The Stranglers “Golden brown”

2 Crosby, Stills, Nash & Young “Teach your children”
3 Pet Shop Boys “Being boring”

4 The Police “Every little thing she does is magic”

5 Belle and Sebastian “Like Dylan in the movies”

6 Counting Crows “Speedway”

7 The Beautiful South “One last love song”

8 Beth Quist “Survival”

9 Neutral Milk Hotel “Where you’ll find me now”

10 James Taylor “Fire and rain”
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Table 2.6. Top-10 retrieved songs for “female lead vocals”. Songs with female lead
vocals are marked in bold.

Rank HEM-DTM

1 Artemis “Don’t look back”
2 The Ronettes “Walking in the rain”
3 Alicia Keys “Fallin”
4 Syreeta “What love has joined together”
5 Dionne Warwick “Walk on by”
6 Gloria Gaynor “I will survive”
7 Anita Baker “Caught up in the rapture”
8 The Andrews Sisters “Boogie woogie bugle boy”
9 The Buggles “Video killed the radio star”
10 Antonio Carlos Jobim “Wave”

Rank HEM-GMM

1 Artemis “Don’t look back”
2 Britney Spears “I’m a slave for you”
3 Alicia keys “Fallin”
4 Dionne Warwick “Walk on by”
5 Syreeta “What love has joined together”
6 The Beach Boys “I get around”

7 Kourosh Zolani “Peaceful planet”

8 Natalie Imbruglia “Torn”
9 Cat Power “He war”
10 The Animals “I’m crying”

Table 2.7. Annotation and retrieval results for HEM-DTM and HEM-DTM-DCT (n = 7
and n = 13).

Annotation Retrieval

Model P R F-score AROC MAP P10

HEM-DTM 0.47 0.25 0.30 0.69 0.48 0.53
HEM-DTM-DCT (n=7) 0.43 0.21 0.21 0.67 0.45 0.47

HEM-DTM-DCT (n=13) 0.42 0.21 0.21 0.68 0.45 0.47
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Figure 2.4. (a) Retrieval performance of HEM-DTM, relative to HEM-GMM, as a
function of the minimal cardinality of tag subsets. More precisely, for each point in
the graph, the set of all 149 CAL500 tags is restricted to those that CAL500 associates
with a number of songs that is at least the abscissa value. The number of tags in each
restricted subset is indicated next to the corresponding point in the graph. (b) Retrieval
performance, averaged over the 10 CAL500 tags that have cardinality of 150 or more,
as a function of training set size. Training sets of size 25, 50, ..., 150 are randomly
subsampled.

Table 2.8. Annotation and retrieval results on the Swat10k data set, for both tag cate-
gories.

Model P R F-score AROC MAP P10

“Genre”

HEM-DTM 0.15 0.27 0.16 0.87 0.14 0.18
HEM-GMM 0.11 0.15 0.08 0.82 0.11 0.15

“Acoustic”

HEM-DTM 0.10 0.34 0.13 0.82 0.13 0.17
HEM-GMM 0.11 0.24 0.10 0.77 0.10 0.14
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by the observation matrix, C. The first three columns of C are depicted in solid green,
dashed blue and dotted red line, for the corresponding tags in the top row. The columns
of C define a basis that is optimized to best represent the instantaneous audio content for
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Chapter 3

Multivariate Autoregressive Mixture
Models for Music

3.1 Introduction

Browsing and discovery of new music can largely benefit from semantic search

engines for music, which represent songs within a vocabulary of semantic tags, i.e.,

words or short phrases describing songs’ attributes. By just typing the desired tags as in a

standard text search engines (e.g., Bing or Google), users can find the music they desire.

Historically, attempts to map songs onto a semantic vocabulary have initially

relied on available metadata (e.g. artist names, genre annotation, critical reviews), or

manual labeling from expert human annotators and social networks. More recently,

distributed human computation games, such as TagATune [98] and HerdIt [14], have

attempted to scale up manual labeling to larger collections by recruiting non-expert users

through engaging or rewarding games. However, these efforts have so far covered only a

small portion of the songs available in modern music collections.1 This motivates the

development of content-based auto-tagging systems, i.e., intelligent algorithms that, by

analyzing and understanding the acoustic content of songs, can automatically index them

1Pandora annotated catalog and TagATune labeled clips represent less than 5% and 0.15% of the iTunes’
collection, respectively.
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with semantic tags.

3.1.1 Related work

A large number of content-based auto-taggers are trained on a database of songs

annotated with respect to a semantic vocabulary following a common scheme. First,

a time series of low-level spectral features (e.g., Mel Frequency Cepstral Coefficients

(MFCCs)) is extracted from each song in the database. Then, for each tag, a representative

statistical model is fine tuned to capture the most predictive patterns common to the songs

annotated with that tag. Once a new song is available, the auto-tagger uses the learned

tag-models to process its low-level features and produces a vector of tag-affinities. The

tag-affinities are then mapped onto a semantic multinomial (SMN), which represents the

song within the semantic vocabulary.

A variety of auto-taggers, based on either generative models [160, 159, 140, 81]

or discriminative models [106, 55, 60, 167, 150, 29], rely on a Bag-of-Features (BoF)

representation of the spectral content of songs, which ignores temporal dynamics by

treating all feature vectors as independent. While augmenting the spectral features

with their first and second instantaneous derivatives has represented a common choice to

enrich the BoF representation with temporal information (e.g. [159, 15]), more principled

solutions have been implemented in recently proposed auto-taggers. The dynamic texture

mixture (DTM) treats short fragments of audio as the output of a linear dynamical system

[42]. The multi-scale learning algorithm in [73] leverages several pooling functions for

summarization of the features over time. The Bag-of-Systems (BoS) approach represents

songs with a codebook of time-series models [56]. The multivariate autoregressive (AR)

model was used in [108] in a semi-parametric approach for genre classification of short

musical snippets. In [143] various methods for temporal integration, including the AR

model, were examined for musical instrument classification.
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3.1.2 Original contribution

In this paper we introduce the autoregressive mixture (ARM) model [4] for

automatic music annotation and retrieval. We first model each song as an ARM, estimated

from a collection of audio-fragments extracted from the song. Note that this is different

from estimating single AR models from individual audio clips as done in [108], since

each mixture component of a song-level ARM models the music content of several

(perceptually similar) audio fragments.

In order to model tag-level distributions as ARMs, we propose a novel efficient

hierarchical expectation maximization algorithm for ARMs (HEM-ARM). Starting from

all the song-ARMs that are relevant for a specific tag, the proposed algorithm summarizes

the common music content by clustering similar AR components together, and learning a

tag-ARM model with fewer components. We compare our HEM-ARM with previous

auto-taggers that used GMMs [159] and DTMs [42], to model tag-level distribution,

in tandem with an efficient HEM algorithm for learning. In particular, we obtain that

HEM-DTM generally performs better than HEM-ARM (e.g., the annotation F-scores

are 0.264, 0.254, respectively). However, relative to HEM-DTM, our HEM-ARM has

significantly lower time requirements, both for training (two orders of magnitude) and

for annotation (one order of magnitude). These results are explained by the differences

in the graphical structures of the models. The DT model has an observed layer (which

models the spectral content) and a hidden layer (that encodes the temporal dynamics).

As a consequence, using DTMs can learn different frequency bases that better adapt to

specific tags, but requires marginalization over the hidden variables — and hence delays

— at each training iteration and for inference at annotation. On the opposite, the AR is a

fully observable model. Hence, training and annotation can be implemented efficiently

by computing sufficient statistics for each song a single time.
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In addition, once songs are modeled with ARMs, we investigate a kernel-SVM

method upon these song-ARMs for semantic retrieval, similar to the work done in [15]

over GMMs and in [108] over single ARs. We test several kernel functions, some

of which represent each song by the quantized frequency responses (QFR) of its AR

components.

The remainder of this paper is organized as follows. In section 3.2 we present

the autoregressive (mixture) model, and in section 3.3 we derive the hierarchical EM

algorithm for ARMs. In Section 3.4 we present our kernel-SVM approach. In Section

6.6 we report our experiments.

3.2 The autoregressive mixture model

In this section we present the autoregressive (AR) model and the autoregressive

mixture (ARM) model for music time series.

3.2.1 The AR model

A multivariate autoregressive (AR) model is a generative time-series model for

audio fragments. Given a time series of T d−dimensional feature vectors x1:T ∈ Rd×T ,

the AR model assumes each audio feature xt at time t is a linear combination of the

previous p audio features. Specifically, the AR model is described by the equation

xt =
p

∑
j=1

A jxt− j +νt (3.1)

where {A j}p
j=1 are p transition matrices of dimension d×d. νt is a driving noise process

and is i.i.d. zero-mean Gaussian distributed, i.e., νt ∼N (0,Q), where Q ∈ Rd×d is a

covariance matrix. The initial condition is specified by x1 ∼N (µ,S), where S ∈ Rd×d
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is a covariance matrix. We can express (3.1) in a vectorial form:

xt = Ãxt−1
t−p +νt (3.2)

where Ã= [A1 . . .Ap]∈Rd×d p and xb
a = [x′b...x

′
a]
′ ∈Rd p×1. Note that, for convenience, we

assume xt = 0 for t ∈ {−p+1, . . . ,0}, and hence assume that x1 triggered the generation

of the whole time series. An AR model is hence parametrized by Θ = {µ,S, Ã,Q}. The

likelihood of a sequence x1:T is

p(x1:T |Θ) = N (x1|µ,S)
T

∏
t=2

N (xt |
p

∑
j=1

A jxt− j,Q) (3.3)

where N (·|µ,Σ) is the pdf of a Gaussian distribution with mean µ and covariance matrix

Σ.

The parameters of an AR model can be estimated from a time-series x1:T with

various optimization criteria [108, 118].

3.2.2 The ARM model

An ARM model treats a group of audio fragments as samples from K AR models.

Specifically, for a given sequence, an assignment variable z ∼ categorical(π1, · · ·πK)

selects one of the K AR models, where the ith AR model is selected with probability

πi. Each mixture component is specified by the parameters Θi = {µ i,Si, Ãi,Qi}, and the

ARM model is specified by Θ = {πi,Θi}K
i=1. Whereas a single AR model suffices to

describe an individual audio fragment, the ARM model is a more appropriate modeling

choice for an entire song. This is motivated by the observation that a song usually shows

significant structural variations within its duration, and hence multiple AR components

are necessary to model the heterogeneous sections.
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The likelihood of an audio fragment x1:T under an ARM model is

p(x1:T |Θ) =
K

∑
i=1

πi p(x1:T |z = i,Θi), (3.4)

where the likelihood of x1:T under the ith AR component p(x1:T |z = i,Θi) is given by

(3.3).

The parameters of an ARM model can be estimated from a collection of audio-

fragments using the expectation maximization (EM) algorithm [49], which is an iterative

procedure that alternates between estimating the assignment variables given the current

estimate of the parameters, and re-estimating the parameters based on the estimated

assignment variables.

3.3 The HEM algorithm for ARM models

In this paper we proposed to model tag distributions as ARM models. One way

to estimate a tag-level ARM model is to run the EM algorithm directly on all the audio

fragments extracted from the relevant songs. However, this approach would require

excessive memory and computation time, to store all the input audio-sequences in RAM

and to compute their likelihood at each iteration. In order to avoid this computational

bottleneck, we propose a novel hierarchical EM algorithm for ARM models (HEM-

ARM), which allows to learn ARM models using an efficient hierarchical estimation

procedure. In a first stage, intermediate ARM models are estimated in parallel for each

song, using the EM algorithm for ARMs on the song’s audio fragments. Then, the HEM-

ARM algorithm estimates the final model by summarizing the common information

represented in the relevant song-ARMs. This is achieved by aggregating together all the

relevant song-ARMs into a single big ARM model, and clustering similar AR models

together to form the final tag-level ARM model.
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At a high level, the HEM algorithm consists in maximum likelihood estimation of

the ARM tag model from virtual samples distributed according to the song ARM models.

However, since using the virtual samples can be approximated with a marginalization

over the song ARM distribution (for the law of large numbers, see (3.8)), the estimation

is carried out in an efficient manner that requires only knowledge of the parameters of

the song models without the need of generating actual samples. The HEM algorithm

was originally proposed by Vasconcelos and Lipmann [164] to reduce a GMM with a

large number of mixture components to a compact GMM with fewer components, and

extended to DTMs by Chan et al. [33]. The HEM algorithm has been successfully

applied to the estimation of GMM tag-distribution [159] and DTM tag-distribution [42].

We now derive the HEM algorithm for ARMs.

3.3.1 Derivation of the HEM for ARMs

Formally, let Θ(s) = {π(s)
i ,Θ

(s)
i }K(s)

i=1 be an ARM model with K(s) components,

which pools together the ARM models of all the songs relevant for a tag. The goal of

the HEM-ARM algorithm is to learn a tag-level ARM model Θ(t) = {π(t)
j ,Θ

(t)
j }K(t)

j=1 with

fewer components

(i.e., K(t) < K(s)), that represents Θ(s) well. The likelihood of the tag ARM Θ(t) is given

by (3.4).

The HEM algorithm uses a set of N virtual samples generated from the base

model Θ(s), where the Ni = Nπ
(s)
i samples Xi = {x(i,m)

1:τ }
Ni
m=1 are from the ith component,

i.e., x(i,m)
1:τ ∼ Θ

(s)
i . We assume that samples within each Xi are assigned to the same

component of the tag model Θ(t), and we denote the entire set of virtual samples with

X = {Xi}K(s)

i=1 .
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The log likelihood of the incomplete data under Θ(t) is

log p(X |Θ(t)) = log
K(s)

∏
i=1

p(Xi|Θ(t))

= log
K(s)

∏
i=1

K(t)

∑
j=1

π
(t)
j p(Xi|Θ(t)

j ).

(3.5)

The HEM algorithm consists of the maximum likelihood estimation of the parameters of

Θ(t) from (3.5). Since (3.5) involves marginalizing over the hidden assignment variables

z(s)i ∈ {1, . . . ,K(t)}, its maximization can be solved with the EM algorithm. Hence, we

introduce an indicator variable zi, j for when the virtual audio sample set Xi is assigned to

the jth component of Θ(t), i.e., when z(s)i = j. The complete data log-likelihood is then:

log p(X ,Z|Θ(t)) =

=
K(s)

∑
i=1

K(t)

∑
j=1

zi, j logπ
(t)
j + zi, j log p(Xi|Θ(t)

j )
(3.6)

The Q-function is obtained by taking the conditional expectation of (3.6) with

respect to Z, and the dependency on the virtual samples is removed by using the law of

large numbers, i.e.,

log p(Xi|Θ(t)
j ) = Ni

1
Ni

Ni

∑
m=1

log p(x(i,m)
1:τ |Θ

(t)
j ) (3.7)

≈ NiEx1:τ |Θ(s)
i

[
log p(x1:τ |Θ(t)

j )
]
. (3.8)

Note that (3.8) can be computed using the chain rule of the expected log-likelihood and
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(3.1) to break the expectation

E
x1:τ |Θ(s)

i

[
log p(x1:τ |Θ(t)

j )
]
= (3.9)

=
τ

∑
t=1

E
x1:t |Θ(s)

i

[
log p(xt |x1:t−1,Θ

(t)
j )
]

(3.10)

=
τ

∑
t=1

E
x1:t |Θ(s)

i

[
log p(xt |xt−p:t−1,Θ

(t)
j )
]

(3.11)

=
τ

∑
t=1

E
x1:t−1|Θ(s)

i

[
E

xt |xt−p:t−1,Θ
(s)
i

[
log p(xt |xt−p:t−1,Θ

(t)
j )
]]

(3.12)

The inner expectation in (3.12) is the expected log-likelihood of a Gaussian, and its

closed form solution depends on the first and second order statistics of xt−p,t−1 ∼Θ
(s)
i .

The outer expectation involves the computation of the expected first and second order

statistics of Θ
(s)
i , which can be carried out with the recursion presented in Algorithm

2. Note that, since the AR model Θ
(t)
j has no hidden variables, the computation of the

expected sufficient statistics in Algorithm 2 is independent of Θ
(t)
j , and hence needs to be

executed only once for each input component Θ
(s)
i .

If hidden variables are present (which is the case for the DT components of the

DTM model, but not for the AR model), computing the expected sufficient statistics of a

song component Θ
(s)
i involves marginalizing over the hidden variables of Θ

(t)
j , and hence

needs to be repeated at every iteration for each j = 1, . . . ,K(t).

The E-step of the HEM consists of computing of the expected sufficient statistics

in Algorithm 2, the assignments variables in (3.14) and (3.15), and the cumulative

expected sufficient statistics in (3.16). The M-step maximizes the Q-function with

respect to Θ(t), giving the updates in (A.19). The full HEM-ARM scheme is presented in

Algorithm 3.
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Algorithm 2. Expected sufficient statistics

1: Input: song-level AR model Θ
(s)
i = {µ,S, Ã,Q}, length of virtual samples τ .

2: Compute expected sufficient statistics for t = 1, . . . ,τ−1:

Ẽ(i)
1 = E

x1Θ
(s)
i
[x1x′1] = µµ ′+S

Ê(i)
1 = E

x−p+1:1Θ
(s)
i

[
x1
−p+1x1

−p+1
′]
=

=

[
Ẽ(i)

1 0d×(d−1)p
0(d−1)p×d 0(d−1)p×(d−1)p

]

For t = 1, . . . ,τ−1

Ê(i)
t = E

x1:t |Θ(s)
i

[
xt

t−p+1xt
t−p+1

′
]

=

[
ÃÊ(i)

t−1Ã′+Q AÊ(i)
t−1

Ê(i)
t−1Ã′ Ê(i)

t−1

]
(1:d p,1:d p)

Endfor

3: Compute expected sufficient statistics:

Ê(i) = ∑
τ−1
t=1 Ê(i)

t (3.13)

4: Output: expected sufficient statistics: Ê(i).

3.4 Kernel-SVM approach

We then used a semi-parametric approach that leverages the ARM model at the

song level, and kernel support vector machine (SVM) for retrieval. In particular, we first

model each song as an ARM using the EM algorithm. Then, for each tag, we learn a

binary SVM classifier over the train set, based on a notion of similarity between ARM

models defined in terms on their proximity in parameter space. Finally, following [15],

we use the SVMs’ decision values as the relevance of a song for a tag, and use it for

retrieval of test songs based on one-tag queries.

Since the AR parameters lie on a non-linear manifold, naı̈vely treating them as

Euclidean vectors would not necessary produce a correct similarity score. Hence, in the

remainder of this section, we present several kernel functions based on more appropriate

similarity scores between autoregressive (mixture) models. In previous work, Meng and
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Algorithm 3. HEM algorithm for ARM

1: Input: combined song-level ARM {π(s)
i ,Θ

(s)
i }K(s)

i=1 , number of virtual samples N.
2: Compute cumulative expected sufficient statistics Ê(i) for each Θ

(s)
i using Algorithm 2

3: Initialize tag-level ARM, {π(t)
j ,Θ

(t)
j }K(t)

j=1.
4: repeat
5: {E-step}
6: Compute expected log-likelihood for each Θ

(s)
i and Θ

(t)
j :

`i| j = E
x1:τ |Θ(s)

i
[log p(x1:τ |Θ(t)

j )]

=−dτ

2 log2π− 1
2 log |S(t)j |

−1
2 traceS(t)j

−1
[S(s)i +(µ

(t)
j −µ

(s)
i )′(µ(t)

j −µ
(s)
i )]

− τ−1
2 traceQ(t)

j
−1

Q(s)
i − τ−1

2 log |Q(t)
j |

−1
2 trace[Q(t)

j
−1
(Ã(t)

j − Ã(s)
i )Ê(i)(Ã(t)

j − Ã(s)
i )′]

7: Compute assignment probability and weighting:

ẑi, j =
π
(t)
j exp

(
Ni`i| j

)
∑

K(t)

j′=1 π
(t)
j′ exp

(
Ni`i| j′

) (3.14)

ŵi, j = ẑi, jNi = ẑi, jπ
(s)
i N (3.15)

8: Computed aggregated expectations for each Θ̂
(t)
j :

N̂ j = ∑i ẑi, j, M̂ j = ∑i ŵi, j,

Ŝ j = ∑i ŵi, j[S
(s)
i +µ

(s)
i (µ

(s)
i )′] m̂ j = ∑i ŵi, jµ

(s)
i

V̂j = ∑i ŵi, jA
(s)
i Ê(i)(Ã(s)

i )′ P̂j = ∑i ŵi, jÊ(i)

R̂ j = ∑i ŵi, jÊ(i)(Ã(s)
i )′ Q̂ j = ∑i ŵi, jQ

(s)
i

(3.16)

9: {M-step}
10: Recompute parameters for each component Θ̂

(t)
j :

Ã∗j = R̂′jP̂
−1
j Q∗j =

1
(τ−1)M̂ j

(V̂i−A∗j R̂ j + Q̂ j),

µ∗j =
1

M̂ j
m̂ j, S∗j =

1
M̂ j

Ŝ j−µ∗j (µ
∗
j )
′,

π∗j =
∑

K(s)
i=1 ẑi, j

K(s) .

(3.17)

11: until convergence
12: Output: tag-level ARM {π(t)

j ,Θ
(t)
j }K(t)

j=1.

Shawe-Taylor [108] specialize the Probability Product Kernel [85] to the AR case, which
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depends non-linearly on the AR parameters, and is define as:

KAR(Θa,Θb) =
∫

x1:p
(p(x1:p|Θa)p(x1:p|Θb))

ρ , (3.18)

where ρ = 0.5 corresponds to the Battaccharyya affinity. Since a song-ARM is associated

with several AR components, for retrieval we collect a decision value for each AR com-

ponent, and then rank the songs according to the average of the corresponding decision

values (PPK-AR). Note that we compute PPK between individual AR components of the

song-ARMs. This is different from [108], which uses single ARs on individual audio

snippets.

In addition, we experiment SVM classification in tandem with a probability

product kernel between auotoregressive mixture models (PPK-ARM). Following an

approximation by Jebara et al. [85], the PPK-ARM can be computed from the PPK

between individual components as

KARM(Θ
(1),Θ(2)) =

∑
Ks
a=1 ∑

Ks
b=1 (π

(1)
a π

(2)
b )ρKAR(Θ

(1)
a ,Θ

(2)
b ).

(3.19)

We finally propose a novel descriptor of AR models based on their frequency

responses, and compute a kernel between these descriptors. Since an AR is a linear time

invariant (LTI) system, its dynamics can be characterized by a transfer function defined

as:

H(s) = (Id−∑
p
j=1 A js− j)−1 ∈ Cd×d (3.20)

where s∈C is a complex number and Id is the d dimensional identity matrix. The transfer

function describes the cross influences of each pair of components of the audio feature
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vectors. In particular, we sample the transfer function at 200 equally spaced points on

the unit circle, and then sum the the absolute values of these matrices over 30 linearly

spaced frequency bins, to get a representation of the system’s frequency response. By

concatenating the AR’s µ parameter and the log values of these 30 frequency response

matrices, we get a descriptor ∆ ∈ R(d+30d2)×1, which we call quantized frequency re-

sponse (QFR). Finally, we use a SVM over QFRs based on cosine-similarity (CS) kernel

and radial basis function (RBF) kernel.2

3.5 Experiments

3.5.1 Data

We performed automatic music annotation on the CAL500 dataset (details in

[159] and references therein), which is a collection of 502 popular Western songs by as

many different artists, and provides binary annotations with respect to a vocabulary of

semantic tags. In our experiments we consider the 97 tags associated to at least 30 songs

in CAL500 (11 genre, 14 instrumentation, 25 acoustic quality, 6 vocal characteristics, 35

mood and 6 usage tags).

The acoustic content of a song (resampled at 22,050Hz) is represented by com-

puting a time-series of 34-bin Mel-frequency spectral (MFS) features, extracted over half

overlapping windows of 92 msec of audio signal, i.e., every ∼ 46 msec. Following the

insight in recent work of Hamel et al. [73], MFS features where further projected on the

first d = 20 principal components, which we estimated over the MFSs collected from the

10,870 songs in the CAL10K dataset [156].

Song level ARMs were learned with K = 4 components and memory of p = 5

steps, from a dense sampling of audio fragments of length T = 125 (i.e., approximately

2 The CS kernel is defined as K (a,b) = a′b/
√
||a||2||b||2. The RBF kernel is defines as K (a,b) =

exp{−‖a−b‖2
2/σ}. We set the bandwidth σ of the RBF kernel to the descriptor dimension dim(∆).
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Table 3.1. Annotation and retrieval on CAL500, for HEM-ARM, HEM-DTM and
HEM-GMM.

annotation retrieval time
P R F AROC MAP P@10 train test

HEM-ARM 0.468 0.203 0.254 0.696 0.421 0.412 198m 41m
HEM-DTM 0.446 0.217 0.264 0.708 0.446 0.460 424h 482m
HEM-GMM 0.474 0.205 0.213 0.686 0.417 0.425 41m 38m

6s), extracted with 80% overlap.

3.5.2 Results with HEM-ARM

For each tag, all the relevant song ARMs were pooled together to form a big

ARM, and a tag-level ARM with

K(t) = 8 components was learned with the HEM-ARM algorithm (with N = 1000 virtual

samples of length τ = 10). To reduce the effects of low likelihood in high dimension,

for annotation we smooth the likelihood (3.3) by T ·d · p. We compare our HEM-ARM

with hierarchically trained Gaussian mixture models (HEM-GMM) [159] and dynamic

texture mixture models (HEM-DTM) [42].

On the test set, a novel test song is annotated with the 10 most likely tags,

corresponding to the peaks in its semantic multinomial. Retrieval given a one tag query

involves rank ordering all songs with respect to the corresponding entry in their semantic

multinomials. Annotation is measured with average per-tag precision (P), recall (R), and

f-score (F). Retrieval is measured by per-tag area under the ROC (AROC), mean average

precision (MAP), and precision at the first 10 retrieved objects (P@10). Refer to [159]

for a detailed definition of the metrics. All reported metrics are the result of 5 fold-cross

validation.

In Table 3.1 we report annotation and retrieval results for HEM-ARM, HEM-

DTM and HEM-GMM. In addition, we register the total time for the training stage,
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which consist in the estimation of the 97 tag models over the 5 folds (and also includes

the estimation of the 502 song-level models), as well as for the test stage, i.e., the

automatic-annotation of the 502 songs with the 97 tags.

From Table 3.1 we note that the advantages of the proposed HEM-ARM relative

to HEM-DTM are in terms of computation efficiency. While HEM-DTM performs better

than HEM-ARM on each metric (except on annotation precision where HEM-ARM is

better), HEM-ARM has significantly lower time requirements. Specifically, the training

time for our HEM-ARM is two orders of magnitude lower than that for HEM-DTM.

Similarly, our auto-tagger requires approximately 42 minutes for the test-stage, while the

auto-tagger based on DTMs requires 482 minutes to accomplish the same task. These

results are explained by comparing the graphical structures of the AR and DT models.

While the AR is a fully observable model, the DT consists of an observed layer, which

model the spectral content, and a hidden layer that encodes the temporal dynamics.

Hence, DTMs have the advantage of learning different frequency basis to best represent

specific tags [42]. However, the computation of the (expected) sufficient statistics with

respect to each DT component requires marginalization of the hidden variables (see [33]).

Hence, during training, it needs to be executed at each iteration of the learning algorithms

for each input datum (i.e., audio-fragments for EM, and DTs for HEM) and for each

individual component of the learned model; during annotation, it needs to be repeated

for each audio-fragment and each DT component of the tag models. On the opposite,

the corresponding statistics for ARMs involve no marginalization of hidden variables.

Hence, during training, they need to be computed only a single time for each input datum

(i.e., audio-fragments for EM, and ARs for HEM). In addition, during annotation, the

sufficient statistics can be collected a single time for each song.

Finally, HEM-ARM performs favorably relative to HEM-GMM (which does

not model temporal dynamics), while still requiring limited computation times. Since
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Table 3.2. Annotation (F-score) and retrieval (AROC) performance of HEM-ARM, for
different memories p∈ [1:9].

p 1 2 3 4 5 6 7 8 9

F-score 0.234 0.247 0.252 0.255 0.254 0.245 0.244 0.242 0.237
AROC 0.650 0.672 0.686 0.693 0.696 0.695 0.694 0.695 0.694

learning and inference are performed efficiently, HEM-ARM can leverage higher order

memories to model temporal dynamics, without incurring in large delays. In particular, in

Table 3.2 we plot annotation (F-score) and retrieval (AROC) performance as a a function

of the memory p of the AR models. Performance are fairly stable for p = 4,5,6. Shorter

memories (e.g., p = 1,2,3) do not suffices to capture the interesting dynamics, while too

large values deteriorate annotation performance.

3.5.3 Results with kernel-SVM.

We implemented the kernel-SVM approach as described in Section 3.4. In partic-

ular, we learned song-ARMs with K = 4 components and memory p = 5, estimated from

the d = 20 dimensional PCA-MFS features. We then computed the QFR-CS and QFR-

RBF kernels based on the QFR descriptors, the PPK kernel between ARM (PPK-ARM),

and the PPK kernel between individual AR components (PPK-AR). For comparison, we

also considered PPK similarity between song-GMMs estimated on MFCC features [15]

(GMM-PPK) and PPK similarity between single AR models estimated on the MFCC

features of entire songs as proposed in [108] (MFCC-PPK-AR). We used the LibSVM

software package [36] for the SVM, with all parameters selected using validation on the

training set.

Retrieval scores are reported in Table 3.4, and are result of 5-fold cross validation.

We note that these results are generally superior to those in Table 3.1, since the SVM is a

discriminative algorithm and hence tends to be more robust on strongly labeled datasets
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method AROC MAP P@10 train test

ARM based
tag-conditional ARM (generative) 0.696 0.421 0.412 198m 41m
kernel SVM (PPK) 0.727 0.463 0.484 287m 194m
kernel SVM (QFR + RBF) 0.723 0.469 0.488 137m 74m

GMM, kernel SVM (PPK) 0.696 0.436 0.454
AR on snippets, kernel SVM (PPK) 0.706 0.447 0.463

Table 3.3. Retrieval for the kernel-SVM approach. Including train and test times

Table 3.4. Retrieval for the kernel-SVM approach. Including train and test times

kernel AROC MAP P@10 train test

ARM based

PPK-ARM 0.717 0.448 0.459 233m 194m
PPK-AR 0.727 0.463 0.484 287m 194m
QFR-CS 0.717 0.461 0.479 125m 65m
QFR-RBF 0.723 0.469 0.488 137m 74m

GMM-PPK [15] 0.696 0.436 0.454
MFCC-PPK-AR [108] 0.706 0.447 0.463

such as CAL500. In particular, the best performance was registered with the QFR-RBF

and PPK-AR systems (score differences between them are not statistically significant).

In addition, PPK similarity on ARMs (PPK-ARM) proves less performant, suggesting

that the approximation in (3.19) may be not enough accurate for our task. Finally, PPK

similarity on GMM performs the worst, since it does not leverage termporal dynamics,

and MFCC-AR-PPK, which doesn’t leverage mixtures, is also significantly behind.

3.6 Discussion

In this paper we have proposed the ARM model for music auto-tagging. We

have derived a hierarchical EM algorithm for efficiently learning tag ARMs. We have

showed that our HEM-ARM can estimate tag models significantly more efficiently than

HEM-DTM, at the price of a small reduction in performance. We have also successfully

tested a kernel-SVM approach based on several similarity functions based on the ARM
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model.
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Chapter 4

Clustering Hidden Markov Models
with Variational HEM

4.1 Introduction

The hidden Markov model (HMM) [135] is a probabilistic model that assumes

a signal is generated by a double embedded stochastic process. A discrete-time hidden

state process, which evolves as a Markov chain, encodes the dynamics of the signal,

while an observation process encodes the appearance of the signal at each time, con-

ditioned on the current state. HMMs have been successfully applied to a variety of

fields, including speech recognition [135], music analysis [134] and identification [17],

online hand-writing recognition [115], analysis of biological sequences [95], face recog-

nition citepchuk2013understanding and clustering of time series data [86, 151, 6].

This paper is about clustering HMMs. More precisely, we are interested in an

algorithm that, given a collection of HMMs, partitions them into K clusters of “similar”

HMMs, while also learning a representative HMM “cluster center” that concisely and

appropriately represents each cluster. This is similar to standard k-means clustering,

except that the data points are HMMs now instead of vectors in Rd .

Various applications motivate the design of HMM clustering algorithms, ranging

from hierarchical clustering of sequential data (e.g., speech or motion sequences modeled

65
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by HMMs as by [86]), to hierarchical indexing for fast retrieval, to reducing the compu-

tational complexity of estimating mixtures of HMMs from large datasets (e.g., semantic

annotation models for music and video)—by clustering HMMs, efficiently estimated

from many small subsets of the data, into a more compact mixture model of all data.

However, there has been little work on HMM clustering and, therefore, its applications.

Existing approaches to clustering HMMs operate directly on the HMM parameter

space, by grouping HMMs according to a suitable pairwise distance defined in terms of

the HMM parameters. However, as HMM parameters lie on a non-linear manifold, a

simple application of the k-means algorithm will not succeed in the task, since it assumes

real vectors in a Euclidean space. In addition, such an approach would have the additional

complication that HMM parameters for a particular generative model are not unique, i.e.,

a permutation of the states leads to the same generative model. One solution, proposed

by [86], first constructs an appropriate similarity matrix between all HMMs that are

to be clustered (e.g., based on the Bhattacharya affinity, which depends non-linearly

on the HMM parameters [85, 77]), and then applies spectral clustering. While this

approach has proven successful to group HMMs into similar clusters [86], it does not

directly address the issue of generating HMM cluster centers. Each cluster can still be

represented by choosing one of the given HMMs, e.g., the HMM which the spectral

clustering procedure maps the closest to each spectral clustering center. However, this

may be suboptimal for some applications of HMM clustering, for example in hierarchical

estimation of annotation models. Another distance between HMM distributions suitable

for spectral clustering is the KL divergence, which in practice has been approximated by

sampling sequences from one model and computing their log-likelihood under the other

[89, 178, 175].

Instead, in this paper we propose to cluster HMMs directly with respect to the

probability distributions they represent. The probability distributions of the HMMs are
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used throughout the whole clustering algorithm, and not only to construct an initial em-

bedding as [86]. By clustering the output distributions of the HMMs, marginalized over

the hidden-state distributions, we avoid the issue of multiple equivalent parameterizations

of the hidden states. We derive a hierarchical expectation maximization (HEM) algorithm

that, starting from a collection of input HMMs, estimates a smaller mixture model of

HMMs that concisely represents and clusters the input HMMs (i.e., the input HMM

distributions guide the estimation of the output mixture distribution).

The HEM algorithm is a generalization of the EM algorithm—the EM algorithm

can be considered as a special case of HEM for a mixture of delta functions as input.

The main difference between HEM and EM is in the E-step. While the EM algorithm

computes the sufficient statistics given the observed data, the HEM algorithm calculates

the expected sufficient statistics averaged over all possible observations generated by

the input probability models. Historically, the first HEM algorithm was designed to

cluster Gaussian probability distributions [164]. This algorithm starts from a Gaussian

mixture model (GMM) with K(b) components and reduces it to another GMM with fewer

components, where each of the mixture components of the reduced GMM represents,

i.e., clusters, a group of the original Gaussian mixture components. More recently,

[34] derived an HEM algorithm to cluster dynamic texture (DT) models (i.e., linear

dynamical systems, LDSs) through their probability distributions. HEM has been applied

successfully to construct GMM hierarchies for efficient image indexing [163], to cluster

video represented by DTs [33], and to estimate GMMs or DT mixtures (DTMs, i.e.,

LDS mixtures) from large datasets for semantic annotation of images [28], video [33]

and music [159, 42]. Note that HMMs cannot be clustered by using the original HEM

by [164]. Specifically, the original formulation of HEM was designed for clustering

data points represented by individual Gaussian models. When clustering HMMs, we

are interested in assigning every HMM as a whole to a cluster, and do not want to treat
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their individual Gaussian states independently. Even with GMMs (as opposed to single

Gaussians) this is not possible in closed form, since it would need the expected log

likelihood of a mixture.

To extend the HEM framework from clustering Gaussians to clustering HMMs,

additional marginalization over the hidden-state processes is required, as with DTs.

However, while Gaussians and DTs allow tractable inference in the E-step of HEM, this is

no longer the case for HMMs. Therefore, in this work, we derive a variational formulation

of the HEM algorithm (VHEM), and then leverage a variational approximation derived

by [78] (which has not been used in a learning context so far) to make the inference in the

E-step tractable. The resulting algorithm not only clusters HMMs, but also learns novel

HMMs that are representative centers of each cluster. The resulting VHEM algorithm can

be generalized to handle other classes of graphical models, for which exact computation

of the E-step in the standard HEM would be intractable, by leveraging similar variational

approximations—e.g., any mixtures of continuous exponential family distributions (e.g.,

Gaussian) the more general case of HMMs with emission probabilities that are (mixtures

of) continuous exponential family distributions.

Compared to the spectral clustering algorithm of [86], the VHEM algorithm has

several advantages that make it suitable for a variety of applications. First, the VHEM

algorithm is capable of both clustering, as well as learning novel cluster centers, in a

manner that is consistent with the underlying generative probabilistic framework. In

addition, since it does not require sampling steps, it is also scalable with low memory

requirements. As a consequence, VHEM for HMMs allows for efficient estimation

of HMM mixtures from large datasets using a hierarchical estimation procedure. In

particular, intermediate HMM mixtures are first estimated in parallel by running the EM

algorithm on small independent portions of the dataset. The final model is then estimated

from the intermediate models using the VHEM algorithm. Because VHEM is based
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on maximum-likelihood principles, it drives model estimation towards similar optimal

parameter values as performing maximum-likelihood estimation on the full dataset. In

addition, by averaging over all possible observations compatible with the input models in

the E-step, VHEM provides an implicit form of regularization that prevents over-fitting

and improves robustness of the learned models, compared to a direct application of

the EM algorithm on the full dataset. Note that, in contrast to [86], VHEM does not

construct a kernel embedding, and is therefore expected to be more efficient, especially

for large K(b).

In summary, the contributions of this paper are three-fold: i) we derive a varia-

tional formulation of the HEM algorithm for clustering HMMs, which generates novel

HMM centers representative of each cluster; ii) we evaluate VHEM on a variety of cluster-

ing, annotation, and retrieval problems involving time-series data, showing improvement

over current clustering methods; iii) we demonstrate in experiments that VHEM can

effectively learn HMMs from large sets of data, more efficiently than standard EM, while

improving model robustness through better regularization. With respect to our previous

work, the VHEM algorithm for HMMs was originally proposed by [41]

The remainder of the paper is organized as follows. We review the hidden Markov

model (HMM) and the hidden Markov mixture model (H3M) in Section 4.2. We present

the derivation of the VHEM-H3M algorithm in Section 4.3, followed by a discussion in

Section 4.4.boldsymbol Finally, we present experimental results in Sections 4.5 and 4.6.

4.2 The Hidden Markov (Mixture) Model

A hidden Markov model (HMM) M assumes a sequence of τ observations

y = {y1, . . . ,yτ} is generated by a double embedded stochastic process, where each

observation (or emission) yt at time t depends on the state of a discrete hidden variable xt ,

and the sequence of hidden states x = {x1, . . . ,xτ} evolves as a first-order Markov chain.
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The hidden variables can take one of S values, {1, . . . ,S}, and the evolution of the hidden

process is encoded in a state transition matrix A = [aβ ,β ′]β ,β ′=1,...,S, where each entry,

aβ ,β ′ = p(xt+1 = β ′|xt = β ,M ), is the probability of transitioning from state β to state

β ′, and an initial state distribution π = [π1, . . . ,πS], where πβ = p(x1 = β |M ).

Each state β generates observations according to an emission probability density

function, p(yt |xt = β ,M ). Here, we assume the emission density is time-invariant, and

modeled as a Gaussian mixture model (GMM) with M components:

p(y|x = β ,M ) =
M

∑
m=1

cβ ,m p(y|ζ = m,x = β ,M ), (4.1)

where ζ ∼multinomial(cβ ,1, . . . ,cβ ,M) is the hidden assignment variable that selects the

mixture component, with cβ ,m as the mixture weight of the mth component, and each

component is a multivariate Gaussian distribution,

p(y|ζ = m,x = β ,M ) = N (y; µβ ,m,Σβ ,m),

with mean µβ ,m and covariance matrix Σβ ,m. The HMM is specified by the parameters

M = {π,A,{{cβ ,m,µβ ,m,Σβ ,m}M
m=1}S

β=1},

which can be efficiently learned from an observation sequence y with the Baum-Welch

algorithm [135], which is based on maximum likelihood estimation.

The probability distribution of a state sequence x generated by an HMM M is

p(x|M ) = p(x1|M )
τ

∏
t=2

p(xt |xt−1,M ) = πx1

τ

∏
t=2

axt−1,xt ,
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while the joint likelihood of an observation sequence y and a state sequence x is

p(y,x|M ) = p(y|x,M )p(x|M ) = p(x1|M )
τ

∏
t=2

p(xt |xt−1,M )
τ

∏
t=1

p(yt |xt ,M ).

Finally, the observation likelihood of y is obtained by marginalizing out the state sequence

from the joint likelihood,

p(y|M ) = ∑
x

p(y,x|M ) = ∑
x

p(y|x,M )p(x|M ), (4.2)

where the summation is over all state sequences of length τ , and can be performed

efficiently using the forward algorithm [135].

A hidden Markov mixture model (H3M) [151] models a set of observation

sequences as samples from a group of K hidden Markov models, each associated to a

specific sub-behavior. For a given sequence, an assignment variable

z∼multinomial(ω1, · · · ,ωK)

selects the parameters of one of the K HMMs, where the kth HMM is selected with

probability ωk. Each mixture component is parametrized by

Mz = {πz,Az,{{cz
β ,m,µ

z
β ,m,Σ

z
β ,m}

M
m=1}S

β=1},

and the H3M is parametrized by M = {ωz,Mz}K
z=1, which can be estimated from a

collection of observation sequences using the EM algorithm [151, 6].

To reduce clutter, here we assume that all the HMMs have the same number S

of hidden states and that all emission probabilities have M mixture components. Our

derivation could be easily extended to the more general case though.
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4.3 Clustering Hidden Markov Models

Algorithms for clustering HMMs can serve a wide range of applications, from

hierarchical clustering of sequential data (e.g., speech or motion sequences modeled by

HMMs [86]), to hierarchical indexing for fast retrieval, to reducing the computational

complexity of estimating mixtures of HMMs from large weakly-annotated datasets—by

clustering HMMs, efficiently estimated from many small subsets of the data, into a more

compact mixture model of all data.

In this work we derive a hierarchical EM algorithm for clustering HMMs (HEM-

H3M) with respect to their probability distributions. We approach the problem of

clustering HMMs as reducing an input HMM mixture with a large number of components

to a new mixture with fewer components. Note that different HMMs in the input mixture

are allowed to have different weights (i.e., the mixture weights {ωz}K
z=1 are not necessarily

all equal).

One method for estimating the reduced mixture model is to generate samples from

the input mixture, and then perform maximum likelihood estimation, i.e., maximize the

log-likelihood of these samples. However, to avoid explicitly generating these samples,

we instead maximize the expectation of the log-likelihood with respect to the input

mixture model, thus averaging over all possible samples from the input mixture model. In

this way, the dependency on the samples is replaced by a marginalization with respect to

the input mixture model. While such marginalization is tractable for Gaussians and DTs,

this is no longer the case for HMMs. Therefore, in this work, we i) derive a variational

formulation of the HEM algorithm (VHEM), and ii) specialize it to the HMM case by

leveraging a variational approximation proposed by [78]. Note that the work of [78] was

proposed as an alternative to MCMC sampling for the computation of the KL divergence

between two HMMs, and has not been used in a learning context so far.
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We present the problem formulation in Section 4.3.1, and derive the algorithm in

Sections 4.3.2, 4.3.3 and 4.3.4.

4.3.1 Formulation

Let M (b) be a base hidden Markov mixture model with K(b) components. The

goal of the VHEM algorithm is to find a reduced hidden Markov mixture model M (r)

with K(r) < K(b) (i.e., fewer) components that represents M (b) well. The likelihood of a

random sequence y∼M (b) is given by

p(y|M (b)) =
K(b)

∑
i=1

ω
(b)
i p(y|z(b) = i,M (b)), (4.3)

where z(b) ∼multinomial(ω(b)
1 , · · ·ω(b)

K(b)) is the hidden variable that indexes the mixture

components. p(y|z = i,M (b)) is the likelihood of y under the ith mixture component, as

in (4.2), and ω
(b)
i is the mixture weight for the ith component. Likewise, the likelihood

of the random sequence y∼M (r) is

p(y|M (r)) =
K(r)

∑
j=1

ω
(r)
j p(y|z(r) = j,M (r)), (4.4)

where z(r)∼multinomial(ω(r)
1 , · · · ,ω(r)

K(r)) is the hidden variable for indexing components

in M (r).

At a high level, the VHEM-H3M algorithm estimates the reduced H3M model

M (r) in (7.7) from virtual sequences distributed according to the base H3M model M (b)

in (7.6). From this estimation procedure, the VHEM algorithm provides:

1. a soft clustering of the original K(b) components into K(r) groups, where cluster

membership is encoded in assignment variables that represent the responsibility

of each reduced mixture component for each base mixture component, i.e., ẑi, j =
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p(z(r) = j|z(b) = i), for i = 1, . . . ,K(b) and j = 1, . . . ,K(r);

2. novel cluster centers represented by the individual mixture components of the

reduced model in (7.7), i.e., p(y|z(r) = j,M (r)) for j = 1, . . . ,K(r).

Finally, because we take the expectation over the virtual samples, the estimation is carried

out in an efficient manner that requires only knowledge of the parameters of the base

model, without the need of generating actual virtual samples.

Notation

We will always use i and j to index the components of the base model M (b) and

the reduced model M (r), respectively. To reduce clutter, we will also use the short-hand

notation M
(b)
i and M

(r)
j to denote the ith component of M (b) and the jth component of

M (r), respectively. Hidden states of the HMMs are denoted with β for the base model

M
(b)
i , and with ρ for the reduced model M

(r)
j .

The GMM emission models for each hidden state are denoted as M
(b)
i,β and M

(r)
j,ρ .

We will always use m and ` for indexing the individual Gaussian components of the

GMM emissions of the base and reduced models, respectively. The individual Gaussian

components are denoted as M
(b)
i,β ,m for the base model, and M

(r)
j,ρ,` for the reduced model.

Finally, we denote the parameters of ith HMM component of the base mixture model

as M
(b)
i = {π(b),i,A(b),i,{{c(b),i

β ,m ,µ
(b),i
β ,m ,Σ

(b),i
β ,m }M

m=1}S
β=1}, and for the jth HMM in the

reduced mixture as M
(r)
j = {π(r), j,A(r), j,{{c(r), j

ρ,` ,µ
(r), j
ρ,` ,Σ

(r), j
ρ,` }M

`=1}S
ρ=1}.

When appearing in a probability distribution, the short-hand model notation

(e.g., M
(b)
i ) always implies conditioning on the model being active. For example, we

will use p(y|M (b)
i ) as short-hand for p(y|z(b) = i,M (b)), or p(yt |M (b)

i,β ) as short-hand

for p(yt |xt = β ,z(b) = i,M (b)). Furthermore, we will use π
(b),i
β

as short-hand for the

probability of the state sequence β according to the base HMM component M
(b)
i , i.e.,
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Table 4.1. Notation used in the derivation of the VHEM-H3M algorithm.

variables base model (b) reduced model (r)
index for HMM components i j
number of HMM components K(b) K(r)

HMM states β ρ

number of HMM states S S
HMM state sequence β = {β1, · · · ,βτ} ρ = {ρ1, · · · ,ρτ}
index for component of GMM m `
number of Gaussian components M M

models
H3M M (b) M (r)

HMM component (of H3M) M
(b)
i M

(r)
j

GMM emission M
(b)
i,β M

(r)
j,ρ

Gaussian component (of GMM) M
(b)
i,β ,m M

(r)
j,ρ,`

parameters
H3M component weight ω

(b)
i ω

(r)
j

HMM initial state π(b),i π(r), j

HMM state transition matrix A(b),i A(r), j

GMM emission {c(b),i
β ,m ,µ

(b),i
β ,m ,Σ

(b),i
β ,m }M

m=1 {c(r), j
ρ,` ,µ

(r), j
ρ,` ,Σ

(r), j
ρ,` }M

`=1
probability distributions notation short-hand

HMM state sequence (b) p(x = β |z(b) = i,M (b)) p(β |M (b)
i ) = π

(b),i
β

HMM state sequence (r) p(x = ρ|z(r) = j,M (r)) p(ρ|M (r)
j ) = π

(r), j
ρ

HMM observation likelihood (r) p(y|z(r) = j,M (r)) p(y|M (r)
j )

GMM emission likelihood (r) p(yt |xt = ρ,M
(r)
j ) p(yt |M (r)

j,ρ )

Gaussian component likelihood (r) p(yt |ζt = `,xt = ρ,M
(r)
j ) p(yt |M (r)

j,ρ,`)

expectations
HMM observation sequence (b) Ey|z(b)=i,M (b)[·] E

M
(b)
i
[·]

GMM emission (b) E
yt |xt=β ,M

(b)
i
[·] E

M
(b)
i,β
[·]

Gaussian component (b) E
yt |ζt=m,xt=β ,M

(b)
i
[·] E

M
(b)
i,β ,m

[·]
expected log-likelihood lower bound variational distribution

E
M

(b)
i
[log p(Yi|M (r))] L i

H3M qi(zi = j) = zi j

E
M

(b)
i
[log p(y|M (r)

j )] L i, j
HMM qi, j(ρ|β ) = φ

i, j
ρ|β

= φ
i, j
1 (ρ1|β1)∏

τ
t=2 φ

i, j
t (ρt |ρt−1,βt)

E
M

(b)
i,β
[log p(y|M (r)

j,ρ )] L
(i,β ),( j,ρ)

GMM qi, j
β ,ρ(ζ = `|m) = η

(i,β ),( j,ρ)
`|m

p(β |M (b)
i ), and likewise M

(r), j
ρ for the reduced HMM component.

Expectations will also use the short-hand model notation to imply conditioning

on the model. In addition, expectations are assumed to be taken with respect to the
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output variable (y or yt), unless otherwise specified. For example, we will use E
M

(b)
i
[·] as

short-hand for Ey|z(b)=i,M (b)[·].

Table 4.1 summarizes the notation used in the derivation, including the variable

names, model parameters, and short-hand notations for probability distributions and

expectations. The bottom of Table 4.1 also summarizes the variational lower bound and

variational distributions, which will be introduced subsequently.

4.3.2 Variational HEM Algorithm

To learn the reduced model in (7.7), we consider a set of N virtual samples,

distributed according to the base model M (b) in (7.6), such that Ni = Nω
(b)
i samples

are drawn from the ith component. We denote the set of Ni virtual samples for the ith

component as Yi = {y(i,m)}Ni
m=1, where y(i,m) ∼M

(b)
i , and the entire set of N samples

as Y = {Yi}K(b)

i=1 . Note that, in this formulation, we are not considering virtual samples

{x(i,m),y(i,m)} for each base component, according to its joint distribution p(x,y|M (b)
i ).

The reason is that the hidden-state space of each base mixture component M
(b)
i may

have a different representation (e.g.the numbering of the hidden states may be permuted

between the components). This mismatch will cause problems when the parameters of

M
(r)
j are computed from virtual samples of the hidden states of {M (b)

i }K(b)

i=1 . Instead, we

treat Xi = {x(i,m)}Ni
m=1 as “missing” information, and estimate them in the E-step. The

log-likelihood of the virtual samples is

log p(Y |M (r)) =
K(b)

∑
i=1

log p(Yi|M (r)), (4.5)

where, in order to obtain a consistent clustering, we assume the entirety of samples Yi is

assigned to the same component of the reduced model [164].

The original formulation of HEM [164] maximizes (4.5) with respect to M (r),
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and uses the law of large numbers to turn the virtual samples Yi into an expectation

over the base model components M
(b)
i . In this paper, we will start with a different

objective function to derive the VHEM algorithm. To estimate M (r), we will maximize

the average log-likelihood of all possible virtual samples, weighted by their likelihood of

being generated by M
(b)
i , i.e., the expected log-likelihood of the virtual samples,

J (M (r)) = EM (b)

[
log p(Y |M (r))

]
=

K(b)

∑
i=1

E
M

(b)
i

[
log p(Yi|M (r))

]
, (4.6)

where the expectation is over the base model components M
(b)
i . Maximizing (4.6) will

eventually lead to the same estimate as maximizing (4.5), but allows us to strictly preserve

the variational lower bound, which would otherwise be ruined when applying the law of

large numbers to (4.5).

A general approach to deal with maximum likelihood estimation in the presence

of hidden variables (which is the case for H3Ms) is the EM algorithm [49]. In the

traditional formulation the EM algorithm is presented as an alternation between an

expectation step (E-step) and a maximization step (M-step). In this work, we take a

variational perspective [116, 166, 48], which views each step as a maximization step.

The variational E-step first obtains a family of lower bounds to the (expected) log-

likelihood (i.e., to equation 4.6), indexed by variational parameters, and then optimizes

over the variational parameters to find the tightest bound. The corresponding M-step then

maximizes the lower bound (with the variational parameters fixed) with respect to the

model parameters. One advantage of the variational formulation is that it readily allows

for useful extensions to the EM algorithm, such as replacing a difficult inference in the

E-step with a variational approximation. In practice, this is achieved by restricting the

maximization in the variational E-step to a smaller domain for which the lower bound is

tractable.
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The EM algorithm with variational E-step is guaranteed to converge [71]. Despite

the approximation prevents convergence to local maxima of the data log-likelihood [71],

the algorithm still performs well empirically, as shown in Section 4.5 and Section 4.6.

Lower Bound to an Expected Log-likelihood

Before proceeding with the derivation of VHEM for H3Ms, we first need to

derive a lower-bound to an expected log-likelihood term, e.g., (4.6). Our derivation

starts from a variational lower-bound to a log-likelihood (as opposed to an expected log-

likelihood), a standard tool in machine learning [88, 84], which we briefly review next.

In all generality, let {O,H} be the observation and hidden variables of a probabilistic

model, respectively, where p(H) is the distribution of the hidden variables, p(O|H)

is the conditional likelihood of the observations, and p(O) = ∑H p(O|H)p(H) is the

observation likelihood. We can define a variational lower bound to the observation

log-likelihood [88, 84]:

log p(O)≥ log p(O)−D(q(H)||p(H|O))

= ∑
H

q(H) log
p(H)p(O|H)

q(H)
,

where p(H|O) is the posterior distribution of H given observation O, and D(p‖q) =∫
p(y) log p(y)

q(y)dy is the Kullback-Leibler (KL) divergence between two distributions, p

and q. We introduce a variational distribution q(H), which approximates the posterior

distribution, where ∑H q(H) = 1 and q(H)≥ 0. When the variational distribution equals

the true posterior, q(H) = P(H|O), then the KL divergence is zero, and hence the lower-

bound reaches log p(O). When the true posterior cannot be computed, then typically q is

restricted to some set of approximate posterior distributions Q that are tractable, and the
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best lower-bound is obtained by maximizing over q ∈Q,

log p(O)≥max
q∈Q ∑

H
q(H) log

p(H)p(O|H)

q(H)
. (4.7)

From the standard lower bound in (4.7), we can now derive a lower bound to an

expected log-likelihood expression. Let Eb[·] be the expectation with respect to O with

some distribution pb(O). Since pb(O) is non-negative, taking the expectation on both

sides of (4.7) yields,

Eb [log p(O)]≥ Eb

[
max
q∈Q

∑
H

q(H) log
p(H)p(O|H)

q(H)

]
(4.8)

≥max
q∈Q

Eb

[
∑
H

q(H) log
p(H)p(O|H)

q(H)

]
(4.9)

= max
q∈Q

∑
H

q(H)

{
log

p(H)

q(H)
+Eb [log p(O|H)]

}
, (4.10)

where (4.9) follows from Jensen’s inequality (i.e., f (E[x])≤ E[ f (x)] when f is convex),

and the convexity of the max function. Hence, (4.10) is a variational lower bound on the

expected log-likelihood, which depends on the family of variational distributions Q.

In (4.8) we are computing the best lower-bound (4.7) to log p(O) individually

for each value of the observation variable O, which in general corresponds to different

optimal q∗ ∈ Q for different values of O. Note that the expectation in (4.8) is not

analytically tractable when p(O) is a mixture model (i.e, it is the expected log-likelihood

of a mixture). Hence, we treat the ensemble of observations O∼ pb as a whole, and in

(4.9) find a single q∗ ∈Q for which the lower bound is best on average. Mathematically,

this correspond to using Jensen inequality to pass from (4.8) to (4.9), which shows that

the additional approximation makes the lower-bound looser.
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Variational Lower Bound

We now derive a lower bound to the expected log-likelihood cost function in (4.6).

The derivation will proceed by successively applying the lower bound from (4.10) to

each expected log-likelihood term that arises. This will result in a set of nested lower

bounds.

A variational lower bound to the expected log-likelihood of the virtual samples in

(4.6) is obtained by lower bounding each of the expectation terms E
M

(b)
i

in the sum,

J (M (r)) =
K(b)

∑
i=1

E
M

(b)
i

[
log p(Yi|M (r))

]
≥

K(b)

∑
i=1

L i
H3M, (4.11)

where we define three nested lower bounds, corresponding to different model elements

(the H3M, the component HMMs, and the emission GMMs):

E
M

(b)
i
[log p(Yi|M (r))]≥L i

H3M, (4.12)

E
M

(b)
i
[log p(y|M (r)

j )]≥L i, j
HMM, (4.13)

E
M

(b)
i,β
[log p(y|M (r)

j,ρ )]≥L
(i,β ),( j,ρ)

GMM . (4.14)

In (4.12), the first lower bound, L i
H3M, is on the expected log-likelihood of an H3M M (r)

with respect to an HMM M
(b)
i . Because p(Yi|M (r)) is the likelihood under a mixture

of HMMs, as in (7.7), where the observation variable is Yi and the hidden variable is

zi (the assignment of Yi to a component of M (r)), its expectation cannot be calculated

directly. Hence, we introduce the variational distribution qi(zi) and apply (4.10) to (4.12),

yielding the lower bound (see Appendix A.1),

L i
H3M = max

qi
∑

j
qi(zi = j)

{
log

p(zi = j|M (r))

qi(zi = j)
+NiL

i, j
HMM

}
. (4.15)
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The lower bound in (4.15) depends on the second lower bound (Eq. 4.13), L i, j
HMM, which

is on the expected log-likelihood of an HMM M
(r)
j , averaged over observation sequences

from a different HMM M
(b)
i . Although the data log-likelihood log p(y|M (r)

j ) can be

computed exactly using the forward algorithm [135], calculating its expectation is not

analytically tractable since an observation sequence y from a HMM M
(r)
j is essentially

an observation from a mixture model1.

To calculate the lower bound L i, j
HMM in (4.13), we first rewrite the expectation

E
M

(b)
i

in (4.13) to explicitly marginalize over the state sequence β of M
(b)
i , and then

apply (4.10) where the hidden variable is the state sequence ρ of M
(r)
j , yielding (see

Appendix A.1)

L i, j
HMM = ∑

β

π
(b),i
β

max
qi, j ∑

ρ

qi, j(ρ|β )

log
p(ρ|M (r)

j )

qi, j(ρ|β ) +∑
t

L
(i,βt),( j,ρt)

GMM

 , (4.16)

where we introduce a variational distribution qi, j(ρ|β ) on the state sequence ρ , which

depends on a particular sequence β from M
(b)
i . As before, (4.16) depends on another

nested lower bound, L
(i,β ),( j,ρ)

GMM in (4.14), which is on the expected log-likelihood of a

GMM emission density M
(r)
j,ρ with respect to another GMM M

(b)
i,β . This lower bound does

not depend on time, as we have assumed that the emission densities are time-invariant.

Finally, we obtain the lower bound L
(i,β ),( j,ρ)

GMM for (4.14), by explicitly marginal-

izing over the GMM hidden assignment variable in M
(b)
i,β and then applying (4.10) to the

1For an observation sequence of length τ , an HMM with S states can be considered as a mixture model
with O(Sτ) components.
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expectation of the GMM emission distribution p(y|M (r)
j,ρ ), yielding (see Appendix A.1),

L
(i,β ),( j,ρ)

GMM =
M

∑
m=1

c(b),i
β ,m max

qi, j
β ,ρ

M

∑
ζ=1

qi, j
β ,ρ(ζ |m)

log
p(ζ |M (r)

j,ρ )

qi, j
β ,ρ(ζ |m)

+E
M

(b)
i,β ,m

[log p(y|M (r)
j,ρ,ζ )]

,

(4.17)

where we introduce the variational distribution qi, j
β ,ρ(ζ |m), which is conditioned on the

observation y arising from the mth component in M
(b)
i,β . In (4.17), the term

E
M

(b)
i,β ,m

[log p(y|M (r)
j,ρ,`)]

is the expected log-likelihood of the Gaussian distribution M
(r)
j,ρ,` with respect to the

Gaussian M
(b)
i,β ,m, which has a closed-form solution (see Section 4.3.3).

In summary, we have derived a variational lower bound to the expected log-

likelihood of the virtual samples, which is given by (4.11). This lower bound is composed

of three nested lower bounds in (4.15), (4.16), and (4.17), corresponding to different

model elements (the H3M, the component HMMs, and the emission GMMs), where

qi(zi), qi, j(ρ|β ), and qi, j
β ,ρ(ζ |m) are the corresponding variational distributions. Finally,

the variational HEM algorithm for HMMs consists of two alternating steps:

• (variational E-step) given M (r), calculate the variational distributions qi, j
β ,ρ(ζ |m),

qi, j(ρ|β ), and qi(zi) for the lower bounds in (4.17), (4.16), and (4.15);

• (M-step) update the model parameters via M (r)∗ = argmaxM (r) ∑
K(b)

i=1 L i
H3M.

In the following subsections, we derive the E- and M-steps of the algorithm. The

entire procedure is summarized in Algorithm 4.
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4.3.3 Variational E-Step

The variational E-step consists of finding the variational distributions that maxi-

mize the lower bounds in (4.17), (4.16), and (4.15). In particular, given the nesting of

the lower bounds, we proceed by first maximizing the GMM lower bound L
(i,β ),( j,ρ)

GMM

for each pair of emission GMMs in the base and reduced models. Next, the HMM lower

bound L i, j
HMM is maximized for each pair of HMMs in the base and reduced models,

followed by maximizing the H3M lower bound L i
H3M for each base HMM. Finally, a set

of summary statistics are calculated, which will be used in the M-step.

Variational Distributions

We first consider the forms of the three variational distributions, as well as the

optimal parameters to maximize the corresponding lower bounds.

GMM: For the GMM lower bound L
(i,β ),( j,ρ)

GMM , we assume each variational

distribution has the form [78]

qi, j
β ,ρ(ζ = l|m) = η

(i,β ),( j,ρ)
`|m ,

where ∑
M
`=1 η

(i,β ),( j,ρ)
`|m = 1, and η

(i,β ),( j,ρ)
`|m ≥ 0, ∀`. Intuitively, η(i,β ),( j,ρ) is the responsi-

bility matrix between each pair of Gaussian components in the GMMs M
(b)
i,β and M

(r)
j,ρ ,

where η
(i,β ),( j,ρ)
`|m represents the probability that an observation from component m of

M
(b)
i,β corresponds to component ` of M

(r)
j,ρ . Substituting into (4.17) and maximizing the

variational parameters yields (see Appendix A.2)

η̂
(i,β ),( j,ρ)
`|m =

c(r), j
ρ,` exp

{
E

M
(b)
i,β ,m

[log p(y|M (r)
j,ρ,`)]

}
∑`′ c

(r), j
ρ,`′ exp

{
E

M
(b)
i,β ,m

[log p(y|M (r)
j,ρ,`′)]

} , (4.18)



84

where the expected log-likelihood of a Gaussian M
(r)
j,ρ,` with respect to another Gaussian

M
(b)
i,β ,m is computable in closed-form [129],

E
M

(b)
i,β ,m

[log p(y|M (r)
j,ρ,`)] =−

d
2

log2π− 1
2

log
∣∣∣Σ(r), j

ρ,`

∣∣∣− 1
2

tr
(
(Σ

(r), j
ρ,` )−1

Σ
(b),i
β ,m

)
− 1

2
(µ

(r), j
ρ,` −µ

(b),i
β ,m )T (Σ

(r), j
ρ,` )−1(µ

(r), j
ρ,` −µ

(b),i
β ,m ).

HMM: For the HMM lower bound L i, j
HMM, we assume each variational distribu-

tion takes the form of a Markov chain,

qi, j(ρ|β ) = φ
i, j(ρ|β ) = φ

i, j
1 (ρ1|β1)

τ

∏
t=2

φ
i, j
t (ρt |ρt−1,βt),

where ∑
S
ρ1=1 φ

i, j
1 (ρ1|β1) = 1, and ∑

S
ρt=1 φ

i, j
t (ρt |ρt−1,βt) = 1, and all the factors are non-

negative. The variational distribution qi, j(ρ|β ) represents the probability of the state

sequence ρ in HMM M
(r)
j , when M

(r)
j is used to explain the observation sequence

generated by M
(b)
i that evolved through state sequence β .

Substituting φ i, j into (4.16), the maximization with respect to φ
i, j
t (ρt |ρt−1,βt)

and φ
i, j
1 (ρ1|β1) is carried out independently for each pair (i, j), and follows [78]. This is

further detailed in Appendix A.2. By separating terms and breaking up the summation

over β and ρ , the optimal φ̂
i, j
t (ρt |ρt−1,βt) and φ̂

i, j
1 (ρ1|β1) can be obtained using an

efficient recursive iteration (similar to the forward algorithm).

H3M: For the H3M lower bound L i
H3M, we assume variational distributions of

the form qi(zi = j) = zi j, where ∑
K(r)

j=1 zi j = 1, and zi j ≥ 0. Substituting zi j into (4.15),

and maximizing variational parameters are obtained as (see Appendix A.2)

ẑi j =
ω

(r)
j exp(NiL

i, j
HMM)

∑ j′ω
(r)
j′ exp(NiL

i, j′
HMM)

. (4.19)
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Note that in the standard HEM algorithm [164, 33], the assignment probabilities zi j are

based on the expected log-likelihoods of the components, (e.g., E
M

(b)
i
[log p(y|M (r)

j )] for

H3Ms). For the variational HEM algorithm, these expectations are now replaced with

their lower bounds (in our case, L i, j
HMM).

Lower Bound

Substituting the optimal variational distributions into (4.15), (4.16), and (4.17)

gives the lower bounds,

L i
H3M = ∑

j
ẑi j

log
ω

(r)
j

ẑi j
+NiL

i, j
HMM

 , (4.20)

L i, j
HMM = ∑

β

π
(b),i
β ∑

ρ

φ̂
i, j(ρ|β )

{
log

π
(r), j
ρ

φ̂ i, j(ρ|β )
+∑

t
L

(i,βt),( j,ρt)
GMM

}
, (4.21)

L
(i,β ),( j,ρ)

GMM =
M

∑
m=1

c(b),i
β ,m

M

∑
`=1

η̂
(i,β ),( j,ρ)
`|m

log
c(r), j

ρ,`

η̂
(i,β ),( j,ρ)
`|m

+E
M

(b)
i,β ,m

[log p(y|M (r)
j,ρ,`)]

 .

(4.22)

The lower bound L i, j
HMM requires summing over all sequences β and ρ . This summation

can be computed efficiently along with φ̂
i, j
t (ρt |ρt−1,βt) and φ̂

i, j
1 (ρ1|β1) using a recursive

algorithm from [78]. This is described in Appendix A.2.
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Summary Statistics

After calculating the optimal variational distributions, we calculate the following

summary statistics, which are necessary for the M-step:

ν
i, j
1 (ρ1,β1) = π

(b),i
β1

φ̂
i, j
1 (ρ1|β1),

ξ
i, j
t (ρt−1,ρt ,βt) =

(
S

∑
βt−1=1

ν
i, j
t−1(ρt−1,βt−1)a(b),i

βt−1,βt

)
φ̂

i, j
t (ρt |ρt−1,βt), for t = 2, . . . ,τ,

ν
i, j
t (ρt ,βt) =

S

∑
ρt−1=1

ξ
i, j
t (ρt−1,ρt ,βt), for t = 2, . . . ,τ,

and the aggregate statistics

ν̂
i, j
1 (ρ) =

S

∑
β=1

ν
i, j
1 (ρ,β ), (4.23)

ν̂
i, j(ρ,β ) =

τ

∑
t=1

ν
i, j
t (ρ,β ), (4.24)

ξ̂
i, j(ρ,ρ ′) =

τ

∑
t=2

S

∑
β=1

ξ
i, j
t (ρ,ρ ′,β ). (4.25)

The statistic ν̂
i, j
1 (ρ) is the expected number of times that the HMM M

(r)
j starts from

state ρ , when modeling sequences generated by M
(b)
i . The quantity ν̂ i, j(ρ,β ) is the

expected number of times that the HMM M
(r)
j is in state ρ when the HMM M

(b)
i is in

state β , when both HMMs are modeling sequences generated by M
(b)
i . Similarly, the

quantity ξ̂ i, j(ρ,ρ ′) is the expected number of transitions from state ρ to state ρ ′ of the

HMM M
(r)
j , when modeling sequences generated by M

(b)
i .
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4.3.4 M-Step

In the M-step, the lower bound in (4.11) is maximized with respect to the parame-

ters M (r),

M (r)∗ = argmax
M (r)

K(b)

∑
i=1

L i
H3M.

The derivation of the maximization is presented in Appendix A.3. Each mixture compo-

nent of M (r) is updated independently according to

ω
(r)
j
∗
=

∑
K(b)

i=1 ẑi, j

K(b)
, (4.26)

π
(r), j
ρ

∗
=

∑
K(b)

i=1 ẑi, jω
(b)
i ν̂

i, j
1 (ρ)

∑
S
ρ ′=1 ∑

K(b)

i=1 ẑi, jω
(b)
i ν̂

i, j
1 (ρ ′))

, a(r), j
ρ,ρ ′
∗
=

∑
K(b)

i=1 ẑi, jω
(b)
i ξ̂ i, j(ρ,ρ ′)

∑
S
σ=1 ∑

K(b)

i=1 ẑi, jω
(b)
i ξ̂ i, j(ρ,σ)

,

(4.27)

c(r), j
ρ,`

∗
=

Ω j,ρ

(
η̂
(i,β ),( j,ρ)
`|m

)
∑

M
`′=1 Ω j,ρ

(
η̂
(i,β ),( j,ρ)
`′|m

) , µ
(r), j
ρ,`

∗
=

Ω j,ρ

(
η
(i,β ),( j,ρ)
`|m µ

(b),i
β ,m

)
Ω j,ρ

(
η̂
(i,β ),( j,ρ)
`|m

) , (4.28)

Σ
(r), j
ρ,`

∗
=

Ω j,ρ

(
η̂
(i,β ),( j,ρ)
`|m

[
Σ
(b),i
β ,m +(µ

(b),i
β ,m −µ

(r), j
ρ,` )(µ

(b),i
β ,m −µ

(r), j
ρ,` )T

])
Ω j,ρ

(
η̂
(i,β ),( j,ρ)
`|m

) , (4.29)

where Ω j,ρ(·) is the weighted sum operator over all base models, HMM states, and GMM

components (i.e., over all tuples (i,β ,m)),

Ω j,ρ( f (i,β ,m)) =
K(b)

∑
i=1

ẑi, jω
(b)
i

S

∑
β=1

ν̂
i, j(ρ,β )

M

∑
m=1

c(b),i
β ,m f (i,β ,m). (4.30)

The terms π
(r), j
ρ and a(r), j

ρ,ρ ′ are elements of the initial state prior and transition matrix,

π(r), j and A(r), j. Note that the covariance matrices of the reduced models in (4.29) include

an additional outer-product term, which acts to regularize the covariances of the base
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models. This regularization effect derives from the E-step, which averages all possible

observations from the base model.

4.4 Applications and Related Work

In the previous section, we derived the VHEM-H3M algorithm to cluster HMMs.

We now discuss various applications of the algorithm (Section 4.4.1), and then present

some literature that is related to HMM clustering (Section 6.2).

4.4.1 Applications of the VHEM-H3M Algorithm

The proposed VHEM-H3M algorithm clusters HMMs directly through the distri-

butions they represent, and learns novel HMM cluster centers that compactly represent

the structure of each cluster.

An application of the VHEM-H3M algorithm is in hierarchical clustering of

HMMs. In particular, the VHEM-H3M algorithm is used recursively on the HMM cluster

centers, to produce a bottom-up hierarchy of the input HMMs. Since the cluster centers

condense the structure of the clusters they represent, the VHEM-H3M algorithm can

implicitly leverage rich information on the underlying structure of the clusters, which is

expected to impact positively the quality of the resulting hierarchical clustering.

Another application of VHEM is for efficient estimation of H3Ms from data, by

using a hierarchical estimation procedure to break the learning problem into smaller

pieces. First, a data set is split into small (non-overlapping) portions and intermediate

HMMs are learned for each portion, via standard EM. Then, the final model is estimated

from the intermediate models using the VHEM-H3M algorithm. Because VHEM and

standard EM are based on similar maximum-likelihood principles, it drives model esti-

mation towards similar optimal parameter values as performing EM estimation directly

on the full dataset. However, compared to direct EM estimation, VHEM-H3M is more
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memory- and time-efficient. First, it no longer requires storing in memory the entire data

set during parameter estimation. Second, it does not need to evaluate the likelihood of all

the samples at each iteration, and converges to effective estimates in shorter times. Note

that even if a parallel implementation of EM could effectively handle the high memory

requirements, a parallel-VHEM will still require fewer resources than a parallel-EM.

In addition, for the hierarchical procedure, the estimation of the intermediate

models can be easily parallelized, since they are learned independently of each other.

Finally, hierarchical estimation allows for efficient model updating when adding new

data. Assuming that the previous intermediate models have been saved, re-estimating

the H3M requires learning the intermediate models of only the new data, followed

by running VHEM again. Since estimation of the intermediate models is typically as

computationally intensive as the VHEM stage, reusing the previous intermediate models

will lead to considerable computational savings when re-estimating the H3M.

In hierarchical estimation (EM on each time-series, VHEM on intermediate

models), VHEM implicitly averages over all possible observations (virtual variations of

each time-series) compatible with the intermediate models. We expect this to regularize

estimation, which may result in models that generalize better (compared to estimating

models with direct EM). Lastly, the “virtual” samples (i.e., sequences), which VHEM

implicitly generates for maximum-likelihood estimation, need not be of the same length

as the actual input data for estimating the intermediate models. Making the virtual

sequences relatively short will positively impact the run time of each VHEM iteration.

This may be achieved without loss of modeling accuracy, as show in Section 4.6.3.

4.4.2 Related Work

[86]’s approach to clustering HMMs consists of applying spectral clustering to a

probability product kernel (PPK) matrix between HMMs—we will refer to it as PPK-SC.
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In particular, the PPK similarity between two HMMs, M (a) and M (b), is defined as

k(a,b) =
∫

p(y|M (a))λ p(y|M (b))λ dy, (4.31)

where λ is a scalar, and τ is the length of “virtual” sequences. The case λ = 1
2 cor-

responds to the Bhattacharyya affinity. While this approach indirectly leverages the

probability distributions represented by the HMMs (i.e., the PPK affinity is computed

from the probability distributions of the HMMs) and has proven successful in grouping

HMMs into similar clusters [86], it has several limitations. First, the spectral clustering

algorithm cannot produce novel HMM cluster centers to represent the clusters, which

is suboptimal for several applications of HMM clustering. For example, when imple-

menting hierarchical clustering in the spectral embedding space (e.g., using hierarchical

k-means clustering), clusters are represented by single points in the embedding space.

This may fail to capture information on the local structure of the clusters that, when

using VHEM-H3M, would be encoded by the novel HMM cluster centers. Hence, we

expect VHEM-H3M to produce better hierarchical clustering than the spectral clustering

algorithm, especially at higher levels of the hierarchy. This is because, when building a

new level, VHEM can leverage more information from the lower levels, as encoded in

the HMM cluster centers.

One simple extension of PPK-SC to obtain a HMM cluster center is to select the

input HMM that the spectral clustering algorithm maps closest to the spectral clustering

center. However, with this method, the HMM cluster centers are limited to be one of the

existing input HMMs (i.e., similar to the k-medoids algorithm by [90]), instead of the

HMMs that optimally condense the structure of the clusters. Therefore, we expect the

novel HMM cluster centers learned by VHEM-H3M to better represent the clusters. A

more involved, “hybrid” solution is to learn the HMM cluster centers with VHEM-H3M
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after obtaining clusters with PPK-SC—using the VHEM-H3M algorithm to summarize

all the HMMs within each PPK-SC cluster into a single HMM. However, we expect our

VHEM-H3M algorithm to learn more accurate clustering models, since it jointly learns

the clustering and the HMM centers, by optimizing a single objective function (i.e., the

lower bound to the expected log-likelihood in equation 4.11).

A second drawback of the spectral clustering algorithm is that the construction

and the inversion of the similarity matrix between the input HMMs is a costly operation

when their number is large2 (e.g., see the experiment on H3M density estimation on the

music data in Section 4.6.1). Therefore, we expect VHEM-H3M to be computationally

more efficient than the spectral clustering algorithm since, by directly operating on the

probability distributions of the HMMs, it does not require the construction of an initial

embedding or any costly matrix operation on large kernel matrices.

Finally, as [85] note, the exact computation of (4.31) cannot be carried out

efficiently, unless λ = 1. For different values of λ ,3 [85] propose to approximate k(a,b)

with an alternative kernel function that can be efficiently computed; this alternative

kernel function, however, is not guaranteed to be invariant to different but equivalent

representations of the hidden state process [85].4 Alternative approximations for the

Bhattacharyya setting (i.e., λ = 1
2 ) have been proposed by [77].

Note that spectral clustering algorithms (similar to the one by [86]) can be

applied to kernel (similarity) matrices that are based on other affinity scores between

2 The computational complexity of large spectral clustering problems can be alleviated by means of
numerical techniques for the solutions of eigenfunction problems such as the Nyström method [123, 62],
or by sampling only part of the similarity matrix and using a sparse eigensonver [3].

3The experimental results in [85] and [86] suggest to use λ < 1.
4The kernel in (4.31) is computed by marginalizing out the hidden state variables, i.e.,∫ (
∑x p(y,x|M (a))

)λ (
∑x p(y,x|M (b))

)λ

dy. This can be efficiently solved with the junction tree algo-

rithm only when λ = 1. For λ 6= 1, [85] propose to use an alternative kernel k̃ that applies the power
operation to the terms of the sum rather than the entire sum, where the terms are joint probabilities p(y,x).

I.e., k̃(a,b) =
∫

∑x

(
p(y,x|M (a))

)λ

∑x

(
p(y,x|M (b))

)λ

dy.
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HMM distributions than the PPK similarity of [85]. Examples can be found in earlier

work on HMM-based clustering of time-series, such as by [89], [104], [11], [128]. In

particular, [89] propose to approximate the (symmetrised) log-likelihood between two

HMM distributions by computing the log-likelihood of real samples generated by one

model under the other.5 Extensions of the work of [89] have been proposed by [178] and

[175]. In this work we do not pursue a comparison of the various similarity functions,

but implement spectral clustering only based on PPK similarity (which [86] showed to

be superior).

HMMs can also be clustered by sampling a number of time-series from each of

the HMMs in the base mixture, and then applying the EM algorithm for H3Ms [151],

to cluster the time-series. Despite its simplicity, this approach would suffer from high

memory and time requirements, especially when dealing with a large number of input

HMMs. First, all generated samples need to be stored in memory. Second, evaluating the

likelihood of the generated samples at each iteration is computationally intensive, and

prevents the EM algorithm from converging to effective estimates in acceptable times.6

On the contrary, VHEM-H3M is more efficient in computation and memory usage, as

it replaces a costly sampling step (along with the associated likelihood computations

at each iteration) with an expectation. An additional problem of EM with sampling is

that, with a simple application of the EM algorithm, time-series generated from the same

input HMM can be assigned to different clusters of the output H3M. As a consequence,

the resulting clustering is not necessary consistent, since in this case the corresponding

input HMM may not be clearly assigned to any single cluster. In our experiments, we

circumvent this problem by defining appropriate constrains on the assignment variables.

5For two HMM distributions, M (a) and M (b), [89] consider the affinity L(a,b) =
1
2

[
log p(Yb|M (a))+ p(Ya|M (b))

]
, where Ya and Yb are sets of observation sequences generated from

M (a) and M (b), respectively.
6In our experiments, EM on generated samples took two orders of magnitude more time than VHEM.
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The VHEM algorithm is similar in spirit to Bregman-clustering by [12]. Both

algorithms base clustering on KL-divergence—the KL divergence and the expected log-

likelihood differ only for an entropy term that does not affect the clustering.7 The main

differences are: 1) in our setting, the expected log-likelihood (and KL divergence) is not

computable in closed form, and hence VHEM uses an approximation; 2) VHEM-H3M

clusters random processes (i.e., time series models), whereas Bregman-clustering[12] is

limited to single random variables. Note that the number of virtual observations N allows

to control the peakiness of the assignments ẑi, j. Limiting cases for N→ ∞ and N = 1 are

similar to Bregman hard and soft cluttering, respectively [68, 12, 51].

In the next two sections, we validate the points raised in this discussion through

experimental evaluation using the VHEM-H3M algorithm. In particular, we consider

clustering experiments in Section 4.5, and H3M density estimation for automatic an-

notation and retrieval in Section 4.6. Each application exploits some of the benefits of

VHEM. First, we show that VHEM-H3M is more accurate in clustering than PPK-SC, in

particular at higher levels of a hierarchical clustering (Section 4.5.2), and in an experi-

ment with synthetic data (Section 4.5.3). Similarly, the annotation and retrieval results

in Section 4.6 favor VHEM-H3M over PPK-SC and over standard EM, suggesting that

VHEM-H3M is more robust and effective for H3M density estimation. Finally, in all the

experiments, the running time of VHEM-H3M compares favorably with the other HMM

clustering algorithms; PPK-SC suffers long delays when the number of input HMMs

is large and the standard EM algorithm is considerably slower. This demonstrates that

VHEM-H3M is most efficient for clustering HMMs.

7 We can show that the VHEM algorithm performs clustering based on KL divergence. Letting
D i, j

HMM = L i,i
HMM−L i, j

HMM ≈ D(M
(b)
i ||M

(r)
j ) be an approximation to the KL using (4.21), we can rewrite

the E-step as ẑi j ∝ ω
(r)
j e−Nω

(b)
i D i, j

HMM . Similarly, the M-step is M̂
(r)
j = argmin

M
(r)
j

∑
K(b)

i=1 ω
(b)
i ẑi jD

i, j
HMM .
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4.5 Clustering Experiments

In this section, we present an empirical study of the VHEM-H3M algorithm

for clustering and hierarchical clustering of HMMs. Clustering HMMs consists in

partitioning K1 input HMMs into K2 < K1 groups of similar HMMs. Hierarchical

clustering involves organizing the input HMMs in a multi-level hierarchy with h levels,

by applying clustering in a recursive manner. Each level ` of the hierarchy has K` groups

(with K1 > K2 > · · ·> Kh−1 > Kh), and the first level consists of the K1 input HMMs.

We begin with an experiment on hierarchical clustering, where each of the input

HMMs to be clustered is estimated on a sequence of motion capture data (Section 4.5.2).

Then, we present a simulation study on clustering synthetic HMMs (Section 4.5.3). First,

we provide an overview of the different algorithms used in this study.

4.5.1 Clustering Methods

In the clustering experiments, we will compare our VHEM-H3M algorithm with

several other clustering algorithms. The various algorithms are summarized here.

• VHEM-H3M: We cluster K1 input HMMs into K2 clusters by using the VHEM-

H3M algorithm (on the input HMMs) to learn a H3M with K2 components (as

explained in Section 4.3.1). To build a multi-level hierarchy of HMMs with h

levels, we start from the first level of K1 input HMMs, and recursively use the

VHEM-H3M algorithm h−1 times. Each new level ` is formed by clustering the

K`−1 HMMs at the previous level into K` < K`−1 groups with the VHEM-H3M

algorithm, and using the learned HMMs as cluster centers at the new level. In our

experiments, we set the number of virtual samples to N = 104K(`−1), a large value

that favors “hard” clustering (where each HMM is univocally assigned to a single

cluster), and the length of the virtual sequences to τ = 10.
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• PPK-SC: [86] cluster HMMs by calculating a PPK similarity matrix between all

HMMs, and then applying spectral clustering. The work in [86] only considered

HMMs with single Gaussian emissions, which did not always give satisfactory

results in our experiments. Hence, we extended the method of [86] by allowing

GMM emissions, and derived the PPK similarity for this more general case [85].

From preliminary experiments, we found the best performance for PPK with

λ = 1
2 (i.e., Bhattacharyya affinity), and when integrating over sequences of length

τ = 10. Finally, we also extend [86] to construct multi-level hierarchies, by using

hierarchical k-means in the spectral clustering embedding.

• SHEM-H3M: This is a version of HEM-H3M that maximizes the likelihood

of actual samples generated from the input HMMs, as in (4.5), rather than the

expectation of virtual samples, as in (4.6). In particular, from each input HMM

M
(b)
i we sample a set Yi of Ni = π

(b)
i N observation sequences (for a large value

of N). We then estimate the reduced H3M from the N samples Y = {Yi}K(b)

i=1 , with

the EM-H3M algorithm of [151], which was modified to use a single assignment

variable for each sample set Yi, to obtain a consistent clustering.

In many real-life applications, the goal is to cluster a collection of time series,

i.e., observed sequences. Although the input data is not a collection of HMMs in that

case, it can still be clustered with the VHEM-H3M algorithm by first modeling each

sequence as an HMM, and then using the HMMs as input for the VHEM-H3M algorithm.

With time-series data as input, it is also possible to use clustering approaches that do not

model each sequence as a HMM. Hence, in one of the hierarchical motion clustering

experiments, we also compare to the following two algorithms, one that clusters time-

series data directly [151], and a second one that clusters the time series after modeling

each sequence with a dynamic texture (DT) model [33].
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• EM-H3M: The EM algorithm for H3Ms [151] is applied directly on a collection

of time series to learn the clustering and HMM cluster centers, thus bypassing the

intermediate HMM modeling stage. To obtain a hierarchical clustering (with h≥ 3

levels), we proceed in a bottom up fashion and build each new level by simply

re-clustering the given time series in a smaller number of clusters using the EM

algorithm by [151]. We extend the algorithm to use a single assignment variable

for each set of sequences Yi that are within the same cluster in the immediately

lower level of the hierarchy. This modification preserves the hierarchical clustering

property that sequences in a cluster will remain together at the higher levels.

• HEM-DTM: Rather than use HMMs, we consider a clustering model based on

linear dynamical systems, i.e., dynamic textures (DTs) [54]. Hierarchical clustering

is performed using the hierarchical EM algorithm for DT mixtures (HEM-DTM)

[33], in an analogous way to VHEM-H3M. The main difference is that, with HEM-

DTM, time-series are modeled as DTs, which have a continuous state space (a

Gauss-Markov model) and unimodal observation model, whereas VHEM-H3M

uses a discrete state space and multimodal observations (GMMs).

We will use several metrics to quantitatively compare the results of different

clustering algorithms. First, we will calculate the Rand-index [83], which measures the

correctness of a proposed clustering against a given ground truth clustering. Intuitively,

this index measures how consistent cluster assignments are with the ground truth (i.e.,

whether pairs of items are correctly or incorrectly assigned to the same cluster, or different

clusters). Second, we will consider the log-likelihood, as used by [151] to evaluate a

clustering. This measures how well the clustering fits the input data. When time series

are given as input data, we compute the log-likelihood of a clustering as the sum of the

log-likelihoods of each input sequence under the HMM cluster center to which it has been
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assigned. When the input data consists of HMMs, we will evaluate the log-likelihood of

a clustering by using the expected log-likelihood of observations generated from an input

HMM under the HMM cluster center to which it is assigned. For PPK-SC, the cluster

center is estimated by running the VHEM-H3M algorithm (with K(r) = 1) on the HMMs

assigned to the cluster.8 Note that the log-likelihood will be particularly appropriate to

compare VHEM-H3M, SHEM-H3M, EM-H3M and HEM-DTM, since they explicitly

optimize for it. However, it may be unfair for PPK-SC, since this method optimizes the

PPK similarity and not the log-likelihood. As a consequence, we also measure the PPK

cluster-compactness, which is more directly related to what PPK-SC optimizes for. The

PPK cluster-compactness is the sum (over all clusters) of the average intra-cluster PPK

pair-wise similarity. This performance metric favors methods that produce clusters with

high intra-cluster similarity.

Note that, time series can also be clustered with recourse to similarity measures

based on dynamic time warping [124, 92, 91] or methods that rely on non-parametric

sequence kernels [100, 26, 96, 39], which have shown good performance in practice. In

this work we focus on the problem of clustering hidden Markov models, so we do not

pursue an empirical evaluation of these methods.

4.5.2 Hierarchical Motion Clustering

In this experiment we test the VHEM algorithm on hierarchical motion clustering

from motion capture data, i.e., time series representing human locomotions and actions.

To hierarchically cluster a collection of time series, we first model each time series with

an HMM and then cluster the HMMs hierarchically. Since each HMM summarizes the

appearance and dynamics of the particular motion sequence it represents, the structure

encoded in the hierarchy of HMMs directly applies to the original motion sequences.

8Alternatively, we could use as cluster center the HMM mapped the closest to the spectral embedding
cluster center, but this always resulted in lower log-likelihood.
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(a) “Walk” sequence.

(b) “Run” sequence.

Figure 4.1. Examples of motion capture sequences from the MoCap dataset, shown with
stick figures.

[86] uses a similar approach to cluster motion sequences, applying PPK-SC to cluster

HMMs. However, they did not extend their study to hierarchies with multiple levels.

Datasets and Setup

We experiment on two motion capture datasets, the MoCap dataset (http://mocap.

cs.cmu.edu/) and the Vicon Physical Action dataset [155, 9]. For the MoCap dataset, we

use 56 motion examples spanning 8 different classes (“jump”, “run”, “jog”, “walk 1”,

“walk 2”, “basket”, “soccer”, and “sit”). Each example is a sequence of 123-dimensional

vectors representing the (x,y,z)-coordinates of 41 body markers tracked spatially through

time. Figure 4.1 illustrates some typical examples. We built a hierarchy of h = 4

levels. The first level (Level 1) was formed by the K1 = 56 HMMs learned from each

individual motion example (with S = 4 hidden states, and M = 2 components for each

GMM emission). The next three levels contain K2 = 8, K3 = 4 and K4 = 2 HMMs. We

perform the hierarchical clustering with VHEM-H3M, PPK-SC, EM-H3M, SHEM-H3M

(N ∈ {560,2800} and τ = 10), and HEM-DTM (state dimension of 7). The experiments

were repeated 10 times for each clustering method, using different random initializations

of the algorithms.

http://mocap.cs.cmu.edu/
http://mocap.cs.cmu.edu/
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Figure 4.2. An example of hierarchical clustering of the MoCap dataset, with VHEM-
H3M and PPK-SC. Different colors represent different motion classes. Vertical bars
represent clusters, with the colors indicating the proportions of the motion classes in a
cluster, and the numbers on the x-axes representing the clusters’ indexes. At Level 1 there
are 56 clusters, one for each motion sequence. At Levels 2, 3 and 4 there are 8, 4 and
2 HMM clusters, respectively. For VHEM almost all clusters at Level 2 are populated
by examples from a single motion class. The error of VHEM in clustering a portion of
“soccer” with “basket” is probably because both actions involve a sequence of movement,
shot, and pause. Moving up the hierarchy, the VHEM algorithm clusters similar motions
classes together, and at Level 4 creates a dichotomy between “sit” and the other (more
dynamic) motion classes. PPK-SC also clusters motion sequences well at Level 2, but
incorrectly aggregates “sit” and “soccer”, which have quite different dynamics. At Level
4, the clustering obtained by PPK-SC is harder to interpret than that by VHEM.

The Vicon Physical Action dataset is a collection of 200 motion sequences. Each

sequence consists of a time series of 27-dimensional vectors representing the (x,y,z)-

coordinates of 9 body markers captured using the Vicon 3D tracker. The dataset includes

10 normal and 10 aggressive activities, performed by each of 10 human subjects a single

time. We build a hierarchy of h = 5 levels, starting with K1 = 200 HMMs (with S = 4

hidden states and M = 2 components for each GMM emission) at the first level (i.e., one

for each motion sequence), and using K2 = 20, K3 = 8, K4 = 4, and K5 = 2 for the next

four levels. The experiment was repeated 5 times with VHEM-H3M and PPK-SC, using
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different random initializations of the algorithms.

In similar experiments where we varied the number of levels h of the hierarchy

and the number of clusters at each level, we noted similar relative performances of the

various clustering algorithms, on both datasets.

Results on the MoCap Dataset

An example of hierarchical clustering of the MoCap dataset with VHEM-H3M

is illustrated in Figure 4.2 (left). In the first level, each vertical bar represents a motion

sequence, with different colors indicating different ground-truth classes. In the second

level, the K2 = 8 HMM clusters are shown with vertical bars, with the colors indicating

the proportions of the motion classes in the cluster. Almost all clusters are populated by

examples from a single motion class (e.g., “run”, “jog”, “jump”), which demonstrates

that VHEM can group similar motions together. We note an error of VHEM in clustering

a portion of the “soccer” examples with “basket”. This is probably caused by the

fact that both types of actions begin with a stationary phase (e.g., subject focusing on

the execution) followed with a forward movement (note that our “basket” examples

correspond to forward dribbles). Moving up the hierarchy, the VHEM algorithm clusters

similar motion classes together (as indicated by the arrows), for example “walk 1” and

“walk 2” are clustered together at Level 2, and at the highest level (Level 4) it creates a

dichotomy between “sit” and the rest of the motion classes. This is a desirable behavior as

the kinetics of the “sit” sequences (which in the MoCap dataset correspond to starting in a

standing position, sitting on a stool, and returning to a standing position) are considerably

different from the rest. On the right of Figure 4.2, the same experiment is repeated with

PPK-SC. PPK-SC clusters motion sequences properly, but incorrectly aggregates “sit”

and “soccer” at Level 2, even though they have quite different dynamics. Furthermore,

the highest level (Level 4) of the hierarchical clustering produced by PPK-SC is harder
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Table 4.2. Hierarchical clustering of the MoCap dataset using VHEM-H3M, PPK-
SC, SHEM-H3M, EM-H3M and HEM-DTM. The number in brackets after SHEM-
H3M represents the number of real samples used. We computed Rand-index, data
log-likelihood and cluster compactness at each level of the hierarchy, and registered the
time (in seconds) to learn the hierarchical structure. Differences in Rand-index at Levels
2, 3, and 4 are statistically significant based on a paired t-test with confidence 95%.

Rand-index log-likelihood (×106) PPK cluster-compactness time (s)
Level 2 3 4 2 3 4 2 3 4

VHEM-H3M 0.937 0.811 0.518 -5.361 -5.682 -5.866 0.0075 0.0068 0.0061 30.97
PPK-SC 0.956 0.740 0.393 -5.399 -5.845 -6.068 0.0082 0.0021 0.0008 37.69
SHEM-H3M (560) 0.714 0.359 0.234 -13.632 -69.746 -275.650 0.0062 0.0034 0.0031 843.89
SHEM-H3M (2800) 0.782 0.685 0.480 -14.645 -30.086 -52.227 0.0050 0.0036 0.0030 3849.72
EM-H3M 0.831 0.430 0.340 -5.713 -202.55 -168.90 0.0099 0.0060 0.0056 667.97
HEM-DTM 0.897 0.661 0.412 -7.125 -8.163 -8.532 - - - 121.32

to interpret than that of VHEM.

Table 4.2 presents a quantitative comparison between PPK-SC and VHEM-H3M

at each level of the hierarchy. While VHEM-H3M has lower Rand-index than PPK-SC

at Level 2 (0.937 vs. 0.956), VHEM-H3M has higher Rand-index at Level 3 (0.811 vs.

0.740) and Level 4 (0.518 vs. 0.393). In terms of PPK cluster-compactness, we observe

similar results. In particular, VHEM-H3M has higher PPK cluster-compactness than

PPK-SC at Level 3 and 4. Overall, keeping in mind that PPK-SC is explicitly driven by

PPK-similarity, while the VHEM-H3M algorithm is not, these results can be considered

as strongly in favor of VHEM-H3M (over PPK-SC). In addition, the data log-likelihood

for VHEM-H3M is higher than that for PPK-SC at each level of the hierarchy. This

suggests that the novel HMM cluster centers learned by VHEM-H3M fit the motion

capture data better than the spectral cluster centers, since they condense information of

the entire underlying clusters. This conclusion is further supported by the results of the

density estimation experiments in Sections 4.6.1 and 4.6.2. Note that the higher up in the

hierarchy, the more clearly this effect is manifested.

Comparing to other methods (also in Table 4.2), EM-H3M generally has lower
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Rand-index than VHEM-H3M and PPK-SC (consistent with the results from [86]).

While EM-H3M directly clusters the original motion sequences, both VHEM-H3M and

PPK-SC implicitly integrate over all possible virtual variations of the original motion

sequences (according to the intermediate HMM models), which results in more robust

clustering procedures. In addition, EM-H3M has considerably longer running times than

VHEM-H3M and PPK-SC (i.e., roughly 20 times longer) since it needs to evaluate the

likelihood of all training sequences at each iteration, at all levels.

The results in Table 4.2 favor VHEM-H3M over SHEM-H3M, and empirically

validate the variational approximation that VHEM uses for learning. For example, when

using N = 2800 samples, running SHEM-H3M takes over two orders of magnitude

more time than VHEM-H3M, but still does not achieve performance competitive with

VHEM-H3M. With an efficient closed-form expression for averaging over all possible

virtual samples, VHEM approximates the sufficient statistics of a virtually unlimited

number of observation sequences, without the need of using real samples. This has an

additional regularization effect that improves the robustness of the learned HMM cluster

centers. In contrast, SHEM-H3M uses real samples, and requires a large number of them

to learn accurate models, which results in significantly longer running times.

In Table 4.2, we also report hierarchical clustering performance for HEM-DTM.

VHEM-H3M consistently outperforms HEM-DTM, both in terms of Rand-index and data

log-likelihood.9 Since both VHEM-H3M and HEM-DTM are based on the hierarchical

EM algorithm for learning the clustering, this indicates that HMM-based clustering

models are more appropriate than DT-based models for the human MoCap data. Note

that, while PPK-SC is also HMM-based, it has a lower Rand-index than HEM-DTM at

Level 4. This further suggests that PPK-SC does not optimally cluster the HMMs.

9We did not report PPK cluster-compactness for HEM-DTM, since it would not be directly comparable
with the same metric based on HMMs.
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Finally, to assess stability of the clustering results, starting from the 56 HMMs

learned on the motion examples, in turn we exclude one of them and build a hierarchical

clustering of the remaining ones (h = 4 levels, K1 = 55,K2 = 8,K3 = 4,K4 = 2), using

in turn VHEM-H3M and PPK-SC. We then compute cluster stability as the mean Rand-

index between all possible pairs of clusterings. The experiment is repeated 10 times for

both VHEM-H3M and PPK-SC, using a different random initialization for each trial. The

stability of VHEM-H3M is 0.817, 0.808 and 0.950, at Levels 2, 3 and 4. The stability of

PPK-SC is 0.786, 0.837 and 0.924, at Levels 2, 3 and 4. Both methods are fairly stable

in terms of Rand-index, with a slight advantage for VHEM-H3M over PPK-SC (with

average across levels of 0.858 versus 0.849).

The experiments were repeated 10 times for each clustering method, using differ-

ent random initializations of the algorithms.

Alternatively, we evaluate the out-of-sample generalization of the clusterings

discovered by VHEM-H3M and PPK-SC, by computing the fraction of times the held

out HMMs is assigned10 to the cluster that contains the majority of HMMs from its

same ground truth class. Out of sample generalization of VHEM-H3M and PPK-SC are

comparable, registering an averages of 0.875, respectively, 0.851 across the different

levels.

Results on the Vicon Physical Action Dataset

Table 4.3 presents results using VHEM-H3M and PPK-SC to cluster the Vicon

Physical Action dataset. While the two algorithms performs similarly in terms of Rand-

index at lower levels of the hierarchy (i.e., Level 2 and Level 3), at higher levels (i.e., Level

4 and Level 5) VHEM-H3M outperforms PPK-SC. In addition, VHEM-H3M registers

higher data log-likelihood than PPK-SC at each level of the hierarchy. This, again,

10For VHEM-H3M we use the expected log-likelihood, for PPK-SC we use the out-of-sample extension
for spectral clustering of [19]
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Table 4.3. Hierarchical clustering of the Vicon Physical Action dataset using VHEM-
H3M and PPK-SC. Performance is measured in terms of Rand-index, data log-likelihood
and PPK cluster-compactness at each level. Differences in Rand-index at Levels 2, 4 and
5 are statistically significant based on a paired t-test with confidence 95%. The test failed
at Level 3.

Rand-index log-likelihood (×106) PPK cluster-compactness
Level 2 3 4 5 2 3 4 5 2 3 4 5

VHEM-H3M 0.909 0.805 0.610 0.244 -1.494 -3.820 -5.087 -6.172 0.224 0.059 0.020 0.005
PPK-SC 0.900 0.807 0.452 0.092 -3.857 -5.594 -6.163 -6.643 0.324 0.081 0.026 0.008

suggests that by learning new cluster centers, the VHEM-H3M algorithm retains more

information on the clusters’ structure than PPK-SC. Finally, compared to VHEM-H3M,

PPK-SC produces clusters that are more compact in terms of PPK similarity. However,

this does not necessarily imply a better agreement with the ground truth clustering, as

evinced by the Rand-index metrics.

4.5.3 Clustering Synthetic Data

In this experiment, we compare VHEM-H3M and PPK-SC on clustering a syn-

thetic dataset of HMMs.

Dataset and Setup

The synthetic dataset of HMMs is generated as follows. Given a set of C HMMs

{M (c)}Cc=1, for each HMM we synthesize a set of K “noisy” versions of the original

HMM. Each “noisy” HMM M̃
(c)
k (k = 1, . . .K) is synthesized by generating a random

sequence y1:T of length T from M (c), corrupting it with Gaussian noise ∼N (0,σ2
n Id),

and estimating the parameters of M̃
(c)
k on the corrupted version of y1:T . Note that this

procedure adds noise in the observation space. The number of noisy versions (of each

given HMM), K, and the noise variance, σ2
n , will be varied during the experiments.

The collection of original HMMs was created as follows. Their number was
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always set to C = 4, the number of hidden states of the HMMs to S = 3, the emission

distributions to be single, one-dimensional Gaussians (i.e., GMMs with M = 1 compo-

nent), and the length of the sequences to T = 100. For all original HMMs M (c), if not

otherwise specified, the initial state probability, the state transition matrix, and the means

and variances of the emission distributions were fixed as

π
(c) =


1/3

1/3

1/3

 , A(c) =


0.8 0.1 0.1

0.2 0.8 0

0 0.2 0.8

 ,
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µ
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µ
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σ
(c)
ρ

2
= 0.5 ∀ρ, ∀c.

We consider three different experimental settings. In the first setting, experiment (a), the

HMMs M (c) only differ in the means of the emission distributions,


µ
(1)
1 = 1

µ
(1)
2 = 2

µ
(1)
3 = 3

,


µ
(2)
1 = 3

µ
(2)
2 = 2

µ
(2)
3 = 1

,


µ
(3)
1 = 1

µ
(3)
2 = 2

µ
(3)
3 = 2

,


µ
(4)
1 = 1

µ
(4)
2 = 3

µ
(4)
3 = 3

(4.32)

In the second setting, experiment (b), the HMMs differ in the variances of the emission

distributions,

σ
(1)
ρ

2
= 0.5, σ

(2)
ρ

2
= 0.1, σ

(3)
ρ

2
= 1, σ

(4)
ρ

2
= 0.05, ∀ρ. (4.33)
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In the last setting, experiment (c), the HMMs differ in the transition matrices,

A(1)=


0.8 0.1 0.1

0.2 0.8 0

0 0.2 0.8

 A(2)=


0.2 0.2 0.2

0.4 0.6 0

0 0.4 0.6

 (4.34)

A(3)=


0.9 0.05 0.05

0.1 0.9 0

0 0.1 0.9

 A(4)=


0.4 0.3 0.4

0.6 0.4 0

0 0.6 0.4

.

The VHEM-H3M and PPK-SC algorithms are used to cluster the synthesized

HMMs, {{M̃ (c)
k }K

k=1}Cc=1, into C groups, and the quality of the resulting clusterings is

measured with the Rand-index, PPK cluster-compactness, and the expected log-likelihood

of the discovered cluster centers with respect to the original HMMs. The expected log-

likelihood was computed using the lower bound, as in (4.13), with each of the original

HMMs assigned to the most likely HMM cluster center. The results are averages over 10

trials.

The reader is referred to Appendix A.4.2 for experiments where the order of the

model used for clustering does not match the order of the true model used for generating

the data.

Results

Figure 4.3 reports the performance metrics when varying the number K ∈

{2,4,8,16,32} of noisy versions of each of the original HMMs, and the noise variance

σ2
n ∈ {0.1,0.5,1}, for the three experimental settings. (Note that, in each trial, for each

class, we first generated 32 noisy HMMs per class, and then, varying K ∈ {4,8,16,32},

we subsampled only K of them.) For the majority of settings of K and σ2
n , the clustering

produced by VHEM-H3M is superior to the one produced by PPK-SC, for each of the



107

considered metrics (i.e., in the plots, solid lines are usually above dashed lines of the

same color). The only exception is in experiment (b) where, for low noise variance (i.e.,

σ2
n = 0.1) PPK-SC is the best in terms of Rand-index and cluster compactness. It is

interesting to note that the gap in performance between VHEM-H3M and PPK-SC is

generally larger at low values of K. We believe this is because, when only a limited

number of input HMMs is available, PPK-SC produces an embedding of lower quality.

This does not affect VHEM-H3M, since it clusters in HMM distribution space and does

not use an embedding.

Note that the Rand-Index values for experiment (c) (i.e., different state transition

matrices) are superior to the corresponding ones in experiments (a) and (b) (i.e., different

emission distributions) for both VHEM-H3M and PPK-SC. This shows that VHEM-

H3M (and slightly less robustly PPK-SC as well) can cluster dynamics characterized

by different hidden states processes more easily than dynamics that differ only in the

emission distributions. In addition, VHEM-H3M is more robust to noise than PPK-SC,

as demonstrated by the experiments with σ2
n = 1 (blue lines).

These results suggest that, by clustering HMMs directly in distribution space,

VHEM-H3M is generally more robust than PPK-SC, the performance of which instead

depends on the quality of the underlying embedding.

Finally, the results in Figure 4.3 show only small fluctuations across different

values of K at each noise value, suggesting stability of the clustering results (relative to

the ground truth clustering) for both VHEM-H3M and PPK-SC, to both subsampling

and jittering (i.e., addition of noise) [76]. In particular, from the expected log-likelihood

values (central column in Figure 4.3), we evince that the similarity of the discovered

clustering to the true distribution (i.e., the original HMMs) is not largely affected by the

amount of subsampling, except when only as little as the 12.5% of the data is used (when

K = 4).
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4.6 Density Estimation Experiments

In this section, we present an empirical study of VHEM-H3M for density esti-

mation, in automatic annotation and retrieval of music (Section 4.6.1) and hand-written

digits (Section 4.6.2).

4.6.1 Music Annotation and Retrieval

In this experiment, we evaluate VHEM-H3M for estimating annotation models

in content-based music auto-tagging. As a generative time-series model, H3Ms allow

to account for timbre (i.e., through the GMM emission process) as well as longer term

temporal dynamics (i.e., through the HMM hidden state process), when modeling musical

signals. Therefore, in music annotation and retrieval applications, H3Ms are expected

to prove more effective than existing models that do not explicitly account for temporal

information [159, 106, 55, 81].

Music Dataset

We consider the CAL500 collection from [159], which consists of 502 songs and

provides binary annotations with respect to a vocabulary V of 149 tags, ranging from

genre and instrumentation, to mood and usage. To represent the acoustic content of a

song we extract a time series of audio features Y = {y1, . . . ,y|Y |}, by computing the first

13 Mel frequency cepstral coefficients (MFCCs) [135] over half-overlapping windows of

46ms of audio signal, augmented with first and second instantaneous derivatives. The

song is then represented as a collection of audio fragments, which are sequences of

T = 125 audio features (approximately 6 seconds of audio), using a dense sampling with

80% overlap.
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Music Annotation Models

Automatic music tagging is formulated as a supervised multi-label problem [28],

where each class is a tag from V . We approach this problem by modeling the audio

content for each tag with a H3M probability distribution. I.e., for each tag, we estimate

an H3M over the audio fragments of the songs in the database that have been associated

with that tag, using the hierarchical estimation procedure based on VHEM-H3M. More

specifically, the database is first processed at the song level, using the EM algorithm

to learn a H3M with K(s) = 6 components for each song11 from its audio fragments.

Then, for each tag, the song-level H3Ms labeled with that tag are pooled together to

form a large H3M, and the VHEM-H3M algorithm is used to reduce this to a final H3M

tag-model with K = 3 components (τ = 10 and N = NvNtK(s), where Nv = 1000 and Nt

is the number of training songs for the particular tag).

Given the tag-level models, a song can be represented as a vector of posterior

probabilities of each tag (a semantic multinomial, SMN), by extracting features from the

song, computing the likelihood of the features under each tag-level model, and applying

Bayes’ rule.12 A test song is annotated with the top-ranking tags in its SMN. To retrieve

songs given a tag query, a collection of songs is ranked by the tag’s probability in their

SMNs.

We compare VHEM-H3M with three alternative algorithms for estimating the

H3M tag models: PPK-SC, PPK-SC-hybrid, and EM-H3M.13 For all three alternatives,

11Most pop songs have 6 structural parts: intro, verse, chorus, solo, bridge and outro.
12We compute the likelihood of a song under a tag model as the geometric average of the likelihood of

the individual segments, and further normalized it by the length of the segments to prevent the posteriors
from being too “peaked” [42].

13For this experiment, we were not able to successfully estimate accurate H3M tag models with SHEM-
H3M. In particular, SHEM-H3M requires generating an appropriately large number of real samples
to produce accurate estimates. However, due to the computational limits of our cluster, we were able
to test SHEM-H3M only using a small number of samples. In preliminary experiments we registered
performance only slightly above chance level and training times still twice longer than for VHEM-H3M.
For a comparison between VHEM-H3M and SHEM-H3M on density estimation, the reader can refer to
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we use the same number of mixture components in the tag models (K = 3). For the two

PPK-SC methods, we leverage the work of [86] to learn H3M tag models, and use it in

place of the VHEM-H3M algorithm in the second stage of the hierarchical estimation

procedure. We found that it was necessary to implement the PPK-SC approaches with

song-level H3Ms with only K(s) = 1 component (i.e., a single HMM), since the computa-

tional cost for constructing the initial embedding scales poorly with the number of input

HMMs.14 PPK-SC first applies spectral clustering to the song-level HMMs and then

selects as the cluster centers the HMMs that map closest to the spectral cluster centers

in the spectral embedding. PPK-SC-hybrid is a hybrid method combining PPK-SC for

clustering, and VHEM-H3M for estimating the cluster centers. Specifically, after spectral

clustering, HMM cluster centers are estimated by applying VHEM-H3M (with K(r) = 1)

to the HMMs assigned to each of the resulting clusters. In other words, PPK-SC and

PPK-SC-hybrid use spectral clustering to summarize a collection of song-level HMMs

with a few HMM centers, forming a H3M tag model. The mixture weight of each HMM

component (in the H3M tag model) is set proportional to the number of HMMs assigned

to that cluster.

For EM-H3M, the H3M tag models were estimated directly from the audio

fragments from the relevant songs using the EM-H3M algorithm.15 Empirically, we

found that, due to its runtime and RAM requirements, for EM-H3M we must use non-

overlapping audio-fragments and evenly subsample by 73% on average, resulting in

14.5% of the sequences used by VHEM-H3M. Note that, however, EM-H3M is still

using 73% of the actual song data (just with non-overlapping sequences). We believe this

to be a reasonable comparison between EM and VHEM, as both methods use roughly

the experiment in Section 4.6.2 on online hand-writing classification and retrieval.
14Running PPK-SC with K(s) = 2 took 3958 hours in total (about 4 times more than when setting

K(s) = 1), with no improvement in annotation and retrieval performance. A larger K(s) would yield
impractically long learning times.

15The EM algorithm has been used to estimate HMMs from music data in previous work [144, 140].
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similar resources (the sub-sampled EM is still 3 times slower, as reported in Table

6.4). Based on our projections, running EM over densely sampled song data would

require roughly 9000 hours of CPU time (e.g., more than 5 weeks when parallelizing the

algorithm over 10 processors), as opposed to 630 hours for VHEM-H3M. This would

be extremely cpu-intensive given the computational limits of our cluster. The VHEM

algorithm, on the other hand, can learn from considerable amounts of data while still

maintaining low runtime and memory requirements.16

Finally, we also compare against two state-of-the-art models for music tagging,

HEM-DTM [42], which is based on a different time-series model (mixture of dynamic

textures), and HEM-GMM [159], which is a bag-of-features model using GMMs. Both

methods use efficient hierarchical estimation based on a HEM algorithm [33, 164] to

obtain the tag-level models.17

Performance Metrics

A test song is annotated with the 10 most likely tags, and annotation performance

is measured with the per-tag precision (P), recall (R), and F-score (F), averaged over

all tags. If |wH | is the number of test songs that have the tag w in their ground truth

annotations, |wA| is the number of times an annotation system uses w when automatically

tagging a song, and |wC| is the number of times w is correctly used, then precision, recall

and F-score for the tag w are defined as:

P =
|wC|
|wA|

, R =
|wC|
|wH |

, F = 2
(
(P)−1 +(R)−1)−1

. (4.35)

16For example, consider learning a tag-level H3M from 200 songs, which corresponds to over 3GB of
audio fragments. Using the hierarchical estimation procedure, we first model each song (in average, 15MB
of audio fragments) individually as a song-level H3M, and we save the song models (150 KB of memory
each). Then, we pool the 200 song models into a large H3M (in total 30MB of memory), and reduce it to a
smaller tag-level H3M using the VHEM-H3M algorithm.

17Both auto-taggers operate on audio features extracted over half-overlapping windows of 46ms. HEM-
GMM uses MFCCs with first and second instantaneous derivatives [159]. HEM-DTM uses 34-bins of
Mel-spectral features [42], which are further grouped in audio fragments of 125 consecutive features.



112

Table 4.4. Annotation and retrieval performance on CAL500, for VHEM-H3M, PPK-SC,
PPK-SC-hybrid, EM-H3M, HEM-DTM [42] and HEM-GMM [159].

annotation retrieval
P R F MAP P@5 P@10 P@15 time (h)

VHEM-H3M 0.446 0.211 0.260 0.440 0.474 0.451 0.435 629.5
PPK-SC 0.299 0.159 0.151 0.347 0.358 0.340 0.329 974.0
PPK-SC-hybrid 0.407 0.200 0.221 0.415 0.439 0.421 0.407 991.7
EM-H3M 0.415 0.214 0.248 0.423 0.440 0.422 0.407 1860.4
HEM-DTM 0.431 0.202 0.252 0.439 0.479 0.454 0.428 -
HEM-GMM 0.374 0.205 0.213 0.417 0.441 0.425 0.416 -

Retrieval is measured by computing per-tag mean average precision (MAP) and precision

at the first k retrieved songs (P@k), for k ∈ {5,10,15}. The P@k is the fraction of true

positives in the top-k of the ranking. MAP averages the precision at each point in the

ranking where a song is correctly retrieved. All reported metrics are averages over the

97 tags that have at least 30 examples in CAL500 (11 genre, 14 instrument, 25 acoustic

quality, 6 vocal characteristics, 35 emotion and 6 usage tags), and are the result of 5-fold

cross-validation.

Finally, we also record the total time (in hours) to learn the 97 tag-level H3Ms

on the 5 splits of the data. For hierarchical estimation methods (VHEM-H3M and the

PPK-SC approaches), this also includes the time to learn the song-level H3Ms.

Results

In Table 6.4 we report the performance of the various algorithms for both annota-

tion and retrieval on the CAL500 dataset. Looking at the overall runtime, VHEM-H3M

is the most efficient algorithm for estimating H3M distributions from music data, as

it requires only 34% of the runtime of EM-H3M, and 65% of the runtime of PPK-SC.

The VHEM-H3M algorithm capitalizes on the first stage of song-level H3M estimation
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(about one third of the total time) by efficiently and effectively using the song-level H3Ms

to learn the final tag models. Note that the runtime of PPK-SC corresponds to setting

K(s) = 1. When we set K(s) = 2, we registered a running time four times longer, with no

significant improvement in performance.

The gain in computational efficiency does not negatively affect the quality of

the corresponding models. On the contrary, VHEM-H3M achieves better performance

than EM-H3M,18 strongly improving the top of the ranked lists, as evinced by the higher

P@k scores. Relative to EM-H3M, VHEM-H3M has the benefit of regularization, and

during learning can efficiently leverage all the music data condensed in the song H3Ms.

VHEM-H3M also outperforms both PPK-SC approaches on all metrics. PPK-SC discards

considerable information on the clusters’ structure by selecting one of the original HMMs

to approximate each cluster. This significantly affects the accuracy of the resulting

annotation models. VHEM-H3M, on the other hand, generates novel HMM cluster

centers to summarize the clusters. This allows to retain more accurate information in the

final annotation models.

PPK-SC-hybrid achieves considerable improvements relative to standard PPK-

SC, at relatively low additional computational costs.19 This further demonstrates that the

VHEM-H3M algorithm can effectively summarize in a smaller model the information

contained in several HMMs. In addition, we observe that VHEM-H3M still outperforms

PPK-SC-hybrid, suggesting that the former produces more accurate cluster centers and

density estimates. In fact, VHEM-H3M couples clustering and learning HMM cluster

centers, and is entirely based on maximum likelihood for estimating the H3M annotation

models. PPK-SC-hybrid, on the contrary, separates clustering and parameter estimation,

18The differences in performance are statistically significant based on a paired t-test with 95% confidence.
19In PPK-SC-hybrid, each run of the VHEM-H3M algorithm converges quickly since there is only one

HMM component to be learned, and can benefit from clever initialization (i.e., to the HMM mapped the
closest to the spectral clustering center).
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and optimizes them against two different metrics (i.e., PPK similarity and expected

log-likelihood, respectively). As a consequence, the two phases may be mismatched,

and the centers learned with VHEM may not be the best representatives of the clusters

according to PPK affinity.

Finally, VHEM-H3M compares favorably to the auto-taggers based on other

generative models. First, VHEM-H3M outperforms HEM-GMM, which does not model

temporal information in the audio signal, on all metrics. Second, the performances of

VHEM-H3M and HEM-DTM (a continuous-state temporal model) are not statistically

different based on a paired t-test with 95% confidence, except for annotation precision

where VHEM-H3M scores significantly higher. Since HEM-DTM is based on linear

dynamic systems (a continuous-state model), it can model stationary time-series in a

linear subspace. In contrast, VHEM-H3M uses HMMs with discrete states and GMM

emissions, and can hence better adapt to non-stationary time-series on a non-linear

manifold. This difference is illustrated in the experiments: VHEM-H3M outperforms

HEM-DTM on the human MoCap data (see Table 4.2), which has non-linear dynamics,

while the two perform similarly on the music data (see Table 6.4), where audio features

are often stationary over short time frames.

4.6.2 On-Line Hand-Writing Data Classification and Retrieval

In this experiment, we investigate the performance of the VHEM-H3M algorithm

in estimating class-conditional H3M distributions for automatic classification and retrieval

of on-line hand-writing data.

Dataset

We consider the Character Trajectories Data Set [9], which is a collection of 2858

examples of characters from the same writer, originally compiled to study handwriting
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motion primitives [169].20 Each example is the trajectory of one of the 20 different

characters that correspond to a single pen-down segment. The data was captured from a

WACOM tablet at 200 Hz, and consists of (x,y)-coordinates and pen tip force. The data

has been numerically differentiated and Gaussian smoothed [169]. Half of the data is

used for training, with the other half held out for testing.

Classification Models and Setup

From the hand-writing examples in the training set, we estimate a series of class-

conditional H3M distributions, one for each character, using hierarchical estimation

with the VHEM-H3M algorithm. First, for each character, we partition all the relevant

training data into groups of 3 sequences, and learn a HMM (with S = 4 states and

M = 1 component for the GMM emissions) from each group using the Baum-Welch

algorithm. Next, we estimate the class-conditional distribution (classification model) for

each character by aggregating all the relevant HMMs and summarizing them into a H3M

with K = 4 components using the VHEM-H3M algorithm (τ = 10 and N = NvNc, where

Nv = 10,21 and Nc is the number of intermediate models for that character). Using the

character-level H3Ms and Bayes’ rule, for each hand-writing example in the test set we

compute the posterior probabilities of all of the 20 characters. Each example is classified

as the character with largest posterior probability. For retrieval given a query character,

examples in the test set are ranked by the character’s posterior probability.

We repeated the same experiment using PPK-SC or SHEM-H3M (τ = 10, N =

20 Even if we limit this experiment to the dataset of [169], we would like to refer the interest readers to
the dataset of [102], which is a collection of word trajectories (as opposed to character trajectories).

21Note that choosing a lower value of Nv (compared to the music experiments) plays a role in making
the clustering algorithm more reliable. Using fewer virtual samples equates to attaching smaller “virtual
probability masses” to the input HMMs, and leads to less certain assignments of the input HMMs to the
clusters (cf. equation 4.19). This determines more mixing in the initial iterations of the algorithm (e.g.,
similar to higher annealing temperature), and reduces the risk of prematurely specializing any cluster to
one of the original HMMs. This effect is desirable, since the input HMMs are estimated over a smaller
number of sequences (compared to the music experiments) and can therefore be noisier and less reliable.
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1000) to estimate the classification models from the intermediate HMMs. Finally, we

considered the EM-H3M algorithm, which directly uses the training sequences to learn

the class-conditional H3M (K = 4).

Since VHEM-H3M, SHEM-H3M and EM-H3M are iterative algorithms, we

studied them when varying the stopping criterion. In particular, the algorithms were

terminated when the relative variation in the value of the objective function between

two consecutive iterations was lower than a threshold ∆LL, which we varied in the set

{10−2,10−3,10−4,10−5}.22

Finally, we measure classification and retrieval performance on the test set using

the classification accuracy, and the average per-tag P@3, P@5 and MAP. We also report

the total training time, which includes the time used to learn the intermediate HMMs. The

experiments consisted of 5 trials with different random initializations of the algorithms.

Results

Table 4.5 lists the classification and retrieval performance on the test set for the

various methods. Consistent with the experiments on music annotation and retrieval (Sec-

tion 4.6.1), VHEM-H3M performs better than PPK-SC on all metrics. By learning novel

HMM cluster centers, VHEM-H3M estimates H3M distributions that are representative

of all the relevant intermediate HMMs, and hence of all the relevant training sequences.

While EM-H3M is the best in classification (at the price of longer training times), VHEM-

H3M performs better in retrieval, as evinced by the P@3 and P@5 scores. In terms

of training time, VHEM-H3M and PPK-SC are about 5 times faster than EM-H3M. In

particular, PPK-SC is the fastest algorithm, since the small number of input HMMs (i.e.,

on average 23 per character) allows to build the spectral clustering embedding efficiently.

The version of HEM based on actual sampling (SHEM-H3M) performs better than

22In a similar experiment where we used the number of iterations as the stopping criterion, we registered
similar results.
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Table 4.5. Classification and retrieval performance, and training time on the Character
Trajectories Data Set, for VHEM-H3M, PPK-SC, SHEM-H3M, and EM-H3M.

stop retrieval classification
∆LL P@3 P@5 MAP Accuracy total time (s)

VHEM-H3M

10−2 0.750 0.750 0.738 0.618 1838.34
10−3 0.717 0.750 0.741 0.619 1967.55
10−4 0.733 0.790 0.773 0.648 2210.77
10−5 0.750 0.820 0.775 0.651 2310.93

SHEM-H3M

10−2 0.417 0.440 0.517 0.530 13089.32
10−3 0.683 0.680 0.728 0.664 23203.44
10−4 0.700 0.750 0.753 0.689 35752.20
10−5 0.700 0.750 0.754 0.690 50094.36

EM-H3M

10−2 0.583 0.610 0.667 0.646 6118.53
10−3 0.617 0.650 0.731 0.674 7318.56
10−4 0.650 0.710 0.756 0.707 9655.08
10−5 0.517 0.560 0.665 0.635 10957.38

PPK-SC - 0.600 0.700 0.698 0.646 1463.54

VHEM-H3M in classification, but VHEM-H3M has higher retrieval scores. However,

the training time for SHEM-H3M is approximately 15 times longer than for VHEM-

H3M. These differences in performance can be understood in terms of the different types

of approximation used by SHEM-H3M and VHEM-H3M. The sampling operation of

SHEM-H3M provides an unbiased estimator, whose variance depends on the number

of samples used. Hence, in order to reliably estimate the reduced model (i.e., making

the variance small), the SHEM-H3M algorithm requires generating and handling a

sufficiently large number of samples (relative to the model order/complexity, [75]). In

contrast, the variational approximation of VHEM-H3M does not require generating

samples (and hence avoids the problem of large variances associate to relatively small

samples), but introduces a bias in the estimator [71]. Hence, it is not surprising that,

on a relatively less complex problem where a relatively smaller sample size suffices,

SHEM-H3M can perform more robustly than VHEM-H3M (even if still at a larger
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computational cost).

It is also interesting to note that EM-H3M appears to suffer from overfitting of

the training set, as suggested by the overall drop in performance when the stopping

criterion changes from ∆LL = 10−4 to ∆LL = 10−5. In contrast, both VHEM-H3M

and SHEM-H3M consistently improve on all metrics as the algorithm converges (again

looking at ∆LL ∈ {10−4,10−5}). These results suggest that the regularization effect of

hierarchical estimation, which is based on averaging over more samples (either virtual or

actual), can positively impact the generalization of the learned models.23

Finally, we elaborate on how these results compare to the experiments on music

annotation and retrieval (in Section 4.6.1). First, in the Character Trajectory Data Set

the number of training sequences associated with each class (i.e, each character) is small

compared to the CAL500 dataset.24 As a result, the EM-H3M algorithm is able to process

all the data, and achieve good classification performance. However, EM-H3M still needs

to evaluate the likelihood of all the original sequences at each iteration. This leads to

slower iterations, and results in a total training time about 5 times longer than that of

VHEM-H3M (see Table 4.5). Second, the Character Trajectory data is more “controlled”

than the CAL500 data, since each class corresponds to a single character, and all the

examples are from the same writer. As a consequence, there is less variation in the

intermediate HMMs (i.e., they are clustered more closely), and several of them may

summarize the cluster well, providing good candidate cluster centers for PPK-SC. In

conclusion, PPK-SC faces only a limited loss of information when selecting one of the

initial HMMs to represent each cluster, and achieves reasonable performances.

23For smaller values of ∆LL (e.g., ∆LL < 10−5), the performance of EM-H3M did not improve.
24In the Character Trajectory dataset there are on average 71 training sequences per character. In

CAL500, each tag is associated with thousands of training sequences at the song level (e.g., an average of
about 8000 audio fragments per tag).
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Table 4.6. Annotation and retrieval performance on CAL500 for VHEM-H3M when
varying the virtual sample parameters Nv and τ .

Nv = 1000 τ = 10
τ = 2 τ = 5 τ = 10 τ = 20 Nv = 1 Nv = 10 Nv = 100 Nv = 1000

P@5 0.4656 0.4718 0.4738 0.4734 0.4775 0.4689 0.4689 0.4738
P@10 0.4437 0.4487 0.4507 0.4478 0.4534 0.4491 0.4466 0.4507
P@15 0.4236 0.4309 0.4346 0.4327 0.4313 0.4307 0.4242 0.4346

4.6.3 Robustness of VHEM-H3M to Number and Length of
Virtual Samples

The generation of virtual samples in VHEM-H3M is controlled by two parameters:

the number of virtual sequences (N), and their length (τ). In this section, we investigate

the impact of these parameters on annotation and retrieval performance on CAL500. For

a given tag t, we set N = NvNtK(s), where Nv is a constant, Nt the number of training

songs for the tag, and K(s) the number of mixture components for each song-level H3M.

Starting with (Nv,τ) = (1000,10), each parameter is varied while keeping the other one

fixed, and annotation and retrieval performance on the CAL500 dataset are calculated, as

described in Section 4.6.1.

Table 4.6 presents the results, for τ ∈ {2,5,10,20} and Nv ∈ {1,10,100,1000}.

The performances when varying τ are close on all metrics. For example, average P@5,

P@10 and P@15 vary in small ranges (0.0082, 0.0070 and 0.0110, respectively). Simi-

larly, varying the number of virtual sequences Nv has a limited impact on performance

as well.25 This demonstrates that VHEM-H3M is fairly robust to the choice of these

parameters.

Finally, we tested VHEM-H3M for music annotation and retrieval on CAL500,

25Note that the E-step of the VHEM-H3M algorithm averages over all possible observations compatible
with the input models, also when we choose a low value of Nv (e.g., Nv = 1). The number of virtual
samples controls the “virtual mass” of each input HMMs and thus the certainty of cluster assignments.
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using virtual sequences of the same length as the audio fragments used at the song level,

i.e., τ = T = 125. Compared to τ = 10 (the setting used in earlier experiments), we

registered an 84% increase in total running time, with no corresponding improvement in

performance. Thus, in our experimental setting, making the virtual sequences relatively

short positively impacts the running time, without reducing the quality of the learned

models.

4.7 Conclusions

In this paper, we presented a variational HEM (VHEM) algorithm for clustering

HMMs with respect to their probability distributions, while generating a novel HMM

center to represent each cluster. Experimental results demonstrate the efficacy of the

algorithm on various clustering, annotation, and retrieval problems involving time-series

data, showing improvement over current methods. In particular, using a two-stage,

hierarchical estimation procedure—learn H3Ms on many smaller subsets of the data, and

summarize them in a more compact H3M model of the data—the VHEM-H3M algorithm

estimates annotation models from data more efficiently than standard EM and also

improves model robustness through better regularization. Specifically, averaging over

all possible virtual samples prevents over-fitting, which can improve the generalization

of the learned models. Moreover, using relatively short virtual sequences positively

impacts the running time of the algorithm, without negatively affecting its performance

on practical applications. In addition, we have noted that the VHEM-H3M algorithm is

robust to the choice of the number and length of virtual samples.

In our experiments, we have implemented the first stage of the hierarchical

estimation procedure by partitioning data in non-overlapping subsets (and learning an

intermediate H3M on each subset). In particular, partitioning the CAL500 data at the

song level had a practical advantage. Since individual songs in CAL500 are relevant
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to several tags, the estimation of the song H3Ms can be executed one single time for

each song in the database, and re-used in the VHEM estimation of all the associated

tag models. This has a positive impact on computational efficiency. Depending on the

particular application, however, a slightly different implementation of this first stage (of

the hierarchical estimation procedure) may be better suited. For example, when estimating

a H3M from a very large amount of training data, one could use a procedure that does

not necessarily cover all data, inspired by [94]. If n is the size of the training data, first

estimate B > 1 intermediate H3Ms on as many (possibly overlapping) “little” bootstrap

subsamples of the data,26 each of size b < n. Then summarize all the intermediate H3Ms

into a final H3M using the VHEM-H3M algorithm.

In future work we plan to extend VHEM-H3M to the case where all HMMs share

a large GMM universal background model for the emission distributions (with each

HMM state having a different set of weights for the Gaussian components), which is

commonly used in speech [82, 18, 135] or in hand-writing recognition [142]. This would

allow for faster training (moving the complexity to estimating the noise background

model) and would require a faster implementation of the inference (e.g., using a strategy

inspired by [45]). In addition, we plan to derive a HEM algorithm for HMMs with

discrete emission distributions, and compare its performance to the work presented here

and to the extension with the large GMM background model.

Finally, in this work we have not addressed the model selection problem, i.e.,

selecting the number of reduced mixture components. Since VHEM is based on max-

imum likelihood principles, it is possible to apply standard statistical model selection

techniques, such as Bayesian information criterion (BIC) and Akaike information cri-

terion (AIC) [105]. Alternatively, inspired by Bayesian non-parametric statistics, the

26Several techniques have been proposed to bootstrap from sequences of samples, for example refer to
[72].
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VHEM formulation could be extended to include a Dirichlet process prior [23], with the

number of components adapting to the data.

4.8 Acknowledgements

Chapter 4, in full, is a reprint of the material as it appears in the Journal of

Machine Learning Research, 15, pp. 697-747, 2014, E. Coviello, A.B. Chan and G.

Lanckriet. The dissertation author was the primary investigator and co-author of this

paper.



123

Algorithm 4. VHEM algorithm for H3Ms

1: Input: base H3M M (b) = {ω(b)
i ,M

(b)
i }K(b)

i=1 , number of virtual samples N.
2: Initialize reduced H3M M (r) = {ω(r)

j ,M
(r)
j }K(r)

j=1.
3: repeat
4: {Variational E-step}
5: Compute optimal variational distributions and variational lower bounds:
6: for each pair of HMMs M

(s)
i and M

(r)
j

7: for each pair of emission GMMs for state β of M
(s)
i and ρ of M

(r)
j :

8: Compute optimal variational distributions η̂
(i,β ),( j,ρ)
`|m as in (4.18)

9: Compute optimal lower bound L
(i,β ),( j,ρ)

GMM to expected log-likelihood as
in (4.22)

10: Compute optimal variational distributions for HMMs as in Appendin B
φ̂

i, j
1 (ρ1|β1), φ̂

i, j
t (ρt |ρt−1,βt) for t = τ, . . . ,2

11: Compute optimal lower bound L i, j
HMM to expected log-likelihood as in (4.21)

12: Compute optimal assignment probabilities:

ẑi j =
ω

(r)
j exp(Nω

(b)
i L i, j

HMM)

∑ j′ω
(r)
j′ exp(Nω

(b)
i L i, j′

HMM)

13: Compute aggregate summary statistics for each pair of HMMs M
(s)
i and M

(r)
j as

in Section 4.3.3:

ν̂
i, j
1 (ρ) =

S

∑
β=1

ν
i, j
1 (ρ,β ), ν̂ i, j(ρ,β ) =

τ

∑
t=1

ν
i, j
t (ρ,β ),

ξ̂
i, j(ρ,ρ ′) =

τ

∑
t=2

S

∑
β=1

ξ
i, j
t (ρ,ρ ′,β )

14: {M-step}
15: For each component M

(r)
j , recompute parameters using (4.26)-(4.30).

16: until convergence
17: Output: reduced H3M {ω(r)

j ,M
(a)
j }K(r)

j=1.
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Experiment (a): different emission means.

4 8 16 32
0.5

0.6

0.7

0.8

0.9

1

Noisy HMMs per original HMM

R
a
n
d
−

In
d
e
x

4 8 16 32
−160

−150

−140

−130

−120

−110

Noisy HMMs per original HMM

L
L
 t
o
 o

ri
g
in

a
l 
H

M
M

s

4 8 16 32
3.65

3.7

3.75

3.8

3.85

3.9

3.95

Noisy HMMs per original HMM

C
lu

s
te

r 
c
o
p
m

a
c
tn

e
s
s
 (

P
P

K
)

Experiment (b): different emission variances.
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Experiment (c): different state transition matrices.

4 8 16 32
0.5

0.6

0.7

0.8

0.9

1

Noisy HMMs per original HMM

R
a
n
d
−

In
d
e
x

4 8 16 32
−160

−150

−140

−130

−120

−110

Noisy HMMs per original HMM

L
L
 t
o
 o

ri
g
in

a
l 
H

M
M

s

4 8 16 32
3.65

3.7

3.75

3.8

3.85

3.9

3.95

Noisy HMMs per original HMM

C
lu

s
te

r 
c
o
p
m

a
c
tn

e
s
s
 (

P
P

K
)

σ
n

2
=0.1 HEM σ

n

2
=0.1 PPKσ

n

2
=0.5 HEM σ

n

2
=0.5 PPKσ

n

2
=1 HEM σ

n

2
=1 PPK

Figure 4.3. Results on clustering synthetic data with VHEM-H3M and PPK-SC. Per-
formance is measured in terms of Rand-index, expected log-likelihood and PPK cluster-
compactness.



Chapter 5

Combining Content-Based AutoTag-
gers with Decision-Fusion

5.1 Introduction

The recent age of music proliferation has raised the need for automatic algorithms

to efficiently search and discover music. Many successful recommendation systems rely

on textual metadata provided by expert musicologists or social services in the form of

semantic tags – keywords or short phrases that capture relevant characteristics of music

pieces, ranging from genre and instrumentation, to mood and usage. By bridging the gap

between music and human semantics, tags allow semantic retrieval based on transparent

textual descriptions, or query-by-example recommendation based on semantic similarity

(as opposed to acoustic similarity) to a query song.

Meta-data-based methods work well in practice, provided that enough annotations

are available. However, the cold start problem and the prohibitive cost of manual labour

limit their applicability to large-scale applications. Therefore, the deployment of modern

music recommendation systems can benefit from the development of auto-taggers, i.e.,

machine-learning algorithms that automatically analyze and index music with semantic

tags, which can then be used to improve the search experience and speed up the discovery

of desired content.

125
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5.1.1 Previous work

Most auto-taggers are based on music content analysis and are trained from

a database of annotated songs (e.g., see [159, 81, 106, 55]). After extracting a set of

acoustic features from each training song, a series of statistical models are estimated, each

of which capturing the characteristic acoustic patterns in the songs that are associated

with one of the tags from a given vocabulary. When analyzing a new song, the auto-

tagger processes the time series of acoustic features of the song and outputs a vector of

tag-affinities. The affinity-vector can then be transformed into a semantic multinomial

(SMN), i.e., a probability distribution characterizing the relevance of each tag to a

song. A song is then annotated by selecting the top-ranking tags in its SMN, or the

SMN itself can be used as a high-level descriptor, e.g., for retrieving songs based on

semantic similarity. A number of discriminative (e.g., see [106, 55, 60, 167, 150, 29]) and

generative (e.g., see [160, 159, 140, 81]) machine learning algorithms have been proposed

to model predictive acoustic patterns in audio content based on a bag-of-features (BoF)

representation, which treats audio features independently and ignores their temporal

order. Recently, Coviello et al. [40] proposed to leverage dynamic texture mixture

(DTM) models for auto-tagging purposes. More precisely, DTM-based auto-taggers

model audio fragments (i.e., time series of audio features extracted from a few seconds

of musical signal) as the output of linear dynamical systems. This approach explicitly

captures temporal structures in the musical signal, whereas a BoF representation discards

such dynamics.

At a higher level of abstraction, contextual approaches have focused on modeling

the semantic context that drives the correlation between different tags (e.g., a song

tagged with “drums” is more likely to also be tagged with “electric guitar” than “violin”).

While content-based models operate on low-level acoustic features to predict semantic
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multinomials, contextual models are designed to capture meaningful tag correlations

in these SMNs, to reinforce accurate tag predictions while suppressing spurious ones.

So, a contextual model naturally complements a content-based model, which usually

treats tags independently. Combining them has been shown to improve performance.

State-of-the-art solutions are based on discriminative approaches (e.g., support vector

machines [117], boosting [22], ordinal regression [174]) as well as generative models

(e.g., Dirichlet mixture models (DMM) [110]).

5.1.2 Original contribution

The main contribution of this paper is to propose decision-fusion, which uses

semantic context modeling to simultaneously leverage the benefits of different content-

based auto-taggers. Using two or more content-based auto-taggers that emphasize diverse

aspects of the musical signal (e.g., only timbre vs. temporal dynamics), we collect

alternative opinions on each song-tag association. We expect that, besides modeling the

context between tags predicted from the same auto-tagger, context modeling can capture

the correlations that arise between tag predictions based on different auto-taggers, leading

to a more sophisticated system.

This offers a solution to the problem of selecting or combining alternative annota-

tion models that previous work has pointed out. Coviello et al. [40], for example, noted

that even though their DTM-based auto-tagger generally outperformed a BoF approach

based on Gaussian mixture models (GMM), the improvements were most significant on

tags with clear temporal characteristics; for some tags, in fact, the GMM-based model

was still favorable (i.e., tags where “timbre says it all”).

Experimental results show that decision-fusion leads to improved annotation and

retrieval performance compared to i) each individual auto-tagger, ii) each individual

auto-tagger in tandem with a contextual model (the “traditional” context-based approach)
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and iii) various other approaches to combining multiple content-based auto-taggers, such

as fixed-combination rules and the regression-based combination algorithms proposed

by Tomasik et al. [157]. We note that the focus of the latter was slightly different

from our work, since it investigates the combination of tags predicted from different

information sources (i.e., content-based auto-tags, social tags, collaborative-filtering-

based tags), rather than from different content-based auto-taggers only. In addition, as

semantic context modeling is naturally complementary to any content-based auto-tagger,

we corroborate the intuition that there is a benefit in combining DTM-based temporal

modeling and semantic context modeling, which has not been shown before.

The remainder of this paper is organized as follows. A brief review of the

automatic music tagging problem and the models used in this work are presented in

Section 5.2. Section 5.3 discusses decision-fusion. Lastly, the experimental setup and

results are reported in Sections 6.6 and 5.5, respectively.

5.2 Automatic music tagging

The automatic task of music tagging is widely tackled as a supervised multi-class

labeling problem [28], where each class corresponds to a tag wi of a semantic vocabulary

V (e.g., “rock”, “drum”, “tender”, “mellow”). The music content of a song is represented

as a time series of low-level acoustic features Y = {y1, . . . ,yT}, where each feature is

extracted from a short snippet of the audio signal and T depends on the length of the

song. The semantic content with respect to V is represented as an annotation vector

c = (c1, . . . ,c|V |), where ci > 0 only if there is a positive association between a song

and the tag wi. The goal of an auto-tagging system is to infer the relevant semantic

annotations of unseen songs.

At this aim, a set of statistical models is trained to capture the patterns in the

audio feature space associated with each tag in V , from a database D = {(Yd,cd)}|D |d=1
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of annotated songs. Based on the learned tag models, the auto-tagger can process the

acoustic features extracted from a novel song Y and produce a vector of tag-affinities,

which is mapped into a semantic multinomial π = (π1, ...,π|V |) lying on a semantic space

(i.e., ∑i πi = 1 with πi ≥ 0), where πi = P(wi|Y ) represents the probability that the ith

tag applies to song Y .

In order to leverage high level relationships that arise in the tag predictions

of content-based auto-taggers, contextual approaches additionally introduce a second

modeling layer to capture meaningful tag correlations in the SMNs. In particular, a

content-based auto-tagger is used to produce a SMN πd for each song Yd in D , while a

second layer of statistical models is trained onto {(πd,cd)}|D |d=1, to capture which patterns

in the SMNs are predictive for each tag. For a novel song Y , the contextual tag models

can therefore be used to refine the semantic multinomial π produced by the content-based

auto-tagger.

Music annotation involves finding the tags that best describe a song; this is

achieved by selecting the subset of tags that peak in its semantic multinomial. Retrieval

given a one-tag query, requires ranking all songs in a database based on their relevance

to the query, e.g., the corresponding entry in the semantic multinomials [159].

In the following we review a variety of content-based auto-tagging strategies,

where low-level acoustic content is represented either as a bag-of-features (Sections 5.2.1

and 5.2.1) or as a time series of features (Section 5.2.1). Additionally, Section 5.2.2

introduces a contextual approach for modeling tag correlations as well.

5.2.1 Content modeling

Content-based auto-taggers have been designed to model the acoustic content

associated with tags and represented as a bag-of-features using both generative and

discriminative models, as in Sections 5.2.1 and 5.2.1, respectively; conversely, the use
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of time series of audio features for music tagging has been considered in the generative

approach of Section 5.2.1 only.

The Gaussian mixture model (GMM)

Turnbull et al. [159], proposed to capture the most prominent acoustic textures

associated to each tag wi in V with a probability distribution p(y|wi) over the space of

audio features y, which is a Gaussian mixture model (GMM):

p(y|wi) =
R

∑
r=1

awi
r N (y|µwi

r ,Σwi
r ) , (5.1)

where R is the number of mixture components, N (·|µ,Σ) a multivariate Gaussian

distribution with mean µ and covariance matrix Σ, and awi
r the mixing weights. The

parameters {awi
r ,µwi

r ,Σwi
r }R

r=1 of each tag model p(y|wi) are estimated from the bag-of-

features extracted from the songs in D that are positively associated with wi, using the

hierarchical expectation-maximization (EM) algorithm [164].

Given the audio content of a new song Y = {y1, ...,yT}, the relevance of each

tag wi is computed using the Bayes rule:

πi = P(wi|Y ) =
p(Y |wi)P(wi)

p(Y )
, (5.2)

where P(wi) is the tag prior (assumed to be uniform) and p(Y ) the song prior, i.e.,

p(Y ) = ∑
|V |
j=1 p(Y |w j)P(w j). The likelihood term in (5.2) is computed as the geometric

average of the individual sequence likelihoods, i.e., p(Y |wi) = ∏
T
t=1 p(yt |wi)

1
T .

Boosting (BST)

The boosting approach proposed by Eck et al. [55] is a supervised discriminative

algorithm that learns a binary classifier for each tag wi in the vocabulary V , from both the
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positive and the negative training examples for that tag. More specifically, it constructs

a strong classifier which combines a set of simpler classifiers, called weak learners, in

an iterative way. As weak learners, according to [22], we use single stumps (i.e., binary

thresholding on one low-level acoustic feature).

A novel song Y is classified by each of the binary classifiers and Platt scaling is

applied to produce a probability estimate πi = P(wi|Y ) for each tag wi. We will refer to

this approach as BST.

Temporal modeling (DTM)

Coviello et al. [40] proposed a novel auto-tagger built upon the DTM model,

which explicitly captures both the timbral and the temporal structures of music that are

most predictive for each tag. Specifically, the dynamic texture (DT) model [54] treats

an audio fragment y1:τ as output of a linear dynamical system. The model consists of

a double embedded stochastic process, in which a lower dimensional Gauss-Markov

process xt encodes the dynamics (evolution) of the acoustic component yt over time

Each tag distribution is modeled with a dynamic texture mixture (DTM) [32]

probability density over sequences of audio feature vectors:

p(y1:τ |wi) =
R

∑
r=1

a(wi)
r p(y1:τ |Θ(wi)

r ) , (5.3)

where R is the number of mixtures and Θ
(wi)
r is the rth DT component. The parameters

{a(wi)
r ,Θ

(wi)
r }R

r=1 are estimated based on the audio fragments extracted from the songs in

D positively associated with the tag wi, using an efficient hierarchical EM algorithm for

DTM (HEM-DTM) [33].

Given the audio fragments extracted from a new song Y = {y1
1:τ , . . . , yF

1:τ}, where

F depends on the length of the song, the relevance of tag wi is computed using Bayes’ rule
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(5.2), with the likelihood computed as the geometric average of the individual sequence

likelihoods smoothed by the sequence length τ , i.e., p(Y |wi) = ∏
F
t=1 p(yt

1:τ |wi)
1

Fτ .

5.2.2 Context modeling (DMM)

As mentioned in Section 5.1.1, different approaches have been proposed to model

contextual relationships in SMNs; in this work, we use the DMM [110]. The DMM is a

generative model that assumes the SMNs π of the songs positively associated to a tag wi

are distributed accordingly to a mixture of Dirichlet distributions over the semantic space

defined by V :

p(π|wi;Ω
w) =

R

∑
r=1

β
wiDir(π|αwi

r ) , (5.4)

where R is the number of mixtures, β
wi
k are the mixing weights, and Dir(·|α) is a

Dirichelet distribution of parameters α = (α1, ...,α|V |). The parameters of the DMM for

each tag wi in V are estimated from the semantic multinomials extracted from the songs

in D positively associated with the tag, via the generalized EM algorithm [137].

Hence, given a new song described by the SMN

π = (π1, ...,π|V |), the relevance of a tag wi is computed using Bayes’ rule to get the tag

posterior probabilities in the context space:

θi = P(wi|π) =
p(π|wi)P(wi)

p(π)
. (5.5)

All the tag posterior probabilities form the contextual multinomial distribution of the song,

i.e., θ = (θ1, . . . ,θ|V |), which can then be used for semantic annotation and retrieval.
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5.3 Decision-fusion

Each content-based auto-tagger generally emphasizes particular aspects of the

musical signal. Despite some auto-taggers could be preferred over others based on

average performances (Table 5.1, part (a)), the spread in performances registered on

specific tags (e.g., see Figure 5.1) makes unclear if any auto-tagger may be the best. This

leaves open the problem of choosing the most appropriate method for each tag, or, indeed,

the one of combining different auto-taggers.

In this paper we argue that semantic context modeling can also be used as a

strategy to combine different content-based auto-taggers, which we name decision-fusion.

Indeed, by modeling the patterns that arise from the tag predictions generated by different

content-based auto-taggers, decision-fusion combines all the different opinions into

a single prediction and leverages the benefits of each of the acoustic characteristics

emphasized by the original auto-taggers.

Formally, let us assume a group A of different content-based auto-tagging algo-

rithms is available. For each song d in the database D , semantic multinomials πa
d for

a = 1, . . . , |A | are computed (i.e., one for each auto-tagger in A ) and pooled together

into the aggregated semantic multinomial:

π
A
d = (π1

d , . . . ,π
|A |
d ) , (5.6)

which is intended to be normalized to sum to 1. In practice, it is as we are now working

with a new semantic vocabulary V A = V 1×·· ·×V |A | of size |A | · |V |, where each

tag is replicated |A | times, one for each auto-tagger. Decision-fusion consists in training

a set of semantic context models, i.e., p(πA |wi) for wi = 1, . . . , |V |, over the aggregated

semantic multinomials {(πA
d ,cd)}|D |d=1 to capture both intra- and inter-auto-taggers tag
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correlations. Note that traditional context modeling acts on the SMNs of a single auto-

tagger, thus capturing only intra-auto-tagger correlations.

Decision-fusion can be implemented through a variety of context-modeling al-

gorithms. In particular, in this work we tested the DMM presented in Section 5.2.2.

Therefore, the aggregated SMNs πA of songs positively associated with tag wi are

assumed to be distributed accordingly to a mixture of Dirichlet distributions over the

semantic space V A :

p(πA |wi) =
R

∑
r=1

β
wiDir(πA |αwi

r ) , (5.7)

where α = (α1, ...,α|A |·|V |).

An unseen song Y is first processed by each of the content-based auto-taggers

available to produce the semantic multinomials πa for a = 1, . . . , |A |, which are then

aggregated in πA . Finally, Bayes’ rule as in Equation 5.5 is applied to compute the

posteriors θA
i = p(wi|πA ) for each tag wi, and to form a decision-fusing multinomial

θA = (θA
1 , . . . ,θA

|V |).

5.4 Experimental setup

5.4.1 Dataset

In our experiments, we used the CAL500 dataset [159], which consists of 502

popular Western songs by as many different artists. The CAL500 dataset provides binary

annotations, which are 1 when a tag applies to the song and 0 otherwise, based on the

opinions of human annotators. To accurately fit the experimental models, we restrict

ourselves to the subset of 97 tags that have at least 30 songs positively associated with

them (11 genre, 14 instrument, 25 acoustic quality, 6 vocal characteristics, 35 emotion

and 6 usage tags).



135

5.4.2 Audio features

The acoustic content of each song in the collection is represented by comput-

ing a time series of 34-bin Mel-frequency spectral features [135], extracted over half-

overlapping windows of 92 ms of audio signal. For the auto-tagger based on the DTM,

Mel-frequency spectral features are grouped into fragments of approximately 6 s. (with

80% overlap), which corresponds to τ = 125 consecutive feature vectors. For the auto-

tagger based on the GMM, the Mel-frequency spectral features are decorrelated using

the DCT, and the resulting first 13 Mel-frequency cepstral coefficients are augmented

with first and second derivatives (MFCC-deltas). Lastly, for the auto-tagger based on

boosting, first and second order statistics of the MFCC deltas are computed every 5 s., in

order to reduce the computational burden [55] .

5.4.3 Evaluation

In our experiments, we consider the models reviewed in Section 5.2.1, which

are the content-based auto-taggers referred as GMM, BST, and DTM, and the semantic

context modeling based on the DMM. We obtained the authors’ code to run each algo-

rithm. We study model combination via decision-fusion using the DMM and investigate

all the possible combinations among the content-based auto-taggers considered. For in-

stance, when combining all the three auto-taggers (i.e., when A = {GMM,BST,DTM})

Equation 5.7 acts on the aggregated semantic multinomials defined as:

π
A
d = (πGMM

d , π
BST
d , π

DTM
d ) . (5.8)

To investigate the advantages of model combination via decision-fusion, we com-

pared its performances to a variety of combination techniques, such as fixed-combination

rules [93] and trained-combiners based on regression[157], all of which are applied on the
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outputs of the different content-based auto-taggers (i.e., GMM, BST, DTM). We tested

different fixed-combination rules (i.e., sum, product, arithmetic average, minimum and

maximum rule) in preliminary experiments, with the sum rule (∑ rule) being the best. So,

for example, when ∑ rule combines GMM, BST and DTM summing the corresponding

SMNs, the final semantic multinomial of each song s is:

π
SUM
s = π

GMM
s +π

BST
s +π

DTM
s , (5.9)

which is intended to be normalized to 1.

Additionally, we implemented the trained-combiner based on linear regression

(LinReg), which Tomasik et. al [157] showed to outperform alternative regression

techniques. In particular, we use LinReg to learn, on a tag-by-tag bases, the optimal

coefficients to combining different auto-taggers to predict a ground truth of annotated

songs. We refer the reader to Section 3.3 of [157] for more details on this strategy.

Annotation and retrieval performances are measured following [159]. Test set

songs are annotated with the 10 most likely tags in their SMNs, and annotation accuracy is

reported by computing precision, recall and F-score for each tag. Retrieval performance

are evaluated with respect to each one-tag query in our vocabulary; we report mean

average precision (MAP), area under the receiver operating characteristic curve (AROC)

and top-10 precision (P10). All metrics are averaged over all tags and are intended to be

result of 5 fold cross validation, where each song appeared in the test set exactly once.

5.5 Results

Annotation and retrieval results are presented in Table 5.1. Results for (a) indi-

vidual auto-taggers are in the first block of the table, results for (b) standard contextual

approaches are in the second block, and results for (c) content-based auto-tagger combi-
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Table 5.1. Annotation and retrieval for the different models on the CAL500 dataset. The
best results for each scenario are indicated in bold.

retrieval annotation
Model MAP AROC P10 P R F-score

GMM 0.417 0.686 0.425 0.374 0.205 0.213
BST 0.432 0.701 0.453 0.334 0.144 0.170
DTM 0.446 0.708 0.460 0.446 0.217 0.264

(a) content-based auto-taggers

GMM 0.447 0.711 0.465 0.436 0.238 0.253
BST 0.457 0.711 0.476 0.424 0.201 0.241
DTM 0.464 0.723 0.480 0.461 0.236 0.275

(b) context-modeling with DMM

two BoF models A = (GMM, BST)

∑ rule 0.440 0.709 0.463 0.369 0.153 0.185
LinReg [157] 0.444 0.708 0.459 0.371 0.239 0.226
context fusion 0.460 0.719 0.475 0.425 0.224 0.255

a BoF and a time-series model A = (BST, DTM)

∑ rule 0.454 0.721 0.475 0.385 0.156 0.189
LinReg [157] 0.445 0.711 0.457 0.388 0.237 0.228
context fusion 0.475 0.729 0.495 0.434 0.221 0.265

a BoF and a time-series model A = (GMM, DTM)

∑ rule 0.461 0.726 0.474 0.445 0.229 0.267
LinReg[157] 0.456 0.722 0.460 0.360 0.248 0.222

context fusion 0.470 0.730 0.487 0.484 0.230 0.291

two BoF and a time-series model A = (GMM, BST, DTM)

∑ rule 0.457 0.725 0.478 0.39 0.163 0.202
LinReg[157] 0.452 0.715 0.465 0.384 0.242 0.232

context fusion 0.475 0.731 0.496 0.456 0.217 0.270
(c) auto-tagger combination

nation are in the last four blocks.

First, we notice that for each combination of the content-based auto-taggers

considered, decision-fusion outperforms all the other combination techniques, except

in recall, where LinReg is generally the best one. Second, differently from ∑ rule and

LinReg, decision-fusion always improves with respect to the original content-based
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Figure 5.1. Retrieval performance (MAP) for a subset of the CAL500 vocabulary
for GMM, BST, DTM, and decision-fusion of GMM, BST and DTM. Among the
content-based auto-tagger, each one appears to be best on a subset of tags. However,
decision-fusion is superior on the majority of tags.

auto-taggers combined.

Decision-fusion performs better by capturing the correlations that arise between

tag predictions based on different auto-taggers and, consequently, by indirectly lever-

aging various aspects of the musical signal emphasized by each of those auto-taggers.
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Indeed, decision-fusion of BoF auto-taggers with the DTM has major benefits, as it

takes advantage of predictions that are based on different fundamentals, i.e., timbre and

temporal dynamics vs. only timbre. On the other hand, decision-fusion of GMM and

BST, which both model only the timbre, does not achieve comparable improvements

over the corresponding standard context-models. In addition, the combination of all three

auto-taggers with decision-fusion leads to the best retrieval performance; yet the modest

improvements over the combination of BST and DTM in retrieval are compensated by

improvements in precision and F-score over the same method.

Figure 5.1 depicts the MAP score achieved by a subset of tags, for the content-

based auto-taggers (i.e., GMM, BST, DTM) and for decision-fusion using GMM, BST

and DTM. Even if DTM could be preferred over both GMM and BST based on the

average performances reported in Table 5.1, the fluctuation in performance on specific

tags shown in Figure 5.1 suggests that each content-based auto-tagger may be better

suited for a subset of the tags than the others. However, leveraging a rich contextual

information that benefits from various acoustic characteristics of the musical signal,

decision-fusion using GMM, BST and DTM performs best on the majority of all the tags

reported.

Finally, part (b) of Table 5.1 also reports that standard context modeling always

improves over the individual performance of the original content-based auto-taggers.

While Miotto et al. [110] already showed this for the BoF models (i.e., GMM and BST),

we have demonstrated that it holds true for the DTM as well.

5.6 Conclusions

In this paper we have proposed decision-fusion as a strategy for combining

different content-based auto-taggers. It uses semantic context modeling to simultane-

ously leverage the benefits of different content-based auto-taggers. Experimental results
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demonstrate especially that it achieves better annotation and retrieval performance than

individual auto-taggers and various other techniques to combining multiple content-based

auto-taggers.
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Chapter 6

A Bag of Systems Representation for
Music Auto-tagging

6.1 Introduction

As physical media has evolved towards digital content, recent technologies have

changed the way users discover music. Millions of songs are instantly available via

online music players or personal listening devices, and new songs are constantly being

created. With such a large amount of data, particularly in the “long tail” of relatively

unknown music, it becomes a challenge for listeners to discover new songs that align

with their musical tastes. Hence there is a growing need for automated algorithms to

explore and recommend musical content.

Many recommendation systems rely on semantic tags, which are words or short

phrases that describe musically meaningful concepts such as genres, instrumentation,

mood and usage. By bridging the gap between acoustic semantics and human semantics,

tags provide a concise description of a musical piece. Tags can then be leveraged for

semantic search based on transparent textual queries, such as “mellow acoustic rock”,

or for playlist generation based on semantic similarity to a query song. A variety of

tag-based retrieval systems use annotations provided by expert musicologists [165, 37]

or social services [101], and work well when provided enough annotations. However,

141
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scaling these systems to the size and needs associated with modern music collections is

not practical, due to the cost of human labor and the cold start problem (i.e., the fact that

songs that are not annotated cannot be retrieved, and more popular songs (in the short-

head) tend to be annotated more thoroughly than unpopular songs (in the long-tail))[97].

Therefore, it is desirable to develop intelligent algorithms that automatically annotate

songs with semantic tags based on the song’s acoustic content. In this paper we present

a new approach to content-based auto-tagging, which we build on a novel, high-level

descriptor of songs that uses a vocabulary of musically meaningful codewords, each

of which is a generative model that captures some prototypical textures or dynamical

patterns of audio content.

A good deal of previously proposed approaches follow a “fixed” recipe—start

from a collection of annotated songs, represented by a sequence of audio feature vectors,

and estimate a series of statistical models, one for each tag, to learn which acoustic

patterns are most predictive for each tag. Then, the tag models are used to annotate new

songs – the audio features of a new song are compared to each tag model, and the song

is annotated with the subset of tags whose statistical models best fit the song’s audio

content.

A few solutions rely on generative models, which posit that data points are

randomly generated samples from a fully specified probabilistic model. This is in

contrast to a discriminitive approach, which models only the conditional distribution of a

tag conditioned on the observed audio data. After selecting a base model, i.e., a particular

type and time scale of generative model, these approaches fine-tune an instance of this

base model for each tag, through maximum likelihood estimation, to capture musical

characteristics that are common to songs associated with the tag. The choice of base

model is usually driven by the type of audio characteristics one intends to capture with the

tag models. For example, Turnbull et. al. [159] use Gaussian mixture models (GMMs)
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over a “bag of features” (BoF) representation of songs as a base model, where each audio

feature represents the timbre over a short snippet of audio. Coviello et. al. [42] use

the more sophisticated dynamic texture mixture (DTM) models (i.e., linear dynamical

systems), to explicitly leverage the temporal dynamics (e.g., rhythm, beat, tempo) present

in short audio fragments, i.e., sequences of audio features.

Our work is motivated by the observation that these direct generative approaches

have some inherent limitations. First, their modeling power is determined by the choice

of base model (e.g., GMM, DTM, etc.) and the choice of time scale for audio feature

extraction (e.g., length of snippets, duration of fragments). Alternative choices will

result in tag models that focus on complementary characteristics of the music signal,

and no particular set of choices may be uniformly better, for all tags, than any other.

For example, in [42], Coviello et al. reported that while the DTM models they propose

outperformed GMM models (as proposed by Turnbull et. al. in [159]) on average, this

superior DTM performance is not consistently observed for all tags. Indeed, each method

was best on a subset of tags, suggesting that different fundamental design choices are

best suited to model different groups of tags. In addition, fixing a single time scale may

be suboptimal, as acoustic patterns common to different tags may unfold over different

time scales. A second limitation of the direct generative methodology is that fitting tag

models, in particular complex ones such as DTMs, involves estimating many parameters.

This may result in non-reliable estimates for tags associated with few example songs in

the annotated collection.

To address these limitations, we propose a “Bag of Systems” (BoS) representation

of music, which indirectly uses generative models to represent tag-specific characteristics.

The BoS representation is a rich, high-level descriptor of musical content that uses gener-

ative models as musical codewords. Similar to the bag of words (BoW) representation

commonly used in text retrieval [5] which represents textual documents as histograms
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over a vocabulary of English words, the BoS approach represents songs as histograms

over counts of musical codewords. Given a vocabulary of musical codewords (which we

call a BoS codebook), a song’s BoS histogram is derived by “counting” the occurrences

of each codeword in the song through probabilistic inference. Once songs are represented

as a BoS histogram, a variety of supervised learning algorithms (e.g., those generally

employed with BoW representations in the text mining community) can be leveraged to

implement a music auto-tagger over the BoS histograms of songs.

The BoS representation enables combining the benefits of different types of

generative models over various time scales in a single auto-tagger. In this paper we

demonstrate that a codebook which uses a combination of Gaussian models and dynamic

texture models that operate over various time scales as BoS codewords improves the

performance of the auto-tagger relative to codebooks that are formed with codewords

from only one base model.

The BoS codebook is similar to the classical vector-quantized (VQ) codebook

of prototypical feature vectors, but contains richer and more complex codewords. A

Gaussian codeword in the BoS representation captures the same information contained in

a VQ codeword, i.e., the mean feature vector, but includes additional information about

the variance of the cluster that is not accounted for by VQ. Additionally, the use of DT

codewords in the BoS representation adds information about the temporal dynamics of

sequences of feature vectors that a VQ representation cannot capture.

Another key advantage of the BoS representation is that it decouples modeling

music from modeling tags. First, a vocabulary of BoS codewords that model typical

characteristics of musical audio is learned from some large, representative collection of

songs, which need not be annotated. With a suitable collection, these BoS codewords will

be rich descriptors that can represent a wide variety of songs. Once a BoS representation

for music has been obtained, auto-tagging reduces to learning recurring patterns in the
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BoS histograms of songs associated with each tag. The advantage is that relatively simple

tag models (i.e., relative to the sophisticated generative models used at the codeword

level) may suffice to capture tag-specific characteristics in the BoS histograms, while

still leveraging the full descriptiveness of the codebook. In particular, estimating simpler

statistical models is less prone to over-fitting and, thus, more likely to provide robust

estimates for tags with few example songs in the annotated collection (used for estimating

tag models). We demonstrate this advantage through experiments later in this paper.

This paper expands on results described in a previous conference publication [56],

including an expanded discussion of algorithmic details and a more extensive experimen-

tal evaluation. In particular, we analyze in more depth the method we use to generate

BoS codebooks, with a comparison to three alternative methods of codebook generation.

We include more experiments dealing with parameter selection, e.g., the effect of the

codebook size, the size of codebook song set, and the histogram smoothing parameter.

We include experiments using additional time scales of base models. We also include for

comparison two additional baseline methods beyond the direct generative HEM-DTM

and HEM-GMM methods shown in the conference publication — one that uses VQ

codebooks and one that averages probabilities given by the direct generative approaches

across different time scales and models. Additionally, we include more experiments that

investigate the composition of the codebook song set, using combinations of labeled and

unlabeled data.

The remainder of this paper is organized as follows. In Section 6.2 we overview

related work. Then in Section 6.3 we delve into the details of the BoS representation

of music, including the generative models used as codewords (6.3.1), and algorithms

for learning a BoS codebook (6.3.2) and for representing songs using the resulting BoS

codebook (6.3.3). Music annotation and retrieval with BoS histograms is discussed in

Section 6.4. After introducing the music datasets used in our experiments in Section 6.5,
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we present experiments that demonstrate the effectiveness of the BoS representation for

music auto-tagging in Section 6.6.

6.2 Related Work

In recent years content-based auto-tagging has seen increasing interest as a result

of the growing amount of online music and the impossibility of manual labeling. Music

auto-tagging has been approached from a variety of perspectives, both discriminative and

generative, as well as a few unsupervised methods. Generative models previously used

in auto-taggers include Gaussian mixture models (GMMs) [160, 159], hidden Markov

models (HMMs) [126, 140, 41, 43], multi variate autoregressive models [47], hierarchical

Dirichlet processes (HDPs) [80], a codeword Bernoulli average model (CBA) [81] and

dynamic texture mixture models (DTMs) [42]. Previously proposed auto-taggers that

rely on a discriminative framework employ algorithms such as multiple-instance learning

[106], stacked SVMs [117], boosting [55], nearest-neighbor [126], logistic regression

[172], locally-sensitive hashing [29] and temporal pooling with multilayer perceptrons

[73]. In [127], the authors approach music auto-tagging as a low rank matrix factorization

problem. Alternative approaches add information from non-audio data, such as a hybrid

music recommender system that combines usage and content data [52] and a multimodal

music recommendation algorithm that combines information from music content, music

context, and user context [145].

Recent work in music auto-tagging has focused on developing approaches that

can take into account information at different time scales. For example, one approach

uses boosting to combine features extracted at different time scales by using trees as

weak classifiers [61]. Another approach integrates features computed from shorter

frames over the duration of a longer analysis window, before applying a classifier [87].

Additionally, Sturm et. al. [153] found that combining MFCCs over multiple time



147

scales to create a unified feature vector improved performance in automatic musical

instrument identification. Multi-scale spectrotemporal features are used to discriminate

speech from non-speech audio in [109]. In [99], the authors use an unsupervised deep

convolutional representation for genre recognition and artist identification, demonstrating

an improvement over raw MFCC features. In [8], scattering representations of MFCCs

were used for genre classification. An approach to combine several auto-taggers via

semantic context modeling is proposed in [44].

Existing auto-tagging algorithms for music that employ a codebook representation

of songs have only focused on vector-quantized (VQ) codebooks of raw audio features

[81, 172]. One of these approaches combines multiple VQ codebooks, learned from the

same set of features but with slightly different initial conditions, to reduce the variance in

codebook construction [64]. In VQ codebooks, each codeword is a prototypical feature

vector, while in BoS codebooks, each codeword is a generative model that describes sets

or sequences of features vectors; this allows for the capture of higher-level and richer

musical characteristics.

The BoS approach provides a way to combine discriminative and generative

components into a single learning framework — while the modeling power of the

BoS representation is achieved through generative models used as codewords, once

songs are represented as BoS histograms, any standard supervised learning algorithm,

discriminative or generative, can be used to learn tag models. A related approach

that merges discriminative and generative learning is the use of kernels to integrate

the generative models within a discriminative learning paradigm, for example through

probability product kernels (PPK) [85].

A BoS approach has been used for the classification of videos [139, 33, 45], and

a similar idea has inspired anchor modeling for speaker identification [152].
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Figure 6.1. (a) Bag of Words modeling process: a document is represented as a histogram
over word counts. (b) Bag of Systems modeling process: a song is represented as a
histogram over musical codewords, where each codeword is a generative model that
captures timbral and temporal characteristics of music.

6.3 The Bag of Systems representation of music

Analogous to the bag-of-words representation of text documents, the BoS ap-

proach represents songs with respect to a codebook, where generative models are used in

lieu of words. These generative models compactly characterize typical audio features and

musical dynamics in songs. A song is then modeled as a composition of these codewords,

just as a text document is composed of words, and a BoS histogram is constructed by

counting the occurrences of each codeword in the song through probabilistic inference

(see Figure 6.1).

In this section, we establish a BoS representation for music. We first discuss

the (generative) base models from which we will derive BoS codewords (Section 6.3.1).
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We choose Gaussian and dynamic texture (DT) models to capture prototypical timbral

content and temporal dynamics, respectively, although it should be noted that the BoS

representation is not restricted to these choices of generative models. We then present

several approaches to learn a dictionary of codewords from a collection of representative

songs (Section 6.3.2). Finally, we describe how to map songs to the BoS codebook using

probabilistic inference (Section 6.3.3).

6.3.1 Generative Models as Codewords

To construct a rich codebook that can model diverse aspects of musical signals,

we consider two different base models, the Gaussian model and the dynamic texture (DT)

model [54]. Each captures distinct musical characteristics.

In particular, the audio content of a song is first represented by a sequence of

audio feature vectors (e.g., MFCCs, which capture timbre) Y = {y1, . . . ,yT}, extracted

from equally spaced, half-overlapping time windows of length η (which determines

the time resolution of the features), where T depends on the duration of the song and

the sampling process. Gaussian codewords will capture average timbral information in

unordered portions of Y ; DT codewords will model characteristic temporal dynamics

in ordered subsequences of Y . Below, we discuss each base model in more detail. To

further increase the diversity of the codebook, we will consider the above base models at

different time resolutions η as well.

Gaussian Models

A Gaussian codeword models the average timbral characteristics of the bag-of-

features representation of a sequence of audio feature vectors, without taking into account

the actual ordering of audio features. In particular, the model assumes each vector in the

bag-of-features is generated by a multivariate Gaussian N (µ,Σ), where µ and Σ are the
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Figure 6.2. A dynamic texture model represents a fragment of audio of length λ . We
first compute a sequence of τ feature vectors, each computed from a window of length
η . The DT models each feature vector as an observed variable yt in a linear dynamical
system.

mean and the covariance matrix, respectively. Hence the codeword is parameterized by

Θ = {µ,Σ}.

Dynamic Texture Models

A dynamic texture (DT) codeword captures timbre as well as explicit temporal

dynamics of an audio fragment (i.e., a sequence of audio feature vectors) by explicitly

modeling the sequential ordering of the audio feature vectors.

Specifically, a DT treats a sequence y1:τ of τ audio feature vectors as the output

of a linear dynamical system (LDS):

xt = Axt−1 + vt , (6.1)

yt = Cxt +wt + ȳ, (6.2)

where the random variable yt ∈ Rm encodes the timbral content (audio feature vector)

at time t, and a lower dimensional hidden variable xt ∈ Rn encodes the dynamics of the
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observations over time. The codeword is specified by parameters Θ= {A,Q,C,R,µ,S, ȳ},

where the state transition matrix A ∈ Rn×n encodes the evolution of the hidden state xt

over time, vt ∼N (0,Q) is the driving noise process, the observation matrix C ∈ Rm×n

encodes the basis functions for representing the observations yt , ȳ is the mean of the

observation vectors, and wt ∼N (0,R) is the observation noise. The initial condition is

distributed as x1∼N (µ,S). We note that the columns of the observation matrix C can be

interpreted as the principal components (or basis functions) of the audio feature vectors

over time. Hence, each audio feature vector can be represented as a linear combination

of principal components, with corresponding weights given by the current hidden state.

In this way, the DT can be interpreted as a time-varying PCA representation of an audio

feature vector time series.

Figure 6.2 illustrates the underlying generative process of a DT modeling a

sequence of feature vectors. The time scale of a DT is determined by the duration λ of an

audio-fragment, and the length η of a window from which feature vectors are computed.

Note that the duration λ is directly determined by η and the number of feature vectors in

a sequence, τ , by λ = η

2 (τ +1), since we compute feature vectors from half-overlapping

windows.

6.3.2 Codebook Generation

We are interested in compiling a rich codebook, which effectively quantizes the

space of music-fragment models. The codebook should have a high representational

power for music, i.e., contain a diverse set of codewords that can capture many different

musical characteristics. First, in order to consider diverse aspects of the musical signal

(e.g., timbre in short snippets of audio, or more complex timbral and dynamic patterns in

longer fragments), we choose M different base models (i.e., type of generative model

and time scale). We learn the codebook by learning groups of codewords, where each
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(a) (b) (c) (d)

Figure 6.3. Learning a BoS Codebook V = {Θi}K
i=1 by (a) modeling random audio

fragments with a single instance of the model, (b) modeling each song with a small
mixture model, (c) modeling all available audio data with a large mixture model using
standard EM, or (d) using a more efficient, hierarchical EM (HEM) algorithm. A solid
arrow corresponds to applying EM, a dashed arrow to applying HEM, and a dotted arrow
to direct estimation (see Section 6.3.2).

codeword in a group is derived from a certain base model.

More formally, we define the subset of the codebook consisting of codewords

derived from the mth base model as Vm = {Θi}Km
i=1, where Km is the number of codewords

derived from base model m. Hence for a given song Y , the mth subset of codewords is

associated with a particular feature vector representation Ym of the song at the specified

time scale. For codeword subset m with a Gaussian base model, each codeword Θ ∈ Vm

takes the form Θ = {µ,Σ}, and song Y is represented as a bag of audio feature vectors

Ym = {y1, . . . ,yTm}, extracted from windows of length ηm. For codeword subset n with a

DT base model, each codeword Θ ∈ Vn takes the form Θ = {A,Q,C,R,µ,S, ȳ}, and song

Y is represented as a bag of audio fragments Yn = {y1
1:τn

, . . . ,yTn
1:τn
}. Audio fragments

are sequences of τn feature vectors, each feature extracted from a window of length ηn.

The length of an audio fragment is defined as λn and the step size between successive

audio fragments is νn.

In what follows, we assume that all codeword subsets are the same size, i.e.,

K1 = K2 = · · · = KM = K̃. The union of all these subsets of codewords is the BoS

codebook, V =
⋃M

m=1 Vm = {Θi}K
i=1, where K = MK̃ is the total number of codewords
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in the codebook.

In practice, to compile a codebook we select a collection of representative songs

Xc. Then, based on this collection, we obtain some codewords for each of the M

base models. In particular, we will learn the codewords in each codeword subset m

independently, by first generating the corresponding representation Ym for each song

Y ∈Xc, and then estimating the parameters for a set of K̃ codewords of that base model

to adequately span these audio representations.

A natural approach to this estimation problem is to use the EM algorithm to

directly learn a mixture of K̃ codewords (of base model m) from all audio data — i.e.,

the combined audio data from all the songs in Xc. However, this becomes expensive

as K̃ and the amount of audio data increases. Therefore, we also investigate alternative

methods of codebook generation, which are expected to increase computational efficiency

by learning fewer (than K̃) codewords at once and/or learning from (small) subsets of all

audio data in Xc.

In particular, we will consider four different procedures for learning K̃ codewords

for subset m: (1) learn each of the K̃ codewords independently from very small (non-

overlapping) subsets of all available audio data (e.g., from a fragment of a song in Xc),

(2) learn q small mixtures of a few (Ks = K̃/q) codewords independently from small (but

slightly larger, non-overlapping) subsets of all available audio data (e.g., from individual

songs in Xc), (3) learn all K̃ codewords simultaneously from all available audio data in

Xc, either by using standard EM, or (4) with recourse to a more efficient, hierarchical

EM (HEM) algorithm. Each of these methods is depicted graphically in Figure 6.3. In

Section 6.6.1 we experimentally evaluate each codebook generation method, leading

us to settle upon the second, song-based method of codebook generation, as the best

combination of efficient learning time and good performance.

In what follows, we detail each codebook generation method, applied to learning
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a subset of codewords Vm for a single base model m. To generate a codebook from

M base models, we repeat the procedure for each base model and pool the resulting

codeword subsets.

Fragment-based Procedure

An individual codeword Θ ∈ Vm is learned directly from a very small subset of

all available audio data in Xc. In particular, to learn a Gaussian codeword, a song is

selected uniformly at random from the codebook song set Xc, represented appropriately

as Ym, and a few (sequential) audio feature vectors are (uniformly) randomly chosen

from Ym. The parameters of Θ are then directly estimated by computing the mean and

the (diagonal) covariance matrix of these feature vectors. To learn a DT codeword, again

a song is selected uniformly at random from the codebook song set Xc, represented

appropriately as Ym, and an audio fragment y1:τm is (uniformly) randomly chosen from

Ym. The parameters of Θ are directly estimated from the audio fragment, using an

approximate and efficient algorithm based on principal component analysis for DT

codewords [54]. The process is repeated until the desired number of codewords (K̃)

has been collected. With complexity O(K̃), this is the least computationally expensive

method of codebook generation, as each codeword is learned individually and efficiently

from a small amount of data (as shown in Figure 6.3(a)). Additionally, since each

codeword is learned independently, the learning processes can easily be parallelized,

reducing the complexity to O( K̃
Np
), where Np is the number of processors available.

Song-based Procedure

Mixtures of a few codewords are learned from individual songs in the codebook

song set Xc and are then pooled together to form the codeword set Vm. More specifically,

each song in Xc (represented appropriately as Ym) is modeled with a Gaussian mixture
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model (GMM) or dynamic texture mixture (DTM) model {π j,Θ j}Ks
j=1 with Ks mixture

components, where the Θ j’s are Gaussian or DT components and the π j’s are the corre-

sponding mixture weights. These mixture models are learned using the EM algorithm

(EM-GMM [49] or EM-DTM [32] for Gaussian mixture models or dynamic texture

mixture models, respectively). We then aggregate the mixture components (ignoring the

mixture weights1) from each song-level model to form Vm = {Θi}K̃
i=1, where K̃ = Ks|Xc|.

This approach has a complexity of O(dFKs|Xc|) = O(dFK̃), where d is the

average number of iterations for each run of the EM algorithm and F is the average

number of data samples used as input to the EM algorithm. In the case of Gaussian

codewords, F is the average number of audio feature vectors per song, while in the case of

DT codewords, F is the average number of audio fragments per song. In comparison to the

fragment-based procedure, the song-based procedure makes use of the entire codebook

song set, and provides a regularization effect in learning the codewords by smoothing

over an entire song rather than using a single fragment for estimation. As Figure 6.3(b)

shows, each song is associated with a few codewords, from the corresponding song

model. Since song models can be learned in parallel, the complexity can be reduced to

O(dFKs|Xc|
Np

), where again Np is the number of processors available.

Collection-based Procedure

All the codewords in Vm are learned jointly, as one large mixture model, from all

available audio data in the codebook song set Xc. In particular, for Gaussian codewords,

we pool the bag-of-features representations of all the songs in Xc, and use this as

input to the EM-GMM algorithm to learn a mixture model {πi,Θi}K̃
i=1, where each Θi

1The alternative to ignoring mixture weights would be to use the mixture weights when building the
BoS histograms for each song — so a more common codeword, with a high mixture weight, is more likely
to be assigned to represent a portion of audio than a rare codeword, which would have a low mixture
weight. However, it makes more sense assign to a snippet of audio the codeword that best matches, even if
it is a rare codeword, to create the most precise representation of the song. In fact, these rare codewords
may have more discriminative power than more common codewords, which may occur across many tags.
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parameterizes a Gaussian and πi is the corresponding mixture weight. For DT codewords,

we pool the bag-of fragments representations of all the songs in Xc, and use this as

input to the EM-DTM algorithm to learn a mixture model {πi,Θi}K̃
i=1, where each Θi

parameterizes a DT and πi is the corresponding mixture weight. Each individual mixture

component becomes a codeword in Vm (mixture weights are discarded). Therefore, the

number of mixture components corresponds to K̃ (the desired number of codewords in

Vm). The computational complexity of this procedure is O(dNK̃) = O(dF |Xc|K̃), where

N = F |Xc| is the number of samples used as input to the EM algorithm. This approach

has a factor of |Xc| higher time complexity than the song-based procedure. However, the

complexity can be improved by subsampling the inputs to the EM algorithm, i.e., using

N < F |Xc|. The EM algorithm usually requires storing in memory (RAM) all available

audio data, and hence scales poorly to large codebook song sets. Even though a parallel

implementation of EM could effectively alleviate the high memory requirements (at

the likely modest cost of globally coordinating the local computations), the cumulative

CPU time requirements would be still elevated because each iteration would still need to

process the entire data. Figure 6.3(c) shows the collection based procedure.

Hierarchical Collection-based Procedure

Similar to the previous approach, this procedure learns a mixture model with K̃

components from all available audio data in Xc, but now using a more efficient two-stage

procedure. First, a series of mixture models are estimated from small subsets of the

data, using EM. Then, after aggregating all mixture components, the resulting (very

large) mixture is reduced to a mixture with K̃ components using the hierarchical EM

algorithm (HEM) [164, 33]. Specifically, a large collection of codewords V
(b)

m of size

K̃(b) is learned from Xc with the song-based procedure, using K′s mixture components

per song. Then, the K̃(b) = K′s|Xc| codewords in V
(b)

m are clustered to form a codeword
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set Vm of size K̃ < K̃(b) using the HEM algorithm for GMMs [164] or the HEM algorithm

for DTMs [33]. In this case, the HEM algorithm takes as input a large mixture model

{ 1
K̃(b) ,Θ

(b)
i }K̃(b)

i=1 (weighing all mixture components equally), and produces a reduced

mixture model with fewer components {π j,Θ j}K̃
j=1, where each component Θ j is a novel

codeword that groups, i.e., clusters, some of the original codewords. As before, each

individual mixture component in the output model becomes a codeword.

The complexity is O(dFK′s|Xc|+ d′K̃(b)K̃), where d′ is the average number

of iterations of the HEM algorithm. Assuming F ≈ K̃ and d′ ≈ d, this becomes

O(d′|Xc|(F + K̃)K′s), saving a factor K̃/K′s compared to the previous, direct collection-

based procedure. Furthermore, since learning the song models in the first stage can be

parallelized, the complexity can be further reduced to O(
dFK′s|Xc|

Np
+d′K̃(b)K̃). As before,

Np is the number of processors available. Figure 6.3(d) shows the two stages of this

method of codebook generation.

6.3.3 Representing Songs with the Codebook

Once a codebook is available, a song Y is represented by a BoS histogram

b ∈ RK , where b[i] is the weight of codeword i in the song. To count the number of

“occurrences” of a given codeword Θi ∈ Vm in the song, we start from the appropriate

song representation, Ym, at the appropriate time scale. At various time points t in the song

(e.g., every νm seconds), we compare the likelihood of Θi to the likelihood of all other

codewords derived from the same codeword subset, i.e., all Θ ∈ Vm (since likelihoods

are only comparable between similar models with the same time scale). We count an

occurrence of Θi at t if it has the highest likelihood of all the codewords in Vm given

the audio data yt , i.e., Θi = argmaxΘ∈Vm
P(yt |Θ). For GMM codewords, yt is a single

audio feature vector, extracted from a window of width ηm starting at t, while for DTM

codewords, yt is a sequence of τm such feature vectors, extracted at intervals of ηm
2 .
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Finally, codeword counts are normalized to frequencies to obtain the BoS his-

togram b for song Y :

b[i] =
1

M|Ym| ∑
yt∈Ym

1[Θi = argmax
Θ∈Vm

P(yt |Θ)]. (6.3)

We first normalize within each codeword subset — by the number of fragments, |Ym|, in

Ym — and then between subsets — by the number of base models, M.

Equation 6.3 is derived from the standard term frequency representation of a

document, where each audio fragment is replaced by its closest codeword. However,

this can become unstable when a fragment has multiple codewords with (approximately)

equal likelihoods, which is more likely to happen as the size of the codebook increases.

To counteract this effect, we generalize Equation 6.3 to support the assignment of

multiple codewords at each point in the song. We introduce a smoothing parameter

k ∈ {1,2, . . . , |Vm|}. In particular, we assign the k most likely codewords (within one

subset) to each portion of audio. The softened histogram is then constructed as:

b[i] =
1

M|Ym| ∑
yt∈Ym

1
k
1[Θi ∈ argmax

Θ∈Vm

kP(yt |Θ)], (6.4)

where the additional normalization factor of 1/k ensures that b is still a valid multinomial

for k > 1. The argmaxk is formally defined for a function f over a discrete set U as

{x : 6 ∃ Y ⊂U such that x /∈ Y, |Y |= k, and ∀z ∈ Y, f (z)≥ f (x)}.

6.4 Music Annotation and Retrieval using the Bag-of-
Systems representation

Once a BoS codebook V has been generated and songs represented by BoS his-

tograms, a content-based auto-tagger may be obtained based on this representation — by
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modeling the characteristic codeword patterns in the BoS histograms of songs associated

with each tag in a given vocabulary. In this section, we formulate annotation and retrieval

as a multiclass multi-label classification of BoS histograms and discuss the algorithms

used to learn tag models.2

6.4.1 Annotation and Retrieval with BoS Histograms

Formally, assume we are given a training dataset Xt , i.e., a collection of songs

annotated with semantic tags from a vocabulary T . Each song s in Xt is associated with

a BoS histogram bs = (bs[1], . . . , bs[K]) which describes the song’s acoustic content with

respect to the BoS codebook V . The song s is also associated with an annotation vector

cs = (cs[1], . . . , cs[|T |]) which expresses the song’s semantic content with respect to T ,

where cs[i] = 1 if s has been annotated with tag wi ∈T , and cs[i] = 0 otherwise. In short,

a training dataset is a collection of histogram-annotation pairs Xt = {(bs,cs)}|Xt |
s=1 .

Given a training set Xt , we estimate a series of tag-level models that capture

the statistical regularities in the BoS histograms representing the subsets of songs in

Xt associated with each tag in T , using standard text-mining algorithms. Given the

BoS histogram representation of a novel song, b, we can then resort to the previously

trained tag-level models to compute the relevance of each tag in T to the song. In

this work, we consider two algorithms with a probabilistic interpretation, which output

posterior probabilities p(wi|b) that a tag wi applies to a song with BoS histogram b.

We then aggregate the posterior probabilities to form a semantic multinomial (SMN)

p = (p1, . . . , p|T |), characterizing the relevance of each tag to the song (pi ≥ 0 ∀i and

∑
|T |
i=1 pi = 1).

Annotation involves selecting the most representative tags for a new song, and

hence reduces to selecting the tags with the highest entries in the SMN p. Retrieval

2A BoS representation could also be used in multi-modal problems [138, 131].



160

consists of rank ordering a set of songs S = {s1,s2 . . . sR} according to their relevance

to a query. When the query is a single tag wi from T , we define the relevance of a song

to the tag by pi, and hence retrieval consists of ranking the songs in the database based

on the ith entry in their SMN.

6.4.2 Learning Tag Models from BoS Histograms

The BoS histogram representation of songs is amenable to a variety of annotation

and retrieval algorithms. In this work, we investigate one generative algorithm, Codeword

Bernoulli Average (CBA), and one discriminative algorithm, multiclass kernel logistic

regression (LR).

Codeword Bernoulli Average

The CBA model proposed by Hoffman et. al. [81] is a generative process that

models the conditional probability that a tag applies to a song. Hoffman et al. define

CBA based on a vector quantized (VQ) codebook representation of songs. For our work,

we use instead the BoS representation. CBA defines a collection of binary random

variables y ji ∈ {0,1}, which determine whether or not tag wi applies to song j, with a

two-step generative process. First, a codeword z ji ∈ {1, . . . ,K} is chosen according to

the distribution given by the song’s BoS histogram b j, i.e.,

p(z ji = l|b j) = b j[l]. (6.5)

Then, a value for y ji is chosen from a Bernoulli distribution with parameter βli,

which represents the probability of tag word wi given codeword l:

p(y ji = 1|z ji,β ) = βz jii,

p(y ji = 0|z ji,β ) = 1−βz jii. (6.6)
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We use the author’s code [81] to fit the CBA model, i.e., learn the parameters β .

To obtain the SMN of a novel song with BoS histogram b, we compute the posterior

probabilities p(yi = 1|b,β ) = pi under the estimated CBA model, and normalize p =

(p1, . . . , pK) by its L1 norm.

Multiclass Logistic Regression

For each tag, logistic regression defines a linear classifier with a probabilistic in-

terpretation by fitting a logistic function to BoS histograms associated and not associated

with the tag:

P(wi|b,βi,αi) =
1

1+ exp(β T
i b+αi)

. (6.7)

Kernel logistic regression [74] finds a linear classifier after applying a non-linear

transformation to the data, ϕ : Rd → Rdϕ . The feature map ϕ is indirectly defined via a

kernel function κ(a,b) = 〈ϕ(a),ϕ(b)〉.

In our experiments, we use the histogram intersection kernel [154], which is

defined by the kernel function:

κ(a,b) = ∑
j

min(a[ j],b[ j]), (6.8)

where a and b are BoS histograms. In our implementation we use the software package

Liblinear [58] to learn an L2-regularized logistic regression model for each tag using

the “one-vs-the rest” approach. We select the regularization parameter C by performing

4-fold cross-validation on the training set. Given the BoS histogram of a new song b, we

collect the posterior probabilities p(wi|b) and normalize to obtain the song’s SMN.
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6.5 Music Data

In this section we introduce the two music datasets used in our experiments, along

with the audio features and the base models used for the codewords.

6.5.1 CAL500 Dataset

The CAL500 [159] dataset consists of 502 Western popular songs from 502

different artists. Each song-tag association has been evaluated by at least 3 humans, using

a vocabulary of 149 tags, including genres, instruments, vocal characteristics, emotions,

acoustic characteristics, and use cases. CAL500 provides binary annotations that can be

safely considered as hard labels, i.e., c[i] = 1 when a tag i applies to the song and 0 when

the tag does not apply. We restrict our experiments to the 97 tags with at least 30 example

songs. CAL500 experiments use 5-fold cross-validation where each song appears in the

test set exactly once.

6.5.2 CAL10K Dataset

The CAL10K dataset [156] is a collection of over ten thousand songs from

4,597 different artists, weakly labeled (i.e., song annotations may be incomplete) from

a vocabulary of over 500 tags. The song-tag associations are mined from Pandora’s

website. We restrict our experiments to the 55 tags in common with CAL500.

6.5.3 Codeword Base Models and Audio Features

We choose a priori five different base models for codewords: two time scales of

Gaussians (G1 and G2) and three time scales of DTs (DT1, DT2 and DT3). These time

scales were chosen by referring to previous work [159, 42], and with the goal of spanning

a reasonable range of scales that occur in music. For example, codewords from model

class DT1 will capture dynamics that unfold over a few miliseconds to while codewords
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Table 6.1. Description of base models used in experiments: two time scales of Gaussians
and three time scales of DTs.

Codeword Base Model Window Fragment Fragment
length (η) length (λ ) step (ν)

G1 46 ms — —
G2 93 ms — —

DT1 12 ms 726 ms 145 ms
DT2 93 ms 5.8 s 1.16 s
DT3 93 ms 11.6 s 2.32 s

from model class DT3 will capture dynamics that unfold in the time span of several

seconds. We will experimentally determine the best base models and combinations of

models from these five choices. For the Gaussian codewords, we use as audio features

the first 13 Mel-frequency cepstral coefficients (MFCCs) appended with first and second

instantaneous derivatives (MFCC deltas). This results in 39-dimensional feature vectors

[135]. For the DT codewords, we model 34-bin Mel-frequency spectral features.3 We

note that these features represent timbre, but not other facets of music such as rhythm or

tonality.

To motivate the difference in features between Gaussian and DT codewords,

note that Mel-frequency cepstral coefficients (MFCCs) use the discrete cosine transform

(DCT) to decorrelate the bins of a Mel-frequency spectrum. In Section 6.3.1 we noted that

the DT model can be viewed as a time-varying PCA representation of the audio feature

vectors. This suggests that we can represent the Mel-frequency spectrum over time as the

output of the DT model. In this case, the columns of the observation matrix (a learned

PCA matrix) are analogous to the DCT basis functions, and the hidden states are the

coefficients (analogous to the MFCCs). The advantage of learning the PCA representation,

rather than using the standard DCT basis, is that different basis functions (matrices) can

be learned to best represent the particular codeword, and different codewords can focus

3We use 30 Mel-frequency bins to compute the MFCC features, which provides a similar spectral
resolution to the 34-bin Mel-frequency features.
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on different frequency structures. Also, note that since the DT explicitly models the

temporal evolution of the audio features, we do not need to include their instantaneous

derivatives (as in the MFCC deltas).

In both cases, feature vectors are extracted from half-overlapping windows of

audio. The window and fragment length for each codeword base model are specified

in Table 6.1. These choices were intended to cover a few sufficiently distinct time

resolutions, and the step size between fragments is relatively small in order to increase

the number of fragments we can extract from each song.

6.6 Experimental Evaluation

In this section we present experimental results on music annotation and retrieval

using the BoS representation. Annotation performance is measured using mean per-tag

precision (P), mean per-tag recall (R) and mean per-tag F-score. Retrieval performance

is measured using area under the receiver operating characteristic curve (AROC), mean

average precision (MAP), and precision at 10 (P10) averaged over all one-tag queries.

We refer the reader to Turnbull et al. [159] for a detailed definition of these metrics.

6.6.1 Design Choices

The combination of four codebook generation methods, five base models of

codewords and two BoS histogram annotation algorithms creates a large number of

possibilities for the implementation of the BoS framework. Along with the choice of

codebook size K and histogram smoothing parameter k, it becomes difficult to present an

exhaustive comparison of all possibilities. We instead evaluate each design parameter

independently while keeping all other parameters fixed, which leads us to select (1) the

song-based procedure for codebook generation, (2) a combination of three codeword

base models (DT1, DT2, and G1; see Table 6.1), and (3) logistic regression to annotate
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Table 6.2. EXP-1: Learning a BoS codebook with four different methods: fragment-
based (Frag), song-based (Song) collection-based (Coll) and hierarchical (Hier). K = 128
codewords are learned from a codebook song set of |Xc|= 64 songs. BoS histograms
use smoothing parameter k = 10, and are annotated with LR. Speedup is reported relative
to the song-based method.

Method Speedup Annotation Retrieval
P R F-Score AROC MAP P10

Codeword Base Model G1

Frag 81.3 0.370 0.217 0.217 0.689 0.423 0.439
Song 1 0.390 0.229 0.230 0.701 0.437 0.449
Coll 0.015 0.382 0.228 0.229 0.704 0.441 0.452
Hier 0.875 0.376 0.227 0.227 0.697 0.435 0.447

Codeword Base Model DT2

Frag 54.2 0.381 0.229 0.225 0.695 0.433 0.456
Song 1 0.411 0.246 0.247 0.712 0.457 0.479
Coll 0.036 0.398 0.243 0.242 0.709 0.455 0.471
Hier 0.070 0.390 0.236 0.230 0.705 0.447 0.463

BoS histograms. Appendix B.1 discusses each of these design choices in more detail. For

each design choice, alternatives are compared by measuring the annotation and retrieval

performance of a series of BoS auto-taggers. In the experiments in this section, reported

metrics are the result of five-fold cross-validation where tag model training and testing

are done using LR on CAL500.

EXP-1: Codebook Generation Methods

We first compare the four methods of codebook generation presented in section

6.3.2. We restrict our attention to codebooks consisting of a single base model (G1 only

or DT2 only) and use a small codebook size K (because for the collection-based codebook

learning procedures, learning time quickly becomes prohibitive with larger values of K).

Additional parameter settings for this experiment can be found in Appendix B.1.

Annotation and retrieval results for these experiments are reported in Table 6.2.

We find that learning codewords with the song-based procedure produces the best com-

bination of performance and efficiency. While highly efficient, learning codewords at
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the fragment level gives sub-optimal performance. The collection-based procedure (with

standard EM) provides good performance in terms of annotation and retrieval, but train-

ing times are an order of magnitude higher than the song-based method. Moreover, the

results in Table 6.2 are for relatively small codebooks (K = 128) — as the codebook size

increases, the computational cost of the EM algorithm becomes even more prohibitive.

In Appendix B.1 we analyze the codebooks produced by each method in more detail, in

particular investigating the diversity and spread of the learned codewords using appropri-

ate pairwise distances and 2-D visualization. Hence, for the remainder of experiments

codebooks are learned by the song-based method.

EXP-2: Codebook Size
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Figure 6.4. EXP-2: Retrieval performance (MAP) as a function of BoS codebook size
K. Each codebook is generated with a song-based approach. For a fixed codebook song
set Xc, the codebook size is varied by varying the number of codewords learned per
song, Ks. The error bars indicate the standard error over the five cross-validation folds of
CAL500.
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In this experiment we investigate the effect of the codebook size, K, on annotation

and retrieval performance. Figure 6.4 plots the retrieval performance (MAP) as a function

of the codebook size, for values of K ranging from 50 to 4800. Further details about

the parameter settings for this experiment are provided in Appendix B.1. We find that

once the codebook has reached a certain size, adding more codewords has a negligible

effect on performance, and in fact for DT codewords performance eventually degrades

as the codebook becomes large. We see an optimal range for K between 800 and 3200,

corresponding to an optimal range for Ks between 2 and 8. Based on these results we

choose for future experiments K̃ = 1600 (corresponding to Ks = 4) for each codeword

group, for codebooks learned from CAL500. We note however, that these results are for

a single base model, and we see in preliminary experiments that when codewords from

a variety of different base models are combined, we can use a larger codebook without

saturating performance (see Section B.1). We also note that these results are based on

a fixed codebook song set size |Xc|= 400. We found in preliminary experiments that

with a larger codebook song set, we can keep Ks in a similar range, allowing for larger

codebooks before performance deteriorates. In particular, when using the CAL10K

dataset as the codebook song set, we set Ks = 2 (see Section 6.6.2).

EXP-3: Codeword Base Models

One of the key advantages of the BoS framework is that it allows one to leverage

codewords from different base models (i.e., model types and time scales) to produce

a rich codebook. In this set of experiments, we investigate the extent to which using

multiple base models is useful.

We evaluate various combinations of the codeword base models defined in Table

6.1, adjusting the number of codewords learned from each base model, K̃, to obtain a

fixed codebook size K. We begin with a codebook with all codewords of base model



168

Table 6.3. EXP-3: Results using BoS codebooks with codewords from various base
models. All codebooks have K = 4800 codewords, with varying number of codeword
base models, M, codewords per base model, K̃, and size of song model, Ks. BoS
histograms use smoothing parameter k = 10, and are annotated using LR.

Base Annotation Retrieval
Models P R F-Score AROC MAP P10

DT2 0.418 0.253 0.258 0.724 0.469 0.491

DT1,2 0.424 0.255 0.263 0.729 0.475 0.499
DT2,G1 0.439 0.258 0.264 0.735 0.479 0.500

DT1,2,G1 0.433 0.263 0.267 0.744 0.489 0.506

DT1,2,3,G1 0.431 0.260 0.265 0.739 0.483 0.504

DT1,2,3G1,2, 0.428 0.261 0.266 0.739 0.483 0.505

DT2, which was the best performing individual codeword base model in preliminary

experiments, and compare it with codebooks containing additional base models of

codewords. Additional parameter settings can be found in Appendix B.1.

Results are presented in Table B.2. We find that using multiple types of generative

models with different time scales in a codebook is beneficial. Compared to a codebook

of DT2 codewords only, adding Gaussian codewords4 (i.e., G1) or DT codewords on

a shorter time scale5 (i.e., DT1) leads to a significant improvement in performance.

In particular, the best performance is achieved when all of the above base models are

combined: DT1, DT2 and G1. This is a significant improvement in performance over the

DT2,G1 codebook.6 While Figure 6.4 shows that adding more codewords of the same

base model to a codebook of size 1600 saturates and eventually deteriorates performance,

Table B.2 illustrates that adding codewords of a different base model can further improve

performance. This confirms the codebook is enriched with codewords that model different

aspects of the musical signal.

We notice, however, that adding a third set of DT codewords no longer improves

4Paired t-test of MAP score on 97 tags: t(96) = 6.43, p < .001
5Paired t-test of MAP score on 97 tags: t(96) = 9.08, p < .001
6Paired t-test of MAP scores on 97 tags: t(96) = 5.38, p < .001
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performance. We speculate this is because the DT2 and DT3 base models use feature vec-

tors sampled at the same time resolution, η ; they differ in the number of feature vectors,

τ , in the fragments they model, which is twice as long for DT3 as DT2. The hidden state

of a DT model evolves as a first order Markov process, with the evolution from state xt−1

to xt defined by the transition matrix A. While a different time resolution can significantly

affect A, the model (and the corresponding codewords) does not explicitly encode the

fragment length, τ . The latter only defines the length of the input audio fragments used

in the learning stage of the algorithm. Using larger values of τ means using longer audio

fragments, resulting in more smoothed DT models. Hence the codewords in DT2 and

DT3 may capture more or less the same dynamics, although the codewords in DT3 may

be more smoothed than those in DT2. 7

Similarly, adding a second set of Gaussian codewords provides no improvement

in performance. Indeed, since Gaussians do not model temporal dynamics, the only time

scale parameter to tune is the window length (i.e., η), varying which determines the

amount of audio that is averaged over to produce timbral features. Therefore, features

extracted at the time scale for G2 are essentially more smoothed versions of the features

extracted for G1 (with slightly different frequency bands), and the codewords capture

much of the same timbral information.

EXP-4: BoS Histogram Smoothing Parameter k

In this experiment we investigate the effect of the BoS histogram smoothing

parameter k on annotation and retrieval performance. Figure 6.5 illustrates a few example

BoS histograms with varying values for k for a song from CAL500. When building BoS

histograms, we assign the k most likely codewords (of each base model) to each portion

of audio. Hence when a smaller value of k is used, songs tend to be represented by only a

7See Chan and Vasconcelos [32] for more details.
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Figure 6.5. BoS histograms with smoothing parameter k = 5,10 and 50 for Guns N’
Roses’ November Rain. The smoothing parameter k determines the number of codewords
to be assigned at each point in the song, so using a smaller value of k will assign only a
few different codewords, leading to more peaked histograms, while a larger value of k
creates smoother histograms. Note the different y-axis scales.

few different codewords, leading to more peaked histograms, while a larger value of k

creates smoother histograms.

Details of the experimental setup are provided in Appendix B.1. Results are

plotted in Figure 6.6 as a function of k. We find that the performance is fairly stable for a

wide range of values for k, reaching a peak between k = 5 and k = 10. The performance

drops off gradually for large k and more steeply for small k. This leads us to select k = 10

as the BoS histogram smoothing parameter for further experiments.

We also notice throughout these (and following) experiments that LR tends to

outperform CBA as an annotation algorithm, and hence LR is our annotation algorithm

of choice.

6.6.2 BoS Performance

In this section we present experiments that demonstrate the effectiveness of the

BoS representation for music annotation and retrieval, using the design choices made in

the previous section. We compare the BoS approach to several baseline autotaggers on
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Figure 6.6. EXP-4: Annotation (F-score) and retrieval (MAP) performance of the BoS
approach, using LR on the CAL500 dataset, as a function of the smoothing parameter k.

the CAL500 and CAL10K datasets.

Results on CAL500

We run annotation and retrieval experiments on CAL500 using two BoS auto-

taggers based on a codebook of size K = 4800 which combines codeword base models

G1, DT1 and DT2, each with K̃ = 1600 and obtained with the song-based method

(Ks = 4, |Xc|= 400) and histogram smoothing parameter k = 10. One auto-tagger uses

LR to annotate BoS histograms and the second uses CBA — BoS-LR and BoS-CBA,

respectively. For LR, the regularization parameter C is chosen by 4-fold cross-validation

on the training set. All reported metrics are the result of five-fold cross-validation, where

for each split of the data the whole training set is used as the codebook song set (i.e.,

Xc = Xt).

We compare our BoS-CBA and BoS-LR auto-taggers with three state-of-the-
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Table 6.4. BoS codebook performance on CAL500, using CBA and LR, compared to
Gaussian tag modeling (HEM-GMM), DTM tag modeling (HEM-DTM), Averaging of
GMM and DTM tag models (HEM-AVG) and VQ codebooks with LR.

Annotation Retrieval
P R F-Score AROC MAP P10

HEM-GMM 0.374 0.205 0.213 0.686 0.417 0.425
HEM-DTM 0.446 0.217 0.264 0.708 0.446 0.460
HEM-AVG 0.445 0.219 0.251 0.719 0.458 0.474

VQ-LR 0.413 0.243 0.255 0.717 0.456 0.480

BoS-CBA 0.378 0.262 0.248 0.738 0.482 0.505
BoS-LR 0.433 0.263 0.267 0.744 0.489 0.506

art baselines for automatic music tagging. The first two are based on hierarchically

trained GMMs (HEM-GMM) [159] and hierarchically trained DTMs (HEM-DTM) [42],

respectively. Note that the HEM-GMM and HEM-DTM approaches each leverage one

base model from among those selected for our BoS codewords, but use it to directly

represent tag-specific distributions on low-level audio feature spaces. In particular,

the HEM-GMM auto-tagger learns tag-level GMM distributions with K = 16 mixture

components over the same audio feature space as G1. The HEM-DTM fits tag-level DTM

distributions with K = 16 mixture components over the same space of audio fragments as

used for DT2. The hyperparameters for these methods were set to those used in previous

works [159, 42].

The third baseline, HEM-AVG, averages (on a tag-by-tag basis, by directly

averaging the SMNs) the predictions of three HEM auto-taggers: two versions of HEM-

DTM (based on DT1 and DT2, respectively) and HEM-GMM (based on G1).

The fourth baseline (VQ-LR) is based on a VQ representation of songs [172].

Each song is represented as a Bag-of-Words (BoW) histogram by vector-quantizing its

MFCC features with a VQ codebook of size K = 2048, and annotation is implemented

using L2-regularized logistic regression. In preliminary experiments we found that,

similarly to the BoS representation, using a softened BoW histogram results in superior
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performance, and consequently we used a smoothing parameter of k = 5 to build VQ

histograms. These hyperparameters were tuned using cross-validation over the CAL500

dataset, using the same methodology as for the BoS hyperparameters.

Results for these experiments are reported in Table 6.4. The BoS auto-taggers

based on LR and CBA outperform the other approaches on all metrics except precision,

where HEM-DTM performs best. HEM-AVG outperforms HEM-DTM and HEM-GMM

in retrieval metrics, indicating that leveraging multiple time scales and models is bene-

ficial in general, but BoS outperforms HEM-AVG, which demonstrates the additional

modeling power the BoS framework provides.

In addition, we also notice that tagging BoS histograms with LR leads to higher

performance than CBA. This is not surprising, as LR is a discriminative algorithm which

is typically better suited when training on small, hard-labeled datasets such as CAL500,

whereas CBA is a generative algorithm.

We plot precision-recall curves for each of these auto-taggers in Figure 6.7. First,

we notice that BoS-LR achieves the best precision-recall trade-off point, and has the best

precision for intermediate and large values of recall. However, at low levels of recall,

HEM-DTM has the highest precision — meaning some DTM tag models may be finely

tuned to capture certain patterns associated with a tag, at the risk of not generalizing to all

occurrences of that tag. We also note that BoS-LR has a higher precision than BoS-CBA

at all levels of recall.

In order to provide a qualititative sense of how the BoS autotagger performs for

retrieval, Table 6.5 shows the top-10 retrieval results for the query “female lead vocals”,

for the three autotaggers HEM-GMM, HEM-DTM and BoS-LR.
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Figure 6.7. Precision-recall curves for various auto-taggers on CAL500. HEM-DTM
dominates at low recall, but BoS outperforms HEM-DTM at higher recall.

Results on CAL10K

In order to analyze the performance of the BoS approach when dealing with

larger, weakly labeled music collections, which are more representative of web-scale

applications, we train both the codebook and the annotation models on CAL10K. Specif-

ically, we subsample from CAL10K a codebook song set Xc consisting of one song

from each artist (i.e., |Xc| = 4,597), and use the song-based method with Ks = 2 to

compile a BoS codebook, resulting in K̃ = 9,194 codewords from each base model. (Be-

cause the codebook song set is much larger in this experiment than in previous CAL500

experiments, we find that it can support much larger codebook sizes.) Similar to the

CAL500 experiments, we use three base models of codewords, G1, DT1 and DT2, leading

to K = 3K̃ = 27,582 codewords overall. As CAL10K is not well suited for evaluation

purposes, (due to the weakly labeled nature of its annotations the absence of a tag in a
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song’s annotations does not generally imply that it does not apply to the song), we train

BoS tag models on all of CAL10K, and reliably evaluate them on CAL500. Our exper-

iments are limited to the 55 tags that CAL10K and CAL500 have in common. We fix

the hyperparameters to the best setting found through cross-validation on CAL500 (see

Section 6.6.2), i.e., BoS histogram smoothing parameter k = 10 and LR regularization

trade-off C = 1. We compare the performance of BoS codebooks to the HEM-GMM,

HEM-DTM, and VQ-LR autotaggers.

Annotation and retrieval results reported in Table 6.6 demonstrate that the BoS

approach outperforms direct tag modeling also using larger, weakly annotated collections

for training. In addition, we notice that BoS-CBA catches up with BoS-LR on several

performance metrics. This is a consequence of the weakly-annotated nature of CAL10K,

which makes the employment of generative models (such as CBA) more appealing

relative to discriminative models (such as LR).

6.7 Discussion

In this section we look at the performance of the BoS autotagger in more detail,

substantiating the claims we made in the introduction about the advantages of the BoS

framework. Namely, that decoupling modeling music from modeling tags makes the BoS

system more robust for tags with few training examples (Section 6.7.1), that combining

multiple types and time scales of generative models improves performance (6.7.2) and

that incorporating unlabeled songs when building a codebook is advantageous (6.7.3).

6.7.1 Decoupling Modeling Music from Modeling Tags

As anticipated in the introduction, we expect that the BoS approach will be

particularly robust for tags with fewer training examples when compared to traditional

generative algorithms, because the relatively simpler tag models used in the BoS approach
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are less prone to overfitting. To demonstrate this, we analyze performance on subsets of

CAL500 tags defined by their maximum cardinality α , i.e., subsets {w ∈T | |w|< α},

where the cardinality |w| of a tag w is defined as the number of examples in the data set

that are labeled with the tag.
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Figure 6.8. Retrieval performance (MAP) of the BoS approach, relative to HEM-DTM,
as a function of maximum tag cardinality. For each point in the graph, the set of all
CAL500 tags is restricted to those associated with a number of songs that is at most the
abscissa value. Experiments are run on the resulting (reduced) data set as described in
Section 6.6.2, and the performance metrics are averaged over each tag subset.

We report retrieval performance for both the BoS approaches and the direct gener-

ative approach with DTM models (HEM-DTM), using the experimental setup in Section

6.6.2. In Figure 6.8 we plot the relative improvement in retrieval performance (MAP

score relative to the MAP score of HEM-DTM) for both BoS auto-taggers as a function

of maximum tag cardinality. The BoS approach achieves the greatest improvement for

tags with few training examples. Since the BoS approach decouples modeling music
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from modeling tags, simple tag models (with few tunable parameters) can leverage the

full descriptive power of a rich BoS codebook while avoiding the risk of over-fitting

small training sets.

6.7.2 Combining Codeword Base Models

A key advantage of the BoS framework is that it enables combining different

types of generative models over various time scales in a single auto-tagger. We expect that

different tags will be better modeled by different model types and time scales. Coviello

et al. discuss this in [42], noting that DTM models are more suitable for tags with

characteristic temporal dynamics (e.g., tempo, rhythm, etc.)), while some other tags are

well characterized by timbre alone and thus are better suited for GMMs. A framework

such as BoS, which allows the combination of model types and time scales, can therefore

enable good performance over these different kinds of tags by learning to use codewords

from the most suitable base model class in each tag model.

To illustrate this, Table 6.7 compares the annotation (F-score) performance of a

BoS-LR autotagger based on four codebooks, using: (1) base model DT1 only (2) base

model DT2 only (3) base model G1 only, and (4) base models DT1, DT2 and G1, for a

few tags in the CAL500 dataset.

DT codewords prove suitable for tags with signicant temporal structure, such as

vocal characteristics and emotions such as “angry” and “agressive”. Instruments such

as electric guitar and synthesizer also perform well, perhaps because these instruments

exhibit some temporal signature that is captured in the model. We can infer that tags

that perform better with DT1 are characterized by dynamics that unfold more quickly

than tags that perform better with DT2, e.g., “fast” (recall that DT1 models fragments of

726ms, at a resolution of 12ms per feature vector, while DT2 models fragments of 5.8s,

at a resolution of 93ms per feature vector). Additionally, as the performance averaged
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over all the tags is a bit higher with DT2 codewords, we gather that the longer time scale

is a better “catch-all” to model a wide range of tags. Other tags, such as “low engery”

and “mellow” seem to have little in the way temporal dynamics to model, and are best

described by timbre information alone.

We note that the BoS codebook combining all three base models often leads

to comparable or higher performance to the highest performing indvidual base model

codebook.

6.7.3 Incorporating Unlabeled Songs in the Codebook Song Set

An additional advantage of the BoS framework is that the codebook can be

learned without an annotated corpus of audio data. This suggests that the codebook can

be enriched by expanding the codebook song set to include potentially large, unannotated

music collections. To illustrate this intuition, we compare a variety of BoS auto-taggers,

each of which differ in the codebook song set Xc.

We start by forming three different codebook song sets by aggregating subsets

of CAL10K and CAL500: (1) Xc = C400, the codebook song set corresponding to the

training set for each cross-validation split of CAL500 (as in Section 6.6.2), (2) Xc =

R400, a codebook song set that is a subset of 400 randomly selected songs from the

CAL10K collection and (3) Xc = A5K, the codebook song set that is a subset of the

CAL10K dataset consisting of one song from each of the 4,597 artists (as in Section 6.6.2).

Note that, since we are using only Xt = C400 as the training set in these experiments, the

CAL10K dataset, and thus R400 and A5K, can be considered as collections of unlabeled

data that could be used to form a codebook song set. In addition, we consider codebooks

derived from the union of C400 with R400 and A5K, respectively. This is a practical

scenario — an annotated music collection is augmented with additional unlabeled songs

to build a richer codebook.
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Details of the experimental setup can be found in Appendix B.3. Annotation

and retrieval results are reported in Table 6.8. We notice that the best performances are

obtained when a richer codebook is produced from combining the training set (i.e., C400)

with a much larger collection of unlabeled music, corresponding to C400 ∪ A5K in Table

6.8. Adding only a small set of unlabeled music to the codebook song set (i.e., C400 ∪

R400) does not lead to substantial improvements over using only the training set.

We have shown before (in Section B.1) that as we learn increasingly more

codewords from the same collection, performance flattens and then deteriorates. However,

if we increase the size of our codebook song set, the added information allows us to

extract larger codebooks that are effectively enriched. This results in a slight improvement

of performance.

In addition, we notice that when codebook song sets are equally sized, using

the training collection as the codebook song set (C400) outperforms using a different

collection (R400). This result may be affected by the fact that CAL500 is mostly pop

music, while CAL10K has many other genres (classical, jazz, etc.), so codewords learned

from CAL10K may not be as relevant for CAL500. However, growing the size of the

collection of unlabeled songs (A5K) allows it to catch up with, and in fact outperform,

the C400 codebooks. The ability to leverage a large codebook compiled off-line could,

for example, be useful for an application that learns personalized retrieval models. Such

a system should be based on a BoS codebook large and varied enough to represent well

the music various users are interested in. Personalized tag models can then be learned

from a smaller, user-specific collection, perhaps located on the user’s personal device.

As demonstrated in Section 6.6.2, these simple tag models can be estimated reliably even

when the collection of songs associated with a specific tag is relatively small, as might be

the case when training on a user’s personal collection of music.
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6.8 Conclusions

We have presented a semantic auto-tagging system for music that leverages a rich

“bag of systems” representation based on generative modeling. The BoS representation

allows for the integration of the descriptive qualities of various generative models of

musical content with different time resolutions into a single histogram descriptor of a song.

This approach improves performance over traditional generative modeling approaches

to auto-tagging, which directly model tags using a single type of generative model. It

also proves significantly more robust for tags with few training examples, and can be

learned from a representative collection of songs which need not be annotated. We have

shown the BoS representation to be effective for training annotation models on two very

different datasets, one small and strongly annotated and one larger and weakly annotated,

demonstrating its robustness under different scenarios.
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Table 6.5. Top-10 retrieved songs for “female lead vocals”. Songs with female lead
vocals are marked in bold.

Rank HEM-GMM

1 Joram “Solipsism”
2 Shakira “The one”
3 Dennis Brown “Tribulation
4 The Replacements “Answering machine”
5 Lambert, Hendricks & Ross “Gimme that wine”
6 Ray Charles “Hit the road Jack”
7 ABBA “S.O.S.”
8 Tim Rayborn “Yedi tekrar”
9 Everly Brothers “Take a message to Mary”
10 Sheryl Crow “I shall believe”

Rank HEM-DTM

1 Sheryl Crow “I shall believe”
2 Louis Armstrong “Hotter than that”
3 Joram “Solipsism”
4 The Mamas and the Papas “Words of love”
5 Jewel “Enter from the east”
6 Shakira “The one”
7 ABBA “S.O.S.”
8 Aimee Mann “Wise up”
9 Panacea “Dragaicuta”
10 Ike and Tina Turner “River deep mountain high”

Rank BoS-LR

1 ABBA “S.O.S.”
2 The Mamas and the Papas “Words of love”
3 Shakira “The one”
4 Sheryl Crow “I shall believe”
5 Spice Girls “Stop”
6 Cyndi Lauper “Money changes everything”
7 Aimee Mann “Wise up”
8 Ike and Tina Turner “River deep mountain high”
9 Bryan Adams “Cuts like a knife”
10 Jewel “Enter from the east”
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Table 6.6. BoS codebook performance for training tag models on CAL10K and evaluat-
ing on CAL500, using CBA and LR, compared to Gaussian tag modeling (HEM-GMM),
DTM tag modeling (HEM-DTM), and VQ codebooks with LR.

Annotation Retrieval
P R F-Score AROC MAP P10

HEM-GMM 0.297 0.404 0.264 0.714 0.350 0.315
HEM-DTM 0.289 0.391 0.259 0.702 0.354 0.314

VQ-LR 0.295 0.412 0.263 0.703 0.347 0.315

BoS-CBA 0.310 0.495 0.295 0.756 0.414 0.361
BoS-LR 0.329 0.479 0.312 0.759 0.416 0.361

Table 6.7. Comparison of per-tag F-scores for BoS autotaggers based on four codebooks:
(1) base model DT1 only (2) base model DT2 only (3) base model G1 only and (4) base
models DT1, DT2 and G1.

Tag DT1 DT2 G1 DT1,2,G1

DT1 is the best-performing base model

angry 0.42 0.32 0.34 0.43
drum machine 0.45 0.40 0.42 0.47
electric guitar 0.28 0.27 0.18 0.29
electronica 0.56 0.48 0.50 0.62
fast 0.38 0.36 0.17 0.38

DT2 is the best-performing base model

aggressive 0.31 0.40 0.35 0.47
classic rock 0.45 0.48 0.40 0.49
emotional vocals 0.26 0.37 0.25 0.30
female lead vocals 0.70 0.72 0.45 0.70
synthesizer 0.32 0.37 0.29 0.38

G1 is the best-performing base model

going to sleep 0.29 0.33 0.40 0.40
low energy 0.55 0.51 0.56 0.56
mellow 0.37 0.35 0.42 0.49
positive 0.26 0.29 0.32 0.33
tender 0.51 0.49 0.52 0.57

average 0.253 0.258 0.245 0.267
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Table 6.8. BoS codebook performance on CAL500 using codebooks learned from various
codebook song sets. BoS histograms use smoothing parameter k = 10 and are annotated
with LR.

Codebook Codebook Annotation Retrieval
Song Set (Xc) Size (K) P R F-Score AROC MAP P10

C400 4800 0.433 0.263 0.267 0.744 0.489 0.506

R400 4800 0.427 0.260 0.266 0.739 0.484 0.505
A5K 27,582 0.438 0.268 0.273 0.744 0.491 0.515

C400 ∪ R400 9600 0.441 0.266 0.270 0.740 0.488 0.511
C400 ∪ A5K 29,982 0.444 0.273 0.283 0.743 0.494 0.511



Chapter 7

Growing a Bag of Systems Tree for
Fast and Accurate Annotation of Music
and Videos

7.1 Introduction

The bag-of-system (BoS) representation [139], a high-level descriptor of motion

in a video, has seen promising results in video texture classification [33]. The BoS

representation of videos is analogous to the bag-of-words representation of text doc-

uments, where documents are represented by counting the occurrences of each word,

or the bag-of-visual-words representation of images, where images are represented by

counting the occurrences of visual codewords in the image. Specifically, in the BoS

framework the codebook is formed by generative time-series models instead of words,

each of them compactly characterizing typical textures and dynamics patterns of pixels or

low-level features in a spatio-temporal patch. Hence, each video is represented by a BoS

histogram with respect to the codebook, by assigning individual spatio-temporal patches

to the most likely codeword, and then counting the frequency with which each codeword

is selected. An advantage of the BoS approach is that it decouples modeling content from

modeling classes. As a consequence, a codebook of sophisticated generative models can

be robustly compiled from a large collection of videos, while simpler models, based on

184
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standard text mining algorithms, are used to capture statistical regularities in the BoS

histograms representing the subsets of videos associated to each individual class.

The BoS representation was originally proposed for video texture classification

[139], where a codebook of dynamic texture (DT) models was used to quantize proto-

typical patterns in spatio-temporal cubes corresponding to interest points in videos, and

was proven superior to standard methods based on modeling each video with a single

DT model [1]. The BoS representation is not limited to video, but is also applicable as

a descriptor to any type of time-series data. In particular, the BoS framework has also

proven highly promising in automatic music annotation and retrieval [56], registering

significant improvements with respect to current state of the art systems.

In practice, the efficacy of the BoS descriptor (or any bag-of-words representation)

depends on the richness of the codebook, i.e., the ability to effectively quantize the feature

space, which directly depends on both the method of learning codewords from training

data, and the number of codewords in the codebook. For the former, the learning of

good codewords is addressed in [33] by using a hierarchical EM algorithm. For the latter,

increasing the number of codewords also increases the computational cost of mapping a

video onto the codebook; indeed, the computational complexity is linear in the number

of codewords. For the standard bag-of-visual-words, increasing the codebook size is

typically not a problem, since the simple L2-distance function is used to identify the

visual codeword closest to an image patch. On the other hand, for the BoS in [33], finding

the closest codewords to a video patch requires calculating the likelihood of a video patch

under each DT codeword using the Kalman filter. For even modest sized codebooks,

this results in a heavy computational load. For example, the BoS codebooks of [33] are

limited to only 8 codewords.

To address the computational challenges of the BoS representation, in this paper

we propose the BoS Tree, which combines the expressiveness of a large codebook with
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the efficiency of a small codebook. Our proposed approach constructs a bottom-up

hierarchy of codewords, and then leverages the tree structure to efficiently index the

codewords by choosing only the most-likely branches when traversing the tree. In this

way, the proposed BoS Tree allows for fast look-ups on the codebook and consequently

enables the practical use of a larger BoS codebook.

The contributions of this paper are four-fold. First, we propose the BoS Tree

for fast-indexing of large BoS codebooks. Second, we apply the BoS Tree to video

classification, reducing the computational cost by at least one order of magnitude versus

a standard large codebook, without loss in performance. In fact, the BoS tree improves

on previous state-of-the-art results on two video texture datasets. Finally, we apply BoS

Trees to music annotation experiments, showing suitability of the method to other types

of time-series data. The remainder of this paper is organized as follows. In Section 7.2,

we first review the BoS representation and DT model, while in Section 7.3 we propose

the BoS Tree. Finally, we present experiments on video classification in Section 7.4, and

on music annotation in Section 7.5.

7.2 The BoS representation

Analogous to the bag-of-words representation for text documents, the bag-of-

systems (BoS) approach [139] represents videos with respect to a vocabulary, where

generative time-series models, specifically a linear dynamical system or dynamic texture,

are used in lieu of words.

7.2.1 The DT codeword

In general, the content of a video is represented by a set of T time series of low-

level feature vectors Y = {y(1)1:τ , . . . ,y
(T )
1:τ }, which correspond to spatio-temporal cubes

sampled from the video, where T depends on the size of the video and the granularity
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of the sampling process. Each time series y(t)1:τ is composed of τ patches extracted at

consecutive frames. In the BoS representation, the codebook discretizes the space of

time-series using a set of dynamic texture codewords.

The dynamic texture (DT) model [54] represents time series data by assuming that

it is generated by a doubly embedded stochastic process, in which a lower dimensional

hidden Gauss-Markov process Xt ∈ Rn encodes the temporal evolution of the observation

process Yt ∈ Rm. Specifically, the DT model is described by a linear dynamical system

(LDS):

xt = Axt−1 + vt , (7.1)

yt = Cxt +wt + ȳ . (7.2)

and is specified by the parameters Θ = {A,Q,C, R,µ,S, ȳ}, where the state transition

matrix A ∈ Rn×n encodes the dynamics of the hidden state variable (e.g., the evolution),

the observation matrix C ∈ Rm×n encodes the basis functions for representing the se-

quence, vt ∼N (0,Q) and wt ∼N (0,R) are the driving respectively observation noises,

the vector ȳ ∈ Rn is the mean feature vector, and N (µ,S) specifies the initial condition.

7.2.2 Learning the codebook

The BoS codebook C is learned from a codebook training set Xc, i.e., a collection

of representative videos. A two-stage procedure is typically used, where first each video

is summarized with a set of DTs, followed by clustering of the video DTs to obtain the

codewords.

In [139], spatio-temporal interest point operators are used to extract interesting

motion patches, from which DTs are learned. The video DTs are then embedded into

a Euclidean space via non-linear dimensionality reduction in tandem with the Martin



188

distance. The embedded DTs are clustered in the Euclidean space using the K-means

clustering algorithm. Finally, to represent each cluster, the learned DTs, which map the

closest to the cluster centers in the embedding, are selected as the codewords.

An alternative approach, presented in [33], is based on the probabilistic framework

of the DT. For each video, spatio-temporal patches are extracted using dense sampling,

and a dynamic texture mixture (DTM) is learned for each video using the EM algorithm

[32]. [33] then directly clusters the video DTs using the hierarchical EM algorithm,

producing novel DT cluster centers that are used as the codewords.

While these two approaches effectively produce small-sized codebooks (both

[139, 33] use 8 codewords), they are only applicable to small and simple datasets, e.g.,

UCLA 8-class [139]. Indeed, they are not rich enough to produce accurate classifications

when applied to larger or more challenging datasets, as demonstrated in Sections 7.4 and

7.5. A final approach [56] forms a large codebook by directly selecting each DT from

the video-level DTMs as a codeword. This forms a very large (and hence rich) codebook,

but has significant computational cost when mapping to the codebook.

7.2.3 Projection to the codebook

Once a codebook is available, a video Y is represented by a BoS histogram

hY ∈R|C | that records how often each codeword appears in that video. To build the BoS

histogram of Y , we extract a dense sampling of spatio-temporal cubes from Y . Each

cube y(t)1:τ is compared to each codeword Θi ∈ C by mean of its likelihood, efficiently

computed with the “innovations” form using the Kalman filter [147] . Defined a quantiza-

tion threshold k ∈ {1, . . . , |C |}, each cube is then assigned to the k most likely codewords,

and the BoS histogram for Y is finally built by counting the frequency with which each



189

codeword is selected. Specifically, the weight of codeword Θi is calculated with

hY [i] =
1
|Y | ∑

y(t)1:τ∈Y

1
k
1[i ∈ k

argmax
i

P(y(t)1:τ |Θi)], (7.3)

where argmaxk
i returns the indices of the codewords with the k-largest likelihoods. When

the quantization threshold k = 1, then (7.3) reduces to the typical notion of the term

frequency (TF) representation. The effect of k > 1 is to counteract quantization errors

that can occur when a time series is approximated equally well by multiple codewords.

An alternative to the standard TF representation is the term frequency-inverse

document frequency (TF-IDF) representation, which takes into account the statistics of

the training set by assigning more weight to codewords that appear less frequently in the

collection, and down-weighting codewords that are more common. Specifically, given

the BoS histogram hY for Y , the corresponding TF-IDF representation is obtained with

the following mapping:

ĥY [i] =
1
α

hY [i] · IDF [i], for i = 1, . . . , |C |, (7.4)

where the IDF factor is computed as

IDF [i] = log
|Xc|

|{Y ∈Xc : hY [i]> 0}| (7.5)

and α normalizes the histogram.

Mapping a video Y to its BoS histogram hY requires a total of |Y ||C | likelihood

computations, i.e., each spatio-temporal cube y(t)1:τ ∈ Y has to be compared to each

codeword Θi ∈ C . When both |Y | and |C | are large, projecting one video on the

codebook is computationally demanding, especially when using large video patches,
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which makes individual likelihood comparisons slow. Therefore, the deployment of a

large codebook is impractical due to the associated long delays. However, representing

the variety of visual information typical of large and diverse video collections requires a

rich, large codebook. In the next section we propose the BoS Tree which, by organizing

codewords in a bottom-up hierarchy, reduces the number of computations necessary to

index a large collections of codewords.

7.3 The BoS Trees

In this section we propose the BoS Tree, which consist of a bottom-up hierarchy

of codewords learned from a corpus of representative videos. The bottom level of the

tree is formed by a large collection of codewords. A tree structure is then formed by

repeatedly using the HEM algorithm to cluster the codewords at one level and using the

novel cluster centers as codewords at the new level. Branches are formed between the

codewords at a given level and their cluster center at the next higher level.

When mapping a new video onto the codebook, each video patch is first mapped

onto the codewords forming the top-level of the BoS Tree. Next, the video patch is

propagated down the tree, by identifying branches with the most-promising codewords

(i.e., with largest likelihood). Selecting the most-likely branches reduces the number

of likelihood computations, while also preserving the descriptor quality, since portions

of the tree that are not explored are not likely to be codewords for that patch. In this

way, the BoS Tree efficiently indexes codewords while preserving the quality of the

BoS descriptor, and hence enables the deployment of larger codebooks in practical

applications.

In this section, we first discuss the HEM algorithm for clustering dynamic textures,

followed by the algorithms used for forming and using the BoS Tree.
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7.3.1 The HEM algorithm

Given a collection of DTs, the HEM algorithm for DTMs (HEM-DTM) [33]

partitions them into K clusters of DTs that are “similar” in terms of their probability

distributions, while also learning a novel DT to represent each cluster. This is similar to

K-means clustering, with the difference that the data points are DTs instead of Euclidean

vectors.

Specifically, the HEM-DTM takes as input a DTM with K(b) components and

reduces it to a new DTM with fewer components, i.e., K(r) < K(b). Given the input DTM

Θ(b) = {Θ(b)
i ,π

(b)
i }K(b)

i=1 , the likelihood of a spatio-temporal cube y1:τ is given by

p(y1:τ |Θ(b)) =
K(b)

∑
i=1

π
(b)
i p(y1:τ |z(b) = i,Θ(b)), (7.6)

where z(b) ∼multinomial(π(b)
1 , · · ·π(b)

K(b)) is the hidden variable that indexes the mixture

components. p(y1:τ |z = i,Θ(b)) is the likelihood of y1:τ under the ith mixture component,

and π(b) is the prior weight for the ith component. The likelihood of the spatio-temporal

cube y1:τ given the reduced mixture Θ(r) = {Θ(r)
j ,π

(r)
j }K(r)

j=1 is given by

p(y1:τ |Θ(r)) =
K(r)

∑
j=1

π
(r)
j p(y1:τ |z(r) = j,Θ(r)), (7.7)

where z(r) ∼multinomial(π(r)
1 , · · · ,π(r)

K(r)) is the hidden variable for indexing components

in Θ(r).

The HEM-DTM algorithm estimates (7.7) from (7.6) by maximizing the like-

lihood of N virtual spatio-temporal cubes Y = {Y i}K(b)

i=1 generated accordingly to Θ(b),

where Y i = {ym
1:τ}

Ni
m=1 is a set of Ni = π

(b)
i N samples drawn from Θ

(b)
i . In order to

produce a consistent clustering of the input DTs, the HEM algorithm assigns the whole
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(a) Building a BoS Tree. (b) Indexing with a BoS Tree.

Figure 7.1. (a) A BoS Tree is built from a collection of videos Xc by forming a
hierarchy of codewords. (b) The tree structure of the BoS tree enables efficient indexing
of codewords.

sample set Y i to a single component of the reduced model. Assuming that the size of the

virtual sample is appropriately large, the law of large number allows the virtual samples

to be replaced with an expectation with respect to the input DTs. A complete description

of HEM-DTM appears in [33], while here we note that the output of the HEM algorithm

is: (1) a clustering of the original K(b) components into K(r) groups, where the cluster

membership is encoded by the assignments ẑi, j = P(z(r) = j|z(b) = i), and (2) novel

cluster centers represented by the individual mixture components of (7.7), i.e., {Θ(r)
j }K(r)

j=1.

7.3.2 Building a BoS Tree

A BoS Tree is built from a collection of representative videos Xc with an unsuper-

vised clustering process based on the HEM-DTM algorithm (Figure 7.1, left). The bottom

level of the tree C (1) = {Θ(1)
i }

K1
i=1 consists of a large codebook compiled by pooling

together the DT codewords extracted from individual videos in Xc (using the EM-DTM

algorithm for DTMs [32]). Starting from the bottom level, a BoS Tree of L levels is built

recursively using the HEM-DTM algorithm L−1 times. Each new level of the BoS Tree,
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i.e., C (`+1) = {Θ(`+1)
j }K`+1

j=1 , is formed by clustering the K` DTs at the previous level `

into K`+1 < K` groups using the HEM-DTM algorithm. In particular, the input mixture is

given by the DT codewords at level ` with uniform weight, i.e., Θ(b) = {Θ(`)
i , 1

K`
}K`

i=1, and

the novel DT cluster centers learned by the HEM-DTM algorithm are used as codewords

at the new level, i.e., C (`+1) = {Θ(r)
j }

K`+1
j=1 .

The branches between contiguous levels in the BoS Tree are instantiated as

dictated by the assignment variables of the HEM-DTM algorithm, which is a function

of the Kullback-Leibler (KL) divergence between DTs at each level. In particular, to

connect level `+1 to level `, we define the set of branches for each codeword j ∈ [1K`+1]

from level `+1 as

B(`+1)
j = {i ∈ [1K`]| j = argmin

h
KL(Θ(`)

i ||Θ
(`+1)
h )}. (7.8)

This is effectively the set of input DTs (at level `) that are assigned to cluster j when

constructing level `+1 of the BoS Tree. Finally, the BoS Tree T is the collection of

codewords at each level and their corresponding branch sets, i.e.,

T = {C (1), · · · ,C (L),B(2), · · · ,B(L)}.

7.3.3 Fast codewords indexing with BoS Trees

The BoS Tree T allows for quick look-ups in the large codebook C (1), which

forms the bottom level of the tree, by leveraging the hierarchical structure to index

the codewords efficiently (Figure 7.1, right). To map a video Y to its BoS histogram

hY ∈ RK1 , we extract a dense sampling of spatio-temporal cubes and propagate each

cube down only the more promising paths of the BoS Tree. In particular, each cube y1:τ

is initially compared to the codewords at the top level of the BoS Tree (i.e., level L), and
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assigned to the κ(L) most likely ones,

J(L) =
κ(L)

argmax
j∈[1KL]

p(y1:τ |Θ(L)
j ). (7.9)

Next, the cube is propagated down to the successive level following the branches that

depart from the codewords selected at the current level,

J(`) =
κ(`)

argmax
i∈⋃

j∈J(`+1) B(`+1)
j

p(y1:τ |Θ(`)
i ), (7.10)

for `= L−1,L−2, . . . ,2,1.

At the bottom level of the BoS Tree (i.e., `= 1), the number of occurrences of

each codeword is registered, and TF or TF-IDF histograms are then computed. Setting

the quantization thresholds [κ(1), . . . ,κ(L)] to values larger than 1 counteracts the effect

of quantization errors and improves the accuracy of the BoS (in comparison to the full

codebook computation), but increases the number of likelihood computations.

An alternative to selecting a fixed number of codewords at one level, is to select a

variable number of codewords based on the uncertainty of the BoS quantization. This is

implemented by defining the operator

Ω(J,T) = { j ∈ J|p(y1:τ |Θ j)≥ Tmax
h∈J

p(y1:τ |Θh)}

which selects all codewords whose likelihood is within a threshold T away from the

largest, and replacing (7.9) and (7.10) with

J(L) = Ω([1KL],T
(L)) (7.11)

J(`) = Ω(∪ j∈J(`+1)B
(`+1)
j ,T(`)). (7.12)
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The BoS Tree reduces the number of likelihood computations necessary to map a

video to its codebook representation. Assuming that a BoS tree has K top-level codewords,

L levels, and B branches on average per codeword, the average number of likelihood

computations required for the BoS tree look-up is (K +B(L−1)), which is much less

than the K ·BL−1 computations required for directly indexing the bottom-level of the

tree. Therefore, the BoS Tree enables the use of large and rich codebooks while still

maintaining an acceptable look-up time. As the portions of the BoS Tree that are not

explored are the ones that are not likely to provide appropriate codewords for a given

video (in both the likelihood sense for a tested codeword, and KL-divergence sense for

the children of that codeword), there is not expected to be a big loss in performance with

respect to linear indexing of a large codebook. We demonstrate this experimentally in

Sections 7.4 and 7.5.

7.3.4 Related Work

The bag-of-features “cousin” of our BoS Tree is the tree-structured vector quan-

tizer (TSVQ) [66], which creates a hierarchical quantization of a feature space, and was

proposed by Nister et al. for efficiently indexing a large vocabulary of image codewords

[122], and by Grauman et al. to define the bins of multi-resolution histograms [70].

The novelty of our paper is that we apply tree-structured search to a codebook formed

by time-series models (i.e., DT models), instead of to a VQ codebook of Euclidean

vectors. Although a VQ codebook could be extended to video patches, e.g., by concate-

nating all frames into a single vector, the resulting image codewords would not handle

spatio-temporal variations well, and would be extremely high dimensional.

Efficient indexing of codewords is also related to fast approximate nearest-

neighbor (NN) search. Typical approaches to fast NN for real-vectors also exploit

a tree data structure, e.g., KD-trees and metric ball trees, and use branch and bound
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methods to traverse the tree to find the nearest neighbor [20, 161]. Cayton [31] gener-

alizes metric ball trees to Bregman divergences, enabling fast NN search of histograms

using the KL divergence. Adapting approximate search using randomized trees [132] to

time-series (using DTs) would be interesting future work.

The BoS Tree proposed here is similar to the Bregman-ball tree in [31], in that

both use KL divergence-based clustering to hierarchically construct a tree. The main

differences are that our BoS Tree is based on continuous probability distributions (in

fact random processes), while [31] is limited to only discrete distributions, and that our

nearest-neighbor search is based on data likelihood, not KL divergence. In addition, we

use a simple forward search to traverse the tree, whereas [31] uses a more complicated

branch-and-bound method. Experimentally, we found that the forward search was both

efficient and accurate.1

Finally, our BoS Tree is also related to fast image retrieval work by [163], where

each image is modeled as a Gaussian distribution and a retrieval tree is constructed using

the HEM algorithm for Gaussian mixture models.

7.4 Experiments: video classification

In this section we evaluate the proposed BoS Trees for video classification on

three datasets.

7.4.1 Datasets

We consider three datasets, the UCLA-39 dataset [171], the DynTex-35 dataset

[177] and the KTH dataset [146]. The first two datasets are composed of video textures,

while the third dataset consists in human actions.
1We later explored branch-and-bound search for a BoS Tree in [46].
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Figure 7.2. Example frames from UCLA-39. Right views (top) are visually different
from the corresponding left views (bottom).

boxing handclapping handwaving jogging running walking

Figure 7.3. Example frames from KTH. There are 6 actions.

UCLA-39: The UCLA-39 dataset [171] contains 312 gray-scale videos repre-

senting 39 spatially stationary classes, which were selected from the original 50 UCLA

texture classes [1]. Each video is cropped into a right portion and a left portion (each

48×48), with one used for training and the other for testing. Classification of UCLA-39

is a challenging task, and tests the translation invariance of the feature descriptor, since

the training video patch (right portion) is visually quite different from the testing patch

(left portion, or vice versa). While other UCLA-based datasets could be used (e.g.,

[1, 139, 50]), we believe that UCLA-39 is the most challenging variant and hence we

adopt it in this paper. Figure 7.2 illustrates typical frames from UCLA-39.

DynTex-35: The DynTex-35 dataset [177] is a collection of videos from 35

different texture classes from everyday surroundings. Originally, the data consisted of

a single video of size 192×240×50 per class. As in [177] , each video is split into 10

non-overlapping sub-videos (each having different spatial and temporal dimensions).
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KTH: The KTH dataset [146] consists of 2391 videos of six types of human

actions (walking, jogging, running, boxing, hand waving and hand clapping) performed

several times by 25 subjects in different scenarios (outdoors, outdoors with scale variation,

outdoors with different clothes, and indoors). Each sequence is downsized to 160×

120 pixels and have a length of 4 seconds in average. We follow the leave-one-out

experimental protocol. Typical frames from KTH are illustrated in Figure 7.3. Note that,

although the overall motion in KTH may not be stationary, we demonstrate that our BoS

descriptor can represent local patches of motion sufficiently well (Section 7.4.3).

7.4.2 Experiment setup

From each video we extract a dense sampling of spatio-temporal cubes of size

5×5×75 for UCLA-39, 7×7×30 for DynTex-35, and 7×7×10 for KTH. We retain

only video cubes with a minimum total variance of 1 for UCLA-39 and DynTex-35, and

5 for KTH.

For each cross-validation split in our datasets, the BoS Tree was learned from

the training set only. For each video, a DTM with Kv = 4 components is learned from

its spatio-temporal cubes using the EM-DTM algorithm. The DTs from all videos are

collected to form the DT codewords, i.e., K1 = Kv|Xc|, where |Xc| is the size of the

training set. The BoS Tree is then formed by successively applying the HEM-DTM

algorithm, as described in the previous section. We test different trees for L ∈ {2,3,4}

levels, using K2 = 64, K3 = 32 and K4 = 16. We used κ(`) = κ = 1 or T(`) = T= 0.995

for traversing the BoS Trees.

For video classification, we first map all the videos to their BoS histograms

using the learned BoS Tree, to represent the visual content of each video. We then use

a k-nearest neighbor (k-NN) classifier or multi-class support vector machine (SVM)

for the video classification task. In order to account for the simplicial structure of BoS
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Table 7.1. Distances and kernels used for classification.

square-root distance (SR) ds(h1,h2) = arccos(∑k
√

h1kh2k)

χ2-distance (CS) dχ2(h1,h2) =
1
2 ∑k

|h1k−h2k|
h1k+h2k

χ2 kernel (CSK) K(h1,h2) = 1−∑k
(h1k−h2k)

2

1
2 (h1k+h2k)

Intersection kernel (HIK) K(h1,h2) = ∑k min(h1k,h2k)
Bhattacharyya kernel(BCK) K(h1,h2) = ∑k

√
h1kh2k

histograms, we build our k-NN classifier in terms χ2-distance (CS) or square root-distance

(SR) (Table 7.1), which are appropriate distance metrics for histograms. Similarly, for

SVM we use the chi-squared kernel (CSK), Bhattacharyya kernel (BCK), or histogram

intersection kernel (HIK), as in Table 7.1. The LibSVM software package [36] was used

for the SVM, with all parameters selected using 10-fold cross-validation on the training

set.

In addition to BoS Trees, we also consider several alternative methods for BoS

histograms: direct indexing of the large level-1 codebook (of sizes 624 and 630 on UCLA-

39 and DynTex-35); and using a reduced codebook of size K ∈{16,32,64}, obtained with

the HEM-DTM algorithm as in [33, 114]. For each experiment we registered average (per

video) classification accuracy and average (per video) number of likelihood computations

executed at test time to produce the BoS histograms, from which we computed the speed

up with respect to the large level-1 codebook (X-Speedup). A small number of likelihood

computations results in faster look-ups in the codebook, and in a larger speedup. Finally,

results are averaged over 2 trials on UCLA-39 (the right sub-video used for training

and the left for testing, and vice versa), and leave one sub-video out classification for

DynTex-35, with one sub-video from all classes used for testing and the remainder for

training.
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7.4.3 Video classification results

Table 7.2 reports classification results on UCLA-39 and DynTex-35. Each row

refers to the combination of a specific classifier with TF or TF-IDF representation,

while columns correspond to different techniques to map videos to BoS histograms:

direct-indexed large codebook (large CB), a reduced codebook (reduced CB), and our

proposed BoS Tree. Several observations can be made from the results on UCLA-39.

First, increasing the codebook size (with direct indexing) substantially increases the

classification performance, e.g., with accuracy increasing from 41.35% for 16 codewords

to 81.73% for 624 codewords, using TF-IDF and HIK-SVM. However, the computational

cost also increases substantially, from requiring 7377 likelihood computations per video

(about 5 seconds on a standard desktop PC) to 287,690 (about 182 seconds). Second,

using BoS Trees leads to the best performance while requiring only a fraction of the

likelihood computations necessary when directly indexing a large codebook. For example

with TF-IDF and HIK-SVM, using a 2-level codebook improves accuracy to 82.37%,

while also decreasing the average number of likelihood computations to 36,393 (23

seconds), an almost 8 times reduction in computation. For other classifiers, the accuracy

is on par, or decreases slightly, compared to the large CB. These results demonstrate that

the BoS Trees efficiently and effectively index codewords, and hence allow practical

use of a large and rich codebook. Third, although they use about the same number

of likelihood operations, BoS Trees significantly outperform the reduced codebooks

generated with HEM-DTM in terms of classification accuracy. While the former leverages

the hierarchical structure of codewords to access a large collection of codewords, the

latter only reduces the size of the codebook which does not result rich enough to produce

highly accurate classification. Lastly, using the BoS Tree with L = 4 and setting the

transversing threshold in (7.9) and (7.10) to T= 0.995 leads to the best performance. By
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executing a limited number of additional likelihood computations (only 30% more the

BoS Tree with L = 4), the threshold method is able to explore the sub-trees of similar

codewords when the patch has near equal preference to both.

Similar conclusions can be drawn on DynTex-35, although the differences in

classification accuracy are less substantial due to the easiness of the classification task.

Again, we note that the BOS Tree achieves the same accuracy as the direct-indexed large

CB, while reducing the computation by almost an order of magnitude.

Finally, the BoS Tree performance improves on the current state-of-the-art re-

ported in the literature [50, 171, 35, 177] on the two textures datasets (last row of Table

7.2). On UCLA-39, the accuracy has improved from 20% [171] or 42.3% [50] to 82.37%

for BoS Tree. In contrast to [171], which is based solely on motion dynamics, and [50],

which models local appearance and instantaneous motion, the BoS representation is able

to leverage both the local appearance (for translation invariance) and motion dynamics of

the video to improve the overall accuracy.

In addition, on the KTH dataset our BoS Tree (L = 2, K1 = 3040 codewords and

K2 = 32) obtains a classification accuracy of 92.3% when using TF-IDF and CSK-SVM,

which compares reasonably with results reported in the literature (which range from

87.3% [173] to 95.7% [67]). This shows the potential of BoS Trees as a universal motion

descriptor for classification of non-texture, non-stationary videos, such as human actions.

However, the comparison with state-of the art system suggests we could improve our

BoS Trees with interest point operators, scale-selection, similar to those leveraged by

[67] (95.7%) or [25] (93.2%). This is a topic of future work. We also note that the variety

of codewords the BoS Tree can index is crucial to achieve good classification results, as

a reduced codebook with K = 32 performed poorly with 72.8% accuracy.
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Table 7.2. Video classification results on UCLA-39 and DynTex-35 using a large
codebook, reduced codebooks, and BoS trees. Each row reports the average classification
accuracy of a different classifier/kernel combination. The final two rows report the
speedup relative to large CB to build the BoS histograms at test time, and reference
results (Ref).

UCLA-39 DynTex-35
Method large CB reduced CB BoS Tree κ = 1 T= 0.995 large CB reduced CB BoS Tree κ = 1

|C |= 624 K = 64 K = 32 K = 16 L = 2 L = 3 L = 4 L = 4 |C |= 630 K = 64 K = 32 K = 16 L = 2 L = 3 L = 4
N CS 46.79 46.79 42.95 33.97 43.59 46.47 42.31 42.63 92.86 94.86 92.86 90.86 91.14 92.00 90.57

T N SR 62.82 52.88 42.31 34.94 60.90 58.01 55.13 58.33 98.00 98.57 97.71 94.57 98.29 98.00 98.29
F S CSK 62.82 52.88 44.87 33.33 60.26 58.97 57.05 59.29 98.29 97.14 96.29 89.43 98.00 98.29 98.86

V HIK 78.53 57.69 48.40 39.10 78.53 78.53 73.72 78.85 96.86 96.29 91.71 86.29 97.71 97.71 97.14
M BCK 71.79 52.88 45.19 38.78 71.15 71.15 69.55 72.12 96.57 94.57 92.57 84.29 96.29 96.86 96.57

T N CS 46.15 45.83 42.95 34.62 43.59 46.15 41.99 42.31 92.29 94.86 92.86 91.14 90.57 92.00 90.86
F N SR 65.38 56.09 45.19 36.22 61.22 58.97 56.41 60.58 98.00 98.29 97.43 94.29 98.00 98.00 98.00
I S CSK 61.22 53.53 45.51 37.50 61.86 59.94 59.62 60.90 98.29 97.14 96.29 89.43 97.71 97.43 98.00
D V HIK 81.73 58.01 48.40 41.35 82.37 82.37 79.81 83.33 97.14 96.57 92.29 85.43 97.43 97.43 97.71
F M BCK 74.36 55.13 51.92 40.06 73.72 74.04 72.76 75.32 96.57 95.14 91.71 82.57 96.57 96.29 96.29

Best 81.73 58.01 51.92 41.35 82.37 82.37 79.81 83.33 98.29 98.57 97.71 94.57 98.29 98.29 98.86
X-Speedup 1 9.75 19.50 39 7.91 12.46 17.39 12.74 1 9.84 19.69 39.37 8.31 13.56 19.47

Ref 42.3 [50], 20 [171], 15 [35] 97.14 [177]

7.5 Experiments: music annotation

In this section, we show the applicability of BoS Trees on an additional type of

time-series data, i.e., musical signals.

7.5.1 Dataset

We perform automatic music annotation on the CAL500 dataset (details in [42]

and references therein), which is a collection of 502 popular Western songs by as many

different artists, and provides binary annotations with respect to a vocabulary of musically

relevant tags (annotations or labels), e.g., rock, guitar, romantic. In our experiments we

follow the same protocol as in [56] and consider the 97 tags associated to at least 30 songs

in CAL500 (11 genre, 14 instrumentation, 25 acoustic quality, 6 vocal characteristics, 35

mood and 6 usage tags).
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7.5.2 Experiment setup

The acoustic content of a songs is represented by computing a time-series of 34-

bin Mel-frequency spectral features (see [42]), extracted over half-overlapping windows

of 92 ms of audio signal. A dense sampling of audio-fragments (analogous to spatio-

temporal cubes in videos) is then formed by collecting sequences of τ = 125 consecutive

feature vectors (corresponding to approximately 6 seconds of audio), with 80% overlap.

A BoS Tree is learned for each cross-validation split from only the training data. The

first level of the BoS Tree is formed by estimating a DTM with Ks = 4 components from

each training song, and then pooling all the DT components together. BoS Trees for

L ∈ {2,3,4} levels are tested, with K2 = 128, K3 = 64 and K4 = 32. We use κ(1) = 5

and κ(`) = 2 for ` > 1.

We cast music annotation as a multi-class multi-label classification task. In

particular, given a training set of audio-fragments and their annotations, for each tag we

use logistic regression (LR) to learn a linear classifier with a probabilistic interpretation

in tandem with the HIK kernel. Given a BoS histogram h corresponding to a new song,

the output of the LR classifiers is normalized to a semantic multinomial, i.e., a vector

of tag posterior probabilities. We use the LibLinear software package [58] for the LR

classifier, with all parameters selected using 4-fold cross validation on the training set.

On the test set, a novel test song is annotated with the 10 most likely tags,

corresponding to the peaks in its semantic multinomial. Retrieval given a one tag query

involves rank ordering all songs with respect to the corresponding entry in their semantic

multinomials. Performance is measured with the same protocol as in [56]: for annotation,

per-tag precision (P), recall (R) and F-score (F), averaged over all tags; and for retrieval,

mean average precision (MAP), area under the operating characteristic curve (AROC),

and precision at the first 10 retrieved objects (P@10), averaged over all one-tag queries. In
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Table 7.3. Music annotation results on CAL500, using a large codebook, reduced
codebooks, and BoS Trees. The last column reports the speedup relative to large CB to
build the BoS histograms at test time.

Retrieval Annotation
MAP AROC P@10 P R F X-Speedup

large CB K = 1604 0.454 0.723 0.460 0.406 0.244 0.270 1

reduced CB
K = 128 0.403 0.668 0.402 0.342 0.209 0.227 12.55
K = 64 0.381 0.649 0.378 0.315 0.192 0.204 25.10
K = 32 0.368 0.634 0.368 0.298 0.180 0.191 50.20

BoS Tree
L = 2 0.445 0.712 0.451 0.398 0.24 0.261 8.24
L = 3 0.443 0.712 0.448 0.393 0.235 0.258 11.54
L = 4 0.439 0.711 0.448 0.394 0.232 0.255 14.31

SML-DTM [42] 0.446 0.708 0.460 0.446 0.217 0.264 1.03

addition, we register the average (per song) number of likelihood computations executed

at test time. All reported metrics are result of 5-fold cross validation, where each song

appears in the test set exactly once. We compare our BoS Tree to recent results in music

annotation based on a large BoS codebook [56], and supervised multi-class labeling with

DTM models (SML-DTM) [42].

7.5.3 Music annotation results

In Table 7.3 we report annotation and retrieval performance on the CAL500

dataset. Due to space constraints, we report results only for LR using TF-IDF represen-

tation and HIK kernel, but similar trends were noticed for TF representation and other

kernels.

We first note that the BoS Trees lead to near optimal performance with respect

to the direct-indexed large codebook (implemented with k = 5 as in [56]) and SML-

DTM, but require an order of magnitude less likelihood computations at test time. In

particular, in our experiments, the delay associated to likelihood computations was 8 to

14 seconds per song for the BoS Trees (depending on L), and 2 minutes for direct-indexed

large codebook and for SML-DTM. Second, as with video classification, increasing the
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codebook size improves the accuracy of music annotation and retrieval, by increasing the

richness of the codebook. Again, this justifies the efficacy of large BoS codebooks and

our proposed BoS Tree for efficient indexing.

7.6 Conclusions

In this paper we have proposed the BoS Tree, which efficiently indexes DT

codewords of a BoS representation using a hierarchical structure. The BoS Tree enables

the practical use of larger and richer collections of codewords in the BoS representation.

We have proven the efficacy of the BoS Tree on three video datasets, and on a music

dataset as well.
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Chapter 8

Speeding Up NN Search for the Bag of
Systems Tree and of High Dimensional
Distributions in general

8.1 Introduction

Nearest neighbor (NN) search is a core routine in many applications of machine

learning and information retrieval. Formally, given a database X , a query q and a

dissimilarity d, the problem consists of finding the x ∈ X for which d(x,q) is minimum.

In this work we are particularly interested in the case where the data points represent

probability distributions, and the dissimilarity measure is the Kullback-Leibler (KL)

divergence (relative entropy). KL has been extensively used to compare generative

models of documents, e.g., in text analysis [130, 24] and content-based image retrieval

[133, 136], where documents are often modeled using histograms, as well as in computer

vision for video classification [35], where videos are modeled as linear dynamical

systems.

Brute-force search is often prohibitive on large datasets. As a consequence, a

large body of work, starting from KD-trees [63] and metric-ball trees [125, 161, 111],

has investigated the use of spatial data structures to accelerate search. These consist of a

hierarchical space decomposition based on geometric properties and database’s statistics,

206
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that enables fast search by pruning out portions of the search space via a branch and

bound exploration. Cayton [31] extends these ideas to the class of Bregman divergences,

of which KL is a member. In particular, Bregman Ball trees (bbtrees) are defined in terms

of Bregman balls, and search uses bounds on the Bregman divergence from a query to a

Bregman ball. Succesively, Nielsen et al. [120, 121] developed an extension of the bbtree

to symmetrized Bregman divergences, Zhang et al. [176] adapted the VA-file and R-tree

to decomposable Bregman divergence, and Cayton [30] used the bbtree for efficient range

search. Abdullah et al. [2] formally analyze approximated Bregman NN search. These

accelerated search methods are not immediately practical in high dimensions [111, 31],

where the number of close neighbors is often very large, and consequently the procedure

needs to run on many nodes, which results in several additional divergence computations

and a total computation time that may become comparable or worse than brute force.

The pruning operation of [31] requires projecting the query onto the shell of a

Bregman ball, which is found using a bisection search. However, this has 2 limitations:

1) the procedure is not amenable to distributions outside the exponential family (e.g.,

latent variable models); 2) two divergence calculations are required for each iteration of

the bisection search, which leads to slow performance when the divergence calculation is

computationally intensive (e.g., in high dimensions, or latent variable models).

To do more efficient NN search, Bbtrees naturally handle approximate NN opera-

tions, by stopping search early after a fixed budget of leaves has been visited [31]. This

increases efficiency without an excessive degradation of quality.

In this paper we propose a novel branch and bound method based on variational

approximations. The corresponding bisection procedure has a small computational

overhead, since it requires only one divergence computation at each backtracked node,

independent of the number of iterations, and then needs to evaluate only scalar func-

tions at each iteration. The algorithm provides a speedup over [31] on medium and
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high-dimensionality, and over brute force search at each dimensionality, and returns

almost perfect NNs. In addition, our algorithm readily serves search of latent variable

distributions.

Other data structures for approximated NN search rely on mapping techniques,

for example locality sensitive hashing (reviewed in [149]) adapted to non-metric dissimi-

larities by [112].

In Section 8.2 we overview Bregman and KL divergences. In Section 8.3 we

discuss Cayton’s [31] NN search with bbtrees, which lays the basis for our novel contri-

bution, in Section 8.4. Experiments on histogram data and linear dynamical systems are

reported in Sections 8.5 and 8.6, and conclusions are drawn in Section 8.7.

8.2 Bregman divergence and Kullback-Leibler diver-
gence

This section provides background on Bregman and KL divergence and describes

some related properties.

8.2.1 Bregman divergences

Given a strictly convex differentiable function f (·), the Bregman divergence

based on f is d f (x,y) = f (x)− f (y)−〈∇ f (y),x− y〉. A Bregman divergence d f (x,y) is

convex in x, and the Bregman ball of radius R around µ

B(µ,R) = {x : d f (x,µ)≤ R} (8.1)

is a convex set. The interested reader may refer to [31, 12] for more details.

Let f ∗ be the dual function of f .1 Since f is strictly convex, f ∗ is strictly convex

1Given f (x), the dual function is defined as f ∗(y) = supx{〈x,y〉− f (x)}
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as well, and f and f ∗are Legendre dual of each other [141]. One important property is

that the gradient ∇ f defines a bijective mapping, and the inverse mapping is given by the

gradient of the dual function f ∗, i.e.:

µ
∇ f (µ)−−−−→←−−−−

∇ f ∗(µ ′)
µ
′ (8.2)

Consistently with the exposition in [31], we use prime (i.e., ′) to denote the results of

applying ∇ f .

8.2.2 Regular exponential families, regular Bregman divergences
and KL divergence

Given a pair of random variables with p.d.f.s X and Y , respectively, their KL

divergence is the functional

D(X ||Y ) =
∫

X (ω) log
X (ω)

Y (ω)
dω = EX

[
log

X

Y

]
. (8.3)

The KL divergence is never negative, and is zero iff X = Y (a.e.).

There is an interesting correspondence between Bregman divergences and KL

divergence, which occurs when we deal with exponential family distributions [12]. In

particular, for any regular Bregman divergence d f based on f (µ), there is associated a

regular exponential family of distributions

F f ∗ =
{

p f ∗,µ ′(·) = exp
(
〈φ(·),µ ′〉− f ∗(µ ′)

)}
, (8.4)

where φ(·) are the sufficient statistics, µ ′ are the canonical parameters, and the dual

function f ∗ is the partition function. The gradient operation ∇ f ∗ maps from canonical to

mean parameters µ [166]. f (µ) is the negative entropy and its gradient ∇ f maps µ to
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the canonical parameters µ ′ [166]. d f is the KL divergences between members of F f ∗ .

Hence, when X and Y are distributions from the same exponential family with

mean parameters x and y respectively, we have that

D(X ||Y ) = d f (x,y) = f (x)− f (y)−〈∇ f (y),x− y〉, (8.5)

where the l.h.s is a functional of two p.d.f.s and the r.h.s. is a function of the mean

parameters.

Note that, in (8.3) there is a large contribution to the KL divergence D(X ||Y )

from points of large support of X unless Y has large support as well.2

This has interestingly consequences, one of which concerns an operation we

will use later. Given y1, . . . ,yn with weights θ1, . . . ,θn (where 0≤ θi ≤ 1, ∑i θi = 1) the

left-sided centroid [119]:

cL = argminµ ∑
i

θid f (µ,yi) (8.6)

is zero forcing, i.e., the corresponding density will not exceed the support of the input

and will likely focus on one mode [119].3

8.3 Branch and bound for BB trees

In this section we briefly review the branch and bound method for Bregman ball

trees by Cayton [31].

2In particular, if the support of X is not entirely contained in the support of Y , D(X ||Y ) will be
unbounded.

3 On the opposite, the right-sided centroid cR = argminx ∑i θid f (yi,µ) is zero avoiding and will cover
well entire the support of the input [119].
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8.3.1 BB trees

Bregman ball trees and the associated search routine follow the same principles

of KD trees [63] and metric ball trees [125, 161, 111], with the difference that they are

based on Bregman balls instead of rectangular cells or metric balls. A bbtree consists of

a binary tree that partitions a database X = {x1, . . . ,xn}. Every node i is associated with

a subset of points Xi ⊂ X , and defines a Bregman ball with center µi and radius Ri such

that ∀x ∈ Xi : x ∈ B(µi,Ri). Each non-leaf node i is associated with left and right child

nodes, l and r, and Xi is consequently split between Xl and Xr. The entirety of leaf nodes

covers X . A Bregman Ball tree can be grown from the database X in a top-down fashion,

recursively using [12].

8.3.2 Searching with BB trees

Given a query q, we are interested in its left-NN4

xL = argmin
x∈X

d f (x,q). (8.7)

Search with a BB tree proceeds as follow. The algorithm initially descends the BB

tree, starting from the root. At every non-leaf node the algorithm descends through the

most promising child node and temporarily ignores the sibling node. Once the algorithm

reaches a leaf node Xi, it selects the candidate nearest neighbor xc = argminx∈Xi d f (xi,q).

At this point, the algorithm backtracks, and explores an originally ignored sibling

j if

d f (xc,q)> min
x∈B(µ j,R j)

d f (x,q). (8.8)

where the right side of (8.8) is the Bregman projection of q onto the Bregman ball

4Cayton [31] shows that the right-NN can be found using the left-NN algorithm for the divergence d f ∗

and the database X ′ = {x′1, . . . ,x′n}.
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B(µ j,R j) (see Figure 8.1(a)). Cayton [31] proves that the optimal xp of (8.8) corresponds

to an xp
′ = ∇ f (xp) along the line θ µ ′+ (1− θ)q′, 0≤ θ ≤ 1,5 lays on the shell of

B(µ j,R j) and can be found by bisection search over θ .

At step i of the bisection search, given θi, a point x′
θi
= θiµ

′+ (1− θi)q′ is

identified along the line, and the corresponding xθi = ∇ f ∗(x′
θi
) is recovered. This in fact

consists of computing a left-sided centroid [119]

xθi = argmin
x

θid f (x,µ)+(1−θi)d f (x,q) (8.9)

= ∇ f ∗(θiµ
′+(1−θi)q′). (8.10)

8.3.3 Bregman projection vs. stopping early

Since exact evaluation of the Bregman projection (8.8) is not needed, Cayton [31]

derives stopping conditions based on upper and lower bounds

a≤ min
x∈B(µ j,R j)

d f (x,q)≤ A. (8.11)

Upper and lower bounds are computed at each iteration of the bisection, until either

d(xc,q)< a (prune the node) or d(xc,q)> A (explore the node).

The lower bound a is given by weak duality:

L (θ) = d f (xθ ,q)+
θ

1−θ

(
d f (xθ ,µ)−R

)
, (8.12)

where L (θ) is the Lagrangian of the right side of (8.8) and 0≤θ≤1. The upper bound

5This requires to define the Lagrange dual function of (8.8), infx d f (x,q)+λ (d f (x,µ)−R), λ ≥ 0, set
the gradient to zero, and use the change of variable θ = λ

1+λ
.
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Algorithm 5. CanPrune by Cayton [31]

1: Input: θl , θr, q, xc, µ , R
2: Set θ = θl+θr

2
3: Set xθ = ∇ f ∗(θ µ ′+(1−θ)q′)
4: Compute d f (xθ ,q) and d f (xθ ,µ)
5: if L (θ)> d f (xc,q)

Return Yes

6: else if xθ ∈ B(µ,R) and d f (xθ ,q)< d f (xc,q)
Return No

7: else if xθ /∈ B(µ,R)
Return CanPrune(θ , θr,q,xc,µ ,R)

8: else if xθ ∈ B(µ,R)
Return CanPrune(θl , θ ,q,xc,µ ,R)

A comes directly from the primal problem:

ifxθ ∈ B(µ j,R j)⇒ d f (xθ ,q)≥ min
x∈B(µ j,R j)

d f (x,q). (8.13)

Hence the algorithm operates bisection search on θ as follows (see Figure 8.1(b)).

At the i-th step, given θi, the algorithm computes the left-sided centroid ∇ f ∗(θiµ
′+(1−

θi)q′) and then checks the bounds. If L (θi) > d f (xc,q), it prunes the node. Else, if

xθi ∈ B(µ j,R j), it updates the upper bound, and if d f (xθi,q)< d f (xc,q) the node must be

searched. If neither bound holds, the algorithm continues the bisection. The procedure

from [31] is reported in Algorithm 5 for the reader’s convenience. Note that in each

iteration of CanPrune, two divergences are calculated in Step 4.

8.4 Variational Branch and Bound

In this section we present a novel and approximated bisection search based on

variational inequalities. The proposed method requires only one divergence operation

at each backtracked node (independent of the number of iterations), is efficient in high

dimensions, and can be applied to latent variable models. The effect of the approximation
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x *

df (x * , µ ) df (x * , q)

µ q

B (µ, R )

x * = argmin x Є B (µ,R )df (x, q ) .

(a) Bregman projection

L (θ)

df (xθ , µ ) df (xθ , q)

µ qxθ

µ xθ q

B (µ, R )

xθ = argmin
x

θdf (x, µ ) + (1 − θ)df (x, q )

(b) Cayton’s [31] bisection
search

B (µ, R )

θµ
(1 − θ)q

Θ

df (q, µ)

df (µ, q)

Θµ q

≈ +
q (θ)≈ +

m (θ)

≈ L (θ)

(c) Our approximation

Figure 8.1. a) Bregman projection of q onto the Bregman ball B(µ,R). The optimum x∗

lies at the intersection of shell of B(µ,R) and the image under ∇ f ∗ of the line segment
between µ ′ and q′. There is no general analytical solution, and x∗ can be found with
bisection search. b) Algorithm 5 performs bisection search over θ , at each iteration
computing a new centroid xθ between µ and q (Step 3) and the two divergences from
xθ to the node µ and the query q, d f (xθ ,µ) and d f (xθ ,q) (Step 4). Conditions to stop
the bisection depend on these two divergences. c) Our method uses a mixture Θ with
components µ and q and weights θ and 1−θ , instead of computing a new centroid xθ .
d f (xθ ,µ) and d f (xθ ,q) are approximated with `+m(θ) and `+q (θ), which are functions
only of the scalar θ , given the fixed quantities d f (µ,q) and d f (q,µ). Conditions to stop
the bisection depend only on `+m(θ) and `+q (θ).

is discussed in Section 8.4.4.

8.4.1 Overview and notation

In this section we assume that d f is a regular Bregman divergence (i.e., KL

divergence for an exponential family). Let M , Q, Xc be the distributions corresponding,

respectively, to the node, the query, and the candidate nearest neighbor. Their mean

parameters are, respectively, µ , q and xc. Define a mixture distribution of components

M and Q with weights θ and 1−θ :

Θ = θM +(1−θ)Q. (8.14)

Our algorithm works as illustrated in Figure 8.1(c). Instead of explicitly computing the

left-sided centroid xθ (Step 3 of CanPrune, Figure 8.1(b)) at each recursive iteration,
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it uses a mixture model Θ (equation (8.14)). This allows to approximate d f (xθ ,µ)

and d f (xθ ,q) with lower bounds to D(Θ||M ) and D(Θ||Q). The bounds depend only

on d f (µ,q) and d f (q,µ) (which are fixed), and on the mixing parameter θ . As a

consequence, bisection search only requires evaluating of simple scalar functions (as

opposed to divergences).

8.4.2 Variational lower bounds

Our algorithm builds on the variational approximation to the KL divergence

between mixtures by Hershey and Olsen [79],6 and on the observation that the approxi-

mation holds as an inequality whenever one of the two terms is unimodal.

Variational approximation to the KL [79]

Let A = {πi,Ai} be a mixture with weights πi and components Ai. Similarly,

let B = {ω j,B j} be a different mixture. Assume the mixture components Ai and B j

belong to some family for which we can compute the KL divergence. Consider the KL

divergence between A and B:

D(A ||B) = EA [log
A

B
] = EA [logA ]−EA [logB]. (8.15)

Hershey and Olsen [79] derive a lower bound to the expected log-likelihood terms on the

right-hand side of (8.15), and in turn an approximation (as the difference of two lower

bounds) to the KL:

D(A ||B)≈∑
i

πi log
∑i′ πi′ exp{−D(Ai||Ai′)}
∑ j ω j exp{−D(Ai||B j)}

.

6Cfr., Section 7 in [79]
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Variational lower bound to KL

Assume that A = Θ = θM +(1−θ)Q is a mixture of two components, and

that B consists of a single component, and consider their KL divergence

D(Θ||B) = EΘ[logΘ]−EΘ[logB]

= θEM [logΘ]+ (1−θ)EQ[logΘ]︸ ︷︷ ︸
EΘ[logΘ]

−θEM [logB]+ (1−θ)EQ[logB]︸ ︷︷ ︸
EΘ[logB]

.

(8.16)

The first term cannot be computed exactly, but can be lower bounded [79]. The second

term can be computed exactly since it only involves expected log-likelihoods of individual

components. Consequently, the variational approximation to D(Θ||B) holds as a lower

bound. Dealing with lower bounds (as opposed to approximations) allows to characterize

the errors made by Algorithm 6 (see Section 8.4.4).

Lower bounds to D(Θ||M ) and D(Θ||Q) are easily derived (see Appendix C.1):

`m = θ log [θ +(1−θ)exp{−D(M ||Q)}]

+ (1−θ) log [θ +(1−θ)exp{D(Q||M )}] ,
(8.17)

`q = θ log [θ exp{D(M ||Q)}+(1−θ)]

+(1−θ) log [θ exp{−D(Q||M )}+1−θ ] .

(8.18)

Monotonicity

When D(Q||M ) is very close to zero, `m is not always monotonic (see Appendix

C.2 for an illustration). This would make the bound useless for bisection search. Luckily,

we can easily derive a monotonic bound `+q (θ) = max(0, `q(θ)), i.e., by setting `m to

zero when it is not informative (i.e., when it is negative).
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Lemma 8.4.1 `+m(θ) = max(0, `m(θ)) is monotonic in [01].

Proof `m(θ) is convex in [01].7 As a consequence of convexity, `m(θ) can cross zero at

most twice, and in particular at most twice in [01].

We have that `m(1) = 0 and `m(0) = D(Q||M )≥ 0. If `m(θ) crosses zero only once (i.e.,

at θ = 1), then `m(θ) is monotonic for θ ∈ [01]. If `m(θ) crosses zero also at θ ∗ ∈ (01),

we have that `m(θ) is monotonic for θ ∈ [0θ ∗] (and until it reaches its minimum).8 The

result follows.

Similarly, we can define the lower bound `+q (θ) = max(0, `q(θ)) (which is monotonic as

well).

8.4.3 Approximated pruning algorithm

Our algorithm is based on the quantities:

`+q (θ), `
+
m(θ), `L (θ)≡ `+q (θ)+

θ

1−θ

(
`+m(θ)−R

)
. (8.19)

The algorithm performs bisection search over θ , and attempts to locate the θ for which

l+m (θ) = R, using early stopping. As a lower bound we use `L (θ) instead of L (θ). We

set the upper bound to `+q (θ) whenever `+m(θ)< R.9

At each iteration i, the algorithm computes the quantities in (8.19). If `L (θi)>

d f (xc,q), it prunes the node. Else, if `+m(θi) < R, it updates the upper bound, and if

`+q (θi)< d f (xc,q) the node is searched. If neither bound holds, the algorithm continues

the bisection. The procedure is summarized in Algorithm 6.

7This follows from the positivity of the second derivative d2`m(θ)
dθ 2 in [01] see see Appendix C.3.

8For θ ∈ [θ ∗ 1], `m(θ) is negative, and is a trivial bound.
9We could update the upper bound for early stopping using an upper bound to d f (xθ ,q) instead of

`+q . The reason we do not is to make the algorithm over-explorative under the circumstances explained in
Section 8.4.4.
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Algorithm 6. CanPruneApprox
1: Input: θl , θr; Const: d f (µ,q), d f (q,µ), R, d f (xc,q)
2: Set θ = θl+θr

2
3: Compute `+q (θ), `

+
m(θ) and `L (θ)

4: if `L (θ)> d f (xc,q)
Return Yes

5: else if `+m(θ)< R and `+q (θ)< d f (xc,q)
Return No

6: else if `+m(θ)> R
Return CanPruneApprox(θ , θr)

7: else if `+m(θ)< R
Return CanPruneApprox(θl , θ )

8.4.4 Discussion

The proposed algorithm executes faster on a node than Cayton’s original algo-

rithm. In particular, at every recursive iteration the latter requires updating the centroid

xθ plus two divergence operations (i.e., computing d f (xθ ,q) and d f (xθ ,µ)). On high

dimensional data, this results in a significant overhead, since individual divergence opera-

tions are expensive, and, most importantly, the procedure needs to be executed on a large

fraction of the nodes (due to the large number of close neighbors in high dimensions

[111]). Not surprisingly, Algorithm 5 did not work well for exact NN search on high

dimensional data [31], where it registered slow-downs (instead of speedups) relative to

brute force search.

On the other hand, our method drastically reduces the amount of computation

per backtracked node to a single divergence operation, independently of the number

of iterations in the bisection search. At each recursive call of Algorithm 6, `+m(θ) and

`+q (θ) are functions of the scalar θ and of the fixed quantities d f (q,µ) and d f (µ,q).

Since d f (q,µ) is already computed by the search routine when descending the tree

(for choosing between a node’s left and right child), only one additional divergence

needs to be computed. We expect this to give our algorithm an edge for efficiency on
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high-dimensional data.

The solution proposed by Cayton [31] to speed up retrieval time uses the bbtree for

approximate search, by fixing a maximum budget of leaves that can be explored for each

query, after which backtracking is stopped. This is suboptimal, since the approximation is

independent of the query and may blindly ignore (once the budget is depleted) promising

portions of the search space only because they appear later in the backtracking order. Our

approximation, on the other hand, only depends on the parameters of the query and of the

nodes of the tree (as opposed to a fixed leaf budget), and the resulting backtracking will

adapt better to individual queries and the local structure of the tree, as illustrated below.

In fact, we can argue that Algorithm 6 tends to be over-explorative on nodes

close to the query, and under-explorative on nodes further away. Since we are using in

sequence an approximation and a lower bound,

d f (xθ ,q)≈ D(Θ||Q)≥ `+q (θ), (8.20)

d f (xθ ,µ)≈ D(Θ||M )≥ `+m(θ). (8.21)

in general (C.10) (C.11) are not bounds to d f (xθ ,q) and d f (xθ ,µ). However, as shown

by the next claim, when the query and the node have very close distributions, (C.10) and

(C.11) hold as lower bounds.

Claim 8.4.2 If q′ = µ ′+ δ ′, for δ ′ small, we have d f (xθ ,µ) ≥ l+m (θ), and, similarly,

d f (xθ ,q)≥ `+q (θ).

Proof We have x′
θ
= µ ′+(1−θ)δ ′ and µ ′ = x′

θ
− (1−θ)δ ′. Consider the Riemannian

manifold around x′
θ

(with curvature ∇ f ∗(x′
θ
)), and that the Riemannian metrics associated
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to f and f ∗ have identical infinitesimal length [7, 119]. Consequently we have:10

d f (xθ ,µ) =
1
2
(1−θ)2

δ
′t

∇
2 f ∗(x′θ )δ

′ (8.22)

=
1
2
(1−θ)2

δ
t
∇

2 f (xθ )δ = (1−θ)2
∆ (8.23)

where we use the notation ∆ = 1
2δ t∇2 f (xθ )δ to reduce clutter. Similarly, we have

that d f (q,µ) = 1
2∆ and d f (µ,q) = 1

2∆. Using the approximations exp{a} = 1+a and

log(1+a) = a (for |a| small), we have that:

`m(θ) = (1−θ) log [1+(1−θ)∆]+θ log [1−(1−θ)∆] (8.24)

≤ log{(1−θ) [1+(1−θ)∆]+θ [1−(1−θ)∆]} (8.25)

= log
{

1+
[
(1−θ)2−θ(1−θ)

]
∆

}
(8.26)

=
[
(1−θ)2−θ(1−θ)

]
∆≤ (1−θ)2

∆ (8.27)

where (C.15) follow from Jensen inequality and (C.17) form the fact that θ(1−θ)≥ 0

for θ ∈ [01]. Since d f (xθ ,µ)≥ 0 we also have d f (xθ ,µ)≥ `+m(θ).

In this case, the decision whether to prune a node is based on a looser lower

bound (i.e., `L (θ) ≤L (θ) instead of L (θ) in Algorithm 5), and Algorithm 6 will

consequently prune less frequently. Similarly, checking the condition `+m(θ)< R results

in inflating the ball around the node, and may determine more explorations.

On the opposite, if q is far from µ , (C.10) and (C.11) may actually hold as

upper bounds, making the backtracking under-explorative.11 This has the effect that our

algorithm better accounts for the sparsity of data relative to the dimensionality, reducing

10To show (C.12) we can use Legendre duality d f (xθ ,µ) = f (xθ )+ f ∗(µ ′)−〈µ ′,xθ 〉 and second order
Taylor expansion of f ∗(µ ′) = f ∗(x′

θ
− (1−θ)δ ′) around x′

θ
.

11Since xθ is zero forcing (as a left-sided centroid), it will have smaller support than Θ, and consequently
d f (xθ ,µ) (respectively, d f (xθ ,q)) will be smaller than D(Θ||M ) (respectively, D(Θ||Q)).
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the backtracking for high-dimensional data. Skipping a large region of space centered

far away form the query determines computational savings, but does not affect NN

performance too much. Even if the region could potentially contain points very close to

query, it most likely does not, since the points it contains are very few (relative to the

dimensionality).

Our results in Section 8.5 demonstrate that, on moderate- and high-dimensional

data, our algorithm is very efficient and returns almost perfect nearest neighbors. In

addition, the approximation does not require empirically tuning any meta-parameter

(such as the leaf budget in [31]).

Interestingly, since our algorithm requires only the computation of divergence

terms (and bypasses the computation of the centroid), it is by no means limited to the

exponential family. In fact, it can be readily applied to NN-search of any family of

distributions,12 as long as the divergence between individual members can be computed

(efficiently). In Section 8.6 we illustrate this for time series models with latent variables.

Algorithm 5, on the other hand, cannot be adapted to latent variable models in an

efficient way. In particular, the left-sided centroid xθ cannot be computed analytically,

since the hidden-state bases corresponding to the query and the node (i.e., Q and M )

may be mismatched.13,14

12For distributions not in the exponential family, Algorithm 6 (and in particular the quantities in (8.19)),
need to be expressed in terms of KL divergences between the distributions Q, M , Xc, since they do not
correspond to a regular Bregman divergence.

13For example, for hidden Markov models, the labeling of hidden states may be swapped.
14 Note that naı̈vely approximating the centroid with iterative algorithms or numerical techniques would

be inefficient.
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8.5 Experiments on histogram data

We first consider experiments on histogram data, where we can directly compare

our proposed method against Cayton’s [31] exact and approximate NN search.15 We

consider the 9 histogram datasets from [31] listed in Table 8.1, most of which are fairly

high dimensional. We refer to our algorithm as Variational, Cayton’s exact and

approximated search as Cayton and CaytonApprox, respectively, and brute force search

as Brute.

Performance is measured in terms of speedup relative to brute force search, and

by the average number of elements in the database that are closer to the query than the

returned one (NC) [31]. For exact algorithms (e.g., Cayton and Brute), NC = 0 always.

All results are averages over queries not in the database.

In Table 8.1 we compare performance of Variational to Cayton. In general, on

moderate to high dimensional data (d ≥ 32), our algorithm provides larger speedups than

Cayton. The gain in computational efficiency has a very modest effect on the quality of

Variational, as demonstrated by the low NC values. In addition, whereas Cayton is

slower than brute force search on the two datasets of highest dimensionality (d = 371 and

d = 1111), Variational always registers a speedup. In particular, on “Sift signatures”,

Variational provides a substantial 6× speedup over brute force search, with an NC

of 0.0784. Further examining the NC values, Variational finds the NN 95.7% of the

time, the 2nd NN 2.6%, and 2+ NN 1.7% (with a low average approximation ratio of

ε = 0.3).16

In Figure 8.2 we compare Variational to CaytonApprox, on three datasets

of medium to high dimensionality. For both methods, we set a fixed budget βd of

15For Cayton’s [31] NN search we use the code available at http://lcayton.com. Our method is
implemented in the same framework and is available on the authors’ web pages.

16The approximation ratio is the smallest ε satisfying d f (x,q)≤ (1+ ε)d f (xq,q), where xq is q’s true
NN and x is the returned element.
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Table 8.1. Results on histogram data, using different datasets. The speedup is w.r.t. brute
force search. The databases for rcv-n, Corel hist, Semantic space, and SIFT signature
have size 500,000, 60,000, 4,500 and 10,000, respectively. The number of queries is
10,114, 6,616, 500 and 2,360, respectively

Cayton Variational

DATA SET DIM SPEEDUP SPEEDUP NC
RCV-8 8 60.75 21.23 0.0001
RCV-16 16 30.49 19.27 0.0000
RCV-32 32 17.18 24.60 0.0016
RCV-64 64 8.19 24.21 0.0003
COREL HIST 64 2.56 4.14 0.0020
RCV-128 128 4.29 14.51 0.0018
RCV-256 256 2.58 2.95 0.0000
SEMANTIC SPACE 371 0.93 1.29 0.0020
SIFT SIGNATURES 1111 0.86 5.88 0.0784

NN −4 −3 −2 −1 0 1 2
0

1

2

3

4

5

NC

x
S

p
e
e
d
u
p
 

 

 

Cayton (div bound)

Variational (div bound)

Variational (free)
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(b) rcv-128 (d = 128)
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Figure 8.2. Log-log plots (in base 10) for approximated NN-search using
Variational and CaytonApprox, βd ∈ [20 2log2 |X |]. The vertical axis is the exponent
of the speedup over Brute; the horizontal axis is the exponent of the average number of
DB points closer to the query than the returned result (NC). Points toward the top-left
corner are better.

divergence computations allowed per query, after which backtracking stops.17 In general,

Variational is superior to CaytonApprox, achieving more effective speedups and

lower NC values—note that in Figure 8.2(c) the left-most point for CaytonApprox (the

dashed red line) corresponds to no speedup, and is hence of no practical interest. In

particular, the threshold-free version of Variational (from Table 8.1 and circled in

Figure 8.2) does not require setting any meta-parameter and is efficient also on high

17Backtracking stops either when the budget is consumed or when one of the early stopping conditions
is met.
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dimensional data. These results show that, by adapting backtracking to the query and the

local structure of the tree, our approximation effectively explores promising regions of

the search space and achieves computational savings by under-exploring less promising

ones.

8.6 Experiments on dynamic textures

In this section we test our algorithm on NN search of dynamic textures (DTs)

[54], which have been used to model video [45, 113] and music [13, 42].

A DT model represents a n-dimensional time series of length T , y1, . . . ,yT , as

generated by a linear dynamical system (LDS):

st = Ast−1 + vt ,

yt =Cst +wt + ȳ .
(8.28)

where St ∈ Rm is a lower-dimensional hidden state process (m < n) that governs the

dynamics, A is a m×m transition matrix, C a n×m bases matrix, and Vt and Wt are

Gaussian noise processes. The KL divergence between two DTs can be computed

efficiently with a recursion [35], so we can readily use our branch and bound search.

We consider the 4 datasets used by Coviello et al. [45], three of video and one

of music. A dataset is first divided into training/test splits, and a database of DTs X is

compiled from the training set, with each DT modeling a portion of a video (or song).

The database (of DTs) is then hierarchically organized in a tree structure using the Bag-of-

Systems (BoS) Tree from [45], which produces balls around each DT-node M , compact

in terms of D( · ||M ). Finally, we model portions of test videos (or songs) as DTs, and for

each we find its NN in X using the BoS Tree in tandem with our backtracking algorithm.

Videos are preprocessed into a dense sampling of spatio-temporal cubes of pixels
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Table 8.2. Results for NN-search of DTs. Speedup is w.r.t. Brute. DIM are the degrees
of freedom of the DT models.

DATA SET SOURCE DIM |X | SPEEDUP NC
UCLA-39 VIDEO 211 624 2.11 0.13
DYTEX VIDEO 355 630 6.16 1.24
KTH VIDEO 760 3040 1.74 1.42
CAL500 MUSIC 385 1600 2.60 4.52

(as in [45]). Each training video is then modeled as a dynamic texture mixture (DTM)

with 4 components, and the databases X are formed by selecting all the video-level

DT components. For each test video, we compute a query-DT from each cube, using

[54]. Songs are first represented as a dense sampling of sequences of low-level features

(as in [45]). Each training song is modeled as a DTM with 4 components, and all the

song-level DTs form the database X . For each experiment we compute average speedup

over Brute and NC, using the same cross validation splits as [45]. Results on the video

and music datasets are in Table 8.2. Note that in average Variational returns good

answers. For example, on the CAL500 music data, where we registered the highest NC

value, Variational still returns in average answers in the top 0.35%.

8.7 Conclusions

We have presented a branch and bound algorithm based on variational approxi-

mations. We have shown nearly perfect and efficient NN-search on histogram data of

challenging dimensionality, as well as applicability to more complex generative time

series models.
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Appendix A

Derivation of the VHEM algorithm for
H3Ms

A.1 Derivation of the Lower Bounds

A.1.1 Appendix A.1 Lower Bound on E
M

(b)
i

[
log p(Yi|M (r))

]
The lower bound (4.15) on E

M
(b)
i

[
log p(Yi|M (r))

]
is computed by introducing

the variational distribution qi(zi) and applying (4.10)

E
M

(b)
i

[
log p(Yi|M (r))

]
≥max

qi
∑

j
qi(zi = j)

{
log

p(zi = j|M (r))

qi(zi = j)
+E

M
(b)
i
[log p(Yi|M (r)

j )]

}
(A.1)

= max
qi

∑
j

qi(zi = j)

{
log

p(zi = j|M (r))

qi(zi = j)
+E

M
(b)
i
[log p(y|M (r)

j )Ni]

}
(A.2)

= max
qi

∑
j

qi(zi = j)

{
log

p(zi = j|M (r))

qi(zi = j)
+NiEM

(b)
i
[log p(y|M (r)

j )]

}
(A.3)

≥max
qi

∑
j

qi(zi = j)

{
log

p(zi = j|M (r))

qi(zi = j)
+NiL

i, j
HMM

}
, L i

H3M., (A.4)

where in (A.2) we use the fact that Yi is a set of Ni i.i.d. samples. In (A.3), log p(y|M (r)
j )

is the observation log-likelihood of an HMM, which is essentially a mixture distribution.
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Since the latter expectation cannot be calculated directly, in (A.4) we use instead the

lower bound L i, j
HMM defined in (4.13).

A.1.2 Lower Bound on E
M

(b)
i
[log p(y|M (r)

j )]

To calculate the lower bound L i, j
HMM ,starting with (4.13), we first rewrite the

expectation E
M

(b)
i

to explicitly marginalize over the HMM state sequence β from M
(b)
i ,

E
M

(b)
i
[log p(y|M (r)

j )] = E
β |M (b)

i

[
E

y|β ,M (b)
i
[log p(y|M (r)

j )]
]

(A.5)

= ∑
β

π
(b),i
β

E
y|β ,M (b)

i
[log p(y|M (r)

j )]. (A.6)

We introduce a variational distribution qi, j(ρ|β ) on the state sequence ρ , which depends

on a particular sequence β from M
(b)
i . Applying (4.10) to (A.6), we have

E
M

(b)
i
[log p(y|M (r)

j )]

≥∑
β

π
(b),i
β

max
qi, j ∑

ρ

qi, j(ρ|β )

log
p(ρ|M (r)

j )

qi, j(ρ|β ) +E
y|β ,M (b)

i
[log p(y|ρ,M (r)

j )]

 (A.7)

= ∑
β

π
(b),i
β

max
qi, j ∑

ρ

qi, j(ρ|β )

log
p(ρ|M (r)

j )

qi, j(ρ|β ) +∑
t
E

M
(b)
i,βt

[log p(yt |M (r)
j,ρt

)]

 (A.8)

≥∑
β

π
(b),i
β

max
qi, j ∑

ρ

qi, j(ρ|β )

log
p(ρ|M (r)

j )

qi, j(ρ|β ) +∑
t

L
(i,βt),( j,ρt)

GMM

, L i, j
HMM, (A.9)

where in (A.8) we use the conditional independence of the observation sequence given

the state sequence, and in (A.9) we use the lower bound, defined in (4.14), on each

expectation.
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A.1.3 Lower Bound on E
M

(b)
i,β
[log p(y|M (r)

j,ρ )]

To derive the lower bound L
(i,β ),( j,ρ)

GMM for (4.14), we first rewrite the expectation

with respect to M
(b)
i,β to explicitly marginalize out the GMM hidden assignment variable

ζ ,

E
M

(b)
i,β
[log p(y|M (r)

j,ρ )] = E
ζ |M (b)

i,β

[
E

M
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[
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]
.

Note that p(y|M (r)
j,ρ ) is a GMM emission distribution as in (4.1). Hence, the observation

variable is y, and the hidden variable is ζ . Therefore, we introduce the variational

distribution qi, j
β ,ρ(ζ |m), which is conditioned on the observation y arising from the mth

component in M
(b)
i,β , and apply (4.10),

E
M
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, L
(i,β ),( j,ρ)

GMM .

A.2 Derivation of the E-Step

GMM: Substituting the variational distribution η
(i,β ),( j,ρ)
`|m into (4.17), we have
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The maximizing variational parameters are obtained as (see Appendix A.4.2)

η̂
(i,β ),( j,ρ)
`|m =

c(r), j
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{
E

M
(b)
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}
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} , (A.11)

HMM: Substituting the variational distribution φ i, j into (4.16), we have

L i, j
HMM = ∑

β

π
(b),i
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The maximization of (A.12) with respect to φ
i, j
t (ρt |ρt−1,βt) and φ

i, j
1 (ρ1|β1) is carried

out independently for each pair (i, j), and follow [78]. In particular it uses a backward

recursion, starting with L i, j
τ+1(βt ,ρt) = 0, for t = τ, . . . ,2,
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i, j
t (ρt |ρt−1,βt) =

a(r), jρt−1,ρt exp
{

L
(i,βt),( j,ρt)

GMM +L i, j
t+1(βt ,ρt)

}
∑

S
ρ a(r), jρt−1,ρ exp

{
L

(i,βt),( j,ρ)
GMM +L i, j

t+1(βt ,ρ)
} (A.13)

L i, j
t (βt−1,ρt−1) =

S

∑
β=1

a(b),i
βt−1,β

log
S

∑
ρ=1

a(r), jρt−1,ρ exp
{

L
(i,β ),( j,ρ)

GMM +L i, j
t+1(β ,ρ)

}
, (A.14)

and terminates with
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where (A.16) is the maxima of the terms in (A.12) in Section 4.3.3.
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H3M: Substituting the variational distribution zi j into (4.15), we have

L i
H3M = max

zi j
∑

j
zi j

log
ω

(r)
j

zi j
+NiL

i, j
HMM

 . (A.17)

The maximizing variational parameters of (A.17) are obtained using Appendix A.4.2,

ẑi j =
ω

(r)
j exp(NiL

i, j
HMM)

∑ j′ω
(r)
j′ exp(NiL

i, j′
HMM)

. (A.18)

A.3 Derivation of the M-Step

The M-steps involves maximizing the lower bound in (4.11) with respect to M (r),

while holding the variational distributions fixed,

M (r)∗ = argmax
M (r)

K(b)

∑
i=1

L i
H3M. (A.19)

Substituting (4.20) and (4.21) into the objective function of (A.19),

L (M (r)) =
K(b)

∑
i=1

L i
H3M (A.20)

= ∑
i, j

ẑi j

log
ω

(r)
j

ẑi j
+Ni ∑

β

π
(b),i
β ∑

ρ

φ̂
i, j(ρ|β )

[
log

π
(r), j
ρ

φ̂ i, j(ρ|β )
+∑

t
L

(i,βt),( j,ρt)
GMM

]
(A.21)

In the following, we detail the update rules for the parameters of the reduced model

M (r).
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A.3.1 HMMs Mixture Weights

Collecting terms in (A.21) that only depend on the mixture weights {ω(r)
j }K(r)

j=1,

we have

L̃ ({ω(r)
j }) = ∑

i
∑

j
ẑi j logω

(r)
j = ∑

j

[
∑

i
ẑi j

]
logω

(r)
j (A.22)

Given the constraints ∑
K(r)

j=1 ω
(r)
j = 1 and ω

(r)
j ≥ 0, (A.22) is maximized using the result

in Appendix A.4.1, which yields the update in (4.26).

A.3.2 Initial State Probabilities

The objective function in (A.21) factorizes for each HMM M
(r)
j , and hence the

parameters of each HMM are updated independently. For the j-th HMM, we collect

terms in (A.21) that depend on the initial state probabilities {π(r), j
ρ }S

ρ=1,

L̃ j({π(r), j
ρ }) = ∑

i
ẑi jNi ∑

β1

π
(b),i
β1 ∑

ρ1

φ̂
i, j
1 (ρ1|β1) logπ

(r), j
ρ1 (A.23)

= ∑
ρ1

∑
i

ẑi jNi ∑
β1

π
(b),i
β1

φ̂
i, j
1 (ρ1|β1)︸ ︷︷ ︸

ν̂
i, j
1 (ρ1)

logπ
(r), j
ρ1 (A.24)

= ∑
ρ

∑
i

ẑi jNiν̂
i, j
1 (ρ) logπ

(r), j
ρ (A.25)

∝ ∑
ρ

[
∑

i
ẑi jω

(b)
i ν̂

i, j
1 (ρ)

]
logπ

(r), j
ρ , (A.26)

where in the (A.25) we have used the summary statistic defined in (4.23). Considering

the constraints ∑
S
ρ=1 π

(r), j
ρ = 1 and π

(r), j
ρ ≥ 0, (A.26) is maximized using the result in

Appendix A.4.1, giving the update formula in (4.27).
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A.3.3 State Transition Probabilities

Similarly, for each HMM M
(r)
j and previous state ρ , we collect terms in (A.21)

that depend on the transition probabilities {a(r), j
ρ,ρ ′ }S

ρ ′=1,

L̃ j,ρ({a(r), jρ,ρ ′ }S
ρ ′=1) = ∑

i
ẑi jNi ∑

β

π
(b),i
β ∑

ρ

φ̂
i, j(ρ|β ) logπ

(r), j
ρ (A.27)
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ẑi jNi ∑
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= · · ·= ∑
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Considering the constraints ∑
S
ρ ′=1 a(r), j

ρ,ρ ′ = 1 and a(r), j
ρ,ρ ′ ≥ 0, (A.36) is maximized using

the result in Appendix A.4.1, giving the update in (4.27).

A.3.4 Emission Probability Density Functions

The cost function (A.21) factors also for each GMM indexed by ( j,ρ, `). Factor-

ing (A.21),

L̃ (M
(r)
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])
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where in (A.45) we use the weighted-sum operator defined in (4.30), which is over all

base model GMMs {M (b)
i,β ,m}. The GMM mixture weights are subject to the constraints

∑
M
`=1 c(r), j

ρ,` = 1, ∀ j,ρ . Taking the derivative with respect to each parameter and setting it

to zero,1 gives the GMM update equations (4.28) and (4.29).

A.4 Useful Optimization Problems

The following two optimization problems are used in the derivation of the E-step

and M-step.

A.4.1

The optimization problem

max
α`

L

∑
`=1

β` logα` s.t.
L

∑
`=1

α` = 1, α` ≥ 0, ∀` (A.46)

is optimized by α∗` = β`

∑
L
`′=1 β ′`

.

1We also considered the constraints on the covariance matrices Σ
(r), j
ρ,` � 0.
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A.4.2

The optimization problem

max
α`

L

∑
`=1

α` (β`− logα`) s.t.
L

∑
`=1

α` = 1 α` ≥ 0, ∀` (A.47)

is optimized by α∗` = expβ`

∑
L
`′=1 expβ ′`

.

Appendix E. Clustering Synthetic Data where the Clus-
tering Model Does Not Match the “True” Model.

In this appendix we present two experiments on clustering synthetic data, where

the order of the model used for clustering does not necessarily match the order of the

“true” model used to generate the data. In both experiments, the true model consists

of C = 4 HMMs each with S = 3 hidden states—we used the HMMs of experiment

(c) in Section 5.3. Data sequences are generated from each of the C HMMs, and then

corrupted with Gaussian noise. An HMM with S′ states is estimated over each sequence.

These HMMs are denoted as noisy HMMs, to differentiate them from the original HMMs

representing the C classes. The entirety of noisy HMMs are then clustered into C′ groups

using in turn our VHEM-H3M algorithm and PPK-SC.

In the first experiments we set S′ = S(= 3), and vary C′ ∈ {3,4,5,6}. Hence, the

number of clusters does not necessarily match the true number of groups. In the second

experiments, we fix C′ =C(= 4), and vary S′ ∈ {2,3,4,5}, i.e., the model order of the

noisy HMMs does not match the order of the original HMMs. Results are reported in

Table A.1 below.

Performance are more sensitive to selecting a sufficient number of clusters than

using the right number of HMM states. In particular, when using fewer clusters than the
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true number of classes (e.g., C′ <C), the Rand-index degrades for both VHEM-H3M and

PPK-SC, see experiment (d) in Table A.1. On the opposite, performance are relatively

stable when the number of HMM states does not match the true one, e.g., S′ 6= S, see

experiment (e) in Table A.1. In particular, when using fewer HMM states (e.g., S′ < S)

the model can still capture some of the dynamics, and the drop in performance is not

significant. It is also interesting to note that using a larger number of HMM states (e.g.,

S′ > S) leads to slightly better results. The reason is that, when estimating the HMMs on

the corrupted data sequences, there are additional states to better account for the effect of

the noise.

Table A.1. Results on clustering synthetic data with VHEM-H3M and PPK-SC, when
the model order does not match the order of the true model used for generating the data.
We fist vary the number of clusters C′, keeping S′ = 3 fixed to the true value. Then, we
vary the number of HMM states S′, keeping C′ = 4 fixed to the true value. Performance
is measured in terms of Rand-index, and is averaged over K ∈ {2,4,8,16,32}.

experiment (d) experiment (e)
number of clusters C′ varies, S′ = 3 number of HMM states S′ varies, C′ = 4 fixed

2 3 4 (true) 5 2 3 (true) 4 5
VHEM-H3M 0.665 0.782 0.811 0.816 0.801 0.811 0.828 0.832
PPK-SC 0.673 0.729 0.768 0.781 0.766 0.768 0.781 0.798



Appendix B

Additional experiments for the BoS
representation

B.1 Details of Design Choices Experiments

This Appendix provides the details of the parameter settings and design for the

experiments in section VI-A.

Table B.1. Overview of experiments to determine design choices. EXP-1 evaluates four
different codebook generation procedures. EXP-2 evaluates the effect of the codebook
size, K. EXP-3 investigates different numbers and combinations of base models in a
codebook. EXP-4 evaluates the effect of the histogram smoothing parameter k.

EXP-1 EXP-2 EXP-3 EXP-4

Xc ⊂ CAL500 ⊂ CAL500 ⊂ CAL500 ⊂ CAL500
Xt ⊂ CAL500 ⊂ CAL500 ⊂ CAL500 ⊂ CAL500
|Xc| 64 400 400 400
|Xt | ≈ 400 ≈ 400 ≈ 400 ≈ 400

K 128 50-4800 4800 1600
M 1 1 1-5 1
k 10 10 10 1-100

EXP-1: Codebook Generation Methods

In this experiment we learn codebooks using each of the four methods of codebook

generation presented in section III-B.

238
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For each codebook generation method and each cross-validation split of CAL500,

we construct one codebook based on G1 only and a second codebook based on DT2 only.

We learn codebooks of size K = 128 (We choose small K because for the collection-

based codebook learning procedures, learning time quickly becomes prohibitive with

larger values of K). We select a small (in order to keep K small with Ks > 1) random

subset of songs from the training set of CAL500 to form a codebook song set of size

|Xc|= 64. For the fragment-based method, each codeword is directly estimated from a

randomly selected subset of audio data, consisting of 100 (sequential) feature vectors for

Gaussian codewords and a fragment of τ = 125 feature vectors for DT codewords. For

the song-based method we set Ks = 2, and for the hierarchical collection-based method

we set K′s = 4. For the collection-based method we subsample the input data to alleviate

the high cost in computational time of the EM algorithm. For the Gaussian codebook

we randomly subsample 250,000 input feature vectors and for the DT codebook we

randomly subsample 5000 input fragments (≈ 30% of the data in both cases).

We build BoS histograms with smoothing parameter k = 10 and use LR for

annotation and retrieval. Tag model training and testing are done on CAL500, using

five-fold cross-validation.

EXP-2: Codebook Size

In this experiment we investigate the effect of the codebook size, K, on annotation

and retrieval performance. For each cross-validation split of CAL500, we use the song-

based method to compile codebooks using the training set Xt as the codebook song

set Xc (Now that we have settled on the song-based method of codebook generation,

we can efficiently build larger codebooks from a larger codebook song set). We learn

one codebook from base model DT2 and a separate codebook from base model G1.

We vary the size of the codebook, K, from 50 to 4800 codewords. As the number of
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songs in the codebook song set is fixed1, i.e., |Xc| = 400, we vary the codebook size

K = Ks|Xc| by changing Ks, i.e., the number of codewords learned per song. When

learning codebooks consisting of fewer than 400 codewords, we group multiple songs

to learn a single codeword. For example, for a codebook with 100 codewords, we learn

each codeword from the combined audio data of four songs. In this case, Ks = 1 and the

effective size of the codebook song set is |X ′
c |= 100.

BoS histograms use k = 10 and annotation and retrieval is done with LR. Tag

model training and testing are done on CAL500, using five-fold cross-validation.

EXP-3: Codeword Base Models

In this experiment, we investigate codebooks combining multiple base models.

For each cross-validation split of CAL500, we use the song-based method to

compile codebooks from all the songs in the training set (i.e., Xc = Xt). We evaluate

various combinations of the codeword base models defined in Table I, adjusting the

number of codewords learned from each base model, K̃, to obtain a fixed codebook

size K. We fix K = 4800 (in preliminary experiments, we found that when combining

codewords of multiple base models, a larger codebook size is necessary to allow for a

sufficient number of codewords from each base model). Accordingly, for a fixed size

codebook song set (|Xc|= 400) we vary the number of codewords K̃ of each base model

by varying Ks. Table B.2 specifies each of these parameter choices used to learn the

codebooks in these experiments.

We use k = 10 to build BoS histograms and LR for annotation and retrieval. Tag

model training and testing are done on CAL500, using five-fold cross-validation.

1Actual sizes of the five training splits are either 401 or 402 songs, we subsample to 400.
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Table B.2. EXP-3: All codebooks have K = 4800 codewords, with varying number of
codeword base models, M, codewords per base model, K̃, and size of song model, Ks.

Base Models M K̃ Ks

DT2 1 4800 12

DT1,2 2 2400 6
DT2,G1 2 2400 6

DT1,2,G1 3 1600 4

DT1,2,3,G1 4 1200 3

DT1,2,3G1,2, 5 960 3

EXP-4: BoS Histogram Smoothing Parameter k

In this experiment we investigate the effect of the BoS histogram smoothing

parameter k on annotation and retrieval performance.

For each cross-validation split of CAL500, we use the song-based method (Ks = 4)

to compile codebooks of size K = 1600 from the songs in the training set (i.e., Xc =Xt).

We use base model DT2. We build BoS histograms with values of k ranging from 1 to

100, and perform annotation and retrieval with both LR and CBA. Tag model training

and testing are done on CAL500, using five-fold cross-validation.
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B.2 Comparison of Codebook Generation Methods

We expand the analysis of the four codebook generation methods presented in

section III-B: (1) learning each of the codewords independently from fragments of a

song in Xc, (2) learning small mixtures independently from individual songs in Xc, (3)

learning all codewords simultaneously from all available audio data in Xc using standard

EM, and (4) learning all codewords simultaneously from all available audio data in Xc

using the hierarchical EM (HEM) algorithm. In particular, we would like to gain more

insight into the diversity of codewords generated with each method.

First, we compute the average of (an appropriate) pairwise distance between

codewords in a codebook. This quantity provides some information about the quality of

the codebook independent of the annotation and retrieval experiments. A larger mean

pairwise distance between codewords indicates that codewords are less similar to each

other, and hence have a greater variety of representative power, than codewords with

smaller pairwise distances. For Gaussian codebooks, we compute the average Euclidean

distance between the means of each pair of Gaussian codewords; for DT codebooks,

we compute the average Martin distance [38] between each pair of DT codewords. We

compute these pairwise distances on the codebooks learned in the experiments in Section

VI-A1, reported in Table B.3. We see that the collection-based method (with standard

EM) produces the codebooks with the largest mean distance, followed by the hierarchical

collection-based method and the song-based method. The fragment-based method gives

rise to the smallest distances between codewords.

Second, we visualize the span of the codebook for each of the codebook gen-

eration methods by computing a 2-D embedding (via the t-SNE method [39]) of the

Gaussian codeword centers. This embedding is shown in Figure B.1. While the 2-D

embedding and mean pairwise distance capture slightly different information about the
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Figure B.1. 2D visualization of Gaussian codeword centers generated using the four
different methods of codebook generation. The fragment-based method produced code-
words that are more tightly clustered than the other methods, and showed correspondingly
low performance in annotation and retrieval experiments (See Table B.3).

spread of the codewords (The cost function used in t-SNE focuses on retaining local

structure of the data, and, as such, is relatively insensitive to outlier structure; the mean

pairwise distance, on the other hand, will be affected more significantly by outliers), they

agree that the fragment-based method produces codewords with the lowest diversity, and

the collection-based method produces codewords with the highest diversity.

We observe that once we get reasonably well-spread codewords (i.e., with the

song-based method), we obtain good performance in terms of annotation and retrieval

(see Section VI-A1, Table II); further increasing the average distance between codewords

(i.e., using collection-based or hierarchical methods) does not necessarily lead to a further

improvement in annotation and retrieval performance. In fact, we might speculate that
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Table B.3. Mean pairwise distance between codewords learned with four different
methods. We compute an appropriate mean pairwise distance between codewords — for
Gaussian codebooks, we compute the average Euclidean distance between the means of
each pair of Gaussian codewords; for DT codebooks, we compute the average Martin
distance between each pair of DT codewords.

Codeword Codebook Mean Pairwise
Class Generation Method Distance

G1

Fragment-based 337
Song-based 2173

Collection-based 6085
Hierarchical 3486

DT2

Fragment-based 3.4
Song-based 5.7

Collection-based 8.9
Hierarchical 6.5

it is advantageous to have a higher density sampling of codewords modeling certain

portions of the audio space that are most commonly found in music, leading to BoS

representations that are better suited to discriminate between similar songs.

This analysis of codeword spread reinforces our intuition that codebooks with

higher diversity between codewords perform better for annotation and retrieval, and

supports our decision to use the song-based method of codeword generation for future

experiments.
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B.3 Details of Unlabeled Songs Experiment

This Appendix provides the details of the parameter settings and design for the

experiments in section VII-A3.

Three different codebook song sets are used in this experiment: (1) Xc = C400,

the codebook song set corresponding to the training set for each cross-validation split

of CAL500 (as in Section VI-B1), (2) Xc = R400, a codebook song set that is a subset

of 400 randomly selected songs from the CAL10K collection and (3) Xc = A5K, the

codebook song set that is a subset of the CAL10K dataset consisting of one song from

each of the 4,597 artists (as in Section VI-B2). We compare codebooks learned from

each of these codebook song sents individually, in addition to codebooks derived from

the union of C400 with R400 and A5K, respectively.

We use the song-based method to learn codebooks, combining codewords from

base models DT1, DT2, and G1. We use Ks = 4 for the C400 and R400 codebook, leading

to K̃ = 1600 codewords per base model, and codebooks of size K = 4800, and Ks = 2

for the A5K codebook, leading to K̃ = 9194 codewords per base model, and codebooks

of size K = 27,582. For the codebook song set Xc = C400 ∪ R400, we use Ks = 4 to

build a codebook of size K = 9600, and for the codebook song set Xc = C400 ∪ A5K,

we use Ks = 2 to build a codebook of size K = 29,982. We build BoS histograms with

k = 10 and perform annotation and retrieval using LR.



Appendix C

Additional material for Branch and
bound

C.1 Derivation of the lower bounds.

The lower bound presented in Section 8.4.2, i.e., `q and `m, are easily derived

from [79] variational approximation to the KL divergence between mixture models:

D(A ||B)≈∑
i

πi log
∑i′ πi′ exp{−D(Ai||Ai′)}
∑ j ω j exp{−D(Ai||B j)}

. (C.1)

where A = {πi,Ai} is a mixture with weights πi and components Ai, and B = {ω j,B j}

is a mixture with weights ω j and components B j.

The lower bound to D(Θ||Q) is found for A = Θ = {θ ,M ,(1− θ),Q} and

B = {1,Q}:

`q = θ log
θ exp{−D(M ||M )+(1−θ)exp{−D(M ||Q)}

exp{−D(M ||Q)}

+(1−θ) log
θ exp{−D(Q||M )}+(1−θ)exp{−D(Q||Q)

exp{−D(Q||Q)}

= θ log
θ +(1−θ)exp{−D(M ||Q)}

exp{−D(M ||Q)} +(1−θ) log [θ exp{−D(Q||M )}+1−θ ](C.2)

= θ log [θ exp{D(M ||Q)}+(1−θ)]+(1−θ) log [θ exp{−D(Q||M )}+1−θ ](C.3)
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where in (C.2) we use the fact that D(Q||Q) = 0, and in (C.3) we multiply numerator

and denominator of the fist term inside the logarithm by exp{D(M ||Q)}. Similarly, the

lower bound to D(Θ||M ) is found for A = Θ = {θ ,M ,(1−θ),Q} and B = {1,M }:

`m = θ log
θ exp{−D(M ||M )+(1−θ)exp{−D(M ||Q)}

exp{−D(M ||M )}

+(1−θ) log
θ exp{−D(Q||M )}+(1−θ)exp{−D(Q||Q)}

exp{−D(M ||Q)}

= θ log [θ +(1−θ)exp{−D(M ||Q)}]+ (1−θ) log
θ exp{−D(Q||M )}+1−θ

exp{−D(Q||M )} (C.4)

= θ log [θ +(1−θ)exp{−D(M ||Q)}]+ (1−θ) log [θ +(1−θ)exp{D(Q||M )}](C.5)

Note that, (C.3) and (C.5) hold as lower bounds, as explained in Section 8.4.2.

C.2 Monotonicity of lower bound
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(b) `m(θ) vs. `+m(θ)

Figure C.1. `+m(θ) is monotonic, whereas `m(θ) does not need to.

The function `m(θ) is not always monotonic, as illustrated by the following

example.
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Consider two histograms Q and M with bins:

q = [0.2, 0.2, 0.15, 0.25, 0.2] (C.6)

µ = [0.2, 0.2, 0.3, 0.1, 0.2] (C.7)

for which we have D(Q||M )≈ 0.1163 and D(M ||Q)≈ 0.1251.

In Figure C.1(a), we plot `m(θ) for θ ∈ [01], which is visibly non monotonic. On

the opposite, `+m(θ) = max(0, `m(θ)) is monotonic, as illustrated in Figure C.1(b).

In general, Lemma 1 in Section 8.4.2 gives a proof of the monotonicity of

`+m(θ). Lemma 1 uses the convexity of `m(θ), which follows from the positivity of

the second derivative (for θ ∈ [01]). In particular, using A = exp{−D(M||Q)} and

B = exp{D(Q||M)} to reduce clutter, we have:

d
dθ

`m(θ) =
d

dθ
θ log[θ +(1−θ)A]+

d
dθ

(1−θ) log[θ +(1−θ)B]

= log[θ(1−A)+A]+
θ(1−A)

θ(1−A)+A

+
1−B

θ(1−B)+B
− log[θ(1−B)+B]+

θ(1−B)
θ(1−B)+B

(C.8)

d2

dθ 2 `m(θ) =
d

dθ

d
dθ

`m(θ)

=
(1−A)[θ(1−A)+2A]

[θ(1−A)+A]2
+
−(1−B)(1−B)
[θ(1−B)+B]2

− (1−B)[θ(1−B)+2B]
[θ(1−B)+B]2

=
(1−A)[θ(1−A)+2A]

[θ(1−A)+A]2
− (1−B)[(θ +1)+B(1−θ)]

[θ(1−B)+B]2
. (C.9)

Since B = exp{D(Q||M)}> 1, A = exp{−D(M||Q)} ∈ [01], for θ ∈ [01], (C.9) is posi-

tive (from which follows the convexity).
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C.3 Decisions of the approximated algorithm

In the derivation of Algorithm 6 in, we use in sequence an approximation and a

lower bound:

d f (xθ ,q)≈ D(Θ||Q)≥ `+q (θ) (C.10)

d f (xθ ,µ)≈ D(Θ||M )≥ `+m(θ) (C.11)

In general, when (C.10) and (C.11) do not hold as equalities, the algorithm is subject

to making two types of incorrect decisions, i.e., exploring parts of the search space that

could instead be safely pruned (over-explorative behavior), or pruning away parts that

should be explored (under-explorative behavior). Interestingly, we can argue that, instead

of making one type of mistake or the other randomly, our algorithm is over-explorative

on nodes to which the query is relatively close and under-explorative on nodes to which

the query is further away.

Conjecture: If q′ = µ ′+δ ′, for δ ′ small, we have d f (xθ ,µ)≥ l+m (θ).

Proof: We have x′
θ
= µ ′+(1−θ)δ ′ and µ ′ = x′

θ
−(1−θ)δ ′. Consider the Riemannian

manifold around x′
θ

(with curvature ∇ f ∗(x′
θ
)), and that the Riemannian metrics associated

to f and f ∗ have identical infinitesimal length [7, 119]. Consequently we have:1

d f (xθ ,µ) =
1
2
(1−θ)2

δ
′t

∇
2 f ∗(x′θ )δ

′ (C.12)

=
1
2
(1−θ)2

δ
t
∇

2 f (xθ )δ = (1−θ)2
∆ (C.13)

where we use the notation ∆ = 1
2δ t∇2 f (xθ )δ to reduce clutter. Similarly, we have

that d f (q,µ) = 1
2∆ and d f (µ,q) = 1

2∆. Using the approximations exp{a} = 1+a and

1To show (C.12) we can use Legendre duality d f (xθ ,µ) = f (xθ )+ f ∗(µ ′)−〈µ ′,xθ 〉 and second order
Taylor expansion of f ∗(µ ′) = f ∗(x′

θ
− (1−θ)δ ′) around x′

θ
.
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loga = a−1 (for a small), we have that:

`m(θ) = (1−θ) log [1+(1−θ)∆]+θ log [1−(1−θ)∆] (C.14)

≤ log{(1−θ) [1+(1−θ)∆]+θ [1−(1−θ)∆]} (C.15)

= log
{

1+
[
(1−θ)2−θ(1−θ)

]
∆

}
(C.16)

=
[
(1−θ)2−θ(1−θ)

]
∆≤ (1−θ)2

∆ (C.17)

where (C.15) follow from Jensen inequality and (C.17) form the fact that θ(1−θ)≥ 0

for θ ∈ [01]. Since d f (xθ ,µ)≥ 0 we also have d f (xθ ,µ)≥ `+m(θ).

Next, we illustrate the over-explorative behavior of our Algorithm 6 when the

approximations hold as lower bounds, i.e.:

d f (xθ ,q) ≥ `+q (θ), (C.18)

d f (xθ ,µ) ≥ `+m(θ), (C.19)

L (θ) ≥ `L (θ)≡ `+q (θ)+
θ

1−θ

(
`+m(θ)−R

)
(C.20)

In Step 4 of our algorithm when comparing `L (θ) to c = d f (xc,q) (where xc is the

candidate NN), we can have the following situations:

• If L (θ)≥ `L > c we safely prune the node;

• If L (θ) > c > `L [loose lower bound] we incorrectly decide not to prune the

node yet: we may end up exploring more and waste computation;

• If c > L (θ)≥ `L [tight lower bound] we correctly not prune the node (yet).

For the rest of the comparisons (i.e., Steps 5, 6 and 7 of our algorithm), we can have:
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• If `m < d f (xθ ,µ)< R [tight lower bound]: we correctly assume xθ is in the ball;

– `q ≤ d f (xθ ,q)≤ c [tight lower bound]: we correctly decide to explore (e.g.,

xθ is better than candidate Xc);

– `q ≤ c≤ d f (xθ ,q) [loose lower bound]: we incorrectly decide to explore —

even if we might have ended up exploring anyway based on later iterations,

in general we may waste computations;

– c≤ `q ≤ d f (xθ ,q): we safely update θl;

• If `m < R < d f (xθ ,µ) [loose lower bound] we incorrectly assume xθ is in the ball

– `q ≤ d f (xθ ,q) ≤ c [tight lower bound]: we incorrectly decide to explore:

wasteful;

– `q ≤ c ≤ d f (xθ ,q) [loose lower bound]: we incorrectly decide to explore:

wasteful;

– c ≤ `q ≤ d f (xθ ,q): we incorrectly update θr instead of θl: this dilate the

effective size of the ball and may incur in wasteful explorations;

• If R < `m < d f (xθ ,µ) we safely assume xθ is not the ball, and update θr.

On the opposite, when the query and the node are far away, the approximations can

actually hold as upper bounds, which has the opposite effect of making the the algorithm

under-explorative. Since the left-sided centroid xθ = argmaxc θd f (x,µ)+(1−θ)d f (x,q)

is zero forcing [119], it will have smaller support than the mixture model with modes µ

and q, and consequently d f (xθ ,µ) (respectively, d f (xθ ,q)) will be smaller than D(Θ||M )

(respectively, D(Θ||Q)). If `+q and `+m are not tight, (C.10) and (C.11) will hold as upper

bounds.
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