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Abstract

Exploring Landscapes of Naturalness with Lifshitz Field Theories

by

Kevin Torres Grosvenor

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Petr Hořava, Chair

In this thesis, we examine the question of technical naturalness from the point of view
of nonrelativistic quantum field theories of Lifshitz type.

Lifshitz field theories are distinguished from standard relativistic quantum field theories
by the spacetime scaling symmetries that they enjoy in the vicinity of their renormalization
group fixed points. These scaling symmetries are parametrized by the dynamical critical
exponent, which measures the degree of scaling of time relative to spatial coordinates.
Whereas in relativistic theories, space and time scale equally with each other, in Lifshitz
field theories, the dynamical critical exponent may differ from unity. Furthermore, Lifshitz
field theories live in spacetimes that possess a foliation structure by spatial leaves of constant
time. Therefore, in contrast to relativistic theories, Lifshitz field theories are not invariant
under the full diffeomorphism group of spacetime, but rather only those diffeomorphisms
that preserve the built-in foliation structure. In the flat spacetime, this would simply
exclude the usual spacetime boost symmetries. Since time is treated on a fundamentally
different footing as is space, these theories are often referred to as anisotropic. In addition,
these theories often require the tuning of multiple parameters in order to approach their
fixed points under renormalization group flow, and are consequently called multicritical.

We will explore some new and interesting lessons that nonrelativistic theories have to
teach us about technical naturalness. We begin this study at the modest level of Lifshitz
scalar field theories. We examine the nature of Nambu-Goldstone (NG) bosons that arise
from spontaneous symmetry breaking in multricritical systems described by Lifshitz scalar
field theories. The NG modes in such nonrelativistic theories were previously classified into
two types: (1) Type-A, which disperses linearly, and which derives its kinetic energy from a
term which is quadratic in time derivatives; and (2) Type-B, which disperses quadratically,
and which is described by a pair of fields with kinetic terms linear in time derivatives. In
principle, Type-A modes dispersing by a power different from unity, and Type-B modes
dispersing by a power different from two, can exist. However, the naive expectation from
relativistic quantum field theory is that these would require fine tuning and are therefore
technically unnatural. We discover that this is not the case. Instead of fine-tuning, all one
needs is a new type of symmetry by which the fields transform by a polynomial function
of some appropriate degree in the spatial coordinates. This polynomial shift symmetry
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protects the naturalness of the corresponding NG bosons. This leads to a refinement of the
classification of technically natural NG modes in nonrelativistic theories.

Having discovered these polynomial shift symmetries, we turn our attention to the
classification of Lagrangians that are invariant (up to total derivatives) with respect to
these symmetries. We develop a novel graph-theoretical technique in order to address this
problem. In this language, the invariants display beautiful patterns that otherwise remain
obscured. For example, linear-shift invariants are presented as equal-weight sums over
all labeled trees with some fixed number of vertices. Furthermore, we develop a graph-
theoretical method for constructing invariants under polynomial shifts of high degree from
invariants under polynomial shifts of lower degree. In this way, one no longer needs to
repeat the entire classification process for each degree of the polynomial shift symmetry.

The third part of the thesis uses some of the theories, which are built out of invariants
constructed in the second part of the thesis, to study a novel feature that these Lifshitz
theories possess as one changes the energy scale at which the systems are examined. We find
that these systems can flow from one fixed point described by one value of the dynamical
exponent, to another fixed point described by a different value of the dynamical exponent.
Furthermore, the system can explore any number of fixed points between the extreme high
energy regime and the extreme low energy regime. We refer to this behavior as a cascade.
Not only can Type-A modes cascade into other Type-A modes (or similarly for Type-B
modes), but Type-A modes can flow towards Type-B at low energies as well. Both mech-
anisms are protected by symmetries. The purely Type-A or Type-B cascade is protected
by the polynomial shift symmetries in space. The Type-A to Type-B cascade can be pro-
tected by various symmetries, including a linear shift symmetry in time. Furthermore, we
re-examine the Coleman-Hohenberg-Mermin-Wagner (CHMW) theorem, which prohibits
the spontaneous breaking of global internal continuous symmetries in relativistic theories in
two spacetime dimensions. Naively, this theorem would prevent the existence of a Type-A
mode unless its dynamical exponent is strictly less than the spatial dimension, which is
when the theory is in its lower critical dimension. The cascade represents a mechanism by
which this result can be circumvented.

Next, we examine the renormalization group flow of one particular Lifshitz scalar field
theory. We perform the analysis explicitly using three different standard techniques of renor-
malization and show that they are all mutually consistent. Furthermore, we demonstrate
that the RG flow of Lifshitz theories can be interpreted physically in many different, but
consistent, ways due to the additional freedom of renormalizing the dynamical exponent.

The lessons in Lifshitz field theories discussed in this thesis are most readily applied
in the area of condensed matter physics, where systems often display a richer spectrum
of behavior than is described by relativistic physics. We perform a preliminary study
of the effects of coupling these Lifshitz theories with other systems. In particular, we
study the naturalness problem of the linear dependence on temperature of the resistivity of
so-called strange metals, which are high-temperature superconductors above their critical
temperature. We show that this behavior is reproduced by the standard electron-phonon
interaction picture of superconductivity, if the phonons are allowed to be multicritical and
at their lower critical dimension. We also examine the impact that this model has on the
heat capacity of the system.
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Chapter 1

Introduction

The study of theories that exhibit anisotropy between spatial and temporal dimensions
is a well-established and developed practice in condensed matter physics, particularly in the
context of dynamic critical phenomena [1, 2, 3, 4, 5]. In the vicinity of fixed points under
the renormalization group (RG) flow, a system can exhibit a scaling symmetry which is
anisotropic between time and space. The degree of anisotropy is measured by the dynamical
critical exponent (denoted z), such that time scales z times as much as does space. Numerous
theories with various values of z have been studied in the past. For example, the value
z = 3/2 is found in theories of surface growth [6], spin waves in XY magnets and sound
waves in superfluid Helium [7]; investigations into relaxation models with z = 2 include [8];
and z = 5/2 is found in models of ferromagnetic spin waves [9]. These systems are often
called multicritical since they usually require the tuning of multiple parameters in order to
reach a fixed point under RG flow.

In contrast, the field of high energy physics has tended to favor Lorentz invariance,
which precludes such anisotropy. To a large extent, this bias remains. However, more re-
cently, the concept of anisotropy was introduced into the field of gravitational physics by
Hořava [10, 11]. This anisotropic gravity theory is power-counting renormalizable and may
therefore serve as a candidate for an ultra-violet complete quantum theory of gravity. Nat-
urally, this theory has attracted much attention not only because of its improved behavior
at short distances, but also for its novel phenomenology at long distances [12], its connec-
tion to the nonperturbative Causal Dynamical Triangulations approach to quantum gravity
[13, 14, 15], as well as for its applications to holography and the AdS/CFT correspondence
of nonrelativistic systems [16, 17, 18]. However, the quantization and renormalization of
this theory presents numerous challenges and only partial results have been achieved so
far [19, 20]. These technical difficulties have spurred the investigation of some of the new
conceptual featues of anisotropic quantum field theories (QFTs) in simpler systems.

In this dissertation, we will describe some of the interesting and surprising new features
that arise in quantum field theories exhibiting dynamical critical exponents possibly taking
values different from unity, which are called Lifshitz field theories. The bulk of the work
will be organized as follows:

1. We will investigate the consequences of the anisotropy in Lifshitz field theories on spon-
taneous symmetry breaking and the classification of Nambu-Goldstone Bosons [21];
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2. In the process, we will discover new symmetries of Lifshitz scalar field theories and we
will study the classification of these theories [22];

3. We will study the explicit breaking of these new symmetries and the patterns of RG flow
between available fixed points [23];

4. We will perform the renormalization group (RG) analysis explicitly using a number of
different standard methods and show that the RG flows of Lifshitz theories possess a
continuum of distinct, but mutually consistent, physical interpretations [24];

5. Finally, we will propose a theory of superconductivity in which electrons couple to mul-
ticritical phonons and demonstrate how this theory can result in a linear temperature
dependence of the resistivity as well as fractional power law dependence of the heat
capacity [25];

1.1. Landscapes of Naturalness

The bulk of the present work is inspired by the principle of technical naturalness introduced
and formalized by ’t Hooft as a guideline in constructing models of elementary particles [26].
The principle is summarized by the following dogma:

A set of physical parameters can be very small at some energy scale only if the
symmetry of the system would increase if these parameters were to vanish.

The principle of naturalness is rooted in the time-honored physical principle of causality,
which requires that the macroscopic behavior of systems follow from more fundamental
microscopic equations. This principle is the assumption, nay, the conviction, that some
special properties that a system may enjoy at macroscopic scales cannot be the result of
the careful adjustment of various free parameters in the microscopic equations by Nature
or any other entity one might care to invoke.

Ostensible violations of this principle have become some of the most fundamental
problems of modern theoretical physics. These include the cosmological constant problem
and the Higgs mass hierarchy problem. The former relates to the extremely small value of
the observed cosmological constant relative to the Planck scale. The latter relates to the
smallness of the observed Higgs mass relative to the scale of grand unification, or some
other scale of new physics beyond the Standard Model. In both cases, the symmetry of the
corresponding quantum field theory does not appear to increase in the limit of vanishing
cosmological constant or Higgs mass. Indeed, the expected quantum corrections estimated
in the framework of relativistic effective field theory (EFT) predict natural values at a much
higher scale, many orders of magnitude larger than the observed ones.

It is conceivable that some puzzles of naturalness may only have environmental expla-
nations, based on the landscape of many vacua in the multiverse. However, before we give
up naturalness as our guiding principle, it is important to investigate more systematically
the “landscape of naturalness”: To map out the various quantum systems and scenarios in
which technical naturalness does hold, identifying possible surprises and new pieces of the
puzzle that might help restore the power of naturalness in fundamental physics.
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1.2. Naturalness and the Polynomial Shift Symmetry

Here we will describe a specific example of how naturalness works. There are many examples
of naturalness in play in relativistic physics. For example, the electron mass, me = 0.511
MeV, is much smaller than the electroweak symmetry breaking scale, v = 246 GeV. This
is technically natural because, in the limit of vanishing electron mass, the system gains
the extra chiral symmetry – the separate conservation of left- and right-chiral electrons.
An example of the opposite scenario would be the mass of a scalar particle with a quartic
self-interaction. This system does not gain an enhanced symmetry in the limit of vanishing
mass, and therefore it is unnatural to neglect the mass altogether. In fact, this latter
example is a stripped down and simplified version of the Higgs mass hierarchy problem.

In the absence of relativistic invariance, many more types of symmetries may be con-
sidered, which drastically broaden our view of the landscape of naturalness. The polynomial
shift symmetry is one type of symmetry that will play a crucial role in this thesis. Thus,
we will describe how naturalness works in a specific interesting example of a Lifshitz scalar
field theory with polynomial shift symmetry.1

The theory under consideration lives in flat space R3+1, with a foliation structure
by leaves of constant preferred time, t. The spatial slices are flat Euclidean space R3.
The polynomial shift symmetry for a scalar field is defined locally, with respect to spatial
coordinates near a point in the spacetime, as

δφ(t,x) = ai1···iP x
i1 · · ·xiP + · · ·+ aix

i + a, (1.1)

where a, ai, . . . , ai1···iP are the real coefficients of a degree-P polynomial function of the
spatial coordinates. Of course, one is free to consider irreducible subgroups. For example,
for the quadratic shift symmetry, one could restrict to the trace, aij ∝ δij , or the traceless
part of the symmetry.

Suppose the scalar field theory is in the vicinity of a fixed point characterized by Lifshitz
scaling with dynamical exponent z = 3. In this case, since z = D, the spatial dimension,
the theory is in its lower critical dimension, where the field φ is classically dimensionless.
Let us impose classical scale invariance by considering only classically marginal interactions.
We find that there are no classically marginal interactions which are invariant with respect
to polynomial shifts of degree two or higher. There are five operators, which are invariant
under the constant shift symmetry. The first two are three-point interactions and the last
three are four-point interactions:

O1 = ∂iφ∂j∂kφ∂i∂j∂kφ, (1.2a)

O2 = ∂i∂jφ∂j∂kφ∂i∂kφ, (1.2b)

O3 = ∂iφ∂jφ∂kφ∂i∂j∂kφ, (1.2c)

O4 = ∂iφ∂i∂jφ∂j∂kφ∂kφ, (1.2d)

O5 = ∂iφ∂iφ∂j∂kφ∂j∂kφ. (1.2e)

Note that these are exact invariants under the constant shift symmetry.

1The relevant calculations were performed by the author with Ziqi Yan and features in unpublished work
co-authored with Petr Hořava, Christopher Mogni and Ziqi Yan [27].
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The two three-point interactions, O1 and O2, are also invariant under the linear shift
symmetry. It is obvious that O2 is exactly invariant under the linear shift symmetry, but O1

is also exactly invariant since we can equally well write it as 1
2(∂2φ)∂i∂jφ∂i∂jφ. The three

four-point interactions, O3, O4 and O5, are not invariant under the linear shift symmetry,
but the combination O3 + 3O4 is invariant up to a total derivative. Finally, under the
quadratic trace shift symmetry, the only invariant is the combination of the two three-point
interactions 6O1 + 5O2. The only invariant under the quadratic traceless shift symmetry is
the combination 6O1 + 2O2. In both of these latter cases, the corresponding invariant is an
exact invariant.

Suppose we were to include only the two three-point interaction terms. That is, we set
the coefficients of the three four-point interactions equal to zero. Is this technically natural?
That is, doO1 andO2 by themselves generate divergent quantum corrections that contribute
to O3, O4 and O5? A straightforward evaluation of the one-loop contribution to the four-
point interaction shows that O1 and O2 by themselves generate quantum corrections to
four-point interactions with at least eight spatial derivatives. Therefore, it is natural to set
the coefficients of the four-point interactions equal to zero.

A glance at the previously mentioned polynomial shift symmetries immediately ex-
plains this result. O1 and O2 are separately exact invariants under the linear shift symme-
try. Therefore, it is technically natural to set to zero the coefficients of all terms which are
not exactly invariant under the linear shift symmetry. There is one combination, O3 + 3O4,
which is invariant under the linear shift, but only up to a total derivative.

One can compute the one-loop correction to the three-point interaction. The cor-
rections to O1 and O2 are independent except when the original combination is invariant
under either the quadratic trace or quadratic traceless shift. In these cases, the corrections
combine into a correction only to the corresponding original invariant!

More interestingly, one can write down four exact linear-shift invariant four-point in-
teractions with eight derivatives, which are technically irrelevant:

O′1 = ∂i∂jφ∂j∂kφ∂k∂`φ∂i∂`φ, (1.3a)

O′2 = ∂2φ∂i∂jφ∂j∂kφ∂i∂kφ, (1.3b)

O′3 = ∂i∂jφ∂i∂jφ∂k∂`φ∂k∂`φ, (1.3c)

O′4 = (∂2φ)2∂i∂jφ∂i∂jφ. (1.3d)

One linear combination is exactly invariant under the quadratic trace, 3O′1 − 4O′2 + 3O′3.
In general, O1 and O2 give finite quantum corrections to all four operators. However, the
structure of these corrections is such that, if the coefficients of O1 and O2 are tuned to the
combination that is exactly quadratic trace invariant, then only the specific combination
3O′1 − 4O′2 + 3O′3, which is also exactly quadratic trace invariant, receives quantum cor-
rections! The same story holds for the quadratic traceless shift symmetry, for which there
is also one exact invariant. The above basis is not well-suited to this case – the obvious
quadratic traceless shift invariant is just (∂2φ)4.

Note that one could have predicted these results from the beginning. However, one
might imagine possible objections to the symmetry in the first place. Is it well-defined?
How does one deal with boundary terms out near spatial infinity, which technically appear
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to diverge? Is one allowed to consider terms which are invariant up to total derivatives,
or is one constrained to consider only exact invariants? We will touch upon these ques-
tions when we study the polynomial shift on compactified spaces and periodic lattices in
§6.2. For now, we are content to observe that the theory satisfies the requirements of tech-
nical naturalness and enjoys these polynomial shift symmetries whether or not we like them.

The remainder of this thesis will explore landscapes of naturalness with the use of
Lifshitz scalar field theories. The aim is to open up vistas representing new phenomena
and possibilities that have heretofore remained largely unexplored. It is our hope that this
work will eventually prove fruitful in the fields of high energy physics and quantum gravity,
and will inspire new ways to approach such naturalness problems as those presented by the
Higgs mass hierarchy and the cosmological constant.
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Chapter 2

Multicritical Symmetry Breaking

We investigate spontaneous global symmetry breaking in the absence of Lorentz invari-
ance, and study technical Naturalness of Nambu-Goldstone (NG) modes whose dispersion
relation exhibits a hierarchy of multicritical phenomena with Lifshitz scaling and dynami-
cal exponents z > 1. For example, we find NG modes with a technically natural quadratic
dispersion relation which do not break time reversal symmetry and are associated with a
single broken symmetry generator, not a pair. The mechanism is protected by an enhanced
‘polynomial shift’ symmetry in the free-field limit.

2.1. Introduction

Gapless Nambu-Goldstone (NG) modes [28, 29, 30, 31] appear prominently across an im-
pressive array of physical phenomena, both relativistic and nonrelativistic (for reviews, see
e.g. [32, 33, 34, 35, 36].) They are a robust consequence of spontaneous symmetry break-
ing. Moreover, when further combined with gauge symmetries, they lead to the Higgs
phenomenon, responsible for controlling the origin of elementary particle masses.

The NG modes are controlled by Goldstone’s theorem: A spontaneously broken gener-
ator of a continuous internal rigid symmetry implies the existence of a gapless mode. With
Lorentz invariance, the theorem implies a one-to-one correspondence between the gener-
ators of broken symmetry and massless NG modes, but in the nonrelativistic setting, it
leaves questions [37, 38, 39]: What is the number of independent NG modes? What are
their low-energy dispersion relations?

In this chapter, we study the general classification of NG modes, and their Naturalness,
in nonrelativistic theories with Lifshitz symmetries. The important concept of Naturalness is
behind many successes of modern physics, but it also leads to some of its most intriguing and
persistent puzzles. A system is technically natural if its low-energy behavior follows from
that at higher energy scales, without requiring fine tuning [26]. Perhaps the most famous
“Naturalness problem” comes from the apparent smallness of the cosmological constant
[40, 41, 42], suggesting that something fundamental is still missing in our understanding of
gravity and cosmology. And now that the Higgs boson has been discovered, (un)naturalness
at the TeV scale is again at the forefront of high-energy particle physics [43, 44, 45, 46, 47].
In the context of quantum gravity, theories with Lifshitz symmetries have been studied



7

at least in part because of their improved short-distance (UV) behavior [10, 11, 14]. Our
study illustrates that in Lifshitz-type theories, not only the short-distance behavior but also
the concept of Naturalness acquires interesting new features. This leads to a refinement
in the classification of NG modes in systems with Lifshitz symmetries, characterized by a
multicritical behavior which is technically natural, and protected by a symmetry.

2.1.1. Geometry of the Spacetime with Lifshitz Symmetries

For clarity and simplicity, we focus on systems on the flat spacetime with Lifshitz spacetime
symmetries. We define this spacetime to be M = RD+1 with a preferred foliation F
by fixed spatial slices RD, and equipped with a flat metric. Such a spacetime with the
preferred foliation F would for example appear as a ground-state solution of nonrelativistic
gravity [11] whose gauge symmetry is given by the group of foliation-preserving spacetime
diffeomorphisms, Diff(M,F) (or a nonrelativistic extension thereof [14]). It is useful to
parametrize M by coordinates (t,x = {xi, i = 1, . . . D}), such that the leaves of F are the
leaves of constant t, and the metric has the canonical form

gij(t,x) = δij , N (t,x) = 1, Ni(t,x) = 0 (2.1)

(here gij is the spatial metric on the leaves of F , N is the lapse function, and Ni the shift
vector).

The isometries of this spacetime are, by definition, those elements of Diff(M,F) that
preserve this flat metric [48]. Explicitly, the connected component of this isometry group is
generated by infinitesimal spatial rotations and spacetime translations,

δt = b, δxi = ωij x
j + bi, ωij = −ωji. (2.2)

At fixed points of the renormalization group, systems with Lifshitz isometries develop an
additional scaling symmetry, generated by

δxi = λxi, δt = zλt. (2.3)

The dynamical critical exponent z is an important observable associated with the fixed
point, and characterizes the degree of anisotropy between space and time at the fixed point.

The connected component of the group of isometries of our spacetime M with the flat
metric (2.1) is generated by (2.2), and we will refer to it as the “Lifshitz symmetry” group.1

The full isometry group of this spacetime has four disconnected components, which can be
obtained by combining the Lifshitz symmetry group generated by (2.2) with two discrete
symmetries: The time-reversal symmetry T , and a discrete symmetry P that reverses the
orientation of space. In this paper, we shall be interested in systems that are invariant
under the Lifshitz symmetry group. Note that this mandatory Lifshitz symmetry does not
contain either the discrete symmetries T and P, or the anisotropic scaling symmetry (2.3).

1It would be natural to refer to M with the flat metric (2.1) as the “Lifshitz spacetime”. Unfortunately,
this term already has another widely accepted meaning in the holography literature, where it denotes the
curved spacetime geometry in one dimension higher, whose isometries realize the Lifshitz symmetries (2.2)
plus the Lifshitz scaling symmetry (2.3) for some fixed value of z [49].
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2.1.2. Effective Field Theories of Type A and B Nambu-Goldstone Bosons

We are interested in the patterns of spontaneous symmetry breaking of global continu-
ous internal symmetries in the flat spacetime with the Lifshitz symmetries, as defined in
the previous paragraph. Our analysis gives an example of phenomena that are novel to
Goldstone’s theorem in nonrelativistic settings, and can in principle be generalized to non-
relativistic systems with even less symmetry.

We start with the NG field components πA, A = 1, . . . , n, which serve as coordinates
on the space of possible vacua M = G/H in a system with symmetries broken spontaneously
from G to H ⊂ G. An elegant strategy has been proposed in [50, 51]: In order to classify
Nambu-Goldstone modes, we can classify the corresponding EFTs available to describe
their low-energy dynamics. In this EFT approach, we organize the terms in the effective
action by their increasing dimension. Such dimensions are defined close enough to the
infrared fixed point. However, until we identify the infrared fixed point, we don’t a priori
know the value of the dynamical critical exponent, and hence the relative dimension of the
time and space derivatives – it is then natural to count the time derivatives and spatial
derivatives separately. Consider first the “potential terms” in the action, i.e., terms with no
time derivatives. The general statement of Goldstone’s theorem implies that non-derivative
terms will be absent, and the spatial rotational symmetry further implies that (for D > 1)
all derivatives will appear in pairs contracted with the flat spatial metric. Hence, we can
write the general “potential term” in the action as

Seff, V =

∫
dt dx

{
1

2
gIJ(π)∂iπ

I∂iπ
J + . . .

}
(2.4)

where gIJ(π) is the most general metric on the vacuum manifold which is compatible with all
the global symmetries, and . . . stand for all the terms of higher order in spatial derivatives.

If the system is also invariant under the primitive version T of time reversal, defined
as the transformation that acts trivially on fields,

T :

{
t → −t,
πI → πI ,

(2.5)

the time derivatives will similarly have to appear in pairs, and the kinetic term will be given
by

Seff,K =

∫
dt dx

{
1

2
hIJ(π)π̇I π̇J + . . .

}
, (2.6)

where again hIJ is a general metric on the vacuum manifold compatible with all symmetries,
but not necessarily equal to the gIJ that appeared in (2.4); and . . . are higher-derivative
terms.

However, invariance under T is not mandated by the Lifshitz symmetry. If it is absent,
the Lifshitz symmetries allow a new, more relevant kinetic term,

S̃eff,K =

∫
dt dx

{
ΩI(π)π̇I + . . .

}
, (2.7)

assuming one can define the suitable object ΩI(π) on the vacuum manifold so that all the
symmetry requirements are satisfied, and ΩI(π)π̇I is not a total derivative. Since ΩI(π)
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plays the role of the canonical momentum conjugate to πI , if such Ω-terms are present in
the action, they induce a natural canonical pairing on an even-dimensional subset of the
coordinates on the vacuum manifold.

In specific dimensions, new terms in the effective action that are odd under spatial
parity P may exist. For example, in D = 2 spatial dimensions, we can add new terms to
the “potential” part of the action, of the form

S̃eff, V =

∫
dt dx

{
1

2
ΩIJ(π) εij ∂iπ

I∂jπ
J + . . .

}
, (2.8)

where ΩIJ is any two-form on the vacuum manifold that respects all the symmetries.2 In
the interest of simplicity, we wish to forbid such terms, and will do so by imposing the P
invariance of the action, focusing on the symmetry breaking patterns that respect spatial
parity. This condition can of course be easily relaxed, without changing our conclusions
significantly.

This structure of low-energy effective theories suggests the following classification of
NG modes, into two general types:

• Type A: One NG mode per broken symmetry generator (not paired by ΩI). The
low-energy dispersion relation is linear, ω ∝ k.

• Type B: One NG mode per each pair of broken symmetry generators (paired by ΩI).
The low-energy dispersion relation is quadratic, ω ∝ k2.

In general, Type A and Type B NG modes may coexist in one system. Some examples from
condensed matter theory can be found in [50].

Based on the intuition developed in the context of relativistic quantum field theory,
one might be tempted to conclude that everything else would be fine tuning, as quantum
corrections would be likely to generate large terms of the form (2.4) in the effective action
if we attempted to tune them to zero.

We will show that in Lifshitz-type theories, hAB can be small naturally, without fine
tuning. When that happens, the low-energy behavior of the NG modes will be determined
by the next term, of higher order in ∂i. The argument can be iterated: When the terms of
order ∂4 are also small, terms with z = 3 will step in, etc. This results in a hierarchy of
multicritical Type-A and Type-B NG modes with increasing values of z. Compared to the
generic NG modes described above, these multicritical NG modes are anomalously slow at
low energies.

2.2. Example of Slow Nambu-Goldstone Bosons

We will demonstrate our results by focusing on a simple but representative example of
symmetry breaking, the O(N) nonlinear sigma model (NLSM) with target space SN−1.
(For some background on Lifshitz scalar theories, see [10, 52, 53, 54, 55, 56, 57, 58].) Until
stated otherwise, we will also impose time reversal invariance, to forbid ΩA.

2For example, if ΩI(π) suitable for (2.7) exist, one can take ΩIJ = ∂[IΩJ].
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2.2.1. z=2 Linear and Non-linear O(N ) Sigma Models

Under the aforementioned assumptions, the action of the O(N)-invariant z = 2 Lifshitz
NLSM [56] is given by

SNLSM =
1

2G2

∫
dt dDx

{
gABπ̇

Aπ̇B − e2gAB∆πA∆πB − c2gAB∂iπ
A∂iπ

B

− λ1

(
gAB∂iπ

A∂jπ
B
) (
gCD∂iπ

C∂jπ
D
)
− λ2

(
gAB∂iπ

A∂iπ
B
)2}

. (2.9)

Here ∆πA ≡ ∂i∂iπ
A + ΓABC∂iπ

B∂iπ
C , gAB is the round metric on the unit SN−1 (later we

will use gAB = δAB + πAπB/(1 − δCDπCπD)), and ΓABC is its connection. The Gaussian
z = 2 RG fixed point is defined by the first two terms in (2.9) as G→ 0. We define scaling
dimensions throughout in the units of spatial momentum, [∂i] ≡ 1. Due to its geometric
origin, the NG field πA is dimensionless, [πA] = 0. The first four terms in SNLSM are all
of the same dimension, so [e2] = [λ1] = [λ2] = 0. We can set e = 1 by the rescaling of
space and time, and will do so henceforth. All interactions are controlled by the coupling
constant G, whose dimension is [G] = (2 − D)/2. Thus, the critical spacetime dimension
of the system, at which the first four terms in (2.9) are classically marginal, is equal to
2 + 1. The remaining term has a coupling of dimension [c2] = 2, and represents a relevant
deformation away from z = 2, even in the non-interacting limit G→ 0. Since c determines
the speed of the NG modes in the k → 0 limit, we refer to this term as the “speed term”
for short. Given the symmetries, this relevant deformation is unique.

We are mainly interested in 3 + 1 dimensions, so we set D = 3 from now on. Since
this is above the critical dimension of 2 + 1 and [G] is negative, the theory described by
(2.9) must be viewed as an EFT: SNLSM gives the first few (most relevant) terms out of an
infinite sequence of operators of growing dimension, compatible with all the symmetries. It
is best to think of this EFT as descending from some UV completion. For example, we can
engineer this effective NLSM by starting with the z = 2 linear sigma model (LSM) of the
unconstrained O(N) vector φI , I = 1, . . . , N , and action

SLSM =
1

2

∫
dt dDx

{
φ̇I φ̇I − e2∂2φI∂2φI − c2∂iφ

I∂iφ
I −m4φIφI − λ

2

(
φIφI

)2
−
[
e1 + e2φ

IφI
]
φJφJ∂iφ

K∂iφ
K −

[
f1 + f2φ

IφI
] (
φJ∂iφ

J
) (
φK∂iφ

K
)

−
5∑
s=3

gs
s!

(
φIφI

)s}
. (2.10)

The first two terms define the Gaussian z = 2 fixed point. We again set e = 1 by
rescaling space and time. At this fixed point, the field is of dimension [φ] = 1/2, and the
dimensions of the couplings – in the order from the marginal to the more relevant – are:
[e] = [g5] = [e2] = [f2] = 0, [g4] = [e1] = [f1] = 1, [g3] = [c2] = 2, [λ] = 3 and [m4] = 4.

This theory can be studied in the unbroken phase, the broken phase with a spatially
uniform condensate (which we take to lie along the N -th component, 〈φN 〉 = v), or in a
spatially modulated phase which also breaks spontaneously some of the spacetime symmetry.
We will focus on the unbroken and the uniformly broken phase. In the latter, we will write
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φI = (ΠA, v + σ). Changing variables to φI = (rπA, r
√

1− δABπAπB) and integrating out
perturbatively the gapped radial field r − v gives the NLSM (2.9) of the gapless πA at
leading order, followed by higher-derivative corrections. This is an expansion in the powers
of the momenta |k|/mgap and frequency ω/m2

gap, where mgap is the gap scale of the radial
mode.

2.2.2. Quantum Corrections to the Speed Term

The simplest example with a uniform broken phase is given by the special case of LSM, in
which we turn off all self-interaction couplings except λ, and also set the speed term c2 = 0
classically. This theory is superrenormalizable: Since [λ] = 3, the theory becomes free at
asymptotically high energies, and stays weakly coupled until we reach the scale of strong
coupling ms = λ1/3. Since the speed term is relevant, our intuition from the relativistic
theory may suggest that once interactions are turned on, relevant terms are generated by
loop corrections, with a leading power-law dependence on the UV momentum cutoff Λ. In
fact, this does not happen here. To show this, consider the broken phase, with the potential
minimized by

v =
m2

√
λ
, (2.11)

and set c2 = 0 at the classical level. The ΠA fields are gapless, and represent our NG modes.
The σ has a gapped dispersion relation, ω2 = |k|4 + 2m4. The Feynman rules in the broken
phase are almost identical to those of the relativistic version of this theory [59], except for
the nonrelativistic form of the propagators,

A Bω,k
=

iδAB
ω2 − |k|4 + iε

, (2.12a)

ω,k
=

i

ω2 − |k|4 − 2m4 + iε
. (2.12b)

Because of the z = 2 anisotropy, the superficial degree of divergence of a diagram with
L loops, E external legs and V3 cubic vertices is D = 8− 2E − 3L− 2V3. Loop corrections
to the speed term are actually finite. If we start at the classical level by setting c2 = 0,
this relation can be viewed as a “zeroth order natural relation” (in the sense of [59]): True
classically and acquiring only finite corrections at all loops. We can even set c2 at any order
to zero by a finite local counterterm, but an infinite counterterm for c2 is not needed for
renormalizability.

How large is this finite correction to c2? At one loop, five diagrams (shown in Fig. 2.1)
contribute to the inverse propagator ΓAB(ω,k) ≡ (ω2 − |k|4 + Σ(ω,k))δAB. We can read
off the one-loop correction to c2 = 0 by expanding Σ = −δm4 − δc2k2 + . . .. Four of these
diagrams give a (linearly) divergent contribution to δm4, but both the divergent and finite
contributions to δm4 sum to zero, as Goldstone’s theorem requires (see Appendix 2.A). The
next term in Σ is then proportional to k2 and finite. It gets its only one-loop contribution
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A B

(a)

A B

(b)

A B

(c)

A B

(d)

A B

(e)

Figure 2.1: One-loop corrections to ΓAB of the NG modes in the broken phase of the
superrenormalizable LSM.

from diagram (e) in Fig. 2.1, whose explicit evaluation gives (see Appendix 2.A)

δc2 =
2

7
4 · 5

63π
5
2

[
Γ
(

5
4

)]2 λ
m
≈ 0.0125

λ

m
. (2.13)

Thus, the first quantum correction to c2 is indeed finite and nonzero. But is it small or
large? There are much higher scales in the theory, such as m and Λ, yet in our weak coupling
limit the correction to the speed term is found to be δc2 ∝ λ/m naturally. In this sense,
δc2 is small, and so c2 can also be small without fine tuning.

We can also calculate δc2 at one loop in the effective NLSM. The Feynman rules derived
from (2.9) for the rescaled field πA/G involve a propagator independent of G (in which we
set c2 = 0), and an infinite sequence of vertices with an arbritrary even number of legs, of
which we will only need the lowest one. When the radial direction of φ is integrated out in
our superrenormalizable LSM, at the leading order we get (2.9) with G = 1/v, λ1 = 0 and
λ2 = 1. In this special case, the 4-vertex is

A B

D C

ω1,k1 ω2,k2

ω3,k3ω4,k4
=
−iG2

{
(ω1 + ω2)(ω3 + ω4) + |k1 + k2|2|k3 + k4|2

}
δABδCD

+2 permutations.

The first quantum correction to δc2 comes at one loop, from , and it is cubically

divergent. With the sharp cutoff at |k| = Λ, we get

δc2 =
G2Λ3

3π2
. (2.14)

This theory is only an EFT, and its natural cutoff scale Λ is given by m, the gap scale of
the σ. With this value of the cutoff, the one-loop result (2.14) gives δc2 = O(λ/m), which
matches our LSM result.

If one wishes to extend the control over the LSM beyond weak coupling in λ, one can
take the large-N limit, holding the ’t Hooft coupling λN fixed. In this limit, the LSM and
the NLSM actually become equivalent, by the same argument as in the relativistic case [5].
An explicit calculation shows that at large N , δc2 is not just finite but actually zero, to all
orders in the ’t Hooft coupling (see Appendix 2.B).
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2.3. Naturalness

Now, we return to the question of Naturalness of small δc2, in the technical context artic-
ulated in [26]. As a warm-up, consider first our superrenormalizable LSM in its unbroken
phase. The leading contribution to the speed term in the inverse propagator of φI is now
at two-loop order, from . This diagram is finite; even the leading constant, inde-
pendent of ω and k, only yields a finite correction to the gap m4. The contribution of order
k2 is then also finite, and gives δc2 = ξλ2/m4, with ξ a pure number independent of all
couplings. But is this δc2 small?

Let us first recall a well-known fact from the relativistic λφ4 theory [26]: λ and m2

may be simultaneously small, ∼ ε, because in the limit of ε → 0, the system acquires an
enhanced symmetry – in this case, the constant shift symmetry,

φI → φI + aI . (2.15)

The same constant shift symmetry works also in our superrenormalizable Lifshitz LSM.
Restoring dimensions, we have

λ = O(εµ3), m4 = O(εµ4). (2.16)

Here µ is the scale at which the constant shift symmetry is broken (or other new physics
steps in), and represents the scale of naturalness: The theory is natural until we reach the
scale µ = O(m4/λ). This result is sensible – if we wish for the scale of naturalness to
be much larger than the gap scale, µ � m, we must keep the theory at weak coupling,
λ/m3 � 1. Now, how about the speed term? If we assume that c2 is also technically small,
c2 ∼ ν, this assumption predicts c2 = O(λ2/m4), which is exactly the result we found
above in our explicit perturbative calculation. It looks like there must be a symmetry at
play, protecting simultaneously the smallness of m4, λ as well as c2! We propose that the
symmetry in question is the generalized shift symmetry (2.15), with aI now a quadratic
polynomial in the spatial coordinates,

aI = aIijx
ixj + aIi x

i + aI0. (2.17)

The speed term ∂iφ
I∂iφ

I is forbidden by this “quadratic shift” symmetry, while ∂2φI∂2φI

is invariant up to a total derivative. This symmetry holds in the free-field limit, and will
be broken by interactions. It can be viewed as a generalization of the Galileon symmetry,
much studied in cosmology [60], which acts by shifts linear in the spacetime coordinates.

As long as the coupling is weak, the unbroken phase of the LSM exhibits a natural
hierarchy of scales, c� m� µ, with the speed term much smaller than the gap scale. The
effects of the speed term on the value of z would only become significant at low-enough
energies, where the system is already gapped. Note that another interesting option is also
available, since there is no obligation to keep c small at the classical level. If instead we
choose c much above the gap scale m (but below the naturalness scale µ), as we go to lower
energies the system will experience a crossover from z = 2 to z = 1 before reaching the
gap, and the theory will flow to the relativistic λφ4 in the infrared. The coupling λ can
stay small throughout the RG flow from the free z = 2 fixed point in the UV to the z = 1
theory in the infrared.
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Now consider the same LSM in the broken phase. In this case, we are not trying to
make m small – this is a fixed scale, setting the nonzero gap of the σ. Moreover, the π’s are
gapless, by Goldstone’s theorem. We claim that c2 can be naturally small in the regime of
small λ,

λ = O(εµ3), c2 = O(εµ2), (2.18)

as a consequence of an enhanced symmetry. The symmetry in question is again the
“quadratic shift” symmetry, now acting only on the gapless NG modes in their free-field
limit: ΠA → ΠA + aAijx

ixj + . . .. It follows from (2.11) that the radius v of the vacuum

manifold SN−1 goes to infinity with ε → 0, v = O(m2/
√
µ3ε), and v → ∞ corresponds to

the free-field limit of the π’s. Our enhanced symmetry does not protect m from acquiring
large corrections; we can view m in principle as a separate mass scale, but it is natural to
take it to be of the order of the naturalness scale, m = O(µ). Altogether, this predicts
δc2 = O(λ/µ) = O(λ/m), in accord with our explicit loop result (2.13).

The technically natural smallness of the speed term in our examples is not an artifact
of the superrenormalizability of our LSM. To see that, consider the full renormalizable LSM
(2.10), first in the unbroken phase. As we turn off all self-interactions by sending ε→ 0, the
enhanced quadratic shift symmetry will again protect the smallness of c2 ∼ ε. In terms of
the naturalness scale µ, this argument predicts that in the action (2.10), all the deviations
from the z = 2 Gaussian fixed point can be naturally of order ε in the units set by µ:

e2 = O(ε), . . . , c2 = O(εµ2), λ = O(εµ3), m4 = O(εµ4).

If we want the naturalness scale to be much larger than the gap scale, µ � m, all cou-
plings must be small; for example, e2 = O(m4/µ4) � 1, etc. We then get an estimate
δc2 = O(e2µ

2) = O(
√
e2m

2)� m2: As in the superrenormalizable case, the speed term can
be naturally much smaller than the gap scale. This prediction can be verified by a direct
loop calculation. The leading contribution to δc2 comes from several two-loop diagrams, in-

cluding with one e2 vertex. Each loop in this diagram is separately linearly divergent,

giving δc2 ∼ e2Λ2 = O(
√
e2m

2), in accord with our scaling argument.
The story extends naturally to the broken phase of the renormalizable LSM, although

this theory is technically rather complicated: The 〈φ〉 itself is no longer given by (2.11)
but it is at the minimum of a generic fifth-order polynomial in φIφI . It is thus more
practical to run our argument directly in the low-energy NLSM. The advantage is that
even for the generic renormalizable LSM (2.10), the leading-order NLSM action is of the
general form (2.9). The leading order of matching gives G = 1/v, with v the radius of
the vacuum manifold SN−1. The NLSM is weakly coupled when this radius is large. The
enhanced “quadratic shift” symmetry of the NG modes πA in their free-field limit implies
G2 = O(ε/µ) and c2 = O(εµ2) with λ1,2 = O(1), and predicts

c2 = O(G2µ3). (2.19)

The naturalness scale µ is set by the gap of the σ particle, which is generally of order m.
Thus, (2.19) implies that in the large-v regime of the weakly-coupled NLSM, the speed
term is naturally much smaller than the naturalness scale. This can be again confirmed by
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a direct loop calculation: The leading contribution to δc2 comes from the one-loop diagram

. This diagram is cubically divergent and its vertex gives a G2 factor, leading to

δc2 ∼ G2Λ3. Setting Λ ∼ µ confirms our scaling prediction (2.19). In the special case of
our superrenormalizable LSM, we can go one step further, and use (2.11) and G = 1/v to
reproduce again our earlier result, δc2 = O(λ/m).

2.4. Nonrelativistic Refinement of Goldstone’s Theorem

In its original form, Goldstone’s theorem guarantees the existence of a gapless mode when
a global continuous internal symmetry is spontaneously broken. However, in the absence
of Lorentz symmetry, it does not predict the number of such modes, or their low-energy
dispersion relation.

The classification of the effective field theories which are available to describe the low-
energy limit of the Nambu-Goldstone mode dynamics leads to a natural refinement of the
Goldstone theorem in the nonrelativistic regime. In the specific case of spacetimes with
Lifshitz symmetry, we get two hierarchies of NG modes:

• Type A: One NG mode per broken symmetry generator (not paired by ΩI) The low-
energy dispersion relation is ω ∝ kn, where n = 1, 2, 3, . . ..

• Type B: One NG mode per each pair of broken symmetry generators (paired by ΩI).
The low-energy dispersion relation is ω ∝ k2n, where n = 1, 2, 3, . . ..

It is natural to label the members of these two hierarchies by the value of the dynamical
critical exponent of their corresponding Gaussian fixed point. We will refer to these mul-
ticritical universality classes of Nambu-Goldstone modes as “Type An” and “Type B2n”,
respectively.

2.5. Discussion

We have shown that Type-A NG modes can naturally have an anomalously slow speed,
characterized by an effective z = 2 dispersion relation. Our arguments can be easily iter-
ated, leading to Type-A NG modes with higher dispersion of z = 3, 4, . . .. In such higher
multicritical cases, the smallness of all the relevant terms is protected by the enhanced
“polynomial shift” symmetry in the free-field limit, with aI now a polynomial in xi of de-
gree 2z − 2. Our results also extend easily to Type-B NG modes. Instead of their generic
z = 2 dispersion, they can exhibit a z = 4 (or higher) behavior over a large range of energy
scales.

The following few comments may be useful:

(1) The polynomial shift symmetry is easily applied to Type B NG modes as well. For
example, for the quadratic shift at the Gaussian fixed point, ΩI(π) of (2.7) reduces
to a linear function of π, such that S̃eff,K is invariant under the quadratic shift up
to a total derivative, and the extra shift symmetry yields Type B NG modes with a
quartic dispersion relation.
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(2) Type B NG modes represent a true infinite hierarchy of consistent fixed points. On the
other hand, at fixed spatial dimension, the Type A pattern of multicritical symmetry
breaking will eventually run into the nonrelativistic analog of the Coleman-Hohenberg-
Mermin-Wagner theorem [61, 62, 63]: At the critical value of n = D, they develop
infrared singularities and cease to exist as well-defined quantum fields. We comment
on this behavior further in §4.

(3) Type A preserve T invariance, while Type B break T . (This does not mean that a
suitable time reversal invariance cannot be defined on Type B modes, but it would
have to extend T of (2.5) to act nontrivially on the fields.)

(4) Our classification shows the existence of An and B2n hierarchies of NG modes de-
scribed by Gaussian fixed points, and therefore represents a refinement of the classifi-
cations studied in the literature so far. However, it does not pretend to completeness:
We find it plausible that nontrivial fixed points (and fixed points at non-integer values
of n) suitable for describing NG modes may also exist. In this sense, the full classifica-
tion of all possible types of nonrelativistic NG dynamics – even under the assumption
of Lifshitz symmetries – still remains a fascinating open question.

(5) For simplicity, we worked under the assumption of spacetime Lifshitz symmetry. Ob-
viously, this simplifying restriction can be removed, and the classification of multi-
critical NG modes in principle extended to cases whereby some of the the spacetime
symmetries are further broken by additional features of the system – such as spatial
anisotropy, layers, an underlying lattice structure, etc. We also expect that the clas-
sification can be naturally extended to Nambu-Goldstone fermions associated with
spontaneous breaking of symmetries associated with supergroups. Such generaliza-
tions, however, are beyond the scope of this chapter.

The multicritical behavior of the NG modes will have consequences for their low-energy
scattering, generalizing the low-energy theorems known from the relativistic case [34]. The
scattering amplitudes will exhibit a higher-power effective dependence on the momenta,
with the power controlled by z.

Finally, it would be very interesting to extend our analysis to the spatially modulated
phases of Lifshitz theories, in which the spacetime symmetries are further broken sponta-
neously, and where one can expect spatially modulated NG modes.

The results of this work refine the classification of NG modes in non-relativistic systems,
and we expect them to be useful for understanding symmetry breaking in a broad class of
phenomena, including relativistic matter at nonzero density or chemical potential, and
areas of condensed matter, such as superconductivity, quantum critical phenomena [64]
and dynamical critical systems [1]. Since our results also shed interesting new light on the
concept of Naturalness, we are hopeful that they may stimulate new insights in areas where
puzzles of Naturalness have been most prominent: particle physics, quantum gravity and
cosmology.
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Appendix

2.A. One-loop Correction to the Mass and Speed Parameters

In this appendix, we will evaluate explicitly the five one-loop diagrams in Fig. 2.1. The
three-point and four-point vertices are

A

B

= −2im2
√
λ δAB, = −6im2

√
λ,

A D

CB

= −2iλ(ABCD),

A

B

= −2iλδAB,

= −6iλ,

where we have defined the symmetrized product of Kronecker delta symbols

(ABCD) ≡ δABδCD + δACδBD + δADδBC .

Since there are N − 1 pions, one obtains

(ABCD)δCD =
[
(N − 1) + 1 + 1

]
δAB = (N + 1)δAB.

Denote the Feynman integrals associated with the diagrams as follows

Ia =
A B

, Ib =
A B

,

Ic =
A B

, Id =
A B

,

Ie =
A B

.
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Let (ω,k) be the external frequency and momentum and (ν,p) be the internal frequency
and momentum, which are integrated over. Taking into account the symmetry factor of 2
for diagrams (a), (b), (c) and (d), one obtains

I = λδAB

∫
dν

2π

d3p

(2π)3

J

(ν2 − p4 + iε)(ν2 − p4 − 2m4 + iε)
,

with J = Ja + Jb + Jc + Jd + Je and

Ja = (N + 1)(ν2 − p4 − 2m4 + iε),

Jb = ν2 − p4 + iε,

Jc = −(N − 1)(ν2 − p4 − 2m4 + iε),

Jd = −3(ν2 − p4) + iε,

Je = 4m4 ν2 − p4 − 2m4 + iε

(ν + ω)2 − (p+ k)4 − 2m4 + iε
.

Therefore,

J = 4m4

(
ν2 − p4 − 2m4 + iε

(ν + ω)2 − (p+ k)4 − 2m4 + iε
− 1

)
.

Expand in powers of ω and k as in

J =

∞∑
r,n=0

J
(r,n)
i1...in

ωrki1 · · · kin .

J (0,0) determines the correction to the pion mass. However, this vanishes identically,

J (0,0) = 0.

Therefore the pions remain exactly massless, as required by Goldstone’s theorem.
It is clear that only Je contributes J (r,n) when either r or n is nonzero. Therefore, let

us focus on Ie:

Ie = 4m4λδAB

∫
dν

2π

d3p

(2π)3

1

(ν2 − p4 + iε)
[
(ν + ω)2 − (p+ k)4 − 2m4 + iε

] .
Introduce a Feynman parameter to write Ie as

Ie = 4m4λδAB

∫ 1

0
dx

∫
dν

2π

d3p

(2π)3

1

D2
,

where
D = x

[
(ν + ω)2 − (p+ k)4 − 2m4 + iε

]
+ (1− x)(ν2 − p4 + iε).

Define

ξ = ν + xω, ` = p + xk.
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Then,
D = ξ2 − `4 − α`2k2 − β(` · k)2 − γ(` · k)k2 −∆ + iε,

where
α = 2x(1− x), γ = 4x(1− x)(1− 2x),

β = 4x(1− x), ∆ = 2xm4 − x(1− x)
[
ω2 − (1− 3x+ 3x2)k4

]
.

After Wick-rotation, Ie becomes

Ie = 4im4λδAB

∫ 1

0
dx

∫
dξ

2π

d3`

(2π)3

1

D2
,

where
D = ξ2 + `4 + α`2k2 + β(` · k)2 + γ(` · k)k2 + ∆.

The term in Ie which contributes a correction to the speed parameter is the term which is

of order ω0k2. We denote this term by I
(0,2)
e , given by

I(0,2)
e = −8im4λδAB

∫ 1

0
dx

∫
dξ

2π

d3`

(2π)3

α`2k2 + β(` · k)2

(ξ2 + `4 + 2xm4)3
.

Rotation invariance of the entire integrand except for the dot product piece allows for the
substitution (` · k)2 → 1

3`
2k2, and thus

I(0,2)
e = −8im4λk2δAB

∫ 1

0
dx

(
α+

β

3

)∫
dξ

2π

d3`

(2π)3

`2

(ξ2 + `4 + 2xm4)3
.

These are now all relatively simple integrals to evaluate. The result of the ξ integral is∫
dξ

2π

1

(ξ2 + `4 + 2xm4)3
=

3

16(`4 + 2xm4)5/2
.

The result of the subsequent ` integral is∫
d3`

(2π)3

`2

(`4 + 2xm4)5/2
=

[
Γ
(

5
4

)]2
2

9
4 3π

5
2m5x

5
4

.

The result of the subsequent x integral is∫ 1

0
dx

(
α+

β

3

)
x−

5
4 =

10

3

∫ 1

0
dxx−

1
4 (1− x) =

160

63
.

All in all,

I(0,2)
e = −8im4λk2δAB

160

63

[
Γ
(

5
4

)]2
2

9
4 3π

5
2m5

3

16
= −i

(
2

7
4 · 5

63π
5
2

[
Γ
(

5
4

)]2 λ
m

)
k2δAB. (2.20)

The term in parentheses is the one-loop correction, δc2. Indeed, summing over all repeated
diagrams of type (e) gives the corrected propagator

iδAB
ω2 − k4

∞∑
n=0

[
(−iδc2 k2)

i

ω2 − k4

]n
=

iδAB
ω2 − k4

1

1− δc2 k2

ω2−k4

=
iδAB

ω2 − k4 − δc2 k2
.

Therefore,

δc2 =
2

7
4 · 5

63π
5
2

[
Γ
(

5
4

)]2 λ
m
≈ 0.0125

λ

m
. (2.21)
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2.B. Large-N Limit

In this appendix, we will demonstrate that the correction to the speed parameter vanishes
in the large-N limit of the superrenormalizable linear sigma model, given by

SLSM =
1

2

∫
dt dDx

{
φ̇I φ̇I − ∂2φI∂2φI − c2∂iφ

I∂iφ
I −m4φIφI − λ

2

(
φIφI

)2}
.

In the broken phase, as in the relativistic case, the LSM and the NLSM become equivalent
in the large-N limit [5]. To leading order, the NLSM action derived from the broken phase
of the superrenormalizable LSM above is given by

SNLSM =
1

2G2

∫
dt dDx

{
gABπ̇

Aπ̇B − gAB∆πA∆πB −
(
gAB∂iπ

A∂iπ
B
)2}

,

where gAB = δAB + πAπB/(1 − δCDπCπD) and G = 1/v =
√
λ/m2 is the inverse of the

vacuum expectation value of the magnitude of the vector φI . This leading order NLSM
action is determined by simply setting the radial field identically equal to v, rather than
expanding around v up to quadratic order and integrating out the perturbation.

The resulting 4-vertex is

A B

D C

ω1,k1 ω2,k2

ω3,k3ω4,k4
=
−iG2

{
(ω1 + ω2)(ω3 + ω4) + |k1 + k2|2|k3 + k4|2

}
δABδCD

+2 permutations.

The one-loop correction to c2 comes from , which can be split into two pieces, de-

pending on the contraction of the pion indices:

= +

Due to the form of the vertex, the diagram with a self-contracted internal loop vanishes
identically. On the other hand, such diagrams are the leading-order diagrams in the large-N
limit since they pick up an extra factor of N from the index contraction. The large-N limit
of the correction to the inverse propagator is given by so-called cactus diagrams, which
contain only 4-point vertices and any number of self-contracted loops. However, in the
present case, self-contracted loops vanish identically. Hence, the correction to c2 vanishes
identically in the large-N limit:

δc2 N→∞−−−−→ 0. (2.22)

One can consider the most general situation, including all terms that can show up in the
NLSM action (2.9). Surprisingly, one can derive an analytic equation for the correction to
c2, which may be solved perturbatively in the smallness of the coupling constants. However,
this result is not needed here.
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Chapter 3

Scalar Field Theories with
Polynomial Shift Symmetries

We continue our study of naturalness in nonrelativistic QFTs of the Lifshitz type, fo-
cusing on scalar fields that can play the role of Nambu-Goldstone (NG) modes associated
with spontaneous symmetry breaking. Such systems allow for an extension of the con-
stant shift symmetry to a shift by a polynomial of degree P in spatial coordinates. These
“polynomial shift symmetries” in turn protect the technical naturalness of modes with a
higher-order dispersion relation, and lead to a refinement of the proposed classification of
infrared Gaussian fixed points available to describe NG modes in nonrelativistic theories.
Generic interactions in such theories break the polynomial shift symmetry explicitly to the
constant shift. It is thus natural to ask: Given a Gaussian fixed point with polynomial
shift symmetry of degree P , what are the lowest-dimension operators that preserve this
symmetry, and deform the theory into a self-interacting scalar field theory with the shift
symmetry of degree P? To answer this (essentially cohomological) question, we develop a
new graph-theoretical technique, and use it to prove several classification theorems. First,
in the special case of P = 1 (essentially equivalent to Galileons), we reproduce the known
Galileon N -point invariants, and find their novel interpretation in terms of graph theory,
as an equal-weight sum over all labeled trees with N vertices. Then we extend the classifi-
cation to P > 1 and find a whole host of new invariants, including those that represent the
most relevant (or least irrelevant) deformations of the corresponding Gaussian fixed points,
and we study their uniqueness.

3.1. Introduction

The naturalness of the Nambu-Goldstone modes associated with the multicritical symmetry
breaking described in §2 was protected by the polynomial shift symmetry. This symmetry is
an approximate symmetry restored at the Gaussian infrared fixed points. In many general
examples of multicritical symmetry breaking, the polynomial shift symmetry is broken by
the self-interactions of the NG modes. It is then natural to ask: What if we impose the
polynomial shift symmetry as an exact symmetry? What is the lowest-dimension operator
that can be added to the action while preserving the symmetry? This is the task we address
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in this chapter.
The classification of Lagrangians invariant under the polynomial shift of degree P up

to a total derivative (which we will refer to as “P -invariants” for short) is essentially a
cohomological problem. In §3.2, we consider the polynomial-shift invariants in the sim-
plest case of linear shifts (i.e., “1-invariants”). In order to prepare for the general case of
P > 1, we develop a novel technique, based on graph theory. Having rephrased the defining
relation for the invariants into the language of graphs, we can address the classification
problem using the abstract mathematical machinery of graph theory. The basic ingredients
of this technique are explained as needed in §3.2 and §3.3. However, we relegate all the
technicalities of the graphical technique into a self-contained Appendix 3.B (preceded by
Appendix 3.A, in which we offer a glossary of the basic terms from graph theory). Ap-
pendix 3.B is rather mathematical in nature, as it contains a systematic exposition of all
our definitions, theorems and proofs that we found useful in the process of generating the
invariants discussed in this chapter. Appendix 3.B is not required for the understanding
of the results presented in §3.2 and §3.3: Once the invariants have been found using the
techniques in Appendix 3.B, their actual invariance can be checked by explicit calculation
(for example, on a computer). In this sense, the bulk of the work (§3.2 and §3.3) is also
self-contained, and can be read independently of the Appendices.

The N -point 1-invariants discussed in §3.2 are known in the literature, where they
have been generated in the closely related context of the relativistic Galileon theories [60].
While it is reassuring to see that our graph-theoretical technique easily reproduces these
known 1-invariants, the novelty of our results presented in §3.2 lies elsewhere: We find
a surprisingly simple and elegant interpretation of the known N -point 1-invariants in the
language of graphs. They are simply given by the equal-weight sum over all labeled trees
with N vertices!

In §3.3 we move beyond the 1-invariants, and initiate a systematic study of P -invariants
with P > 1, organized in the order of their scaling dimension. We find several series of in-
variants; some of them we prove to be the unique and most relevant (or, more accurately,
least irrelevant) N -point P -invariants, while others represent hierarchies of P -invariants of
higher dimensions. We also show how to construct higher P -invariants from superposing
several graphs that represent invariants of lower P . Appendix 3.C contains a brief discus-
sion of the connection between our invariant Lagrangians and the Chevalley-Eilenberg Lie
algebra cohomology theory. In §3.4 we present our conclusions.

For simplicity, we will focus on theories that consist of Type An (or Type B2n) with a
fixed n, and leave the generalizations to interacting systems that mix different types of NG
modes for future studies.

3.1.1. Polynomial Shift Symmetries

Since the polynomial shift symmetries act on the fields πI(t,x) separately component by
component, from now on we shall focus on just one field component, and rename it φ(t,x).

The generators of the polynomial shift symmetry of degree P act on φ by

δPφ = ai1...iP x
i1 · · ·xiP + . . .+ aix

i + a. (3.1)
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The multicritical Gaussian fixed point with dynamical exponent z = n is described by

Sn =

∫
dt dx

{
1

2
φ̇2 − 1

2
ζ2
n (∂i1 . . . ∂inφ) (∂i1 . . . ∂inφ)

}
. (3.2)

In fact, it is a one-parameter family of fixed points, parametrized by the real positive
coupling ζ2

n. (Sometimes it is convenient to absorb ζn into the rescaling of space, and we
will often do so when there is no competition between different fixed points.)

The action Sn is invariant under polynomial shift symmetries (3.1) of degree P ≤ 2n−1:
It is strictly invariant under the symmetries of degree P < n, and invariant up to a total
derivative for degrees n ≤ P ≤ 2n− 1.

Morally, this infinite hierarchy of symmetries can be viewed as a natural generalization
of the Galileon symmetry, proposed in [60] and much studied since, mostly in the cosmo-
logical literature. In the case of the Galileons, the theory is relativistic, and the symmetry
is linear in space-time coordinates. The requirement of relativistic invariance is presumably
the main reason that has precluded the generalization of the Galileon symmetries past the
linear shift: The higher polynomial shift symmetries in spacetime coordinates would lead
to actions dominated by higher time derivatives, endangering perturbative unitarity.

So far, we considered shifts by generic polynomials of degree P , whose coefficients ai1...i`
are arbitrary symmetric real tensors of rank ` for ` = 0, . . . , P . We note here in passing
that for degrees P ≥ 2, the polynomial shift symmetries allow an interesting refinement.
To illustrate this feature, we use the example of the quadratic shift,

δ2φ = aijx
ixj + aix

i + a0. (3.3)

The coefficient aij of the quadratic part is a general symmetric 2-tensor. It can be decom-
posed into its traceless part ãij and the trace part aii,

aij = ãij +
1

D
akkδij . (3.4)

Since this decomposition is compatible with the spacetime Lifshitz symmetries (2.2), one
can restrict the symmetry group to be generated by a strictly smaller invariant subalgebra
in the original algebra generated by aij . For example, setting the traceless part ãij of
the quadratic shift symmetry to zero reduces the number of independent generators from
(D+2)(D+1)/2 to D+2, but it is still sufficient to prevent ∂iφ∂iφ from being an invariant
under the smaller symmetry. This intriguing pattern extends to P > 2, leading to intricate
hierarchies of polynomial shift symmetries whose coefficients ai1...i` have been restricted
by various invariant conditions. As another example, invariance under the traceless part
has been studied in [65]. In the interest of simplicity, we concentrate in the rest of this
chapter on the maximal case of polynomial shift symmetries with arbitrary unrestricted
real coefficients ai1...i` .

The invariance of the action under each polynomial shift leads to a conserved Noether
current. Each such current then implies a set of Ward identities on the correlation functions
and the effective action. Take, for example, the case of n = 2 in (3.2): The currents for the
infinitesimal shift by a general function a(x) of the spatial coordinates xi are collectively
given by

Jt = a(x)φ̇, Ji = a(x)∂i∂
2φ− ∂ja(x)∂i∂jφ+ ∂i∂ja(x)∂jφ− ∂i∂2a(x)φ, (3.5)
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and their conservation requires

J̇t + ∂iJi ≡ a(x)
{
φ̈+ (∂2)2φ

}
− (∂2)2a(x)φ = 0. (3.6)

The term in the curly brackets is zero on shell, and the current conservation thus reduces to
the condition (∂2)2a(x)φ = 0, which is certainly satisfied by a polynomial of degree three,

a(x) = aijkx
ixjxk + aijx

ixj + aix
i + a. (3.7)

Note that if we start instead with the equivalent form of the classical action

S̃2 =

∫
dt dx

{
1

2
φ̇2 − 1

2
(∂i∂iφ)2

}
, (3.8)

the Noether currents will be related, as expected, by

J̃t = Jt,
J̃i = a(x)∂i∂

2φ− ∂ia(x)∂2φ+ ∂2a(x)∂iφ− ∂i∂2a(x)φ (3.9)

= Ji + ∂j [∂ia(x)∂jφ− ∂ja(x)∂iφ] .

From these conserved currents, one can formally define the charges

Q[a] =

∫
Σ
dxJt. (3.10)

However, for infinite spatial slices Σ = RD, such charges are all zero on the entire Hilbert
space of states generated by the normalizable excitations of the fields φ. This behavior is
quite analogous to the standard case of NG modes invariant under the constant shifts, and
it simply indicates that the polynomial shift symmetry is being spontaneously broken by
the vacuum.

3.1.2. Polynomial Shift Symmetries as Exact Symmetries

We have established a new infinite sequence of symmetries in scalar field theories, and have
shown that they can protect the smallness of quantum mechanical corrections to their low-
energy dispersion relations near the Gaussian fixed points. The symmetries are exact at the
infrared Gaussian fixed point, and turning on interactions typically breaks them explicitly
– as we have seen in the series of examples in §2. Yet, the polynomial shift symmetry at the
Gaussian fixed point is useful for the interacting theory as well: It controls the interaction
terms, allowing them to be naturally small, parametrized by the amount ε of the explicit
polynomial symmetry breaking near the fixed point.

Generally, this explicit breaking by interactions breaks the polynomial shift symmetries
of NG modes all the way to the constant shift, which remains mandated by the original
form of the Goldstone theorem (guaranteeing the existence of gapless modes).1 However,

1Strictly speaking, moving away from the Gaussian fixed point by turning on self-interactions generally
yields additional corrections to the constant shift symmetry, if the underlying symmetry group of the inter-
acting theory is non-Abelian. Such non-Abelian corrections vanish at the Gaussian fixed point, and each NG
component effectively becomes an Abelian field with its own constant shift symmetry. We will concentrate
solely on the simplest Abelian case, with one Type A NG field φ and the symmetry group U(1).
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one can now turn the argument around, and ask the following question: Starting at a given
Type An or B2n fixed point, what are the lowest-dimension scalar composite operators that
involve N fields φ and respect the polynomial shift symmetry of degree P exactly, up to
a total derivative? Such operators can be added to the action, and for N = 3, 4, . . . they
represent self-interactions of the system, invariant under the polynomial shift of degree P .
More generally, one can attempt to classify all independent composite operators invariant
under the polynomial shift symmetry of degree P , organized in the order of their increasing
dimensions.

These are the questions on which we focus in the rest of this chapter. In order to
provide some answers, we will first translate this classification problem into a more precise
mathematical language, and then we will develop techniques – largely based on abstract
graph theory – that lead us to systematic answers. For some low values of the degree P
of the polynomial symmetry and of the number N of fields involved, we can even find the
most relevant invariants and prove their uniqueness.

3.2. Galileon Invariants

Consider a quantum field theory of a single scalar field φ(t,x) in D spatial dimensions and
one time dimension. Consider the transformation of the field which is linear in spatial
coordinates: δφ = aix

i + a0, where ai and a0 are arbitrary real coefficients. Other than the
split between time and space and the exclusion of the time coordinate from the linear shift
transformation, this is the same as the theory of the Galileon [60].

The goal is to find Lagrangian terms which are invariant (up to a total derivative)
under this linear shift transformation. We will classify the Lagrangian terms by their
numbers of fields N and derivatives 2∆. Imposing spatial rotation invariance requires that
spatial derivatives be contracted in pairs by the flat metric δij . Thus ∆ counts the number
of contracted pairs of derivatives. It is easy to find Lagrangian terms which are exactly
invariant (i.e., not just up to a total derivative): Let ∆ ≥ N and let at least two spatial
derivatives act on every φ. For the linear shift case, all terms with at least twice as many
derivatives as there are fields are equal to exact invariants, up to total derivatives (Theorem
4). However, it is possible for a term to have fewer derivatives than this and still be invariant
up to a non-vanishing total derivative. For fixed N , the terms with the lowest ∆ are more
relevant in the sense of the renormalization group. Therefore, we will focus on invariant
terms with the lowest number of derivatives, which we refer to as minimal invariants.

These minimal invariants have already been classified for the case of the linear shift.
There is a unique (up to total derivatives and an overall constant prefactor)N -point minimal
invariant, which contains 2(N − 1) derivatives (i.e., ∆ = N − 1). These are listed below up
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to N = 5.

L1-pt = φ, (3.11a)

L2-pt = ∂iφ∂iφ, (3.11b)

L3-pt = 3 ∂iφ∂jφ∂i∂jφ, (3.11c)

L4-pt = 12 ∂iφ∂i∂jφ∂j∂kφ∂kφ+ 4 ∂iφ∂jφ∂kφ∂i∂j∂kφ, (3.11d)

L5-pt = 60 ∂iφ∂i∂jφ∂j∂kφ∂k∂`φ∂`φ+ 60 ∂iφ∂i∂jφ∂j∂k∂`φ∂kφ∂`φ

+ 5 ∂iφ∂jφ∂kφ∂`φ∂i∂j∂j∂k∂`φ. (3.11e)

These are not identical to the usual expressions (e.g., in [60]), but one can easily check that
they are equivalent.

3.2.1. The Graphical Representation

We can represent the terms in (3.11) as formal linear combinations of graphs. In these
graphs, φ is represented by a •-vertex. An edge joining two vertices represents a pair of
contracted derivatives, one derivative acting on each of the φ’s representing the endpoints
of the edge. The graphical representations of the above terms are given below:

L1-pt = •, (3.12a)

L2-pt = , (3.12b)

L3-pt = 3 , (3.12c)

L4-pt = 12 + 4 , (3.12d)

L5-pt = 60 + 60 + 5 . (3.12e)

The structure of the graph (i.e., the connectivity of the vertices) is what distinguishes
graphs; the placement of the vertices is immaterial. This reflects the fact that the order of
the φ’s in the algebraic expressions is immaterial and the only thing that matters is which
contracted pairs of derivatives act on which pairs of φ’s. Therefore, for example, the graphs
below all represent the same algebraic expression.

(3.13)

Similarly, the four graphs below represent the same algebraic expression.

(3.14)
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A more nontrivial example is given by the following twelve graphs, which all represent the
same algebraic expression.

(3.15)

The graphs in the second line above appear to have intersecting edges. However, since there
is no •-vertex at the would-be intersection, these edges do not actually intersect.

3.2.2. Galileon Invariants as Equal-Weight Sums of Trees

There are three times as many graphs in (3.15) as there are in (3.14). It so happens that
the coefficient with which the first graph in (3.15) appears in L4-pt (3.12d) is also three
times the coefficient with which the first graph in (3.14) appears in L4-pt. This suggests
that the coefficient with which a graph appears in a minimal term is precisely the number
of graphs with the exact same structure (i.e., isomorphic), just with various vertices and
edges permuted.

One simple way to state this is to actually label the vertices in the graphs. If the
vertices were labeled, and thus distinguished from each other, then all of the graphs in each
one of (3.13), (3.14) and (3.15) would actually be distinct graphs. Of course, this means
that the corresponding algebraic expressions have φ’s similarly labeled, but this labeling is
fiducial and may be removed afterwards. Note the simplicity that this labeled convention
introduces: L4-pt is the sum of all of the graphs in (3.14) and (3.15) with unit coefficients.

The graphs in (3.14) and (3.15) have an elegant and unified interpretation in graph
theory. These graphs are called trees. A tree is a graph which is connected (i.e., cannot
be split into two or more separate graphs without cutting an edge), and contains no loops
(edges joining a vertex to itself) or cycles (edges joining vertices in a closed cyclic manner).
One can check that there are exactly 16 trees with four vertices and they are given by (3.14)
and (3.15). Cayley’s formula, a well-known result in graph theory, says that the number of
trees with N vertices is NN−2.

For N = 3, the 33−2 = 3 trees are in (3.13), and we indeed find that L3-pt is the sum of
all three graphs with unit coefficients. The same can be said for L2-pt and L1-pt. Therefore,
the minimal terms for N = 1, 2, 3 and 4 are represented graphically as a sum of trees with
unit coefficients (an equal-weight sum of trees). If this were to hold for the N = 5 case, it
would strongly suggest that this may hold for all N .

There are 53 = 125 trees for N = 5. They can be divided into three sets such that the
trees in each set are isomorphic to one of the three graphs appearing in L5-pt (3.12e). There
are 60 graphs which are isomorphic to the first graph appearing in L5-pt; 12 of these are
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listed below and the rest are given by the five rotations acting on each of these 12 graphs:

(3.16)

There are 60 graphs which are isomorphic to the second graph appearing in L5-pt; 12 of
these are listed below and the rest are given by their rotations:

(3.17)

Finally, there are five graphs which are isomorphic to the third graph appearing in L5-pt,
which are simply the five rotations acting on that graph. Therefore, L5-pt is indeed the sum
with unit coefficients of all trees with five vertices!

Thus, we arrive at the main result of this section (proven in Appendix 3.B.3):

The unique minimal N -point linear shift-invariant Lagrangian term is represented
graphically as a sum with unit coefficients of all labeled trees with N vertices.

3.3. Beyond the Galileons

Now, we extend the linear shift transformation to polynomials of higher degree. We will
need to develop the graphical approach further in order to tackle this problem and numer-
ous technicalities will arise. However, a rather elegant and beautiful description of these
polynomial shift invariants will emerge.

Consider the problem of determining all possible terms in a Lagrangian that are in-
variant under the polynomial shift symmetry:

φ(t, xi)→ φ(t, xi) + δPφ, δPφ = ai1···iP x
i1 · · ·xiP + · · ·+ aix

i + a. (3.18)

The a’s are arbitrary real coefficients that parametrize the symmetry transformation, and
are symmetric in any pair of indices. P = 0, 1, 2, . . . corresponds to constant shift, linear
shift, quadratic shift, and so on. Obviously, if a term is invariant under a polynomial shift
of order P , then it is also invariant under a polynomial shift of order P ′ with 0 ≤ P ′ ≤ P .

We will call a term with N fields and 2∆ derivatives an (N,∆) term. We are interested
in interaction terms, for which N ≥ 3. As previously mentioned, terms with the lowest
possible value of ∆ are of greatest interest. It is straightforward to write down invariant
terms with ∆ ≥ 1

2N(P + 1) since, if each φ has more than P derivatives acting on it, then
the term is exactly invariant. Are there any invariant terms with lower values of ∆? If so,
then these invariant terms will be more relevant than the exact invariants.
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To be invariant, a term must transform into a total derivative under the polynomial
shift symmetry. In other words, for a specific P and given (N,∆), we are searching for
terms L such that

δPL = ∂i(Li). (3.19)

Here L is a linear combination of terms with N φ’s and 2∆ ∂’s, and Li is a linear combination
of terms with N − 1 φ’s. Such L’s are called P-invariants.

How might we determine such invariant terms in general? For a given (N,∆), the most
brute-force method for determining invariant terms can be described as follows. First, write
down all possible terms in the Lagrangian with a given (N,∆) and ensure that they are
independent up to integration by parts. Next, take the variation of all these terms under
the polynomial shift. There may exist linear combinations of these variations which are
equal to a total derivative, which we call total derivative relations. If we use these total
derivative relations to maximally reduce the number of variation terms, then the required
P -invariants form the kernel of the map from the independent Lagrangian terms to the
independent variation terms (Corollary 6). Let us consider some examples of this brute-
force procedure in action.

3.3.1. Brute-force Examples

(P,N,∆) = (1, 3, 2)

In this case, a general Lagrangian is made up of two independent terms, after integrating
by parts, given by

L1 = ∂iφ∂jφ∂i∂jφ, L2 = φ∂i∂jφ∂i∂jφ.

The variation under the linear shift symmetry (for P = 1) of these terms is given by

δ1(L1) = 2L×a , δ1(L2) = L×b ,

where L×a = ai ∂jφ∂i∂jφ and L×b = (akx
k+a)∂i∂jφ∂i∂jφ. There is only one total derivative

that can be formed from these terms, namely

∂i(ai∂jφ∂jφ) = 2L×a .

Therefore, there is a single invariant term for (P,N,∆) = (1, 3, 2), given by

L1 = ∂iφ∂jφ∂i∂jφ.

(P,N,∆) = (3, 3, 4)

In this case, a general Lagrangian is made up of four independent terms, after integrating
by parts, given by

L1 = ∂i∂jφ∂k∂lφ∂i∂j∂k∂lφ, L2 = ∂i∂jφ∂i∂k∂lφ∂j∂k∂lφ,

L3 = ∂iφ∂j∂k∂lφ∂i∂j∂k∂lφ, L4 = φ∂i∂j∂k∂lφ∂i∂j∂k∂lφ.
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The variation under the cubic shift symmetry (for P = 3) of these terms is given by

δ3(L1) = 2L×a , δ3(L2) = L×b + 2L×c ,

δ3(L3) = L×d + L×e , δ3(L4) = L×f .

where

L×a = (6aijmx
m + 2aij)∂k∂lφ∂i∂j∂k∂lφ

L×b = (6aijmx
m + 2aij)∂i∂k∂lφ∂j∂k∂lφ

L×c = 6aikl∂i∂jφ∂j∂k∂lφ
L×d = (3aimnx

mxn + 2aimx
m + ai)∂iφ∂j∂k∂lφ∂i∂j∂k∂lφ

L×e = 6ajkl∂iφ∂i∂j∂k∂lφ
L×f = (amnpx

mxnxp + amnx
mxn + amx

m + a)∂i∂j∂k∂lφ∂i∂j∂k∂lφ.

There are three independent total derivatives that can be formed out of these:

∂i[2(6aijmx
m + 2aij)∂k∂lφ∂j∂k∂lφ− 6aijj∂k∂lφ∂k∂lφ] = 2(L×a + L×b ),

∂i[6aijk∂j∂lφ∂k∂lφ] = 2L×c ,

∂i[6aijk∂j∂k∂`φ∂`φ] = L×c + L×e .

It is a non-trivial exercise to find and verify this, and a more systematic way of finding the
total derivative relations will be introduced later.

Applying these relations, one finds a single invariant for (P,N,∆) = (3, 3, 4):

L1 + 2L2 = ∂i∂jφ∂k∂lφ∂i∂j∂k∂lφ+ 2∂i∂jφ∂i∂k∂lφ∂j∂k∂lφ.

Note that δ3(L1 + 2L2) = 2(L×a + L×b ) + 2(2L×c ), which is a total derivative.

3.3.2. Introduction to the Graphical Representation

It is clear that even for these simple examples, the calculations quickly become unwieldy, and
it becomes increasingly difficult to classify all of the total derivative relations. At this point
we will rewrite these results in a graphical notation which will make it easier to keep track
of the contractions of indices in the partial derivatives. Full details about this graphical
approach can be found in Appendix 3.B, but we will summarize them here. In addition to
the •-vertex and edges we introduced in §3.2, we represent δPφ by a ⊗ (a ×-vertex). Note
that there are at most P edges incident to a ×-vertex since P + 1 derivatives acting on δPφ
yields zero, whereas an arbitrary number of edges can be incident to a •-vertex. Moreover,
we introduce another vertex, called a ?-vertex, which will be used to represent terms that
are total derivatives. We require that a ?-vertex always be incident to exactly one edge,
and that this edge be incident to a •-vertex or ×-vertex. This edge represents a derivative
acting on the entire term as a whole, and the index of that derivative is contracted with
the index of another derivative acting on the φ or δPφ of the •- or ×-vertex, respectively,
to which the ?-vertex is adjacent. Therefore, directly from the definition, any graph with
a ?-vertex represents a total derivative term. The expansion of this derivative using the
Leibniz rule is graphically represented by the summation of the graphs formed by removing
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the ?-vertex and attaching the edge that was incident to the ?-vertex to each remaining
vertex. This operation is denoted by the derivative map ρ. The symbols N(•), N(×) and
N(?) represent the numbers of each type of vertex. Note that N = N(•) +N(×) does not
include N(?) since ?-vertices represent neither φ nor δPφ.

We define three special types of graphs: A plain-graph is a graph in which all vertices
are •-vertices. A ×-graph is a plain-graph with one •-vertex replaced with a ×-vertex. A
?-graph is a graph with one ×-vertex and at least one ?-vertex.

Note that the variation δP of a plain-graph under the polynomial shift symmetry
is given by summing over all graphs that have exactly one •-vertex in the original graph
replaced with a×-vertex. To illustrate the graphical approach, we rewrite the examples from
sections 3.3.1 and 3.3.1 using this new graphical notation. Since the algebraic expressions
have unlabeled φ’s, the graphs in this section will be unlabeled.

(P,N,∆) = (1, 3, 2)

The two independent terms are written in the graphical notation as

L1 = L2 =

The variation under the linear shift symmetry (for P = 1) is given by

δ1

(
×

)
= 2
×

δ1

(
×

)
=
×

The only independent total derivative that can be formed out of these terms is

ρ

(
F×
)

= 2
×

As before, there is a single invariant for (P,N,∆) = (1, 3, 2) given by L1. In this case, the
graphical version of (3.19) is given by

δ1

(
×

)
= 2
×

= ρ

(
F×
)

(P,N,∆) = (3, 3, 4)

The four independent terms are written in the graphical notation as

L1 = L2 = L3 = L4 =
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The variation under the cubic shift symmetry (for P = 3) is given by

δ3

(
×

)
= 2
×

δ3

(
×

)
=
×

+ 2
×

δ3

(
×

)
=
×

+
×

δ3

(
×

)
=
×

The independent total derivatives that can be formed out of these terms are

ρ

(
2

F×
−

F×
)

= 2
×

+ 2
×

ρ

(
F×
)

= 2
×

ρ

(
F×
)

=
×

+
×

Once again, there is a single invariant for (P,N,∆) = (3, 4) given by L1+2L2. The graphical
version of (3.19) is given by

δ3

(
×

+ 2
×

)
= 2
×

+ 2
×

+ 4
×

= ρ

(
2

F×
−

F×
+ 2

F×
)

(3.20)

So far all we have done is rewrite our results in a new notation. But the graphical notation
is more than just a succinct visual way of expressing the invariant terms. The following
section illustrates the virtue of this approach.

3.3.3. New Invariants via the Graphical Approach

As shown in Appendix 3.B, the graphical approach allows us to prove many general theo-
rems. In particular, we have the following useful outcomes:

1. Without loss of generality, we can limit our search for invariants to graphs with very
specific properties (Appendix 3.B.2).

2. There is a simple procedure for obtaining all the independent total derivative relations
between the variation terms for each P , N and ∆ (Theorem 1).

3. The graphical method allows a complete classification of 1-invariants (Theorem 4).

4. The graphical method allows many higher P -invariant terms to be constructed from
lower P invariants (Appendix 3.B.4).
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We will expound upon the above points by presenting explicit examples. These examples
are generalizable and their invariance is proven in Appendix 3.B. However, the reader can
also check by brute force that the terms we present are indeed invariant. We will now
summarize points 1 and 2 and will return to point 4 in §3.3.4. Point 3 was discussed in §3.2
with technical details in Appendix 3.B.3.

When building invariants, we need only consider loopless plain-graphs (Proposition
2), since a loop represents ∂i∂i acting on a single φ and one can always integrate by parts
to move one of the ∂i’s to act on the remaining φ’s. We can also restrict to plain-graphs
with vertices of degree no less that 1

2(P + 1) (Proposition 7). This represents a significant
simplification from the previous procedure (§3.3.2). For instance, in §3.3.2, the graphs L3

and L4 are immediately discarded.
Taking the variation of these terms yields ×-graphs and we need to determine the total

derivative relations between them. Since all plain-graphs we are considering are loopless, any
×-graphs involved in these total derivative relations are also loopless. The total derivative
relations that we need to consider can be obtained with the use of graphs called Medusas
(Definition 10). A Medusa is a loopless ?-graph with all of its ?-vertices adjacent to the
×-vertex and such that the degree of the ×-vertex is given by:

deg(×) = P + 1−N(?), (3.21)

where, again, N(?) is the number of ?-vertices. Note that because deg(×) ≥ N(?) for a
Medusa, (3.21) implies that N(?) ≤ 1

2(P + 1) ≤ deg(×) for any Medusa. Furthermore, we
need only consider Medusas with ×-vertex and •-vertices of degree no less than 1

2(P + 1)
(Proposition 8). From each of these Medusas, we obtain a total derivative relation, con-
taining only loopless ×-graphs, by applying the map ρ and then omitting all looped graphs
(Proposition 4). This map is denoted as ρ(0) in Definition 13. In §3.3.3, we will give an
introduction to the construction of such total derivative relations from Medusas. Moreover,
this procedure captures all relevant total derivative relations (Theorem 1). Appendix 3.B.2
provides a systematic treatment of Medusas.

In general, for given N and P , we call an invariant consisting of graphs containing the
lowest possible value of ∆ a minimal invariant (Definition 16). Minimal invariants are of
particular interest in a QFT, since they are the most relevant N -point interactions. In §3.3.3
and §3.3.3 we apply the graphical approach to classify all minimal invariants for N = 4 and
P = 2, 3.

The Minimal Invariant: (P,N,∆) = (2, 4, 5)

As our first example, let us find the minimal 2-invariant for N = 4. For P = 2, any Medusa
must have N(?) ≤ 1

2(P + 1) = 3
2 , and thus there is exactly one ?-vertex in a P = 2 Medusa.

Furthermore, we need only consider Medusas in which each vertex has degree at least 2,
since 1

2(P + 1) = 3
2 . Therefore, the counting implies that we need only consider P = 2

Medusas with ∆ ≥ N + 1. In particular, when N = 4, the minimal ∆ is 5 (representing
terms with 10 derivatives). In the following we show that there is exactly one 2-invariant
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with ∆ = 5. The relevant Medusas are:

M1 =

F
×

M2 =

F
×

The resulting loopless total derivative relations are:

ρ(0)(M1) = 2
×

+
×

≡ 2L×a + L×e

ρ(0)(M2) =
×

+
×

+
×

≡ L×b + L×c + L×d

(3.22)

Note that, when acting on these P = 2 Medusas, ρ and ρ(0) are in fact the same.
On the other hand, the invariants must be constructed out of plain-graphs containing

vertices of degree no less than 1
2(P + 1) = 3

2 . The only possibilities are:

L1 = L2 = L3 = L4 = L5 =

The invariant cannot be constructed out of L5 since δ2(L5) is absent from the total derivative
relations (3.22). Hence, we need only consider the variations of L1, L2, L3 and L4.

We can now determine the 2-invariants. The total derivative relations allow us to
identify L×d ∼ −L

×
b − L

×
c and L×e ∼ −2L×a . Up to total derivatives,

δ2


L1

L2

L3

L4

 =


2 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 1




L×a
L×b
L×c
L×d
L×e

 ∼


2 0 0
0 2 0
0 0 2
−2 −1 −1


 L×a

L×b
L×c

 (3.23)

The invariants form the nullspace of the transpose of the final 4× 3 matrix in (3.23). The
nullspace is spanned by (1, 1, 1, 1). Therefore, there is one 2-invariant given by the linear
combination L1 + L2 + L3 + L4, i.e.,

+ + + (3.24)

Therefore, (3.24) gives the only independent minimal 2-invariant for N = 4.

The Minimal Invariant: (P,N,∆) = (3, 4, 6)

Next, let us consider P = 3, N = 4, for which each vertex degree must be at least 1
2(P+1) =

2. Again we would like to find the minimal invariant in this case. By counting alone, it is
possible to write down Medusas with ∆ = 5. In fact, a 3-invariant with N = 4 and ∆ = 5
would also be 2-invariant. The only possible 2-invariant with (N,∆) = (4, 5) is (3.24).
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However, this is not a 3-invariant because it is impossible for some graphs contained in it
to appear in a 3-invariant. For example, by replacing a degree-2 vertex in L2 in (3.24) with
a ×-vertex, a ×-graph Γ× is produced; Γ× and the only P = 3 Medusa M that generates
Γ× are given below:

Γ× =
×

M =

FF
×

But M contains a •-vertex of degree lower than 2, and therefore (3.24) cannot be 3-invariant.
This sets a lower bound for ∆: ∆ ≥ 6. For ∆ = 6, the Medusas are:

M1 =

F
×

M2 =

F
×

M3 =

F
×

M4 =

F
×

M5 =

F
×

M6 =

F
×

M7 =

FF
×

M8 =

FF
×

These give the following total derivative relations:

ρ(0)(M1) =
×

+
×

+
×

≡ L×a + L×b + L×c

ρ(0)(M2) =
×

+ 2
×

≡ L×d + 2L×e

ρ(0)(M3) =
×

+ 2
×

≡ L×f + 2L×g

ρ(0)(M4) =
×

+
×

+
×

≡ L×a + L×h + L×i

ρ(0)(M5) = 2
×

+
×

≡ 2L×e + L×j

ρ(0)(M6) =
×

+
×

+
×

≡ L×b + L×k + L×h

ρ(0)(M7) = 2
×

+
×

+ 4
×

+ 2
×

≡ 2L×` + L×m + 4L×n + 2L×o

ρ(0)(M8) = 2
×

+
×

+ 2
×

+ 4
×

≡ 2L×p + L×q + 2L×r + 4L×s

Then the invariants must be made up of plain-graphs whose variations are contained in the
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total derivative relations above. In other words, the invariants are made from:

L1 = L2 = L3 = L4 = L5 =

L6 = L7 = L8 = L9 = L10 =

We can now determine the 3-invaraints. After imposing the total derivative relations,

δ3



L1

L2

L3

L4

L5

L6

L7

L8

L9

L10



∼



4 0 0 0 0 0 0 0 0 0 0
0 2 0 0 0 −2 −4 −2 0 0 0
0 0 1 0 1 0 1 0 0 0 0
0 0 0 4 0 0 0 0 0 0 0
−2 0 0 0 −2 0 0 0 0 1 0
0 0 −8 0 0 0 0 0 0 0 0
0 −1 0 0 −1 1 0 0 0 0 1
0 0 0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 −6 −6 −12





L×a
L×b
L×e
L×f
L×h
L×l
L×n
L×o
L×p
L×r
L×s



The nullspace of the transpose of this matrix is spanned by (3, 6, 24, 0, 6, 3, 12, 6, 3, 1), giving
the only invariant linear combination,

3 + 6 + 24

+ 6 + 3 + 12

+ 6 + 3 + (3.25)

This gives the only independent minimal 3-invariant for N = 4.
Note that L4 does not appear in the invariant. Indeed, it can be discarded immediately,

since the unique Medusa associated with L4 is

FF F

×

This Medusa has an empty vertex, which violates the lower bound on vertex degree.
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Medusas and Total Derivative Relations

We have seen that Medusas play a central role in the search for P -invariants. It is thus
worthwhile to discuss the key features of Medusas and to demonstrate how a total derivative
relation consisting of loopless ×-graphs is constructed from a Medusa. Given any Medusa,
ρ(0)(M) is in fact a total derivative relation, as can be seen from the following construction.

For fixed P and N , consider a Medusa M that contains N(?) ?-vertices. Then, by
definition, it has a ×-vertex of degree deg(×) = P + 1 − N(?). Since the maximal degree
of a ×-vertex is P , graphs in ρ(M) contain at most N(?) − 1 loops. Form a ?-graph Γ(`)

from M by deleting ` ≤ N(?)− 1 ?-vertices in M and then adding ` loops to the ×-vertex.
By this definition, M = Γ(0). In the algebraic expression represented by Γ(`), the N(?)− `
?-vertices stand for N(?) − ` partial derivatives acting on the whole term. Distributing
N(?)−`−1 ∂’s over all φ’s in this algebraic expression will result in a linear combination of
total derivative terms. In the graphical representation, this is equivalent to acting ρ on Γ(`)

but keeping fixed exactly one ?-vertex and its incident edge. Setting to zero all coefficients
of graphs in the resulting linear combination, except for the ones containing exactly ` loops,
generates a linear combination L(`) of ?-graphs, each containing exactly one ?-vertex. By
construction,

ρ(0)(M) = ρ

N(?)−1∑
α=0

(−1)αL(α)

 . (3.26)

The algebraic form of the RHS of (3.26) is explicitly a total derivative relation. For a
rigorous treatment of the above discussion, refer to Proposition 4 in Appendix 3.B.2.

As a simple example, we consider the Medusa M7 referred to in §3.3.3. We have

M7 =

FF
×

⇒ ρ(0)(M7) = ρ

( F
×

+ 2

F
×

−

F
×

)

For a second example, we consider (P,N,∆) = (5, 3, 6) and the Medusa

M =

FF
F×

By (3.26), we obtain

ρ(0)(M) = ρ

(
2

F×
+ 2

F×
− 2

F×
+

F×
)
.

This Medusa is involved in a 5-invariant that we will construct in §3.3.4.

3.3.4. Superposition of Graphs

In §3.2, we discovered an intriguing construction of the minimal 1-invariant for given N ,
which is a sum with equal coefficients of all possible trees with N vertices. A close study
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of the P -invariants with P > 1 in §3.3 also reveals an elegant structure in these invariants:
They can all be decomposed as a superposition of equal-weight tree summations and exact
invariants. Recall that an exact invariant is a linear combination that is invariant exactly,
instead of up to a total derivative. In the graphical representation, a linear combination
of graphs is an exact PE-invariant if and only if all vertices are of degree larger than PE
(Corollary 4). Each graph in an exact invariant is itself exactly invariant.

Next we illustrate “the superposition of linear combinations” by explicit examples.
When appropriate, we will consider labeled graphs and only remove the labels at the end.
Consider two labeled graphs,

Γ1 = Γ2 =

The superposition of Γ1 and Γ2 is defined to be the graph formed by taking all edges in Γ2

and adding them to Γ1, i.e.,

Γ1 ∪ Γ2 =

The superposition of two linear combinations, LA =
∑kA

i=1 ai Γ
A
i and LB =

∑kB
i=1 bi Γ

B
i , of

plain graphs ΓAi ,Γ
B
j with the same N , is defined as

LA ∪ LB ≡
kA∑
i=1

kB∑
j=1

ai bj ΓAi ∪ ΓBj .

In the following we present numerous examples of invariants constructed by superposing
equal-weight tree summations and exact invariants for various P ’s. In fact, Theorem 7 of
Appendix 3.B.4 states:

For fixed N , the superposition of an exact PE-invariant with the superposition of Q
minimal loopless 1-invariants results in a P -invariant, provided PE + 2Q ≥ P .2

We conjecture that the above result captures all P -invariants, up to total derivatives. Since
we have classified all exact invariants and all 1-invariants (Theorem 4), it is straightforward
to construct the P -invariants in the above statement for any specific case. We now proceed
to construct the minimal P -invariants for some important cases.

Quadratic Shift (P=2)

N = 3 Case: A 2-invariant can be constructed by superposing an equal-weight tree sum-
mation with an exact 0-invariant. In the labeled representation, all possible trees for N = 3
are given by (3.13),

2Note that this theorem also applies when PE < 0, where we take an exact PE-invariant for PE < 0 to
mean any linear combination of plain-graphs. In particular, the plain-graph consisting only of empty vertices
is a PE-invariant for any PE < 0, and superposing this graph on any other is equivalent to not superposing
anything at all.
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The sum of all three N = 3 trees with unit coefficients gives a 1-invariant, L3-pt. On the
other hand, up to total derivatives, an exact 0-invariant with ∆ = 2 is isomorphic to

Γ0 =

Then Γ0 ∪ L3-pt contains the three superposed graphs as follows:

Summing over all superposed graphs with unit coefficients gives a 2-invariant for N = 3
(after identifying isomorphic graphs),

δ2

(
+ 2

)
= ρ(0)

(
2

F×
)
. (3.27)

Note that for P = 2 and N = 3, we need only consider Medusas with at least four edges,
since the ×-vertex and •-vertices have degree no less than 2. The Medusa in (3.27) is the
only such Medusa with ∆ = 4. Therefore, this is the only independent minimal 2-invariant.
Note that the 2-invariant given in (3.27) and the 3-invariant in (3.20) happen to be the
same.

In fact, we can prove a general minimality statement for N = 3. Consider a Medusa
with ∆ = P + 1 for odd P , and ∆ = P + 2 for even P . The •-vertices of this Medusa have
degree at least 1

2∆. For odd P this already saturates the lower bound for the degree of a
•-vertex; no edge joining the two •-vertices can be removed and thus ∆ cannot be lowered
further. For even P , one •-vertex saturates the lower bound on vertex degree and the other
•-vertex has an excess of exactly one edge. Nevertheless, the same conclusion holds.

N = 4 Case: In §3.3.3 we found that (3.24) gives the only independent minimal 2-invariant
for N = 4. It has the structure of a superposition of the sum with unit coefficients of all
N = 4 trees (Figure 3.1a) and an exact 0-invariant:

(3.28)

The superposition of this 0-invariant with the trees in Figure 3.1a is given in Figure 3.1b.
The sum of all graphs in Figure 3.1b with unit coefficients gives the 2-invariant in (3.24)
(with an overall prefactor of 4).

Cubic Shift (P=3)

N = 3 Case: For P = 3, the only independent minimal invariant for N = 3 is given in
(3.20), which can be written as a superposition of two equal-weight tree summations, as
shown in Figure 3.2.

3The trees are arranged in order of their Prüfer sequences [66].
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(a) All 16 trees for N = 4.3 (b) Superposition of (3.28) and the 16 trees.

Figure 3.1: The most relevant 2-invariant for N = 4 from superposition of graphs.

Figure 3.2: The superposition of two n = 3 tree summations.

As we already pointed out, this 3-invariant happens to be the minimal 2-invariant as
well.

We can produce more 3-invariants by superposing an exact 1-invariant on the equal-
weight sum of N = 3 trees. This would have two more derivatives compared to the minimal
term above. For example, there are two independent exact 1-invariants for N = 3 with 3
edges:

which yield the following two 3-invariants:

+ 2

N = 4 Case: In §3.3.3 we found that (3.25) gives the only independent minimal 3-invariant
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(a) Superposition of TA and Figure 3.1a. (b) Superposition of TB and Figure 3.1a.

Figure 3.3: Superposition of graphs in (3.29) on trees in Figure 3.1a.

for N = 4. It has the structure of a superposition of two sums with unit coefficients of all
trees in Figure 3.1a. As mentioned in §3.2, there are two isomorphism classes of N = 4
trees:

TA = TB = (3.29)

Superposing these graphs on the N = 4 trees produces the graphs in Figure 3.3. If T and
T ′ are isomorphic trees, then superposing T on the trees in Figure 3.1a produces 16 graphs
which are isomorphic to the 16 graphs formed by superposing T ′ on the same trees. There
are four trees in the isomorphism class of TA and twelve for TB. Therefore, we just have to
give the 16 graphs in Figure 3.3a weight 4 and the 16 graphs in Figure 3.3b weight 12 and
then add them all up. The result is (3.25) with an overall prefactor of 4. Again, we have
already shown that this is the unique minimal 3-invariant for N = 4.

As in the N = 3 case, we can produce non-minimal 3-invariants by superposing an
exact 1-invariant on the equal-weight sum of N = 4 trees. For example, there are four
independent exact 1-invariants for N = 4 with the lowest number of edges:

Quartic Shift (P=4)

N = 3 Case: As argued earlier, ∆min = 6 in this case. There are two Medusas with the
fewest edges such that the ×-vertex and the •-vertices have degree no less than 3 (note that
1
2(P + 1) = 5

2 in this case):

F
F×

F
F×
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There is exactly one minimal 4-invariant in this case, which is constructed by superposing
two equal-weight sums of trees with an exact 0-invariant:

+ 6 + 2

Note that the sum of the coefficients is 9, as it should be, since there are three N = 3 trees,
and thus there are nine superpositions of two N = 3 trees.

Examples of non-minimal invariants can be constructed by superposing an equal-weight
sum of trees with an exact 2-invariant, or two equal-weight sums of trees with an exact 1-
invariant.

The proofs of uniqueness and minimality for the remaining N = 4 examples are lengthy
and involve many more Medusas than the previous examples, but the process is the same.
Therefore, we will simply write the invariants and state that they are unique and minimal.

N=4 Case: We construct the minimal 4-invariant by superposing two copies of equal-
weight sums of trees with an exact 0-invariant. There is one independent exact 0-invariant:

Superposing this on the superposition of two copies of equal-weight sums of trees yields

48 + 40 + 16 + 32

+ 20 + 16 + 16 + 16

+ 16 + 8 + 8 + 4

+ 4 + 4 + 4 + 4

Note that the sum of the coefficients is 256 = 162.

Quintic Shift (P=5)

N = 3 Case: In this case, ∆min = 6. There are three Medusas with the fewest edges such
that the ×-vertex and the •-vertices have degree no less than 3 (note that 1

2(P + 1) = 3):

F F
F×

FF
F×

F
F×



43

There is exactly one minimal 5-invariant in this case, which is constructed by superposing
three equal-weight sums of trees:

3 + 18 + 6

Note that the sum of the coefficients is 27 = 33. Also, note that this is proportional to
the unique independent minimal 4-invariant found in the previous section, which was the
superposition of two equal-weight sums of trees and an exact 0-invariant.

N = 4 Case: The superposition of three equal-weight sums of N = 4 trees yields

4 + 12 + 108 + 432 + 288

+ 72 + 216 + 216 + 36 + 72

+ 72 + 144 + 144 + 612 + 144

+216 + 72 + 72 + 432 + 72

+ 72 + 72 + 216 + 192 + 108

Note that the sum of the coefficients is 4096 = 163.
To facilitate the check of the invariance of the above linear combination, denoted as L,

we provide the linear combination of Medusas LM such that δ5(L) = ρ(0)(LM ):

12

FF F

×
+ 72

FF F

×
+ 24

FF F

×
+ 72

FF
×

+ 72

FF
×

+ 144

FF
×

+144

FF
×

+ 216

FF
×

+ 72

F
×

+ 72

F
×

+ 72

F
×

+ 288

F
×

+432

F
×

+ 108

F
×

+ 216

F
×

+ 144

F
×

+ 216

F
×

3.4. Outlook

We studied nonrelativistic scalar field theories with polynomial shift symmetries. In the
free-field limit, such field theories arise in the context of Goldstone’s theorem, where they
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lead to the hierarchies of possible universality classes of Nambu-Goldstone modes, as shown
in §2. Our main focus in §3.2 and §3.3 has been on interacting effective field theories which
respect the polynomial shift symmetries of degree P = 1, 2, . . .. In order to find such theo-
ries, one needs to identify possible Lagrangian terms invariant under the polynomial shift
up to total derivatives, and organize them by their scaling dimension, starting from the
most relevant. As we showed in §3.2, §3.3 and Appendix 3.B, this essentially cohomological
classification problem can be usefully translated into the language of graph theory. This
graphical technique is important for two reasons. First, it is quite powerful: The translation
of the classification problem into a graph-theory problem allows us to generate sequences of
invariants for various values of P , number N of fields, the number 2∆ of spatial derivatives,
and as a function of the spatial dimension D, in a way that is much more efficient than any
“brute force” technique. Secondly, and perhaps more importantly, the graphical technique
reveals some previously hidden structure even in those invariants already known in the lit-
erature. For example, the known Galileon N -point invariants are given by the equal-weight
sums of all labeled trees with N vertices! This hidden simplicity of the Galileon invariants
is a feature previously unsuspected in the literature, and its mathematical explanation de-
serves further study. In addition, we also discovered patterns that allow the construction of
higher polynomials from the superposition of graphs representing a collection of invariants
of a lower degree – again a surprising result, revealing glimpses of intriguing connections
among the a priori unrelated spaces of invariants across the various values of P , N and ∆.

We focused for simplicity on the unrestricted polynomial shift symmetries of degree
P , whose coefficients ai1...i` are general real symmetric tensors of rank ` = 0, . . . , P . As we
pointed out in §3.1.1, at P ≥ 2, this maximal polynomial shift symmetry algebra allows
various subalgebras, obtained by imposing additional conditions on the structure of ai1...i` ’s.
While this refinement does not significantly impact the classification of Gaussian fixed
points, reducing the symmetry to one of the subalgebras inside the maximal polynomial
shift symmetry can lead to new N -point invariants, beyond the ones presented in this
chapter. It is possible to extend our graphical technique to the various reduced polynomial
shift symmetries, and to study the refinement of the structure of polynomial shift invariants
associated with the reduced symmetries.

Our main motivation for the study of scalar field theories with polynomial shift sym-
metries has originated from our desire to map out phenomena in which technical natu-
ralness plays a crucial role, in general classes of field theories with or without relativistic
symmetries. The refined classification of the universality classes of NG modes and the non-
relativistic refinement of Goldstone’s theorem have provided an example of scenarios where
our naive relativistic intuition about technical naturalness may be misleading, and new in-
teresting phenomena can emerge. We anticipate that other surprises of naturalness are still
hidden not only in the landscape of quantum field theories, but also in the landscape of
nonrelativistic theories of quantum gravity.
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Appendix

3.A. Glossary of Graph Theory

In this section, we list the standard terminologies in graph theory to which we will refer.
(These essentially coincide with the ones in [66].)

Graph A graph Γ is an ordered pair (V (Γ), E(Γ)) consisting of a set V (Γ) of vertices and
a set E(Γ), disjoint from V (Γ), of edges, together with an incident function ΨΓ that
associates with each edge of Γ an ordered pair of (not necessarily distinct) vertices of
Γ. If e is an edge and u and v are vertices such that ΨΓ(e) = {u, v}, then e is said to
join u and v.

Isomorphism Two graphs ΓA and ΓB are isomorphic if there exist a pair of bijections
f : V (ΓA) → V (ΓB) and φ : E(ΓA) → E(ΓB) such that ΨΓA(e) = {u, v} if and only
if ΨΓB (φ(e)) = {f(u), f(v)}.

Identical Graphs Two graphs are identical, written ΓA = ΓB, if V (G) = V (H), E(G) =
E(H) and ΨG = ΨH .

Labeled Graph A graph in which the vertices are labeled but the edges are not, is called
a labeled graph. This will be the notion of graphs that we will refer to most frequently.

Unlabeled Graph An unlabeled graph is a representative of an equivalence class of iso-
morphic graphs.

Finite Graph A graph is finite if both of its vertex set and edge set are finite.

Null Graph The graph with no vertices (and hence no edges) is the null graph.

Incident The ends of an edge are said to be incident to the edge, and vice versa.

Adjacent Two vertices which are incident to a common edge are adjacent.

Loop A loop is an edge that joins a vertex to itself.

Cycle A cycle on two or more vertices is a graph in which the vertices can be arranged
in a cyclic sequence such that two vertices are joined by exactly one edge if they are
consecutive in the sequence, and are nonadjacent otherwise. A cycle on one vertex is
a graph consisting of a single vertex with a loop.



46

Loopless Graph A loopless graph contains no loops. Note that a loopless graph may still
contain cycles on two or more vertices.

Vertex Degree The degree of a vertex v, denoted by deg(v), in a graph Γ is the number
of edges of Γ incident to v, with each loop counting as two edges.

Empty Vertex A vertex of degree 0 is called an empty vertex.

Leaf A vertex of degree 1 is called a leaf.

Edge Deletion The edge deletion of an edge e in a graph Γ is defined by deleting from Γ
the edge e but leaving the vertices and the remaining edges intact.

Vertex Deletion The vertex deletion of a vertex v in a graph Γ is defined by deleting
from Γ the vertex v together with all the edges incident to v. The resulting graph is
denoted by Γ− v.

Connected Graph A graph is connected if, for every partition of its vertex set into two
nonempty sets X and Y , there is an edge with one end in X and one end in Y .

Connected Component A connected component of a graph Γ is a connected subgraph
Γ′ of Γ such that any vertex v in Γ′ satisfies the following condition: all edges incident
to v in Γ are also contained in Γ′.

Tree A tree is a connected graph that contains no cycles. In particular, note that a tree
has no empty vertices if it contains more than one vertex.

Cayley’s Formula The number of labeled trees on N vertices is NN−2.

3.B. Theorems and Proofs

3.B.1. The Graphical Representation

Consider the polynomial shift symmetry applied to a real scalar field φ,

φ(t, xi)→ φ(t, xi) + δPφ, δPφ = ai1···iP x
i1 · · ·xiP + · · ·+ aix

i + a. (3.30)

The polynomial ends at P th order in the spatial coordinate xi with P = 0, 1, 2, . . ., respec-
tively corresponding to constant shift, linear shift, quadratic shift, and so on. The a’s are
arbitrary real coefficients that parametrize the symmetry transformation, and are symmet-
ric in any pair of indices. In the algebraic language, for a specific P , we are searching for a
Lagrangian that is invariant under the polynomial shift up to a total derivative. Let L be
a term in the Lagrangian with N φ’s and 2∆ spatial derivatives. Then,

δP (L) = ∂i(Li), (3.31)

where Li is an expression containing N − 1 φ’s and an index i, which is not contracted.
Such L’s are called P-invariants. We will mainly focus on interaction terms, i.e., N ≥ 3.

We want to express these P -invariants using a graphical representation. The ingredi-
ents of the graphical representation are:
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1. •-vertices, denoted in a graph by •.

2. ×-vertices, denoted in a graph by ⊗.

3. ?-vertices, denoted in a graph by F.

4. Edges, denoted in a graph by a line, that join the above vertices.

In this context, a graph contains up to three types of vertices. This means that these graphs
carry an additional structure regarding vertex type, compared to the conventional definition
of a graph in Appendix 3.A.

We construct graphs using the following rules:

1. The maximal degree of a ×-vertex is P . Any graph containing a ×-vertex of degree
greater than P is identified with the null graph.

2. There is at most one ×-vertex in a graph.

3. A ?-vertex is always a leaf (i.e., it has degree one).

4. Two ?-vertices are not allowed to be adjacent to each other.

We now describe what these graph ingredients represent. A •-vertex represents a φ and
a ×-vertex represents δPφ. A pair of derivatives with contracted indices, each one acting
on a certain φ or δPφ, is represented by an edge joining the relevant •- and ×-vertices.
Note that Rule 1, which requires that there be at most P edges incident to the ×-vertex, is
justified since P + 1 derivatives acting on δPφ gives zero.

A graph with ?-vertices will represent terms which are total derivatives. By Rules 3
and 4, a ?-vertex must always have exactly one edge incident to it, and this edge is incident
to a •-vertex or ×-vertex. This edge represents a derivative acting on the entire term as a
whole, and the index of that derivative is contracted with the index of another derivative
acting on the φ or δPφ of the •- or ×-vertex, respectively, to which the ?-vertex is adjacent.
Therefore, any graph with a ?-vertex represents a total derivative term.

Since the Lagrangian terms that these graphs represent have a finite number of φ’s and
∂’s, we will consider only finite graphs. In addition, by the definition of graphs, all vertices
and edges are automatically labeled, due to the fact that all elements in a set are distinct
from each other. Therefore, a graph represents an algebraic expression in which each φ and
∂ carries a label. It will be convenient to keep the labels on φ, but it is unnecessary to label
the derivatives. This motivates the definition given in Appendix 3.A for “labeled” graphs.
In the rest of Appendix 3.B, unless otherwise stated, a graph is understood to be a labeled
graph.

The desired algebraic expressions in which all φ’s are identical can be recovered by
identifying all isomorphic graphs (for examples, refer to §3.2). In fact, the labeled P -
invariants already capture all of the unlabeled ones (Appendix 3.B.5).

Note that not all algebraic expressions are captured in the graphical representation
described above. For example, ∂2(∂jφ∂jφ) cannot be represented by a graph, since two
?-vertices are forbidden to be adjacent to each other by Rule 4. However, this algebraic
expression can be written as 2∂i(∂i∂jφ∂jφ), which is graphically represented in Figure
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F

(a) ∂i(∂jφ∂i∂jφ) (b) ∂jφ∂i∂jφ∂i∂
2φ

Figure 3.B.1: Examples for the graphical representation of algebraic expressions.

3.B.1a, disregarding the coefficient 2. Another peculiar example is ∂i(∂jφ∂jφ) ∂i∂
2φ, which

is equal to 4(∂i∂jφ)(∂jφ)(∂i∂
2φ). Although the graphical representation for the former

expression is beyond the current framework, the graphical representation for the latter one
is given in Figure 3.B.1b. One could generalize the graphical representation to include
all possible algebraic expressions. However, for our purposes, the present framework will
suffice.

Types of Graphs and Vector Spaces

We classify graphs by different combinations of vertices:

Definition 1.

1. A plain-graph is a graph in which all vertices are •’s.

2. A ?-ed plain-graph is a graph with vertex set consisting of only •-vertices and at least
one ?-vertex.

3. A ×-graph is a plain-graph with one •-vertex replaced with a ×-vertex.

4. A ?-graph is a graph with one ×-vertex and at least one ?-vertex.

We define sets of graphs and the real vector spaces that they generate:

Definition 2.

1. GN,∆ is the set of plain-graphs with N •-vertices and ∆ edges.

2. G×N,∆ is the set of ×-graphs with N − 1 •-vertices, one ×-vertex and ∆ edges.

3. G?N,∆ is the set of ?-graphs with N − 1 •-vertices, one ×-vertex, at least one ?-vertex
and ∆ edges.

In the above graphs, we choose the labels of the •- and ×-vertices to go from v1 to vN and
the labels of the ?-vertices to go from v?1 to v?N(?), where N(?) is the number of ?-vertices.

Let LN,∆, L×N,∆ and L?N,∆ be the real vector spaces of formal linear combinations generated

by GN,∆, G×N,∆ and G?N,∆, respectively. The zero vector in any of these vector spaces is the
null graph.

Note thatN = N(•)+N(×), whereN(•) is the number of •-vertices andN(×) is the number
of ×-vertices. N does not include N(?) since ?-vertices represent neither φ nor δPφ. These
sets of graphs are finite and therefore the vector spaces of formal linear combinations are
finite-dimensional.



49

By Definition 2, graphs in a linear combination L ∈ LN,∆ (L×N,∆ or L?N,∆) share the
same number of N and ∆. In most of the following discussion, N and ∆ are fixed. We
will therefore omit theses subscripts as long as no confusion arises. However, the number
of ?-vertices N(?) is not fixed in a generic linear combination of ?-graphs.

Maps

We now define some maps between the sets and vector spaces in Definition 2. This will
model the operations that act on the algebraic expressions represented by the graphs.

Firstly, the variation under the polynomial shift δP of an algebraic term, expressed by
a graph Γ, is represented graphically by summing over all graphs that have one •-vertex in
Γ replaced with a ×-vertex.

Definition 3 (Variation Map). Given a plain-graph Γ ∈ G, with V (Γ) = (v1, . . . , vN ), the
map δP : G → L× is defined by δP (Γ) =

∑N
i=1 Γ×i , where Γ×i is a graph given by replacing

vi with a ×-vertex. This map extends to L → L× by distributing δP over the formal sum.

Note that Γ×i is the null graph if vi has degree greater than P . We will omit the subscript
P in δP as long as no confusion arises. It is also necessary to define a map that operates in
the reverse direction:

Definition 4. The map v : G× → G is defined by replacing the ×-vertex with a •-vertex.

In the algebraic expressions, a total derivative term looks like ∂iLi, and the ∂i can be
distributed over Li as usual, by applying the Leibniz rule. This feature will be captured by
the graphical representation in the following definition.

Definition 5 (Derivative Map). For a given ?-graph Γ? ∈ G?, the derivative map ρ : G? →
L× is defined using the following construction:

1. For the ?-graph Γ?, denote the •-vertices by v1, . . . , vN−1, the ×-vertex by vN and
the ?-vertices by v?1, . . . , v

?
k, k = N(?). Take any ?-vertex v?i in Γ?. For each

j1 ∈ {1, . . . , N}, form a graph Γj1 by deleting v?1 in Γ? and then adding an edge joining
vj1 and the vertex that was adjacent to v?1 in Γ?.

2. Apply the above procedure to each of the Γj1 to form Γj1j2 by removing the next v?2.
Iterate this procedure until all ?-vertices have been removed, forming the ×-graph
Γj1...jk .

3. Define ρ(Γ?) ≡
∑N

j1,...,jk=1 Γ×j1...jk .

The domain of this map can be extended to L? by distributing ρ over the formal sum. The
derivative map ρ can be similarly defined on ?-ed plain-graphs. Furthermore, we take ρ to
be the identity map when it acts on ×-graphs.

Note that the above definition is well-defined since ρ is independent of the order in which
the ?-vertices are deleted.
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Relations

There are many linear combinations of plain- and ×-graphs representing terms that can be
written as a total derivative. To take this feature into account, we define two notions of
relations for plain- and ×-graphs, respectively.

Definition 6 (Relations). If a linear combination of plain-graphs L ∈ L can be written as
ρ(L′), where L′ is a sum of ?-ed plain-graphs, then L is called a plain-relation. If a linear
combination of ×-graphs L× ∈ L× can be written as ρ(L?), with L? a sum of ?-graphs, then
L× is called a ×-relation.

We shall denote the set of all plain-relations by R and the set of all ×-relations by R×. R
and R× have a natural vector space structure and are subspaces of L and L×, respectively.

The Consistency Equation and Associations

Recall that P -invariants are defined algebraically by equation (3.31), δP (L) = ∂i(Li). This
equation is written in the graphical representation as

δP (L) = ρ(L?), (3.32)

for L ∈ L and L? ∈ L?. We call (3.32) the consistency equation. Searching for P -invariants
is equivalent to constructing all consistency equations. Note that, by Definition 6, the con-
sistency equation implies that δP (L) is a ×-relation and so we make the following definition:

Definition 7 (P -Invariant). L ∈ L is a P -invariant if δP (L) ∈ R×.

Furthermore, there is a simple class of P -invariants, which we call exact P -invariants. These
represent terms which are exactly invariant under the polynomial shift symmetry (3.30),
not just up to a total derivative.

Definition 8 (Exact P -Invariant). L ∈ L is an exact P -invariant if δP (L) = 0.

The following notion, called “association between graphs”, will turn out to be indis-
pensable in constructing consistency equations.

Definition 9 (Associations). The associations between pairs of plain- and ×-graphs, plain-
and plain-graphs, ?- and ×-graphs, ?- and ?-graphs and plain- and ?-graphs are defined as
follows:

1. Γ ∈ G and Γ× ∈ G× are associated with each other if Γ× is contained in δP (Γ), or,
equivalently, v(Γ×) = Γ.

2. Any two graphs Γ1,Γ2 ∈ G are associated with each other if either they are associated
with the same Γ× ∈ G×, or Γ1 is identical to Γ2.

3. Γ? ∈ G? and Γ× ∈ G× are associated with each other if Γ× is contained in ρ(Γ?).

4. Any two graphs Γ?1,Γ
?
2 ∈ G? are associated with each other if either they are associated

with the same Γ× ∈ G×, or Γ?1 and Γ?2 are identical to each other.
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5. Any two graphs Γ ∈ G and Γ? ∈ G? are associated with each other if they are associated
with the same Γ× ∈ G×.

It turns out that the associations between only plain-graphs and ×-graphs have a simple
structure. Note that for any ×-graph Γ× ∈ G×, v(Γ×) uniquely defines the associated
plain-graph. Hence,

Proposition 1. A ×-graph is associated with exactly one plain-graph.

The corollaries below directly follow:

Corollary 1. For L ∈ L and Γ× a ×-graph in δ(L), L contains the plain-graph v(Γ×).

Corollary 2. Any two associated plain-graphs are identical to each other.

Proof. If two distinct plain-graphs are associated with each other, then they are associated
with a common ×-graph, which violates Proposition 1. Therefore, only identical plain-
graphs are associated with each other.

Corollary 3. For L ∈ L and a plain-graph Γ in L, δ(L) contains all ×-graphs in δ(Γ).

Proof. Without loss of generality, suppose Γ appears in L with unit coefficient (otherwise,
simply divide L by the coefficient of Γ). Let Γ× be a ×-graph in δ(Γ). By Proposition 1, Γ
is the only plain-graph associated with Γ×. Therefore, Γ× cannot drop out of δ(Γ +L′) for
any L′ ∈ L that does not contain Γ. Applying this statement to L′ = L−Γ proves that Γ×

must appear in δ(L).

This now allows us to find all exact P -invariants in a simple manner:

Corollary 4. L ∈ L is an exact P -invariant if and only if all vertices in all graphs contained
in L have degree at least P + 1.

Proof. If there is a vertex v in some plain-graph Γ in L of degree lower than P + 1, then
δP (Γ) contains the ×-graph where v is replaced with a ×-vertex. But by Corollary 3, this
means that δP (L) also contains this ×-graph, which contradicts δP (L) = 0.

All of the above definitions and conclusions make sense when extended to P < 0. Even
though P < 0 no longer corresponds to any polynomial shift symmetry, it will occasionally
be useful to consider graphs with P < 0. Since any vertex has a non-negative degree,
Corollary 4 implies:

Corollary 5. If P < 0, any L ∈ L is an exact P -invariant.

Associations between ?-graphs and ×-graphs also have a simple and useful property:

Lemma 1. Suppose that a ×-graph Γ× ∈ G× is associated with a ?-graph Γ? ∈ G? that
contains a single ?-vertex. Then Γ× appears in ρ(Γ?) with coefficient 1.

In general, a ×-graph can be associated with more than one ?-graph. Figure 3.B.2 presents
a simple example with (P,N,∆) = (2, 3, 2). Consequently, there can exist multiple consis-
tency equations for the same P -invariant. In the next section we will develop techniques to
deal with this difficulty.
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Figure 3.B.2: Two different linear combinations of ?-graphs result in an identical ×-relation
for P = 2. In particular, the ×-graph with a coefficient 2 is associated with all three
?-graphs in the figure.

3.B.2. Building Blocks for Consistency Equations

In this section, we introduce the building blocks with which we will construct the consistency
equation (3.32), δP (L) = ρ(L?). Any polynomial shift-invariant can be generated using
these building blocks. We show that we can constrain L to contain only loopless plain-
graphs, and all other invariants are equal to these ones up to total derivatives. Consequently,
δP (L), and thus ρ(L∗), contains only loopless ×-graphs. Therefore, ρ(L?) = ρ(0)(L?), where
ρ(0) acts in the same way as ρ but omits any looped graphs (Definition 13). In fact, we
can restrict L? to be a linear combination LM of a particular type of ?-graph, such that
ρ(0)(L?) = ρ(0)(LM ). These ?-graphs will be called Medusas (Definition 10). In Appendix
3.B.2 we determine a lower bound on the degree of a vertex in any graph that appears in
the consistency equation.

The Loopless Realization of L/R

There are usually many alternative expressions for a single P -invariant algebraic term,
which are equal to each other up to total derivatives. In the graphical language, the graphs
representing these equivalent expressions are related by plain-relations. Therefore, we are
interested in the space of linear combinations of plain-graphs modding out plain-relations,
i.e., the quotient space L/R. We need to find subset of graphs, B ⊂ G, whose span is isomor-
phic to L/R. In other words, every element of L can be written as a linear combination of
graphs in B and plain-relations. Furthermore, this means that there are no plain-relations
between elements in the set B. The following proposition shows that the set of loopless
plain-graphs realizes the set B.

Proposition 2 (Loopless Basis). The span of loopless plain-graphs is isomorphic to L/R.

Proof. Denote the span of all loopless plain-graphs by Lloopless. If ∂i∂i acts on a single φ,
then one can always integrate by parts to move one of the ∂i’s to act on the remaining φ’s.
In the graphical language, this means that any graph with loops can always be written as
a linear combination of loopless graphs up to a plain-relation. This proves L/R ⊂ Lloopless.

Now, we show that there are no plain-relations between the loopless plain-graphs.
Suppose there exists a linear combination of loopless plain-graphs L that is a plain-relation.
That is, there exists a linear combination L′ of ?-ed plain-graphs such that L = ρ(L′). Let
Γ′ be a ?-ed plain-graph in L′. Then, ρ(Γ′) is a linear combination of plain-graphs each
of which has a number of loops no greater than the number of ?-vertices in Γ′. There
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will be exactly one graph, Γf.l., which is fully-looped (with the number of loops equal to the
number of ?-vertices in Γ′), produced when all the original ?-vertices (and the edges incident
to them) are replaced with loops. Furthermore, Γf.l. uniquely determines Γ′ by replacing
each loop in Γf.l. with an edge incident to an extra ?-vertex. Choose the ?-ed plain-graph
appearing in L′ with the largest number of ?-vertices (the maximally ?-ed plain-graphs).
This maximum exists since the number of the edges incident to the ?-vertices is bounded
above by the number of edges ∆. The fully-looped graphs formed from these maximally ?-ed
plain-graphs cannot cancel each other (by uniqueness) and cannot be canceled by any other
graphs that are not fully-looped (by maximality). Therefore ρ(L′) is a linear combination
containing looped graphs, which contradicts the initial assumption that L only consists of
loopless graphs. This proves Lloopless ⊂ L/R.

Therefore, Lloopless
∼= L/R.

Henceforth, we can restrict our search for P -invariants to Lloopless. Note that if L ∈ Lloopless,
then all the graphs in δ(L) are also loopless, so it is sufficient to consider only loopless ×-
graphs. We can also restrict to loopless×-relations,R×loopless ⊂ R

×, which is the vector space
consisting of ×-relations that are linear combinations of loopless graphs. We summarize this
discussion in the following corollary:

Corollary 6. The P -invariants that are independent up to total derivatives are represented
by L ∈ Lloopless with δ(L) ∈ R×loopless. Equivalently, they span the kernel of the map:

q ◦ δ : Lloopless → L×loopless/R
×
loopless,

where q is the quotient map q : L×loopless → L
×
loopless/R

×
loopless.

Medusas and Spiders

Corollary 6 motivates us to look for a basis of R×loopless, the ×-relations that are linear com-
binations of loopless graphs. To classify all such loopless ×-relations, we are led to study
the linear combinations of ?-graphs that give rise to these relations under the derivative
map ρ. We will realize a convenient choice for the basis of R×loopless, which will tremen-

dously simplify our calculations: It turns out that the basis of R×loopless is in one-to-one
correspondence with a particular subset of loopless ?-graphs, which we now define.

Definition 10 (Medusa). A Medusa is a loopless ?-graph with all ?-vertices adjacent to the
×-vertex, such that the degree of the ×-vertex deg(×) and the number of ?-vertices N(?)
satisfy deg(×) = P + 1−N(?). We denote the set of Medusas by MN,∆.

We should point out that applying ρ to a Medusa does not necessarily generate a ×-relation
in R×loopless; it will sometimes produce ×-graphs with loops. In order to form a loopless ×-
relation, these looped ×-graphs must be canceled by contributions from other ?-graphs.

In the proof of the one-to-one correspondence between the basis of R×loopless and the
subset of Medusas, we will frequently refer to the following definitions.

Definition 11 (Primary ?-Graphs). A primary ?-graph is a ?-graph that contains exactly
one ?-vertex.



54

Definition 12 (Spider). A spider is a primary ?-graph with the ?-vertex adjacent to the
×-vertex and deg(×) = P .

Since deg(×) ≥ N(?) for a Medusa, we have 1
2(P + 1) ≤ deg(×) ≤ P . In particular, if

P = 1 or 2, then deg(×) = P and N(?) = 1 (i.e., a Medusa is a loopless spider for P = 1 or
2). Spiders will play an important role in sorting out all independent loopless ×-relations
in Appendix 3.B.2, and loopless spiders will lead us to the classification of 1-invariants in
Appendix 3.B.3.

In 3.B.2 and 3.B.2 we will construct R×loopless by spiders and Medusas. We will need
to keep track of graphs containing specific numbers of loops, and the following refinement
of the derivative map ρ (Definition 5) will allow us to formulate the graphical operations
algebraically.

Definition 13. The map ρ(`) : L? → L× is defined such that, for L? ∈ L?, ρ(`)(L?) is equal
to ρ(L?), with the coefficient of any graph that does not contain ` loops set to zero.

Note that ρ =
∑∞

i=0 ρ
(i). If Γ? ∈ G? contains a loop, then ρ(0)(Γ?) is identically zero. In

Theorem 1 we will show that the map ρ(0) defines the one-to-one correspondence between
M and the preferred basis of R×loopless.

It is also useful to introduce the operation of “undoing” loops.

Definition 14. Given a Γ ∈ G× ∪ G? which contains ` loops, labeled from 1 to `, the map
θi : G× ∪G? → G? is defined such that θi(Γ) is a ?-graph constructed by deleting the ith loop
from Γ, adding an extra ?-vertex v? and adding an edge joining v? to the vertex at which
the ith deleted loop ended. Define θ : G× ∪ G? → G? by θ(Γ) ≡ θ1 ◦ · · · ◦ θ`(Γ). This map
extends to L×∪L? → L? by distributing θ over the formal sum. The map θ can be similarly
defined on ?-ed plain-graphs.

We will need to distinguish different types of loops:

Definition 15. A loop at the ×-vertex is called a ×-loop, and a loop at a •-vertex is a
•-loop. A graph that contains ` loops is called `-looped.

We can now prove a key formula:

Proposition 3. If an `-looped ?-graph Γ? contains a loop at vertex vA, then

ρ(`−1) ◦ θA(Γ?) = ρ(`−1) ◦ θA ◦ ρ(`)(Γ?) + ρ(`−1)
(

L
(`−1)
spider

)
, (3.33)

where θA undoes a loop at vA, and L
(`−1)
Spider is a linear combination of (`− 1)-looped spiders.

Every graph in a nonzero L
(`−1)
Spider has one fewer ×-loop than Γ?. L

(`−1)
Spider is nonzero if and

only if the following three conditions are satisfied:

(a) vA is the ×-vertex;

(b) There is a ?-vertex that is not adjacent to the ×-vertex;

(c) deg(×) ≥ P+1−N•(?), where N•(?) is the number of ?-vertices in Γ? that are adjacent
to •-vertices.
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Proof. Denote the vertices in Γ? adjacent to ?-vertices by vi, i = 1, . . . , k, and the ×-vertex
by v×. Note that v× and vA may coincide with each other and with some of the vi’s. Form
an (`− 1)-looped graph Γ from Γ? by deleting all ?-vertices and deleting a loop at vA. We
now show that all graphs in ρ(`−1) ◦ θA(Γ?) and ρ(`−1) ◦ θA ◦ ρ(`)(Γ?) in (3.33) contain Γ as
a subgraph:

• ρ(`−1)◦θA(Γ?): Define Γvβ1
...vβk

to be a graph formed from Γ by adding k edges joining
vi and vβi , respectively. Then

ρ(`−1) ◦ θA(Γ?) =
∑
vα 6=vA

∑
vβ1
6=v1

. . .
∑

vβk 6=vk

Γvαvβ1
...vβk

, (3.34)

where Γvαvβ1
...vβk

is the graph Γvβ1
...vβk

with an extra edge joining vA and vα. Note that

the graphs formed from Γ by adding edges joining vA (or vi) to itself are not included
in this sum, because these graphs are not (`− 1)-looped.

• ρ(`−1) ◦ θA ◦ ρ(`)(Γ?): Define ΓA to be the graph Γ with a loop added at vA. Then
ρ(`)(Γ?) =

∑
vβi 6=vi

Γ̃vβ1
...vβk

, where Γ̃vβ1
...vβk

is the graph formed from ΓA by adding

k edges joining vi and vβi , respectively. vβi 6= vi in the sum because only `-looped
graphs are included. Applying ρ(`−1) ◦ θA gives:

ρ(`−1) ◦ θA ◦ ρ(`)(Γ?) =
∑
vα 6=vA

∑
vβ1
6=v1

. . .
∑

vβk 6=vk

Γ̃vαvβ1
...vβk

, (3.35)

where Γ̃vαvβ1
...vβk

is formed from Γ̃vβ1
...vβk

by deleting a loop at vA and adding an edge

joining vA and vα. vα 6= vA in the sum because only (`−1)-looped graphs are included.

We now want to compare Γvαvβ1
...vβk

and Γ̃vαvβ1
...vβk

for vα 6= vA and vβi 6= vi. At first it

might seem that Γvαvβ1
...vβk

= Γ̃vαvβ1
...vβk

, since both ultimately involve taking Γ and adding an

edge joining vA and vα, and edges joining vi and vβi . However, there is a subtlety involved:
Recall that graphs containing a ×-vertex of degree larger than P are identified with the
null graph. Therefore, Γvαvβ1

...vβk
= Γ̃vαvβ1

...vβk
, provided neither side is null or both sides are

null; when one side of this equation represents the null graph and the other does not, then
this equation will not hold. This violation happens only if there is a difference in deg(×)
of the graphs formed during the construction of Γvαvβ1

...vβk
and Γ̃vαvβ1

...vβk
. Note that we add

the same k edges (joining vi and vβi) to both Γ and ΓA to form the intermediate graphs,
Γvβ1

...vβk
and Γ̃vβ1

...vβk
, respectively. Thus the difference between the latter two graphs is

the same as the difference between Γ and ΓA: There is an extra loop at vA in ΓA compared
to Γ, which will only be deleted after the edges have been added. Hence, the violation of
the equality, Γvαvβ1

...vβk
= Γ̃vαvβ1

...vβk
, happens only if vA = v×. This is condition (a).

From now on, we assume vA = v×. In addition, there must exist at least one vβi = v×

in order for the violation to occur, since otherwise deg(×) in any graph we are considering
never exceeds the one in Γ?, and thus no graph in (3.34) and (3.35) is null. Hence for at least
one vβi , v

× = vβi 6= vi, which implies condition (b). From now on we assume v× = vβi 6= vi,
for at least one vβi , and denote the number of vβi equal to v× by b, where 1 ≤ b ≤ N•(?).
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We know that deg(×) in Γ̃vβ1
...vβk

is 2 higher than deg(×) in Γvβ1
...vβk

, due to the one
extra loop at vA in ΓA.

Therefore, if Γvαvβ1
...vβk

vanishes, then Γ̃vαvβ1
...vβk

should also vanish, since Γ̃vβ1
...vβk

already

has a higher deg(×). Furthermore, deg(×) in Γ̃vβ1
...vβk

is 1 higher than deg(×) in Γvαvβ1
...vβk

,

and thus Γvαvβ1
...vβk

6= Γ̃vαvβ1
...vβk

if and only if deg(×) = P in Γvαvβa ...vβk
. In this case, Γvαvβ1

...vβk

does not vanish, but Γ̃vβ1
...vβk

contains a ×-vertex of degree P + 1 and is identified with

the null graph, which means Γ̃vαvβ1
...vβk

is also null. So the equality is violated if and only

if deg(×) = P + 1 in Γ̃vβ1
...vβk

. We want to write this condition in terms of deg(×) in Γ?.

Note that deg(×) = P + 1 in Γ̃vβ1
...vβk

if and only if deg(×) = P + 1 − b − (k −N•(?)) in
ΓA, and deg(×) = P − 1 − b − (k − N•(?)) in Γ. Finally this implies deg(×) = P + 1 − b
in Γ?. Since 1 ≤ b ≤ N•(?), we have that P ≥ deg(×) ≥ P + 1−N•(?), which is condition
(c). Moreover, ∑

vα 6=vA

Γvαvβ1
...vβk

= ρ (Γspider) ,

where Γspider is an (` − 1)-looped spider formed from Γvβ1
...vβk

by adding a ?-vertex and
then adding an edge that joins this ?-vertex and the ×-vertex. By construction, Γspider has

one fewer ×-loop than Γ?. Such spiders form the desired L
(`−1)
spider in (3.33).

Constructing Loopless ×-Relations

Constructing a basis for R×loopless requires a thorough examination of ?-graphs. The next
lemma shows that any ×-relation can be written as a derivative map acting on a linear com-
bination of primary ?-graphs, which allows us to restrict to primary ?-graphs in classifying
all loopless ×-relations.

Lemma 2. For any L× ∈ R×, there exists L? ∈ L? that contains only primary ?-graphs,
satisfying L× = ρ(L?).

Proof. Since L× is a ×-relation, there exists L̃? =
∑

i bi Γ
?
i ∈ L? such that ρ(L̃?) = L×.

Starting with Γ?i , one can follow steps 1 and 2 in Definition 5 to construct a series of
?-graphs, (Γ?i )j1 , (Γ

?
i )j1j2 , . . . (Γ

?
i )j1...jk−1

, with jα = 0, . . . , n − 1 and α = 1, . . . , k. By
construction, (Γ?i )j1...jk−1

contains exactly one ?-vertex (which makes it a primary ?-graph),

and ρ(Γ?i ) = ρ
(∑n−1

j1,...,jk−1=0(Γ?i )j1...jk−1

)
. Therefore,

L× =
∑
i

bi · ρ(Γ?i ) = ρ

∑
i

N−1∑
j1,...,jk−1=0

bi (Γ?i )j1...jk−1

 .

This linear combination of primary ?-graphs (Γ?i )j1...jk−1
defines the desired L?. Opera-

tionally, such L? is constructed from L̃? by removing the ?-vertices one by one, as per the
steps in the definition of ρ, until only one ?-vertex remains.

The following proposition presents a general construction for loopless ×-relations. In the
next section we will prove that this procedure generates all elements in R×loopless.
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Proposition 4. Let L? ∈ L? be a linear combination of `-looped primary ?-graphs such
that all ×-graphs in ρ(L?) are `-looped. There exists an L?` ∈ L?, such that

(a) L?` − L? contains no graph with more than `− 1 loops;

(b) ρ(L?` ) = (−1)`ρ(0) ◦θ(L?+Lspider) ∈ R×loopless. Lspider is a linear combination of spiders.

Proof. Since each graph in ρ(L?) is `-looped, ρ(L?) = ρ(`)(L?). Let ρ(`)(L?) ≡
∑k

i=1 bi Γ
×
i ,

where each Γ×i contains ` loops. For each Γ×i , label the loops from 1 to `. By Definition
14, θ1 undoes the 1st loop, and θ1(Γ×i ) defines a primary ?-graph with ` − 1 loops that
is associated with Γ×i . By Lemma 1, Γ×i drops out of ρ(L? − bi · θ1(Γ×i )). Moreover, all
×-graphs in ρ ◦ θ1(Γ×i ), except for Γ×i , are (`− 1)-looped. Then

L?1 ≡ L? −
k∑
i=1

bi · θ1(Γ×i ) = L? − θ1 ◦ ρ(`)(L?)

defines an L?1 that satisfies ρ(L?1) = ρ(`−1)(L?1). Repeat this procedure for L?1 and the 2nd

loop, in place of L? and the 1st loop, obtaining

L?2 ≡ L?1 − θ2 ◦ ρ(`−1)(L?1) = L? − θ1 ◦ ρ(`)(L?) + θ2 ◦ ρ(`−1) ◦ θ1 ◦ ρ(`)(L?).

The second equality holds because ρ(`−1)(L?) = 0. Furthermore, ρ(L?2) = ρ(`−2)(L?2). Iter-
ating this ` times, we will reach a linear combination of primary ?-graphs

L?` ≡ L? +
∑̀
i=1

(−1)iX?
i , X?

i ≡ θi ◦ ρ(`−i+1) ◦ · · · ◦ θ2 ◦ ρ(`−1) ◦ θ1 ◦ ρ(`)(L?). (3.36)

Here ρ(L?` ) = ρ(0)(L?` ) ∈ R
×
loopless. Moreover, X?

i only contains (`− i)-looped graphs. This

means that graphs in L?` − L? =
∑`

i=1(−1)iX?
i contain at most `− 1 loops. Therefore, L?`

satisfies condition (a) of the proposition.

To prove that L?` also satisfies condition (b), take L
(i)
spider to stand for “any linear

combination of i-looped spiders” and, for 0 < k ≤ `, define

Z?`−k ≡ θk ◦ . . . ◦ θ1 (L?)−
k∑

α=2

θk ◦ . . . ◦ θα
(
L

(`−α+1)
spider

)
− L

(`−k)
spider

which contains only (` − k)-looped graphs. Define Z?` ≡ L?. Therefore, for 0 ≤ k ≤ `,
applying Proposition 3,

ρ(`−k−1) ◦ θk+1 ◦ ρ(`−k)
(
Z?`−k

)
= ρ(`−k−1)

[
θk+1

(
Z?`−k

)
− L

(`−k−1)
spider

]
=ρ(`−k−1)

[
θk+1 ◦ · · · ◦ θ1 (L?)−

k+1∑
α=2

θk+1 ◦ . . . ◦ θα
(
L

(`−α+1)
spider

)
− L

(`−k−1)
spider

]
,

i.e.,

ρ(`−k−1) ◦ θk+1 ◦ ρ(`−k)
(
Z?`−k

)
= ρ(`−k−1)

(
Z?`−k−1

)
. (3.37)
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Note that ρ(0)(L?) = 0 and ρ(0)(X?
i ) = 0 for i = 1, . . . , `− 1. Then, by (3.36) and (3.37),

ρ(0)(L?` ) = (−1)`ρ(0)(X?
` )

= (−1)`ρ(0) ◦ θ` ◦ ρ(1) ◦ · · · ◦ θ2 ◦ ρ(`−1) ◦ θ1 ◦ ρ(`)(Z?` )

= (−1)`ρ(0) ◦ θ` ◦ ρ(1) ◦ · · · ◦ θ2 ◦ ρ(`−1)(Z?`−1) = . . . = (−1)`ρ(0) (Z?0 )

= (−1)`ρ(0)

(
θ` ◦ . . . ◦ θ1 (L?)−

∑̀
α=2

θ` ◦ . . . ◦ θα
(
L

(`−α+1)
spider

)
− L

(0)
spider

)

= (−1)`ρ(0) ◦ θ

(
L? −

`+1∑
α=2

L
(`−α+1)
spider

)
.

Hence,
ρ(L?` ) = ρ(0)(L?` ) = (−1)`ρ(0) ◦ θ(L? + Lspider) ∈ R×loopless.

This gives condition (b), with Lspider = −
∑`+1

α=2 L
(`−α+1)
spider .

Corollary 7. Given Ls, a linear combination of spiders, ρ(0) ◦ θ(Ls) ∈ R×loopless.

Proof. It is enough to show that this corollary is true for one spider S. We claim that
Proposition 4 holds for L? = S and where Lspider is null if we order the loops such that
loops 1 to `× are ×-loops and `× + 1 to ` are •-loops and the loops are removed in this
order. Define Z?`−k ≡ θk ◦ . . . ◦ θ1 (S) and Z?` ≡ S. As in the proof of Proposition 4, we are
done if we can prove (3.37), but with this new definition of Z?`−k (i.e., when Lspider is always
taken to be zero).

For k = 0, Z?` = S, a spider, which has no ?-vertex adjacent to a •-vertex in violation
of Proposition 3(b). Thus, ρ(`−1) ◦ θ1 ◦ ρ(`)(Z?` ) = ρ(`−1) ◦ θ1(Z?` ) = ρ(`−1)(Z?`−1). This holds
regardless of which loop is chosen to be undone first. However, if the first loop is a ×-loop,
then Z?`−1 = θ1(S) will continue to violate Proposition 3(b). Therefore, if all of the ×-loops

are undone first, then ρ(`−k−1) ◦ θk+1 ◦ ρ`−k(Z?`−k) = ρ(`−k−1)(Z?`−k−1) holds for 0 ≤ k ≤ `×.
Now, there are no longer any ×-loops. Whenever there are •-loops, Z?`−`× will violate

Proposition 3(a). Thus, ρ(`−k−1) ◦ θk+1 ◦ ρ`−k(Z?`−k) = ρ(`−k−1)(Z?`−k−1) continues to hold
all the way until k = `.

A Basis for R×loopless

To find a basis for R×loopless, we first show that any loopless ×-relation can be written as

ρ(0) ◦ θ acting on a linear combination of spiders. We start with the following lemmas:

Lemma 3. Let L× ∈ R×loopless satisfy L× = ρ(L?), with L? a linear combination of primary

?-graphs. For any Γ?A in L? that is associated with a looped ×-graph Γ×, there exists another
?-graph Γ?B 6= Γ?A in L?, such that Γ× is not contained in ρ(Γ?A − Γ?B).

Proof. Suppose Γ?A is the only ?-graph in L? that is associated with Γ?A. Assume that the
coefficient of Γ?A in L? is bA 6= 0. Therefore, none of the ?-graphs in L?− bAΓ?A is associated
with Γ×, and thus Γ× is not contained in ρ(L? − bAΓ?A). Hence, the looped ×-graph Γ×
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appears in ρ(L?) = ρ(L?− bAΓ?A) + bA ·ρ(Γ?A) with coefficient bA 6= 0, which contradicts the
fact that ρ(L?) ∈ R×loopless.

The above argument shows that there exists a Γ?B 6= Γ?A in L? that is associated with
Γ×. By Lemma 1, Γ× appears in both ρ(Γ?A) and ρ(Γ?B) with coefficient 1. Then, ρ(Γ?A−Γ?B)
does not contain Γ×.

Specifically, if Γ?A is `-looped and Γ× is (`+ 1)-looped, then Γ?B is also `-looped.

Lemma 4. If Γ?A,Γ
?
B ∈ G? are `-looped primary ?-graphs that are associated with the same

(`+ 1)-looped ×-graph, then θ(Γ?A − Γ?B) = 0.

Proof. Since Γ?A and Γ?B are both associated with the same (` + 1)-looped ×-graph, Γ×,
θ(Γ?A) = θ(Γ?B) = θ(Γ×). Therefore, θ(Γ?A − Γ?B) = 0.

Proposition 5. For any loopless ×-relation L× ∈ R×loopless, there exists a linear combination

of spiders Ls, such that L× = ρ(0) ◦ θ(Ls).

Proof. In the following, we take Lspider to stand for “any linear combination of spiders”.
Since L× is a ×-relation, there exists L? ∈ L?, consisting of primary ?-graphs, such that
L× = ρ(L?). Take the set, H` = {Γ?1, . . . ,Γ?H`}, of ?-graphs in L? that contain the highest

number, `, of loops. Let bi` be the coefficient of Γ?i in L?. Therefore, L?−
∑H`

i=1 b
i
`Γ

?
i contains

no graphs with more than `−1 loops. We implement the following procedure for all graphs
in H` in order from Γ?1 to Γ?H` :

1. Define β
(1)
` ≡ b

(1)
` . Apply to Γ?1 the construction outlined in Proposition 4:

(a) If Γ?1 is a spider: By Corollary 7, Proposition 4(b) becomes that there exists a

linear combination of primary ?-graphs L
(1)
` , such that

ρ
(
L

(1)
`

)
= ρ(0) ◦ θ (Γ?1) = ρ(0) ◦ θ (Lspider) ∈ R×loopless.

By Proposition 4(a), graphs in L
(1)
` − Γ?1 contain at most `− 1 loops.

(b) If Γ?1 is not a spider: ρ(Γ?1) contains an (` + 1)-looped ×-graph Γ×. By Lemma
3, there exists an `-looped ?-graph Γ?j ∈ H, Γ?j 6= Γ?1, that is associated with Γ×

and Γ× is not in ρ(Γ?1 − Γ?2). By Lemma 4, θ(Γ?1 − Γ?j ) = 0. By Proposition 4,

ρ
(
L

(1)
`

)
= ρ(0) ◦ θ (Lspider) ∈ R×loopless,

where graphs in L
(1)
` − (Γ?1 − Γ?j ) contain at most `− 1 loops.

2. Define β
(i)
` , for i > 1, as the coefficient (which may be zero) of Γ?i in L? − β(1)

` L
(1)
` .

3. If β
(2)
` = 0, skip this step; if not, repeat step 1 for Γ?2, resulting in an L

(2)
` with

ρ
(
L

(2)
`

)
= ρ(0) ◦ θ(Lspider) ∈ R×loopless.

Redefine β
(i)
` , for i > 2, to be the coefficient of Γ?i in

(
L? − β(1)

` L
(1)
`

)
− β(2)

` L
(2)
` .



60

4. Repeat step 3 for Γ
(3)
` , . . . ,Γ

(H`)
` in sequence. This will eventually generate a linear

combination of ?-graphs, L? −
∑H`

i=1 β
(i)
` L

(i)
` , where

ρ

(
H∑̀
i=1

β
(i)
` L

(i)
`

)
= ρ(0) ◦ θ(Lspider) ∈ R×loopless,

and all graphs in L? −
∑H`

i=1 β
(i)
` L

(i)
` contain at most `− 1 loops.

We can now repeat this procedure for L? −
∑H`

i=1 β
(i)
` L

(i)
` . We will obtain

L? −
H∑̀
i=1

β
(i)
` L

(i)
` −

H`−1∑
i=1

β
(i)
`−1L

(i)
`−1, ρ

H`−1∑
i=1

βi`L
(i)
`−1

 = ρ(0) ◦ θ(Lspider) ∈ R×loopless.

In the first expression graphs contain at most `− 2 loops. Iterate ` times to get

L̃? ≡ L? −
∑̀
α=1

Hα∑
i=1

βiαL
(i)
α ,

which contains only loopless primary ?-graphs. In addition,

ρ

(∑̀
α=1

Hα∑
i=1

βiαL
(i)
α

)
= ρ(0) ◦ θ(Lspider) ∈ R×loopless.

Therefore,

ρ(L̃?) = L× − ρ

(∑̀
α=1

Hα∑
i=1

βiαL
(i)
α

)
∈ R×loopless.

Next we show that L̃? is a linear combination of spiders. Suppose there exists a ?-
graph Γ?A in L̃? that is not a spider. Then, by Lemma 3, there should exist another ?-graph
Γ?B 6= Γ?A in L̃? that is associated with the 1-looped ×-graph Γ× in ρ(Γ?A). But since
Γ× is associated with a unique loopless ?-graph (resulting from undoing the loop), this is
impossible. Therefore, graphs in L̃? are loopless spiders, and thus ρ(L̃?) = ρ(0) ◦ θ(L̃?).
Hence,

L× = ρ

(
L̃? +

∑̀
α=1

Hα∑
i=1

βiαL
(i)
α

)
= ρ(0) ◦ θ (Lspider) .

The Lspider within the last pair of parentheses is the desired Ls.

Thus we have shown that any loopless ×-relation can be written as ρ(0) ◦ θ(Ls). In fact, we
can go further and show that it is equal to ρ(0)(LM ), where LM is a linear combination of
Medusas. We start with the following Lemma:

Lemma 5. Given a spider S that contains `× ×-loops, there exist two linear combinations of
spiders Y ?, with graphs containing `× ×-loops but no •-loop, and W ?, with graphs containing
fewer than `× ×-loops, such that ρ(0) ◦ θ (Y ?) = ρ(0) ◦ θ

(
S +W ?

)
.
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Proof. Suppose S contains `• •-loops, labeled from 1 to `•. Denote the total number of
loops in S to be ` = `× + `•. Label the ×-loops in S from `• + 1 to `. We will follow the
proof of Proposition 4 to undo these •-loops. However, we want to keep the ?-vertex in
S untouched. Therefore, define ρs to be the usual derivative map except that it keeps the
original ?-vertex in S untouched; we can grade ρs by number of loops in analogy with ρ.

Apply θ1 to S to undo the 1st •-loop. Define Y ?
1 ≡ S − ρs ◦ θ1(S) and note that S

drops out of Y ?
1 . Furthermore, since S is the only `-looped graph in ρs ◦ θ(S),

Y ?
1 = S − ρs ◦ θ1(S) = −ρ(`−1)

s ◦ θ1(S).

Repeat this procedure for all graphs in Y ?
1 and the 2nd •-loop, in place of S and the 1st

•-loop, obtaining Y ?
2 ≡ Y ?

1 − ρs ◦ θ2(Y ?
1 ), which is a linear combination of (` − 2)-looped

graphs. However, since all graphs in Y ?
1 are (`− 1)-looped, we have

Y ?
2 = (−1)2ρ(`−2)

s ◦ θ2 ◦ ρ(`−1)
s ◦ θ1(S).

Iterate this `• times, resulting in

Y ?
`• = (−1)`

•
ρ(`−`•)
s ◦ θ`• ◦ · · · ρ(`−2)

s ◦ θ2 ◦ ρ(`−1)
s ◦ θ1(S).

Graphs in Y ?
`• contain no •-loops. As in the derivation of (6.98) in Proposition 4,

Y ?
`• =(−1)`

•
ρ(`−`•)
s

(
θ`• ◦ · · · ◦ θ1(S)−

`•∑
α=2

θ`• ◦ · · · ◦ θα
(

L
(`−α+1)
spider

)
− L

(`−`•)
spider

)
(3.38)

By Proposition 3, each graph in L
(`−α+1)
spider and L

(`−`•)
spider contains fewer than `× ×-loops.

Take Y ? = (−1)`
•
Y ?
`•

. Then, by Proposition 3,

ρ(0) ◦ θ(Y ?) = ρ(0) ◦ θ` ◦ · · · ◦ θ`•+1(Y ?) = ρ(0) ◦ θ(S +W ?),

where W ? is a linear combination of spiders containing fewer than `× ×-loops.

The next proposition finally allows us to relate spiders and Medusas.

Proposition 6. For any linear combination of spiders Ls ∈ L?, there exists a linear com-
bination of Medusas LM , such that ρ(0) ◦ θ(Ls) = ρ(0)(LM ).

Proof. Take the set,

H`× =
{
S

(`×)
1 , . . . , S

(`×)
H`×

}
,

of spiders in Ls that contain the highest number, `×, of ×-loops. Denote the coefficient

of S
(`×)
i in Ls as b

(`×)
i . Therefore, graphs in Ls −

∑H`×
i=1 b

(`×)
i S

(`×)
i contain at most `× − 1

×-loops. Applying Lemma 5 to each S
(`×)
i yields two linear combinations of spiders Y (`×),

comprised of graphs containing `× ×-loops but no •-loop, and W (`×), comprised of graphs
containing fewer than `× ×-loops, such that

H`×∑
i=1

ρ(0) ◦ θ
(
b
(`×)
i S

(`×)
i

)
= ρ(0) ◦ θ

(
Y (`×) −W (`×)

)
. (3.39)
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Furthermore,

Ls −

H`×∑
i=1

b
(`×)
i S

(`×)
i +W (`×)

 (3.40)

is a linear combination of spiders that contain at most `× − 1 ×-loops. Replace Ls with
(3.40), and the above procedure applies, resulting in a linear combination of spiders that
contain at most `× − 2 ×-loops. Iterating `× times, we will obtain

L(0)
s ≡ Ls −

`×∑
α=1

(
Hα∑
i=1

b
(α)
i S

(α)
i +W (α)

)
, (3.41)

By construction, L
(0)
s is a linear combination of spiders containing no ×-loop. Moreover,

ρ(0) ◦ θ
(
Y (α)

)
= ρ(0) ◦ θ

(
Hα∑
i=1

b
(α)
i S

(α)
i +W (α)

)
, (3.42)

in analogy with (3.39). Finally, repeat the same procedure one last time with L
(0)
s in (3.41)

in place of Ls. Since there are no longer any ×-loops in L
(0)
s , no W (α)’s will arise. We

obtain

L(0)
s =

H0∑
i=1

b
(0)
i S

(0)
i , ρ(0) ◦ θ

(
Y (0)

)
= ρ(0) ◦ θ

(
H0∑
i=1

b
(0)
i S

(0)
i

)
. (3.43)

Combining (3.41), (3.42) and (3.43), we obtain

ρ(0) ◦ θ (Ls) = ρ(0) ◦ θ

 `×∑
α=0

Y (α)

 .

Since the Y (α)’s are linear combinations of spiders with no •-loops and α ×-loops, θ(Y (α)),
is a linear combination of loopless ?-graphs with deg(×) = P − α and N(?) = α + 1. This
means deg(×) +N(?) = P + 1 in these loopless ?-graphs. By Definition 10, such graphs are
Medusas. Therefore,

LM = θ

 `×∑
α=0

Y (α)


gives the desired linear combination of Medusas in ρ(0) ◦ θ (Ls) = ρ(0) (LM ).

Theorem 1. ρ(0) (M) forms a basis of R×loopless.

Proof. Proposition 5 states that any L× ∈ R×loopless can be written as ρ(0) ◦ θ(Ls), with Ls
a linear combination of spiders. Proposition 6 states that there exists a linear combination
of Medusas LM , such that ρ(0) ◦ θ(Ls) = ρ(0)(LM ). Therefore, L× = ρ(0)(LM ). This proves
the completeness.
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Suppose that there exists a linear combination of Medusas LM =
∑k

i=1 αiMi 6= 0, such
that ρ(0)(LM ) = 0. Note that if two Medusas MA and MB have ×-vertices of different
degrees, then ρ(0)(MA) and ρ(0)(MB) do not have ×-graphs in common. Therefore, without
loss of generality, we can assume that the ×-vertices in all Mi have the same degree. By
the definition of Medusas, P = deg(×) + N(?) − 1, and this implies that they also have
the same number of ?-vertices. Furthermore, we can assume that, after deleting the ×-
vertex, all Mi’s are identical since this must be the case in order for the ρ(0)(Mi) to cancel
each other. Therefore, the only differences between the Mi are in the edges incident to the
×-vertex.

For any •-vertex, v, take the set H = {M̃1, . . . , M̃H} of distinct Medusas in LM , such
that each M̃i contains the highest number, E, of edges that join v and the ×-vertex among
all Medusas in LM . For each M̃i, form a specific graph, Γ×i , in ρ(0)(M̃i) by deleting all N(?)
?-vertices and adding N(?) edges joining the ×-vertex and v. Now, Γ×i contains E +N(?)
edges joining v and the ×-vertex. By construction, the Γ×i contain the highest number of
edges joining v and the ×-vertex, among all ×-graphs in ρ(0)(LM ). Therefore, the Γ×i can
only be canceled among ρ(0)(M̃i)’s. Thus in order for Γ×i to be canceled, we need Γ×i = Γ×j
for some i 6= j (note that this Γ×i appears in ρ(0)(M̃i) with unit coefficient). But this means
M̃i = M̃j which is a contradiction since the M̃i are distinct. This proves independence.

We can use this result to systematically find any P -invariant. When P = 0 or P = 1, a
simple classification is possible for any N . The case P = 1 is studied in detail in Appendix
3.B.3 and P = 0 is dealt with in the following corollary.

Corollary 8. Any loopless 0-invariant is an exact 0-invariant.

Proof. There are no Medusas in P = 0 (since Medusas require N(?) ≥ 1 and N(?) ≤
deg(×) = P + 1−N(?) ≤ P ). Therefore R×loopless = {0}.

Since we have already identified all exact invariants in Corollary 4, this classifies all loopless
0-invariants.

Lower Bound on Vertex Degree

Within the loopless basis, we will set a lower bound on the degree of any •- or ×-vertex in
any graph appearing in a consistency equation for a P -invariant.

Proposition 7. The vertices of a plain-graph Γ in a P -invariant L ∈ Lloopless are of degree
no less than 1

2(P + 1).

Proof. Let v be a vertex in Γ of degree less than 1
2(P + 1). Let Γ× in δ(Γ) be the term

given by replacing v with a ×-vertex. By Corollary 3, Γ× is in δ(L). Since L is P -invariant,
by Theorem 1, δ(L) = ρ(0) (

∑
i αiMi) for Mi ∈ M and thus, Γ× is in ρ(0)(Mj) for some

j. Since Mj is a Medusa, the ×-vertex in Mj is of degree no less than 1
2(P + 1). This

contradicts the fact that the ×-vertex in Γ× is of degree less than 1
2(P + 1).

Proposition 8. If L ∈ Lloopless is a P -invariant and LM is a linear combination of Medusas,
such that δL = ρ(0)(LM ), then the vertices of any Medusa in LM are of degree no less than
1
2(P + 1).
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Proof. Suppose that a Medusa M0 in LM has a vertex, v, of degree lower than 1
2(P+1). For

an interaction term, there exists at least one other vertex v0 in M0 to which the ?-vertices
can be joined such that v0 is neither v nor the ×-vertex. The resulting graph in ρ(0)(M0)
is a ×-graph Γ×0 with vertex v of degree lower than 1

2(P + 1), and thus, by Proposition 7,
does not appear in δ(L). Therefore, there must exist another Medusa M1 in LM such that
M0 6= M1 and Γ×0 is absent from ρ(0)(M0 −M1). Therefore, M1 must produce Γ×0 after
deleting the ?-vertices and adding the same number, N(?), of edges joining the ×-vertex
and the other vertices. Since M0 6= M1 at least one of these other vertices is not v0, so the
degree of v0 is larger in M1 than in M0. Now, form another ×-graph, Γ×1 , in ρ(0)(M1) by
deleting the ?-vertices in M1 and adding the same number of edges joining the ×-vertex and
v0. Γ×1 again contains v with degree lower than 1

2(P + 1). This ×-graph must be canceled
by introducing a third Medusa M2. This procedure can be iterated to obtain an infinite
sequence of Medusas M0,M1,M2, . . . in LM , with the number of edges incident to v0 in
Mi monotonically increasing with i. But this is impossible since the Medusas have a fixed
finite number of edges and thus we have a contradiction.

3.B.3. Linear Shift Symmetry, Trees and Galileons

For P = 1, Medusas have a very limited configuration: A Medusa M has two subgraphs,
which are disconnected from each other, one of which is F × , and the other of which is
a loopless plain-graph. This strongly restricts the possible associations between graphs. In
addition, for P = 1, ρ(M) = ρ(0)(M) for any Medusa M .

Proposition 9. For P = 1, a loopless ×-graph is associated with at most one Medusa.

Proof. If the ×-vertex in the loopless ×-graph has degree zero, then it cannot be associated
with a Medusa. If the ×-vertex in the loopless ×-graph has degree one, then the loopless
×-graph takes the form of a ×-vertex and an edge joining this ×-vertex to a vertex in
a loopless plain-graph, Γ. The unique Medusa associated with this ×-graph is given by
deleting the edge incident to the ×-vertex and adding a ?-vertex together with an edge
joining the ?-vertex and the ×-vertex.

Following the same logic as in the proofs of Corollary 2 and 3, we obtain:

Corollary 9. For P = 1, any two associated Medusas are identical to each other.

Corollary 10. For P = 1, if M is a Medusa in a sum of Medusas LM , then ρ(LM ) contains
all graphs in ρ(M).

Corollary 11. For P = 1, if a Medusa M is associated with a plain-graph in a 1-invariant,
L ∈ Lloopless, then δ(L) contains all graphs in ρ(M).

Proof. If M is associated with Γ in the 1-invariant L, then there exists Γ× shared by δ(Γ)
and ρ(M). Corollary 3 implies Γ× is in δ(L). Theorem 1 implies δ(L) = ρ(LM ) where
LM is a sum of Medusas. Therefore, Γ× is in ρ(LM ). Proposition 9 implies M is in LM .
Corollary 10 implies ρ(LM ) contains ρ(M) and thus δ(L) contains ρ(M).



65

Minimal Invariants

Definition 16. A nonzero P -invariant LN,∆ is minimal if there is no nonzero P -invariant
L′N,∆′ for any ∆′ < ∆. For a given P and N , let ∆min denote the minimum ∆ for which a
P -invariant exists.

Now, we prove that a minimal 1-invariant is a sum of trees. We start with the following
lemma.

Lemma 6 (Leaf Shuffling). If a graph ΓA that contains a leaf v appears in a 1-invariant L,
then any graph ΓB that contains v as a leaf and satisfies ΓB − v = ΓA− v is also contained
in L.

Proof. Depicted below is a series of graphs, which are all associated with each other:

v

ΓA

⇒ ×
v

Γ×A

⇒ F ×
v

M

⇒ ×
v

Γ×B

⇒
v

ΓB

where the circles denote subgraphs. In particular, both ΓA and ΓB are associated with the
Medusa M . By Corollary 11, δL contains all graphs in ρ(M). Furthermore, by Corollary
1, L contains both ΓA and ΓB.

We call the procedure that relates ΓB to ΓA described in the above lemma leaf shuffling.
The corollaries below follow immediately.

Corollary 12. If a plain-graph ΓA is contained in a 1-invariant L, and ΓB is formed from
ΓA by shuffling leaves, then ΓB is also contained in L.

Corollary 13. If a plain-graph Γ in a loopless 1-invariant L contains more than one con-
nected component, then none of these connected components is a tree.

Proof. Note that there are at least two leaves in a tree, if the tree is not an empty vertex.
If in Γ there is a connected component T that is a tree, then we can shuffle all leaves in T
to be joined to other connected components, while turning T into another tree with at least
one fewer vertex. This procedure can be iterated until all but one vertex in T are shuffled
to be joined to other connected components, which turns Γ into a graph Γ̃ containing an
empty vertex. By Corollary 12, since L contains Γ, it also contains Γ̃, which violates the
lower bound on vertex degree. Therefore, such Γ cannot appear in loopless 1-invariants.

Proposition 10. If L is a nonzero minimal N -point loopless 1-invariant, then it contains
all trees with N vertices.

Proof. If L contains no plain-graphs with leaves, then the vertices in L have degree at least
2 (note that an empty vertex is disallowed by Proposition 7). Then the number of edges ∆
satisfies

∆ ≥ N. (3.44)

Otherwise, consider a plain-graph Γ contains a leaf v and appears in L. If there exist
any other leaves in Γ, shuffle them to be adjacent to v. Iterate for the resulting graphs
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until reaching a plain-graph Γ0 in which all leaves are adjacent to v. By Corollary 12, Γ0

is also contained in L. Denote the subgraph of Γ0 consisting of all leaves in Γ0 and v by T ,
which is a particular type of tree usually called a star. Define Γ′ as a subgraph of Γ0 that
is formed by deleting from Γ0 all vertices in T .

If Γ′ is not null, by Corollary 13, T cannot be disconnected from Γ′, since otherwise T
would be a tree disconnected from at least one other connected component in Γ0. Moreover,
since v is a leaf in Γ, Γ′ is joined to T by exactly one edge incident to v. Define NT as the
number of vertices in T and N ′ as the number of vertices in Γ′, then N = NT + N ′. Note
that there is no leaf in Γ′, and thus the vertices in Γ′ have degree at least 2. Therefore,

∆ ≥ (NT − 1) +N ′ + 1 = N. (3.45)

If Γ′ is null, then Γ0 = T and the original graph Γ is a tree. In this case, ∆ = N − 1,
which is lower than the bounds ((3.44) and (3.45)) for the other cases. By Corollary 12, L
contains T . The Galileon invariants presented in §3.2 realize this bound ∆min = N − 1. In
fact, any tree with N vertices can be turned into a star by shuffling leaves. Since L contains
the star with N vertices, it contains all trees with N vertices.

Next, we prove the uniqueness of the minimal term.

Proposition 11. The minimal N -point loopless 1-invariant with ∆ = N − 1 is unique up
to proportionality.

Proof. Let L1 and L2 be minimal N -point loopless 1-invariants with ∆ = N − 1. Let T be
a tree in L1 and L2, which exists by Proposition 10. Rescale L1 and L2 so that T appears
in each with unit coefficient. Then, T is not in L1 − L2. However, L1 − L2 is a minimal
N -point loopless 1-invariant. Therefore, Proposition 10 implies that L1 − L2 vanishes.

Finally, we prove the existence of the minimal N -point loopless 1-invariant with ∆ = N−1:

Theorem 2. Any minimal N -point loopless 1-invariant is proportional to the sum with
unit coefficients of all trees with N vertices.

Proof. Let TN be a general tree with N •-vertices. Let T×N be a general tree with (N −1) •-
vertices and one × vertex. Let T ?N have two connected components, one of which is F ×
and the other is a tree TN−1. Let L, L× and L? be the sum with unit coefficients of all
TN , T×N and T ?N , respectively. Replacing a •-vertex in TN with a × produces a unique T×N ,
since vertices are labeled. Therefore, δ(L) is simply L×. Similarly, ρ(L?) = L×. Therefore,
δ(L) = ρ(L?) and L is 1-invariant, which is unique by virtue of Proposition 11.

It is shown in [60] that the Galileon-like term in spacetime dimension d = D + 1 ≥ N :

ε
i1···iN−1 kN ···kDε

j1···jN−1

kN ···kD∂i1φ∂j1φ∂i2∂j2φ · · · ∂iN−1∂jN−1φ, (3.46)

is invariant up to a total derivative. By Theorem 2, the sum with unit coefficients of all
trees with N vertices is proportional to (3.46), up to a total derivative. In fact, the constant
of proportionality is 1.
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Non-minimal Invariants

So far we have found the unique minimal 1-invariant for each N , that is with ∆ = N − 1.
In what follows we argue that any non-minimal 1-invariant (∆ > N − 1) is equal to an
exact 1-invariant up to a plain-relation (a total derivative). We begin with the following
definition:

Definition 17 (Frame). For Γ ∈ GN,∆, delete all edges incident to leaves; iterate this
procedure until reaching a graph Γf that contains no leaves. We call Γf the frame of Γ.

Note that, by definition, after deleting from Γ all edges that appear in Γf , each of the
connected components in the resulting graph is a tree. We also define:

Definition 18 (Frame Invariant). A loopless 1-invariant L =
∑k

i=1 αiΓi is a frame invari-
ant if the frames of Γi for all i = 1, . . . , k are identical.

For convenience, we define a map f on frame invariants, such that f(L) is the frame which
is common to all of the graphs contained in L.

By definition, the nonempty vertices in any frame have degree greater than 1. No
such vertex can be turned into a ×-vertex or be adjacent to a ?-vertex in a ?-graph asso-
ciated with Γ. This means that terms with different frames cannot lead to cancellations in
the consistency equation. Therefore, a consistency equation naturally splits into multiple
consistency equations, each one a frame invariant. This is summarized in the lemma below:

Lemma 7. Any loopless 1-invariant is a linear combination of frame invariants.

The proofs presented in Proposition 10 and 11 and Theorem 2 are directly applicable to
frame invariants, from which we conclude:

Proposition 12. Up to proportionality, any loopless frame invariant L is equal to the sum
with unit coefficients of all plain-graphs that satisfy the following conditions:

(a) The plain-graph has a frame f(L).

(b) If there is more than one connected component in the plain graph, then none of them is
a tree.

Note that condition (b) follows directly from Corollary 13. Proposition 12 effectively pro-
vides an equivalent definition for frame invariants. Classifying all non-minimal 1-invariants
is thus reduced to classifying all non-minimal frame invariants. Furthermore, by Proposi-
tion 2, we can restrict our search to loopless frame invariants. In the following we will show
that any loopless frame invariant is equal to an exact invariant up to total derivatives. We
start with a useful lemma:

Lemma 8. Let Γ(`) ∈ G be an `-looped exact 1-invariant, such that all vertices with loops
have degree 2. Then ρ(0) ◦ θ(Γ(`)) is a loopless 1-invariant and is equal to Γ(`) up to a
plain-relation.
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Proof. Label the loops in Γ(`) from 1 to `. Note that ρ ◦ θ1(Γ(`)) = Γ(`) + ρ(`−1) ◦ θ1(Γ(`)).
Since θ1(Γ(`)) is a ?-ed plain graph, ρ ◦ θ1(Γ(`)) is a plain-relation. Hence ρ(`−1) ◦ θ1(Γ(`)) is
1-invariant. Define

L1 ≡ ρ(`−1) ◦ θ1(Γ(`)) = ρ ◦ θ1(Γ(`))− Γ(`),

L1 is by definition an exact 1-invariant up to a plain-relation ρ ◦ θ1(Γ`). Furthermore, all
graphs in L1 are (`− 1)-looped. Therefore, ρ ◦ θ2(L1) = L1 + ρ(`−2) ◦ θ2(L1). Define

L2 ≡ ρ(`−2) ◦ θ2(L1) = ρ ◦ θ2(L1)− L1,

which is also an exact 1-invariant up to plain-relations and consists of graphs that are
(`− 2)-looped. Iterating ` times, we obtain

L` = ρ(0) ◦ θ`−1 ◦ · · · ◦ ρ(`−2) ◦ θ2 ◦ ρ(`−1) ◦ θ1(Γ(`)) = ρ(0) ◦ θ(Γ(`)),

which is an exact 1-invariant up to plain-relations.

Theorem 3. A non-minimal frame invariant is an exact invariant up to a plain-relation.

Proof. It is sufficient to consider any loopless non-minimal frame invariant L(k) ∈ LN,∆,

with k the number of empty vertices in f(L(k)). Note that since L(k) is non-minimal, it is
not a tree and therefore k < N . We prove the theorem by induction on k.

1. k = 0: In this case, f(L(0)) = L(0). By construction, a vertex in a graph in L(0) is of
degree no less than 2, and thus L(0) is already exactly invariant.

2. If any L(k) with k < α is an exact invariant plus a plain-relation: Consider any loopless
non-minimal frame invariant L(α). Form an `-looped exact 1-invariant Γ(α) from
f(L(α)) by adding a loop to each empty vertex. By Lemma 8, ρ(0)◦θ(Γ(α)) is a loopless
1-invariant, equal to Γ(α) up to plain-relations. Using Lemma 7, ρ(0)◦θ(Γ(α)) =

∑
i Fi,

where each Fi is a frame invariant with a distinct frame. Provided α < n, there is
exactly one Fi, say F̃ , with f(F̃ ) = f(L(α)), and all other Fi have fewer than α empty
vertices in f(Fi). Since all other Fi’s have fewer than α empty vertices in f(Fi), they
are exact 1-invariants up to a plain-relation, by the induction hypothesis. But this
means that F̃ is also an exact 1-invariant up to plain-relations. By Proposition 12,
since F̃ and L(α) share the same frame, F̃ is proportional to L(α) and thus L(α) is also
an exact 1-invariant up to plain-relations.

By induction, L(k) is exactly 1-invariant up to plain-relations for any 0 ≤ k < N .

From the above discussion, we can conclude: The set of all exact 1-invariants with all
looped vertices of degree 2 generates all non-minimal 1-invariants, up to plain-relations. An
example of these graphs for N = 3 and ∆ = 4 is shown in Figure 3.B.3.

We end our discussion of the linear shift symmetry with a summary of the full classi-
fication of 1-invariants:

Theorem 4 (Classification of 1-invariants). The sum with unit coefficients of all trees with
n vertices is the unique 1-invariant with ∆ = N − 1 (up to proportionality and plain-
relations). The set of all graphs consisting of N vertices, with all vertices of degree higher
than 1 and any looped vertex of degree 2, generate all 1-invariants with ∆ > N − 1 (up to
plain-relations). There are no invariants with ∆ < N − 1.
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Figure 3.B.3: All 1-invariant terms up to total derivatives, with N = 3, ∆ = 4 and P = 1.

3.B.4. Invariants from Superpositions

In this section, we describe a method of combining invariants to form other invariants.
Therefore, we will need to keep track of the degree of the polynomial shifts under which the
variation of various terms are taken. It is important to recall at this point that the variation
map δP depends crucially on P . Therefore, all the different types of graphs depend on P as
well. Until now, this dependence on P has been kept implicit. We will now make it explicit
by referring to graphs as P -graphs.

The method of combining invariants involves the notion of superposition, defined below,
which combines graphs with different values of P .

Definition 19 (Superposition of Graphs). Given a PA-graph ΓA and a PB-graph ΓB, which
each have the same value of N , the superposition of ΓA and ΓB is a P -graph formed by
applying the the following procedure:

1. If there is a ×-vertex in ΓB, replace the vertex in ΓA that has the same label as the
×-vertex in ΓB with a ×-vertex.

2. Add any ?-vertices in ΓB to ΓA.

3. Take all edges in ΓB and add them to ΓA, joining the same vertices as they do in ΓB.

4. Identify the resulting graph as a null graph if deg(×) is higher than P or there are two
×-vertices.

The resulting graph is denoted by ΓA ∪ ΓB.

Note that ΓA ∪ ΓB = ΓB ∪ ΓA. Note that the above definition of superposition depends on
P . We will refer to such a superposition as a P -superposition.

Definition 20 (Superposition of Linear Combinations). Given the linear combinations
LA =

∑kA
i=1 ai Γ

A
i and LB =

∑kB
i=1 bi Γ

B
i , where ΓAi ,Γ

B
j are graphs with the same n, the

superposition of LA and LB is defined as

LA ∪ LB ≡
kA∑
i=1

kB∑
j=1

ai bj ΓAi ∪ ΓBj .

Superposition of a P -invariant and an Exact Invariant

This section involves the construction of new invariants by taking the superposition of a
P -invariant with an exact invariant.
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Lemma 9.

1. Given a P -graph Γ ∈ LN,∆ and a PE-graph ΓE ∈ LN,∆E
, where ΓE is an exact

PE-invariant,
ΓE ∪ δP (Γ) = δP+PE+1(ΓE ∪ Γ), (3.47)

where ∪ denotes (P + PE + 1)-superposition.

2. Given a P -graph Γ? ∈ L?N,∆ and a PE-graph ΓE ∈ LN,∆E
, where ΓE is an exact

PE-invariant,
ΓE ∪ ρ(Γ?) = ρ(ΓE ∪ Γ?), (3.48)

where ∪ denotes (P + PE + 1)-superposition.

Proof.

1. Operationally, a graph in the LHS of (3.47) is given by substituting one •-vertex,
v, in Γ with a ×-vertex and then adding the edges in ΓE to the result. Meanwhile,
the RHS is given by adding the edges in ΓE to Γ first before substituting v by a
×-vertex. Thus, (3.47) is violated only when a graph vanishes from one side and not
the other. A graph vanishes from the RHS if and only if the degree of the vertex v
in ΓE ∪ Γ is greater than P + PE + 1. If this condition holds, then the graph also
vanishes from the LHS by the rules of (P +PE + 1)-superposition. A graph could also
possibly vanish from the LHS if deg(v) > P in Γ. However, if deg(v) > P in Γ, then
deg(v) > P + PE + 1 in ΓE ∪ Γ since the degree of a vertex in ΓE is at least PE + 1
(by Corollary 4). Therefore, the conditions for the vanishing of a graph from either
side of (3.47) are identical and thus the equation holds.

2. Once again, (3.48) is violated only when a graph vanishes from one side and not the
other. A graph vanishes from the RHS if and only if the degree of the ×-vertex in
ρ(ΓE ∪ Γ?) is greater than P + PE + 1. If this condition holds, then the graph also
vanishes from the LHS by the rules of (P + PE + 1)-superposition. A graph on the
LHS could also possibly vanish if deg(×) > P for a graph Γ× in ρ(Γ?). However, then
deg(×) > P +PE + 1 in ΓE ∪Γ×, since the degree of a vertex in ΓE is at least PE + 1
(by Corollary 4). Therefore, the conditions for the vanishing of a graph from either
side of (3.48) are identical and thus the equation holds.

Now we apply Lemma 9 to prove the main result:

Theorem 5. For fixed N , the superposition of a P -invariant and an exact PE-invariant is
a (P + PE + 1)-invariant.

Proof. Denote the P -invariant by L =
∑k

i=1 biΓi and the exact PE-invariant by LE =∑kE
i=1 aiΓ

E
i . By Corollary 4, all vertices in ΓEi have degree greater than PE . Since L is a

P -invariant, there exists a linear combination of ?-graphs, L? =
∑k?

i=1 ciΓ
?
i , such that the

folowing consistency equation holds:

δP (L) = ρ(L?). (3.49)
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Define L̃ ≡ LE ∪ L =
∑

i,j aibjΓ
E
i ∪ Γj . Then, using Statement 1 of Lemma 9:

δP+PE+1(L̃) =
∑
i,j

aibj δP+PE+1(ΓEi ∪ Γj)

=
∑
i,j

aibj ΓEi ∪ δP (Γj) =
∑
i

ai ΓEi ∪ δP (L)
(3.50)

Furthermore, define L̃? ≡
∑

i,j aicjΓ
E
i ∪ Γ?j using (P + PE + 1)-superposition. Using State-

ment 2 of Lemma 9:

ρ(L̃?) =
∑
i,j

aicjρ(ΓEi ∪ Γ?j ) =
∑
i,j

aicjΓ
E
i ∪ ρ(Γ?j ) =

∑
i

aiΓ
E
i ∪ ρ(L?) (3.51)

Combining (3.49), (3.50) and (3.51) we have that δP+PE+1(L̃) = ρ(L̃?) and therefore L̃ ≡
LE ∪ L is a (P + PE + 1)-invariant.

Superposition of Minimal Loopless 1-invariants

In this section we show that the superposition of Q minimal loopless 1-invariants results in
a (2Q − 1)-invariant. To prove this statement, we need to construct a linear combination
of Medusas in order to write down a valid consistency equation. This construction requires
intermediate ?-graphs called “hyper-Medusas”, which we now define:

Definition 21 (Hyper-Medusa). A hyper-Medusa is a loopless ?-graph with all ?-vertices
adjacent to the ×-vertex, such that the degree of the ×-vertex deg(×) and the number of
?-vertices N(?) satisfy deg(×) ≥ P + 1−N(?).

Lemma 10. Given Mh a hyper-Medusa, there exists a linear combination of Medusas LM
that satisfies ρ(0)(Mh) = ρ(0)(LM ).

Proof. Within the action of ρ(0), we can delete deg(×) + N(?) − P + 1 ≥ 0 ?-vertices and
then add the same number of edges in Mh , yielding a linear combination of ?-graphs with
exactly P + 1− deg(×) ?-vertices. These resulting graphs are Medusas.

The following definition will allow us to construct the desired hyper-Medusas:

Definition 22. Take Γ1 to be any ×-graph or ?-graph and for each i = 2, ..., Q, take Ti to
be any tree, such that Γ and Ti have the same value of n. Label the ×-vertex in Γ1 by v×

and define T×i to be the graph formed from Ti by replacing the vertex that is labeled by v×

with a ×-vertex. If v× is a leaf in Ti, then define T̃i to be the unique P = 1 Medusa that is
associated with T×i , otherwise T̃i = T×i . Then we define:

χ(Γ1 ∪ T2 ∪ · · · ∪ TQ) ≡ Γ1 ∪ T̃1 ∪ · · · ∪ T̃Q.

Theorem 6. For fixed N , the superposition of Q minimal loopless 1-invariants is a (2Q−1)-
invariant.
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Proof. By Theorem 2, any minimal N -point loopless 1-invariant is equal to the sum with
unit coefficients of all trees with N vertices, up to proportionality. Therefore, denote the

Q copies of the minimal loopless 1-invariants by L
(c)
n =

∑NN−2

αc=1 T
(c)
αc , for c = 1, . . . , Q. We

add an additional structure to all graphs in this proof: We color all edges in all graphs in

L
(c)
N by a distinct color (c). Throughout this proof, two graphs are equal if and only if they

are the same graph and, in addition, their edges are the same colors. Taking into account

this coloring, all of the plain-graphs in L ≡
⋃Q
c=1 L

(c)
N now have unit coefficients, and the

number of these plain-graphs is
(
NN−2

)Q
. Moreover, L is the sum over α1, . . . , αQ of all

such T
(1)
α1
∪ T (2)

α2
∪ · · · ∪ T (Q)

αQ
’s with unit coefficients. By Theorem 2, there is a unique linear

combination of Medusas
∑

βc
M

(c)
βc

satisfying

δ1

(
L

(c)
N

)
= δ1

NN−2∑
αc=1

T (c)
αc

 = ρ(0)

N(N−1)N−3∑
βc=1

M
(c)
βc

 ,

where each T
(c)
αc is a distinct tree and each M

(c)
βc

is a distinct P = 1 Medusa, consisting of

a subgraph tree and a disconnected subgraph F × . In the following, we take the limit
P →∞, so that no graph vanishes. Note that we have∑

α1

δ∞

(
T (1)
α1
∪ T (2)

α2
∪ · · · ∪ T (Q)

αQ

)
=
∑
α1

(
δ∞(T (1)

α1
)
)
∪ T (2)

α2
∪ · · · ∪ T (Q)

αQ

=
∑
β1

ρ(0)
(
M

(1)
β1

)
∪ T (2)

α2
∪ · · · ∪ T (Q)

αQ
+
∑
α1

(δ∞ − δ1)(T (1)
α1

) ∪ T (2)
α2
∪ · · · ∪ T (Q)

αQ
. (3.52)

Define XL ≡
∑

β1,α2,...,αQ
M

(1)
β1
∪ T (2)

α2
∪ · · · ∪ T (Q)

αQ
and XR to be the sum with unit

coefficients of all distinct graphs contained in
∑

β1,α2,...,αQ
χ(M

(1)
β1
∪ T (2)

α2
∪ · · · ∪ T (Q)

αQ
). In

the following, we show that
ρ(0)(XL) = ρ(0)(XR). (3.53)

Since T
(c)
αc , αc = 1, . . . , NN−2, and M

(c)
βc

, βc = 1, . . . , N(N − 1)N−3, are all distinct from
each other, all elements in XL and XR have unit coefficient. Therefore, it will suffice to
show that any graph in ρ(0)(XR) is also in ρ(0)(XL), and vice versa.

RHS contains LHS: Let Γ× be a ×-graph in ρ(0)(XL). Then, Γ× is contained in

ρ(0)
(
M

(1)
β1
∪T (2)

α2
∪ · · · ∪T (Q)

αQ

)
for some β1, α2, . . . , αQ. The ?-graph, M

(1)
β1
∪T (2)

α2
∪ · · · ∪T (Q)

αQ

induces a unique χ
(
M

(1)
β1
∪ T (2)

α2
∪ · · · ∪ T (Q)

αQ

)
, such that all ×-graphs in ρ(0)

(
M

(1)
β1
∪ T (2)

α2
∪

· · · ∪T (Q)
αQ

)
(including Γ×) are contained in ρ(0) ◦χ

(
M

(1)
β1
∪T (2)

α2
∪ · · · ∪T (Q)

αQ

)
. Therefore, Γ×

is in ρ(0)(XR) and ρ(0)(XR) contains ρ(0)(XL).

LHS contains RHS: Let Γ× be a ×-graph in ρ(0)(XR). Then, Γ× is contained in ρ(0) ◦
χ
(
M

(1)
β1
∪ T (2)

α2
∪ · · · ∪ T (Q)

αQ

)
for some β1, α2, . . . , αQ. In particular, Γ× is contained in some

ρ(0)
(
M

(1)
β′1
∪ T (2)

α′2
∪ · · · ∪ T (Q)

α′Q

)
with T

(2)
α′2
∪ · · · ∪ T (Q)

α′Q
in ρ(0) ◦ χ

(
T

(2)
α2
∪ · · · ∪ T (Q)

αQ

)
. Since

M
(1)
β′1
∪ T (2)

α′2
∪ · · · ∪ T (Q)

α′Q
is in XL, Γ× is in ρ(0)(XL) and ρ(0)(XL) contains ρ(0)(XR).
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From (3.53) we obtain∑
β1,...,αQ

ρ(0)
(
M

(1)
β1

)
∪ T (2)

α2
∪ · · · ∪ T (Q)

αQ
= ρ(0) (XR) . (3.54)

Similarly, ∑
α1,...,αQ

(δ∞ − δ1)T (1)
α1
∪ T (2)

α2
∪ · · · ∪ T (Q)

αQ
= ρ(0)

(
X̃R

)
, (3.55)

with X̃R given by the sum with unit coefficients of all graphs contained in∑
α1,...,αQ

χ
(

(δ∞ − δ1)T (1)
α1
∪ T (2)

α2
∪ · · · ∪ T (Q)

αQ

)
.

Therefore, by (3.52), (3.54) and (3.55), we conclude that

δ∞(L) =
∑

α1,...,αQ

δ∞

(
T (1)
α1
∪ T (2)

α2
∪ · · · ∪ T (Q)

αQ

)
= ρ(0)

(
XR + X̃R

)
. (3.56)

Finally, switch back to P = 2Q − 1. Then graphs with deg(×) > 2Q − 1 will vanish
simultaneously on both sides of (3.56), and thus, in P = 2Q− 1:

δ2Q−1(L) = ρ(0)
(
XR + X̃R

)
. (3.57)

Next we show that any graph, Γ, in XR + X̃R is a hyper-Medusa. By construction, Γ
results from the superposition of graphs with either a ×-vertex of degree 1 joined to a
?-vertex or a ×-vertex of degree larger than 1. Therefore, deg(×) in Γ satisfies deg(×) ≥
N(?) + 2 (Q−N(?)). So, with P = 2Q − 1, deg(×) ≥ P + 1 − N(?) and Γ is a hyper-
Medusa. Hence, by Lemma 10, there exists a linear combination, LM , of Medusas, such

that ρ(0)
(
XR + X̃R

)
= ρ(0) (LM ). Therefore, combined with (3.57), we obtain δ2Q−1(L) =

ρ(0)(LM ), which proves that L is a (2Q− 1)-invariant.

We end our search for P -invariants with a summary of all invariants that we found:

Theorem 7. For fixed N , the superposition of any exact PE-invariant with the superposition
of Q minimal loopless 1-invariants results in a P -invariant, provided PE + 2Q ≥ P .4

We conjecture that the above theorem captures all P -invariants, up to total derivatives.
Since we have classified all exact invariants and all 1-invariants, it is straightforward to
construct the P -invariants in the above theorem for any specific case.

Note that we have classified exact invariants and 1-invariants using the two parameters,
N (number of vertices) and ∆ (number of edges). Finite connected graphs can always be
embedded on a Riemann surface of some genus, in which case Euler’s theorem relates N ,

4This theorem applies even for PE < 0. Recall that, by Corollary 5, an exact P -invariant for P < 0 is
just any possible linear combination of plain-graphs. For example, the plain-graph consisting only of empty
vertices is an exact P -invariant for any P < 0.
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∆ and the number of faces F of the embedding to the genus g of the surface. Therefore,
one could also use the parameters N and F instead to classify invariants5. Any finite
graph that can be embedded into a 2-sphere can also be embedded into a plane, and is
known as a planar graph. In particular, this is true for any graph with N ≤ 4 and also for
any tree. Furthermore, any superposition of planar graphs is again a planar graph. The
number of faces of these planar graphs is exactly the number of “loops” when the graph is
interpreted as a Feynman diagram6. One can check this statement for all of the examples
in §3.3.4 since they were all generated by superposition of planar graphs. Note that, in
§3.3.4, except for P = 0 (which is a trivial case), all superpositions involve trees, so that all
superposed graphs are connected. For example, all of the graphs in Figure 3.3 have three
faces when embedded into a plane. Indeed, when interpreted as Feynman diagrams, these
graphs have three “loops”. In general, the superposition of Q minimal loopless 1-invariants
yields graphs have F “loops” as Feynman diagrams, where F is given by F = (Q−1)(N−1).
Theorem 7 says that these superpositions will be P -invariant for P ≤ 2Q− 1. For example,
the superposition of three minimal loopless 1-invariants with N = 4 produces a 5-invariant
with 6 faces.

3.B.5. Unlabeled Invariants

So far we have been dealing entirely with labeled graphs, which represent algebraic terms
where each φ is given a distinct label. But we are primarily interested in invariants where
all φ’s are the same. These are represented by unlabeled graphs, that is, where isomor-
phic graphs are identified with each other. One may wonder whether or not the labeled
P -invariants capture all of the unlabeled ones. The following proposition addresses this
question, and shows that our restriction to labeled P -invariants still allows us to find all
unlabeled P -invariants.

Proposition 13. Given an unlabeled P -invariant Lunlab, there exists a labeled P -invariant
Llab, such that Llab reduces to an integer multiple of Lunlab once the labels are removed.

Proof. Define L×unlab = δ(Lunlab), where δ(Lunlab) contains δ(Γunlab) for all Γunlab in Lunlab.
Label Lunlab (i.e., label the vertices from 1 to N) to form Llab. This labeling is fiducial
since we will eventually sum over all possible labelings. Do the same for L×unlab to form L×lab.
Define L×

lab′
= δ(Llab), which is a labeling of L×unlab, possibly distinct from L×lab. However,

if Γ×lab in L×lab and Γ×
lab′

in L×
lab′

reduce to the same Γ×unlab in L×unlab once the labels are

removed, then Γ×lab and Γ×
lab′

are simply related by a permutation. Therefore,∑
σ∈SN

σ ◦ δ(Llab) =
∑
σ∈SN

σ(L×lab) =
∑
σ∈SN

σ(L×
lab′

), (3.58)

where SN is the group of permutations on the N vertices.
Since Lunlab is P -invariant, there exists L?unlab such that δ(Lunlab) = ρ(L?unlab). Label

L?unlab to form L?lab and define L×
lab′′

= ρ(L?lab). Generically, there can be cancellations

between isomorphic graphs in L×
lab′′

, once the labels are removed, since one ×-graph can

5In principle, ∆ and F could also be used, but this seems less natural.
6Thanks to Kurt Hinterbichler for bringing this issue to our attention at the 2014 BCTP Tahoe Summit.
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be associated with more than one ?-graph. Therefore, L×
lab′′

is not necessarily a labeling

of L×unlab. Nevertheless, if αΓ×unlab appears in L×unlab with α 6= 0, then all of the graphs,
Γ×1 , . . . ,Γ

×
k in L×

lab′′
which are isomorphic to Γ×unlab appear in L×

lab′′
as a linear combination∑k

i=1 αi Γ×i with
∑k

i=1 αi = α. Conversely, if
∑k

i=1 αi Γ×i appears in L×
lab′′

, but the graph,

Γ×unlab, to which Γ×i reduces once the labels are removed, does not appear in L×unlab, then∑k
i=1 αi = 0. Therefore,

∑
σ∈SN

k∑
i=1

αi · σ(Γ×i ) =

k∑
i=1

αk
∑
σ∈SN

σ(Γ×lab) = α
∑
σ∈SN

σ(Γ×lab),

which implies ∑
σ∈SN

σ ◦ ρ(L?lab) =
∑
σ∈SN

σ(L×
lab′′

) =
∑
σ∈SN

σ(L×lab). (3.59)

Combining Eqs. (3.58) and (3.59) with the facts that σ ◦ δ = δ ◦ σ and σ ◦ ρ = ρ ◦ σ for
each σ ∈ SN , yields the desired labeled consistency equation:

δ

(∑
σ∈SN

σ(Llab)

)
= ρ

(∑
σ∈SN

σ(L?lab)

)
.

∑
σ∈SN σ(Llab) is P -invariant and reduces to N !Lunlab once the labels are removed.

3.C. Coset Construction

The standard technique for finding terms which are invariant under a nonlinear realization
of a symmetry is to use a coset construction [67, 68, 69, 70]. In this appendix we explore the
connection between our invariant Lagrangians and this construction. Although we find that
the coset construction can reproduce some of the invariants that we have discovered, using
this method is computationally difficult when compared to the graphical method introduced
in this paper.

We first review the coset construction applied to the polynomial shift symmetry as
presented in [71, 65]. In dimension D, consider the polynomial shift transformations of the
Goldstone fields defined in (3.30), accompanied with space-time translations and spatial
rotations. Denote the corresponding generators by Z,Zi, . . . , Zi1...iP for polynomial shifts,
Pi for spacial translations, P0 for temporal translations, and J ij for spatial rotations. Note
that there are no boost symmetries. For the nonlinear realization of space-time symmetry,
the translation generators are treated as the broken generators [69, 70]. The Goldstone
fields transform as

δPiφ = ∂iφ, δZφ = 1, δZi1...ikφ =
1

k!
xi1 . . . xik , k = 1, . . . , P.

The commutators between the operators can be readily calculated,

[Pi, Z] = 0,
[
Pi, Zi1...ik

]
= −i

∑
j

1

k
δjiZ

i1...̂...ik ,
[
Zi1...ik , Zj1...j`

]
= 0,
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where ̂ means that the index j is omitted.
The commutators above given by the generators P0, Pi, J ij , Z and Zi1...ik , k = 1, . . . , P

define the Lie algebra of a Lie group G, and P0 and J ij correspond to the unbroken normal
subgroup H. Take left invariant differential N -forms on G/H to be N -cochains, and take
the coboundary operator d(k) to be the exterior derivative of differential forms. Denote the
group of N -cocycles by Zk = Ker d(k), and the group of k-coboundaries by Bk = Im d(k−1).
The Chevalley-Eilenberg cohomology group Ek(G/H) is defined to be

Ek(G/H) = Zk/Bk,

which is isomorphic to the Lie algebra cohomology Hk0(G/H;Z). (See [72] for details.)
We associate the generator Z with the Goldstone field φ. To each generator Zi1...ik ,

k = 1, . . . , P we associate a symmetric k-tensor field φi1...ik . Indices can be lowered or raised
by Kronecker delta symbols. The coset space is parametrized by

g = exp
(
iPi xi

)
exp

(
iZφ+ i

P∑
k=1

Zi1...ikφi1...ik

)
.

The Maurer-Cartan form is

−ig−1dg = Pidxi + Z(dφ+ φi dx
i) +

P−1∑
n=1

Zi1···in
(
dφi1···in + φi1···inidx

i
)

+ Zi1...iP dφi1...iP .

Therefore, the basis dual to the generators is

ωiP = dxi, ωi1···iP = dφi1···iP ,

ω = dφ+ φi dx
i, ωi1···ik = dφi1···ik + φi1···iki dx

i, k = 1, . . . , P − 1. (3.60)

Moreover,

dωiP = 0, dωi1···iP = 0,

dω = dφi ∧ dxi, dωi1···ik = dφi1···iki ∧ dx
i, k = 1, . . . , P − 1.

The inverse Higgs constraints [73, 74] imply the vanishing of ω and ωi1···ik (k < P ) in (3.60):

φi1···ik = (−1)k∂i1 · · · ∂ikφ, k = 1, . . . , P. (3.61)

Having reviewed the coset construction, we now present examples for P = 2 and 3 (the
P = 1 scenario is essentially the same as the Galileon case [71]).

P=2 Case: For N = 3, the cohomology group is trivial for D < 2. Therefore, let us start
with the simplest nontrivial case, D = 2. We are looking for a closed form involving the
wedge of three ω’s, which are not ωP . There is one independent cohomology element, with
the lowest number of indices on ω’s:

Ω3 = εij ωab ∧ ωia ∧ ωjb = d
(
εijφab dφia ∧ dφjb

)
≡ dβ2.
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These expressions can be extended to D ≥ 2:

ΩD+1 = εijs3...sD ωab ∧ ωia ∧ ωjb ∧ ω
s3
P ∧ · · · ∧ ω

sD
P ,

βD = εijs3...sD φab dφia ∧ dφjb ∧ dx
s3 ∧ · · · ∧ dxsD .

Taking the pullback of βD to the spacetime manifold and then applying the inverse Higgs
constraints in (3.61) gives a term proportional to

εijs3...sDεk`s3...sD ∂a∂bφ∂i∂k∂aφ∂j∂`∂bφ,

which is already contained in [65]. One can verify that this is equivalent up to integration by
parts and overall prefactor to the invariant in (3.27). That term was found to be invariant
for P = 3, and is therefore also invariant for P = 2.

Next, consider N = 4. The simplest nontrivial case is D = 3. We seek a closed 4-form
given as the wedge of four ω’s, which are not ωP . There is one independent cohomology
element, with the lowest number of indices on ω’s:

Ω′4 =εijk ωa ∧ ωia ∧ ωjb ∧ ωkb

=d

[
εijkφac

(
1

2
φac dφjb + φbc dφja

)
∧ dφkb ∧ dxi

]
≡ dβ′3

These expressions can be extended to D ≥ 3:

Ω′D+1 = εijks4...sD ωa ∧ ωia ∧ ωjb ∧ ωkb ∧ ω
s4
P ∧ · · · ∧ ω

sD
P ,

β′D = εijks4...sDφac

(
1

2
φac dφjb + φbc dφja

)
∧ dφkb ∧ dxi ∧ dxs4 ∧ · · · ∧ dxsD .

Taking the pullback of β′D to the spacetime manifold and then applying the inverse Higgs
constraints in (3.61) gives a term proportional to

εijs3...sDεk`s3...sD ∂(a∂bφ∂c)∂j∂`φ∂a∂bφ∂c∂i∂kφ.

One can verify that this is equivalent up to integration by parts and an overall prefactor to
the invariant in (3.24).

P=3 Case: Let us focus on N = 3. Again, we start with D = 2. There is one independent
cohomology element:

Ω3 = εij
(
ωab ∧ ωia ∧ ωjb + 2ωa ∧ ωib ∧ ωjab − 2ωa ∧ ωia ∧ ωjbb
− ω ∧ ωiab ∧ ωjab + ω ∧ ωiaa ∧ ωjbb

)
.

It is quite a challenge to determine the potential, β2, for this Ω3. One can appreciate the
power of the graphical method at this point: We have already determined that there is
one independent 3-invariant with N = 3. Therefore, we can immediately conclude without
calculation that the pullback of β2 must be proportional to the invariant in (3.20) up to total
derivatives. Again, Ω3 can be generalized to D ≥ 2 by wedging the appropriate number of
ωP ’s on the end:

ΩD+1 = εijs3...sD
(
ωab ∧ ωia ∧ ωjb + 2ωa ∧ ωib ∧ ωjab − 2ωa ∧ ωia ∧ ωjbb
− ω ∧ ωiab ∧ ωjab + ω ∧ ωiaa ∧ ωjbb

)
∧ ωs3P ∧ . . . ∧ ω

sD
P .
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Chapter 4

Cascading Multicriticality in
Spontaneous Symmetry Breaking

Without Lorentz invariance, spontaneous global symmetry breaking can lead to mul-
ticritical Nambu-Goldstone modes with a higher-order low-energy dispersion ω ∼ kn (n =
2, 3, . . .), whose naturalness is protected by polynomial shift symmetries. Here we investi-
gate the role of infrared divergences and the nonrelativistic generalization of the Coleman-
Hohenberg-Mermin-Wagner (CHMW) theorem. We find novel cascading phenomena with
large hierarchies between the scales at which the value of n changes, leading to an evasion
of the “no-go” consequences of the relativistic CHMW theorem.

4.1. Introduction

Some of the most pressing questions about the fundamental laws of the Universe (such
as the cosmological constant problem, or the hierarchy between the Higgs mass and the
Planck scale) can be viewed as puzzles of technical naturalness [26]. In this chapter, we
study the interplay of technical naturalness with spontaneous symmetry breaking (SSB) in
nonrelativistic systems.

SSB is ubiquitous in Nature. For relativistic systems and global continuous internal
symmetries, the universal features of SSB are controlled by the Goldstone theorem. Much
progress in SSB has also been achieved in the nonrelativistic cases, where the reduced
spacetime symmetries allow a much richer behavior, still very much the subject of active
research (see e.g. [21, 22, 75, 76, 77, 78, 79] and references therein). Important novelties
emerge already in the simplest case of theories in the flat nonrelativistic spacetime RD+1

(covered with Cartesian coordinates (t,x), x ≡ (xi, i = 1, . . . , D)) and with the Lifshitz
symmetries of spatial rotations and spacetime translations. In such theories, the Nambu-
Goldstone (NG) modes can be of two distinct types: Type A, effectively described by a
single real scalar φ(t,x) with a kinetic term quadratic in the time derivatives; or Type B,
described by two scalar fields φ1,2(t,x) which have a first-order kinetic term and thus form
a canonical pair.

In [21, 22], we showed that this Type A-B dichotomy is further refined into two discrete
families, labeled by a positive integer n: Type An NG modes are described by a single scalar
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with dispersion ω ∼ kn (and dynamical critical exponent z = n), while Type B2n modes are
described by a canonical pair and exhibit the dispersion relation ω ∼ k2n (and dynamical
exponent z = 2n). These two families are technically natural, and therefore stable under
renormalization in the presence of interactions [21]. As usual, such naturalness is explained
by a new symmetry. For n = 1, the NG modes are protected by the well-known constant
shift symmetry δφ(t,x) = b. The n > 1 theories enjoy shift symmetries by a degree-P
polynomial in the spatial coordinates [21],

δφ(t,x) = b+ bix
i + · · ·+ bi1...iP x

i1 · · ·xiP , (4.1)

with suitable P . Away from the Type An and B2n Gaussian fixed points, the polynomial
shift symmetry is generally broken by most interactions. The lowest, least irrelevant in-
teraction terms invariant under the polynomial shift were systematically discussed in [22]
(see also [65]). Such terms are often highly irrelevant compared to all the other possible
interactions that break the symmetry.

Having established the existence of the multicritical Type A and B families of NG
fixed points, in this chapter we study the dynamics of flows between such fixed points in
interacting theories. We uncover a host of novel phenomena, involving large, technically
natural hierarchies of scales, protected again by the polynomial shift symmetries. As a given
theory flows between the short-distance and the long-distance regime, it can experience a
natural cascade of hierarchies, sampling various values of the dynamical critical exponent
z in the process. Such cascades represent an intriguing mechanism for evading some of the
consequences of the relativistic Coleman-Hohenberg-Mermin-Wagner (CHMW) Theorem.

4.2. The Relativistic CHMW Theorem

Recall that in relativistic systems, all NG bosons are of Type A1, assuming that they ex-
ist as well-defined quantum objects. Whether or not they exist, and whether or not the
corresponding symmetry can be spontaneously broken, depends on the spacetime dimen-
sion. This phenomenon is controlled by a celebrated theorem, discovered independently in
condensed matter by Mermin and Wagner [63] and by Hohenberg [62], and in high-energy
physics by Coleman [61]. We therefore refer to this theorem, in the alphabetical order, as
the CHMW theorem.

The relativistic CHMW theorem states that the spontaneous breaking of global con-
tinuous internal symmetries is not possible in 1 + 1 spacetime dimensions. The proof is
beautifully simple. 1 + 1 is the “lower critical dimension,” where φ is formally dimension-
less at the Gaussian fixed point. Quantum mechanically, this means that its propagator is
logarithmically divergent, and we must regulate it by an infrared (IR) regulator µIR:

〈φ(x)φ(0)〉 =

∫
d2k

(2π)2

eik·x

k2 + µ2
IR

(4.2)

≈ − 1

2π
log(µIR|x|) + const.+O(µIR|x|).

The asymptotic expansion in (4.2), valid for µIR|x| � 1, shows that as we take µIR → 0, the
propagator stays sensitive at long length scales to the IR regulator. We can still construct
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various composite operators from the derivatives and exponentials of φ, with consistent
and finite renormalized correlation functions in the µIR → 0 limit, but the field φ itself
does not exist as a quantum object. Since the candidate NG mode φ does not exist, the
corresponding symmetry could never have been broken in the first place, which concludes
the proof.

4.3. Nonrelativistic CHMW Theorem

For nonrelativistic systems with Type An NG modes, we find an intriguing nonrelativistic
analog of the CHMW theorem. The scaling dimension of φ(t,x) at the An Gaussian fixed
point, measured in the units of spatial momentum, is

[φ(t,x)]An = (D − n)/2. (4.3)

The Type An field φ is at its lower critical dimension when D = n. Its propagator then
requires an IR regulator. There are many ways how to introduce µIR; for example, by
modifying the dispersion relation of φ, as in

〈φ(t,x)φ(0)〉 =

∫
dω dDk

(2π)D+1

eik·x−iωt

ω2 + |k|2D + µ2D
IR

, (4.4)

or

〈φ(t,x)φ(0)〉 =

∫
dω dDk

(2π)D+1

eik·x−iωt

ω2 + (|k|2 + µ2
IR)D

. (4.5)

Regardless of how µIR is implemented, as we take µIR → 0, the propagator again
behaves logarithmically, both in space

〈φ(t,x)φ(0)〉 ≈ − 1

(4π)D/2Γ(D/2)
log(µIR|x|) + . . . (4.6)

for |x|D � t, and in time,

〈φ(t,x)φ(0)〉 ≈ − 1

(4π)D/2DΓ(D/2)
log(µDIRt) + . . . (4.7)

for |x|D � t. The propagator remains sensitive to the IR regulator µIR. Consequently, we
obtain the nonrelativistic multicritical CHMW theorem for Type A modes:

The propagator of the Type An would-be NG mode φ(t,x) at its lower critical dimension
D = n is logarithmically sensitive to µIR, and therefore φ(t,x) does not exist as a quantum
mechanical object. Consequently, no spontaneous symmetry breaking with Type An NG
modes is possible in D = n spatial dimensions.

By extension, this invalidates all Type An would-be NG modes with n > D, whose
propagator would also be pathological at long distances.

In contrast, the scaling dimension of the Type B2n fields is 1

[φ1,2(t,x)]B2n
= D/2, (4.8)

1Here we have assumed that both components of the canonical Type B pair φ1,2 carry the same dimen-
sion. The more general case would only require the sum of their dimensions to equal D, still preventing a
logarithmic IR divergence in 〈φ1φ2〉.
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and the lower critical dimension is D = 0. Hence, in all spatial dimensions D > 0, the
Type B2n NG modes are free of IR divergences and well-defined quantum mechanically for
all n = 1, 2, . . .. The nonrelativistic multicritical CHMW theorem for Type B modes then
simply states that the Type B2n symmetry breaking is possible in any D > 0 and for any
n = 1, 2, . . ..

In the special cases for Type A2 and Type B2 NG modes, the multicritical CHMW
theorems stated above reproduce the results reported in [80].

4.4. Cascading Multicriticality

Whereas in the relativistic case, all NG modes must always be of Type A1, in nonrelativistic
systems the existence of the Type An and B2n families allows a much richer dynamical
behavior.

For example, with the changing momentum or energy scales, a given NG mode can
change from Type An (or B2n) to Type An′ (or B2n′) with n 6= n′, or it could change from
Type A to Type B. The hierarchies of scales that open up in this process are naturally
protected by the corresponding polynomial symmetries. One of the simplest cases is the
Type An scalar with n > 1, whose polynomial shift symmetry of degree P is broken at
some momentum scale µ to the polynomial shift symmetry of degree P − 2, by some small
amount ε� 1. This breaking modifies the dispersion relation to ω2 ≈ k2n+ζ2

n−1k
2n−2, with

ζ2
n−1 ≈ εµ2. Here, as in [26], we identify µ as the scale of naturalness. At a hierarchically

much smaller scale, µ× ≡ µ
√
ε, the system exhibits a crossover, from Type An above µ× to

Type An−1 below µ×. The technical naturalness of the large hierarchy µ× � µ is protected
by the restoration of the polynomial shift symmetry of degree P as ε→ 0.

In the special case of n = D, this crossover from Type AD to Type AD−1 yields an
intriguing mechanism for evading the naive conclusion of our CHMW theorem. For a large
range of scales close to µ, the would-be NG mode can exhibit a logarithmic propagator.
The hierarchically smaller scale µ× � µ then serves as a natural IR regulator, allowing
the NG mode to cross over to Type AD−1 at very long distances. Therefore, the mode is
well-defined as a quantum mechanical object, despite the large hierarchy across which it
behaves effectively logarithmically.

An interesting refinement of this scenario comes from breaking the polynomial symme-
tries hierarchically, in a sequence of partial breakings, from a higher polynomial symmetry
of degree P to symmetries with degrees P ′ < P , P ′′ < P ′, . . ., all the way to constant
shift. This gives rise to a cascading phenomenon, with a hierarchy of crossover scales
µ � µ′ � µ′′ � . . ., separating plateaux governed by the fixed points with the dynamical
exponent taking the corresponding different integer values. Again, such cascading hier-
archies are technically natural, and protected by the underlying breaking pattern of the
polynomial symmetries.

Before we illustrate this behavior in a series of examples, it is worth pointing out one
very simple yet important feature of large hierarchies in nonrelativistic theories. Consider a
theory dominated over some range of scales by the dispersion relation ω ≈ kn, with n > 1.
If we open up a large hierarchy of momentum scales µ� µ′ (say by N orders of magnitude),
this hierarchy of momentum scales gets magnified into an even larger hierarchy in energy
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scales (by nN orders of magnitude).

4.5. Examples

First, we will demonstrate an example of the hierarchy with a system that starts out near
the z = 2 fixed point at high energies and flows towards the z = 1 fixed point. Next, we
show a bona fide cascade from z = 3 to z = 2 and then to z = 1. Finally, we describe a
system which exhibits a hierarchy between Type A and Type B.

4.5.1. Type-A Hierarchy

The first model that we use to illustrate the hierarchy is a relatively well-known system in
2 + 1 dimensions: the z = 2 Gaussian model of a single Lifshitz scalar field φ(t,x), with a
derivative 4-point self-interaction turned on [81, 82]:

S2 =
1

2

∫
dtd2x

{
φ̇2 − (∂2φ)2 − c2∂iφ∂iφ− g(∂iφ∂iφ)2

}
.

This action contains all the marginal and relevant terms of the z = 2 fixed point consistent
with the constant shift symmetry and the reflection symmetry φ → −φ. At the z = 2
Gaussian fixed point, g is classically marginal, and breaks the polynomial shift symmetry
of this fixed point to constant shift. Quantum corrections at one loop turn g marginally
irrelevant [81].

This system allows a natural hierarchy of scales, stable under quantum corrections. At
the naturalness scale µ, we can break the polynomial shift symmetry of the z = 2 fixed
point to constant shifts by a small amount ε1 = 0� 1. This implies g ∼ ε0 and c2 ∼ ε0µ

2,
relations which can be shown to be respected by the loop corrections. In particular, c2 can
stay naturally small, much less than µ2. The dispersion relation changes from z = 2 close
to the high scale µ, to z = 1 around the much lower scale µ1 ≡ µ

√
ε0 � µ.

4.5.2. Type-A Cascade

Our next example is a new model, which not only illustrates the cascading hierarchy with
multiple crossovers, but also exhibits additional intriguing renormalization properties of
independent interest.

We start with the Gaussian z = 3 fixed point of a single scalar Φ(t,x) in 3 + 1 dimen-
sions, and turn on derivative self-interactions and relevant terms as in our previous example.
The free theory is

S3 =
1

2

∫
dtd3x

{
Φ̇2 − ζ2

3 (∂i∂j∂kΦ)(∂i∂j∂kΦ)− ζ2
2 (∂2Φ)2 − c2∂iΦ∂iΦ

}
. (4.9)

At the classical level we can set ζ2
3 = 1 by the rescaling of space. The terms on the

second line represent relevant Gaussian deformations away from the z = 3 fixed point. The
spectrum of available self-interaction operators that are classically marginal or relevant at
the z = 3 Gaussian fixed point is much richer than in our 2 + 1 dimensional example. We
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shall again restrict our attention only to the operators even under Φ→ −Φ, and invariant
at least under the constant shift. Up to total derivatives, which we ignore, there are three

independent marginal 4-point operators O(a)
4 , a = 1, 2, 3, one marginal 6-point operator

O6 = (∂iΦ∂iΦ)3, and one relevant 4-point operator

W = (∂iΦ∂iΦ)2. (4.10)

Among them, there is one unique operator O invariant under the linear shift symmetry up
to a total derivative:

O = 4∂i∂j∂kΦ∂iΦ∂jΦ∂kΦ + 12∂iΦ∂i∂jΦ∂j∂kΦ∂kΦ

= 4 + 12 , (4.11)

cf. Fig.(3.1a). This operator is classically marginal.
To construct our model, we start with the free theory S3 and turn on just the unique

linear-shift invariant self-interaction O, with coupling λ. The Feynman rules of this model
involve one 4-vertex, which can be simplified using the condition of momentum conservation
k4 = −k1 − k2 − k3 to

ω1,k1 ω2,k2

ω3,k3ω4,k4
=
−iλ

[
k2

1k
2
2k

2
3 + 2(k1 · k2)(k2 · k3)(k3 · k1)

−k2
1(k2 · k3)2 − k2

2(k3 · k1)2 − k2
3(k1 · k2)2

]
.

(4.12)

Note that in this vertex, each momentum appears quadratically, with no subleading terms.
We can write it even more compactly with the use of the fully antisymmetric εijk tensor: if
for any three momenta k,p,q we define [kpq] ≡ εijkkipjqk, our vertex becomes simply

− iλ[k1k2k3]2. (4.13)

This simple vertex structure is intimately related to the underlying symmetries: When
translated into momentum space, the linear shift symmetry δφ(t,x) = bix

i + b becomes a
shift of the Fourier modes φ(t,k) by bi(∂/∂ki)δ(k) + bδ(k). Acting with this symmetry on
any of the legs of the vertex produces zero, as the vertex is purely quadratic in each of the
outside momenta.

Quantum properties. This model has intriguing renormalization group proper-
ties, which will be discussed in the next chapter. First, note that λ satisfies a non-
renormalization theorem: Consider the 2N -point function of Φ, with N > 1, and with
external momenta k1, . . .k2N . Any 1PI diagram will be of the form ki11 k

j1
1 · · · k

i2N
2N k

j2N
2N ·

Ii1j1...i2N j2N (k1, . . . ,k2N ). The factor I has no ultraviolet divergences, and with c2 6= 0 or
ζ2

2 6= 0 it approaches a finite value at k1 = . . . = k2N = 0. The special case of N = 2
implies that λ does not get renormalized, at any loop order. Note also that none of the

operators W, O6 or O(a)
4 that would break the linear shift symmetry is generated by the

loop corrections.
The remarkable non-renormalization of λ does not imply that the effective strength of

the self-interaction would be independent of scale: There is a non-trivial renormalization
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of the 2-point function. While the one-loop diagram is identically zero, the two-

loop diagram gives the generic behavior which persists at higher loops: There is
no wave-function renormalization, no renormalization of c2, the loop corrections to ζ2

2 are
quadratically divergent, and those to ζ2

3 diverge logarithmically [24]. This log divergence
effectively corrects the dynamical exponent of the ultraviolet fixed point away from the clas-
sical value z = 3. The modified scaling in turn implies that the theory becomes effectively
strongly coupled at some finite scale µs.

Having understood the quantum corrections, we can now study cascading hierarchies
of symmetry breaking in this model, and confirm their technical naturalness. At some high
scale µ, which will be our naturalness scale, and which we keep below µs, consider the
following hiearchical breaking of polynomial symmetries: First, break the P = 4 symmetry
of the z = 3 Gaussian fixed point to the P = 2 symmetry of the z = 2 fixed point by some
small amount ε2 � 1. Then break P = 2 to P = 1 by an even smaller amount ε1 � ε2.
This pattern corresponds to

ζ2
3 ≈ 1, ζ2

2 ≈ µ2ε2, c2 ≈ µ4ε1, λ ≈ ε1. (4.14)

The dispersion relation cascades from z = 3 at high energy scales, to z = 2 at intermedi-
ate scales, to z = 1 at low scales.2 Both the large hierarchies in (4.14) and the cascading
behavior of the dispersion relation are respected by all loop corrections, and therefore are
technically natural. This follows by inspection from the properties of the quantum correc-
tions discussed above.

4.5.3. Type-A/Type-B Hierarchy

So far, we focused on the cascading mechanism in the Type A case. Type B systems can
form their own hierarchies, in the obvious generalization of the Type A cascades exemplified
above. There is no analog of the lower critical dimension and the CHMW limit on n. Type
A NG modes can also exhibit a flow to Type B. This behavior, albeit not new (see e.g.
[83]), can be embedded as one step into the more general technically natural hierarchies of
Type A or B as discussed above. In particular, the crossover to Type B can provide a new
IR regulator of the Type A cascade at the lower critical dimension.

We shall illustrate this on the simplest Type A1 example, although the full story is, of
course, more general. Consider two would-be Type A NG fields, φ1,2(t,x), in the vicinity
of the z = 1 Gaussian fixed point

S1 =
1

2

∫
dtdDx

{
φ̇2

1 + φ̇2
2 − c2

1(∂iφ1)2 − c2
2(∂iφ2)2

}
.

For simplicity, we will set c1 = c2 = 1, although this is not necessary for our argument.
Besides the rotations and translations of the two scalars, note two independent Z2 sym-
metries – the field reflection R: (φ1, φ2) → (φ1,−φ2), and the time reversal T : t → −t,

2We can also break the linear shift symmetry to constant shifts, by some amount ε0 � ε1. This would
generate the remaining classically marginal operators O(a)

4 , O6 and the relevant operatorW, with coefficients
of order ε0 in the units of µ.
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φ1,2(t,x)→ φ1,2(−t,x). We can now turn on the Type B kinetic term,

S′ = S1 +
Ω

2

∫
dtdDx

(
φ1φ̇2 − φ2φ̇1

)
. (4.15)

Ω now provides an IR regulator for the propagator. At that scale, the field reversal R and
the time reversal T are broken to their diagonal subgroup. At energy scales below Ω, one
of the would-be Type A NG modes survives and turns into the Type B NG mode, while
the other would-be Type A mode develops a gap set by Ω (see Appendix 4.A). Note that
in 1 + 1 dimensions, the “no-go” consequences of the relativistic CHMW theorem are again
naturally evaded by this hierarchy: a NG mode exists quantum mechanically after all, and
symmetry breaking is possible, despite the fact that above the scale Ω, the two would-
be Type A modes exhibit the logarithmic two-point function suggesting that symmetry
breaking may not be possible.

The hierarchy between the Type A and Type B behavior is also protected by symme-
tries. In fact, the system has multiple symmetries that can do this job. One can rely on
the breaking pattern of the discrete symmetries R and T mentioned above. If the Type
A system is Lorentz invariant, one can use Lorentz symmetry breaking to protect small Ω.
More interestingly, without relying on the discrete or Lorentz symmetries, one can introduce
a shift symmetry linear in time, δφ1,2 = b1,2t. While the Type A kinetic term is invariant
under this symmetry, the Type B kinetic term is not. Breaking the linear shift symmetry to
constant shifts allows the Type-A/Type-B crossover scale to be hierarchically smaller than
the naturalness scale.

4.6. Outlook

We have seen that the multicritical Type An and B2n NG modes can experience techni-
cally natural cascading hierarchies of scales, protected by a hierarchy of polynomial shift
symmetries. Perhaps the most interesting case is Type A with n = D, which according to
our CHMW theorem exhibits logarithmic sensitivity to the IR regulator. In the relativistic
case, this would prevent the symmetry breaking. We have shown that the Type AD modes
can experience a cascade to Type An with n < D (or to Type B), which provides a natural
IR regulator, thus making the symmetry breaking possible after all.

Our original motivation for this study of technical naturalness and hierarchies in SSB
came from quantum gravity and high-energy physics [21, 22]. Besides extending our under-
standing of the general “landscape of naturalness,” we expect that our results could find
their most immediate applications in two other areas: In condensed matter physics, and in
effective field theory of inflationary cosmology [84, 85, 86]. Both areas treat systems with
nonrelativistic, Lifshitz-like symmetries similar to ours. In condensed matter, the multicrit-
icality of NG modes will affect their thermodynamic and transport properties; for example,
the Type AD modes at the lower critical dimension will exhibit specific heat linear in tem-
perature T over the range of T dominated by the z = D dispersion (up to log T corrections
due to self-interactions). In the context of inflation, our self-interacting scalar field theories
represent a new nonrelativistic variation on the theme of the Galileon [60], an extension of
the z = 2 ghost condensate [87], and of the z = 3 cosmological scalar theory [12, 88].
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Appendix

4.A. A Flow from Type-A to Type-B

In this appendix, we will show the explicit calculation demonstrating the flow between two
would-be gapless Type-A modes at high energies to one gapped Type-A mode and one
gapless Type-B mode at low energies.

Let the two would-be Type A NG fields be φ1,2(t,x). The most general form of the
quadratic Lagrangian in the vicinity of the z = 1 Gaussian fixed point compatible with
Lifshitz symmetries would consist of the terms ΩIJφI φ̇J , gIJ φ̇I φ̇J and hIJ∂iφI∂iφJ , where
ΩIJ , gIJ and hIJ are constant in spacetime, two-forms in the two-dimensional space of
fields, and ΩIJ is antisymmetric and gIJ and hIJ are symmetric. One can use the GL(2,R)
symmetry group of arbitrary linear reparametrizations in field space to set gIJ = δIJ . The
SO(2) subgroup remains under which δIJ is unchanged. One can use this residual symmetry
to diagonalize hIJ . Furthermore, due to its antisymmetry, ΩIJ takes the general form ΩεIJ ,
where εIJ is the Levi-Civita symbol, in any basis in field space. Therefore, without loss of
generality, we take the action to be

S =
1

2

∫
dt dDx

{
δIJ φ̇I φ̇J − c2

IδIJ∂iφI∂iφJ + ΩεIJφI φ̇J

}
. (4.16)

In fact, we have enough freedom in rescaling space to set one of the speed parameters equal
to unity. In addition, as far as the Type-A/Type-B hierarchy is concerned, there is no
particular loss in generality in setting c1 = c2 = 1. However, in this appendix, we will keep
these parameters general.

In Fourier space, one finds

S =
1

2

∫
dω

2π

dDk

(2π)D

{(
ω2 − c2

Ik
2
)
δIJ + iΩωεIJ

}
φ̃I(ω,k) φ̃J(−ω,−k). (4.17)

Setting to zero the eigenvalues of the matrix multiplying the two fields yields the dispersion
relations of the two independent physical modes. The small momentum expansions of these
dispersion relations are

ω2 = Ω2 + (c2
1 + c2

2)k2, (4.18a)

ω2 =
c2

1c
2
2

Ω2
k4. (4.18b)

Hence, we observe that one would-be Type-A1 NG mode develops a gap equal to Ω and
keeps the z = 1 scaling behavior, whereas the other turns into a true gapless NG mode that
is Type-B2.
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Chapter 5

The z=3 Scalar Field with a
Linear-Shift Invariant Interaction

We revisit the theory considered in §4.5.2 of a scalar field theory in the vicinity of the
z = 3 fixed point with a four-point linear-shift invariant interaction. We previously studied
this theory for the Type A cascade that it exhibits. However, this theory also exhibits very
interesting properties under renormalization group flow. The purpose of this chapter is to
bring these properties to light. Although the techniques described herein are not new, this
chapter represents a significant step forward by applying the main renormalization methods
to theories with Lifshitz scaling and demonstrating their mutual consistency. Furthermore,
we show that, in fact, there exists a continuum of different, but consistent, interpretations
of the behavior of such theories under renormalization.

5.1. Introduction

In the previous chapter, we demonstrated a Type A cascade in a theory of a single scalar
field in the vicinity of the z = 3 Gaussian fixed point at high energies, to the z = 2 fixed
point at intermediate energies, and finally to the z = 1 fixed point at low energies. The
renormalization of the theory is driven by the one four-point interaction which is invariant
under the linear shift. We are met with some interesting subtleties in applying the standard
techniques of renormalization to this theory.

The theory, including counterterms, and Wick-rotated to Euclidean signature, is

S =
1

2

∫
dt d3x

{(
1 + δ

)
φ̇2 +

(
1 + δζ

)
ζ2 ∂2∂iφ∂

2∂iφ+ · · ·

+
(
1 + δλ

) λ
12
εijkεlmn∂iφ∂`φ∂j∂mφ∂k∂nφ

}
, (5.1)

where · · · refers to relevant lower-z deformations, which we will ignore. δ, δζ2 and δλ are
conterterms. By default, we set the engineering dimension of the spatial coordinates xi to
−1. It follows that the engineering dimensions of φ, ζ and λ are respectively

[φ] =
1

2
(3− z) , [ζ] = z − 3, [λ] = 3 (z − 3) . (5.2)
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Classically, the dynamical exponent z equals 3, in which case the classical engineering
dimensions of φ, ζ and λ all vanish. Unsurprisingly, this property is not preserved under
renormalization.

5.2. Feynman Rules and Diagrams

The tree level propagator is

D(ω,p) ≡
ω,p

=
1

ω2 + ζ2p6 + µIR
6
, (5.3a)

where we have introduced a gap µIR as an IR regulator.
The 4-point vertex is

p1

p2 p3

p4

= −i6λ [p1p3p4] [p2p3p4] = λ [p1p3p2] [p2p3p1] = −λ [p1p2p3]2 , (5.4)

where
[p1p2p3] = εijkpi1p

j
2p
k
3. (5.5)

The form of the vertex implies that any diagram that contains a cactus subgraph vanishes
identically. The only 1-loop contribution to the 2-point Green’s function is a cactus diagram,
which therefore vanishes:

= 0. (5.6)

The 1-loop contribution to the vertex is

(5.7)

The form of the vertex implies that this diagram does not contribute to the λ term in
the Lagrangian, which has four φ’s and six spatial derivatives. Instead, the first nontrivial
contribution is to a term with four φ’s and eight spatial derivatives, which is irrelevant. In
addition, the contribution of this diagram to this latter term is finite.

The only non-cactus 2-loop diagram contributing to the 2-point Green’s function is the
sunset diagram:

I = ω,p

ν1,k1

ν2,k2

(5.8)

This diagram evaluates to

I =
1

3!

∫
dν1,2 d

3k1,2

(2π)8

(
−λ[pk1k2]2

)2
D(ν1,k1)D (ν2,k2)D (ν + ω,k + p) , (5.9)
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where ν = ν1 + ν2 and k = k1 + k2.
The numerator of this integral already contains a factor of p4 and therefore the contri-

butions to the operators φ̇2 and (∂φ)2 vanish. One can check that the contribution to the
operator (∂2φ)2 has a quadratic superficial degree of divergence.

To extract the quantum corrections to ζ2, we need the piece proportional to p6. This
requires the order p2 term in the final propagator in (5.9):

D(ν + ω,k + p) = D(ν,k)− ζ2(3p2k4 + 12(p · k)2k2) + · · ·
(ν2 + ζ2k6 + µIR

6)2
+O(p4). (5.10)

The terms proportional to ζ2p2 have a logarithmic superficial degree of divergence. The
terms in · · · would be present if we included the operators (∂2φ)2 and (∂φ)2 from the start.
However, they involve fewer powers of the internal momenta and are thus finite.

Let I(6) denote the contribution of (5.9) that is of order p6. By power counting, I(6) is
logarithmically divergent. A priori, it could contain multi-logs if, for example, the integral
over ν2 and k2 were itself divergent. However, this latter integral is of the same type as the
1-loop diagram in (5.7), which is finite. Therefore, I(6) contains logs but no multi-logs.

To extract the high-energy behavior of the integral I, we can take a UV momentum
cutoff Λ. Since the integrand in I is positive and the expansion of the propagator in (5.10)
generates a minus sign, I(6) is proportional to − log Λ2. Furthermore, rotational symmetry
in the external momentum p implies that I(6) is proportional to p6. Therefore,

I(6) = −Bλ2ζ2p6 log

(
Λ2

µ2

)
, (5.11)

where B is a positive coefficient and µ is some parameter that absorbs the dimension of Λ.
Since the theory under consideration is gapless, µ is a function of the frequency ω and the
momentum p (actually, of p2, due to rotation symmetry).

In the ω = 0 limit, the random phase approximation (RPA) result for the 2-point
Green’s function is

G(2)(ω = 0,p) =
1

ζ2p6
+

(
1

ζ2p6

)2

Σ + . . .+

(
1

ζ2p6

)n+1

Σn + . . . =
1

ζ2p6 − Σ
, (5.12)

with
Σ = I − δζ2 +O

(
λ3
)
. (5.13)

Hence, the inverse propagator is

Γ (ω,p) = (1 + δ)ω2 + ζ2p6

[
1 +Bλ2 log

(
Λ2

µ2

)
+ δζ2 +O

(
λ3
)]
. (5.14)

Next, we consider the correction to the 4-point Green’s function. There is no contri-
bution to the vertex factor itself. We can generalize the argument we gave to show that the
diagram (5.7) does not contribute to λ. Any diagram with n external legs contributes to
Lagrangian terms involving n φ’s and at least 2n spatial derivatives. Immediately, we can
conclude that no diagram can contribute to the operators φ̇2, (∂φ)2 or to the λ interaction
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term. However, the 4-point Green’s function is not amputated – the 2-loop contribution to
it is

T = + permutations, (5.15)

which is logarithmically divergent.
Omitting the IR regulator, the diagram at zero frequency is

T =

[
−Bλ2ζ2p6

1 log

(
Λ2

µ2

)](
1

ζ2p6
1

)(
−λ[p1p2p3]2

) 4∏
α=1

1

ζ p6
α

+ permutations

= 4Bλ3 log

(
Λ2

µ2

)
[p1p2p3]2

4∏
α=1

1

ζ p6
α

, (5.16)

Therefore, the 4-point Green’s function is

G(4) (ω = 0,p) =

(
[p1p2p3]2

4∏
α=1

1

ζ p6
α

)

×
[
−λ+ 4λ

(
Bλ2 log

(
Λ2

µ2

)
+ δζ2

)
+ δλ +O

(
λ4
)]
. (5.17)

5.3. The Renormalization Group

We will now perform the analysis of the renormalization group flow of this theory. Since
some interesting subtleties arise, we will perform the analysis using the Wilsonian approach,
the Callan-Symanzik equation, and the methods of dimensional regularization and the MS
renormalization scheme. We will explicitly show the consistency among these standard tech-
niques and demonstrate the existence of a continuum of different, but mutually consistent,
physical interpretations of the renormalization group flow.

5.3.1. Renormalization Conditions

In the action (5.1) we have the freedom to rescale space and time such that ζ = 1 classically.
We then take the renormalization conditions for the inverse propagator Γ as

∂Γ(ω,p)

∂ (ω2)

∣∣∣∣
ω=0, µ=M

= 1, (5.18a)

∂Γ(ω,p)

∂ (p6)

∣∣∣∣
ω=0, µ=M

= 1. (5.18b)

Here M sets the renormalization group scale. Furthermore, since there is no renormalization
to the coupling λ, we have no need to introduce the counterterm δλ in the first place. Since
µ is a function of ω and p, the renormalization conditions are evaluated at µ(ω = 0,p) = M .
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We apply the above renormalization group conditions to (5.14). From (5.18a) we obtain
δ = 0 +O

(
λ3
)
. From (5.18b) we obtain

∂Γ (ω,p)

∂ (p6)

∣∣∣∣
ω=0, µ=M

= ζ2

[
1 +Bλ2 log

(
Λ2

M2

)
+ δζ2 +O

(
λ3
)]

= 1, (5.19)

i.e.,

δζ2 = −Bλ2 log

(
Λ2

M2

)
+O

(
λ3
)
. (5.20)

Note that ζ has been set to 1 at the renormalization group scale.
Therefore, the renormalized inverse propagator is

Γ(ω,p) = ω2 + p6

[
1 +Bλ2 log

(
M2

µ2

)
+O

(
λ3
)]
. (5.21)

This in turn gives the 4-point Green’s function:

G(4) (ω = 0,p) =

(
[p1p2p3]2

4∏
α=1

1

ζ p6
α

)[
−λ+ 4Bλ3 log

(
M2

µ2

)
+O

(
λ4
)]
. (5.22)

On the other hand, since the scaling between space and time need not be fixed any
more, we have the freedom to introduce an arbitrary deviation for the dynamical exponent z
away from its classical value of 3. This deviation is of order λ2 since the quantum corrections
only kick in at this order. Thus we can write

z = 3−Aλ2 +O
(
λ3
)
, (5.23)

where A is some real number.

5.3.2. The Wilsonian Approach

In the Wilsonian approach, we integrate out the high-momentum modes lying in a thin
momentum shell δΛ around the cut-off Λ. Formally, the couplings will change, as a result.

Seff =
1

2

∫
dt d3x

[
φ̇2 −

(
ζ2 + δζ2

)
∂2∂iφ∂

2∂iφ− . . .

− 1

2
(λ+ δλ) εijkε`mn∂iφ∂`φ∂j∂mφ∂k∂nφ

]
. (5.24)

As previously argued, δλ = 0 to all orders. From (5.14), we obtain

δζ2 = δΛ
δ

δΛ

[
ζ2Bλ2 log

(
Λ2

µ2

)]
= 2ζ2Bλ2 δΛ

Λ
. (5.25)

To compare with the theory prior to integrating out the high-momentum modes, we rescale
spacetime according to

t′ = bzt, x′ = bx, (5.26)
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with

b = e−δt, δt =
δΛ

Λ
. (5.27)

We define the rescaling of the field φ according to

φ′ = b−hφ. (5.28)

In terms of the rescaled variable t′ and x′, the effective action (5.24) becomes

Seff =
1

2

∫
dt′ d3x′ b−z−3

[
b2h+2z

(
φ̇′
)2 − (ζ2 + δζ2)b2h+6∂2∂iφ

′ ∂2∂iφ
′ − . . .

− 1

12
λ b4h+6εijkε`mn∂iφ

′ ∂`φ
′ ∂j∂mφ

′ ∂k∂nφ
′
]
, (5.29)

where all derivatives are now with respect to the primed coordinates.
The requirement that the time derivative piece have unit coefficient translates to the

condition

h =
1

2
(3− z) . (5.30)

This parameter is the anomalous dimension of the field φ. Recalling (5.23), this gives

γφ = h =
1

2
Aλ2 +O

(
λ3
)
. (5.31)

The effective action is then

Seff =
1

2

∫
dt′ d3x′

[
(φ̇′)2 + ζ ′

2
∂2∂iφ

′ ∂2∂iφ
′ +

1

12
λ′εijkε`mn∂iφ

′ ∂`φ
′ ∂j∂mφ

′ ∂k∂nφ
′
]
,

with
ζ ′

2
=
(
ζ2 + δζ2

)
b−z+3+2h = ζ2

[
1 + 2 (B −A)λ2δt+O

(
λ3
)]
, (5.32)

where use was made of δζ2 given in (5.25), and

λ′ = λ b−z+3+4h = λ− 3Aλ3δt+O(λ4). (5.33)

(5.32) indicates that ζ slowly increases if B − A > 0 (or decreases if B − A < 0) as we
integrate out high-momentum degrees of freedom, i.e.,

γζ ≡
d log ζ

d logM
= (A−B)λ2 +O

(
λ3
)
. (5.34)

On the other hand, (5.33) implies that λ slowly increases if A < 0 (or decreases if A > 0)
as we integrate out high-momentum degrees of freedom, i.e.,

βλ =
dλ

d logM
= 3Aλ3 +O

(
λ4
)
. (5.35)

In summary,

z = 3−Aλ2 +O
(
λ3
)
, (5.36a)

γφ =
1

2
Aλ2 +O

(
λ3
)
, (5.36b)

γζ = (A−B)λ2 +O
(
λ3
)
, (5.36c)

βλ = 3Aλ3 +O
(
λ4
)
. (5.36d)
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5.3.3. The Callan-Symanzik Equation

In contrast to the Wilsonian approach, the Callan-Symanzik equation is derived from the
requirement that the physics be insensitive to the renormalization group scale, M . We
will generalize the Callan-Symanzik equation to account for the renormalization of the
dynamical exponent z.

The n-point Green’s function in position space is defined as

G(n)(t1, · · · , tn,x1, · · · ,xn) = 〈0|φ(t1,x1) · · ·φ(tn,xn) |0〉 . (5.37)

The n-point Green’s function in momentum space is defined to be

G(n)(ωi,pi) =

∫ (
dtd3x ei(ωt−k·x)

)n−1
〈0|φ · · ·φ |0〉 , (5.38)

where the coordinates t and x denote collectively the spacetime coordinates. The power
n−1 in (d3td3x)n represents that there are in total n−1 spacetime integrals. Naively, there
are in total n pairs of independent spacetime integrals to do in order to obtain the Green’s
function in the Fourier space, but we should note that there also exist conservation laws of
the overall frequency and momentum,∑

i

ωi = 0,
∑
i

ki = 0, (5.39)

which leave only n− 1 pairs of independent spacetime integrals.

In relativistic theories, the bare Green’s function G
(n)
0 and the physical Green’s function

G(n) differ by the field redefinition. More precisely, the relationship between the bare and
physical field is

φ0 = Z
1/2
φ φ, (5.40)

implying that

G
(n)
0 = Z

n/2
φ G(n) (5.41)

Here Zφ determines the anomalous dimension of φ

γφ =
1

2

d logZφ
d logM

. (5.42)

This is not the entire story for Lifshitz theories. In the presence of the running dynam-
ical exponent z given by (5.23), the temporal coordinate gains an anomalous dimension

γt = (−z)− (−3) = Aλ2 +O
(
λ3
)
. (5.43)

Note that we are sticking to the convention in which the dimension of each spatial coordinate
is −1. Furthermore, the anomalous dimension of the temporal coordinate can be interpreted
as the rescaling of time:

t0 = Ztt, (5.44)

where Zt determines the anomalous dimension via

γt =
d logZt
d logM

. (5.45)
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This additional rescaling implies that

G
(n)
0 =

∫ (
dt0d

3x0 e
iω0t0−ik0·x0

)n−1
〈0|φ0 . . . φ0|0〉

= Zn−1
t Z

n
2
φ

∫ (
dtd3x ei(ωt−k·x)

)n−1
〈0|φ . . . φ|0〉

= Zn−1
t Z

n
2
φ G

(n).

The renormalization condition (5.18a) implies∫
dt0d

3x0

(
∂φ0

∂t0

)2

=

∫
dtd3x

(
∂φ

∂t

)2

. (5.46)

This implies

Z−1
t Zφ = 1 +O

(
λ3
)

=⇒ Zφ = Zt +O
(
λ3
)
, (5.47)

i.e., using (5.43),

γφ =
1

2
γt =

1

2
Aλ2 +O

(
λ3
)
. (5.48)

A shift δM in the renormalization group scale M generates a corresponding shift in
the temporal coordinate, the coupling constant and the field strength such that the bare
Green’s functions remain fixed:

0 =
dG

(n)
0

d logM
=

(
∂

∂ logM
+

dλ

d logM

∂

∂λ
+ γζζ

∂

∂ζ
+ (n− 1)

dZt
d logM

+
n

2

dZφ
d logM

)
G(n),

i.e., (
M

∂

∂M
+ βλ

∂

∂λ
+ γζζ

∂

∂ζ
+ (n− 1)γt + nγφ

)
G(n) (ω,p;M,λ) = 0. (5.49)

Using (5.21), the n = 2 Callan-Symanzik equation is derived:

− 2Bλ2 − 2Bλβλ log

(
M2

µ2

)
− 2γζ + 2Aλ2 +O

(
λ3
)

= 0, (5.50)

i.e.,

βλ = 0 +O
(
λ2
)
,

γζ = (A−B)λ2 +O
(
λ3
)
.

Using (5.22), the n = 4 Callan-Symanzik equation is derived:

8Bλ3 − βλ + 8γζλ− 5Aλ3 +O
(
λ4
)

= 0, (5.51)

i.e.,
βλ = 3Aλ3 +O

(
λ4
)
. (5.52)

Therefore, we have reproduced the results of the Wilsonian approach in (5.36).
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5.3.4. Modified Minimal Subtraction in 3− ε Spatial Dimensions

In this section we will use dimensional regularization and the MS renormalization scheme.
In general, the direct evaluation of the integral in (5.9) in 3 − ε spatial dimensions results
in the expression

I(6) = −λ2ζ2p6

[
a1

ε
+ b1 log

(
M2

µ2

)
+
a2

ε2
+ b2 log2

(
M2

µ2

)
+
c1

ε
log

(
M2

µ2

)
+ . . .

]
, (5.53)

where M is the “fake” scale introduced formally in dimensional regularization to absorb
the engineering dimensions of the coupling constants, and can be identified with the renor-
malization group scale introduced previously. We keep only the most interesting piece in I,
which is proportional to p6. We also keep all possible terms involving multi-logs and higher
powers in ε−1. Such terms should vanish for consistency with our previous results, but it
will be interesting to see how this consistency is directly imposed by the renormalization
group equations. The renormalized inverse propagator is then

Γ(ω,p) = ω2 + ζ2p6

[
1− I

(6)

ζ2p6
+ δζ2 +O

(
λ3
)]
. (5.54)

The choice of the MS scheme requires

δζ2 = −λ2

{
1

ε

[
a1 + c1 log

(
M2

µ2

)]
+
a2

ε2
+ . . .

}
+O

(
λ3
)
. (5.55)

In terms of bare fields and parameters, the theory is given by

S =
1

2

∫
dt0 d

Dx0

[(
∂φ0

∂t0

)2

+ ζ2
0

(
∂3φ0

∂x2
0 ∂x

i
0

)2

+
λ0

12
εijkε`mn

∂φ0

∂xi0

∂φ0

∂x`0

∂2φ0

∂xj0 ∂x
m
0

∂2φ0

∂xk0 ∂x
n
0

]
.

In terms of the physical (or renormalized) fields and parameters, the theory is given by

S =
1

2

∫
dt dDx

[
Z (∂tφ)2 + Zζ2ζ2

(
∂2∂iφ

)2
+
ZλλM

ε

12
εijkε`mn∂iφ∂`φ∂j∂mφ∂k∂nφ

]
.

Comparing this physical action to (5.1), we can read out

Z = 1 + δ, Zζ2 = 1 + δζ2 , Zλ = 1 + δλ. (5.56)

We further introduce the “physical” time and space, respectively,

t0 = Zt t, x0 = x. (5.57)
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We then have, collectively,

φ0 = Z
1
2
φ φ,

1 = ZtZ
−1
φ Z,

ζ0 = Z
− 1

2
t Z

− 1
2

φ Z
1
2

ζ2ζ,

λ0 = Z−1
t Z−2

φ Zλ λM
ε.

Further note that

Z = 1 +O(λ3),

Zζ2 = 1 + δζ2 ,

Zλ = 1.

Here δζ2 is given by (5.55). Then,

Zt = Zφ +O
(
λ3
)
,

ζ0 = Z
− 1

2
t Z

− 1
2

φ

[
1− λ2

2

{
1

ε

[
a1 + c1 log

(
M2

µ2

)]
+
a2

ε2
+ . . .

}
+O

(
λ3
)]
ζ,

λ0 = Z−1
t Z−2

φ λM ε.

The last two expressions will generate the β-functions due to the fact that the bare couplings
ζ0 and λ0 are constants that do not run under renormalization. Now we have three formulae
to determine four unknown quantities, Zt, Zφ, ζ and λ. This suggests that there is some
room left in the choice of Zt. In general, we can take a Laurent expansion of Zt with respect
to ε−1:

Zt = 1− λ2

(
d1

ε
+
d2

ε2
+
e1

ε
log

(
M2

µ2

)
+ . . .

)
+O

(
λ3
)
, (5.58)

where we keep all terms up to order of λ2.
Then,

log λ0 = 3

[
λ2

(
d1

ε
+
d2

ε2
+
e1

ε
log

(
M2

µ2

)
+ · · ·

)
+O(λ3)

]
+ log λ+ ε logM. (5.59)

Taking the derivative with respect to logM of both sides of the above equation gives

0 =
d log λ0

d logM
= 6λλ′

[(
d1

ε
+
d2

ε2
+
e1

ε
log

(
M2

µ2

)
+ · · ·

)
+O(λ3)

]
+ 6λ2 e1

ε
+
λ′

λ
+ ε, (5.60)

where

λ′ ≡ dλ

d logM
. (5.61)

Plug in the ansatz
λ′ = −ελ+ βλ, (5.62)

where βλ is independent of ε and M .
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Then, keeping only up to order λ3, the order ε0 and ε−1 equations read, respectively,

βλ − 6d1λ
3 − 6e1λ

3 log

(
M2

µ2

)
= 0, (5.63a)

d1βλ − d2 + e1 + e1βλ log

(
M2

µ2

)
= 0. (5.63b)

These equations immediately imply

d2 = e1 = 0.

Similarly, all higher order coefficients are zero. Hence,

Zt = 1− λ2d1

ε
+O

(
λ3
)
,

βλ = 6d1λ
3 +O(λ4).

Then the anomalous dimension of the temporal coordinate is

γt =
d logZt
d logM

= −2λλ′
d1

ε
+O

(
λ3
)

= 2d1λ
2 +O

(
λ3
)
. (5.64)

Comparing to (5.43), we obtain

d1 =
A

2
, (5.65)

and thus

z = 3−Aλ2 +O
(
λ3
)
,

βλ = 3Aλ3 +O
(
λ4
)
.

Finally, from the equation

ζ0 = Z
− 1

2
t Z

− 1
2

φ

[
1− λ2

2

{
1

ε

[
a1 + c1 log

(
M2

µ2

)]
+
a2

ε2
+ . . .

}
+O

(
λ3
)]
ζ, (5.66)

we obtain

0 = −λλ′
{

1

ε

[
a1 −A+ c1 log

(
M2

µ2

)]
+
a2

ε2
+ . . .

}
+

1

ζ

dζ

d logM
+O

(
λ3
)

= λ2

[
a1 −A+ c1 log

(
M2

µ2

)
− 2λ

a2

ε
+ . . .

]
+ γζ +O

(
λ3
)
. (5.67)

This implies

c1 = a2 = 0,

γζ = λ2 (A− a1) +O
(
λ3
)
.

Similarly, all higher coefficients are zero. Comparing the second equation to (5.34), gives

a1 = B, (5.68)
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i.e.,
γζ = (A−B)λ2 +O

(
λ3
)
. (5.69)

Therefore, consistency of the renormalization group equations constrains I(6) to be

I(6) = −λ2ζ2p6

[
B

ε
+ b1 log

(
M2

µ2

)]
. (5.70)

By comparison with (5.11) with the counterterm δζ2 included, we obtain

b1 = B. (5.71)

Hence,

I(6) = −λ2ζ2p6B

[
1

ε
+ log

(
M2

µ2

)]
. (5.72)

The absence of the double-logs and the 1/ε2 terms (and their cross terms) is a result
of the very special form of the vertex (5.4). By naive power counting, the 1-loop diagrams
are logarithmically divergent. However, since the vertex contains a factor in which there
are three momenta contracted by a Levi-Civita symbol, the 1-loop contribution to ζ2 and
λ both vanish. Moreover, at the two loop level, the sunset digram has nonzero contribution
to ζ2, and thus by power counting it will contain a nonzero logarithmic divergence, i.e.,
B 6= 0. This completes our consistency check for the poles of the sunset diagram.

Note that the cancellation of the nonlocal terms given by mixtures of 1/ε’s and log’s
is also required in the Bogoliubov-Parasiuk-Hepp-Zimmermann (BPHZ) prescription, after
taking into account of the relevant diagrams containing counterterm vertices. Here the
vanishing of the nonlocal contribution is due to the vanishing of the diagram

⊗
= 0. (5.73)

Here ⊗ denotes the counterterm vertex −δλ[k1k2k3]2.

5.3.5. Physical Interpretations of the RG Flow

By solving the renormalization group equations, we obtain

z = 3−Aλ2 +O
(
λ3
)
,

γφ =
1

2
Aλ2 +O

(
λ3
)
,

γζ = (A−B)λ2 +O
(
λ3
)
,

βλ = 3Aλ3 +O
(
λ4
)
,

where B > 0.
On one hand, we can turn off the rescaling of time by setting A = 0. Then

γφ = 0, βλ = 0, γζ = −Bλ2 +O
(
λ3
)
.
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Flowing towards the IR regime, the lightcone opens up and the theory eventually flows to
lower values of z. In the UV, the lightcone gradually closes and finally the theory ceases to
be sensible.

However, alternatively, we also have the freedom to fix the coupling ζ by demanding
γζ = 0. Then

A = B, (5.74)

and

z = 3−Bλ2 +O
(
λ3
)
,

γφ =
1

2
Bλ2 +O

(
λ3
)
,

βλ = 3Bλ3 +O
(
λ4
)
.

In this description, z increases in the IR and exceeds the dimension D of space, which
will force the theory to cascade into lower values of z by turning on relevant deformations.
Meanwhile, λ decreases and the theory becomes free in the IR. In the UV regime, z gradually
decreases such that z < D and the theory recovers a physical propagator. Meanwhile, the
coupling λ keeps increasing and eventually the theory becomes non-perturbative. This is
also consistent with the instability of the theory in the UV, as seen by the decay rate, which
scales as

Γdecay ∼ λ2p3, (5.75)

with p the incoming momentum.
We have described here two special choices of physical interpretation of the renormal-

ization group flow – the first in which time is not rescaled, and the second in which ζ is
not renormalized. Clearly, there exists a continuum of choices of parametrization of the
RG flow. The physical interpretations of these parametrizations will involve mixtures, by
various degrees, of the behaviors described above.

5.4. O(N ) Extension and the Large N Limit

Now we generalize the action (5.1) to a theory consisting of N field components, ΦI , I =
1, . . . , N , with O(N) symmetry:

S =
1

2

∫
dt d3x

(
Φ̇2 + ζ2 ∂2∂iΦ

I ∂2∂iΦ
I + · · ·+ λ

12
εijkεlmn∂iΦ

I ∂`Φ
I ∂j∂mΦJ ∂k∂nΦJ

)
.

Note that εijkεlmn∂iΦ
I ∂lΦ

J ∂j∂mΦI ∂k∂nΦJ is equivalent to the interaction term given
above up to integration by parts.

The 4-point vertex takes the form

I, p1

J, p2 K, p3

L, p4

= −1

3
λ[p1p2p3]2 (IJKL) , (5.76)
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where
(IJKL) = δIJδKL + δILδJK + δIKδJL. (5.77)

The integral (5.11) from the sunset diagram is now

I6 = −Bλ2ζ2p6(IABC)(ABCJ) = −1

3
(N + 2)Bλ2ζ2p6. (5.78)

The only modification to the previous results is that B is now multiplied by N+2
3 . If we

take the perspective in which ζ does not run, then the β-function for the coupling λ is

M
dλ

dM
= (N + 2)Bλ3 +O

(
λ4
)
, (5.79)

This becomes infinitely steep in the large N limit for fixed λ. Instead, let us define the ’t
Hooft coupling

g = λN, (5.80)

such that

M
dg

dM
=
N + 2

3N2
Bg3 +O

(
g4
) N→∞−−−−→ 1

3N
Bg3 +O

(
g4
)
, (5.81)

which vanishes in the large N limit up to this order. In fact, we can argue that this vanishing
of the β-function for g holds to all orders. To demonstrate this, we rescale ΦI by dividing
it by

√
N . The action now reads

S =
N

2

∫
dtd3x

[
Φ̇ · Φ̇ + ∂2∂iΦ · ∂2∂iΦ +

g

2
εijkε`mn (∂iΦ · ∂`Φ) (∂j∂mΦ · ∂k∂nΦ)

]
.

Now, the propagator is
1

N

1

ω2 + p6
, (5.82)

and the vertex is
−Nλ[k1k2k3]2 (IJKL) . (5.83)

Hence, in a specific Feynman diagram, each internal propagator contributes a factor 1/N and
each vertex contributes a factor N . Moreover, summing over N fields in a loop contributes
a factor N . Let us assume the following notation:

• L: number of loops;

• I: number of internal legs (edges);

• V : number of vertices;

• ` ≤ L: power of N from summing over fields.

• s: overall power of N in a diagram.
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Filling each loop with a 2-cell associates to each Feynman diagram a Riemann surface
“triangulated” by L faces. The Euler characteristic χ of this surface is

V − I + L = χ = 2− 2h− nb − nc, (5.84)

where h is the number of handles, nb is the number of boundaries and nc is the number of
cross caps. Note that nb ≥ 1 and thus χ ≤ 1. Therefore,

s = V − I + ` = χ− L+ ` ≤ 1− L+ ` ≤ 1. (5.85)

Since the tree level 4-point vertex is of order Ng, diagrams of order lower than N are
suppressed by 1/N . Hence, only the Feynman diagrams with s = 1 contribute to the β-
functions. In (5.85), the first “≤” sign becomes “=” if and only if χ = 1, i.e., the graph is
planar; the second “≤” sign becomes “=” if and only if ` = L, i.e., each loop sums over all
N fields and contributes a factor N . However, each pair of overlapping loops will lower `
by 1, and thus any diagram scaling as N cannot contain any overlapping subgraphs. The
remaining diagrams are all cactus diagrams, which vanish identically due to the special
structure of the vertices. In conclusion, all loop contributions vanish in the large N limit.

The theory is formally stable in the UV regime in the large N limit. The decay rate
scales as

Γdecay ∼ Nλ2p3 =
1

N
g2p3, (5.86)

which vanishes for finite incoming momentum p in the limit N →∞. The factor N in the
second formula comes from summing over all possible outgoing channels.

5.5. Outlook

In this chapter, we have explicitly carried out the renormalization group analysis of a spe-
cific Lifshitz scalar field theory. We demonstrated the mutual consistency of the Wilsonian
approach, the Callan-Symanzik equation, and the MS scheme with dimensional regulariza-
tion. Furthermore, we showed that there is a continuum of distinct, but mutually consistent
physical interpretations of the renormalization group flow in terms of the widening or nar-
rowing of the lightcone or the existence of a strong coupling regime in the UV. These RG
properties, particularly, the existence of multiple interpretations is generic in Lifshitz field
theories and arise from the possibility of a changing dynamical critical exponent.

A number of directions of inquiry related to this present work naturally open up. For
example, it would be interesting to look for new IR fixed points in 3− ε spatial dimensions
in the large N limit, in the same vein as Wilson and Fisher [89]. The interest here would
be to take the ε→ 1 limit to describe a new Wilson-Fisher fixed point in 2 + 1 dimensions.
For the theory studied in this chapter, this procedure would not yield anything interesting
since the interaction term vanishes identically in 2+1 dimensions. However, other scenarios
may exist that exhibit bona fide Wilson-Fisher fixed points with Lifshitz scaling.

In addition, one could consider extending the field content. For example, one could
consider a matrix extension as well as gauge field extensions. In any case, the latter would
be necessary to achieve the goal of applying the present work to quantum gravity.
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Perhaps the most interesting topic for future research relates to the observation that the
interacting O(N) relativistic φ4 theory is dual to a Vasiliev-type higher spin gravity theory
in anti-de Sitter (AdS) spacetime [90, 91]. This motivates the conjecture that there ought
to exist a higher spin gravity theory in an asymptotically Lifshitz spacetime dual to the
CFT considered in §5.4 in the large-N limit. Lifshitz holography usually employs relativistic
bulk gravity coupled to matter in order to ensure asymptotic Lifshitz scaling [49, 92]. This
may not be the most natural approach in our present scenario; Instead, it may be more
reasonable to start with a nonrelativistic gravity theory in the bulk, such as Hořava-Lifshitz
gravity, as suggested in [18]. This intuition is supported by the fact that higher spin gauge
theories are highly restrictive and one generally does not have the freedom to introduce
extra matter fields. Furthermore, the cascading phenomenon described in §4 would seem
to imply that this hypothetical higher-spin gravity theory must support spacetimes which
exhibit hierarchies of asymptotics of Lifshitz scaling with arbitrary values of the dynamical
exponent z (or integer values, at least). This is a rather remarkable property indeed. An
explicit construction of such a theory would be fascinating.
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Chapter 6

Multicritical Phonon-Electron
Interactions in Metals

Nambu-Goldstone modes produced by nonrelativistic spontaneous symmetry breaking
can exhibit naturally higher-order dispersion relations over a large hierarchy of scales. In
flat noncompact space, the naturalness of this behavior is protected by a polynomial shift
symmetry. Here we continue our study of such multicritical NG modes. First we show
how to generalize the polynomial symmetry when some spatial dimensions are compactified
on a torus or replaced by a periodic finite lattice. Then we consider the case in which
the multicritical NG bosons play the role of acoustic phonons, associated with spontaneous
breaking of spatial Euclidean symmetries. We couple the multicritical acoustic phonons
to a Fermi liquid of nonrelativistic electrons, and study the physical properties of such
“multicritical metals” in the simplest, isotropic case. Both thermodynamic and transport
properties depend on the degree of multicriticality of the phonon sector and the dimension
of space. We calculate the resistivity of the metal as a function of temperature T , at the
leading order in the Bloch-Boltzmann transport theory. In particular, we point out that
the system of z = 3 phonons in 3 + 1 dimensions (which is their lower critical dimension),
minimally coupled to the Fermi surface, gives resistivity linear in T over a naturally large
hierarchy of scales.

6.1. Introduction

Some of the most fascinating puzzles of modern theoretical physics can be viewed as puzzles
of naturalness. This is true of high-energy particle physics, and in gravitational and cos-
mological physics. It is also true in some areas of condensed matter physics, as in high-Tc
superconductivity [93]. The surprising robustness with which the strange metals exhibit
resistivity linear in temperature over a remarkable range of scales is begging for an explana-
tion in terms of a mechanism (or mechanisms) which would naturally protect this observed
hierarchy of scales. Novel ideas seem to be needed, in view of which, we turn our attention
to the question of naturalness in a specific class of non-relativistic systems, with Lifshitz
symmetries. It is our hope that the basic pairing mechanism provided by electron-phonon
interactions might still be capable of describing the electronic properties of strange metals
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as long as one is willing to make the phonons multicritical. Appendix 6.A provides a review
of the standard picture of superconductivity.

One of the classic phenomena, spectacularly successful across a broad range of disci-
plines, is the phenomenon of spontaneous global symmetry breaking and its prediction of
the existence of gapless Nambu-Goldstone (NG) excitations. Typically, the NG modes are
either linearly dispersing (as in relativistic systems, or in antiferromagnets), or quadrati-
cally dispersing (as in ferromagnets). Assuming Lifshitz symmetries for simplicity, we have
refined the classification of such NG modes in Chapter 2. We found towers of new uni-
versality classes. The stability of these classes under fluctuations is protected by a shift
symmetry by a polynomial f(x) of appropriate degree in the spatial Cartesian coordinates
x =

{
xi, i = 1, . . . , D

}
. This symmetry implies the naturalness of new and perhaps surpris-

ing hierarchies, between scales at which various subgroups of the polynomial shift symmetry
group are explicitly broken.

6.2. Polynomial Shifts, Compactifications and the Lattice

Having established the possibility of a new symmetry in the continuum theory, one can
naturally ask whether there is a discretized version of this symmetry, such that it can
be implemented on the lattice and reproduce the continuous polynomial symmetry as the
continuum infinite-volume limit is taken.

There are several reasons why to ask this question. First, especially with condensed
matter applications in mind, it is useful to know whether lattice systems exist in which the
analog of the polynomial shift can be realized as an exact symmetry at the microscopic
level, at least in principle. Secondly, even if one is only interested in the continuum limit
itself, it is useful to know whether there is a lattice regularization of the theory which
maintains the lattice version of the polynomial shift symmetry before the continuum limit
is taken. Besides, one might be interested in taking continuum limits other than the infinite
volume limit, for example the limit in which the radius of the periodic lattice in one or more
dimensions is held fixed as the number of sites goes to infinity. Having a lattice version of
the polynomial shift symmetry will then yield automatically a natural continuum symmetry
that works on toroidal spatial compactifications.

6.2.1. Bosons on a finite periodic lattice

One spatial dimension

To begin with, consider the theory in one spatial dimension, on a finite, periodic lattice
of N sites, labeled by the site index j = 0, . . . , N − 1. We are interested in the dynamics
of a single scalar field, represented by the real-valued φj at each site j of the lattice, with
periodic boundary conditions (i.e., we define φj+N ≡ φj for all j ∈ Z). We also introduce
the uniform lattice spacing a, which represents a natural microscopic scale in the theory:
The lattice sites are located at X = Xj ≡ aj. Similarly, N serves as an infrared cutoff, and
the radius of the spatial circle is given by R = Na/(2π): We have X = X + 2πR.

The dual momentum lattice consists of N points, labeled by integers k = 0, . . . , N−1,
arranged uniformly on a circle with periodic boundary conditions. Since the momentum K
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dual to X is naturally quantized in the units of 1/R = 2π/(Na), the lattice sites of the dual
lattice are at Kk ≡ 2πk/(Na), implying that K = K + 2π/a: The radius of the momentum
circle is 1/a. For now, we will set a = 1 for simplicity. We will restore it again only when
we are ready to take the continuum limit with R fixed.

The momentum modes φ̃k associated with the scalar field φj are given by the discrete
Fourier transform,

φ̃k =

N−1∑
j=0

φje
2πijk/N , (6.1)

with the inverse given by

φj =
1

N

N−1∑
k=0

φ̃ke
−2πijk/N . (6.2)

The constant shift symmetry is easily realized by the lattice degrees of freedom φj : The
simplest textbook example of a nearest-neighbor Hamiltonian describing lattice vibrations,

H =
N−1∑
j=0

(φj+1 − φj)2, (6.3)

is indeed manifestly invariant under the constant shift, φj → φj + α, with α ∈ R.
Moving on to polynomial shift symmetries of degree P > 0, we are facing our first issue:

The polynomial functions of the spatial coordinate X, even when discretized and evaluated
at the lattice sites Xj = aj, are not well-defined as uni-valued functions on the periodic
lattice. To find our way out, let us consider the action of our symmetries as they act in
the momentum space. In the continuum theory in D + 1 dimensions, the constant shift
symmetry φ(x) → φ(x) + α acts on the momentum modes via φ(k) → φ(k) + αδ(D)(k).
The polynomial shift symmetries of degree P similarly act on the momentum modes as
shifts by derivatives of degree P of δ(D)(k). Thus, the textbook Hamiltonian (6.3), when
rewritten in momentum space,

H =
N−1∑
k=0

sin2

(
πk

N

)
φ̃∗kφ̃k, (6.4)

is invariant under the shift of φ̃k by the lattice delta-function δk at the origin,

δk =

{
1, k = 0

0, k 6= 0,
(6.5)

simply because the coefficient sin2(πk/N) vanishes at k = 0, the only place where the
delta function δk is non-zero. The idea now is to extend this picture to higher polynomial
symmetries, and to simply define our lattice analog of the “polynomial shift symmetry of
degree P” in its momentum space representation as a shift of the momentum modes by the
properly discretized P -th order derivative of the momentum-space delta function.

As an example, consider the quadratic shift φ(x)→ φ(x)+αx2 of the continuum theory,
which translates in momentum space into φ(k) → φ(k) + α∆δ(D)(k) (∆ here denotes the
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Laplacian in the k-space). We now define our lattice analog of this symmetry (in the
one-dimensinal case) via

φ̃k → φ̃k + α(δk+1 + δk−1 − 2δk), (6.6)

a shift by the discretized lattice version of the second derivative of the momentum-space
delta function at k = 0.

In order to construct a Hamiltonian invariant under (6.6), we just need to make sure
that the coefficient of φ̃∗kφ̃k vanishes not only at k = 0, but also at k = ±1. One natural
way to accomplish this is to write

H =
∑
k

sin2

(
πk

N

)
sin

(
π(k + 1)

N

)
sin

(
π(k − 1)

N

)
φ̃∗kφ̃k. (6.7)

This is manifestly real, invariant under k → −k, and invariant under the lattice P = 2 shift
symmetry defined in (6.6).

In the continuum infinite-volume limit a → 0 and R → ∞, we find sin2(2πk/N) →
K2, as well as sin(2π(k ± 1)/N) → K. Thus, this limit correctly reproduces the z = 2
Hamiltonian of the continuum theory on the decompactified spatial dimension,

H =

∫
dK K4φ∗(K)φ(K), (6.8)

known to be invariant under the quadratic shift symmetry φ(X) → φ(X) + αX2 (which
acts via φ(K)→ φ(K) + αδ′′(K) in the momentum-space picture).

Note that (6.7) is of course not the only lattice Hamiltonian with the exact symmetry
(6.6) which gives this continuum limit. For example, the lattice Hamiltonian

H ′ =
∑
k

sin2

(
πk

N

){
sin2

(
πk

N

)
− sin2

( π
N

)}
φ̃∗kφ̃k (6.9)

is also invariant under (6.6). It gives the same continuum infinite-volume limit as (6.7), but
differs from (6.7) on the lattice by terms that are technically irrelevant in the limit.

Higher-degree shift symmetries

The generalization for arbitrary polynomial shift symmetry of degree 2n − 2, with
n ∈ N, is straightforward. The symmetry is defined as a shift in momentum space by the
corresponding 2n− 2-th lattice derivative of δk at k = 0. The important point is that any
such 2n− 2-th order derivative has its support on sites in the range 1

− n+ 1 ≤ k ≤ n− 1 (6.10)

around the origin in momentum space.

1This is more obvious for the more interesting case considered here, with the shift symmetries of even
degree, since an even-degree lattice derivative of any function fk defined on the sites k is again naturally a
function on these sites. Odd-degree shift symmetries would be implemented via odd-degree derivatives of
δk. It is more accurate to think of the odd-degree derivative of any function fk as a function on the links
between neighboring sites k and k+1, and label the link by the half-integer k+1/2. With this interpretation,
Eqn. (6.10) is correct also for shift symmetries represented by the odd-degree derivatives of δk.
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Our Hamiltonian (6.7) generalizes to

Hn =
∑
k

sin2

(
πk

N

) n−1∏
`=1

[
sin

(
π(k + `)

N

)
sin

(
π(k − `)

N

)]
φ̃∗kφ̃k, (6.11)

and H ′ of (6.9) to

H ′n =
∑
k

sin2

(
πk

N

) n−1∏
`=1

{
sin2

(
πk

N

)
− sin2

(
π`

N

)}
φ̃∗kφ̃k. (6.12)

Both Hn and H ′n are invariant under the lattice version of the shift symmetry of degree
2n− 2, and they both give the same continuum infinite-volume limit

H =

∫
dK K2nφ∗(K)φ(K). (6.13)

It is straightforward to generalize the above construction to a D-dimensional square lattice
and to demonstrate the emergence of rotational symmetry at low energies.

6.3. Multicritical Phonons

We are interested in coupling the multicritical phonons to the Fermi surface associated with
the electron gas in a metal. Our intention is to examine how the standard physical properties
of metals change when the acoustic phonons develop a higher-order dispersion relation over
some natural hierarchy of scales. For simplicity, we will consider the rotationally invariant
case, with

ωk ≡ ωk = ζnk
n. (6.14)

6.3.1. Hydrodynamics with Lifshitz Symmetries

This exposition follows closely the logic of Landau-Lifshitz, Vol. 9, §24, as well as the early
chapters of Abrikosov-Gorkov-Dzyaloshinski [94, 95].

Model the phonon system by an isotropic dissipationless Bose liquid described by sound
waves in a hydrodynamical system. Such an ideal fluid is described the pressure distribution
p, density function f , and the velocity distribution v. We will split the total density f(x, t)
into an equilibrium background density f0(x, t) plus the deviation from equilibrium which
we denote by Q(x, t),

f(x, t) = f0(x, t) +Q(x, t). (6.15)

From now on, we will assume that f0(x, t) = f0 is uniform in space and time, and that
Q(x, t) is small and slowly varying.

We will assume that the flow is a potential flow,

v = ∇φ. (6.16)

This assumption can be related to several things: First, it may be a consequence of some
thermodynamic requirement about the behavior of entropy under the flow. Secondly, for
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isotropic fluids, having v be the gradient of a potential function leads to purely longitudinal
phonons – hence, the condition that the flow be a potential flow eliminates the transverse
polarizations of the phonons.

The system is assumed to satisfy the continuity equation for mass, which in the lin-
earized approximation is

Q̇ ≈ −f0∇ · v = −f0∆φ. (6.17)

Note that we are not proposing to replace the conventional continuity equation with a
multicritical version (such as, for example, Q̇ ∼ ∇ ·∆v).

In terms of the velocity potential, the Euler equation becomes a wave equation,

φ̈+ ζ2
1∆φ = 0, (6.18)

where ζ1 is the speed of sound, given by

ζ1 =

√(
∂p

∂f

)
s

. (6.19)

The subscript “s” denotes “constant entropy”. The Hamiltonian of the system, in the
Gaussian approximation, is

H =
1

2f0

∫
d3x
(

(f0v)2 + (ζ1Q)2
)
. (6.20)

If higher polynomial shift symmetries are applied to Q, the speed of sound ζ1 will be
protected to be close to zero. In this case, higher order operators dominate and need be
considered in the derivative expansion of the theory, which will now be described near a
Gaussian fixed point with a dynamical critical exponent z > 1. In general, the expression
for the total energy will be modified to

H =
1

2f0

∫
d3x
(

(f0v)2 +
(
ζz∂

z−1Q
)2)

. (6.21)

That is, in order to obtain phonons with the higher-order dispersion relation ωk = ζzk
z, we

must impose the polynomial shift symmetry of degree 2z − 4 on the field Q.
Assuming the standard microphysics interpretation of f (or v) as the coarse graining of

the sum, over all particles, of the spatial delta functions weighted by m (or k/m), one finds
that Q and φ form a canonical pair, with Q a generalized coordinate and φ its canonical
momentum,

[φ(x), Q(x′)] = −iδ(x− x′). (6.22)

The mode expansions for φ (x) and Q (x′) are, respectively,

φ (x) =

√
ρ0

2V

∑
k

√
ωk

k
(ake

i(k·x−ωkt) + a†ke
−i(k·x−ωkt)), (6.23a)

Q(x) =
1√

2ρ0V

∑
k

ik
√
ωk

(
ake

i(k·x−ωkt) − a†ke
i(k·x−ωkt)

)
, (6.23b)
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where the modes satisfy the canonical commutation relation

[ak, a
†
k′ ] = δkk′ . (6.24)

The Hamiltonian of the liquid thus takes the form

H =
∑
k

ωk

(
a†kak +

1

2

)
, (6.25)

The free propagator for Q will be

D(k, ω) ∼ k2

ω2 − ω2
k + iε

. (6.26)

In the linearized approximation, we have expanded our theory around a fixed uniform
density f0, and obtained a description of the multicritical liquid in terms of the fluctuations
Q around this equilibrium density. Such a non-interacting limit defines a Gaussian fixed
point, with polynomial shift symmetry protecting the scaling with the dynamical exponent
z. When interactions are restored, generically they explicitly break the polynomial shift
symmetry. Indeed, in the full non-linear theory, we expect self-interaction terms to come
from f0 → f . While f0 is not acted on by the polynomial shift, f is.

The fixed point scaling is defined as follows: [∂i] = 1, [∂t] = z, [Q] = (D − z)/2,
holding f0 fixed (and hence of [f0] ≡ 0). Thus, we scale towards the state with uniform fixed
density f = f0, and not towards the naive empty state with f = 0. This interplay between
the nonlinear structure of the theory versus the renormalization group (RG) scaling near
one of its fixed points is somewhat reminiscent of a similar split in the theory of gravity,
where, in order to define the Gaussian fixed point that describes free gravitons, one splits
the spacetime metric into the sum of a non-zero background, which defines the inertia, and
the fluctuations describing the propagating gravitons with the appropriate, background-
dependent dispersion relation.

6.3.2. Multicriticality in the Debye model

In a realistic crystal, there will be a finite number of oscillation modes. In the simplest Debye
model description of the crystal, one assumes homogeneity and isotropy as in our discussion
of multicritical hydrodynamics, and implements the finiteness of the total number of degrees
of freedom by cutting off the spatial momenta at the appropriate value k = kD, so that the
total number of states reproduces the number of degrees of freedom.2 Since the counting
of states, Ñ , inside the sphere of radius kD is the same as the number, N , in the standard
Debye model of linearly dispersing phonons, kD is the standard Debye momentum of the
crystal.3 The cutoff on k translates into a natural cutoff ω̃D on phonon frequencies, and

2We will often want to compare our multicritical version of the Debye model to the standard one, with
the linearly dispersing acoustic phonons of constant velocity cs.

3One can easily relax this condition, and allow Ñ 6= N . Consequently, the value of the Debye momentum
would also change, to k̃D = (Ñ/N)1/DkD. In this paper, for simplicity, we will focus on Ñ = N and hence
k̃D = kD.
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Figure 6.1: The density of states %(ω) as a function of frequency in the multicritical Debye
model at the lower critical dimension, compared to the density of states in the standard
Debye model. (a): the case of ω̃D = ωD; (b): the regimes with ω̃D � ωD and ω̃D � ωD,
assuming fixed kD.

the existence of the characteristic temperature Θ̃D of the system. Due to the higher-order
nature of the dispersion relation,

ω̃D = ωkD
≡ ζnknD, (6.27)

and Θ̃D = ω̃D, in the units of ~ = 1 = kB, are not the standard Debye frequency and Debye
temperature, but depend on the order n of the dispersion relation. In our comparison to
the standard Debye model with the same Debye momentum kD, we have

ω̃D

ωD
=
ζn
cs
kn−1

D . (6.28)

Similarly, the density of states %(ω), defined via∫ ωk

0
%(ω)dω =

∫ |k|=k
0

dDk

(2π)D
, (6.29)

is not proportional to ωD−1 as in the standard Debye model, but given instead by

%(ω) ∝ ω(D−n)/n. (6.30)

Note that when the phonons with the n-th order dispersion are at their lower critical dimen-
sion, D = n, then the density of states is a constant across all values of ω. Consequently,
there are many more phonon states available near ω = 0 than in the standard Debye model
of linearly dispersing phonons. In this simple case, we now have three qualitatively distinct
regimes that we could consider: (a) ω̃D ≈ ωD; (b) ω̃D � ωD; and (c) ω̃D � ωD. In all three
cases, very low frequency phonon modes proliferate in comparison to the standard Debye
model. However, this behavior is more pronounced in case (b).

6.4. Electron-Phonon Transport Properties

Now we consider the interaction of the multicritical phonon system with a Fermi liquid
of nonrelativistic electrons. In order to illustrate the main robust features caused by the
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multicriticality of the phonons, we consider the simplest model, with the electrons modelled
by a Fermi liquid of spinless screened quasiparticles with a spherical Fermi surface, coupled
to the multicritical Debye model of phonons characterized by their dispersion exponent n.
Thus, we are assuming that the range of length and time scales is such that the phonons are
well-approximated by a fixed value of n. Once such a hierarchy of scales opens up, across
which the phonon dispersion is characterized by fixed n > 1, the hierarchy can be naturally
protected by the corresponding polynomial shift symmetry.

6.4.1. Minimal coupling to the Fermi surface

The coupling between electrons and our phonon liquid is minimal,4

Hint = g

∫
dDxQΨ†Ψ. (6.31)

This coupling breaks the polynomial shift symmetry in the phonon field Q, generates rele-
vant deformations, and produces a natural pairing mechanism for the electrons.

Plugging in the mode expansion (6.23b) for Q, one finds that the electron-phonon
vertex is given by

gk = g
k
√
ωk
. (6.32)

Using the Boltzmann-Bloch transport theory, one computes an estimate of the resis-
tivity via the relaxation time τ(k) between electron-phonon collisions [96],

ρ ∼ 1

τ(kF)
∼
∫ kF

0
|gk|2 n(k) k2 dDk, (6.33)

where n(k) is the phonon distribution function, which at equilibrium is simply the Bose-
Einstein distribution function,

n(k) =
1

eωk/T − 1
.

Switching integration variable to energy appropriately undimensionalized by dividing by
the temperature, one derives the temperature dependence of the resistivity:

ρ ∼ T
3+D−z

z . (6.34)

Indeed, this immediately reproduces the standard result that in D = 3 and when z = 1,
the temperature dependence of the resistivity is ρ ∼ T 5.

It turns out that this simple derivation can be slightly naive and potentially misses
crucial low-energy physics and, in particular, infrared divergences. These we will capture
using a more sophisticated analysis of a microscopic model for the interaction between the
Fermi liquid and the multicritical phonons.

4As an alternative, we could also consider non-minimal couplings, for example the shift-symmetry-
preserving coupling, of the form Ψ†Ψ∆#Q, with the appropriate power #. What is the appropriate #?
If we want an exact invariant, we need Ψ†Ψ∆2z−2Q. Intriguingly, if we allow the polynomial shift to act on
the chemical potential by a shift, we can have Ψ†Ψ∆2z−4Q, whose variation under the shift of degree 2z− 4
is a constant which can be compensated for by the shift of the chemical potential.
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6.4.2. Generalized Bloch-Grüneisen Formula

In the language of the “lattice displacement field” P, which describes the displacement of
the lattice points away from their equilibrium position, we anticipate that Q = ∇·P. From
the mode expansion for Q in (6.23b), we then derive the mode expansion for P:

P =
1√

2ρ0V

∑
k

k̂
√
ωk

(
ake

i(k·x−ωkt) − a†ke
i(k·x−ωkt)

)
. (6.35)

Indeed, with the identification of ρ0 as the mass M of the lattice ions, one would inter-
pret this P as the displacement field of the ions themselves. The interaction can then be
“derived” from a simple microscopic model which is just the standard electrostatic inter-
action between the electron fluid and the electric dipole moment density produced by the
displacement field of the heavy positive ions in the metal.

The interaction energy is

Hint =

∫
dDx dDx′ ρ(x) P(x′) ·∇x′

1

|x− x′|
. (6.36)

Second quantization promotes the classical charge density ρ(~x) to an operator given by
ρ(x) = eψ†(x)ψ(x), where ψ(x) is the field operator for the electron-hole system. For
metals, with itinerant electrons, one must take screening effects into account. This amounts
to replacing the Coulomb potential with a Yukawa potential with screening strength λ. In
the limit of very effective screening, λ→∞, one may take the following replacement

1

|x− x′|
→ 2π

D
2 Γ(D − 1)

Γ
(
D
2

)
λD−1

δ(x− x′). (6.37)

Of course, one need not take this approximation and may consider more general potentials.
Such generalizations are beyond the scope of the present work.

Expand ψ(x) and P(x) as follows

ψ(x) =
1√
V

∑
k

cke
ik·x, P(x) =

1√
2MV

∑
k

k̂
√
ωk

(
ake

ik·x + h.c.
)
, (6.38)

where V is the D-dimensional volume of the system, ck and ak are modes for ψ(x) and
P(x), respectively, and M is the mass of the lattice ion. Note that P(x) is manifestly real.
Then, (6.36) turns into the Fröhlich interaction

Hint =
∑
k,q

gqc
†
k+qckaq + h.c., (6.39)

where

gq = −i 2π
D
2

√
2MV

Γ(D − 1)

Γ
(
D
2

) e

λD−1

q
√
ωq
. (6.40)

This can be compared with (6.32). The entire prefactor of q/
√
ωq is just a microscopic

model for the parameter g introduced at the effective level.
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Suppose that the phonon system is close to a Gaussian fixed point characterized by
the dynamical exponent z. Then, the phonon dispersion relation is approximately

ωq = ζzq
z, (6.41)

where ζz is a constant, which can be set to unity if the system remains in the vicinity of
this fixed point. Then, the coupling constant becomes

gq = −i 2π
D
2

√
2ζzMV

Γ(D − 1)

Γ
(
D
2

) e

λD−1
q1− z

2 . (6.42)

Expand the electron distribution function n(x,k) as

n(x,k) = n0(ε) +
∂n0

∂ε
Φ(x,k), (6.43)

where ε is the dressed electron (quasi-particle) energy and

n0(ε) =
1

eε/T + 1
(6.44)

is the equilibrium, Fermi-Dirac distribution. Plugging (6.44) into (6.43) gives

n(x,k) = n0(ε) +
n0(ε)

(
1− n0(ε)

)
T

Φ(x,k) (6.45)

In principle, one should perform a similar expansion for the phonon distribution function
N(x,k). However, we will assume that the phonon system is always in thermal equilibrium:
N(x,k) = N0(ω), where

N0(ω) =
1

eω/T − 1
, (6.46)

and ω is the phonon frequency.
In terms of these distribution functions, the resistivity of metals is given by the Bloch-

Boltzmann theory as

ρ =

∫
dDk

(2π)D
dDk′

(2π)D
dDq

(2π)D
(Φk − Φk′)

2
(
Pk′,q
k + Pk′

k,q

)
4T
∣∣∣∫ dDk

(2π)D
ev Φ∂n0

∂ε

∣∣∣2 , (6.47)

where v is the quasi-particle velocity, Pk′,q
k is the equilibrium transition rate for the process

kelectron 
 k′electron + qphonon,

and Pk′
k,q is the equilibrium transition rate for the process

kelectron + qphonon 
 k′electron,
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where we ignored the contributions from Umklaap processes [97]. The transition rates are
given by Fermi’s Golden rule as

Pk′,q
k = 2π|gq|2n0(1− n′0)(1 +N0)δ(εk − εk′ − ωq)δb,k−k′−q, (6.48a)

Pk′
k,q = 2π|gq|2n0(1− n′0)N0 δ(εk − εk′ + ωq)δb,k−k′+q. (6.48b)

Then, (6.47) becomes

ρ =
1

12
√
πe2k2

F v
2
F

D

(2π)2D−1

Γ
(
D
2

)
Γ
(
D−1

2

) ∫ 2kF

0

dq qD|gq|2ω
sinh2

(
ω

2T

) (1− q2

4k2
F

)D−3
2

, (6.49)

where e is the effective electric charge, kF is the Fermi momentum, vF is the Fermi speed,
and gq is the coupling of the electron-phonon interaction. We have relegated the details in
the derivation of the formula for resistivity (6.47) as well as the subsequent computation of
(6.49) to Appendices 6.B and 6.C.

To go any further, one must invoke a specific physical model for the electron-phonon
interaction to obtain an explicit expression for gq. We use the model (6.42), together with
(6.41) and (6.49). We evaluate the expression in the limit T � ΘD � 1

2 (2kF )z, where ΘD

is the Debye temperature. Then, one obtains the generalized Bloch-Grüneisen formula

ρ =
T
D+3
z
−1

λ2D−2MV k2
F v

2
F

Γ(D − 1)

2
3+D
z

+1−DπD

∫ ∞
0

dxx
D+3
z
−1

sinh2(x)

= α I T
D+3
z
−1, (6.50)

where

α =
Γ(D − 1)

22−DπDλ2D−2MV k2
F v

2
F

, (6.51)

and

I =

∫ ∞
0

dx
(
x
2

)D+3
z
−1

sinh2(x)
=

1

4
D+3
z
−1

Γ

(
D + 3

z

)
ζ

(
D + 3

z
− 1

)
. (6.52)

6.4.3. Resistivity for Various Values of D and z

Nominally, (6.50) gives ρ ∼ T
D+3
z
−1. For example, this immediately reproduces the standard

result that for z = 1 acoustic phonons in D = 3, we have ρ ∼ T 5. However, one must take
care of possible singularities in the coefficient A, which arise when D = 1, when Γ(D − 1)
is singular, and D + 3 = 2z, when ζ

(
D+3
z − 1

)
is singular.

Assuming integer values for D and z, the first interesting case of the latter singularity is
D = z = 3. In this case, one can regulate the singularity by an infrared cut-off µ, replacing
the lower bound of the integral with µ/T . The integral I in (6.52) becomes

I =
1

2

∫ ∞
µ/T

dxx

sinh2(x)
=
µ

T
coth

(µ
T

)
− log

[
2 sinh

(µ
T

)]
=

1

2

[
1− log 2 + log

(
T

µ

)]
T +O

(µ
T

)2
. (6.53)



115

Therefore, the resistivity in this case picks up a T log T dependence in addition to a T
dependence. It is interesting to note that the coupling given in (6.42) now scales as

gq ∼ q−
1
2 , (6.54)

which blows up in the far infrared when q → 0 and the theory becomes strongly coupled.
However, we have the option of softly breaking the polynomial shift symmetry, letting the
theory cascade to the z = 2 fixed point at the energy scale µ and then cascade to the z = 1
fixed point at the energy scale µ′, with 0 < µ′ < µ� T . In this case, the resistivity is given
by

ρ = α

 1

32
ζ6

1 T
5

∫ µ′
T

0

dxx5

sinh2(x)
+

1

4
ζ3

2 T
2

∫ µ
T

µ′
T

dxx2

sinh2(x)
+

1

2
ζ2

3 T

∫ ∞
µ
T

dxx

sinh2(x)


= c0T + c1T log

(
T

µ

)
+O

(
µ

T
,
µ′

T

)
, (6.55)

where

c0 =
α

2

[
ζ6

1

64

(
µ′
)4

+
ζ3

2

2

(
µ− µ′

)
+ (1− log 2) ζ2

3

]
, c1 =

α

2
. (6.56)

By tuning various parameters, this theory can support a temperature dependence of the
resistivity that is very close to being linear over a broad range of energy scales. This tuning
of parameters is in principle achieved by tuning various physical characteristics of actual
condensed matter systems (e.g., doping, etc.)

6.4.4. Heat Capacity for Various Values of D and z

Famously, the electronic contribution to the heat capacity behaves linearly with temperature
at low temperatures, independent of the spatial dimension. On the other hand, standard
linearly-dispersing phonos in D spatial dimensions contribute a heat capacity which scales
as TD. For multricritical phonons, with a dynamical exponent z, this is modified to TD/z.
The one-loop phonon correction to the phonon propagator is finite and immaterial unless
z ≥ D. At z = D, the correction is logarithmically divergent and contributes a log T
correction to the heat capacity.

To calculate the effect of the electron-phonon interaction on the heat capacity, we will
follow the techniques in [98], wherein the one-loop contribution to the entropy is given by

S(1) ∝ −nN |g|
2

4M

∫ ∞
−∞

dω
∂nB(ω)

∂T

∫
dDq

ω

qvF
θ

(
1−

∣∣∣∣ ωqvF
∣∣∣∣) q2

ω2 − ω2
q

, (6.57)

where n is the number of ions per unit volume, M is the ion mass, N is the bare electron
density of states at the Fermi surface, vF is the Fermi speed, g is the electron-phonon cou-
pling constant, and nB is the Bose-Einstein distribution function. Note that the final piece
in the integrand is nothing but the multricritical phonon bare propagator. The temperature
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dependence of this integral is straightforward to extract in the low-temperature regime and
is given by

S(1) ∝ T
D+1
z
−1. (6.58)

Therefore, the interaction contribution to the heat capacity, which is given by C = T ∂S
∂T ,

has the same temperature dependence:

Cint ∝ T
D+1
z
−1. (6.59)

When z = D, this gives Cint ∝ T 1/z, which, for z = 3 gives T 1/3. Indeed, one can derive
rather unorthodox power law dependence in the heat capacity via the coupling of multi-
critical phonons with electrons. However, one should note that there does exist interesting
power law dependence in the heat capacity of certain exotic materials, particularly in or-
ganic superconductors. For example, in one particular compound, it is found that C ∼ T 1/z,
but with z = 3/2, rather than an integer value [99].

6.4.5. Coupling Systems with Different Scalings

One must keep in mind one critical assumption that has entered into the derivation of the
generalized Bloch-Grüneisen formula. Here, we are coupling two systems – the electron
system and the phonon system. We assume that both systems are close to Gaussian fixed
points, but that they are characterized by different dynamical exponents: unity for the
electrons and z for the phonons. This is manifest in the limit that we are taking: T � ΘD �
1
2 (2kF )z. In the standard case, where the acoustic phonons have a linear dispersion relation,
this limit is perfectly intuitive. Most metals are rigid and stable at the temperatures in
which we deal with them experimentally (this is particularly true in superconductive cases,
which still only occur at very low temperatures). Therefore, it should certainly be true
that the Debye temperature be much greater than the physical temperature. However, and
in addition, the solid formed by the lattice ions is usually far more compressible than the
fluid formed by the electrons, which is just the statement that the Fermi temperature is
much greater than the Debye temperature. Note that we are comparing one temperature
associated with electrons to another associated with phonons. There is no subtlety when
both have the same scaling. However, one must keep in mind that what we really mean here
is that phononic excitations with momenta of order, or greater than, the Fermi momentum
are extremely suppressed. When the phonon system has a dynamical exponent z, then
these excitations are characterized by a temperature of order kzF , not kF , which explains
the limit that we are taking.

One way to think about our assumption here is to make an analogy with the sudden
or impulse approximation. If a charged object with a large linear momentum is deflected
slightly by a magnetic field, one can approximate the deflection by a small impulse keeping
the original linear momentum fixed. Clearly, this is incorrect since it violates momentum
conservation, but the violation is sufficiently small that one is able to extract the dominant
physical behavior of the system in question. Likewise, we assume that the electron-phonon
coupling is sufficiently weak or transitory that we may extract the main physics in the
system without significantly perturbing each subsystem away from each ones respective
Gaussian fixed point.
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Of course, properly, once the two systems are allowed to interact, a hypothetical fixed
point for the combined system must be described by a single dynamical exponent. How this
comes about in detail is not at all clear and is beyond the scope of the present work.

6.5. One Loop Effects

We now turn our attention to the question of the stability of the multicritical phonons.
Our main concern is the stability of these phonons against decay into electron-hole pairs.5

Properly, we will need to study these effects at finite temperature. However, we will perform
the analysis at zero temperature first as a warmup since it is technically simpler.

We ought to be concerned about loop corrections to the interaction vertex itself. That
is, we should check that the Migdal theorem continues to hold for multicritical phonons as
it does for ordinary ones (i.e., that quantum corrections to the vertex are suppressed by a
naturally small ratio of scales, which in the usual case is the ratio of the electron mass to
the ion mass) [100]. The one-loop correction to the electron-phonon vertex is given by an
additional phonon exchange between the outgoing electrons. Migdal’s theorem will apply
to this diagram as long as the population of phonons near the “low-energy” states of the
intermediate electrons is suppressed. This is essentially always the case since the low-energy
electronic excitations lie around the Fermi surface, which has a very high momentum. As
stated in the previous section, we assume that phononic excitations with momenta of order
the Fermi momentum are extremely suppressed. Hence, we need only consider the one-loop
correction to the phonon propagator in detail.

6.5.1. Feynman Rules

The free Fermion Lagrangian is

Lff = iψ†ψ̇ − 1

2m
∂iψ
† ∂iψ. (6.60)

In Fourier space, this reads

L(q)
ff = ψ†

[
i(−iε)− 1

2m
(−iq) · (iq)

]
ψ = ψ†

(
ε− q2

2m

)
ψ. (6.61)

We split the Fermion propagator up into two pieces depending on whether q > kF (electron)
or q < kF (hole). The bare electron propagator is

(q, ε)
= iG+

0 (q, ε) =
i

ε− εq + i0+
, (6.62)

where we have defined

εq =
q2

2m
. (6.63)

5We might also be concerned with decays into softer phonons. However, these are suppressed by additional
electron-phonon interaction vertices.
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The bare hole propagator is

(q, ε)
= iG−0 (q, ε) =

i

ε− εq − i0+
. (6.64)

The free Boson Lagrangian is written in terms of the displacement field P as

Lfb =
1

2
Ṗ 2 − ξ2

2
(∂2∂iP )2. (6.65)

As usual, one would Fourier expand P such that

Pk =
k̂
√
ωk

(
ak e

−i(ωt−k·x) + a†k e
i(ωt−k·x)

)
, (6.66)

where
ω2
k = ξ2k6. (6.67)

Note that we only keep the longitudinal component since only this component contributes
to the interaction. Plugging this into Lfb gives

L(k)
fb =

1

2

(
−ω2 + ω2

k

ωk

)(
ak e

−i(ωt−k·x) + a†k e
i(ωt−k·x)

)2
. (6.68)

Therefore, if we take the convention of [101], where the phonon is created by a†k (with no
prefactors), then the bare phonon propagator is

(k, ω)
= iD0(k, ω) =

2iωk

ω2 − ω2
k + i0+

. (6.69)

The interaction term is

Lint = −gψ†ψ(∇ ·P) = ψ†ψ
(
Vk ake

−i(ωt−k·x) + V ∗k a
†
ke
i(ωt−k·x)

)
, (6.70)

where

Vk = − igk
√
ωk
. (6.71)

Note that the phonon line is created by a†k (with no prefactors) and annihilated by ak, the
Feynman rule for the vertex factor is

k

= −iVk = − gk
√
ωk
,

k

= −iV ∗k =
gk
√
ωk
. (6.72)

We summarize the Feynman rules below for convenience:
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Quantity Diagram Feynman Rule

Electron propagator
(q, ε)

iG+
0 (q, ε) =

i

ε− εq + i0+

Hole propagator
(q, ε)

iG−0 (q, ε) =
i

ε− εq − i0+

Phonon propagator
(k, ω)

iD0(k, ω) =
2iωk

ω2 − ω2
k + i0+

Absorption Vertex

k

−iVk =
−gk
√
ωk

Emission Vertex

k

−iV ∗k =
gk
√
ωk

6.5.2. Phonon Propagator

Zero-Temperature Case

The diagram we wish to calculate is

(k, ω) (k, ω)

(q + k, ε+ ω)

(q, ε)

The one-loop correction to the inverse phonon propagator is

(−1)
1

2
(2)(2)(−iVk)(−iV ∗k )

I︷ ︸︸ ︷∫
dε d3q

(2π)4

[
iG−0 (q, ε)

][
iG+

0 (q + k, ε+ ω)
]
. (6.73)

The factor of (−1) is due to the fermion loop. The factor The first factor of 2 is due to the
sum over two diagrams with the electron and the hole exchanged; the second factor of 2 is
due to the sum over spins. Since the vertex factor can depend only on the momentum of
the phonon, it can be pulled out of the integral over the fermion degrees of freedom, which
is why we do not actually need the exact form of the vertex until the end, when we will
examine the behavior of the result as a function of k.

I =
1

(2π)4

∫
d3q

∫ ∞
−∞

dε
i

ε− εq − i0+

i

(ω + ε)− εq+k + i0+
. (6.74)
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Expand out the propagators as usual:

1

x− i0+
= P 1

x
+ iπδ(x). (6.75)

In a shortcut notation, we denote

1

ε− εq − i0+
= Pq + iπδq,

1

ε− εq+k + ω + i0+
= Pk − iπδk. (6.76)

Therefore,

Re I ∼
∫
Pq Pk + π2 δq δk, Im I ∼

∫
π (Pk δq − Pq δk) . (6.77)

Note that

0 = Re

∫
1

. . .− i0+

1

. . .− i0+
=

∫
PqPk − π2 δq δk. (6.78)

Therefore,

Re I ∼
∫

2π2 δq δk. (6.79)

Hence,

Re I = − 2

(2π)4

∫
d3q

∫ ∞
−∞

d ε π2δ(ε− εq) δ(ε− εq+k + ω).

and

Im I = − 1

(2π)4

∫
d3q

∫ ∞
−∞

dε

[
πδ(ε− εq)

ε− εq+k + ω
+
−πδ(ε− εq+k + ω)

ε− εq

]
= − 1

(2π)3

∫
d3q

1

εq − εq+k + ω
.

Here

εq − εq+k = −qk cos θ

m
− k2

2m
, (6.80)

where θ is the angle between q and k.

Finite Temperature Case

Although we are only concerned with the zero temperature limit, it turns out to be necessary
to consider the finite temperature Green’s function when dealing with the real part of I.
After summing over the Matsubara frequencies, the temperature dependent part of the
Green’s function contributes a factor tanh (ε/2T ) to the integrand of I. Therefore,

I =
1

(2π)4

∫
d3q

∫ ∞
−∞

dε
i

ε− εq − i0+

i

ε− εq+k + ω + i0+
tanh

ε

2T
.

Hence,

Re I = − 1

16π2

∫ ∞
−∞

dε

∫
d3q δ(ε− εq) δ(ε− εq+k + ω)

(
tanh

ε

2T
− tanh

ε− ω
2T

)
,

Im I = − 1

8π3

∫
d3q

1

εq − εq+k + ω
tanh

εq
2T

.
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Real Part of I

Let us focus on the real part of I first. Define q1 = q+k. Note that q2
1 = q2 +k2 +2qk cos θ

and 2q1 dq1 = 2qk d cos θ. Moreover, the integral over the azimuthal angle in Eqn. (6.80)
just gives a factor of 2π. We cut off the integral over q by a upper bound p0. Then,

Re I = − 1

8πk

∫ ∞
−∞

dε

∫
dq dq1 q q1 δ

(
ε− q2

2m

)
δ

(
ε− q2

1

2m
+ ω

)(
tanh

ε

2T
− tanh

ε− ω
2T

)
.

The q1 integral pulls out a factor of m as well as imposing the condition

|a| ≤ 1,

where

a ≡ k

2 p0
− mω

k p0
.

Subsequently, the q integral once again just pulls out a factor of m and imposes the upper
bound p2

0/m on the ε integral. However, after removing dimensions by pulling out the
temperature dependence, the upper limit of the resulting integral goes to ∞ in the low
temperature limit anyway. The result is

Re I = −m
2ω

8πk
θ(1− a2). (6.81)

Imaginary Part of I

At zero temperature, the T dependence will drop out in Im I. The integral over θ is easily
done giving the result

i Im I = − i

(2π)2

∫ p0

0
dq q2

(
−m
qk

)(
ln

∣∣∣∣−qk cos θ

m
− k2

2m
+ ω

∣∣∣∣)θ=0

θ=π

=
i

(2π)2

mp2
0a

k
h(a), (6.82)

where we defined

h(a) ≡ a
∫ −1/a

0
dxx ln

∣∣∣∣1− x1 + x

∣∣∣∣. (6.83)

Furthermore,

h(a) = a

∫ 1
a

0
dxx ln

∣∣∣∣1 + x

1− x

∣∣∣∣
= a

∫ 1

0
dxx ln

(
1 + x

1− x

)
+ a2

∫ 1
a

1
dxx ln

(
1 + x

x− 1

)
= a(I1 + I2).
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Note that the above expression is valid for |a| > 1. Here,

I1 =

∫ ∞
0

d(tanh2 v)v = lim
M→∞

(
v tanh2 v

∣∣∣∣M
0

−
∫ M

0
d v

cosh2 v − 1

cosh2 v

)

= tanh v

∣∣∣∣∞
0

+ lim
M→∞

M(tanh2M − 1) = 1,

and

I2 =

∫ arctanh a

∞
d(coth2 v)v = lim

M→∞

(
v coth2 v

∣∣∣∣arctanh a

M

−
∫ arctanh a

M
d v

1 + sinh2 v

sinh2 v

)

=

(
1

a2
− 1

)
arctanh a−

(
− coth v

∣∣∣∣arctanh a

∞

)
+ lim
M→∞

[
−M(coth2M − 1)

]
= −1 +

1

a
+

(
1

a2
− 1

)
arctanh a.

Therefore,

h(a) = 1 +
1− a2

a
arctanh a = −2a

∞∑
n=0

a2n

4n2 − 1
. (6.84)

For |a| < 1, Eqn. (6.83) yields

h(a) = a

∫ arctanh 1
a

0
d(tanh2 v) v = 1 +

1− a2

a
arctanh

1

a
.

Generically, we have

h(a) = 1 +
1− a2

2a
ln

∣∣∣∣1 + a

1− a

∣∣∣∣. (6.85)

This reproduces Eqn. 21.14 in [95].

One-Loop Correction to the Phonon Propagator

Combining (6.81) and (6.82), we obtain the random phase approximation (RPA) form of
the exact phonon propagator:

iDphonon(k, ω)

=
2iωk

ω2 − ω2
k

+

(
2iωk

ω2 − ω2
k

)2 2g2k2

ωk

[
i

(2π)2

mp2
0a

k
h (a)− m2ω

8πk
θ(1− a2)

]
+ . . .

≈
2iω2

k

ω2 − ωk

∞∑
n=0

[
2iωk

ω2 − ω2
k

(
ig2mp2

0k

2π2ωk
a h (a)− g2m2ωk

4πωk
θ(1− a2)

)]n
=

2iωk

ω2 − ω2
k −Π

,
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where

Π = −g
2mp2

0k

π2
a h (a)− ig2m2ωk

2π
θ(1− a2). (6.86)

In the regime where ω � k2

m , we have

Π = −g
2p0mk

2

2π2
h

(
k

2p0

)
− ig2m2ωk

2π
θ(2p0 − k)

= −g
2p0m

π2

(
k2 − 1

12

k4

p0
− 1

240

k6

p4
0

+ . . .

)
− ig2m2ωk

2π
θ(2p0 − k).

The correction to ωk is thus

ω2
k → ω2

k −
g2p0m

π2

(
k2 − 1

12

k4

p2
0

− 1

240

k6

p4
0

+ . . .

)
− ig2m2ωk

2π
θ(2p0 − k),

i.e.,

ω2
k → k2

[
ω2
k

k2
− η h

(
k

2p0

)
− η iπmω

p0k
θ(2p0 − k)

]
, (6.87)

where

η =
g2p0m

2π2
.

Note that [η] = T−2L2, which is customarily dimensionless near a z = 1 fixed point.
Furthermore, (6.87) is identical to the results in [95, 100].

Small k and ω Regime

We study the behavior of the real part of (6.86) at small k and ω. We define

ν =
mω

p0k
, κ =

k

2p0
.

We can then write

Π =
2g2mp3

0

π
κ (κ− ν)

(
1 +

1− (κ− ν)2

2(κ− ν)
ln

∣∣∣∣1 + κ− ν
1− κ+ ν

∣∣∣∣) .
It is convenient to define

f(k, ω) = κ (κ− ν)

(
1 +

1− (κ− ν)2

2(κ− ν)
ln

∣∣∣∣1 + κ− ν
1− κ+ ν

∣∣∣∣) . (6.88)

If we approach (k, ω)→ 0 along the direction ω = 0, i.e., ν = 0, we obtain

f(k, ω) = κ2

(
1 +

1− κ2

2κ
ln

∣∣∣∣1 + κ

1− κ

∣∣∣∣)→ κ2 =
k2

4p2
0

.
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This is known as the static limit. The decay rate stays at 0 in this case.
Along the direction k → 0, f(k, ω) is divergent. This case is referred to as the dynamical

long-wavelength limit. For large ν > 0, we have

f(k, ω)→ κ ν

[
1− 1− ν2

2ν
ln

(
1− 1

ν

1 + 1
ν

)]
→ κ

ν
=

k2

2mω
.

Note that at ν → ∞, the real part goes to 0 and the imaginary part of Π goes to infinity,
and thus the phonons decay quickly into electron-hole pairs.

What if ν → 1? This seemingly divergent point is not singular at all. We denote
ν = 1− z. Then

f(k, ω)→ −κ(1− z)
[
1− 1− (1− z)2

2(1− z)
ln

(
z

2− z

)]
→ −κ [1 + (ln 2− 1− ln z) z] .

For small z, we have
lim
z→0

z ln z = − lim
z→0

z = 0.

Therefore,

f(k, ω)→ −κ (1 + z ln 2)→ − k

2p0
.

For z > 1, the parameter ν approaches 0 as k approaches 0. Therefore, the static limit is
the appropriate one in this case, and, indeed, we find that the multicritical phonons are
indeed stable against decay.

6.6. Discussion

In this chapter, we applied the applied the lessons that we have learned in the previous
chapters to the naturalness problem of the linear dependence in temperature of the heat
capacity of some materials, namely strange metals. We demonstrated that this behavior
may be described within the standard picture of electron-phonon interactions, as long as one
allows the phonons to be multicritical and, in particular, near their lower critical dimension.
Furthermore, we are clear in pointing out that these phonons need not be of the usual type
of lattice vibrations – they are bosonic degrees of freedom, which interact with the electrons.
This is their universal description and we have not speculated as to their exact nature and
microscopic origin. In addition, we do not go so far as to suggest that this mechanism is
indeed the one in play in all known high-Tc superconductors. However, the mechanism is
available and there may very well be physical systems in which it comes to play.

In the context of this thesis, we highlight one main virtue of this model of multicritical
phonons interacting with electrons – it is technically natural and protected by the polyno-
mial shift symmetry. This addresses the main theoretical conundrum raised in [93], which
demonstrates that attempts at modeling the behavior of the resistivity are almost certainly
doomed to be technically unnatural. The Lifshitz scaling in our model represents one way
around this problem. However, as mentioned earlier, the question of how two interacting
subsystems with different scalings settle into one overall dynamical exponent remains open
and represents an intriguing direction for future research.
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Appendix

6.A. The Standard Model of Superconductivity

6.A.1. The Phonon-Electron Interaction

In this appendix, we outline the standard model of superconductivity in which an electron-
phonon interaction produces an attractive effective electron-electron interaction. A phase
transition occurs when this interaction overwhelms the repulsive electromagnetic interac-
tion. Electrons form Bosonic Cooper pairs, which condense. This discussion follows closely
Solid State Theory by Zheng-Zhong Li [102].

The Classical Theory of Phonon-Electron Interaction

For simple crystal lattices we can focus on the acoustic oscillations. Suppose that the
interaction potential between an ion at lattice ` and an electron at ri is V (` − ri). For
static ions, the interaction between electrons and ions can be obtained by summing over all
lattices and electrons as follows: ∑

i,`

V (ri − `). (6.89)

To take into account of the vibrations of the ions, we introduce a relative time-dependent
displacement u`(t) to `, which describes a small deviation of an ion from its equilibrium
position: ∑

i,`

V [ri − (` + u`)] (6.90)

Then the interaction between electrons and the lattice vibrations is simply the discrepancy
between the Hamiltonian :

Hel-ph =
∑
i,`

(
V [ri − (` + u`)]− V (ri − `)

)
= −

∑
i,`

u` · ∇V (ri − `). (6.91)

For a monovalent metal, we have

V (ri − `) = − 4πe2

|ri − `|
e−λ|ri−`|, (6.92)

where λ is the Coulomb screening factor.
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The Bloch Representation

Define ψn,k(r) as the Bloch function, which represents the energy eigenfunctions of the
Hamiltonian of a single electron in the ideal lattice, i.e.,

H ψn,k(r) = En(k)ψn,k(r),

where n denotes the energy band and k denotes the wave vector. The sum over spins is
taken for granted. Normalized appropriately, the Bloch function are orthonormal. The
Bloch theorem implies

ψk(k) = uk(r) eik·r, uk(r + `) = uk. (6.93)

Any periodic wave function Ψ(r) can be expanded in Bloch functions,

Ψ(r) =
∑
n,k

cn,k ψn,k(r),

where

cn,k =

∫
dr Ψ(r)ψ∗n,k(r).

Lattice Dynamics

The Hamiltonian that describes the oscillations of the lattice system is

Hph =
1

2M

∑
`

pi` · pi` +
1

2

∑
`

∑
`′

Uij(`− `′)ui` u
j
`′ , (6.94)

where p` = Mu̇`, with p` the conjugate momentum of u` and M the ion mass.
Applying the Bloch theorem to the lattice vibration u`, we obtain

u` = eik·R`u0,

Due to the periodicity of the lattice, the wave vector k is not uniquely defined; instead, the
associated Bloch functions will have the same value for two wave vectors k and k′, when

k′ − k = Kn,

where the length of Kn is equal to n reciprocal lattice constant 1/a. We restrict the domain
of k to the first Brillouin zone, within which the difference between any two wave vectors
is smaller than the reciprocal lattice constant. We define N as the total number of wave
vectors within the first Brillouin zone. Therefore, the Brillouin zone contains N different
k, and each k is associated with three polarizations. In total there are 3N normal modes,
which we denote as Qk. We use these 3N normal modes to expand the lattice vibration u`
as follows:

u` =
1√
NM

∑
k

εkQk e
ik·R` , (6.95)
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where εk denotes the polarization of the wave vector k. Plugging the normal mode expansion
of u` back into (6.94), we obtain

H =
1

2

∑
k

(
P ∗kPk + ω2

kQ
∗
kQk

)
,

with
Pk = Q̇∗k,

the conjugate momentum of Pk. Canonically quantize the system, we obtain

[Pk, Qk′ ] = −iδk,k′ , [Pk, Pk′ ] = [Qk, Qk′ ] = 0.

Applying the canonical transformation, we define

ak =

√
ωk

2

(
Qk −

P−k
iωk

)
, a†k =

√
ωk

2

(
Q−k +

Pk

iωk

)
,

with the commutation relation

[ak, a
†
k′ ] = δk,k′ , [ak, ak′ ] = [a†k, a

†
k′ ] = 0.

The Hamiltonian is

H =
∑
k

ωk

(
a†kak +

1

2

)
.

The Quantum Theory of Phonon-Electron Interaction

Let cn,k be the annihilation operator and c†n,k the creation operator for electrons, satisfying

{ck, c
†
k′} = δk,k′ , {ck, ck′} = {c†k, c

†
k′} = 0.

The interaction Hamiltonian reads

Hel-ph = −
∑
`

∑
k,k′

∑
q

1√
2NMωq

(aq + a†−q) c†k′ cke
iq·`

× εq ·
∫
dru∗k′(k)uk(r) ei(k−k

′)·r∇V (r− `),

where εq is the polarization vector of the phonon with momentum q.
Taking the Fourier transformation of V (r),

V (r) =
∑
p

Vp e
ip·r,

we obtain ∫
dru∗k′(k)uk(r) ei(k−k

′)·r∇V (r− `) = i
∑
p

pVp δp,k−k′ e
i(k−k′) ·r.
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For a monovalent metal, the Fourier transform of (6.92) gives

Vq = −4πe2

∫
d3r

e−iq·r

r
e−λr =

4π

q2 + λ2
. (6.96)

Within the first Brillouin zone, Kn = 0 and k′ = k + q. In this case,

Hel-ph = −i
∑
k,q

√
N

2M

q
√
ωq

Vq (aq + a†−q) c†k+q ck. (6.97)

Let us define

gp ≡ −i
√

N

2M

q
√
ωq
Vq,

then
Hel-ph =

∑
k,q

(
gp ap c

†
k+q ck + g∗p a

†
p c
†
k−q ck

)
. (6.98)

6.A.2. Nakajima Transformation and Effective Four-Electron Vertex

The full Hamiltonian of the electron-phonon system is

H =
∑
q

ωq a
†
q aq +

∑
k

εk c
†
k ck +

∑
q,k

(
gq aq c

†
k+q ck + g∗q aq c

†
k−q ck

)
.

In this section we integrate out the phonon and derive the effective four-electron interaction.
In the following we introduce the Nakajima transformation, which automatically takes

care of the 4-electron effective vertex with an exchanged phonon. Consider a many-body
system with energy eigenvalue E, such that

H Ψ = EΨ.

Under the canonical transformation

ΨS = eSΨ,

we define
HS ≡ e−SHeS , (6.99)

such that
HS ΨS = EΨS .

From (6.99) we obtain

HS =

(
1− S + +

1

2
S2 + . . .

)
H

(
1 + S +

1

2
S2 . . .

)
= H + [H,S] +

1

2
[[H,S], S] + . . . .
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Let us then take the following notation

H0 =
∑
q

ωq a
†
q aq +

∑
k

εk c
†
k ck,

H1 =
∑
q,k

(
gq aq c

†
k+q ck + g∗q aq c

†
k−q ck

)
. (6.100)

Hence,

HS = H0 +H1 + [H0, S] +
1

2
[H1, S] +

1

2
[H1 + [H0, S], S] + . . . .

If we choose S such that
H1 + [H0, S] = 0, (6.101)

then

HS = H0 +
1

2
[H1, S] + . . . .

To implement (6.101), S must be of the same order as H1, and thus we can assume
the form of S to be

S =
∑
k,q

(
Mq aq c

†
k+q ck +Nq a

†
q c
†
k−q ck

)
. (6.102)

Denote the initial and final eigenstates of H0 as |i〉 and |f〉, respectively, then

−〈f |H1 |i〉 = 〈f | [H0, S] |i〉 = (Ef − Ei) 〈f |S |i〉 .

Therefore,

〈f |S |i〉 =
〈f |H1 |i〉
Ei − Ef

.

Combined with (6.100) and (6.102), we can read off

Mq =
gq

ωq − εk+q + εk
, Nq =

g∗q

−ωq − εk−q + εk
.

Therefore,

S =
∑
k,q

(
gq aq c

†
k ck

εk − εk+q + ωq
+

g†q a
†
q c
†
k−q ck

εk − εk−q − ωq

)
.

Since we are only interested in the operators c† c and c† c† c c, we will compute the average
of the Hamiltonian over the vacuum state of the phonon |0〉, in which all other types of
terms will be excluded. Namely,

〈0| 1
2

[H1, S] |0〉 =
1

2

∑
q

(
〈0|H1 |1q〉 〈1q|S |0〉 − 〈0|S |1q〉 〈1q|H1 |0〉

)
,
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where |1q〉 is the one-phonon state with momentum q. Note that

〈0|H1 |1q〉 = gq c
†
k+q ck, 〈1q|H1 |0〉 =

∑
k

g†q c
†
k−q ck;

〈0|S |1q〉 =
∑
k

gq c
†
k+q ck

εk − εk+q + ωq
, 〈1q|S |0〉 =

∑
k

g†q c
†
k−q ck

εk − εk−q − ωq

.

Therefore,

〈0| 1
2

[H1, S] |0〉 =
1

2

∑
k,k′,q

|gq|2
(
c†k+qckc

†
k′−qck′

εk′ − εk′−q − ωq

−
c†k+qckc

†
k′−q ck′

εk − εk+q + ωq

)
.

We can then write the effective electron-electron interaction as

Hel-ph =
1

2

∑
k,k′,q

Gk,qc
†
k+qckc

†
k′−q ck′ , (6.103)

with

Gk,q =
2 |gq|2 ωq

(εk − εk+q)2 − ω2
q

.

This is the effective interaction from exchanging phonons between electrons.

6.A.3. BCS Superconductivity Theory

BCS Reduced Hamiltonian

The electrons interact with each other by exchanging phonons and photons, with the former
described by (6.103) and latter by the Coulomb interaction. The total interaction is

Hint =
1

2

∑
q,k1,k2

(
Gk,q +

4πe2

q2 + λ2

)
c†k1+qc

†
k2−qck2

ck1
. (6.104)

Hence, the total potential in Fourier space is

4πe2

q2 + λ2

(
1 +

8πe2

MΩ(q2 + λ2)

q2

ω2 − ω2
q

)
.

Note that, around the Fermi surface, the phonon frequency is ωq is approximately the Debye
frequency ωD. Below this frequency, the potential results in an attractive force and above
this frequency, the force will be repulsive. Therefore, Cooper pairs are obtained only when
the energy of the exchanged phonons is below the Debye frequency. Note that ωD tends to
be of order 10−2 eV, which is much less than the Fermi energy εF , which tends to be of
order 10 eV.

Assuming that the screening is very effective, we can take λ� q and thus

4πe2

λ2

(
1 +

8πe2

MΩλ2

q2

ω2 − ω2
q

)
.
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The factor

cs =

√
4πe2

MΩλ2
,

is interpreted as the speed of sound via analogy with the speed of sound in a chain of masses.
Therefore, the effective potential is

Ueff =
4πe2

λ2

(
1 +

2 c2
s q

2

ω2 − ω2
q

)
.

If the phonon dispersion is ωq = csq, and the electrons lie near the Fermi surface, then
in the ω → 0 (static) limit, one finds

U
(1)
eff = −4πe2

λ2
,

which is a constant. Then the effective potential in position space is

E(1) = −4πe2

λ2
δ(r),

an attractive delta function well.
If the phonon dispersions is ωq = ζ2q

2, then the effective potential becomes

U
(2)
eff =

4πe2

λ2

(
1− 2c2

s

ζ2
2q

2

)
,

which we regulate via an IR regulator µ:

U
(2)
eff =

4πe2

λ2

(
1− 2c2

s

ζ2
2

1

q2 + µ2

)
.

In position space, we find

E(2) ∼ −2µ

(
ecs
λζ2

)2 e−µr

µr
.

Note that we have dropped the formally repulsive delta function at the origin, because the
theory will inevitably flow towards the z = 1 fixed point in the IR

If the phonon dispersion is ωq = ζ3q
3, then the effective potential becomes, after IR

regulation,

U
(3)
eff =

4πe2

λ2

(
1− 2c2

s

ζ2
3

1

(q2 + µ2)2

)
.

In position space, we find

E(3) ∼ − 1

µ

(
e2cs
λζ3

)2

e−µr.

The higher-order dispersion relation resolves the delta-function well at the origin into a steep
exponential well. The attractive region is enlarged, further facilitating electron pairing.



132

For future reference, we define

Gq =
2πe2γc2s
λ2

q2

ω2
q

. (6.105)

If ωq = csq, we have

G(1)
q =

2πe2γ

λ2
,

which is a constant; if ωq = ξq3, we have

G(3)
q =

2πe2γc2s
λ2ξ2

1

q4
.

Thus we can rewrite (6.104) as

Hint =
1

2

∑
q,k1,k2

Gq c†k1+qc
†
k2−qck2

ck1
.

Now we consider the interaction between of a pair of electrons with momenta k1 and
k2, respectively, which scatter into electrons with momenta k1 + q and k2 + q. Define the
total wave vector as

K = k1 + k2.

The phase space volume of the attractive regions (i.e., when the frequency of the exchanged
phonon is smaller than ωD) swept out by k1 and k2 for specific total momentum K is small
for K 6= 0. However, in the case of K = 0, the pairing region is extended to be the volume
between two concentric spheres with 2ωD energy difference, which is much larger than the
phase space volume of any electron pair with K 6= 0. Therefore, the scattering will be
dominated by the K = 0 processes, and the interaction can be thus simplified to

Hint = −1

2

∑
k,k′

Gk′−k c
†
k′ c
†
−k′ c−k ck,

Moreover, the two electrons have to be physically close to each other in position space to
form a Cooper pair, due to the Pauli exclusion principle, the two electrons of opposite quasi-
momentum within the Cooper pair tend to have opposite spins. Therefore, the interaction
term can be further simplified to

Hint = −
∑
k,k′,σ

Gk′−k c
†
k′,σ c

†
−k′,−σ c−k,−σ ck,σ.

The reduced BCS Hamiltonian reads

H ≡ H − µN

=
∑
k

(εk − εF )
(
c†k,↑ ck,↑ + c†−k,↓ c−k,↓

)
−
∑
k,k′

Gk′−k c†k′,↑ c
†
−k′,↓ c−k,↓ ck,↑. (6.106)
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The Cooper Pair

We consider a system with a filled Fermi sphere and a pair of additional electrons at zero
temperature. Suppose that the electrons within the Fermi sphere can be considered as free
electrons. We need only consider the two-body scattering of the additional electrons. In
this case, the existence of the Fermi sphere prevents the additional electrons from occupying
the states with k < kF , and we may neglect the scattering of electrons within the Fermi
sphere. We can assume that these two additional electrons carry opposite momentum and
spin. Hence the pair of electrons can be represented by the state

c†k c
†
−k |0〉 ,

with |0〉 denoting the ground state in which the Fermi sphere is fully occupied. However,

c†k c
†
−k |0〉 is not an eigenstate of the reduced Hamiltonian H. Generically, an energy eigen-

state |Ψ〉 is a linear combination of such states:

|Ψ〉 =
∑
k>kF

βk c
†
k c
†
−k |0〉 .

We should also confine the sum over k to be within the pairing region, i.e., 0 < εk < ωD.
The coefficients βk are to be determined. They satisfy the normalization condition∑

k

|βk|2 = 1. (6.107)

Hence,

E = 〈Ψ|H |Ψ〉 = 2
∑
k>kF

εk|βk|2 −
∑

k,k′>kF

Gk′−k β∗k′ βk.

To compute the ground state energy, we introduce the Lagrangian multiplier λ to impose
the condition Eqn. (6.107) and minimize the expression∑

k>kF

[2(εk − εF )− λ] |βk|2 −
∑

k,k′>kF

Gk′−k β∗k′ βk.

Taking a derivative with respect to β∗k, we obtain the condition

[2(εk − εF )− λ]βk =
∑
k′>kF

Gk−k′ βk′ . (6.108)

In general it is difficult to solve for βk. However, for z = 1 phonons, G(1)
q is constant, as in

(6.105). In this case,

[2(εk − εF )− λ]βk = G(1)
∑
k′>kF

βk′ =⇒ βk =
G(1)

2(εk − εF )− λ
∑
k′>kF

βk′ .

The normalization condition implies

1 = G(1)
∑
k>kF

1

2(εk − εF )− λ
.
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The sum is converted into an integral with the use of the density of states D(ε),∑
k>kF

→
∫ ωD

0
dεD(ε).

Since the integration region is small, we can replace D(ε) with D(0), the density of states
at the Fermi surface. Then,

1 = G(1)D(0)

∫ ωD

0
dε

1

2ε− λ
=
G(1)D(0)

2
ln

∣∣∣∣λ− 2ωD

λ

∣∣∣∣ .
Therefore,

λ = − 2ωD

exp
(

2
G(1)D(0)

)
− 1

.

This is nothing but the ground energy, Eground.
At weak coupling, G(1)D(0)� 1,

Eground = −2ωD exp

(
− 2

G(1)D(0)

)
. (6.109)

Indeed, this is a bound state, the Cooper pair. Note that this is a non-perturbative expres-
sion and cannot be derived as a series expansion in small coupling.

We may estimate the size of the Cooper pair. To maintain a Cooper pair, the kinetic
energy of the electrons must be lower than the depth of the potential given in Eground. This
constraint puts an upper bound on the momentum of the electron:

δp ∼ |E|
vF
∼ kF |E|

εF
.

The uncertainty principle gives an estimate on the size:

ξc ∼
1

δp
∼ εF
kF |E|

.

Here εF ∼ 1 eV, kF ∼ 108 cm−1, and |E| ∼ 10−4 eV, which derives from the typical critical
temperature, Tc < 10 K, for superconductivity. Hence, ξc ∼ 10−4 cm, which is about
104 times of the typical lattice constant. Within the size of the Cooper pair, there exist
multiple electron pairs, and their motions must be correlated. Thus the correct theory of
superconductivity is truly a many-body problem.

We cannot solve (6.108) easily except for constant Gq. Thus, we focus on linearly
dispersing phonons presently.

Self-Consistent Field Approximation

In this subsection we explore the idea proposed initially by Cooper: the ground state of
superconductivity (the BCS ground state), which we denote as |0〉, is composed by Cooper
pairs. That is,

〈0| c†k c
†
−k |0〉 6= 0, 〈0| c−k ck |0〉 6= 0.
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Expanding about these vev, we can rewrite the interaction term in (6.106) as

−
∑
k,k′

Gk,k′
(
c†k′ c

†
−k′ 〈0| c−k ck |0〉+ 〈0| c†k′ c

†
−k′ |0〉 c−k ck − 〈0| c

†
k′ c
†
−k′ |0〉 〈0| c−k ck |0〉

)
.

However, the averages of the electron-pair operators are unknown, and we will need to
compute the superconductivity ground state |0〉 in order to determine these averages. This
is known as the self-consistent field approximation.

Again, the question will be much simpler if the four-electron coupling G is a constant,
which is the case for phonons with a linear dispersion relation. Taking Gk−k′ = G(1), we
then define

∆ = G(1)
∑
k

〈0| c−k ck |0〉 , ∆∗k = G(1)
∑
k

〈0| c†k c
†
−k |0〉 .

Note that ∆ is only nonzero within the pairing region. In general, ∆ is complex, but for
isolated uniform macroscopic samples, one may take it to be real, in which case

H ≈
∑
k

(εk − εF )
(
c†k ck + c†−k c−k

)
−∆

∑
k

(
c†k c
†
−k + c−k ck

)
+

∆2

G(1)
.

We apply the Bogoliubov transformation to diagonalize this Hamiltonian. Let us define

ak = uk ck − vk c
†
−k, a−k = uk c−k + vk c

†
k,

with
u2
k + v2

k = 1,

such that {
ak, a

†
k′

}
= δk,k′ ,

{
ak, a

†
−k′
}

= 0,

H is diagonalized if
∆
(
u2
k − v2

k

)
= 2εk uk vk. (6.110)

Therefore,

u2
k =

1

2

1 +
εk − εF√

(εk − εF )2 + ∆2

 , v2
k =

1

2

1− εk − εF√
(εk − εF )2 + ∆2

 .

The diagonalized Hamiltonian is

H =
∑
k

Ek

(
a†k ak + a†−k a−k

)
+ E0,

with

Ek =

√
(εk − εF )2 + ∆2,
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and

E0 = 2
∑
k

εk v
2
k − 2∆

∑
k

uk vk +
∆2

G(1)
.

Here a† excites a quasi-particle and ∆ is the energy gap to excite a quasi-particle from the
Fermi surface.

At T = 0,

∆ = G(1)
∑
k

〈
c−k ck

〉
= G(1)

∑
k

uk vk =
1

2
G(1)

∑
k

∆√(
εk − εF

)
+ ∆2

.

Hence,

1 =
1

2
G(1) [2D(0)]

∫ ωD

0

dε√
(ε− εF )2 + ∆2

,

where the factor 2 comes from the spin sum. For metallic elements, G(1)D(0) is approxi-
mately 0.18 ∼ 0.39, which is sufficiently smaller than 1. Finally, we have

1 = G(1)D(0) ln

ωD +
√
ω2

D + ∆2

∆

 =⇒ ∆ ≈ 2ωD exp

(
− 1

G(1)D(0)

)
.

Moreover, ωD ∼ 10−2 eV, and thus ∆ ∼ 10−4 eV.
It will also be interesting to compare the superconductivity ground state energy with

the Fermi sphere energy in the normal phase. Since ∆ ∼ 10−4 eV � ωD ∼ 10−2 eV, the
energy difference is

−1

2
D(0) ∆2.

Hence, the superconductive ground state energy is lower than the energy of the normal
phase, which guarantees the phase transition.

When T > 0, the gap ∆ is

∆(T ) = G(1)
∑
k

〈
c−k ck

〉
T

= G(1)
∑
k

uk vk

1− 2

[
exp

(√
(εk − εF )2 + ∆2(T )

T

)
+ 1

]−1


Then

1 =
G(1)

2

∑
k

1

Ek
tanh

Ek

2T
. (6.111)

The phase transition occurs when ∆(T )→ 0, which determines the critical temperature Tc:

∆(Tc) = 0.

At T = Tc, (6.111) gives

1 = G(1)D(0)

∫ ωD

0

dε

ε
tanh

( ε

2T

)
≈ G(1)D(0)

[
ln

(
ωD

2Tc

)
−
∫ ∞

0
dx lnx sech2x

]
.
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Hence,

Tc =
2eγ

π
ωD exp

(
− 1

G(1)D(0)

)
, (6.112)

where γ ≈ 0.5772 is the Euler constant.
For phonons, the Debye frequency ωD ∼M−

1
2 , with M the mass of ions in the metal.

From (6.112) we can obtain the isotope equation

TcM
1
2 = Const.

6.A.4. Anisotropic Gap Function in High-Tc Superconductivity

It has been verified in oxide high-Tc superconductors that the pairing mechanism persists
most strongly between electrons of opposite spin. Suppose that the effective interaction is

Heff =
∑
k,k′

Gk,k′ c†k′,↑ c
†
−k′,↓ c−k,↓ ck,↑,

where

Gk,k′ =

∫
d3r e−i(k−k

′)·r G(r).

Confined within the energy shell of the size ωD around the Fermi surface, we have

Gk,k′ = G
(
k̂ · k̂′

)
.

Then, in the self-consistent field theory, the reduced Hamiltonian can be written as

H =
∑
k

εk

(
c†k ck + c†−k c−k

)
−
∑
k

(
∆k c

†
k c
†
−k + ∆∗k c−k ck

)
+
∑
k

∆k

〈
c†k c
†
−k

〉
T
,

with
∆k = −

∑
k′

Gk,k′
〈
c−k′ ck′

〉
T
. (6.113)

The finite temperature expectation value, denoted by 〈· · · 〉T , is obtained using the Green’s
function approach. This is outlined in the following subsection. For the time being, we
simply quote the result:

∆k = −1

2

∑
k′

Gk,k′ ∆k′

tanh
(
Ek′
2T

)
Ek′

,

with

Ek =

√(
εk − εF

)2
+ |∆k|2.

The T dependence of ∆ is implicit. In the phenomenological theory of high Tc superconduc-
tivity, we can expand Gk,k′ in terms of Legendre polynomials and thus discuss the pairing
between two fermions with arbitrary spin orientations. This is the generalized Cooper pair.
Ignoring the coupling between different partial waves, we can focus on the simple solution

∆k = ∆a(T )
√

4π Y`,m (θk, φk) . (6.114)
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We introduce the factor
√

4π so that the average over orientations is ∆2
a(T ), i.e.,∫

dΩ

4π
|∆k|2 = ∆2

a(T ).

In this sense, ∆a(T ) is the average over orientations of the gap on the Fermi surface. We
obtain the self-consistent equation

1 =
1

2
|V`|

∑
k′

4π |Y`,m(k̂′)|2 tanh
(
Ek′
2T

)
Ek′

.

with

Ek′ =

√
(εk − ε)2 + 4π∆2

a(T ) |Y`,m(k̂′)|2.

6.A.5. Green’s Function Method

In this subsection, we will outline the method of Green’s function, which was used to derive
the self-consistent equation in the previous subsection.

In the Heisenberg picture, the double time retarded Green’s Function associated with
two operators A and BB is defined as

Gr(t, t
′) = −i θ(t− t′)

〈
[A(t), B(t′)]±

〉
≡
〈〈
A(t);B(t′)

〉〉
.

In the canonical ensemble, 〈· · ·〉 denotes

〈A〉 = Z−1 Tr
(
e−β HA

)
, Z = Tr

(
e−βH

)
, β =

1

T
.

Note that〈
A(t)B(t′)

〉
=

1

Z
Tr
(
e−βHeiHtAe−iHteiHt

′
Be−iHt

′
)

=
1

Z
Tr
(
e−βHA(t− t′)B

)
=
〈
A(t− t′)B(0)

〉
.

Therefore,
Gr(t) = −i θ(t) 〈[A(t), B]±〉 ,

and Gr(t) can be interpreted as a propagator.

Singularities of Gr(ω)

The Fourier transformation of Gr(t) is

Gr(t) =

∫ ∞
−∞

dω

2π
Gr(ω) exp[−i(ω + i0+)t].

Its inverse transformation is

Gr(ω) =

∫ ∞
−∞

dtGr(t) exp[i(ω + i0+)t].
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For T = 0, define |0〉 and En, respectively, as the eigenstate and eigenvalue of the Hamilto-
nian; |0〉 then denotes the ground state. Note that

〈0|A(t) |0〉 = 〈0|A |0〉 exp [−i(En − E0)] .

Then

Gr(t) = −iθ(t)
(
〈0|A(t)B |0〉 ± 〈0|BA(t) |0〉

)
= −iθ(t)

∑
n

(
〈0|A |n〉 〈n|B |0〉 e−i(En−E0)t ± 〈0|B |n〉 〈n|A |0〉 ei(En−E0)t

)
The Fourier transform is

Gr(ω) =
∑
n

(
〈0|A |n〉 〈n|B |0〉
ω − En + E0 + iη

± 〈0|B |n〉 〈n|A |0〉
ω + En − E0 + iη

)
.

Therefore, the singularities of Gr(ω) reside in the lower half plane and Gr(ω) is analytic in
the upper half plane. Furthermore, in the finite temperature case, we have

Gr(ω) =
1

Z

∑
n,m

e−βEn 〈n|B |m〉 〈m|A |n〉 eβ(En−Em) ± 1

ω − (En − Em) + iη
.

Equation of Motion of the Double Time Green’s Function

The total double time Green’s function is defined as

G(t) =
1

2π

∫ ∞
−∞

dω e−iωtG(ω) =

{
−iθ(t) 〈[A(t), B]±〉 = Gr(t),

iθ(−t) 〈[A(t), B]±〉 = Ga(t).

Then G(t > 0) is the retarded Green’s function and G(t < 0) is the advanced Green’s
function. Using the equation of motion of an operator A in the Heisenberg picture,

i
dA(t)

dt
= A(t)H −H A(t),

we can derive the equation of motion for Green’s function as follows:

i
d

dt
〈〈A(t);B〉〉 = δ(t) 〈[A(t), B]±〉 ∓ iθ(±t)

〈[
[A(t), H],B

]
±

〉
= δ(t) 〈[A,B]±〉+ 〈〈[A(t), H];B〉〉 . (6.115)

The Fourier transform of the double time Green’s function 〈〈[A(t), H];B〉〉 is given by

〈〈[A(t), H];B〉〉 =
1

2π

∫ ∞
−∞

dω 〈〈[A,H]|B〉〉ω e
−iωt,

and for i ddt 〈〈A(t);B〉〉 we have

i
d

dt
〈〈A(t);B〉〉 =

∫ ∞
−∞

dω

2π
ω 〈〈A|B〉〉ω e

−iωt.



140

Then the Fourier transform of (6.115) gives

ω 〈〈A|B〉〉ω = 〈[A,B]±〉+ 〈〈[A,H]|B〉〉ω . (6.116)

This is the formula used to calculate the finite temperature expectation value in (6.113),
by setting A = c−k and B = ck.

6.B. Boltzmann-Bloch Transport Theory

In this appendix, we will discuss the standard theory of transport due to Boltzmann and
Bloch. This discussion follows closely the texts of Ziman [97] and Landau and Lifshitz [103].

6.B.1. Variational Approach to Resistivity

The Collision Function

The electron-phonon interaction is described by

C(nk) =

∫
dDq

(2π)D
dDk′

(2π)D

{
w(k ′,q; k)[nk′(1− nk)Nq − nk(1− nk′)(Nq + 1)]δ(εk − εk′ − ωq)

+ w(k ′; k,q)[nk′(1− nk)(Nq + 1)− nk(1− nk′)Nq]δ(εk + ωq − εk′)
}
.

which includes the processes

• (e,k)
 (e,k ′) + (p,q), k = k ′ + q + b;

• (e,k) + (p,q)
 (e,k ′), k + q = k ′ + b.

with k = k ′ + q + b, where b is the reciprocal lattice period, k and k ′ the momenta of
incoming and outgoing electrons, respectively, and q the quasi-momentum of the emitted
or absorbed phonon. Here the factors 1−n and 1−n′ account for the Pauli principle. Here,
the transition rates are w(k ′,q; k) = w(k ′; k,q) = |gq|2.

Expand the electron distribution function about equilibrium via n(r,k) = n0(ε0) +
δn(r,k), with n0 denoting the equilibrium distribution. If n0 is expressed as a function of
the actual quasi-particle energy ε, then

n0(ε0) = n0(ε)− δε∂n0

∂ε
,

and
n(r,k) = n0(ε) + δñ(r,k),

with δñ = δn−δε∂n0
∂ε . Similarly, also let N = N0(ω)+δN for phonons. Apply the following

change of variables,

δñ = −∂n0

∂ε
Φ =

1

T
n0(1− n0)Φ, δN = −∂N

∂ω
χ =

1

T
N0(1 +N0)χ.
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Also note that

nk′(1− nk)Nk − nk(1− nk′)(1 +Nk)

=(1− n)(1− n′)(1 +N)

[
n′

1− n′
N

1 +N
− n

1− n

]
=(1− n)(1− n′)(1 +N)

[
n′0

1− n′0

(
1 +

Φ′

T

)
N0

1 +N0

(
1 +

χ

T

)
− n0

1− n0

(
1 +

Φ

T

)]
=(1− n)(1− n′)(1 +N)

(
e−

ε′+ωq−µ
T

(
1 +

Φ′ + χ

T

)
− e−

ε−µ
T

(
1 +

Φ

T

))
=

1

T
n0(1− n′0)(1 +N0)(Φ′ − Φ + χ).

Therefore,

C(nk) =
1

T

∫
dDq

(2π)D
dDk′

(2π)D
wn0(1− n′0)[(1 +N0)(Φk′ − Φk + χq)δ(εk − εk′ − ωq)

+N0(Φk′ − Φk − χq)δ(εk − εk′ + ωq)].

Due to Bloch’sche Annahme we can treat the phonon system as if it were in thermal
equilibrium, i.e., χ = 0. Then C(nk) can be interpreted as an operator acting on Φ, which
we denote as PΦ:

PΦ ≡ −C(nk) =
1

T

∫
dDq

(2π)D
dDk′

(2π)D
(Φk − Φk′)

(
Pk
′,q
k + Pk′k,q

)
,

where the transition probabilities are

Pk
′,q
k = 2π|gq|2n0(1− n′0)(1 +N0)δ(εk − εk′ − ωq)δb,k−k′−q
Pk′k,q = 2π|gq|2n0(1− n′0)N0 δ(εk − εk′ + ωq)δb,k−k′+q

For convenience, we define P(k, k′) ≡ 1
T

∫ dDq
(2π)D

(
Pk
′,q
k + Pk′k,q

)
so that

PΦ =

∫
dDk′

(2π)D
(Φk − Φk′)P(k, k′).

The Variational Method

In the absence of a temperature gradient, which we assume is the case, the Boltzmann
transport equation reads

X = PΦ,

where

X ≡ −eE · v∂n0

∂ε
+ v · ∇n0.

Note that the diffusion term vanishes when ∇T = 0:

v · ∇n0 = v · ∇T ∂n0

∂T
= −ε− µ

T
∇T ∂n0

∂ε
.
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Furthermore,

〈Φ, PΨ〉 =

∫
dDk

(2π)D
Φk

∫
dDk′

(2π)D
(Ψk −Ψk′)P(k, k′)

=
1

2

(∫
dDk

(2π)D
dDk′

(2π)D
Φk(Ψk −Ψk′)P(k, k′) + (k ↔ k′)

)
=

1

2

∫
dDk

(2π)D
dDk′

(2π)D
(Φk − Φk′)(Ψk −Ψk′)P(k, k′),

where use was made of the symmetry P(k, k′) = P(k′, k).
The following properties directly follow:

1. P is positive definite: 〈Φ, PΦ〉 ≥ 0.

2. The solution to Boltzmann’s equation maximizes 〈Φ, PΦ〉 / 〈Φ, X〉2.

Resistivity

The background-subtracted current density is given by

J = −
∫

dDk

(2π)D
evΦk

[
n(ε)− n0(ε)

]
= −

∫
dDk

(2π)D
ev Φk

∂n0

∂ε
.

Note that

〈Φ, X〉 =

∫
dDk

(2π)D
Φk

(
−eE · v∂n0

∂ε

)
= E · J = ρJ2 = ρ 〈Φ, X(E = 1)〉2 ,

where use was made of the definition of resistivity, E = ρJ. By E = 1 in X(E = 1), we
really mean E = v̂, the unit vector in the direction of the velocity.

Combined with Boltzmann’s equation, one obtains

ρ =
〈Φ, PΦ〉

〈Φ, X(E = 1)〉2
=

1
2

∫
dDk

(2π)D
dDk′

(2π)D
(Φk − Φk′)

2P(k, k′)∣∣∣∫ dDk
(2π)D

ev Φ∂n0
∂ε

∣∣∣2 .

The electrical resistivity is the extremal value of the variational function at unit electric
field. Here it is understood that spin sums should be taken whenever they are required.

Entropic Interpretation

The Boltzmann equation can be interpreted as the vanishing of the rate of change of the
mean occupation number of quantum states, n. The two main mechanisms by which n can
change are via external forces, such as an electric field or a temperature gradient, and by
internal scattering. Boltzmann’s equation reads ṅ|field + ṅ|scatt = 0, where

〈Φ, X〉 =

∫
dDk

(2π)D
Φ ṅ|field, 〈Φ, PΦ〉 = −

∫
dDk

(2π)D
Φk ṅ|scatt.
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n is related to the entropy as follows. The standard statistical entropy for Nj identical
Fermions among Gj states is

S = log

[
Πj

Gj !

Nj ! (Gj −Nj)!

]
=
∑
j

[Gj logGj −Nj logNj − (Gj −Nj) log(Gj −Nj)]

= −
∑
j

Gj [nj log nj + (1− nj) log(1− nj)] ,

where nj ≡ Nj
Gj

is the mean occupation number of quantum states.

In the continuum limit,

S = −
∫

dDk

(2π)D
[n log n+ (1− n) log(1− n)] .

Expanding n linearly about equilibrium as n ≈ n0 + 1
T n0(1− n0)Φ, one obtains

log
n

1− n
≈ −ε− µ

T
+

Φ

T
.

Hence,

Ṡ = −
∫

dDk

(2π)D
ṅ log

n

1− n
≈ − 1

T

∫
dDk

(2π)D
Φ ṅ+

1

T

∫
dDk

(2π)D
(ε− µ)ṅ.

The second term is the contribution from the increase of the average energy in the system,
which is of no interest here. This derivation assumes that the system is isolated from
external forces and thus ṅ is purely due to scattering. Therefore, we can write

Ṡ = − 1

T

∫
dDk

(2π)D
Φ ṅscatt =

1

T
〈Φ, PΦ〉 .

From the resistivity result, on obtains

Ṡ = ρ
J2

T
.

6.C. Derivation of the Bloch-Grüneisen Formula

In this section we calculate the resistivity defined by

ρ =

1
2T

∫
dDk

(2π)D
dDk′

(2π)D
dDq

(2π)D
(Φk − Φk′)

2
(
Pk
′,q
k + Pk′k,q

)
∣∣∣∫ dDk

(2π)D
ev Φ∂n0

∂ε

∣∣∣2 ,

with

Pk
′,q
k = 2π|gq|2n0(1− n′0)(1 +N0)δ(εk − εk′ − ωq)δb,k−k′−q
Pk′k,q = 2π|gq|2n0(1− n′0)N0 δ(εk − εk′ + ωq)δb,k−k′+q
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6.C.1. An Exact Solution to the Boltzmann Equation

First we select a trial function for Φk. Note that there exists an exact analytic solution for
the Boltzmann equation when the Fermi surface is spherical (v is then parallel to k) and
the scattering probability only depends on the angle between k and k′. Then

cosχ =

∫
dΩ′(Φ(χ, φ)− Φ(χ′, φ′))f(θ), (6.117)

where χ is the angle between k and the direction of the electric field ~u and θ is the angle
between the directions (χ, φ) and (χ′, φ′). It can be verified that Φ(χ, φ) = α cosχ is a
solution: without loss of generality, take k̂ = (0, 0, 1), k̂′ = (sin θ cosφ, sin θ sinφ, cos θ) and
û = (sinχ, 0, cosχ). Then,

cosχ′ = k̂′ · û = sin θ cosφ sinχ+ cos θ cosχ.

Hence,∫
dΩ′(Φ(χ, φ)− Φ(χ′, φ′))f(θ) =α

∫ π

0
dθ sin θ

∫ 2π

0
dφ [(1− cos θ) cosχ− sin θ cosφ sinχ]f(θ)

= 2πα cosχ

∫ π

0
dθf(θ) sin θ(1− cos θ)

∝ cosχ.

Therefore, we can take the trial function to be Φk = αk · û. Note that this continues to
hold for D ≥ 3.

D = 2 represents a special case since

cosχ′ = cos(χ− θ),

and (6.117) now reads

cosχ =

∫ 2π

0
dθ sin θ [Φ(χ)− Φ(χ− θ)] f(θ). (6.118)

Usually f(θ) = f(−θ) and hence∫ ∞
0

dθ sin θf(θ) = 0,∫ ∞
0

dθ sin θ cos θf(θ) = 0.

Equation (6.118) imposes the form

Φ(χ)− Φ(χ− θ) = g(θ) cosχ,

for some function g(θ). When θ is infinitesimal, we have

−Φ′(x)θ = g(0) + g′(0)θ cosχ.
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Therefore,
Φ(χ) ∝ sinχ.

It is straightforward to verify that (6.118) is satisfied:∫ 2π

0
dθ sin θf(θ) [sinχ− sin(χ− θ)] =

∫ 2π

0
dθ sin θf(θ) (sinχ− sinχ cos θ + cosχ sin θ)

= cosχ

∫ 2π

0
dθ sin2 θf(θ)

∝ cosχ.

We will continue to write αk · û for the trial function. It is taken for granted that one must
use the cross product instead of the dot product when D = 2.

6.C.2. Bloch-Grüneisen Formula

We assume D ≥ 2 in the following calculations. Under the assumption of isotropy in the
electron distribution, one can take ( ~A · û)2 = 1

DA
2 for any vector ~A, with which we can

evaluate the resistivity. The denominator in the variational expression of resistivity can be
calculated as follows:

den =

∣∣∣∣∫ 2dDk

(2π)D
ev Φ

∂n0

∂ε

∣∣∣∣2 =

∣∣∣∣ 2eα

(2π)D

∫
dSD−1dεk

vk

∂n0

∂ε
v k · û

∣∣∣∣2 .
We now take the low temperature limit. Note that in the zeroth order approximation with
respect to the small ratio T/εF , the function n0(ε) is a step function, θ(εF − ε). Then

∂n0

∂ε
= −δ(ε− εF ).

Therefore,

den =

∣∣∣∣ 2eα

(2π)D

∫
dSD−1

F k · û
∣∣∣∣2 =

4e2α2

D(2π)D
k2
F

(
SD−1
F

)2
,

where SD−1
F is the surface area of the Fermi sphere.

Next we evaluate numerator for the process (e,k) + (p,q)
 (e,k′):

num1 =

∫
dDk

(2π)D
dDk′

(2π)D
dDq

(2π)D
(Φk − Φk′)

2Pk′k,q

=
2α2

(2π)3D−1

∫
dDkdDk′dDq

(k− k′)2

D
|gq|2n0(1− n′0)N0 δ(εk − εk′ + ωq)δb,k−k′+q,

note that we have inserted a factor of 2 for the appropriate spin sum. Note further that
Umklapp processes are negligible in metals, so that b can be set to zero. Therefore, in the
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T → 0 limit,

num1 =
2α2

D(2π)3D−1

∫
dDk

dS′D−1
F

vk′
q2|gq|2n0(1− n′0)N0

=
2α2

D(2π)3D−1

∫
dS′D−1

F

vk′
q2|gq|2N0

∫
dSD−1

vk

∫ ∞
0

dεk
1(

e
εk−µ
T + 1

)(
1 + e−

εk+ω−µ
T

)
=

2α2

D(2π)3D−1

∫
dS′D−1

F

vk′
q2|gq|2N0

∫
dSD−1

vk

∫ ∞
−∞

Tdx

(ex + 1)
(

1 + e−xe−
ω
T

)
=

2α2

D(2π)3D−1

∫
dS′D−1

F

vk′
q2|gq|2N0

∫
dSD−1

vk

ω

1− e−
ω
T

=
2α2

D(2π)3D−1

∫
dS′D−1

F

vk′

dSD−1

vk

q2|gq|2ω(
e
ω
T − 1

)(
1− e−

ω
T

)
=

α2

2D(2π)3D−1

∫
dS′D−1

F

vk′

dSD−1
F

vk

q2|gq|2ω
sinh2

(
ω

2T

)
Now we examine how the surface integrals are defined. Assume that the phonon is suffi-
ciently soft (ωq � εk) such that the two energy surfaces defined, respectively, by εk and
εk′ lie fairly close to each other. This means that n0(1 − n′0) is approximately n0(1 − n0),
which is

n0(1− n0) =
∂n0

∂ε
≈ −δ(ε− εF )

for sufficiently low temperature. Therefore, both of the energy surfaces are constrained to
be the Fermi surface, which we assume to be near-spherical. Moreover, for D = 3, since
q = 2kF sin θ1

2 and thus q2 = 2k2
F (1 − cos θ1), we have q dq = k2

F sin θ1 dθ1. Meanwhile,

sin θ1 = q
kF

√
1− q2

4k2
F

, and the hyper-surface element is

dSD−1 =
D−1∏
j=1

sinD−1−j θj dθj .

Hence,

∫
dS′D−1

F dΩD−1
F =

∫
dS′D−1

F

∫ D−1∏
j=2

sinD−1−j θj dθj

∫ 2kF

0

dq q

k2
F

(
q

kF

√
1− q2

4k2
F

)D−3

.

Since the integrand in num1 is a function of q, we can insert a redundant integral over θ1

above to recover the full surface integral, as long as we divide by the appropriate normal-
ization factor dependent on D:

Γ
(
D
2

)
√
π Γ
(
D−1

2

) ∫ dS′D−1
F dSD−1

F

∫ 2kF

0

dq qD−2

kD−1
F

(
1− q2

4k2
F

)D−3
2

.
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Therefore,

num1 =
Γ
(
D
2

)
√
π Γ
(
D−1

2

) α2
(
SD−1
F

)2

2D(2π)3D−1v2
F

∫ 2kF

0

dq qD|gq|2ω
sinh2

(
ω

2T

) (1− q2

4k2
F

)D−3
2

=
Γ(D − 1)

2
3+D
z
−1−2DDπ2D

e2α2
(
SD−1
F

)2

λ2D−2MV v2
F

T
D+3
z

∫ ΘD
T

0

dxx
D+3
z
−1

sinh2(x)

[
1− x

2
z

(
T

ΘD

) 2
z

]D−3
2

.

where T � ΘD � 1
2(2kF )z and z is the dynamical exponent (ω = qz). Analogously, for the

other process,

num2 =

∫
2dDk

(2π)D
dDk′

(2π)D
dDq

(2π)D
(Φk − Φk′)

2Pk
′,q
k = num1.

Therefore, at low temperature,

ρ =
Γ(D − 1)

2
3+D
z

+1−DπD

1

λ2D−2MV k2
F v

2
F

T
D+3
z
−1

∫ ∞
0

dxx
D+3
z
−1

sinh2(x)

=
Γ(D − 1)

2
6+2D
z
−1−DπD

1

λ2D−2MV k2
F v

2
F

T
D+3
z
−1Γ

(
D + 3

z

)
ζ

(
D + 3

z
− 1

)
,

where use was made of the formula∫ ∞
0

xs

(sinhx)2
=

1

2s−1
Γ(s+ 1)ζ(s).

Thus, we derive the temperature dependence of the resistivity,

ρ ∝ T
D+3
z
−1.



148

Chapter 7

Conclusion

The introduction of Lifshitz scaling symmetries into quantum gravity, in the form
of Hořava-Lifshitz gravity, has motivated and inspired us to study Lifshitz quantum field
theories in general. Since many of the fundamental and most pressing problems in physics
can be represented as problems in technical naturalness, we are particularly interested in
any new lessons that Lifshitz field theories might teach us about this topic.

First, we studied the phenomenon of spontaneous symmetry breaking in the Lifshitz
case. We discovered that, contrary to the intuition afforded us by relativistic physics,
Nambu-Goldstone modes of Type A (with a kinetic term quadratic in time derivatives) or
of Type B (with a kinetic term linear in time derivatives) exhibit a hierarchy of multicritical
phenomena with dynamical exponents z > 1. We also discovered the polynomial shift
symmetry, which protects the technical naturalness of this behavior. This symmetry shifts
the field component by a polynomial in the spatial coordinates.

Having established the utility of these polynomial shift symmetries as “guardians of
naturalness”, we proceeded to classify the lowest-dimension operators that preserve these
symmetries. We developed a new graph-theoretical technique to address this classification
problem in which each factor of the field is represented by a vertex and a pair of contracted
derivatives is represented by an edge joining the two vertices representing the field factors
on which the derivatives act. We reproduced the known Galileon N -point invariants in
the case of the linear shift symmetry and reinterpreted them as equal-weight sums over
all labeled trees with N vertices. More importantly, we were able to extend the classifica-
tion to higher-order polynomial shifts, without essentially having to solve the problem all
over again, by constructing higher-order polynomial shift invariants out of superpositions
of exact lower-order polynomial shift invariants and linear shift invariants. Since the latter
are relatively easy to deal with, we drastically simplified the problem of generating and
classifying polynomial shift invariants. We studied the connection and relationship of this
graph-theoretical approach to the standard cohomological approach, but much remains to
be understood. Some invariants appear simple in the language of graphs and yet over-
whelmingly complicated in the cohomological approach. We suspect that the clarification
of the relationship between these approaches will be of great interest to mathematics as
well as to physics.

With explicit examples of theories with lowest-order shift-invariant interactions, we
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investigated the role of infrared divergences in the patterns of renormalization group flow
exhibited by Lifshitz theories. We obtained the nonrelativistic generalization of the cel-
ebrated Coleman-Hohenberg-Mermin-Wagner (CHMW) theorem, which prohibits sponta-
neous symmetry breaking for would-be Type A modes with dynamical exponent z, unless
z is strictly less than the spatial dimension. In contrast, Type B modes can exist in any
spatial dimension. However, we discovered a cascading phenomenon by which a would-be
Type A (or Type B) mode may change at low energies to a Type A (or Type B) mode with
a lower value of the dynamical exponent. In addition, would-be Type A modes may change
into a Type B mode. This phenomenon is absent in the relativistic case; It represents a
new and interesting way to avoid the “no-go” consequences of the CHMW theorem.

Furthermore, we discovered interesting subtleties in the application of the standard
methods of renormalization to the Lifshitz case. We used the techniques of the Wilsonian
approach, the Callan-Symanzik equation, and the MS scheme with dimensional regulariza-
tion. After explicitly showing how these calculations proceed in detail in the Lifshitz case,
and checking their consistency, we demonstrated that these RG flows exhibit a continuum
of distinct, yet mutually consistent physical interpretations. On the one hand, we may
choose to fix the scaling of time, in which case the interaction coefficient does not run, but
the lightcone opens up towards the infrared, eventually driving the theory towards lower
values of the dynamical exponent. Meanwhile, the lightcone closes at high energies and the
theory ceases to be sensible. On the other hand, one may fix the relative coupling of the
temporal- and spatial-derivative quadratic terms, which forces the dynamical exponent and
the interaction coefficient to flow. The theory is strongly coupled in the UV.

Finally, as a first application, we considered what would happen to the usual BCS pic-
ture of superconductivity involving electron-phonon interactions if one allowed the phonons
to be multicritical, described by a dynamical exponent z = 3 in 3 + 1 dimensions. Apply-
ing the standard Boltzmann-Bloch theory of transport, we discovered that the resistivity
of such a system would exhibit a technically natural linear dependence on temperature.
This represents a new and fascinating way to generate this “strange metal” behavior and
overcomes the fine tuning problems inevitably exhibited by theories with a unit dynamical
exponent.

We might also apply these lesson to the effective field theory of inflation. There is
existing work on z = 2 and z = 3 scalar inflation [87, 12, 88]. However, this work predates
our work on polynomial shift symmetries, which are precisely those symmetries we use to
protect the naturalness of these Lifshitz field theories. We expect that these symmetries
may be used to control the non-Gaussianities as well as provide a mechanism out of the
usual pitfalls of many theories of inflation, such as the technical naturalness of a small
slow-roll parameter in the standard slow-roll picture [27].

Our long-term goal is to apply these lessons to quantum gravity. This would require
their extension to the case of gauge theories, which, in itself, represents a significant hur-
dle. We hope that these lessons will inspire new ways to address naturalness problems in
general and, perhaps eventually, even the big Kahuna, the cosmological constant problem.
This thesis represents the beginnings of our exploration of the uncharted territories of the
Landscape of Naturalness. We believe that untold riches await those who dare break this
new ground.
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