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Testing microbial models with data from a 14C glucose tracer experiment

Shannon B. Hagerty, Steven D. Allison, Joshua P. Schimel

Abstract

Most of the carbon (C) that enters the soil is broken down by the microbial 

community and either respired or stored in soil depending on the microbial allocation 

strategy. Changes in how the microbial community uses C can significantly affect soil C 

pool sizes, so new models have begun to explicitly represent microbial allocation. Most 

models use a parameter called carbon use efficiency (CUE) to represent microbial 

allocation, which partitions consumed C between respiration and growth. Here we 

compare a “Typical Microbial Model” with this representation of microbial allocation to 

two other models. One is the “Microbial Allocation Model” that represents CUE as an 

emergent property of the microbial community, explicitly modeling multiple processes 

involved in CUE. The second is the “Two-Pool Biomass Model” that similarly accounts 

for CUE as an emergent property but also represents the biomass using two C pools with 

different turnover times. We assessed the models’ relative ability to track a 14C-glucose 

tracer over three weeks through the extractable C pool, the microbial biomass, and 

respiration. We also used the 14C data to test how estimates of microbial CUE change 

during the incubation. Our results suggest that CUE estimates in soil are highly sensitive 

to incubation timing and are at no point stable. Isotopic data can best parameterize 

models when a time course of measurements is used. Our model comparison showed that 

the Two-Pool Biomass Model best fit our data. Using the Two-Pool Biomass model to 
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represent microbial allocation is more biologically realistic and better matches the 

dynamics observed in our microbial C partitioning data. Biogeochemical models at larger

scales may need to consider a dynamic allocation scheme to represent CUE and other 

microbial parameters rather than assuming they are static values.

Introduction

The future size of the global soil C pool will depend on how microbes such as 

bacteria and fungi respond to changing environmental conditions (Allison et al., 2010; 

Wieder et al., 2013; Melillo et al., 2017; Domeignoz-Horta et al., 2020). Microbial 

communities process most of the C that enters the soil (Cebrian and Lartigue, 2004) and 

those microbes can alter the fate of that C—whether it is immediately respired or stored

—based on their allocation patterns (Six et al., 2006; Sainte-Marie et al., 2021). Microbes

have multiple allocation pathways for C: using it for energy, producing enzymes that can 

accelerate decomposition, building new biomass, or producing exudates that may adhere 

to soil particles and be stored long-term (Hobbie and Hobbie, 2013; Kallenbach et al., 

2016; Liang et al., 2017). Microbial allocation—how C is partitioned across these 

different pathways—strongly affects the total C balance of the soil (Wieder et al., 2013; 

Averill, 2014). 

Carbon allocation is fundamental to soil organic matter models. Classical models 

such as CENTURY and ROTH-C assume a defined portion of C moves between soil C-

pools and generates respiration (Parton et al., 1987; Jenkinson, 1990). Newly developed 

models represent microbial partitioning explicitly to better account for microbial 
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allocation effects on soil C stocks (Schimel and Weintraub, 2003; Allison et al., 2010; 

Sulman et al., 2014; Wieder et al., 2014; Abramoff et al., 2018). In these models, the 

microbial biomass or extracellular enzyme pool sizes drive the decomposition rate

(Wieder et al., 2015; Wang et al., 2017). Models represent decomposition more 

realistically this way while also reproducing the global distribution of soil C better than 

traditional models (Wieder et al., 2013). However, predictions from microbial models 

depend on how microbial C allocation is represented (Li et al., 2014; Wieder et al., 2017).

Microbial models cannot represent every possible allocation decision; rather, 

these models aim to include the minimum complexity necessary to predict the bulk effects 

of microbial processes on soil C storage (Abramoff et al., 2017). Most microbial models 

aggregate a suite of microbial processes into one parameter that specifies overall carbon 

use efficiency (CUE), which is the proportion of C uptake used to build new biomass

(Bailey et al., 2018; Geyer et al., 2016). CUE is an emergent property that encompasses 

the respiration necessary to carry out an array of processes: substrate uptake, cell function,

enzyme production, cellular maintenance, and exudation (Manzoni et al., 2012; 

Sinsabaugh et al., 2013; 2016). However in most models, CUE functions more like an 

assimilation efficiency that simply partitions substrate uptake between biomass and 

respiration (Ballantyne and Billings, 2018). 

The common simplification of microbial allocation into a single CUE term, which

only reflects the efficiency of substrate assimilation, causes problems for model 

predictions and integration with data. Models that use a single CUE parameter have 

trouble predicting soil C changes when microbial C allocation strategies change in a way 

unrelated to assimilation efficiency (Hagerty et al., 2018). Additionally, models’ CUE 
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parameters do not aggregate microbial processes in the same way as empirical estimates 

of CUE. The most common method of estimating CUE involves adding an isotopic C 

tracer to soil and measuring its partitioning into C pools over some period of time. 

Previous studies have found that CUE estimates decline over time scales of days or 

weeks (Ladd et al., 1992; Sugai and Schimel, 1993). This sensitivity is typically 

attributed to turnover of microbial biomass via predation and regrowth; the effect is 

assumed to be minimal if CUE is estimated over a short duration (Six et al., 2006). 

However, we have shown through simulation that estimates of CUE can be sensitive to 

timing because of cellular processes operating on short time scales (Hagerty et al., 2018). 

This time-dependence of CUE is inconsistent with using a constant model parameter.

To integrate microbial physiology and ecology with soil organic matter dynamics,

models should more effectively capture the dynamics of microbial C allocation processes.

We explore two possible approaches. First, models could add additional fluxes of C from 

the biomass to represent exudation, biomass-specific respiration, and respiration from 

enzyme production, as in Hagerty et al. (2018). These additional fluxes could provide the 

model complexity necessary to replicate microbial C partitioning data. A second option 

would be to represent microbial biomass with two pools; the first representing metabolic 

constituents that turn over in hours, and the second representing structural C that takes 

days, weeks, or even longer, to turn over (Glanville et al., 2016). C can be partitioned 

from either of these biomass pools to other soil C pools. 

Several studies have already used such a structure to model C movement through 

the microbial biomass (Nguyen and Guckert, 2001; Farrar et al., 2012; Glanville et al., 

2016). These studies find good agreement with empirical data if microbial C allocation 

4

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89



processes happen in at least two distinct phases. During the first phase, microbes rapidly 

take up the substrate, assimilating or respiring it. In a second phase, respiration rates 

decline and the label concentration in the biomass declines more slowly. However, these 

studies did not compared their two-pool biomass models with other microbial allocation 

models that might provide even better matches to empirical data.

In this study, we used an isotopic tracer experiment to explore how well different 

models and parameterizations capture soil C-flow into and through the microbial 

biomass. First, we aimed to assess microbial C allocation of 14C-glucose added to the soil 

by tracking the isotope’s movement through the extractable C, CO2, and microbial 

biomass C (MBC) pools over three weeks. We expected that microbial C allocation

would occur in at least two different phases, a fast initial phase followed by a slower 

secondary phase. We further hypothesized that CUE estimated from the isotopic data 

would decline over time. Finally, we compared the three microbial models’ ability to 

reproduce the observed patterns in microbial C allocation. We expected that the models 

representing microbial C allocation with greater process resolution would perform best at 

capturing the flow C into microbial biomass. In contrast, the Typical Microbial Model 

(TMM), which represents microbial allocation with just a single assimilation efficiency 

parameter, would have difficulty fitting the 14C data.

Methods

Soil collection and incubation 
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We collected soil (0-10cm) from the Santa Clara River Valley in California in May 

2016. This soil was a Metz loamy sand, classified as a Sandy, mixed, thermic Typic 

Xerofluvent. Soil was sieved through 2 mm mesh and stored at 4°C until the incubation 

began a week later. We added soil (15 g dry weight, 62% WHC) to 36 Ball jars and 

adjusted soil moisture to 42% of the water holding capacity, then pre-incubated the jars in

the dark for 7 days. 

14C-CO2 measurements

After the pre-incubation period, four of the jars were sealed, and each cap was fitted 

with two valves. We then added 1 ml of 14C universally labeled glucose solution (2.4 

nmol C or 0.11 μci ml-1) to the soil. Immediately after the glucose solution was added, an 

air pump with a CO2 scrubber was connected to one of the valves on each jar. The second

valve was connected to three successive CO2-trapping test tubes that each held 5 ml of 

0.5M NaOH, with the last test tube venting out. Air was circulated through the jar into 

the NaOH traps for one hour. After the hour, an aliquot of each test tube was taken and 

mixed with scintillation cocktail, counted for 14C activity (on a Beckman 4500 Liquid 

scintillation counter), then blank and quench corrected. The total 14C concentration in the 

three traps was used to calculate the 14C-CO2 production for the first hour. The same four 

jars were sampled again to measure additional 14C-CO2 produced at 3 h, 6 h, 24 h, 3 days,

7 days, 14 days, and 21 days. These measurements were used to calculate cumulative 

14CO2 produced. 
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14C soil extracts and biomass measurements

We added 1 ml of the same universally labeled 14C-glucose solution to the 

remaining 32 jars. At each of the previously given time points after label addition, four 

jars were destructively sampled for extractable C and chloroform fumigation extractable 

(CFE) biomass. Briefly, half of the soil in the jar was shaken for 30 min with 30 ml of 

0.05 M K2SO4 and then filtered. The other half of the soil was incubated in the dark for 

24 hours with 1 ml of chloroform, and then the K2SO4 extraction procedure was repeated.

Aliquots of both extracts were mixed with scintillation cocktail and counted like the 14C-

CO2 samples. The microbial biomass 14C concentration was calculated as the difference 

between the fumigated and unfumigated samples and corrected with the standard 

correction factor (Kec=0.45) (Brookes et al., 1985). The extractable 14C was considered 

equivalent to the unfumigated sample 14C concentration.

CUE calculations

To test the influence of timing on CUE measurements, we bootstrapped the data to 

generate one thousand combinations of replicates from each of the measured pools at 

every time point. We used the bootstrapped data to calculate microbial CUE at every time

point using the three most used equations:  

CUES=(∆ S – ∆ C O2
❑
)/∆ S (1)

                             CUE B=∆ B/(∆ B+∆C O2) (2)

CUEC=∆ B /∆ S (3)
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where S, CO2, and B represent the change in 14C concentration from the initial 

conditions in the extractable C, CO2, and microbial biomass pools, respectively. These 

three equations have each been used in the literature to calculate CUE (Frey et al., 2001), 

where CUES is substrate-based, CUEB is biomass-based, and CUEC is concentration 

based. Most recent studies use CUEB to estimate CUE (Frey et al., 2013; Kallenbach et 

al., 2015; Riggs and Hobbie, 2016; Soares and Rousk, 2019). 

Models and data fitting 

We compared the fit of three different microbial models to the 14C data: a) the Typical

Microbial Model, b) the Microbial Allocation Model, and c) Two-Pool Biomass Model 

(Fig. 1). For each of these models, the Substrate (S) pool was fit to the K2SO4 extractable 

C data, the Biomass pool (B) was fit to the CFE-corrected biomass data, and the CO2 pool

was fit to the 14CO2. The difference between the initial amount of labeled C added and the

sum of the average label concentrations in each measured pool at each time point was fit 

to the model’s Unextractable pool (U). Because we are modeling the dynamics of 14C 

glucose, we only included one C substrate pool in all our models. For all models, we 

fixed the rate that C was taken up from the Extractable pool into the Biomass at 0.9215 h-

1, representing the mean proportion of the label that was removed from the extractable C 

pool 1 hour after addition of the label. Microbial models typically represent uptake as a 

function of both the substrate pool and the biomass. We have modeled uptake as a 

function only of the substrate pool size because we assume for a highly labile substrate at 

a tracer level (i.e., our glucose addition) uptake is constrained only by the concentration 

of substrate added. The high rate of uptake in the first hour supports this assumption. 
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Additionally bulk biomass should not change over the first hour, when nearly all uptake 

occurs, and is unlikely to change over the three-week incubation period. We fit the data to

the three models in MATLAB using the Bring Your Own Model (BYOM) software 

(www.debtox.info/byom.html) developed by Tjalling Jager. BYOM uses a maximum 

likelihood approach to model fitting. For each model, we calculated Akaike Information 

Criteria (AIC), a model selection criterion, defined as

AIC=2∗NLL+2∗k

Where NLL is the negative log likelihood optimized in the model fitting and k is the 

number of parameters in the model. AIC penalizes models for complexity (Bolker, 2008).

To optimize AIC for each model, we removed parameters that did not improve fit. To do 

this we first fit the model with its full structure (Figure 1), then removed any model fluxes

that had rates below 0.001 h-1 and refit the modified model (Table 1). If removing the flux

minimized AIC because log likelihood was unchanged, but the parameter penalty was 

reduced, then that flux was left out of the final analysis. 

Typical Microbial Model (TMM)

Microbial-explicit models vary widely in how they represent microbial dynamics. We

used the basic microbial model structure example from Wieder et al. (2015) as a guide to 

build our model (Figure 1a). Most importantly, this model represents CUE as an 

assimilation efficiency parameter that partitions C consumed by microbes between 

respiration and biomass. The microbial biomass increases as microbes consume the added

glucose (S) and convert it into biomass depending on assimilation efficiency. The 

biomass pool decreases with cell turnover and when C is released to the unextractable 
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soil C pool (U) or is recycled back to the extractable C pool (S). The differential equation 

for the biomass pool is therefore:

dB
dt =(r S , B∗S∗ae )−(B∗r B,U ) (4)

where rS,B is the uptake rate (h-1) of the label, ae is assimilation efficiency,  and rB,U is 

the rate of exudation and/or microbial death (h-1). For all parameters representing rate 

constants, we use the parameter r with a subscript indicating the pool C is moving from 

and the pool it moves into (e.g., parameter rS,B indicates the proportion of C h-1 moving 

from the substrate pool (S) to the biomass pool (B)). Consumed C that is not converted 

into biomass is respired and the differential equation for the CO2 pool is:

dC O2
dt =¿ (5)

The substrate pool decreases with uptake and increases with recycling from the 

unextractable pool (U). The differential equation is: 

 

dS
dt =−(r S , B∗S )+(U∗rU , S) (6)

Microbial products move to the unextractable pool, and this pool decreases when C is

lost at a constant rate (rU,S; h-1) and recycled back into the substrate pool. The differential 

equation for this unextractable pool is therefore:
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dU
dt =B∗r B, U−U∗r U , S (7)

Microbial Allocation Model (MAM)

We fit the data to a modified version of the microbial-explicit model from Hagerty et 

al. (2018). In this version, CUE is an emergent property—the model explicitly represents 

several C-allocation processes, and the overall CUE represents the integrated effect of all 

these processes. Microbes take up C and then split it three ways between the biomass 

based on assimilation efficiency (ae), the unextractable pool determined by the parameter 

es, and the remaining C that is respired. We also explicitly represent microbial 

maintenance respiration which occurs as a proportion of the biomass (rB,CO2; h-1). The 

differential equation for CO2 is then:

dC O2
dt =¿ (8)

This modification affects the differential equation for the biomass:

dB
dt =(r S , B∗S∗ae )− (B∗r B ,U )−(B∗r B ,CO 2) (9)

and the equation for the unextractable pool is now:

dU
dt =(r S , B∗S∗es )−(U∗rU , S )+(B∗r B ,U )  (10)
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The differential equation for the substrate pool is the same as in the typical microbial-

explicit model (eqn. 6). 

Two-Pool Biomass Model (TPBM)

We also used a model that represents the biomass in two pools, a metabolic biomass 

C pool (MB) and a structural biomass C pool (SB). This two-pool structure allows the 

different components of the biomass to turn over at different rates. This model 

formulation is like the microbial allocation model: CUE becomes an emergent property, 

rather than being a pre-assigned value. The biomass takes up C and assimilates it into the 

MB pool. From the MB pool, C can be respired at a rate rMB,CO2, lost from the cell with 

exudation at a rate rMB,U, or converted into structural biomass at a rate rMB,SB. The 

differential equation for the MB pool is then: 

dMB
dt =(rS , MB∗S )− (MB∗r MB , SB )−( MB∗r MB ,CO 2 )−(MB∗r MB , U)   (10)

C is converted from MB to SB, increasing the SB pool. The SB pool decreases when C is 

respired through maintenance respiration (rSB,CO2). The differential equation for SB is 

then:

dSB
dt =( MB∗r MB , SB )−(SB∗r SB ,CO 2 )− (SB∗rSB ,U ) (11)
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We fit the total microbial biomass (B) to the CFE biomass data. The total microbial 

biomass pool is equivalent to the sum of the SB and MB pools. The sum increases with 

uptake and decreases as C is respired from the structural or metabolic pools or as 

exudation occurs. The differential equation for the biomass pool is then:

dB
dt =(r S , MB∗S )−( MB∗r MB ,CO 2 )−( MB∗r MB ,U )−( SB∗r SB , U )−(SB∗r SB , CO2 )

(12)

and the differential equation for CO2 is:

dCO 2
dt =( MB∗r MB ,CO 2 )+(SB∗r SB ,CO 2) (13)

Exudation from the MB pool and death from the SB pool increase the unextractable C

pool (U), while recycling of C back to the substrate pool decreases U.

dU
dt =( MB∗r MB ,U )+(SB∗r SB ,U )−(U∗rU , S) (14)

The differential equation for the substrate pool is similar to the other two models, but 

the rate constant parameter notation for uptake is rS,MB. The C leaving the substrate pool 

goes to the MB pool. 

dS
dt =−(r S , MB∗S )+(U∗rU , S) 
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Results

Microbial 14C glucose allocation patterns

The 14C was rapidly assimilated into the microbial biomass; within the first hour after 

addition, microbes had taken up 91% of the added label. At that time, 78% was in the 

microbial biomass, 7% had been respired, and the remaining 7% was unrecoverable in 

the unextractable pool (Figure 2). From hour 1 to hour 72, the concentration of the label 

in the biomass declined while the amounts respired and in the unextractable pool 

increased. After 72 hours, until the end of the incubation, the proportion of the label in 

the biomass continued to decrease while the proportion in CO2 increased, but at much 

lower rates. The amount of label in the unextractable pool remained stable during this 

period. By the end of the incubation at 21 days, 31.6% of the label added was in the 

unextractable pool, 38.5% was in the biomass, 29.6% had been respired, and <1% was in 

the extractable C pool.

CUE estimates and model parameters

Calculated values of CUE responded non-linearly to incubation time (Figure 3). At 1 

hour, mean CUES, CUEB, and CUEC were 0.93, 0.92, and 0.85 respectively. These 

estimates rapidly declined over the first 72 hours to 0.74, 0.59, and 0.34, with rates of 

decline slowing with time. After 72 hours the CUE estimates were relatively stable and at

the end of the incubation CUES was as 0.70, CUEB was 0.56, and CUEC was 0.39. 
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Model parameter estimates for the Typical Microbial Model, Microbial Allocation

Model, and the Two-Pool Biomass Model are in Tables 2, 3, and 4 respectively. In the 

Typical Microbial Model, assimilation efficiency was 0.84 mg C mg-1 C. This value was 

higher than the assimilation efficiency value of 0.59 mg C mg-1 C in the Microbial 

Allocation Model. The Microbial Allocation Model parameter rB,CO2 value was close to 

the Two-Pool Biomass Model parameter rSB,CO2. For these two parameters, the confidence 

intervals overlapped. In the Two-Pool Biomass Model, the parameter values indicated 

that the largest flux of C leaving the MB pool is directed toward the SB pool and the 

smallest converts MB to CO2. After C enters the SB pool it moves to CO2 or U at similar 

rates, although there was higher uncertainty around the estimate for rSB,U.

Comparison of model fits to 14C data

When we fit the different microbial models to the 14C data (Figure 2), we found that 

removing the flux of C from the unextractable pool to the substrate pool minimized AIC 

(Table 1) for the Microbial Allocation Model and the Two-Pool Biomass Model. 

Consequently, we did not estimate a parameter value for rU,S for either of these models. 

Additionally for the Microbial Allocation Model, AIC was further minimized by 

removing the flux of C that directed a proportion of the biomass to the unextractable pool 

at each time step, so we did not fit parameter rB,U for this model. The model equations can

be updated to account for these changes by using 0 as the parameter value for the unfit 

parameters. Figure 1 shows the final model structures. 

The Two-Pool Biomass model had the lowest AIC value, indicating this model fit 

the data best, followed by the Microbial Allocation Model; while the Typical Microbial 
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Model did the worst (Table 1). The most notable difference in model performance was in 

the fit to the 14C biomass dynamics. The Two-Pool Biomass Model reproduced the 14C 

dynamics as it moved through the biomass with the lowest model error at every time 

point (Figure 4). All the models underestimated the initial amount of 14C in the biomass at

the first hour by 32, 37, and 55% for the Two-Pool Biomass Model, Microbial Allocation 

Model, and Typical Microbial Model respectively. The models had the greatest 

divergence in their ability to replicate the decrease of 14C-MBC from 1 to 24h. The Two-

Pool Biomass Model best matched this pattern. The Typical Microbial Model 

underestimated the rate of decline while the Microbial Allocation Model underestimated 

the initial biomass so that it missed that this phase entirely. The models varied in their 

abilities to reproduce 14C patterns in the unextractable pool. The Typical Microbial Model

underestimated 14C in the unextractable pool from 1 to 72 hours and then overestimated 

from hour 72 until the end of the incubation. The Microbial Allocation Model 

overestimated the 14C in the unextractable pool from 1 to 24h, and then underestimated 

the concentration from 72 h on. The Two-Pool Biomass model matched the pattern of the

unextractable pool better with the lowest error at every time point except for hour 6. 

All three models’ estimates of CO2 production had the largest error early in the 

incubation. The Typical Microbial Model and Microbial Allocation Model overestimated 

respiration during this time while the Two-Pool Biomass model underestimated it. 

However, after 6 hours, all three models estimated values within 20% of the measured 

value throughout the incubation. The models fit the data similarly for the extractable C 

pool; all three models predicted less than 1% of the label remained in the extractable pool

by 24h consequently absolute differences between model predictions were negligible. 
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Discussion

Microbial allocation of 14C-glucose

We hypothesized that allocation of the 14C-glucose tracer would occur in at least two 

phases. Our 14C allocation data supported this hypothesis, showing that microbial C 

partitioning is highly dynamic over time. Specifically, we observed three phases of 

microbial C allocation during the three-week incubation. The initial phase was 

characterized by microbial assimilation. During the first hour following the label 

addition, 14C was rapidly taken up into the microbial biomass, while being depleted from 

the extractable pool. During this phase, there was rapid respiration of 14CO2 but the total 

amount of 14C respired was still limited (<20%); most of the label was in the biomass. 

This pattern reflects the high efficiency of microbial assimilation of labile substrates such 

as glucose (Ladd et al., 1992; Sugai and Schimel, 1993).

The second phase began after the first hour and continued until 24 h. During this 

time, there was a rapid decline of the 14C label in biomass, high 14C-CO2 production, and 

14C movement into the unextractable pool. Other studies have observed a similar 

proportion of 14C in the unextractable pool (Witter and Dahlin, 1995; Nguyen and 

Guckert, 2001). The synchronized decline in the label in the biomass and increase of 

label in the unextractable C pools indicates products released from microbial cells were 

entering the soil matrix. Microbial exudation occurs as microbes create and release 

extracellular products including enzymes, antibiotics, or polysaccharides (Sinsabaugh and

Shah, 2012; Basler et al., 2015; Tyc et al., 2016). Microbes release metabolic by-products

17

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372



when metabolites are in excess or when metabolic pathways shift rendering the 

metabolite unnecessary (Varma and Palsson, 1994). By-products can be released at a per-

mole rate that is up to 40% the rate of glucose uptake in culture where glucose is the sole 

C source (Fuhrer et al., 2005), meaning that exudation could be a significant flux of C 

from the biomass. Yet with the exception of extracellular enzyme production, microbial 

exudation is typically ignored in microbial models. Microbial exudates can affect model 

projections for soil C stock size (Hagerty et al., 2018) and could be an important 

mechanism directing C to long-term storage in soil (Liang et al., 2017). 

The third phase of microbial allocation began 24 h into the incubation and 

continued until the end of the experiment. During this phase, microbes lost 14C from the 

biomass and respired 14C slowly. During this period, the dominant C-flux is microbial 

biomass to CO2, likely because of cellular maintenance processes and community 

dynamics such as grazing and microbial death. 

CUE estimates and model parameter values

A key focus of this research was to evaluate three different microbial models and 

to compare their skill in replicating C allocation patterns. Empirical CUE estimates were 

sensitive to the duration of the experiment and were not stable at any point (Figure 3). 

These results contrast with the assumption that community turnover causes estimated 

CUE to decline linearly and slowly (Hagerty et al., 2014). Rather, our CUE estimates 

declined nonlinearly, and declined most rapidly from 1 h to 24 h after addition of the 

label. CUE metrics based on the 14C concentration in the microbial biomass (i.e., CUEB 

and CUEC) followed a pattern over time complementary to the biomass pattern. We also 
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observed this pattern with CUES, although the rate of change was slower (Figure 3). The 

measured decline in CUE reflects the ongoing loss of 14C to 14CO2 and was observed 

regardless of the CUE metric.

Because CUE estimates varied with time, a single value cannot be used to 

parameterize models. While the Typical Microbial Model assimilation efficiency was 

comparable to the 1h CUE estimate, for the Microbial Allocation Model, the assimilation 

efficiency was lower and more closely related to the CUE estimates after 24h. CUE 

estimates declined as more cellular processes were incorporated into the measurement, 

reducing the label concentration in the biomass. The Microbial Allocation Model had a 

lower assimilation efficiency because it includes exudation, unlike the Typical Microbial 

Model. The Two-Pool Biomass Model does not instantaneously partition C; instead C 

enters the metabolic biomass pool and is then directed to another pool as a function of the

metabolic biomass pool size. The ratio of the three rate constants that direct C out of this 

pool was similar to the partitioning of C with uptake in the Microbial Allocation Model. 

The structural biomass pool in the Two-Pool Biomass Model and the biomass pool in the 

Microbial Allocation Model had similar rates for CO2 production. These parameter 

comparisons suggest that the structural biomass pool is approximating the behavior of a 

single microbial biomass pool in the Microbial Allocation Model. 

Microbial C allocation model selection

By comparing models, we aimed to determine the most effective approach for 

representing microbial C partitioning. Existing models generally aggregate all microbial 

allocation into one CUE parameter that instantaneously partitions consumed C. We 
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expected that the model with this structure (i.e., the Typical Microbial Model) would 

have difficulty matching our empirical data. AIC values supported this prediction and 

indicated that the Two-Pool Biomass Model best fit our data, though the improvement 

was modest. However, the advantage of the Two-Pool Biomass Model grows when we 

also consider biological interpretability. Biological interpretability ensures that models 

relate meaningfully to both theory and measurements. A tight connection between 

mathematical models, theory, and measurements has been a factor in the widespread 

adoption and longevity of existing soil C models (e.g. Century and ROTH-C), and will 

likely be critical for the success of new microbial models (Blankinship et al., 2018). 

As opposed to the typical single-parameter representation of microbial allocation 

in most models, the Two-Pool Biomass Model represents CUE as an emergent property 

that is a function of microbial allocation processes. Such a representation of microbial 

allocation may ultimately lead to better soil C model predictions because models can 

account for a wider range of effects on C cycling with shifts in microbial allocation 

(Hagerty et al., 2018). For example, with substrates that get sorbed or react abiotically, 

the two pool model might better capture competition between uptake and sorption or 

reaction. That model might also facilitate incorporating stoichiometric influences on CUE

(Sinsabaugh et al., 2016). Like our glucose substrate, C-rich compounds might be taken 

up rapidly and then be respired via overflow metabolism (Schimel and Weintraub, 2003) 

to maintain the C:nutrient ratio of biomass.

Representing biomass with two pools also addresses two additional issues with 

existing microbial models. First, in most microbial models, C is respired without ever 

entering the biomass (Ballantyne, 2018). In the Two-Pool Biomass Model, C must enter 
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the metabolic pool before it can be respired. The second issue relates to how the size of 

the biomass pool controls the decomposition rate. In typical microbial models, changes in

the microbial biomass pool size affect substrate uptake rate (Allison et al., 2010; Wang et 

al., 2013; Wieder et al., 2015). However, in our analysis, the Typical Microbial Model 

does not account for all microbial C losses, resulting in an overestimated biomass pool 

size from 3 to 72 h. During the same time, the model underestimated the amount of 

biomass C being directed to the unextractable pool. If this model were to be used at larger

scales of space and time, these incorrect biomass dynamics might result in overestimated 

decomposition rates and underestimated soil C stocks. Although we did not consider this 

effect in our short-term simulations, the Two-Pool Biomass Model could easily represent 

such feedbacks in longer simulations. 

 The two-pool representation of microbial biomass is also an improvement 

because it can distinguish between C that has just been assimilated from C that represents

new growth. The two biomass pools can be interpreted as representing the labile or 

metabolic biomass in the first microbial pool and the structural microbial C in the second 

pool. The structural pool will likely be indicative of changes in microbial cells, 

correlating with changes in the abundance of decomposers. It may be more appropriate to

use structural biomass than the total biomass pool size when scaling cellular uptake rates.

With the two-pool biomass structure, the model can account for the fact that recently 

assimilated C is within the biomass pool but has not yet been incorporated into cell 

physiological machinery and should not be part of the pool controlling decomposition 

rates. This distinction may be particularly important in models where the size of the 

enzyme pool controls decomposition rates. In these models, enzymes are usually 
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produced as a function of the biomass pool size (Allison et al., 2010; Wang et al., 2013). 

Overestimating biomass would therefore also overestimate enzyme production and 

decomposition.  

Conclusions

Our results highlight a disconnect between reality and model representations of 

how microbes allocate C among different fates. Models representing CUE as an emergent

property of multiple microbial processes, as opposed to a single parameter, best match 

our C partitioning data and theoretical understanding of microbial C use. Our study also 

demonstrates how isotopic partitioning data collected over time can be used to 

parameterize microbial models. This approach will more accurately constrain microbial 

allocation parameters compared to a single time point. The Two-Pool Biomass Model fit 

our data better than either the Typical Microbial Model or the Microbial Allocation 

Model. We propose that considering microbial allocation within the framework of the 

Two-Pool Biomass Model could allow for better integration of empirical data into soil C 

models and greater confidence that microbial allocation effects on soil C stock size are 

appropriately constrained. 
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Table 1. Model AIC values. For each model we estimated parameters using the structure 

that minimized AIC. The lowest value for each model is in bold. 

Model

Structure

Typical

Microbial Model

Microbial

Allocation Model

Two-Pool

Biomass Model
Full Structure -417.7 -422.0 -463.8
Without rU,S -- -424.0 -465.8
Without rB,U -- -424.0 -462.4

Without rU,S or

rB,U

-- -426.0 -464.4
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Table 2. Typical Microbial Model best fit parameter estimates and confidence interval.

Parameter Value CI Units
rB,U 6.7 x 10-3 4.9x10-3-9.1 x

10-3

h-1

rU,S 6.2 x10-3 4.3x10-3-8.9x10-3 h-1

rS,B 0.84 0.82-0.86 mg C mg-1 C
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Table 3. Microbial Allocation Model best fit parameter estimates and confidence 

intervals. 

Parameter Value CI Units
ae 0.59 0.53-0.64 mg C mg-1

es 0.25 0.20-0.31 mg C mg-1

rB,CO2 6.5 x 10-4 5.3x10-4-8.0x10-4 h-1
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Table 4. Two-Pool Biomass Model best fit parameter estimates and confidence intervals. 

Parameter Value CI Units
rMB,SB 0.27 0.17-0.49 h-1

rMB,CO2 0.089 0.063-0.14 h-1

rMB,U 0.12 0.078-0.18 h-1

rSB,CO2 5.4x10-4 4.1x10-4-6.9x10-4 h-1

rSB,U 5.5x10-4 0-1.3x10-3 h-1
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Substrate 

Unextractable C 

Biomass 

CO2 

a) Typical Microbial Model 

Substrate 

Unextractable C 

CO2 

Metabolic  
Biomass 

Structural 
Biomass 

c) Two-Pool Biomass Model 

Figure 1. Model structures for a) Typical Microbial Model, b) Microbial Allocation 
Model, c) Two-Pool Biomass Model. For each model the Extractable C, Biomass, and 
CO2 pools were fit to experimental data and the unextractable pools were fit to the mean 
concentration of the label unrecovered, calculated as the difference between the label 
added and the sum of the averages for each of the three measured pools at each time 
point. Grey dashed lines represent fluxes that were found to be unnecessary for the model
to fit the data. In the Typical Microbial Model and the Microbial Allocation Model fluxes 
positioned at the boundary of the biomass pool occur as a function of substrate uptake; all
other arrows represent fluxes that occur as a proportion of its origin pool. 
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Figure 2. Fit of the Typical Microbial Model (blue line), Microbial Allocation Model (red
line), and Two Pool biomass Model (green line) to the experimental 14C data for the 
microbial biomass, CO2 and unextractable C pools. For the biomass and CO2 plots, points
represent mean and error bars represent standard deviation. The unextractable pool was 
calculated as the difference between the amount of 14C added and the mean amount 
recovered in the CO2, extractable, and biomass pools. 
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Figure 3. CUE estimated from isotopic pools over time. Concentrations of 14C in each C 
pool at each time point were bootstrapped to produce 1000 combinations of the three 
measured pools at each time point and then used to calculate CUE. Points represent 
means and error bars represent 95% confidence interval. 
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Figure 4. Model error over the course of the incubation for the a) Biomass, b) CO2, and c)
Unextractable C pools for the Microbial Allocation Model, Two-Pool Biomass Model, 
and Typical Microbial Model. Model error is calculated as the absolute value of the 
difference between the model estimate of 14C in the pool and the measured concentration 
of the label in the pool, divided by the measured value. After one hour, the amount label 
in the extractable C pool was less than 8% and declined to less 1% of the total amount 
added to soil by the end of the incubation. Because the absolute amount of 14C in this 
pool was so low, model error was high for all models and differences in model errors 
were unimportant. 
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