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ABSTRACT: Metalloproteins present a considerable challenge for
modeling, especially when the starting point is far from thermodynamic
equilibrium. Examples include formidable problems such as metalloprotein
folding and structure prediction upon metal addition, removal, or even just
replacement; metalloenzyme design, where stabilization of a transition state
of the catalyzed reaction in the specific binding pocket around the metal
needs to be achieved; docking to metal-containing sites and design of
metalloenzyme inhibitors. Even more conservative computations, such as
elucidations of the mechanisms and energetics of the reaction catalyzed by
natural metalloenzymes, are often nontrivial. The reason is the vast span of
time and length scales over which these proteins operate, and thus the
resultant difficulties in estimating their energies and free energies. It is
required to perform extensive sampling, properly treat the electronic
structure of the bound metal or metals, and seamlessly merge the required techniques to assess energies and entropies, or their
changes, for the entire system. Additionally, the machinery needs to be computationally affordable. Although a great
advancement has been made over the years, including some of the seminal works resulting in the 2013 Nobel Prize in chemistry,
many aforementioned exciting applications remain far from reach. We review the methodology on the forefront of the field,
including several promising methods developed in our lab that bring us closer to the desired modern goals. We further highlight
their performance by a few examples of applications.

■ INTRODUCTION

Metalloproteins present many challenges when it comes to
computational modeling.1,2 The strong Coulombic forces of
metal cations and charged amino acids induce considerable
perturbations to protein tertiary structure. For example,
installation or removal of metal cations can yield large
conformational changes.3 In addition, metalloproteins com-
monly perform electron and proton transfersa mechanism
beyond the most common ways to describe protein dynamics
today, i.e., classically. Metalloproteins are large dynamic
molecules whose elements operate synergistically and on
different time scales during enzymatic catalysis. The challenges
in computationally modeling metalloproteins stem from the
need to simultaneously describe the complex metal coordina-
tion site(s) and efficiently sample the protein backbone.
Motions of the protein backbone and smaller metal site(s)
are coupled, so the remaining challenge is balancing on a time
scale relevant to protein machinery: picoseconds, milliseconds,
and beyond. Because of the dynamic nature of proteins,
sampling and assessment of free energies or their changes are
critical, and it is not a simple task. Many dream applications
that stand to benefit from modeling in silico include engineering
metalloproteins and/or their substrates to enrich catalysis and
inhibition. Together with traditional mechanistic studies
(especially for proteins that perform electron and proton
transfer), these applications rely on an adequate multiscale
methodology. Computational treatment of metalloproteins is in
a crucial developmental stage, and we believe some of the most

exciting applications are just over the horizon, with more
prospects to follow.
Sampling of protein structure typically employs classical force

field based methods: molecular dynamics (MD) and Monte
Carlo statistical mechanics (MC). Much work has been done in
developing more efficient sampling of proteins via MD,4,5 and
MC via the Metropolis−Hastings algorithm.6,7 Both methods
lend themselves well to parallelization, and serve faithfully in
areas of computational biophysics such as drug design.8

However, in modeling metalloproteins, the classical force fields
are usually parametrized to handle only a specific metal
coordination, which then has no freedom to change in the
course of a simulation (by acquiring or losing ligands as in a
catalyzed reaction or in response to reduction/oxidations of the
metal). Such changes would not be possible within the
harmonic oscillator-like description. This limitation is also
characteristic of the empirical valence bond (EVB) approach.2

Merz et al. are currently developing parameters for 24 divalent
metal ions; however, they are currently limited to calculating
hydration free energies of metal−water clusters within the
constraints of a harmonic oscillator-like description of the
metal−ligand bonds.9 On the other hand, fragmentation-based
techniquesmethods that carefully partition a large system of
interest into smaller fragments suitable for ab initio QM
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calculations, with the intent to give the same energy and
properties of the complete large systemshow promise in
expediting the computational time required with massive
parallelism for QM calculations.10 The literature is rich in
such techniques, but there are some notable examples for
biological systems such as fragment molecular orbital (FMO)
methods. A full review on these methods can be found in other
works.11−13 However, the computational power needed for
these methods is far from realistic for metalloproteins
containing sometimes hundreds of residues.
Hybrid methodologies which bridge the quantum mechanical

description of the metal−ligand interactions with classical
sampling of protein structure are very promising. There is a rich
history behind these methods. The quantum mechanical/
molecular mechanical (QM/MM) approach was first intro-
duced by Levitt and Warshel14 to calculate the energies of
intermediate states in enzymatic reactions. QM/MM methods

have undergone remarkable advancement, and now it is
possible to study reaction pathways in large systems, such as
solvated enzymes.15,16 Car−Parrinello MD (CPMD)17,18

techniques account for electronic and nuclear motion in an
approximate manner and have substantial success. Presently,
CPMD can describe the time evolution of molecular systems
with ∼100 heavy atoms for ∼100 ps without relying on a force
field. Nonetheless, hybrid molecular mechanics/CPMD (MM/
CPMD) schemes,17,19 that do employ a force field for part of
the simulation, have been successfully applied to several
different metal-containing systems. A few examples include
determination of the catalytic role of Zn2+ and Mg2+ in
metalloenzymes,20−22 ligand−DNA interactions with transi-
tion-metal-dependent anticancer drugs,23,24 and properties of
electron transport proteins.25 Fragmentation-based methods
have been recently extended into the QM/MM formalism, in
particular for simple polymers,26 biopolymers,27,28 and

Figure 1. QM/DMD. (A) The unique feature of QM/DMD is the “breathing” QM−DMD boundary: the light gray area on the scheme is managed
in both the QM and DMD regions. The alpha carbons of the “breathing” residues are held frozen during the pure QM phase, and the atoms directly
coordinated to the metal (red circles) are frozen during the pure DMD phase. The dark gray region is managed exclusively by QM. A real example of
the separation into the DMD-only and QM−DMD regions is shown by the green/purple protein (the ARD system). A few step function potentials
in DMD are shown. Each is defined with an example in parentheses: (a) Hard-shell interaction potentials (hard-sphere radius, attractive potential
well), (b) single-infinite square well (covalent bonds), (c) dihedrals (peptide bonds), (d) discretized van der Waals (solvation nonbonded), and (e)
hydrogen-bonding auxiliary distance potential function. (B) The graph shows a representative QM/DMD simulation with converged data such as
RMSD (Å) from the X-ray structure (light green lines), the QM energies (pink lines), and the DMD energies (light purple lines). The thick lines
illustrate the fast return of a distorted wild type structure of rubredoxin to equilibrium. The structures compare the overlay of the X-ray structure
(light blue) and distorted structure (pink) with representative QM/DMD equilibrated structures starting from X-ray (dark blue) and the distorted
structure (red). Adapted with permission from ref 42. Copyright 2012 Elsevier.
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zeolites.28 Approaches that contain integrated QM with MM,
such as ONIOM,29 compute entire system properties at a lower
level of theory and add higher level components to chosen
areas. For large metal-containing proteins, these methods are
not developed enough yet.
A primary issue with even the most efficient QM/MM

methods is still speed. Conformational sampling is expensive,
restricting the use of QM/MM methods in docking drug
candidates, protein structure design, and specific metal-
dependent functions. Toward reducing the computational
cost, semiempirical methods such as PM7 and PDDG have
taken the place of QM in QM/MM in pioneering work by Gao
and Truhlar,30 and in continued expansion.31−33 However, the
reliability of semiempirical methods is known to be more
limited. For sensitive quantities, such as reduction potentials of
metals in proteins, one needs to advance beyond semiempirics
into a quality quantum mechanical description.34−36 A powerful
approach, specific for the description for electron transfer in
metalloproteins, was designed by Voth et al.,37 which skips the
QM part all together. Voth instead coupled a coarse-grained
version of the classical mechanical description of the protein to
quantum dynamics describing electron transfer. This simulation
yields electron transfer between FeS clusters [FeFe]-hydro-
genase. Despite its indisputable beauty, the method cannot
describe the FeS clusters themselves and address such
questions as what electronic states are involved in accepting
and releasing electrons, and how the cluster-coordination
environment impacts those results. In contrast to pure electron
transfer, which employs cooperation from experimental optical
spectroscopy methods, computation is necessary in studying
proton coupled electron transfer (PCET) due to experimental
limitations in capturing proton translocation. PCET is
commonly considered a suitable reaction mechanism for
proteins and metalloproteins such as cytochrome oxidase.
Many theoretical studies on PCET have been done by
Hammes-Schiffer et al.,38,39 including capturing reaction
mechanisms and reproducing reaction rates in the metal-
loenzyme soybean lipoxygenase, via vibronically nonadiabatic
formulation of PCET reactions in solution and proteins.40

In this Feature Article, we discuss selected methodologies on
the forefront of this field and how sampling, entropy, and
description of the metal centers are currently addressed. In
particular, we believe that our QM/DMD method (DMD
standing for discrete molecular dynamics41) is among the most
efficient for sampling of metalloprotein structure.42 Further, we
will present specialized techniques for applications such as
metalloprotein design, which demands a robust sampling
strategy. We illustrate our discussion with computational
studies that showcase the power of our methods, and a look
forward to where we envision they could be successfully
applied.

■ METHODS FOR METALLOPROTEIN TREATMENT
QM/DMD. QM/DMD is a metalloprotein sampling

engine.42 It operates through an iterative scheme between
QM and DMD machineries (Figure 1). DMD is a flavor of MD
that approximates the continuous interaction potentials in
classical MD with square-well potentials (Figure 1A), course-
graining the potentials and overall reducing the number of
calculations needed. Due to these discretized potentials, DMD is
driven by collision events rather than physical forces as in
traditional MM and MD. Therefore, the user saves a
tremendous amount of time with DMD by solving ballistic

equations of motions rather than Newtonian equations of
motions (Figure 1A). Complete details can be found in earlier
works.43 QM/DMD operates in the following scheme: the
simulation begins with a DMD simulation of the entire protein
keeping the metal and atoms directly bound to the metal
frozen, and a few other constraints possibly being included
(Figure 1A). This saves one from the need to parametrize the
classical force field for the metal−ligand interactions. Following
DMD, a structure is selected from the trajectory representative
of the ensemble. A larger, chemically meaningful QM region is
extracted from the protein for optimization at the QM level.
Most of our work employs density functional theory (DFT) for
the QM management area due to the size and transition metal
species under consideration. However, any ab initio QM
formalism, whether it be density of wave function based
methods, can be chosen for the QM region. This region can be
something normally used for a QM mechanistic study on an
enzyme using a cluster model (Figure 1A). During the
relaxation, the structural changes in the protein predicted by
DMD can influence the metal coordination. The relaxed part is
then reinstalled back into the protein, the QM−DMD
boundary shrinks back to going right around the metal center
or centers, and the small region inside the boundary is again
fixed. The simulation continues with DMD. During the DMD
stage, the updated geometry of the QM region has a chance to
influence the rest of the protein. The simulation proceeds in the
analogous iterative manner to convergence (illustrated in
Figure 1B). The described “breathing” QM−DMD boundary
is a simple solution for the communication between the two
simulation machineries. Then, last but not the least, DMD is
highly suitable for being incorporated into the hybrid method;
DMD does not calculate forces by calculating energy gradients,
and operates on discontinuous potentials, and as a result is
insensitive facing a discontinuity of the potential at the QM−
DMD boundary. To the best of our knowledge, QM/DMD
provides record metalloprotein sampling speeds for simulations
done on CPUs.
QM/DMD has the ability to recapitulate native protein

structure from native and distorted ones,42,44 and provide finer
structural details of the active site at the level needed for, for
example, subsequent mechanistic studies.45 Large-scale motions
of protein parts are also captured efficiently.46 For the
equilibrated QM/DMD structures, one can apply most rigorous
QM methods to obtain such sensitive properties as changes in
the reduction potentials of the metal or barriers of catalyzed
reactions.42 Naturally, since sampling is done on the entire
protein while metal coordination is purely in the QM
management, events such as ligand attachment44 or detach-
ment47 are easily captured. This is often important in
mechanistic studies. We are particularly excited about the
demonstrated ability of QM/DMD to predict how the structure
of a metalloprotein would react to the changes in protein
sequence or the nature of the bound metal,42,44,45,48 removal of
one of the metal cations,47 or binding a metal to a protein that
originally did not contain a metal. These capabilities make
QM/DMD a good platform for metalloprotein design, as is
currently being tested (manuscript in preparation). Undoubt-
edly, metalloprotein design is a very interesting and exciting
goal pursued in the field.49−54 It is also known that, in the
design of specific, buried binding pockets, as opposed to
surface- or interface-exposed binding sites, sampling the protein
backbone dramatically expands the design repertoire.55,56

Hence, the idea is to utilize QM/DMD sampling in design,
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enabling a true design of buried active sites containing
transition metals, perhaps for the first time.
Approach to Metalloenzyme Design: General Outline.

The design process we aim for is based on the “inside-out”
protocol developed by Baker et al.57 The original idea was to
design an arrangement of amino acids around the rate-limiting
transition state of the catalyzed reaction such that it would be
stabilized selectively from the reactants and then incorporate
this design into a pocket of an existing protein scaffold. For
metalloenzymes, this process acquires an additional dimension:
the design of the electronic structure of the metal center or
centers. Indeed, the electronic structure of the metal defines
catalysis, and it is what makes metalloenzymes such great
catalysts, often accomplishing the most dramatic reactions in a
single step. Design here means tuning Lewis acidity, reduction
potential, or order and population of d-atomic orbitals (d-AOs)
on the metal, determined by its ligand environment. Thus, ab
initio calculations of the catalytic transition metal complex are at
the root of the computational design process. It is then needed
to find proteins that can arrange for such metal coordination,
which may be nontrivial, since only a few (natural) amino acids
and the backbone N and CO groups can be the ligands. After
that, the stabilization of the transition state of interest should be
done using continuous QM treatment of the metal for its
optimal description, and sampling of the protein backbone.
Hence, we put together a set of tools enabling every step in this
process.
Erebus. Erebus is one of such tools we found necessary to

develop to assist in the design process. To increase the chance
of a designed protein to fold into a correct structure, it is safest
to use an existing robust protein scaffold that already contains a
metal. If desired, it generally can be arranged for the metal to be
replaced with another one in vitro, or de novo synthesis of the
protein can be done with the desired metal being supplied.
Mutations in the active site are typically kept to a minimum in
the design, again to preserve the native fold. Erebus58 is a data
mining tool for searching through the Protein Data Bank
(PDB) for substructures in proteins. For the design application,
Erebus can look for arrangements of the metal, its ligands, and
possibly other amino acids near the metal, that are close to
what is desired. The idea is that one can use ab initio
calculations to construct a potentially catalytic metal−amino
acid residues complex and then look for this arrangement in the
full set of available protein structures. For example, the
calculated complex shown in Figure 2A was found in the
natural protein in Figure 2B. The Erebus search is based on a
subgraph isomorphism algorithm with a user-defined allowed
structural uncertainty, as illustrated in Figure 2C. It browses
through the entire PDB in an efficient manner (on the order of
under 1 h for a single search). Depending on the allowed
uncertainty, many matches can be uncovered.
Multiscale Design Tool. The last necessary tool in our

arsenal should assess the change in protein free energy upon
mutagenesis, to simultaneously optimize for the transition state
binding and protein stability. These evaluations are also
important beyond protein design, for a wide variety of research
areas concerning structure/function relationships of proteins.
However, assessing the effect of mutagenesis on protein
stability is difficult, since it requires addressing the complex
nature of many interactions in a secondary structure. With
metalloproteins, the additional complexity arises because every
bit of repacking in the binding site can have a serious influence
on the delicate electronic structure of the metal through both

bonded (shifting ligands) and nonbonded (polarization,
electrostatics) interactions. As much as nature fine-tunes the
metal to have just the right Lewis acidity, or just the right
reduction potential for the reaction it catalyzes,59 we too must
be mindful in a similar way when designing.
Intuition can provide initial guesses for useful mutations to

introduce into a protein. However, they only take us so far,
where evaluating whether one or two seemingly innocent
mutations could cause the entire protein to denature becomes
impossible. Additionally, changes beyond a few catalytic
residues might be beneficial for protein stability and overall
packing of the active site. Typically, human intuition is
completely inept at this task, thus, computation is required.
One of the most popular and powerful design tools is

classical force-field-based Rosetta.60,61 It samples through the
discrete rotameric space of amino acids as well as their chemical
nature, in an effort to repack and redesign binding sites for
catalysis/stability and has been successful in several cases.62−65

A competing tool, Eris, is a protein stability prediction software
that utilizes the slightly coarse grained force field, Medusa.66

Eris measures protein stability when a mutation is introduced
by calculating the ΔΔG of the mutation, where ΔΔG =
ΔGmutant − ΔGwild‑type.

55,67 It is beneficial that Eris utilizes some
form of protein backbone flexibility, as it was shown to be
helpful in design,55,67 and is expected to be of a major
importance for metalloproteins. However, none of the existing
methods in their current forms capture the structural impact of
metals ions on the protein, and in turn allow the protein to
impact the electronic structure of the metal.
We have combined our QM/DMD sampling software42 with

Eris, creating a recipe for gauging metalloprotein stability
induced by mutations called Eris-QM/DMD. The Eris-QM/
DMD method begins with a QM/DMD simulation of the
system the user is interested in mutating. After each iteration of
QM/DMD, the protein structure is mutated to the desired
residue(s) and undergoes an additional sampling step and the
ΔΔG of the mutation is evaluated. This method has
demonstrated proof-of-principle native sequence recovery for
two structurally different proteins, where each protein is

Figure 2. Illustration of Erebus. (A) A metal−ligand complex
calculated using DFT. Hypothetically, this complex is desired for
catalysis inside a protein pocket. (B) The active site of di-Zn β-
lactamase found by Erebus to contain the Asp, two Cys, His residues,
and a water molecule in the geometry close to the one desired from
part A. Notice that it is already a Zn-binding site. (C) Wi represents
the accuracy of a match to the input scaffold; more specifically, Wi
represents how much the position of every heavy atom i matches that
in the designed structure, subject to user-defined uncertainty σ, and
the resultant overall weight of the structure, W, used by Erebus to
judge the overall quality of the match.
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mutated in several ways, and Eris-QM/DMD is able to
recapitulate all native sequences of each protein except for
one mutation, which is undergoing experimental validation
(manuscript in preparation).
Entropy Evaluation. Entropy evaluation is a separate and

complicated issue. QM/DMD sampling predicts equilibrium
protein structure and energies. Entropic effects are either
ignored (for example, in certain mechanistic studies where it is
assumed that entropy does not change significantly as the
system progresses from reactants to the transition states to
products), or are included in an empirical way (as in Eris and
Eris-QM/DMD). However, a quantitative evaluation of
configurational entropy is desired, especially for sensitive
applications such as drug design, where every fraction of a
kcal/mol in the affinity matters greatly. Entropy evaluation
presents a fundamental hurdle in the fieldprotein structures
are routinely solved as static crystal structures, and fewer
experimental studies are able to extract a structural ensemble.
In the case of substrate binding, it is commonly accepted that
there is correlation between ΔH and TΔS; however, the
relevant free energy in protein and substrate binding is not
correlated with either of these individual descriptors (Figure
3).68

Computational methods allow us to follow precise positions
of not only tertiary and secondary structures but also atomic
positions, and these motions are coupled with corresponding
energies. Provided we have a crystal structure or another good
“guess” of a starting point, these motions are accessible.
(However, getting to that starting point in silico remains an
active field in itself.69) Normal mode analysis, for example,
probes local curvature near a stationary point via the Hessian,
and by using quantum mechanical modeling, one can deduce a
related entropy component to sum across all modes. Karplus
and Kushick laid down the groundwork for quasi-harmonic
analysis using internal coordinates70 which probes the global
extent of configurational space accessible to a system at a given
temperature. By evaluating a mass-weighted covariance matrix
from MD simulation and diagonalizing, the resulting quasi-
harmonic frequencies can be used with the QM expression for

entropy of a harmonic oscillator. This approach was later
reformulated by Andricioaei and Karplus to work in Cartesian
coordinates.71 Similar methods exist, such as in calculating an
“upper” limit to entropy by use of convergence matrices.72

These methods are common in simulation packages together
with MD trajectories; however, they are often more useful for
qualitative results than quantitative comparisons of entropy.
Consequently, free energy is left as the direct target of

computation, rather than handling energy and entropy
separately. The need for properly handling contributors
including roles of disorder, fluctuations, protein dynamics,
and multiple pathways in reaction dynamics is crucial and
solutions are developing rapidly. Free energy perturbation
(FEP) is one technique which can handle direct calculation of
free energy changes; however, it is very expensive especially if
done in QM/MM settings. Umbrella sampling can be used to
include entropic effects in 1-D free energy profiles and 2-D
energy landscapes, and Gao, Truhlar, and others use ensemble
averaging73 to include entropic effects in free energy
computation.74−81

As discussed, DMD efficiently samples configurational space
at the atomic level. Bolstered by the efficient and discrete
nature of molecular dynamics, Schofield et al. quantitatively
measured the free energy and entropy of folding via
probabilities of structures defined by their sharp noncovalent
bond networks.82 Basically, the function of the potential in
DMD allows for a very straightforward definition of a
conformational state: every well is either populated or it is
not. Then, entropy evaluation becomes accessible. Schofield
showed this on a very simple system (short polypeptide) and
using a simpler DMD potential. Extending this idea to larger
systems of interest and a more realistic form of DMD is the
subject of an ongoing implementation based on QM/DMD, in
our lab. Indeed, the sampling of DMD combined with any
quantitative method to extract free energy or entropy would
provide the missing link between binding free energies and
already-robust energy calculations.
With these tools, difficult questions of interest to the

metalloenyzme community have been answered and our efforts

Figure 3. Analysis of the experimental binding thermodynamics for approximately 100 protein−ligand complexes. Reprinted with permission from
ref 68. Copyright 2011 American Chemical Society.
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to tackle more difficult and multifaceted problems, such as the
design of artificial metalloenzymes and inhibitors of them,
continue to evolve. We now describe a few successful
applications of our methods, and in the end, we will outline
what is still missing or under construction, and what future
applications are becoming within reach.

■ EXAMPLES OF APPLICATIONS

Large-Scale Motion Important for Metalloenzyme
Catalysis. The need for adequate sampling for the protein
structure is occasionally unnecessary, as the large, structural
equilibration does not influence active site chemistry. However,
in many instances, backbone motion induces conformational
changes around or far away from the active site. These
structural motions could close or open channels for substrates
to flow through or arrange residues at positions needed for
catalysis. One such example of the latter is acireductone
dioxygenases (ARDs).
ARD is an enzyme that catalyzes two different oxidation

reactions, depending solely on whether Fe2+ or Ni2+ is bound to
the protein.83−85 Fe-dependent ARD′ recycles methionine in
the methionine salvage pathway by oxidizing the substrate, 1,2-
dihydroxy-3-keto-5-(methylthio)pentene (acireductone), into
two products: the α-keto acid precursor of methionine and
formate. Ni-dependent ARD instead oxidizes acireductone into
three products, methylthiopropionate, CO, and formate, and
provides a shunt out of the methionine salvage cycle.2

Interestingly, interconversion between the Fe and Ni forms
of ARD is relatively simple as the protein has micromolar
affinity for both metals (Kd < 0.4 μM for Fe and Kd < 0.1 μM
for Ni). The long-standing hypothesis for why Fe and Ni
catalyze different oxidation reactions is due exclusively to the
coordination mode of the substrate to the metal center (Figure
4). It was proposed that a large conformation change in a
nearby protein loop facilitates this different binding together

with the metal replacement.86 However, it is unclear why two
divalent metals of similar radii would bind the substrate in
dramatically different ways, and especially also cause large
conformational changes in the protein. Indeed, this view has
been challenged by recent experiments and our QM/DMD
computational studies, and a new mechanism was pro-
posed.37,69

Through QM/DMD simulations, we found both Fe and Ni
ARD bind the substrate in the same orientation, via O1 and O3
of the substrate (Figure 4). The protein pocket stabilizes this
specific orientation by two Arg residues, R104 and R154, which
forms a hydrogen bond to the doubly deprotonated substrate
bound to the metal in this way. The X-ray structure does not
contain a bound substrate or its analogue, and therefore, upon
docking the substrate, these hydrogen bonds were not present.
DMD sampling during the simulations elucidated the role of
these residues and demonstrated the importance of sampling in
metalloprotein systems such as this one. However, since
substrate orientation is identical in the two systems, the
coordination mode to the metal center can no longer be the
reason for product differentiation in Fe and Ni. QM
mechanistic studies revealed an additional intermediate that
forms in the Fe-ARD′ mechanistic pathway not observed in Ni-
ARD. This extra intermediate is also found in biomimetic
complexes mimicking ARD.87 The ability of Fe but not Ni to
stabilize an additional intermediate comes from the redox
flexibility of Fe2+, allowing for the flow of electrons from the
residues to the substrate and the bound O2. Thus, the
antibonding π* orbital in dioxygen gets populated, and O2

dissociates. The O atoms easily migrate around, and one
accessible epoxy-like transition state produces the mentioned
intermediate. The more electron-rich Ni2+ does not allow for
O2 dissociation. With ARD, sampling was required to predict
the correct substrate binding pose, and dismiss the old

Figure 4. Old hypothesis on product differentiation of Fe-ARD′ and Ni-ARD disproved through our QM/DMD simulations coupled with DFT
mechanistic studies and shown to stem purely from the electronic structure of the metal, not the binding mode of the substrate to the metal.
However, the residues R104 and R154 stabilize the substrate in the reactive orientation.
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mechanistic hypothesis. The protein structure remained
consistent upon metal replacement.
However, sometimes, a simple metal replacement can induce

large-scale protein motions and repacking, as showcased by
catechol-O-methyltransferase (COMT). COMT is a Mg2+-
dependent enzyme involved in the biology of pain.88,89 COMT
catalyzes the transfer of the methyl group from the cofactor S-
adenosyl-L-methionine (SAM) to catechol subsequently,
regulating the amount of catecholamine neurotransmitters in
the brain and other organs (Figure 5). The metal in COMT
binds and positions the catechol substrate in the correct
reactive orientation toward SAM for the methylation step.90−92

Native COMT contains Mg2+, which however can be replaced
with Co2+, Mn2+, Zn2+, Cd2+, Fe2+, Fe3+, Ni2+, and Sn2+.93 Metal
replacement leads to varying changes in the activity and
structure of the enzyme. Surprisingly, the replacement of Mg2+

with Ca2+ leads to the inhibition of COMT, while replacement
of Mg2+ with Fe2+ creates an only slightly weaker catalyst
compared to Mg2+. Fe3+ is also a complete inhibitor. The
structure and function of these three metal variants of COMT

were investigated computationally.44 Through the course of the
simulation, the larger cation, Ca2+, is shown to coordinate one
additional ligand as compared to Mg2+ (Figure 5). Ca2+ also sits
deeper into the binding cavity and distorts the reacting parts of
catechol and SAM out of alignment for methyl transfer (Figure
5). These structural rearrangements with Ca2+ are predicted to
produce disfavored reaction energetics. Thus, inhibition is a
purely geometric effect in this case. Importantly, without
sampling, and using just a cluster model, this geometric change
is not observed: the Ca2+ containing site incorrectly looks
identical to the Mg2+ containing site.44 Predictably, the
inhibitory effect of Fe3+ comes solely from the electronic
properties of the metal, specifically its high electrophilicity.
COMT also is an illustration of how ligand capture can be

important in addressing a mechanistic difference. This would
not be done without the QM treatment of the metal,
accompanied by adjustment of the portion of the backbone,
which are the key features of QM/DMD. There are further,
more dramatic, examples of this sort.

Figure 5. Catechol-O-methyl-transferase (COMT) catalyzes the methyl transfer from the cofactor SAM to a catechol motif found in
neurotransmitters. (A) Native COMT binds Mg2+, which positions the substrate in the proper orientation toward SAM, for methyl transfer.
However, when Ca2+ (B) is bound, the active site distorts, putting reacting parts out of alignment, and thus leaving the enzyme inactive. Reprinted in
part with permission from ref 42. Copyright 2012 Elsevier.

Figure 6. In the Cu, Zn dependent superoxide dismutase (SOD), Cu plays the role of the catalytic metal; however, Zn, although it plays a purely
structural role, plays a vital role in keeping the adequate structure for Cu-mediated dismutation.
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Changes in the Coordination Geometry of the Metal.
Intriguingly, the class of superoxide dismutase (SOD) enzymes
exhibits a wide range of redox activities modulated by ligand
detachment or attachment. This review will highlight two
specific ones, the first one being Cu, Zn dependent superoxide
dismutase in humans (SOD1). SODs catalyze the dismutation/
disproportionation of superoxide (Figure 6), a dangerous
species linked to aging and other oxidation stress processes in
organisms. The loss of SOD1 function and subsequent
aggregation is known to lead to the neurodegenerative disease
Amyotrophic Lateral Sclerosis (ALS) that affects the motor
neurons of afflicted patients.94−98 The metal-dependent nature
of SOD is twofold: catalysis occurs at the Cu site, whereas the
Zn site is believed to serve an important structural role for the
whole protein. Experiments show that monomers without Zn
are precursors to the SOD aggregates,99 while Cu-less SOD1
does not show aggregation and retains its structure.100 Without
the presence of Zn, Cu is not able to catalyze the dismutation
reaction. A combined computational and experimental study
addressed the effect of Zn removal on the protein structure,
electronic structure of the Cu site, and overall catalytic function
of SOD.47 The results show that Zn plays a structural role in
SOD1 and directly influences the catalysis, enabling proper
coordination and reduction potential of the Cu site. Removal of
Zn causes the elimination of the catalytic activity of SOD1 even
without protein unfolding and aggregation. It also makes the
Cu center prone to deactivation due to immediate reduction to
Cu(I) in the resting state. QM/DMD sampling was required to
obtain the proper, folded but inactive structure of SOD1. In it,
Cu lost one ligand.
Ni-SODs. Ni-SODs exist only in Streptomyces and

cyanobacteria. Unlike all other metals used in SOD, Ni2+

does not catalyze superoxide dismutation in aqueous solution
due to an improper redox potential (a calculated +2.26 V when
the optimum reduction potential is 0.36 V).101 The active site
of Ni-SOD is strikingly different from those of the other
SODs.102 The Ni ion, coordinated by a “Ni-hook” motif,103 has
a square-pyramidal coordination geometry when Ni is in its
oxidized form (Ni3+). It has four equatorial ligands, two
thiolates from Cys2 and Cys4, a deprotonated amide of the
Cys2 backbone, and the N-terminal group of His1, and one
axial imidazole from His1 (Figure 7). Upon reduction, Ni2+

loses the His1 ligand and becomes square planar, making Ni-
SOD the only observed SOD with a coordination number that
changes as a function of metal oxidation state.43,104−107 The
flexible coordination geometry activates Ni and confers the
proper reduction potential needed to function as a SOD. To

address such a structural effect, an extensive sampling within a
quantum-classical formalism would be essential.

Metalloenzyme Design. Metalloenzyme design is the
hallmark challenge, where all difficulties revealed need to be
addressed. We make the first attempts to design specific buried
binding pockets in metalloproteins for desired catalysis. In all
cases, QM/DMD sampling for structure prediction followed by
QM mechanistic studies are the core of the effort. In a more
conservative approach, the substrate of a known enzyme gets
modified, and the binding pocket then gets redesigned slightly
to accommodate it. These works involve mostly intuitive
mutations done by hand, sampling, and mechanistic inves-
tigation, followed by experimental validations. We also use the
full machinery described in the section Methods for Metal-
loprotein Treatment, including Erebus, Eris-QM/DMD, QM/
DMD, and QM, to design artificial enzymes catalyzing non-
natural reactions of interest, using nonphysiological metals in
the active sites. These efforts are also in the stage of
experimental testing of several promising designs. Details of
the approach and results will be coming in future publications.

■ FUTURE ASPIRATIONS
Perhaps one of the most practical and significant applications of
an efficient metalloprotein simulation engine would be
computational design of drugs/inhibitors. In this case, it is
necessary to predict the binding free energy of a substrate to a
protein, or relative free energies of binding of one substrate
with respect to another. The field of computational drug design
has seen tremendous growth over the past decades.8 By far, the
most widely used approaches hinge on continuously evolving
scoring functions,108 classical MD, Monte Carlo, and sampling
via normal-mode analysis, among other non-QM treatments of
large molecules. However, with just these classically based
methods, metalloenzyme targets remain largely inaccessible. In
order to assess the induced fit, i.e., the conformational response
of the protein to the bound ligand, the QM or parametrized
MM treatment of the metal is paramount. While there are
experimental methods that help bridge this gap, for example,
fragment-based lead design (FBLD) which has been used to
identify the first building blocks of inhibitors to several
metalloenzymes,109 effective computational approaches would
advantageously complement metalloenzyme inhibitor design.
Insight into preferred ligand poses without a cocrystal and
“growing” the best targets within the active site of a
metalloenzyme for optimum affinity and protein dynamics is
currently not commonly available in silico. Leveraging these
methods would lessen the need to synthesize ligand candidates
every step of the way (as in FBLD).
We are starting to see QM/MM methods used in screening

small libraries, including so-called “on-the-fly quantum
mechanical/molecular mechanical (QM/MM) docking” which
reveals a significantly improved success rate for a zinc-binding
protein data set via QM’s comprehensive description of the
charge-transfer effects and QM-refinement of binding poses.110

Indeed, QM offers precise relaxation of ligands into protein
active sites and measurement of electronic interactions, from
the basic potentials (vdW, electrostatics, H-bonds, ligand strain,
etc.) that scoring functions already perform well with to the
unparamaterized metals. Even if interactions and poses in the
QM active site are well-defined, a method to perform extensive
sampling and estimate other key effects including entropy and
desolvation is required to help complete the thermodynamic
picture. This is no easy task, as we’ve seen for many years drug

Figure 7. Redox reaction in Ni-SOD modulated through the changing
coordination environment of the histidine (H1) residue.
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design was stuck with rigid models of proteins, showing
appreciable effectiveness, however, clearly inadequate for the
more interesting cases.111,112

While efficient drug design is still an open question with
many pending answers, only a few of which have been
discussed here, a couple things have become abundantly clear.
One barrier to any current approach in drug design is efficient
sampling of design space, which quickly becomes expensive
when targeting larger systems, and has recently been
incorporated into many docking and scoring methods primarily
by sampling of the larger protein movements followed by rigid
substructure searches. Methods such as DMD show promise in
quickly and accurately sampling the design environment, not
only of the pure protein but with a potential ligand. When
coupled with accurate QM estimation of binding site energies,
new opportunities in drug design arise, and are being explored
in our lab.
To conclude, the computational treatment of metalloproteins

has been accelerating, and in this article, we have introduced
many current challenges and developments, especially within
our own work. Ongoing improvements to current method-
ologies and expansion to new methods continue to push the
frontier of both structural and mechanistic studies of metal-
loproteins. This frontier spans exciting directions such as
artificial metalloenzymes and metalloenzyme inhibitor design
where the efforts in our lab are pushing these boundaries.
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