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PREFACE

Control Theory is an interdisciplinary field with an expansive quantity of applications.

While I have only explored a small subset of topics, my curiosity, academic freedom as well as

guidance provided by my advisor, and the great contributions of collaborators have helped me to

work on a relatively broad range of problems given the scope of my doctoral studies:

• adaptive nonlinear tracking model predictive control (MPC);

• parameter estimation algorithms for multiple output systems;

• learning control barrier function-based safety filters for autonomous vehicles;

• data-driven nonlinear tracking MPC using log-sum-exp neural networks;

• modeling and simulation of what-if scenarios of finite hospital resources used by COVID-19

patients; and

• control-oriented modeling and model-based control of gas processing facilities.

Including every work here would exceed the scope and likely lead to gibberish. The interested

reader is referred to the corresponding publications. Instead, this dissertation focuses on the topic

of control-oriented modeling and model-based control of gas processing facilities. Results have

been developed as part of a close collaboration with my advisor Professor Robert R. Bitmead

and Solar Turbines Incorporated, foremost Robert H. Moroto.
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Sven Brüggemann

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering)

University of California San Diego, 2022

Professor Robert R. Bitmead, Chair

Gas processing facilities, where gas is received and treated, provide motivation and

embodiment for the development of systematic control-oriented modeling tools suited to the

design of process control solutions based on plant schematics and layouts. The control of these

plants involves the interconnection of a number of elements including pipes, compressors, heat

exchangers, valves and valve manifolds, and other process units and volumes. The goal of this

work is to provide a systematic, scalable and reconfigurable modeling methodology eventually

used for process control of such gas-handling facilities at nominal operation. We aim to simplify

the control design so that it appeals to generalists without deep expertise in control of fluid

flow, using software tools such as Simulink/MATLAB and Python. We provide control-oriented
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component models of standard equipment incl. pipe intersections, compressors, valves and heat

exchangers, which serve as modules for entire networks. By exploiting the index-1 property of

systems of differential algebraic equations that naturally arise for interconnections our composite

LTI state-space models subsume algebraic equations; hence, control-orientation. We also show

that for networks conservation of mass is inherited by its components and leads to an integrator in

the pressure channel with important implications for control design. The MATLAB code provided

in the Appendix corroborates the suitability of our approach for software-based control design.

xviii



Introduction

Gas processing facilities, where gas is received, treated and compressed for onward

transmission through a distribution pipeline network, provide motivation and embodiment for

the development of systematic control-oriented modeling tools suited to the design of process

control solutions based on plant schematics and layouts. Figure 1 shows the Gas Compressor

Test Facility (GCTF) at Solar Turbines Incorporated as an example of such a facility. While

currently the usual working medium is natural gas, often hydrogen and biogas can be processed,

too, which is worth mentioning given the political agenda of a carbon-neutral economy.

The control of these plants involves the interconnection of a number of elements including

pipes, compressors, heat exchangers, valves and valve manifolds, scrubbers and other process

units and volumes. The control splits into two distinct aspects: process control for system-wide

operational efficiency and accuracy, and safety systems to ensure unit and plant protection. The

two control aspects differ in their timescales and in their scope, with the safety system acting

Figure 1. Gas Compressor Test Facility (GCTF) at Solar Turbines Incorporated [13].
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across a wide range of operating points (rather than around a single operating point), being both

faster, more highly nonlinear, and more localized to specific unit operation such as avoiding

compressor surge.

The goal of this work is to provide a systematic, scalable and reconfigurable model-

ing methodology eventually used for process control of such gas-handling facilities. We aim

to simplify the control synthesis so that it can be designed by a generalist without deep ex-

pertise in control of fluid flow, using software tools such as Simulink/MATLAB and Python.

Correspondingly, we prioritize utility over high accuracy required for high-fidelity simulations.

The motivation for this research is that current control design in gas processing facilities

is usually based on single channel PI control. Advantages include that no explicit models are

required and the availability of heuristic tuning rules, e.g., the Ziegler–Nichols method [52]. For

many scenarios the controller performance is not sufficient, though, particularly given the higher

requirements for disturbance rejection, accuracy, and efficiency associated with microgrids and

an increased share of renewable energies.

One disadvantage is that manual tuning of PI controller gains by operators is costly

and required as soon as there is a change in the plant: modifications of facility components,

change of nominal operating conditions, wear of tools, etc. Further, single channel controllers

assume uncoupled dynamics: each control input only affects one specific signal output. This

assumption does usually not hold in practice, so that rather ad hoc heuristic approaches such as

selecting the minimum from multiple control inputs is used. Moreover, although high-resolution

computer-aided simulations for single components are possible their extension to interconnected

large-scale systems including diverse equipment such as valves, compressors and heat exchangers

is not immediate. This complicates testing and validation of classical PI control in simulation.

To address these limitations, our ultimate aim is to replace single channel PI control by

multiple-input-multiple-output (MIMO) control. We derive component models in form of MIMO

state-space realizations which appeal to numerous methods from Linear Systems Theory and

software tools such as MATLAB. We also present a matrix methodology for building networks
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from component models, leading again to state-space descriptions. This allows the use of

standard methods using commands such as kalman,lqr and lqg for entire networks, which

dramatically increases the models’ utility especially for engineers without a deep understanding

of control systems. This control-oriented approach is one of the main features of our work

and deviates substantially from the originally infinite-dimensional modeling based on partial

differential equations (PDEs). Additionally to serving for control design, our models facilitate

estimation, disturbance modeling, filtering and initial numerical validation, to name a few use

cases.

Control-oriented captures the modeling focus on eventual model-based feedback con-

troller design reflecting: plant operational objectives, the presence and capabilities of selected

actuators and sensors, disturbance integration, and the possible reconfiguration of operations.

More precisely, our models are designed to be used for the following conditions.

Plant: interconnected networks of pipes and processing elements located at one site on the order

of tens of meters (rather than kilometers) in extent.

Objective: bulk flow estimation, bulk pressure regulation and disturbance flow rejection with

flow as control input/manipulated variable.

Sensing/actuation: sampled at or below 1Hz in line with the plant’s regulation objective. The

focus is on widespread, reliable and accurate pressure sensing in particular, and on actuation

using flow control valves. Sensing of flow with orifice plates is there for corroboration

more than for control. Temperature sensing is slow and of limited presence in the plant.

Resonant and acoustic modes: while ever-present in compression systems, are at frequencies

beyond the sensor and actuator bandwidth in plants of this size.

Models: should facilitate control design for this regime and be amenable to tuning by control-

savvy plant engineers.
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Although this is quite a specific scenario, it is fairly representative for gas processing

facilities. We claim that our control-oriented models are well-suited for MIMO model-based con-

trol. Appealing to Popper’s scientific theory of falsifiability [39], while it is impossible to prove

that this is true in general, we present analysis and numerical experiments that unsuccessfully

falsify and hence corroborate this hypothesis; methods from Linear Systems Theory facilitate

these efforts. Further, as Laudan [28] writes “the aim of science is to secure theories with a high

problem-solving effectiveness.” Our control-oriented approach to lumped-parameter, linearized,

spatially discretized, signal flow graph modeling operates with this recognition of the convenient

fiction underpinning all modeling but reflective of the utility of the approach.

Related work

Fluid dynamics and, particularly, computational fluid dynamics, are well-established

subjects centered on high-fidelity modeling of flows given design and boundary conditions;

typically, they involve nonlinear PDEs and transport phenomena which are not amenable to

finite-dimensional control design but instead are targeted and tested for simulation. Other

pragmatic modeling for pipeline distribution systems [5, 26, 3] yields ordinary differential

algebraic equations (DAEs), which again are not well suited to control design. Although, they

can be used directly for controller synthesis in some circumstances [17] and, as noted in [5], if

the DAE is of index 1. Theorem 4.1 [5] establishes that the DAEs are indeed of index 1 and so it

is possible to rewrite the DAE as an ordinary differential equation (ODE) without the algebraic

constraints. Effectively, we complete this conversion here.

For fluid or general mechanical systems we take a lead from Benner et al. [5] and

Williams et al. [50] as examples where graph theoretic methods are applied to generate process

models from component descriptions, with the latter paper specifically targeted at control design

and the former at modeling for simulation. Williams et al. [50] is allied in its control objective

with our work here and uses energy as the lingua franca to map states between subsystems. The

edges of their graphs are energy preserving connections with the dynamics occurring at the nodes.
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By contrast, Benner et al. [5] and we model the dynamics in the edges with the nodes applying

the interaction constraints. For our target processes of gas processing plants, this latter structure

accords better with the primary process control objective of pressure regulation and secondarily

with flow estimation. Thermal energy is a byproduct and reflection of the inefficiency of the

process. While of interest, temperature is not the central manipulated variable. However, it is

noteworthy that the energy formulation of Williams et al. [50] for composite aircraft systems

allows conservation laws to be absorbed into the component models, so that the aggregated

state-space model can be directly applied for control design.

A recent comprehensive survey of modeling and feedback control design for HVAC

systems is provided by Goyal et al. [21], which cites Rasmussen & Alleyne [40] who concentrate

explicitly on control-oriented modeling in these vapor compression systems. However, because

their pipes are short and well-insulated, the system structure again focuses on node dynamics

rather than edge dynamics of our problem.

For large-scale domain-independent systems, works from Šiljak and colleagues [38, 45,

44] follow a top-down approach, decomposing large-scale networks into smaller subsystems,

and analyze control-relevant notions such as (structural) stability, reachability and controllability.

While their approach is generally applicable to the case of pipe flow, the logical direction differs:

instead of decomposing, we compose interconnected systems from subsystems in a bottom-

up approach under the assumption that structures are fixed (rendering structural stability [45]

secondary). Further, the control actuator and, to a lesser extent, sensor locations are few when

compared with the number of subsystems or network elements.

Contributions

Following [5], which deals with isothermal models of gas distribution networks, we

commence by studying pipe flow in individual pipes before considering how these are connected

into networks yielding automatable aggregation of subsystems. The authors of [5] propose a

network DAE with the algebraic part being the conservation of mass flows at the connection
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points. At this level of detail, this approach bears a strong resemblance to bond graph techniques

[8], from which control design is problematic. However, since the resultant network DAE has

index 1, the algebraic part can be solved locally to express some of the variables in terms of the

others thereby eliminating them.

For our models, algebraic equations arise for intersecting pipes. In this case we create

composite models which subsume algebraic equations while their state-space form satisfies our

requirement of control orientation. These new elements preserve the linearity and other properties

while also respecting the conservation laws. We extent this idea to other standard equipment

and generate a compendium of control-oriented models, including compressors, valves, valve

manifolds, heat exchangers and tanks.

We show how these components might be aggregated into network equations to compute

the larger state-space system, which we show subsumes Mason’s Gain Formula. That is, we

are able to preserve the simplicity of the signal flow model of the pipe network as opposed to

resorting to bond graphs or DAEs. Two examples in MATLAB corroborate the suitability of

our models for control design. Additionally, signal filters allow us to isolate certain frequencies

and hence efficiently simulate interconnected systems in closed loop, which would otherwise

challenge even specialized solvers for stiff DAEs.

Other core aspects of our work are the inheritance of conservation of mass from the unit

models to the network despite the absence of algebraic constraints and the consequences of this

for the network model in the light of controller design; and, MIMO control design using these

approximate models and cognizant of the role of the conservation of mass in these designs. To

sum up, our main contributions are as follows.

• We develop control-oriented models of standard equipment in gas processing facilities

subsuming algebraic constraints; this includes pipes, pipe intersections, compressors,

valves, valve manifolds, heat exchangers and tanks.

• We experimentally validate pipe models using real-world data.
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• We derive a matrix methodology for composing networks from modular components that

can directly be implemented in software tools such as MATLAB.

• We show that conservation of mass as a component property is inherited by entire networks,

and that this leads to an integrator in the system important for control design.

• We apply our developed methodology to a plant in simulation, similar to the GCTF at

Solar Turbines Incorporated and show how to use our control-oriented interconnected

models for digital control design including MATLAB code.

• The simplicity of our control-oriented models and their interconnection to complete

networks provides access to MIMO feedback control design of complex systems for

general engineers without a profound knowledge in control systems.

Thesis outline

The thesis is divided into two self-containing chapters and one self-containing appendix.

Chapter 1 introduces the idea of control-oriented modeling and presents models for pipe flow

with a focus on their eventual use for feedback control design at the process control level, as

opposed to the unit level, in gas processing facilities. Accordingly, linearized facility-scale

models are generated to describe pressures, mass flows and temperatures based on sets of

nonlinear partial differential equations from fluid dynamics and thermodynamics together with

constraints associated with their interconnection. As part of the treatment, the divergence of these

simplified models from physics is assessed, since robustness to these errors will be an objective

for the eventual control system. The approach commences with a thorough analysis of pipe flow

models and then proceeds to study their automated interconnection into network models which

subsume the algebraic constraints of bond graph or standard fluid modeling. The models are

validated and their errors quantified by referring them to operational data from a commercial

gas compressor test facility. For linear time-invariant models, the interconnection method to

generate network models is shown to coincide with automation of Mason’s Gain Formula. These
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pipe network models based on engineering data are the first part of the development of general

facility process control tools.

In Chapter 2 these models are then used for analysis and control design. More precisely,

we study a gas network flow regulation control problem showing the closed-loop consequences

of using interconnected component models which have been designed to preserve a variant of

mass flow conservation without the inclusion of algebraic constraints into the dynamics. These

are candidate control-oriented models because they are linear state-space systems. This leads to

a study of mass conservation in flow models and the inheritance of conservation at the network

level when present at each component. Conservation is expressed as a transfer function property

at DC. This property then is shown to imply the existence of integrators and other DC structure

of the network model, which has important consequences for the subsequent control design. An

example based on an industrial system is used to explore the facility of moving from modeling

to automated interconnection or components to model reduction to digital controller design and

performance evaluation. Throughout, the focus is on the teasing out of control orientation in

modeling. The example shows a strong connection between the modeling and the controller

design.

Appendix B builds on the previous chapters and represents a compendium of control-

oriented models of gas processing equipment components. Here we provide linear control-

oriented state space models of gas flow through standard equipment such as tanks, valves and

valve manifolds, compressors, heat exchangers and non-trivial pipe geometries. After presenting

the catalog of components, using results from Chapter 2 we show a MATLAB example for a

network in form of a gas loop. For the same example we also demonstrate an alternative approach

using MATLAB’s connect function.
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Chapter 1

Control-oriented modeling of pipe flow in
gas processing facilities

1.1 Introduction

Gas processing facilities, where natural gas is received, treated and compressed for

onward transmission through a distribution pipeline network, provide motivation and embodiment

for the development of systematic control-oriented modeling tools suited to the design of process

control solutions based on plant schematics and layouts. The control of these plants involves

the interconnection of a number of elements including pipes, compressors, heat exchangers,

valves and valve manifolds, scrubbers and other process units and volumes. The control splits

into two distinct aspects: process control for system-wide operational efficiency and accuracy,

and safety systems to ensure unit and plant protection. The two control aspects differ in their

timescales and in their scope, with the safety system acting across a wide range of operating

points (rather than around a single operating point), being both faster, more highly nonlinear, and

more localized to specific unit operation, such as avoiding compressor surge. Our focus will be

the process control side with an emphasis on unified plant-wide operational effectiveness. The

aim of this chapter is to develop interconnectable and reconfigurable unit system models, which

are amenable to control design, with an objective of bringing multiinput-multioutput (MIMO)

control into the picture for gas processing facilities; firstly from engineering design specifications

and then augmented by data-based tuning.
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Control-oriented captures the modeling focus on eventual model-based feedback con-

troller design reflecting: plant operational objectives, the presence and capabilities of selected

actuators and sensors, and the possible reconfiguration of operations. More precisely, our models

are designed to be used for the following conditions.

Plant: interconnected networks of pipes and processing elements located at one site on the order

of tens of meters (rather than kilometers) in extent.

Objective: bulk pressure regulation and disturbance flow rejection with flow as control input/-

manipulated variable.

Sensing/actuation: sampled at or below 1Hz in line with the plant’s regulation objective. The

focus is on widespread, reliable and accurate pressure sensing in particular, and on actuation

using flow control valves. Sensing of flow with orifice plates is there for corroboration

more than for control. Temperature sensing is slow and of limited presence in the plant.

Resonant and acoustic modes: while ever-present in compression systems, are at frequencies

beyond the sensor and actuator bandwidth in plants of this size.

Models: should facilitate control design for this regime and be amenable to tuning by control-

savvy plant engineers.

Although this is quite a specific scenario, it is fairly representative for gas processing facilities.

The models we seek will be linear(ized), time-invariant (LTI) state-space systems, op-

tionally parametrized by nominal operating point, and capable of systematic interconnection of

unit models into facility models using computer-based MIMO control design tools. Models with

time delay do not fall into this category and are therefore approximated by control-compliant

dynamics if necessary. The quid pro quo for this utility is that these models are necessarily

simplistic and approximate but that, by characterizing their nature, approximations might be

addressed in control design. Inevitably, such modeling relies heavily on engineering knowledge

of the specific application but admits fairly general applicability.
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The subsystem models are based on simplified approximations to constituent equations

from fluid dynamics, coupled partial differential equations (PDEs) plus algebraic equations, and

are validated against plant data, including the assessment of model errors.

Fluid dynamics and, particularly, computational fluid dynamics, are well-established

subjects centered on high-fidelity modeling of flows given design and boundary conditions;

typically, they involve nonlinear PDEs and transport phenomena, which are not amenable to

finite-dimensional control design but instead are targeted and tested for simulation. Other

pragmatic modeling for pipeline distribution systems [5, 26, 3] yields ordinary differential

algebraic equations (DAEs), which again are not well suited to control design. Although, they

can be used directly for controller synthesis in some circumstances [17] and, as noted in [5], if

the DAE is of index 1. Theorem 4.1 [5] establishes that the DAEs are indeed of index 1 and so it

is possible to rewrite the DAE as an ordinary differential equation (ODE) without the algebraic

constraints. Effectively, we complete this conversion here.

For fluid or general mechanical systems we take a lead from Benner et al. [5] and

Williams et al. [50] as examples where graph theoretic methods are applied to generate process

models from component descriptions, with the latter paper specifically targeted at control design

and the former at modeling for simulation. Williams et al. [50] is allied in its control objective

with our work here and uses energy as the lingua franca to map states between subsystems. The

edges of their graphs are energy preserving connections with the dynamics occurring at the nodes.

By contrast, Benner et al. [5] and we model the dynamics in the edges with the nodes applying

the interaction constraints. For our target processes of gas processing plants, this latter structure

accords better with the primary process control objective of pressure regulation and secondarily

with flow estimation. Thermal energy is a byproduct and reflection of the inefficiency of the

process. While of interest, temperature is not the central manipulated variable. However, it is

noteworthy that the energy formulation of Williams et al. [50] for composite aircraft systems

allows conservation laws to be absorbed into the component models, so that the aggregated

state-space model can be directly applied for control design. A recent comprehensive survey
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of modeling and feedback control design for HVAC systems is provided by Goyal et al. [21],

which cites Rasmussen & Alleyne [40] who concentrate explicitly on control-oriented modeling

in these vapor compression systems. However, because their pipes are short and well-insulated,

the system structure again focuses on node dynamics rather than edge dynamics of our problem.

For large-scale domain-independent systems, works from Šiljak and colleagues [38, 45,

44] follow a top-down approach, decomposing large-scale networks into smaller subsystems, and

analyze control-relevant notions, such as (structural) stability, reachability and controllability.

While their approach is generally applicable to the case of pipe flow, the logical direction differs:

instead of decomposing, we compose interconnected systems from subsystems in a bottom-

up approach under the assumption that structures are fixed (rendering structural stability [45]

secondary). Further, the control actuator and, to a lesser extent, sensor locations are few when

compared with the number of subsystems or network elements.

Following [5], which deals with isothermal models of gas distribution networks, we

commence by studying pipe flow in individual pipes before considering how these are connected

into networks yielding automatable aggregation of subsystems. The authors of [5] propose a

network DAE with the algebraic part being the conservation of mass flows at the connection

points. At this level of detail, this approach bears a strong resemblance to bond graph techniques

[8] from which control design is problematic. However, since the resultant network DAE has

index 1, the algebraic part can be solved locally to express some of the variables in terms of the

others thereby eliminating them. For our models, algebraic equations arise when pipes join but

not when they branch. For joints a state variable is removed yielding a new network element

subsuming the three joining pipes. These new elements preserve the linearity and other properties

while also respecting the conservation laws. Further, we show how these components might be

aggregated into network equations to compute the larger state-space system, which we show

subsumes Mason’s Gain Formula. That is, we are able to preserve the simplicity of the signal

flow model of the pipe network as opposed to resorting to bond graphs or DAEs. Additionally,

signal filters allow us to isolate certain frequencies and hence efficiently simulate interconnected
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systems in closed loop, which would otherwise challenge even specialized solvers for stiff DAEs.

The pipe-flow models developed are validated against 1Hz operating data collected

at the Solar Turbines Incorporated Gas Compressor Test Facility (GCTF) at Solar Turbines

Incorporated in San Diego. This is a well instrumented site normally used to test compressor

performance. We use engineering design values to derive the parametrized models and then

experimental data from a number of recorded tests is used to compare the fit of the data and

model outputs. The discrepancy between model and data is used to quantify and qualify the

model performance. Specifically, we find that isothermal models, such as those used in [5],

are subject to offsets and slow variations due to temperature gradients, which for this plant are

measured but need not necessarily be. Accordingly, the control design needs to accommodate

this known inaccuracy of the models. Indeed, the existing single-loop PI-controllers already give

this clue and indicate that the principal plant objectives are the regulation of pressures and flows.

The design of network-ready models for pipe flow is the first stage of introducing model-

based control design into these systems using engineering design information and data sheets.

The project objective is to expand this to include other network elements, such as compressors,

heat exchangers, vessels and valves, see Appendix B, and validate their use for MIMO control

design in Chapter 2.

Part 1: Control-oriented pipe models

We start with a deep dive into: modeling of individual pipe segments as nonlinear PDEs

and boundary conditions, spatial discretization to nonlinear ODEs with input signals, then

linearized ODE models with inputs. These are then compared with experimental/operational

data from the GCTF, yielding control-oriented finite-dimensional linear state-space models and

an appreciation of their deviation from ideal behavior. We establish that these single pipe models

inherently satisfy conservation of mass flow1. In Part 2, we explore how to move from pipe
1This central presence of mass conservation in flow models is more fully examined in our companion model-

based control design Chapter 2. There, conservation is shown to connect to integrators and inherent model structure
at s = 0, appreciation of which is critical for regulator design.
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models to pipe network models.

1.2 PDE models

We formulate the pipe dynamics as a one-dimensional flow with standing assumptions

common in the literature (e.g. [1, 3, 5, 25]). We assume these throughout this chapter.

Standing Assumption 1.1. For the one-dimensional pipe flow,

(i) the cross-sectional area of each pipe segment is constant;

(ii) average velocities across the cross section suffice for the computation of the mass flow;

(iii) there is no slip at the wall, i.e. the gas velocity at the inner pipe wall is zero;

(iv) friction along the pipe can be approximated by the Darcy-Weisbach equation, see e.g.

[41];

(v) the compressibility factor is constant along the pipe;

(vi) capillary, magnetic and electrical forces on the fluid are negligible.

Item (ii) is a property of high Reynolds number turbulent flow. Under these assumptions,

the constituent relations — Continuity, Momentum, Energy, Gas Equation, respectively — that

serve as a basis for our model are

∂ ρ̌

∂ t
=− ∂

∂x
(ρ̌v), (1.1a)

∂

∂ t
(ρ̌v)+

∂

∂x
(ρ̌v2 + p) =− λ

2D
ρ̌v|v|−gρ̌

dh
dx

, (1.1b)
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2
+gh+

p̌
ρ̌

)]
+

∂

∂ t

[
ρ̌

(
cvŤ +

v2

2
+gh

)]
, (1.1c)

p̌ = ρ̌RsT z0, (1.1d)

which are derived in e.g. [29] and whose parameters are defined in Table 1.1.
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Table 1.1. Definitions of model variables and SI-units.

Symbol Meaning SI-unit
A Cross-sectional area [m2]

c Speed of sound [m
s ]

cv Specific heat [ J
kgK ]

D Pipe inner diameter [m]

Do Pipe outer diameter [m]

g Gravity constant [ m
s2 ]

h(x) Pipe elevation [m]

krad Lumped thermal conductivity pipe [ W
m2K

]

p̄(x, t) Pressure nominal point [ kg
s2m

]

p̌(x, t) Pressure [ kg
s2m

]

p(x, t) Pressure deviation from nominal point [ kg
s2m

]

q̄(x, t) Mass flow nominal point [ kg
s ]

q̌(x, t) Mass flow [ kg
s ]

q(x, t) Mass flow deviation from nominal point [ kg
s ]

q Rate of heat flow per unit area [ W
m2 ]

Re Reynolds number [1]

Rs Specific gas constant [ m2

s2K
]

T̄ (x, t) Temperature nominal point [K]

Ť (x, t) Temperature [K]

T (x, t) Temperature deviation from nominal point [K]

T0 Nominal temperature [K]

Tamb Ambient temperature [K]

v(x, t) Velocity [m
s ]

X Pipe length [m]

z Compressibility factor [1]

z0 Constant compressibility factor [1]

λ Friction factor [1]

ρ̌(x, t) Density [ kg
m3 ]

The boundary conditions

p̌(0, t), q̌(X , t), Ť (0, t),

are assumed to be known. Continuity Equation (1.1a) captures conservation of mass. Momentum

Equation (1.1b) is obtained by a Newtonian approach considering forces acting on a fluid. Total
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Energy Equation (1.1c) is the First Law of Thermodynamics in differential form, see e.g. [43].

The Gas Equation (1.1d) closely describes the behavior of natural gas at the conditions pertaining

in the handling facility.

We develop a dynamic model for deviations, p(X , t) and q(0, t), and if required also

for T (X , t), from the nominal points, p̄(X , t), q̄(0, t), and T̄ (X , t), and a related methodology

that allows a systematic interconnection of pipe elements in a network. Towards this goal,

in Section 1.3, from the constituent relations above we derive a nonisothermal, linear, 3D

state-space model with the pressure, mass flow and temperature as state elements. Under the

condition of a constant temperature, in Section 1.4 we revisit (1.1) and introduce a simplified

isothermal 2D model. In the next section we validate both models against operating data from

the GCTF and compare them to the numerical solution of the PDEs in (1.1). This analysis

suggests using the isothermal model parametrized by spatially varying nominal temperature

and managing small offsets and slow drifts with the controller design. Section 1.7 treats the

removal of algebraic constraints stemming from the DAEs and proposes a catalog of common

network units in state-space form, including a new pipe joint element. To interconnect these unit

models to pipe networks, Section 1.8 contains a matrix methodology, which we prove subsumes

and automates Mason’s Gain Formula in the MIMO context. The properties of interconnected

components are then illustrated by a numerical experiment in Section 1.92. We finish this chapter

with a brief conclusion and directions for future research.

1.3 Nonlinear and linear nonisothermal 3D ODE models

Towards a nonisothermal 3D model with pressure, mass flow and temperature as state

elements, consider constituent relations (1.1). Notice that “3D” refers to the number of states

and not the spatial dimension. For the corresponding total energy equation, (1.1c), the heat flux,

q, is assumed to be limited to radial conduction through the pipe, so that similar to [37] and
2A compendium of linear state-space models for a variety of elements is provided, with derivations, in

Appendix B. The latter also includes examples and MATLAB code for interconnected networks and establishes the
mass conservation property of each model.
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neglecting conduction through the gas,

qρAdx = kradπDodx(Tamb− Ť ). (1.2)

This characterization enables the formulation of PDEs that isolate the time derivatives of the

desired state variables.

Proposition 1.1. Let |v| � c =
√

z0RsT0, i.e., the gas velocity is much smaller than speed of

sound. Then, constituent equations (1.1) and the heat flux described in (1.2) yield

∂ p̌
∂ t

=
Rsz0

Acv

[
kradπDo(Tamb− Ť )− ∂ q̌

∂x
Ť (cv +Rsz0)+

∂ p̌
∂x

Rsz0Ť q̌
p̌
− ∂ Ť

∂x
q̌(cv +Rsz0)

+
λR2

s z2
0Ť 2q̌2|q̌|

2DA2 p̌2

]
,

(1.3a)

∂ q̌
∂ t

=−A
∂ p̌
∂x
− λRsŤ z0

2DA
q̌|q̌|

p̌
− Ag

RsŤ z0

dh
dx

p̌, (1.3b)

∂ Ť
∂ t

=
Rsz0Ť
Acv p̌

[
kradπDo(Tamb− Ť )− ∂ q̌

∂x
Ť Rsz0 +

∂ p̌
∂x

Rsz0Ť q̌
p̌
− ∂ Ť

∂x
q̌(cv +Rsz0)

+
λR2

s z2
0Ť 2q̌2|q̌|

2DA2 p̌2

]
.

(1.3c)

The proof is provided in the Appendix. Proposition 1.1 enables us to obtain a linear 3D

state-space realization, through spatial discretization and subsequent linearization of these PDEs.

We commence with the spatial discretization using simple differences. Subscripts ·`
and ·r connote variables at left (entry) and right (exit) sides of the pipe. Input variables are

identified with the pipe PDE boundary conditions, p̌`, q̌r and Ť`, and the state variables with the

ODE solution, p̌r, q̌` and Ťr, where,

p̌` = p̌(0, t), q̌` = q̌(0, t), Ť` = Ť (0, t),

p̌r = p̌(X , t), q̌r = q̌(X , t), Ťr = Ť (X , t).

The subscripts are motivated by the definition of a positive x-direction from left to right, but do
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not imply any specific flow direction, only that one is not free to prescribe both the pressure and

flow at a single point. This yields the nonlinear nonisothermal 3D model:

˙̌pr =
Rsz0

Acv

[
kradπDo(Tamb− Ťr)−

q̌r− q̌`
X

Ťr (cv +Rsz0)+
p̌r− p̌`

X
Rsz0Ťrq̌r

p̌r

− Ťr− Ť`
X

q̌r (cv +Rsz0)+
λR2

s z2
0Ť 2

r q̌2
r |q̌r|

2DA2 p̌2
r

]
(1.4a)

.
= fp(p̌`, p̌r, q̌`, q̌r, Ť`, Ťr),

˙̌q` =−A
p̌r− p̌`

X
− λRsŤ`z0

2DA
q̌`|q̌`|

p̌`
− Ag

RsŤ`z0

dh
dx

p̌` (1.4b)

.
= fq(p̌`, p̌r, q̌`, Ť`),

˙̌Tr =
Rsz0Ťr

Acv p̌r

[
kradπDo(Tamb− Ťr)−

q̌r− q̌`
X

ŤrRsz0 +
p̌r− p̌`

X
Rsz0Ťrq̌r

p̌r

− Ťr− Ť`
X

q̌r (cv +Rsz0)+
λR2

s z2
0Ť 2

r q̌2
r |q̌r|

2DA2 p̌2
r

]
(1.4c)

.
= fT (p̌`, p̌r, q̌`, q̌r, Ť`, Ťr),

We propose the discretization from (1.3) to (B.44) as it approximates reasonable well the original

infinite-dimensional at low frequencies relevant for our control problem, as discussed below.

Linearizing (B.44) results in the MIMO LTI 3D state-space realization, with some abuse

of notation,

ẋt = Axt +But , (1.5a)

yt = xt , (1.5b)

where A = ∂ f
∂x

∣∣∣
x̄,ū

,B = ∂ f
∂u

∣∣∣
x̄,ū

, with f .
=

[
fp fq fT

]>
and ∂ (·)

∂x

∣∣∣
x̄,ū

indicating the Jacobian with

respect to x evaluated at nominal point x̄ and ū, and B denoted accordingly. Further, letting

p(x, t) = p̌(x, t)− p̄(x, t), q(x, t) = q̌(x, t)− q̄(x, t), T (x, t) = Ť (x, t)− T̄ (x, t),
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the state and input vectors are given by the following deviations from nominal/steady-state

values,

xt =

[
pr q` Tr

]>
, ut =

[
p` qr T`

]>
.

We stress that for such a state-space realization, which is the basis for modern model-based

control design, the preponderance of existing tools in linear systems theory is directly applicable,

such as the determination of stability, DC gains, observability and controllability. To assess

sufficiency for control-oriented design, we will use this nonisothermal 3D model as a benchmark

for the reduced isothermal 2D model introduced next. Where appropriate, we also compare the

solution of the linear system to both the nonlinear 3D model, (B.44), and the original PDEs,

(1.3).

1.4 Isothermal 2D linear ODE model

Assume that the temperature is constant, i.e. T (x, t) = T0 for all x ∈ [0,X ] and t ≥ 0. The

Continuity, Momentum and Gas Equations in (1.1) suffice to obtain

∂ p̌
∂ t

=−RsT0z0

A
∂ q̌
∂x

, (1.6a)

∂ q̌
∂ t

=−A
∂ p̌
∂x
− λRsT0z0

2DA
q̌|q̌|

p̌
− Ag

RsT0z0

dh
dx

p̌, (1.6b)

where for the mass flow, q̌, we additionally used the relation q̌ = ρ̌Av. We also neglect the partial

derivative of the inertia (or kinematic) term, ρ̌v2, justified by the fact that the speed of sound,

c, usually greatly exceeds the velocity of the fluid [5, pp. 174]. This is also consistent with

Proposition 1.1.
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Following [5], a spatial discretization of (1.6) yields

˙̌pr =−
RsT0z0

AX
(q̌r− q̌`), (1.7a)

˙̌q` =−
A
X
(p̌r− p̌`)−

λRsT0z0

2DA
q̌`|q̌`|

p̌`
− Ag

RsT0z0

h
X

p̌`. (1.7b)

Linearizing around nominal points denoted by subscript ss and using tildes to denote perturbation

variables, we obtain

ṗr = α(qr−ql) (1.8a)

q̇` = β pr +κ p`+ γq`, (1.8b)

with

α =−RsT0z0

AX
, β =−A

X
,

κ =
A
X
+

λRsT0z0

2DA
q̄`|q̄`|

p̄2
`

− Agh
RsT0z0X

,

γ =−λRsT0z0

DA
|q̄`|
p̄`

.

The LTI ODEs (B.2) represent a system that can be equivalently realized by

ẋt =




0 −α

β γ


xt +




0 α

κ 0


ut , (1.9a)

yt = xt (1.9b)

with xt =

[
pr q`

]>
as the state vector and ut =

[
p` qr

]>
as the input vector.

We note immediately several properties revealed by the linear model. The elements

(α,β ,γ) of the system matrix are all negative and the matrix possesses two eigenvalues at

γ

2 ±
√

γ2

4 −αβ . As γ is related to the friction (factor), it is smaller than αβ = Rsz0T0/X2 for
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typical pipe lengths; thus the eigenvalues are complex. The quantity Rsz0T0/X2 is the square of

the resonant frequency of a pipe of length X , since c =
√

z0RsT0 is the speed of sound. So the

linearized state-space model is that of a lightly damped resonant system.

In addition to stability, the control-oriented nature of the model allows us to deduce

important properties, such as controllability. Input matrix B is full row rank, so (A,B) is reachable.

If pressure pr is measured then the system is also observable. Pressure is the simplest and most

reliably measured process variable.

The DC gain from ut to xt can be readily extracted,

GDC =−A−1B =− 1
αβ




ακ αγ

0 −αβ


=



−κ

β
− γ

β

0 1


 ,

and reveals the following. In steady state:

• pr is equal to p` with appropriately signed corrections due to non-zero flow and elevation;

• regardless of the pressure, q` is equal to qr in steady state, as demanded by conservation of

mass;

A more detailed analysis will be provided for the 3D state model in Section 1.9.

Spatial discretization

The spatial discretization of the PDEs using p` and qr as the input signals is neither

capricious nor refractory but reflects two central matters: the boundary conditions required to

specify the solution for pipe flow and the requirement for reachability of the resultant state-space

model. The two are not disjoint. Assuming horizontal pipes, the two PDEs (2.8)-(2.9) may be
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combined to yield the damped wave equation.

∂ 2 p̌
∂x2 −

λc2

2DA2
q̌|q̌|
p̌2

∂ p̌
∂x

=
1
c2

∂ 2 p̌
∂ t2 +

λ

DA
q̌
p̌

∂ p̌
∂ t

,

∂ 2q̌
∂x2 −

λc2

2DA2
q̌|q̌|
p̌2

∂ q̌
∂x

=
1
c2

∂ 2q̌
∂ t2 +

λ

DA
q̌
p̌

∂ q̌
∂ t

,

with distinct boundary conditions. This PDE is hyperbolic and requires Dirichlet, Neumann or

mixed boundary conditions at both ends to define the solutions [19]. Pressure p̌`(t) provides

the left Dirichlet boundary condition and, via (2.9), q̌r(t) provides the right mixed boundary

condition.

An alternative view of this spatial discretization is that, drawing on the electrical transmis-

sion line analogue of the pipe, the voltage/pressure and current/flow at one end of the line/pipe

may not be independently prescribed, since they are constrained by the driving-point impedance.

From the control system perspective of this dissertation, the selection of p̌` and q̌` as input

signals would not yield the requisite system model reachability mentioned above.

Cascaded pipe models

As discussed in the introduction, it is our primary concern to provide sufficiently accurate

models for frequencies below one Hertz well-suited for process control for facilities with pipes

of length of around tens of meters (rather than kilometers). Towards this goal, in Figure 1.1

below we compare the frequency response of the a single pipe of 30m with those of two 15m

pipes and three 10m pipes using the composite model for pipes in series from Section 1.7.3,

which in fact represents a finer discretization. We observe that the behaviors for relevant low

frequencies indeed coincide; changes for high frequencies are outside the relevant range and

account for acoustical modes associated with the configurations and boundaries. Per the control

objective, the bulk flow modes are preserved while the resonances fall outside the sensor and

actuator bandwidths.
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Figure 1.1. Comparison of the frequency responses from {p0,`,qn−1,r} → {pn−1,r,q0,`} with
n = {1,2,3} between one pipe (n = 1), two pipes (n = 2) and three pipes (n = 3) in series with
overall identical length.

1.4.1 Nonisothermal modeling and Bernoulli

To ensure sufficient accuracy of linear models it is important around which nominal point

they are applied. Although one may use (1.7) to generate the corresponding values, we do so by

solving the constituent equations in (1.1) directly for steady-state values. In this fashion, firstly,

we are able to accommodate spatially varying temperatures and secondly, we reveal the error

inherent to the isothermal assumption and avoid its propagation.

Proposition 1.2. Suppose at steady state the change in density along the pipe is negligible. Then,
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the constituent equations in (1.1) yield

q̄r = q̄`, (1.10a)

p̄r = p̄T̄`/T̄r
` exp

(
λXz0RsT̄r

2DA2 p̄2
r

q̄r|q̄r|−
gh

Rsz0T̄r

)
. (1.10b)

If further |v|, |h| � c, D≥ λ

2 , and X |v| � c, then

p̄r ≈ p̄T̄`/T̄r
`

(
1− λXz0RsT̄r

2DA2 p̄2
r

q̄r|q̄r|−
gh

Rsz0T̄r

)
. (1.10c)

Proof. For brevity, we drop subscript ss in this proof. The nominal mass flow in (1.10a) follows

directly from the continuity equation (1.1a) by setting the time derivative to zero.

For the nominal pressure in (1.1b), for the left-hand side, Lurie shows in [29] that

∂

∂ t
(ρ̌v)+

∂

∂x
(ρ̌v2) = ρ̌

(
∂v
∂ t

+ v
∂v
∂x

)
.

Now assume we are at steady state, so that for ∂v
∂ t = 0 and (1.1b),

v
∂v
∂x

dx =− 1
ρ̄

∂ p̄
∂x

dx− λ

2D
v|v|dx−gdh,

1
g

vdv =− 1
gρ̄

d p̄− λ

2Dg
v|v|dx−dh, (1.11)

with length dx. We used the fact that the change in velocity, dv, and pressure, d p̄, along a control

volume at steady state is exactly ∂ (·)
∂x dx. Without loss of generality we now assume that the

height at x = 0 is zero. Additionally, under the hypothesis and (1.10a), we can treat the velocity

as a constant so that integrating (1.11) along the pipe using (1.1d) yields

v2
r − v2

`

2g
=−Rsz0

g
(T̄r ln p̄r− T̄` ln p̄`)−

λX
2Dg

v|v|−h. (1.12)
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As vr = v` and towards an expression for p̄r,

0 =− ln

(
p̄T̄r

r

p̄T̄`
`

)
− λX

2DRsz0
vr|vr|−

gh
Rsz0

,

p̄r = p̄T̄`/T̄r
` exp

(
− λX

2DRsz0T̄r
vr|vr|−

gh
Rsz0T̄r

)
,

which with (1.1d) gives (1.10b). By the additional hypothesis,

|hg| � c2 = RsTrz0,

λ
X

2D
v2

r ≤ Xv2
r � c2 = RsTrz0,

so that

p̄r ≈ p̄T̄`/T̄r
`

(
1− λX

2DRsz0T̄r
vr|vr|−

gh
Rsz0T̄r

)

= p̄T̄`/T̄r
`

(
1− λXz0RsT̄r

2DA2 p̄2
r

q̄r|q̄r|−
gh

Rsz0T̄r

)
,

using again the Gas Equation, (1.1d).

On the assumptions

For better understanding of conditions under which the assumptions hold and to underline

the model’s suitability for control, consider Methane with Rs = 518.28 J
◦K mol , a low temperature

of Ťr = 300◦K and a constant compressibility factor z0 = 0.95. The related speed of sound within

the medium is c = 14.77×104 m
s . Hence, the assumptions on the gas velocity, v, height, h, and

length, X , conform to typical values in our control domain of gas processing facilities. Also,

given a usual friction factor λ � 1, the lower bound on the diameter, D, renders our formula

applicable to many industrial scenarios.
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Relation to Bernoulli’s Equation and isothermal model

The proof of Proposition 1.2 is of interest in itself since it delineates the relation between

the dynamic Momentum Equation, (1.1b), and static Bernoulli’s Equation, (1.12), commonly

used for computing static variables, including a term for head loss, hl
.
= λX

2Dgv|v|, often referred

to as the Darcy-Weissbach Equation [41]. Furthermore, observe that the approximated nominal

point, (1.10c), coincides with the nominal point derived by the discretized model, (1.7), under

the isothermal assumption and negligible change in density. In other words, Proposition 1.2 also

quantifies the error induced through the isothermal assumption.

1.5 Model validation

We now wish to assess both the isothermal and nonisothermal models in light of their

suitability for control-oriented design, using operational industrial process data from the GCTF.

The data fits the problem formulation: it is sampled at 1Hz and describes pressure, mass flow

and temperature variations for pipes on the order of tens of meters. Accordingly, it is appropriate

for model validation and tuning for this application. Our conclusion is that, for pipe component

modeling, the isothermal 2D model is sufficient for model-based control because: temperature

variations in these elements are modest, temperature sensing devices can be both limited in

number and variable in dynamic response, and variations with temperature can be accommodated

by an appropriate controller.

Figure 1.2 shows the facility at Solar Turbines Incorporated. This is a well-instrumented

site used for compressor testing and from which comprehensive data sets are available. The

particular pipe section under consideration is sketched in Figure 1.3. Notice that we simplify the

stepped pipe geometry by neglecting the stub at the end of the vertical middle section, assuming

instead a constant slope and an accordingly adjusted friction factor3. The relevant data is plotted

in Figure 1.4, with behavior in the relevant time scale for our goal of relatively slow process

3We use Haaland’s formula [23] to estimate the friction factor for the straight pipes and empirical formulas in
[41, Ch. 15] to approximate the friction losses induced by the bends and stub.
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control. We observe that the output pressure, pr, closely follows the input pressure, p`, and is

higher despite head losses through friction. This is due to the vertical middle section and heat

flux causing changes in temperature. As Figure 1.4 shows, the temperature is relatively constant,

but varies with changes in pressure and mass flow. We notice that T` is measured by a more

accurate sensor, given its lower quantization error, which can be observed in the middle zoom.

We additionally note that Tr is lower than T` for most of the time, as is also apparent in the zoom

on the right, and it seems to be dynamically faster than T`, as shown in the left zoom, which may

partly be caused by different thermal inertias and processing of the sensors. Given the speed,

accuracy and prevalence of pressure sensors, it is apparent that they will provide the primary

signals used for feedback control and the quality of capturing the pressure state behavior should

be the main model objective. We shall return to this shortly in Subsection 1.5.3.

1.5.1 Linear nonisothermal 3D model

We begin by validating the nonisothermal 3D model from Section 1.4 linearized around

the nonisothermal nominal point developed in Proposition 1.2. In particular, let q̄r =mean(qr(t)),

p̄` = mean(p`(t)), T̄` = mean(T`(t)) and T̄r = mean(Tr(t)) so that Proposition 1.2 yields the

corresponding nominal values p̄r and q̄`. We then use p` and qr from the data set as model inputs

and compare our modeled pressure pr against the related pressure in the data, recalling that data

5

and (10a), we can treat the velocity as a constant so that
integrating (11) along the pipe using (1d) yields

v2
r � v2

`

2g
= �Rsz0

g

⇣
T̃r ln p̃r � T̃` ln p̃`

⌘
� �L

2Dg
v|v| � h.

(12)

As vr = v` and towards an expression for p̃r,

0 = � ln

 
p̃T̃r

r

p̃T̃`

`

!
� �L

2DRsz0
vr|vr| �

gh

Rsz0
,

p̃r = p̃
T̃`/T̃r

` exp

✓
� �L

2DRsz0T̃r

vr|vr| �
gh

Rsz0T̃r

◆
,

which with (1d) gives (10b). By the additional hypothesis,

|hg| ⌧ c2 = RsT̃rz0,

�
L

2D
v2

r  Lv2
r ⌧ c2 = RsT̃rz0,

so that

p̃r ⇡ p̃
T̃`/T̃r

`

✓
1� �L

2DRsz0T̃r

vr|vr| �
gh

Rsz0T̃r

◆

= p̃
T̃`/T̃r

`

 
1� �Lz0RsT̃r

2DA2p̃2
r

q̃r|q̃r| �
gh

Rsz0T̃r

!
,

using again the ideal gas formula, (1d).
On the assumptions: For a better understanding about under

which conditions the assumptions hold and to underline the
model’s suitability for control, consider Methane with Rs =
518.28 J

�K mol , a low temperature of T̃r = 300�K and a
constant compressibility factor z0 = 0.95. The related speed
of sound within the medium is c = 14.77 ⇥ 104 m

s . Hence,
the assumptions on the gas velocity, v, height, h, and length,
L, do not collide with typical values in our control domain
of gas processing facilities. Also, given a usual friction factor
� ⌧ 1, the lower bound on the diameter, D, renders our
formula applicable to many control scenarios.

Relation to Bernoulli’s Equation and isothermal model: The
proof of Proposition 2 is of interest in itself since it delineates
the relation between the dynamic momentum equation (1b)
and static Bernoulli’s Equation, (12), commonly used for
computing static variables, including a term for head loss,
HL

.
= �L

2Dg v|v|, often referred to as the Darcy-Weissbach
Equation [19]. Furthermore, observe that the approximated
nominal point, (10c), coincides with the nominal point derived
by the discretized model, (7), under the isothermal assumption
and negligible change in density. In other words, Proposition
2 also quantifies the error induced through the isothermal
assumption.

V. MODEL VALIDATION

We now wish to assess both the isothermal and non-
isothermal model in light of their suitability for control-
oriented design, leaning on real-world data from the GCTF.
Motivated by simulation studies and direct analysis based
on linear systems theory, we argue that the isothermal 2D
model is sufficient for model-based control, assuming mod-
erate temperature variations and an appropriate controller. An
image of the facility at Solar Turbines is depicted in Figure

1. The particular pipe section under consideration is sketched
in Figure 2. Notice therein that we simplify the stepped pipe
geometry by neglecting the stub at the end of the vertical
middle section, assuming a constant slope and accordingly
adjusting the friction factor1. The relevant data is plotted
in Figure 3, where we observe that the output pressure, p̃r,
closely follows the input pressure, p̃`, and is higher despite
head losses through friction and heat flux. This is due to
the vertical middle section and changes in temperature. As
Figure 3 shows, the latter is relatively constant, but varies with
changes in pressure and mass flow. We notice that T̃` seems
to be measured by a more accurate sensor, given its lower
quantization error, which can be observed in the middle zoom.
We additionally note that T̃r is lower than T̃` for most of the
time, as also apparent in the zoom on the right, and it seems
to be faster than T̃`, as shown in the left zoom, which may
partly be caused by different thermal inertias of the sensors.

A. Linear non-isothermal 3D model
We begin by validating the non-isothermal 3D model from

Section IV linearized around the non-isothermal nominal
point developed in Proposition 2. In particular, let q̃r,ss =
mean(q̃r(t)), p̃`,ss = mean(p̃`(t)), T̃`,ss = mean(T̃`(t)) and
T̃r,ss = mean(T̃r(t)) so that Proposition 2 yields the corre-
sponding nominal values p̃r,ss and q̃`,ss. We then use p` and qr

from the data set as model inputs and compare our modeled
pressure pr against the related pressure in the data2. Addi-
tionally, we study the linear model against the numerically
solved PDEs in (1), to which we refer by the PDE model. The
lumped thermal conductivity, krad, is approximated at quasi
steady state following [17, Section 3], using T̃`,ss and T̃r,ss.
The simulation results are visualized in Figure 4.

We first focus our analysis on the linear state-space model
against the data. We see that the simulated output pr is in
a small neighborhood of the measured pressure, but has a
small offset. Additionally, we observe that the modeled mass
flow q` is close to the data input, qr. This is expected for
the short length of the pipe L ⇡ 30m and sampling rate of
one second. The zoom reveals that when the pressure goes
up around 800s, the model output q` first increases before the
signal input qr follows suit. This is consistent with a positive
mass flow that increases first at the gas-entering side of the

Fig. 1: Gas compressor test facility (GCTF) at Solar Turbines
Inc. [6]

1We use Haaland’s formula [8] to estimate the friction factor for the
straight pipes and empirical formulas in [19, Ch. 15] to approximate the
friction losses induced by the bends and stub.

2Data of q̃` for comparison with our model output is not available.

Figure 1.2. Gas compressor test facility (GCTF) at Solar Turbines Incorporated. [13]
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Figure 1.3. GCTF pipe section considered for model validation.

of q` for comparison with our model output is not available. Additionally, we study the linear

model against the PDEs in (1.1) solved numerically as a two-point boundary value problem, and

to which we refer as the PDE model. The lumped thermal conductivity, krad, is approximated at

quasi steady state following [37, Section 3], using T̄` and T̄r. The simulation results are shown in

Figure 1.5.

For the nonisothermal 3D linear model, we see that the simulated output pr is in a small

neighborhood of the measured pressure, but has a small offset. Additionally, we observe that the

modeled mass flow q` is close to the data input, qr. This is expected for the short length of the

pipe X ≈ 30m and sampling rate of once per second. The zoom reveals that when the pressure

increases at around 800s, the model output q` first increases before the signal input qr follows

suit. This is consistent with a positive mass flow that increases first at the gas entry side of the

pipe.

The temperature calculations from the successive models, while close (within 0.64K),

exhibit more variability than those of pressure and mass flow. The computed Tr values also
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Figure 1.4. Normalized data from GCTF. The variables p`, qr and T` will be used as model
inputs, whereas pr and Tr will be used to validate the corresponding model outputs. We observe
quantization errors and measurement noise.

exceed the T` data at times, especially for the linear model. Further, there are times, around 500s

for example, where the Tr data also exceeds T` data. These discrepancies indicate two types of

problem: the entry and exit temperature sensors have differing response times and accuracies,

as is common in application; and the heat flux model in (1.2) is too simplistic to capture the

dependence of heat flux on velocity and geometry. (See [24] for more detailed analysis of these

phenomena.) From a control-oriented perspective, this adds further weight to accommodating

these slow variations – we quantify time constants shortly in Subsection 1.5.3 via eigenvalue

analysis – through the design of the controller and to preserve the parsimony of the linear model,

which captures the salient dynamics.
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Figure 1.5. Percentage deviations from the nominal point (determined as described above) of
the nonisothermal 3D linear model with data as model inputs, compared against GCTF data and
PDE model (1.1).

1.5.2 Linear isothermal 2D model

Consider now the isothermal 2D model for which the model parameters and nominal

point are equal to those of the nonisothermal 3D model above, except the temperature, which

we set to T0 = (T`,ss +Tr,ss)/2. As before, p` and qr from the data set are model inputs, and we

compare the modeled pressure pr against pr from the data. The result is shown in Figure 1.6.

Notice that the modeled responses for pressure and mass flow seem congruent with those of

the nonisothermal 3D model, i.e., the modeled pressure is close to the measured pressure, but

displays a small static offset. The mass flows at both ends of the pipe are close, consistent with

30



0 200 400 600 800 1,000 1,200 1,400
�0.5

0

0.5

1
·106

Pa

p̃r model p̃r data

0 200 400 600 800 1,000 1,200 1,400
�10

�5

0

5

10

s

kg
/s

q̃` model

q̃r data (model input)

0 200 400 600 800 1,000 1,200 1,400
�0.5

0

0.5

1
·106

Pa

p̃r model p̃r data

0 200 400 600 800 1,000 1,200 1,400
�10

�5

0

5

10

s

kg
/s

q̃` model

q̃r data (model input)

0 200 400 600 800 1,000 1,200 1,400
�0.5

0

0.5

1
·106

Pa

p̃r model p̃r data

0 200 400 600 800 1,000 1,200 1,400
�10

�5

0

5

10

s

kg
/s

q̃` model

q̃r data (model input)

40

20

0

-20

-50

50
25

-25
0

fl
ow

 %
pr

es
su

re
 %

Figure 1.6. Isothermal 2D model with percentage deviations from the nominal point, compared
against GCTF data and driven by the respective data inputs.

conservation of mass at steady state.

1.5.3 Isothermal 2D vs. nonisothermal 3D model

The results above are now evaluated in view of the control-oriented aspect of our approach.

The similarity of both the isothermal and nonisothermal model and their accuracy characterize

Figure 1.7, which shows the relative error between the modeled and measured pressure. The

errors of the respective models are closely aligned, rather constant and at most at a rate of

4× 10−3. Both the isothermal 2D and the nonisothermal 3D linear models exhibit almost
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Figure 1.7. Respective pr pressure percentage errors of the isothermal 2D and nonisothermal
3D models.
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identical small offsets in simulated pressure and both capture the pressure dynamics accurately.

From a control design perspective, the controller can be constructed to accommodate this

modeling error.

Computing the eigenvalues of the system matrices of the related isothermal 2D and

nonisothermal 3D linear models, respectively Aiso and Aniso, and of the truncation of Aniso to its

first two rows and columns, [Aniso]1:2, we have

eig(Aiso) = (−3.90±12.47i),

eig(Aniso) = (−3.90±14.31i,−0.12),

eig([Aniso]1:2) = (−3.88±14.31i)

≈ eig(Aiso).

From this, we conclude that the temperature state is both effectively decoupled from the pressure

and mass flow states and, further, governed by a time constant approximately thirty times that of

the reduced-order 2D system, which preserves the dominant lightly damped oscillatory dynamics.

Consequently, for moderate temperature gradients, it is reasonable to take the temperature as a

constant and employ the isothermal 2D model.

Pressing on with this control-oriented analysis, we note the respective DC gains,

lim
t→∞

x2D
t =−A−1

iso Biso =




1.004 −600.19

0 1


 ,

lim
t→∞

x3D
t =−A−1

nisoBniso =




1.004 −600.33 −25.35

0 1 0

0 0.03 0.92



.

Continuing the discussion in Section 1.4, steady-state conservation of mass flow follows for

both models as the DC gains from (p`,T`)→ q` are zero and qr→ q` is precisely one. For the
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steady-state pressure, there is (to two decimal places) a unity gain from p`→ pr, indicating that

changes due to friction and height differences are marginal (cf. κ in Section 1.4), and a drop of

similar size for both models from qr→ pr due to additional friction (cf. γ in Section 1.4) for

this example. The negative gain from T`→ pr for the nonisothermal model may be due to larger

heat losses to the environment; a characteristic not captured by the isothermal model. Yet, given

the magnitude of the SI units used here and low temperature variations in pipe elements, the

consequential discrepancy is small, as corroborated by the simulations.

The isothermal 2D model, which relies only on mass flow and pressure measurements,

dovetails with the fact that especially pressure sensors (in contrast to temperature sensors) are

usually well-distributed in gas processing facilities, fast and reliable. The 2D isothermal model

will be used for pipe segments and the control design will be expected to accommodate the small

offsets and slow variation of dynamics with changing temperatures. The experimental results and

customary practice of sparse temperature measurements (also due to slow temperature sensing

responses) suggest that temperatures in typical pipes need not directly be modeled using the 3D

model; exceptions are heat exchangers, compressors and other strongly temperature-affecting

devices. Driven by this evaluation, we continue the exposition with a focus on this isothermal

model.

Part 2: Control-oriented models of pipe networks

1.6 DAEs, signal flow graphs and bond graphs

Bond graphs [8] provide a systematic method for deriving dynamic equations for in-

terconnected electro-mechanical-hydraulic systems. They combine effort variables and flow

variables, with component properties linking the two types and conservation laws and conti-

nuity governing the flows at interconnection. In the framework of fluid flow in pipe networks

[29, 5], this leads to a set of PDEs for the dynamics combined with algebraic equations for the

constraints. Discretizing the spatial derivative yields DAE system models, which are problematic
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for direct control design for these interconnected systems. By contrast, Signal Flow Graphs

(SFGs) correspond to systems described exclusively by ODEs; transfer functions in the linear

case. Interconnected systems are directly managed by methods such as Mason’s Gain Formula

for the linear case, or by writing the composite state variable ODEs without algebraic constraints.

It is these latter model forms, which are amenable to control design tools.

We consider three fundamental interconnections of pipe elements: series connection,

branching and joining. Using the isothermal 2D model above, we develop a catalog of composite

models that describe common units in the form of interconnections of pipes. In this way, algebraic

constraints and DAEs will be avoided, as exemplified through the component of joining pipes

introduced first. For clarity, 1. we limit this section to the 2D model, but the methodology is

equivalently applicable to the 3D model; and 2. without loss of generality, we assume that the

steady state mass flow, qss, is positive. That is, ·` denotes the side where the steady state mass

flow enters the pipe and ·r the side with an outgoing mass flow; hence the denomination joint

and branch to come.

The reduced state vector demonstrates that an interconnection of single pipes into more

complex components, with corresponding algebraic constraints, cannot immediately be translated

to a SFG using only single pipe models. We also point out that on the contrary, bond graphs

[8] are able to represent more complex components including algebraic constraints. However,

constraints, such as those in (1.13), would lead to a causal conflict of type 1 and degree 1 [8,

Definition 4.19], which in turn implies the existence of DAEs and therefore disaccords with our

objective of control-oriented modeling.

1.7 From DAEs of index 1 to composite models

1.7.1 Joint

Consider the joint shown in Figure 1.8(a) and let pi,` (pi,r) be the pressure p` (pr) of

pipe Pi. The mass flow is denoted accordingly, so that the interconnection dictates the simplified
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Fig. 7: Pipe junctions

A. Joint
Consider the joint in Figure 7(a) and let pi,` (pi,r) be

the pressure p` (pr) of pipe Pi. The mass flow is denoted
accordingly, so that the intersection dictates the simplified
algebraic constraints,

p1,r = p2,r = p0,`, (13a)
q0,` = q1,r + q2,r. (13b)

The first equation is related to continuity and the second
one represents conservation of mass. Towards a composite
model, these constraints can be used, together with (8a), to
derive an expression for q1,r and q2,r only in terms of other
state variables. In this way, additionally by (9), a state-space
realization for a joint with ẋt = Ajxt + Bjut and yt = Cjxt

is obtained by

Aj =

2
66664

0
�↵0 0 0

↵1(1� �) �↵1(1� �) �↵1(1� �)
�0 0

0 �1

0 �2

diag(�0, �1, �2)

3
77775

,

(14a)

Bj =

2
66664

0 0 ↵0

0 0 0
0 0 0
1 0 0
0 2 0

3
77775

, Cj =

2
4

1 0 0 0 0
0 0 0 1 0
0 0 0 0 1

3
5 , (14b)

where the coefficients with subscript i relate to the correspond-
ing pipe Pi, �

.
= ↵1

↵1+↵2
and 0 is the zero matrix of appropriate

size. The state, input and output vector are lexicographically
ordered, i.e., xt =

⇥
p0,r p1,r q0,` q1,` q2,`

⇤>
, ut =⇥

p1,` p2,` q0,r

⇤>
and yt =

⇥
p0,r q1,` q2,`

⇤>
. The feed

through matrix Dj is zero.

B. Juxtaposition to DAEs, SFGs and bond graphs
Note that the equality constraint (13a) is on the state

variables of the single pipe model, p1,r and p2,r, for which
one of them is redundant, so that the state of the composite
model looses one dimension. Moreover, we note that constraint
(13b) conditions the signal inputs of the single pipe model,
q1,r and q2,r, of both joining pipes, P1 and P2, on the
output signal of the single pipe model, q0,`, of pipe P0.
This constraint is directly related to parameter � in (14a),
which ensures that a consistent fraction of the signal q0,` is
transmitted to each input q1,r and q2,r. Thereby, the composite
model captures conservation of mass, which will further be
discussed in Section VIII. In this fashion, we are able to obtain
a model excluding any algebraic constraints, by definition

inherent to DAEs, as the constraints are already subsumed
in the composite formulation.

The reduced state vector also demonstrates that an inter-
connection of single pipes to more complex components, with
corresponding algebraic constraints, cannot immediately be
translated to an SFG only using a single pipe model. Another
difficulty for the latter graphical tool is that it is not rich
enough to directly express (13b), where the input signals of
the single pipe model of the joining pipes are interdependent;
in our model accounted for by �.

We also point out that on the contrary, bond graphs [4]
are able to represent more complex components including
algebraic constraints. However, constrains such as those in
(13) would lead to a causal conflict of type 1 and degree 1 [4,
Definition 4.19], which in turn implies the existence of DAEs
and therefore disaccords with our objective of control-oriented
modeling.

C. Branch

Different to the joint, for the branch in Figure 7(b), the
equality constraint on the pressures relates the state variable,
p0,r, to input signals of the single pipe model of the branching
pipes, p1,` and p2,`, i.e.,

p0,r = p1,` = p2,`, (15a)
q0,r = q1,` + q2,`, (15b)

so that the dimension of the composite model does not reduce,
but is equal to the sum of those of the single pipe models of the
individual pipes. Similarly, constraint (15b) on the mass flows
does not prescribe any interdependence of any input variables,
but rather sets the input signal of the single pipe model of pipe
P0 as the sum of two other state variables. Hence, an additional
parameter such as � for the joint is absent. The related matrices
for a branch model are

Ab =

2
6666664

0
�↵0 ↵0 ↵0

0 �↵1 0
0 0 �↵2

�0 0 0
1 �1 0
2 0 �2

diag(�0, �1, �2)

3
7777775

, (16a)

Bb =

2
6666664

0 0 0
0 ↵1 0
0 0 ↵2

0 0 0
0 0 0
0 0 0

3
7777775

, Cb =

2
4

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

3
5 , (16b)

related to xt =
⇥
p0,r p1,r p2,r q0.` q1,` q2,`

⇤>
,

ut =
⇥
p0,` q1,r q2,r

⇤>
and yt =

⇥
p1,r p2,r q0,`

⇤>
.

Again, the input matrix Db is zero.
Remark 1: The inclusion of a model for a general junction

would exceed the scope of this paper, but is available at
[publish on arXiv].
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A. Joint
Consider the joint in Figure 7(a) and let pi,` (pi,r) be

the pressure p` (pr) of pipe Pi. The mass flow is denoted
accordingly, so that the intersection dictates the simplified
algebraic constraints,

p1,r = p2,r = p0,`, (13a)
q0,` = q1,r + q2,r. (13b)

The first equation is related to continuity and the second
one represents conservation of mass. Towards a composite
model, these constraints can be used, together with (8a), to
derive an expression for q1,r and q2,r only in terms of other
state variables. In this way, additionally by (9), a state-space
realization for a joint with ẋt = Ajxt + Bjut and yt = Cjxt

is obtained by

Aj =

2
66664

0
�↵0 0 0

↵1(1� �) �↵1(1� �) �↵1(1� �)
�0 0

0 �1

0 �2

diag(�0, �1, �2)

3
77775

,

(14a)

Bj =

2
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0 0 0
0 0 0
1 0 0
0 2 0

3
77775

, Cj =

2
4

1 0 0 0 0
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3
5 , (14b)

where the coefficients with subscript i relate to the correspond-
ing pipe Pi, �

.
= ↵1

↵1+↵2
and 0 is the zero matrix of appropriate

size. The state, input and output vector are lexicographically
ordered, i.e., xt =

⇥
p0,r p1,r q0,` q1,` q2,`

⇤>
, ut =⇥

p1,` p2,` q0,r

⇤>
and yt =

⇥
p0,r q1,` q2,`

⇤>
. The feed

through matrix Dj is zero.

B. Juxtaposition to DAEs, SFGs and bond graphs
Note that the equality constraint (13a) is on the state

variables of the single pipe model, p1,r and p2,r, for which
one of them is redundant, so that the state of the composite
model looses one dimension. Moreover, we note that constraint
(13b) conditions the signal inputs of the single pipe model,
q1,r and q2,r, of both joining pipes, P1 and P2, on the
output signal of the single pipe model, q0,`, of pipe P0.
This constraint is directly related to parameter � in (14a),
which ensures that a consistent fraction of the signal q0,` is
transmitted to each input q1,r and q2,r. Thereby, the composite
model captures conservation of mass, which will further be
discussed in Section VIII. In this fashion, we are able to obtain
a model excluding any algebraic constraints, by definition

inherent to DAEs, as the constraints are already subsumed
in the composite formulation.

The reduced state vector also demonstrates that an inter-
connection of single pipes to more complex components, with
corresponding algebraic constraints, cannot immediately be
translated to an SFG only using a single pipe model. Another
difficulty for the latter graphical tool is that it is not rich
enough to directly express (13b), where the input signals of
the single pipe model of the joining pipes are interdependent;
in our model accounted for by �.

We also point out that on the contrary, bond graphs [4]
are able to represent more complex components including
algebraic constraints. However, constrains such as those in
(13) would lead to a causal conflict of type 1 and degree 1 [4,
Definition 4.19], which in turn implies the existence of DAEs
and therefore disaccords with our objective of control-oriented
modeling.

C. Branch

Different to the joint, for the branch in Figure 7(b), the
equality constraint on the pressures relates the state variable,
p0,r, to input signals of the single pipe model of the branching
pipes, p1,` and p2,`, i.e.,

p0,r = p1,` = p2,`, (15a)
q0,r = q1,` + q2,`, (15b)

so that the dimension of the composite model does not reduce,
but is equal to the sum of those of the single pipe models of the
individual pipes. Similarly, constraint (15b) on the mass flows
does not prescribe any interdependence of any input variables,
but rather sets the input signal of the single pipe model of pipe
P0 as the sum of two other state variables. Hence, an additional
parameter such as � for the joint is absent. The related matrices
for a branch model are

Ab =

2
6666664

0
�↵0 ↵0 ↵0

0 �↵1 0
0 0 �↵2

�0 0 0
1 �1 0
2 0 �2

diag(�0, �1, �2)

3
7777775

, (16a)

Bb =

2
6666664

0 0 0
0 ↵1 0
0 0 ↵2

0 0 0
0 0 0
0 0 0

3
7777775

, Cb =

2
4

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

3
5 , (16b)

related to xt =
⇥
p0,r p1,r p2,r q0.` q1,` q2,`

⇤>
,

ut =
⇥
p0,` q1,r q2,r

⇤>
and yt =

⇥
p1,r p2,r q0,`

⇤>
.

Again, the input matrix Db is zero.
Remark 1: The inclusion of a model for a general junction

would exceed the scope of this paper, but is available at
[publish on arXiv].

(b) Branch

Figure 1.8. Pipe junctions

algebraic constraints,

p1,r = p2,r = p0,`, (1.13a)

q0,` = q1,r +q2,r. (1.13b)

The first equation is related to continuity and the second represents conservation of mass at the

junction. This composite joint model would have a state of dimension six:

[
p0,r p1,r p2,r q0,` q1,` q2,`

]>
,

in lexicographic ordering, plus the algebraic constraints, (1.13). However, due to (1.13a) we can

omit p2,r as a state (which would naturally arise in three pipe models).

Define α1 and α2 to be the parameters in (1.9) for pipes 1 and 2, and

δ =
α1

α1 +α2
. (1.14)

Then, the six-state composite joint system plus constraint (1.13) may be rewritten as an uncon-

strained five-state system

ẋt = A jxt +B jut ,

yt =C jxt +D jut ,
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with

A j =




0 0 −α0 0 0

0 0 α1(1−δ ) −α1(1−δ ) −α1(1−δ )

β0 κ0 γ0 0 0

0 β1 0 γ1 0

0 β2 0 0 γ2




, (1.15a)

B j =




0 0 α0

0 0 0

0 0 0

κ1 0 0

0 κ2 0




,C j =




1 0 0 0 0

0 0 0 1 0

0 0 0 0 1



, (1.15b)

D j = 03×3. (1.15c)

The state, input and output vectors are now

xt =

[
p0,r p1,r q0,` q1,` q2,`

]>
,

ut =

[
p1,` p2,` q0,r

]>
,

yt =

[
p0,r q1,` q2,`

]>
.

Calculation of the steady-state gain from input three, q0,r, to outputs two, q1,`, and three,

q2,`, shows that, in steady state,

q1,`+q2,` =
β1γ2

β1γ2 +β2γ1
q0,r +

β2γ1

β1γ2 +β2γ1
q0,r,

= q0,r.
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That is, this five-state composite joint model satisfies the conservation of mass flow, (1.13b).

Constraint (1.13a) is redundant, since the variables p2,r and p0,` have been removed; they can be

computed from (1.13a). The new model parameter δ , defined in (1.14), describes the nominal

proportion of flow q0,` attributed to each of the feeding pipes. This is the formal process of

removing the constraint from the DAE of index 1.

1.7.2 Branch

Differently from the joint, for the branch in Figure B.1 the equality constraint on the

pressures relates the state variable, p0,r, to input signals of the single pipe model of the branching

pipes, p1,` and p2,`, i.e.,

p0,r = p1,` = p2,`, (1.16a)

q0,r = q1,`+q2,`, (1.16b)

so that the dimension of the composite model does not reduce, but is equal to the direct sum of

those of the single pipe models of the individual pipes. Similarly, constraint (1.16b) on the mass

flows does not prescribe any interdependence of any input variables, but rather sets the input

signal of the single pipe model of pipe P0 as the sum of two other state variables. Hence, an

additional parameter, such as δ for the joint is absent. The related matrices for a branch model

37



are

Ab =




0 0 0 −α0 α0 α0

0 0 0 0 −α1 0

0 0 0 0 0 −α2

β0 0 0 γ0 0 0

κ1 β1 0 0 γ1 0

κ2 0 β2 0 0 γ2




, (1.17a)

Bb =




0 0 0

0 α1 0

0 0 α2

κ0 0 0

0 0 0

0 0 0




,Cb =




0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0



, (1.17b)

with state xt =

[
p0,r p1,r p2,r q0,` q1,` q2,`

]>
, input ut =

[
p0,` q1,r q2,r

]>
and output

yt =

[
p1,r p2,r q0,`

]>
. The feedthrough matrix Db is zero.

Remark 1.7.1. It is straightforward to expand these ideas to intersections comprising m-input

pipes and n-output pipes. This construction is available in Appendix B and generalizes the

systematic reduction of index-1 DAEs to systems of ODEs.

1.7.3 Pipes in series

N pipes in series are depicted in Figure 1.9, and are of particular interest if pipe parameters

(see Table 1.1) change along the dimension of x or the discretization error grows too large for

a given length. For conciseness we only state the relevant matrices here that result from the
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9

D. Pipes in series

The next item in our catalog deals with pipes in series,
as visualized in Figure 8, and is of particular interest if pipe
parameters (see Table I) change along the dimension of x or
the discretization error grows too large for a given length. For

mass flow

Pipe P0 Pipe P1 Pipe PN�1

Fig. 8: Pipe series

conciseness we only state the relevant matrices here that result
from the continuity conditions and conservation of mass, i.e.,

pi,r = pi+1,`, qi,r = qi+1,`, (17)

with i 2 {0, 1, . . . , N � 2}. The state, input and out-
put elements pi,r and qi,` in lexicographical order, i.e.,
xt =

⇥
p0,r . . . pN�1,r q0,` . . . qN�1,`

⇤>
, ut =⇥

p0,` qN�1,r

⇤>
and yt =

⇥
pN�1,r q0,`

⇤>
, yield

As =


0 As,12

As,21 As,22

�
, Bs =

⇥
B>

s,1 B>
s,2

⇤>
,

Cs =
⇥
02,2(N�1) I2 02,2(N�1)

⇤
,

and Ds = 0, where the subscripts for 0 and I describe the
dimension and

As,12 =

2
66664

�↵0 ↵0 0
. . . . . .

. . . ↵N�2

0 �↵N�1

3
77775

,

As,21 =

2
66664

�0 0

1
. . .
. . . . . .

0 N�1 �N�1

3
77775

,

As,22 = diag(�0, �1, . . . , �N�1),

Bs,1 =


02(N�1),2

0 ↵N�1

�
, Bs,2 =


0 0

02(N�1),2

�
.

VII. INTERCONNECTIONS

Building on the composite models above, we introduce a
matrix formulation that enables the construction of state-space
models for interconnected components.

A. Matrix methodology

Towards this goal, with N interconnected components, let
Ui ⇢ Rnu,i and Yi ⇢ Rny,i be the set of inputs and outputs
for component i, respectively, with state x

(i)
t 2 Rnx,i , input

u
(i)
t 2 Rnu,i and output y

(i)
t 2 Rny,i . The model matrices are

denoted accordingly. Further, U and Y are the respective sets
of external inputs and outputs.

Standing Assumption 2: Let i 2 {1, 2, . . . , N}. For any
u 2 Ui there exists a j 2 {1, 2, . . . , N}, j 6= i, such that
u 2Yj [U.
Here we assume that the input of every component is either
connected to the output of another component or represents
an external input. Internal interconnections are governed by
the continuity of pressure and mass flow, akin to (17). With
that, towards a description for the total system, stack up the
component models, i.e.,

˙̄xt = Ax̄t + Bw̄t, ȳt = Cx̄t + Dw̄t (18)

where

A = blkdiag(A(1), A(2), . . . , A(N)), (19a)

B = blkdiag(B(1), B(2), . . . , B(N)), (19b)

C = blkdiag(C(1), C(2), . . . , C(N)), (19c)

D = blkdiag(D(1), D(2), . . . , D(N)). (19d)

The total state vector, x̄t 2 Rnx,1+nx,2+···+nx,N , total output
vector, ȳt 2 Rny,1+ny,2+···+ny,N , and component input vector,
w̄t 2 Rnu,1+nu,2+···+nu,N are composed correspondingly.
Applying Assumption 2 yields

w̄t = F ȳt + Gūt, (20)

where ūt denotes the total input vector of external signals feed-
ing into the total system. The matrix F describes connections
between component inputs and outputs, and G is related to the
connection between external inputs and internal components.
Hence, both matrices are sparse and constructed as follows,

[F ]i,j =

(
1, if [ȳt]j = [w̄t]i,

0, otherwise,
(21a)

[G]i,j =

(
1, if [ūt]j = [w̄t]i,

0, otherwise,
(21b)

with [·]i,j denoting the matrix element in row i and column
j, and vectors written accordingly. This formulation is applied
to a numerical example in Section VIII. It allows us to define
a state model of the total system.

Proposition 3: A state-space realization of (18) and (20) is
given by

x̄t = Āx̄t + B̄ūt, ȳt = C̄x̄t + D̄ūt, (22)

where

Ā = A + BF (I �DF )�1C, B̄ = BG,

C̄ = (I �DF )�1C, D̄ = (I �DF )�1DG.
Proof: Substituting w̄ from (20) into (18) for ȳt yields

ȳ = (I �DF )�1Cx̄t + (I �DF )�1DGūt,

w̄ = F (I �DF )�1Cx̄t +
⇥
I + F (I �DF )�1D

⇤
Gūt.

(23)

Now substituting from (23) into (18) for ˙̄xt produces the
closed-loop state-space connected system.

˙̄xt =
⇥
A + BF (I �DF )�1C

⇤
x̄t

+ B
⇥
I + F (I �DF )�1D

⇤
Gūt,

ȳt = (I �DF )�1Cx̄t + (I �DF )�1DGūt.

Figure 1.9. Pipe series

continuity conditions and conservation of mass, i.e.,

pi,r = pi+1,`, qi,r = qi+1,`, (1.18)

with i ∈ {0,1, . . . ,N− 2}. The state, input and output elements pi,r and qi,` in lexicograph-

ical order, i.e., xt =

[
p0,r . . . pN−1,r q0,` . . . qN−1,`

]>
, ut =

[
p0,` qN−1,r

]>
and yt =

[
pN−1,r q0,`

]>
, yield

As =




0 As,12

As,21 As,22


 ,Bs =

[
B>s,1 B>s,2

]>
,

Cs =

[
02,2(N−1) I2 02,2(N−1)

]
,
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and Ds = 0, where the subscripts for 0 and I describe the dimension and

As,12 =




−α0 α0 0
. . . . . .

. . . αN−2

0 −αN−1



,

As,21 =




β0 0

κ1
. . .
. . . . . .

0 κN−1 βN−1



,

As,22 = diag(γ0,γ1, . . . ,γN−1),

Bs,1 =




02(N−1),2

0 αN−1


 ,Bs,2 =




κ0 0

02(N−1),2


 .

Since each pipe conforms to steady-state conservation of mass flow, the interconnection auto-

matically does as well. Bode diagrams are provided in [9] for 2i2o models of a 30-meter pipe

section as: a single 30m pipe, two 15m pipes in series, three 10m pipes in series; low-frequency

responses coincide.

1.8 Systematic model interconnection

Building on the composite models above, we introduce a matrix formulation that enables

the construction of state-space models for interconnected components of pipes, joints and

branches.

1.8.1 Matrix methodology

Towards this goal, with N interconnected components, let Ui ⊂ Rnu,i and Yi ⊂ Rny,i be

the set of inputs and outputs for component i, respectively, with state x(i)t ∈Rnx,i , input u(i)t ∈Rnu,i
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and output y(i)t ∈ Rny,i . The model matrices are denoted accordingly. Further, U and Y are the

respective sets of external inputs and outputs. We assume that the input of every component is

either connected to the output of another component or represents an external input.

Assumption 1.1 (connectedness). Let i ∈ {1,2, . . . ,N}. For any u ∈ Ui there exists a j ∈

{1,2, . . . ,N}, j 6= i, such that u ∈Yj∪U.

Internal interconnections are governed by the continuity of pressure and mass flow per

(1.18). We begin by stacking the state-space models of the individual network components. With

some abuse of notation,

ẋt = Axt +Bwt , yt =Cxt +Dwt (1.19)

where

A = blkdiag(A(1),A(2), . . . ,A(N)), (1.20a)

B = blkdiag(B(1),B(2), . . . ,B(N)), (1.20b)

C = blkdiag(C(1),C(2), . . . ,C(N)), (1.20c)

D = blkdiag(D(1),D(2), . . . ,D(N)). (1.20d)

The total state vector, xt ∈ Rnx,1+nx,2+···+nx,N , total output vector, yt ∈ Rny,1+ny,2+···+ny,N , and

component input vector, wt ∈ Rnu,1+nu,2+···+nu,N are composed correspondingly of direct sums.

Assumption 1.1 yields

wt = Fyt +Gut , (1.21)

where ut denotes the total input vector of external signals feeding into the total system. The

matrix F describes connections between component inputs and outputs, and G is related to the

connection between external inputs and internal components. Hence, both matrices are sparse
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and constructed as follows,

[F ]i, j =





1, if [yt ] j = [wt ]i,

0, otherwise,
(1.22a)

[G]i, j =





1, if [ut ] j = [wt ]i,

0, otherwise,
(1.22b)

with [·]i, j denoting the matrix element in row i and column j, and vectors written accordingly.

This formulation is applied to a numerical example in Section 1.9. It allows us to define a state

model of the total system.

Proposition 1.3. A (perhaps non-minimal) state-space realization of (B.45) and (1.21) is given

by

xt = Āxt + B̄ut , yt = C̄xt + D̄ut , (1.23)

where

Ā = A+BF(I−DF)−1C, C̄ = (I−DF)−1C,

B̄ = B
[
I +F(I−DF)−1D

]
G, D̄ = (I−DF)−1DG.

Proof. Substituting w from (1.21) into (B.45) for yt yields

yt = (I−DF)−1Cxt +(I−DF)−1DGut ,

wt = F(I−DF)−1Cxt +
[
I +F(I−DF)−1D

]
Gut . (1.24)

Now substituting from (1.24) into (B.45) for ẋt produces the closed-loop state-space connected
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system.

ẋt =
[
A+BF(I−DF)−1C

]
xt +B

[
I +F(I−DF)−1D

]
Gut ,

yt = (I−DF)−1Cxt +(I−DF)−1DGut .

Here, the total output, yt , is set to be the outputs of all components. However, if only some

variables constitute to the total output modifying yt is a simple exercise through the multiplication

of C̄ and D̄ by an appropriate selection matrix.

1.8.2 Subsuming Mason

Next, we show that the state-space realization above subsumes Mason’s Gain Formula

[30]. The latter is a method to find transfer functions of SFGs with multiple inputs and multiple

outputs and has also been established in a simple matrix form in e.g. [11]. The interest in this

equivalence result lies in its generality for linear systems and advantage over Mason’s Gain

Formula via simple matrix manipulation without relying on symbolic matrix inversions with

transfer functions as matrix elements. Further, the calculation in Proposition 1.3 yields all

the closed-loop transfer functions between each input and each output, versus Mason, which

computes SISO transfer functions using Cramer’s Rule.

Mason’s Gain Formula formulation in [11] starts by writing the vector of output signals,

ȳ, as the interconnection of y(i)t and ūt with transfer function matrices,

yt =Qyt +Put . (1.25)

Mason’s Gain Formula is then that the solution is given by

yt = (I−Q)−1Put . (1.26)
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Proposition 1.4. A state-variable realization of Mason’s Gain Formula transfer function, (I−

Q)−1P, is given in (B.49).

This is proven in the Appendix.

1.9 Numerical experiment

We apply our modeling methodology to the loop illustrated in Figure B.7, which repre-

sents a hypothetical pipe loop at the GCTF. Such a feedback system creates problems for DAE

methods, such as those in [5] because of the algebraic constraints. Here we use it as a proof-of-

concept test case and rely, rather unrealistically but similarly to [5] for distribution networks,

on isothermal models and treatment of the compressor and valve as static gains. Clearly, the

thermal properties of compressors, heat exchangers and valves play an important role on the

spatial scales of gas processing facilities and these will form the focus for ongoing modeling.

P4 P5 P6

P7

P8

P9

P10P2

P1

P3

suction
pressure distal

pressure

disturbance
flow

vent
flow

fill
pressure

model input signal
control variable
gas flow direction

Figure 1.10. Pipe network with compressor and valve ./. In process control parlance, the fill
pressure and vent flow are manipulated variables, the suction and distal pressures are controlled
variables, and the flow from P6 is a disturbance signal.

The gas is methane and flows clockwise, entering through pipe P1 and exiting through

pipes P6 and P9. The aim is to regulate the pressures p3,r and p7,r in the face of leakage via

P6. The Haaland formula [41] and assumed parameters4 yield a friction factor for each pipe of

λ = 0.0111.
4 All pipes are assumed to have the same geometry, i.e., X = 10m,D = 0.7m, roughness = 4.57× 10−5m.

Further, we assume that Re ≈ 1.168× 108,T0 = 300K,z0 = 0.95,Rs = 518.28J/(Kmol), p̃ss,` = 25× 105Pa and
q̃ss = 21m/s2.
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1.9.1 Network model

The compressor and valve, whose corresponding variables are respectively labeled by

subscripts c and v, are modeled as static gains

Dc =




kc 0

0 1


 , Dv =




kv 0

0 1


 ,

where kc = 4 and kv = 0.8. Further, pipes (P1,P2,P3) are modeled as a joint, as in (1.15), and

(P5,P6,P7) and (P8,P9,P10) as branches, as in (B.4). Composing the system according to (B.46),

results in the component input vector,

wt =

[
p1,` p2,` q3,r pc,` qc,r p4,` q4,r

pv,` qv,r p5,` q6,r q7,r p8,` q9,r q10,r

]>
,

and the total output vector,

yt =

[
p3,r q1,` q2,` pc,r qc,` p4,r q4,`

pv,r qv,` p6,r p7,r q5,` p9,r p10,r q8,`

]>
.

The inputs of the total system are

ut =

[
p1,` q6,r q9,r

]>
.

With (B.48), the total input and output vector, ut and yt , as well as the component input

vector, wt , are the basis for the construction of F and G. For example, [wt ]1 = p1,` is an input of

the total system and the first element of ut . Hence [G]1,1 = 1. Further, [wt ]2 = p2,` connects to

p10,r = [yt ]14, so that [F ]2,14 = 1. Similarly, [wt ]11 = q6,r is another total input, i.e., q6,r = [ut ]2,
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so that [G]11,2 = 1. In this way, by passing through t and following (B.48), we can fill the

matrices with ones at the appropriate location and zeros otherwise. The eigenvalues of the

resulting interconnected system all have negative real part; hence stability is demonstrated. Some

eigenvalues have large imaginary parts pointing to the high-oscillatory resonant modes, which

we ignore in the control design, which will recognize the presence of anti-aliasing filters in the

sensors, see Chapter 2.

1.9.2 Steady state: conservation of mass

The isothermal LTI closed-loop system is stable with the overall pressure static gains

from p1,` to all but p2,r greater than one. Increasing the compressor and/or valve gains can bring

about instability, as might be expected. Further, since the frequency response of each component

is available, standard stability tests may be performed. Indeed, the control design is to construct

a stabilizing 2-input/2-output regulator to reject the effect of the disturbance flow.

To evaluate the model in terms of conservation of mass, we also analyze the steady-state

gains from the three loop inputs, p1,`, q6,r and q9,r, to each pipe’s mass flow. The corresponding

DC-gain values are shown in Table 1.2. Each column represents one model input and each

row shows the corresponding steady-state change in mass flow from nominal due to a unit step

change of the respective input and zero inputs otherwise.

Table 1.2. DC (steady-state) gains from inputs to mass flows.

to\from fill: p1,` vent: q9,r dist: q6,r
q1,` 0 1 1
q2,` 0.184 −1.022 −0.8
q3,` 0.184 −0.022 0.2
q4,` 0.184 −0.022 0.2
q5,` 0.184 −0.022 0.2
q6,` 0 0 1
q7,` 0.184 −0.022 −0.8
q8,` 0.184 −0.022 −0.8
q9,` 0 1 0
q10,` 0.184 −1.022 −0.8

46



Step response fill pressure change

Evaluating the first column with input p1,`, a zero change in mass flows q6,`,q9,` is

consistent the other zero inputs, q9,r = q6,r = 0. As a result, the steady-state mass flow q1,` = 0.

A higher fill pressure leads to a larger mass flow around the loop, uniformly through all pipes, as

evident by the numerical values of the other rows of the same column.

Step responses vent and disturbance flow changes

Evaluating the second column with input q9,r = 1 and zero disturbance flow, i.e. q6,r = 0

(and hence q6,` = 0), 1kg/s2 enters the loop through q9,r so that q9,` = 1. We further note that

mass flow around the loop uniformly dropped by −0.022 excluding pipes P10 and P2. The flow

through Pipe P10 and P2 reduces by −1.022 as a result of the reduced overall flow and unit flow

exiting through pipe P9. Then, the additional flow q1,` = 1 through pipe P1 brings the flow back

to −0.022. The same reasoning can be applied to the last column related to the disturbance input

q6,r.

Our analysis shows that conservation of mass around the loop is captured through the use

of composite models and the matrix methodology presented above, without imposing additional

algebraic constraints. Further, the linear time-invariant model is amenable to direct feedback

controller design and stability analysis.

1.10 Conclusion and further directions

In this chapter, we present control-oriented models in the form of LTI state-space re-

alizations that capture the dominant dynamics for the pressure, mass flow and temperature in

pipes at a scale appropriate for gas processing facilities. Validation against real-world data

and simulation of the initial constituent equations illustrate their suitability for model-based

controller design, which will incorporate requirements for robustness to minor static offsets and

slow variations. Building on these models, we elaborate on the need for composite elements for
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interconnections to absorb DAEs, and provide a corresponding catalog of composite models for

common units. To increase practical relevance of the proposed model, we also introduce a matrix

methodology that enables a simple creation of pipe networks and illustrate its behavior with a

numerical experiment. The analysis of costs and benefits of nonisothermal models indicates

and quantifies inaccuracies of the models and distinguishes between models parametrized by

nominal temperature versus those parametrized by measured temperatures. Here, we focus on

process control; additional (nonlinear) control systems across multiple operating points may be

employed for safety, start-up and shutdown and these could be local to specific units, and rapid

in their action. Our methods are not targeted towards these controllers.

The control-oriented modeling developed here draws guidance at the formulation stage

from the control objective specification in the introduction. The next chapters take these methods

further. In Appendix B, the modeling methods are applied to a generate linear state-space models

for a wider variety of network elements. We provide a compendium of modeled elements together

with their derivation and proof of internal satisfaction of conservation rules. The compendium

also provides example MATLAB code illustrating the connection process for models. Chapter 2

on the other hand marries the control-oriented modeling with model-based control and provides

strong evidence of the role played by model features here in subsequent controller development.

Particularly, we explore in detail the regulation control effect of the mass-conserving models.

This chapter, in full, has been submitted for publication of the material as it may appear

as Sven Brüggemann, Robert H. Moroto, and Robert R. Bitmead. “Control-oriented modeling of

pipe flow in gas processing facilities.” The dissertation author was the primary investigator and

author of this paper.
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Chapter 2

Control-orientation, conservation of mass
and model-based control of compressible
fluid networks

2.1 Introduction

Our purpose is to analyze more fully network modeling and controller design based

on the control-oriented models of Chapters 1 and Appendix B, where standard fluid models,

such as [6], which incorporate algebraic constraints associated with conservation of mass and

pressure continuity at junctions, are replaced by linear state-space models adapted to effect

these properties inherently, i.e. without the inclusion of explicit constraints. These unit models

may be aggregated to yield more complicated network models, which in turn may be used for

multi-input multi-output (MIMO) control design with standard tools. We put to the test the

validity of whether these units models from Chapter 1 and Appendix B truly are control-oriented

and actually capture conservation and continuity when combined into full network models. This

is examined in detail, notably to establish the presence of integrators or DC structure in the

composite models. The subsequent controller design using these models is conducted and shown

to reflect the requirements of conservation in the plant.

Our concern is to blend targeted but reusable control-oriented modeling methods with

subsequent standard model-based control via the specific objective of designing controllers for
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compressible fluid regulation in a gas processing facility. The particular example process is the

Gas Compressor Test Facility (GCTF) of Solar Turbines Incorporated, sponsor of this work. The

corresponding model is developed and presented in Chapter 1 and Appendix B and consists

of linear state-space unit models interconnectable to yield a plant-wide or network composite

model. The focus here is on two core aspects: the inheritance of conservation of mass from

the units to the network despite the absence of algebraic constraints and the consequences of

this for the network model in the light of controller design; and, MIMO control design using

these approximate models and cognizant of the role of the conservation of mass in these designs.

Throughout, the emphasis lies on the utility of the methodology for MIMO control design in gas

processing facilities.

In the first part of the body of this chapter, we establish: explicit interconnection rules;

mass conservation properties of the composite network model inferred from those of the com-

ponents; consequences for the low-frequency dynamics of the network systems, such as the

presence of integrators and differentiators, which have a strong bearing on regulator design

[12, 4, 33]. The second part of this chapter is devoted to controller design for a prototype

control-oriented model from Chapter 1 and Appendix B for the GCTF. We endeavor to come

to grips with what it means for a model to be control-oriented by referring to philosophers of

science and the specifics of the GCTF target example.

The gas facility control problem is characterized as follows:

(i) A MIMO digital controller is sought to regulate the measured bulk pressures to nominal

values in the face of disturbances.

(ii) There is no intention to control turbulent or resonant acoustic modes in the system.

Accordingly, the sampling rate for the digital controller is one sample per second or below

and anti-aliasing filters with cut-off frequency 0.4 Hz are included into sensor channels.

(iii) The flow and pressure actuation is effected with control valves responding to the command

signals, perhaps via a local controller, which is not part of our analysis.
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(iv) The loop is subject to disturbance flows and pressures, which are roughly constant at this

sampling rate.

(v) Because temperature sensing is slower than the sampling rate, we treat temperatures as

known parameters in the models, as we do for compressor speed.

The development of our control design and analysis will be mindful of these objectives, particu-

larly the emphasis on regulation of bulk pressure aspects with this sample rate. The loop model

of the GCTF will provide the basis for the design study.

This chapter is structured as follows. Section 2.2 provides a brief treatment of models

described by hyperbolic partial differential equations (PDEs) and their spatial discretization to

yield linear lumped-parameter state-space models. To facilitate understanding, this is conducted

for current and voltage in a linear electrical transmission line and analogously for the flow and

pressure in our mildly nonlinear pipe model. This leads to an analysis of conservation of current

in the line and conservation of mass flow in the pipe as consequences and artful generalizations of

conservation of charge and mass. Section 2.3 compares the features captured by the discretized

and linearized models: resonant modes, bulk behavior and conservation. Section 2.4 presents the

interconnection rules for the unit models and develops consequences for the transfer functions of

the interconnected systems. Conservation of mass is explicitly defined for linear systems as a

transfer function property in Section 2.5. Sections 2.6 and 2.7 show that mass conservation of a

network model is inherited from conservation of every component model and that this property

affects the DC plant dynamics. For networks with flow input signals only, it leads to the presence

of an integrator in the system. The latter sections of this chapter, Sections 2.8-2.9 provide an

example of MIMO LQG control design for the GCTF loop model, which possesses an integrator.

As we stated above, the objective is to trace through the control design possibilities

engendered by the replacement of algebraic constraints, leading to differential algebraic equations

(DAEs), or bond graph models by state-space or signal flow graph models, which preserve the

mass conservation properties. An interesting feature is how the conservation properties appear in
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network models and in turn affect the control design using standard MATLAB tools. Hopefully,

we tease out some answers to the question of what it means to be control-oriented.

2.2 PDE element models

To help fix ideas, we present the parallel derivation of two lumped-parameter linear state-

space models from discretization and (where needed) linearization of their constituent PDEs. The

transmission line model is included because it is well known, linear and exhibits conservation

of electrical charge. It is an adjunct to the main fluid flow model and its manifestation of

conservation of mass.

2.2.1 Transmission lines

++

- -

RΔx
LΔx

CΔxV(x, t) V(x + X, t)

i(x, t) i(x + X, t)

x + Xx
prpℓ

qrqℓ
fluid flow direction

L

A D

power flow direction

Figure 2.1. Lumped-parameter transmission line model with zero shunt conductance.

A lumped-parameter transmission line segment of length ∆x with zero shunt conductance

is depicted in Figure 2.1. The partial differential equation (PDE) Telegraph Equations describing

this system are

∂ i
∂x

(x, t) =−C
∂v
∂ t

(x, t), (2.1)

∂v
∂x

(x, t) =−Ri(x, t)−L
∂ i
∂ t

(x, t). (2.2)
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Direct calculations yield

∂ 2i
∂x2 = RC

∂ i
∂ t

+LC
∂ 2i
∂ t2 , (2.3)

∂ 2v
∂x2 = RC

∂v
∂ t

+LC
∂ 2v
∂ t2 , (2.4)

∂ (iv)
∂x

=−Ri2− ∂
[1

2Li2
]

∂ t
− ∂

[1
2Cv2]

∂ t
. (2.5)

Equations (2.3) and (2.4) are damped wave equations and (2.5) captures the propagation, dissi-

pation and storage of power along the line. The properties of the solutions, including energy and

mass flow, are determined by the boundary conditions.

2.2.2 One-dimensional pipe flow

++

- -

RΔx
LΔx

CΔxV(x, t) V(x + X, t)

i(x, t) i(x + X, t)

x + Xx
prpℓ

qrqℓ
fluid flow direction

X

A D

power flow direction

Figure 2.2. Pipe diagram defining: flow and signal directions; length, diameter, and cross-
sectional area.

One-dimensional isothermal compressible gas flow in horizontal pipes may be described

by the following partial differential equations, which combine: the Euler equations, Ideal Gas

Equation, and the assumption that the transport velocity is significantly lower than the speed of

sound, c =
√

RsT0z0. (See [10, 6].)

∂ p̌
∂ t

=−c2

A
∂ q̌
∂x

, (2.6)

∂ q̌
∂ t

=−A
∂ p̌
∂x
−λ

c2

2DA
q̌|q̌|

p̌
. (2.7)

The solution of these equations defines pressure, p̌(x, t), and mass flow, q̌(x, t), as functions of

space, x ∈ [0,X ] with length X , and time, t ∈ (0,∞). Define the nominal values of pressure and
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flow to be p̄(x, t) and q̄(x, t). Further, define variations about these nominal values:

p(x, t) = p̌(x, t)− p̄(x, t), q(x, t) = q̌(x, t)− q̄(x, t).

Then the linearization of the pipe flow PDEs, assuming flow q̌ is positive, is

∂ p
∂ t

=−c2

A
∂q
∂x

, (2.8)

∂q
∂ t

=−A
∂ p
∂x
− λc2

DA
q̄
p̄

q+
λc2

2DA
q̄2

p̄2 p. (2.9)

In turn, this yields damped wave equations for q and for p, cf. (2.3), (2.4).

∂ 2q
∂x2 −

λc2

2DA2
q̄2

p̄2
∂q
∂x

=
1
c2

∂ 2q
∂ t2 +

λ

DA
q̄
p̄

∂q
∂ t

, (2.10)

∂ 2 p
∂x2 −

λc2

2DA2
q̄2

p̄2
∂ p
∂x

=
1
c2

∂ 2 p
∂ t2 +

λ

DA
q̄
p̄

∂ p
∂ t

. (2.11)

2.2.3 Spatial discretization and state-space models

Regarding the transmission line as a two-port network, we recognize that circuit vari-

ables, i and v, cannot both be independently prescribed at a single port. Accordingly, we treat

v`(t)V (x, t) and ir(t)
.
= i(x+X , t) as the input variables and vr(t)

.
=V (x+X , t) and i`(t)

.
= i(x, t)

as output or response variables. This choice of (v`, ir) as the free input signals coincides with

the (mixed Dirichlet, Neumann) boundary condition specification required for the hyperbolic

damped wave equation, (2.3) or (2.4). This is explained in more detail for the pipe model in

Chapter 1. Spatial discretization of (2.1-2.2) yields a linear state-space description.




v̇r

i̇`


=




0 1
CX

− 1
LX −R

L







vr

i`


+




0 − 1
CX

1
LX 0







v`

ir


 . (2.12)

Similarly, since for the pipe model pressure and flow behave analogously to voltage and
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current in the transmission line and cannot be separately prescribed functions of time at the same

point in space and (2.10) and (2.11) are also a damped wave equations, define

p` = p(x, t), pr = p(x+X , t),

q` = q(x, t), qr = q(x+X , t).

The discretized and linearized state-space equations are1




ṗr

q̇`


=




0 c2

AX

−A
X −λc2

DA
q̄r
p̄`







pr

q`


+




0 − c2

AX

A
X + λc2

2DA
q̄2

r
p̄2
`

0







p`

qr


 . (2.13)

2.3 Model properties for pipe and transmission line

The damped wave equations, (2.3-2.4) for the transmission line and (2.10-2.11) for

the pipe, and the spatially discretized and linearized state-space variants, (2.12) and (2.13)

respectively, exhibit wave resonance and damping due to resistance or friction. For the trans-

mission line model, the eigenvalues are at − R
2L ±

√
R2

4L2 − 1
(LCX2)

, while for the pipe they are

at − λc2

2DA
q̄r
p̄`
±
√

(λc2)2

4(DA)2
q̄2

r
p̄2
`
− c2

X2 . Since the R and λ terms are small, the surds yield imaginary

numbers, whose physical interpretation as oscillations is immediate, even though one refers

to transverse electromagnetic propagation and the other to acoustic compression waves. The

negative real parts, likewise, are simply interpreted. Figure 2.3 shows the four frequency response

magnitudes for a representative 10m steel gas pipe.

The acoustic resonant mode, here at 6.25Hz, falls well above the Nyquist sampling

1The friction correction term to A
X , λc2

2DA
q̄2

r
p̄2
`

may be taken into account in the system or input matrix and appears

because p̄r =
(

1− λc2X
2DA2

q̄2
r

p̄2
`

)
p̄`. It is a small term compared to A

X .
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Figure 2.3. Pipe Bode magnitude plots: (p`,qr) to (pr,q`).

frequency of 0.25-0.5Hz. The DC gains of (2.12) and (2.13) are given symbolically by

G(2.12) =




1 −RX

0 1


 , G(2.13) =




1+ λc2X
2DA2

q̄2

p̄2 −Xλc2

DA2
q̄
p̄

0 1


 . (2.14)

2.4 Signal Flow Graph models

2.4.1 Philosophy of signal flow graph modeling

The input-output representations implicit in (2.12) and (2.13) conform to viewing the

transmission line or pipe segments as signal-flow graphs with directed connections. This is in

keeping with their eventual application as part of a feedback control system. These ideas date

back to Claude Shannon [42] and Samuel Mason [31] and may be contrasted with the undirected

graph methods of Jan Willems’ Behavioral Theory [46, 47], including electrical and mechanical

analogs [48, 49], and directed DAE methods associated with Bond Graphs [6, 20]. The critical

aspect of signal-flow graph representations is their conformity with control design tools, such

as those in MATLAB. The price of directed graph methods is that they entail an implied (and

somewhat arbitrary) causality of the interconnection, which in electrical networks would imply

buffering at junctions. However, as remarked above, there is direct relation to the requisite
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boundary conditions and this choice of signals and state.

As Laudan [28] states “the aim of science is to secure theories with a high problem-

solving effectiveness.” And this approach to lumped-parameter, linearized, spatially discretized,

signal flow graph modeling operates with this recognition of the convenient fiction underpinning

all modeling but reflective of the utility of the approach. Indeed, Harold Black’s original analysis

of the analog negative feedback amplifier [7] adopts this approach. Newcomb [35] and Anderson

& Vongpanitlerd [2] identify ports and driving-point impedances for this purpose. Enough name

dropping. For us, it permits access to MATLAB’s design and analysis tools and network modeling

from component subsystems; very utile indeed.

2.4.2 Directed pipe connections and ‘ports’

The signal flow graph models derived above have directions associated with each signal.

Thus, p` and qr are input signals, indicating that they are specified from outside the pipe, and pr

and q` are output signals, meaning that they are determined by the pipe system and the input

signals. The spatially localized connection sites, however, possess one input signal and one

output signal, namely (p`,q`) at the left end and (pr,qr) at the right. We further appropriate

circuit terminology and identify two distinct location types, which we term ports. As in [6],

every element in our interconnected system presents pipe signal interfaces to other elements and

to the outside world.

Definition 2.1 (Ports).

ppp-port of a component possesses two signals: an input pressure signal p` and an output flow

signal q`.

qqq-port of a component possesses two signals: an input flow signal qr and an output pressure

signal pr.

Internal series connection of two components, 1 and 2, will involve the cascading of

signals p2,` = p1,r and q1,r = q2,` at the junction point. This describes a p-port to q-port
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connection. Likewise, connection to the outside of the network must respect the type and

causality of the signals. These rules are specified below.

Interconnection Rules

I. Connections are permitted only between:

i. a p-port and a q-port, or

ii. a p-port and an external pressure source/input signal plus an external flow sink/output

signal, or

iii. a q-port and an external flow source/input signal plus an external pressure sink/output

signal.

II. Pressure input signals must connect to pressure output signals and flow input signals must

connect to flow output signals.

III. Connection of one variable of a port requires connection of the other.

IV. All ports must be connected and algebraic loops avoided.

These rules conform to the connections examined in Chapter 1 to formulate the systematic

interconnection of state-space models. Each component model possesses input and output

signals and, in Proposition 1.3, it is shown how a (possibly non-minimal) state-space realization

of the interconnection of gas system elements can be directly constructed with the above rules.

This construction replaces and extends the graph-theoretic DAE methods of [6] and yields a new

input-output transfer function satisfying Mason’s Gain Formula, 1.4.

Per Chapter 1 the fluid-flow network model commences with an aggregate (direct sum)

model of all elements in state-space form, with some abuse of notation,

ẋt = Axt +Bwt , yt =Cxt +Dwt , (2.15)

58



with xt ∈ Rnx ,wt ∈ Rnw and yt ∈ Rny . Interconnections and external sources ut ∈ Rnu and sinks

zt ∈ Rnz are described by

wt = Fyt +Gut , zt = Hxt + Jut , (2.16)

with structured matrices [F,G,H,J] with 0-1 elements.

The Interconnection Rules allow us to group outputs by their type, pressure or flow,

and connection, internal or external. Denote the (row-organized) collection of input and output

signals as

yt =




zp

zq

ỹp

ỹq



, wt =




up

uq

w̃p

w̃q



, (2.17)

where, for the connected network: zp ∈ Rnzp and zq ∈ Rnzq are external pressure and mass flow

output signals; up ∈ Rnuq and uq ∈ Rnuq are external pressure and mass flow input sources;

ỹp ∈ Rnỹp and ỹq ∈ Rnỹq are internal pressure and mass flow output signals; w̃p ∈ Rnw̃p and

w̃q ∈ Rnw̃q are internal pressure and mass flow input signals.

Lemma 2.1. The connection rules imply the following.

(i) w̃q = ỹq whence nw̃q = nỹq.

(ii) w̃p = ỹp whence nw̃p = nỹp.

(iii) The number of external pressure input signals equals the number of external flow output

signals: nup = nzq.

(iv) The number of external pressure output signals equals the number of external flow input

signals: nzp = nuq.
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We denote the unconnected network by the transfer function matrix, suppressing the

s-dependence,




Zp

Zq

Ỹp

Ỹq



=




Tzp,up Tzp,uq Tzp,w̃p Tzp,w̃q

Tzq,up Tzq,uq Tzq,w̃p Tzq,w̃q

Tỹp,up Tỹp,uq Tỹp,w̃p Tỹp,w̃q

Tỹq,up Tỹq,uq Tỹq,w̃p Tỹq,w̃q







Up

Uq

W̃p

W̃q



, (2.18)

and the connected transfer function matrix, formed by connecting w̃p = ỹp and w̃q = ỹq, by




Zp(s)

Zq(s)


=




Tpp(s) Tpq(s)

Tqp(s) Tqq(s)







Up(s)

Uq(s)


 . (2.19)

2.5 Conservation properties of state-space models

In (2.14) above, the algebraic unity DC-gain in [G(2.13)]2,2 together with zero DC-gain in

[G(2.13)]2,1 suggest conservation rules at play. However, while charge and mass are conserved,

instantaneous current and mass flow need not be because of the circuit capacitance and the gas

compressibility. Integrating (2.1) and (2.8) spatially from left to right, we see that

ir = i`−C
∫ r

`

∂v
∂ t

dx,

qr = q`−
A
c2

∫ r

`

∂ p
∂ t

dx. (2.20)

That is, the deficit in current conservation is attributed to the time derivative of the voltage

along the line, and that in mass flow conservation to the pressure time-variation along the pipe.

Conservation in flow variables occurs when these time-derivatives are zero. That is, at steady

state. From this point on, we drop the parallel references to the transmission line problem and

concentrate solely on fluid flow systems.
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For the connected fluid network (2.19), and with a slight abuse of language – mass for

mass flow – we make the following definition.

Definition 2.2. For a linear fluid system with transfer function matrix as in (2.19), we say the

system conserves mass if

lim
s→0

1nzqTqq(s) = 1nuq and lim
s→0

Tqp(s) = 0,

where 1n is a row vector of ones in Rn and 0 is the zero matrix of appropriate dimensions.

The upshot from this definition is that, if the system (2.19) possesses a steady-state (and

Definition 2.2 does not require stability), then

lim
t→∞

1nzqzq(t) = lim
t→∞

1nuquq(t),

for the associated steady-state time-domain flow variables. As we see from (2.14), our linearized

models of pipe elements satisfy conservation of mass flow. Other system elements, such as

branches, joints, compressors, valves, heat exchangers, tanks, manifolds derived in Chapter 1

and Appendix B, also are seen to possess this property.

Lemma 2.1 has the following consequence.

Corollary 2.1. If the connection rules apply, then the matrices in (2.19) have the following

dimensions

dimTpp = nzp×nup = nuq×nup,

dimTpq = nzp×nuq = nuq×nuq,

dimTqp = nzq×nup = nup×nup,

dimTqq = nzq×nuq = nup×nuq.
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2.6 Interconnection of conservative gas flow elements

Assumption 2.1. For each network component, conservation of mass is satisfied and the inter-

connection rules between components are satisfied.

This assumption is satisfied for all component models from Chapter 1 and Appendix B.

We have the following property of interconnected networks.

Theorem 2.1 (Mass-conserving network). Subject to Assumption 2.1, the network also satisfies

conservation of mass.

Proof: We have y>q =

[
z>q ỹ>q

]
∈ Rnyq , with nyq = nzq +nỹq, and conformably for wq.

Allowing signals to reach steady state (which we denote by subscript (·),ss), by hypothesis of

mass-conserving elements we have,

1nyqyq,ss = 1nwqwq,ss,

[
1nzq 1nỹq

]



zq,ss

ỹq,ss


=

[
1nuq 1nw̃q

]



uq,ss

w̃q,ss


 ,

From Lemma 2.1, ỹq = w̃q, so

[
1nzq 1nỹq

]



zq,ss

ỹq,ss


=

[
1nuq 1nỹq

]



uq,ss

ỹq,ss


 ,

1nỹqzq,ss = 1nuquq,ss.

This is conservation of mass of the connected system. �

2.7 Integrators in mass-conserving networks

The presence of integrators in transfer functions is important for the design of feedback

regulator control systems. We next establish that mass-conserving fluid networks implicitly
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possess integrators in the mass-flow to pressure path. Since the pressure signal is most easily

measured, admitting rapid and accurate sampling versus, say, the mass flow or temperature

signals, pressure provides the most common signal for disturbance rejection feedback, target

control specification and output sensing. By contrast, mass flow is frequently the dominant input

variable effected by valves. These integrators, in the fluid system and in the network models

here, are central to the design of effective feedback controls and hence the control relevance of

these models and methodology for their construction.

The fluid dynamics Continuity Equation (2.8) applied to a single pipe exhibits the

integration property.

∂ p
∂ t

=−c2

A
∂q
∂x

.

This may be spatially discretized and then integrated with respect to time to yield

p(x̄, t)− p(x̄, t0) =−
c2

AL

∫ t

t0
[qr(τ)−q`(τ)]dτ. (2.21)

Here from the Mean Value Theorem, x̄ is a point inside the (x,x+L) interval. In physical terms,

(2.21) reflects the property that a steady-state mismatch between the flows into and out from the

pipe results in an unbounded change in pressure.

This analysis may be extended to the network behavior.

Theorem 2.2. For a fluid network satisfying Assumption 2.1 and possessing pressure input

signals, the transfer function Tqp(s) in (2.19) possesses a blocking zero at s = 0. So, a steady-

state difference between inflows and outflows can only be achieved by unbounded pressure

inputs.

Proof: From Definition 2.2, conservation of mass entails Tqp(0) = 0; hence the first

part of the statement. Now, from the Laplace transform Final Value Theorem, the steady-state
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difference between net flow out and net flow in is given by

d = lim
s→0

s
[
1nzqZq(s)−1nuqUq(s)

]

= lim
s→0

s1nzpTqp(s), (2.22)

where we have used

Zq(s) = Tqp(s)Up(s)+Tqq(s)Uq(s),

from (2.19) rewritten as

Tqp(s)Up(s) = Zq(s)−Tqq(s)Uq(s), (2.23)

and first equality for conservation of mass from Definition 2.2. Now if d in (2.22) is non-zero,

then

1nzpTqp(s)Up(s) =
d
s
+ terms with no poles at s = 0.

Since Tqp(0) = 0, if d 6= 0 then Up(s) must have a double pole at s = 0. �

For connected networks with only flow input signals and only pressure output signals,

that is from Lemma 2.1, nzq = nup = 0 and nzp = nuq > 0, we make the following assumption.

Assumption 2.2. The unconnected network satisfies nw̃q > 0 and has Tzp,w̃q(s) full rank at s = 0.

This assumption is evidently an observability or, as we shall see, detectability condition.

It ensures that the externally measured pressure signals suffice to reveal static mismatches in

internal flows. Inspecting the steady-state gains, (2.14), of the fundamental pipe equation, (2.13),

or its transmission line precursor, (2.12), the satisfaction of Assumption 2.2 is assured provided

that the pipe friction is non-zero or the line resistance is non-zero. It is a testable condition for
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the network and is evidently satisfied by the pipe element in the upper right figure of Figure 2.3.

With this new assumption, we can now state the central result.

Theorem 2.3 (Network with integrator). Consider the fluid network with external input signals,

which are mass flows alone and satisfying Assumptions 2.1 and 2.2. Then the output pressure

signals contain a term proportional to the integral of 1nuquq(t), the mass flow mismatch into the

network.

Proof: We have nzq = nup = 0 and nzp = nuq 6= 0. From (2.18), identify the non-zero-

dimension submatrices of the unconnected system’s transfer function and extract the component

output flow signals.

Ỹq(s) = Tỹq,uqUq(s)+Tỹq,w̃pW̃p(s)+Tỹq,w̃qW̃q(s). (2.24)

From conservation of mass of the individual network components and nzq = 0, we have that

nyq = nỹq and

1nỹq

[
Tỹq,uq(0) Tỹq,w̃q(0)

]
=

[
1nuq 1nw̃q

]
,

or since nỹq = nw̃q,

1nỹqTỹq,w̃q(0) = 1nỹq .

That is Tỹq,w̃q(0) has an eigenvalue at 1 with left eigenvector 1nỹq . Additionally, we have

lim
s→0

Tỹq,w̃p = 0.
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Returning to (2.24) and substituting for the connection W̃q(s) = Ỹq(s),

lim
s→0

1nyqỸq = lim
s→0

1nuqUq + lim
s→0

1nyqỸq.

Thus, to first order in s,

s1nyqỸq(s) = 1nuqUq(s).

That is, the internal flow signal vector, ỹq(t), contains the integral of 1nuquq(t), the integral of the

network flow mismatch.

The (output) pressure signals satisfy, after substituting for the connection W̃p(s) = Z̃p(s),

Zp(s) = (I−Tzp,w̃p)
−1 [Tzp,uqUq(s)+Tzp,w̃qỸq(s)

]
.

Assumption 2.2 ensures that integral of 1nuquq(t) appears in the output pressure. �

The presence of integrators in the pressure measurements of gas flow networks with only

external flow signals appearing as inputs, is a manifestation of the physical property that, if the

net mass flow into a network is unbalanced, i.e. sums to a non-zero number, in steady state, then

this is reflected in the output pressures becoming unbounded. Of course, this is a manifestation

of conservation of mass. But, from a control systems perspective, it is important to demonstrate

that this is (i) a property captured by the approximate models and their aggregation into network

models, and (ii) manifested through the appearance of an integrator, whose role in feedback

control design is to ensure mass flow balance without the imposition of a constraint to achieve

this.

66



2.8 Control-oriented component and network models

Linearized MIMO state-space component models have been developed in Chapter 1

and Appendix B based on extensions of the pipe models (2.13) to include branch and join

combinations, tanks, valves, manifolds, etc. As explained earlier, these models themselves

replace DAE constructions from [6] for distribution systems and make the conceptual leap from

physical models to directed signal flow graphs. Compressor models have been adapted from

[15]; see Appendix B. These component models each possess the following features.

(i) They are finite-dimensional linear state-space models with flows, pressures and tempera-

tures as signals and states. Isothermal variants are possible with gas temperatures appearing

as parameters.

(ii) They conserve mass per Definition 2.2.

(iii) They satisfy Assumption 2.2.

(iv) They are continuous-time and capture both bulk modes and resonant behaviors.

The component models may be connected using the MATLAB methods described in Chapter 1 or

MATLAB’s connect function, see Appendix B, which comply with the Interconnection Rules

of Section 2.4 and the analyses above. Therefore, the predicates of Theorems 2.1, 2.2 and 2.3

abide.

But what makes them control-oriented? This requires the specification of a control

problem and the application of the network models for control design. This gas processing

facility regulation problem was presented in the Introduction and has guided the analysis so far.

It is worth stating that the price paid for control-orientation is a departure from verisimilitude in

high-frequency fluid flow modeling and adoption of directed graph models, which ignore back

flows and pressures. The benefit is simplicity and amenability to the tools of controller design.

Ultimately, however, it is the utility of these models for the construction of MIMO feedback

control, which is the only meaningful metric of performance or acceptability.
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2.9 MIMO control loop

The control objective is to regulate the pressures in the gas loop depicted in Figure 2.4.

This is a representation of the Solar Turbines Incorporated GCTF in San Diego, California, which

is used to evaluate compressor performance in operation. The GCTF is: well-instrumented; of

a scale appropriate to gas handling facilities; equipped with safety control systems over and

above regulation and process control objectives, which are presently handled by local SISO PI

controllers and which we seek eventually to replace via the systematic introduction of MIMO

control based on our aggregated models. At this stage, proof of concept MIMO design is the

objective prior to in-situ testing of regulation performance.

V1

P4

P5 P6 P7

P8

P9

P10

P11P2

P1

P3

CV1

phigh

CV2

plow

suction
pressure distal

pressure

disturbance
flow −→qd

←− q f ←− q v

control inputs
disturbance input
measured output

nominal physical flow direction
−→q pos. x-direction

Figure 2.4. Pipe network with compressor, valves and valve manifold.

The general problem statement in the Introduction is qualified as follows.

• A two-input/two-output digital MIMO controller is sought to regulate the two measured

pressures: compressor suction pressure, psuc, and distal pressure, pdstl, shown as blue dots

in Figure 2.4. There is particular emphasis on managing psuc, the inlet pressure to the

compressor.

• The two control inputs, i.e. manipulated variables, shown as yellow dots in the figure, are

the mass fill flow, q f , through valve CV1 and the mass vent flow, qv, through valve CV2.
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• The loop is subject to a disturbance flow, qd , indicated by a red dot in the figure. This

disturbance flow is roughly constant at this sampling rate.

• Isothermal models are used with temperature as a parameter.

Accordingly, by controller inputs we refer to signals input to the controller, psuc and pdstl;

controller outputs describe signals output by the controller, q f and qv.

Network modeling

For modeling we proceeded as follows:

(I) Individual pipe, branch, valve, compressor, and manifold mass-conserving component

models from Chapter 1 and Appendix B are combined using MATLAB, abiding by the

Interconnection Rules. This yields a three-input (q f , qv, qd) and two-output (psuc, pdstl)

continuous-time linear state-space model of dimension 30. This model has the following

poles:

– a single integrator, pole at s = 0, per Theorem 2.3;

– all the other poles are stable;

– some pairs of stable poles have strong oscillatory response, from the resonant be-

havior, with the natural frequencies of these poles lying above the anti-aliasing filter

bandwidth.

(II) A 46th-order system is constructed by concatenating the continuous-time model (I) with

two eighth-order Butterworth low-pass antialiasing filters at 0.4Hz on each of the measured

signals, psuc and pdstl;

(III) Balanced truncation is applied to Model (II) to reduce the order to eleven. The integrator

mode from Model (I) is unstable and therefore is left invariant by balanced truncation.

For model reduction via modred we use the Truncate option to ensure that the strictly
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proper original model yields a strictly proper reduced model. This, in turn, allows discrete

delay-free LQG design with a Kalman filter in place of the default predictor without

causing an algebraic loop in MATLAB. Obviously, in the real world no algebraic loop

would occur.

(IV) The model is discretized at 1 Hz sampling rate using MATLAB’s function c2d.

Figure 2.5 shows the Hankel singular values of the stable part of the anti-alias-filtered

system. There are 45 values associated with the stable modes plus the integrator, which is

excluded from the reduction. For the control design, ten modes were chosen plus the integrator.

45 finite singular values truncated at 0.0001

5 10 15 20 25 30 35 40 45

100

Figure 2.5. Hankel singular values of stable part of filtered system.

Figure 2.6 displays the four impulse responses of continuous-time Model (I) (thin blue

lines) and reduced-order filtered Model (III) (think red lines) from control inputs to measured

outputs.

Open-loop dynamics

All four plots reveal stable low-frequency behavior and fast oscillations in the unfil-

tered signals related to the resonant modes of the components comprised by the loop. The

non-vanishing offsets show the integrator from mass flow to pressure conservation of mass

(Theorem 2.3). The large pressure amplitudes are due to the unit conversion. There is no obvious

pairing of any input and output signals, which is problematic for SISO PID controllers assuming

decoupled dynamics.

70



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time [s]

-10000

-8000

-6000

-4000

-2000

0

2000

4000

6000

8000
p

re
s
s
u

re
 (

P
a

)

(a) Fill flow to suction pressure.
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(b) Vent flow to suction pressure.
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(c) Fill flow to distal pressure.
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(d) Vent flow to distal pressure.

Figure 2.6. Loop impulse responses from fill and vent flow to suction and distal pressure for
Model (I) (thin blue lines) and anti-aliased Model (III) (thicker red lines)

LQG control design

Since the aim of the project is to facilitate MIMO control design, the standard MATLAB

function lqg is used, firstly without a disturbance model and secondly with integral action,

since the control objective is to regulate suction and distal pressures in the face of the step-like

disturbance flow.

Figure 2.7 shows closed-loop responses to a step at time t = 0.5s in the flow out of the

loop. The upper plot shows the closed-loop responses of the suction pressures for the three plant

models – the full 30th-order continuous-time network model, the anti-aliased 46th-order model,

and the reduced 11th-order model used for the design – in feedback with the 11th-order LQG
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digital controller. The center plot shows the corresponding fill flow control input and the lower

plot the sum of fill and vent flow inputs. These latter two plots are the outputs of the controller

for the closed loops with the full-order plant with antialiasing filters and for the reduced -order

plant. Evidently, each closed-loop is stable and there is a steady-state offset to the pressure. The

fast unfiltered pressure signal exhibits the underlying resonant system behavior and the absence

of anti-aliasing filter group delay. There are very little differences between the anti-aliased

full-order responses and the reduced-order. By imposing larger LQ penalty on the vent flow

relative to the fill flow, the controller empahsises the latter.
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Figure 2.7. Disturbance flow to suction pressure closed-loop step responses; step at 0.5s.

Per Theorem 2.2, since the pressure is finite, the sum of the control inflows exactly

matches the disturbance outflow. The LQG design is straightforward and yields static offset of

4kPa (0.6 psi) in the suction pressure for a 1kg/s disturbance flow.

LQG control with integral action

We next include a modified LQG design with integral action again using MATLAB’s lqg

function, but with this augmentation for the regulation objective. The responses are shown in
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Figure 2.8. Several features are evident.
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Figure 2.8. Disturbance closed-loop step responses with integral action LQG; step at 0.5s.

1. Regulation of the suction pressure to zero, i.e. its nominal value, is achieved.

2. Because of the integral action, the closed-loop response is slower than LQG for the same

weighting matrices.

3. The 2i2o controller order is now 13 rather than 11 for the LQG case because of the two

channels of integral action.

4. The total flows again balance exactly the disturbance in steady state.

5. The regulation objective on both suction and distal pressure forces the vent flow to be

applied in spite of its heavier weighting than fill flow.

6. The unfiltered full-order closed-system exhibits resonances and the absence of the anti-

aliasing filter group delay.
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The conclusion from this example is that the approach of control-oriented modeling and

model-based control has led to a MIMO digital controller preserving the well-appreciated aspects

of LQG control design with and without integral action. Further, the role of the integrators

present in the system model and ultimately traceable to conservation of mass led to an easily

comprehended control design schema for the simplified models and standard control design

tools. The complexity of the composite models and their many resonant modes is suppressed

by anti-alias filtering then model reduction. This admits feedback control design focused on

managing low frequency bulk behavior unencumbered by acoustic properties of these systems.

2.10 Future direction

This chapter explores the chain of ideas stemming from replacing DAEs in these fluid

models by signal flow graph models more amenable to control design but preserving the algebraic

mass conservation properties. These conservation ideas are unraveled in some detail and

identified with component transfer function properties. This is shown to be a feature preserved

by network interconnections subject to logical connection rules. This, in turn, led to DC gain

properties and the presence of integrators, which affect the subsequent control design. This

is then examined using a nominal industrial model and standard LQG design packages from

MATLAB. The important feature of preserving the design aspects is exhibited in this example,

thereby validating the claim that these models are control-oriented, since the target regulation

controller appeared in choices made at each stage of modeling and control design.

While we examined the performance of the designed digital controllers on the resonant

continuous-time full-order system, clearly the acid test is to implement and test these controllers

on a real plant (a) to ascertain their performance in practice and (b) to appreciate what amenable

design flexibility is garnered by MIMO control in this arena.

Extension of these ideas of modeling for control, where the control problem is stated prior

to the modeling phase, to other areas, such as thermal systems, minerals processing, materials
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handling etc would also be of interest. Equally, the methodology explored here might be more

thoroughly developed by including ideas from [36] where the control objective plays a central

role in modifying the model reduction phase. This permits replacement of balanced truncation

by a more control-oriented approach, yielding the modeling, model reduction and control design

each to reflect the overarching closed-loop objectives.

This chapter, in full, has been submitted for publication of the material as it may appear as

Sven Brüggemann, Robert H. Moroto, and Robert R. Bitmead. “Control-orientation, conservation

and model-based network flow control.” The dissertation author was the primary investigator

and author of this paper.
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Appendix A

Proofs Chapter 1

A.1 Proposition 1.1

By hypothesis and with q̌ = ρ̌Av, equation (1.3b) results directly from the momentum

and ideal gas equation, (1.1b) and (1.1d), see e.g. [5].

For the pressure-related PDE, let a1
.
= cv

Rsz0
− Rsz0

2A2
q̌2Ť
p̌2 + gh

RsŤ z0
. Then, solving energy

equation (1.1c) for ∂ p̌
∂ t yields

∂ p̌
∂ t

= a−1
1


qρ̌ +

∂ Ť
∂ t

(
ghp̌

RsŤ 2z0
− Rsz0q̌2

2A2 p̌

)

︸ ︷︷ ︸
.
=−a2

−Rsz0Ť q̌
A2 p̌

∂ q̌
∂ t

− ∂

∂x

[
q̌
A

(
cvŤ +gh

)
+

q̌3R2
s Ť 2z2

0
2p̌2A3 +

q̌RsŤ z0

A

]

 .

From continuity and ideal gas equations, resp. (1.1a) and (1.1d),

∂ Ť
∂ t

=
z0RsŤ 2

p̌A
∂ q̌
∂x

+
Ť
p̌

˙̌p, (A.1)
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since (a1 +
Ť
p̌ a2)

−1 = Rsz0
cv

and, using (1.3b), yields

∂ p̌
∂ t

=
Rsz0

cv

(
qρ̌ +

∂ q̌
∂x

(
gh
A

+
3R2

s z2
0q̌2

2A3 p̌2

)
+

Rsz0Ť q̌
A2 p̌

[
A

∂ p̌
∂x

+A
(

z0Rsq̌2

A2 p̌
∂ Ť
∂x
− z0RsŤ q̌2

A2 p̌2
∂ p̌
∂x

)
+

λ z0RsŤ
2DAp̌

q̌|q̌|

+gA
p̌

z0RsŤ
dh
dx

]

− ∂

∂x

[
q̌
A

(
cvŤ +gh

)
+

q̌3R2
s Ť 2z2

0
2p̌2A3 +

q̌RsŤ z0

A

])
.

Computing the spatial derivative leads to

∂ p̌
∂ t

=
Rsz0

cvA

[
qρA− ∂ q̌

∂x
Ť (cv +Rsz0)+

∂ p̌
∂x

Rsz0Ť q̌
p̌

−∂ Ť
∂x

q̌(cv +Rsz0)+
λR2

s z2
0Ť 2q̌2|q̌|

2DA2 p̌2

]
,

which with (1.2) results in (1.3a).

For the temperature, we use the result above and (A.1) to obtain

∂ Ť
∂ t

=
Rsz0Ť
cvAp̌

[
qρA− ∂ q̌

∂x
Ť Rsz0 +

∂ p̌
∂x

Rsz0Ť q̌
p̌

−∂ Ť
∂x

q̌(cv +Rsz0)+
λR2

s z2
0Ť 2q̌2|q̌|

2DA2 p̌2

]
,

which with (1.2) results in (1.3c).
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A.2 Proposition 1.4

For readability we exclude the subscript t in this proof. From (B.45), state-variable

realizations of the transfer functions Q and P are given by the following:

Q = [D+C(sI−A)−1B]F, (A.2)

P = [D+C(sI−A)−1B]G. (A.3)

Firstly, use the matrix inversion formula to write

(I−Q)−1 = {I− [D+C(sI−A)−1B]F}−1,

= (I−DF)−1+

(I−DF)−1C[sI−A−BF(I−DF)−1C]−1

BF(I−DF)−1. (A.4)

Define the ut-component of wt as wut
t = [I +F(I−DF)−1D]Gut = wut

t,1 +Fwut
t,2 with wut

t,1 = Gut

and wut
t,2 = (I−DF)−1DGut and appeal to linearity to define

ẋt,1 = [A+BF(I−DF)−1C]xt,1 +Bwut
t,1,

ẋt,2 = [A+BF(I−DF)−1C]xt,2 +BFwut
t,2,

yt = (I−DF)−1C(xt,1 + xt,2)+wut
t,2.

From here and the definitions of wū
1 and wū

2, it is apparent that ȳ = ȳ1 + ȳ2 where,

ẋt,1 = [A+BF(I−DF)−1C]xt,1 +BGut , (A.5)

yt,1 = (I−DF)−1Cxt,1, (A.6)
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and

ẋt,2 = [A+BF(I−DF)−1C]xt,2 +BF(I−DF)−1DGut , (A.7)

yt,2 = (I−DF)−1Cxt,2 +(I−DF)−1DGut , (A.8)

System 1 (A.5)-(A.6): Denote the system transfer function K= (I−DF)−1C(sI−A)−1B

and rewrite (A.5) as output feedback around K.

ẋt,1 = Axt,1 +B(Fyt,1 +Gut).

In turn, writing this in terms of K and using (A.4) for (I−Q)−1, we have

yt,1 =K(Fyt,1 +Gut)

= (I−KF)−1KGut

= [I− (I−DF)−1C(sI−A)−1BF ]−1(I−DF)−1C(sI−A)−1BGut

= {I +(I−DF)−1C[sI−A−BF(I−DF)−1C]−1BF}(I−DF)−1C(sI−A)−1BGut

= {(I−DF)−1 +(I−DF)−1C[sI−A−BF(I−DF)−1C]−1BF(I−DF)−1}

C(sI−A)−1BGut ,

= (I−Q)−1C(sI−A)−1BGut . (A.9)

System 2 (A.7)-(A.8): Directly comparing (A.4) to (A.7)-(A.8), we see that

ȳt,2 = (I−Q)−1 DGut . (A.10)
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Combining (A.9) and (A.10) we have

yt = yt,1 + yt,2,

= (I−Q)−1C(sI−A)−1BGut +(I−Q)−1 DGut ,

= (I−Q)−1Put .

�
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Appendix B

A compendium of control-oriented models
of gas processing equipment components

Introduction

For transient modeling of gas flow through pipe networks, fluid dynamics and compu-

tational fluid dynamics, are well-established subjects focused on high-fidelity modeling given

design and boundary conditions. They involve nonlinear partial differential equations (PDEs) and

transport phenomena, which are not amenable to finite-dimensional control design but instead

are targeted and tested for simulation.

Other more pragmatic modeling for gas pipeline distribution systems [5, 26, 3] is usually

based on discretization and yields a system of ordinary differential algebraic equations (DAEs),

which again is not well-suited to control design. Although, it can be used directly for controller

synthesis in some circumstances [17] and, as noted in [5], if the DAE is of index 1. Theorem 4.1

in Benner et al. [5] establishes that the DAEs describing the gas flow through interconnected

pipes are indeed of index 1 and so it is possible to rewrite the DAE as an ordinary differential

equation (ODE) without the algebraic constraints.

This fact is used in the previous chapter to rewrite the system of DAEs as a (state-space)

system of linear ordinary differential equations (ODEs) subsuming the algebraic constraints.

Thus, to synthesize model-based controllers the rich literature on Linear Systems Theory can be

exploited such as Mason’s Gain Formula for modeling interconnections. An equivalent approach
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for interconnections adapted to state-space realizations is presented in Chapter 1.

Here we build on Chapter 1 and provide linear control-oriented state-space models of gas

flow through standard equipment such as valves, compressors, manifolds and non-trivial pipe

geometries. After presenting the catalog of components, we show how to interconnect them:

we briefly recall the matrix methodology derived in Chapter 1, accompanied by a MATLAB

example for a gas loop; secondly for the same example we provide an alternative approach using

MATLAB’s connect function.

All the aforementioned models are suited to model-based MIMO control design tools

as they are in state-space form and they can be physically parametrized. Conservation of mass

is the source of the algebraic constraints in [5, 26, 3] and is a property subsumed in these new

models. This is characterized in by model transfer function properties at frequency zero, see

Chapter 2. Each of the component models is shown to posses this property

This chapter is meant to serve as an accompaniment to the material in Chapters 1 and 2.

Details of assumptions are provided there, along with motivations and derivations from PDEs.

Accordingly, it is organized by component type for the first eight sections with Section 9 devoted

to the presentation of the approach to interconnection of the components into systems amenable

to use with MATLAB’s control system design tools.

Notation

We denote pressures by p̌(x, t) and mass flows by q̌(x, t), where x is the spatial dimension

and t the time. For the nominal values we write p̄(x) and q̄(x), whereas deviations are described

by p(x, t) = p̌(x, t)− p̄(x) and q(x, t) = q̌(x, t)− q̄(x). Assume x ∈ [0,X ] for some X > 0. We

define p`
.
= p(0, t) and pr

.
= p(X , t), and accordingly for the mass flow. The same convention

holds for the temperature T (x, t) where applicable. Signals related to component i for some

i ∈ N are denoted by the additional subscript i. By 0 we denote the zero matrix of appropriate

size; 0n is the related row vector, and 0n,m is the related matrix of dimension n×m. The same
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notation is used for the matrix of ones, 1. For matrix A, we write [A]i, j for the matrix element in

row i and column j, and similarly for vectors. The following table lists the meaning of common

parameters.

Table B.1. Definitions of variables and their SI-units.

Symbol Meaning SI-unit
A Cross-sectional area [m2]

cv,cp Specific heat capacities [J/(kg K)]

D Pipe inner diameter [m]

g Gravity constant [ m
s2 ]

h(x) Pipe elevation from x = 0 to x = X [m]

Pi Pipe i
Rs Specific gas constant

[
m2

s2K
]
]

T0 Constant temperature [K]

V Volume [m3]

X Pipe length [m]

z0 Constant compressibility factor [1]

λ Friction factor [1]

α Pipe coefficient pressure dynamics
β Pipe coefficient mass flow dynamics
γ Pipe coefficient mass flow dynamics
κ Pipe coefficient mass flow dynamics

B.1 Single pipe

State-space model single pipe model

Under the assumptions below the one-dimensional pipe flow can be described by the

following state-space model:

ẋt =




0 −α

β γ


x+




0 α

κ 0


u,

yt = xt ,
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with xt =

[
pr q`

]>
as the state and output vector, and ut =

[
p` qr

]>
as the input vector.

The coefficients are

α =−RsT0z0

AX
, β =−A

X
, (B.1a)

κ =
A
X
+

λRsT0z0

2DA
q̄|q̄|
p̄2
`

− Agh
RsT0z0X

, (B.1b)

γ =−λRsT0z0

DA
|q̄|
p̄`

. (B.1c)

B.1.1 Assumptions

Assumption B.1. The change in temperature along the pipe is negligible.

Assumption B.2. For the one-dimensional pipe flow,

(i) the cross-sectional area of each pipe segment is constant;

(ii) at each point in x-dimension averaged velocities suffice;

(iii) friction along the pipe can be approximated by the Darcy-Weisbach equation, see e.g.

[41];

(iv) the compressibility factor is constant along the pipe;

(v) capillary, magnetic and electrical forces on the fluid are negligible;

(vi) the gas velocity is much smaller than the speed of sound.

B.1.2 Derivation

Under the assumptions above Benner et al. [5] derive a nonlinear model for an isothermal

one-dimensional pipe flow. Towards a discretization and linearization of the related nonlinear
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dynamics, let the boundary conditions p` and qr be given, whereas pr and q are to be determined

through the model. Spatial discretization and linearization of [5, Eq. 3.2] yields

ṗr = α(qr−ql) (B.2a)

q̇` = β pr +κ p`+ γq`, (B.2b)

or equivalently,

ẋt =




0 −α

β γ


xt +




0 α

κ 0


ut ,

with terms as described above.

B.1.3 Conservation of mass

The DC gain from u to x can be readily extracted,

−A−1B =− 1
αβ




ακ αγ

0 −αβ


=



−κ

β
− γ

β

0 1


 ,

which shows that Tqp(0) = 0 and 1Tqq(0) = 1, where

X(s) = T (s)U(s) =




Tpp(s) Tpq(s)

Tqp(s) Tqq(s)


U(s).

By Definition 2.2 this is conservation of mass.

B.2 Branch

Consider a branching pipe geometry as shown in Figure B.1.

85



mass flow Pipe P1

Pipe P2

Pipe P0

Figure B.1. Branch

State-space model simple branch

Under the assumptions from Section B.1.1 and matching conditions at the junction

p0,r = p1,` = p2,`,

q0,r = q1,`+q2,`,

the state-space realization of the one-dimensional pipe flow through the branch depicted

above is as follows:

ẋt =




0 0 0 −α0 α0 α0

0 0 0 0 −α1 0

0 0 0 0 0 −α2

β0 0 0 γ0 0 0

κ1 β1 0 0 γ1 0

κ2 0 β2 0 0 γ2




xt +




0 0 0

0 α1 0

0 0 α2

κ0 0 0

0 0 0

0 0 0




ut

yt =




0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0




xt ,
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with coefficients αi,κi,βi for pipe Pi, i = {0,1,2}, as defined in B.1, and state xt =[
p0,r p1,r p2,r q0.` q1,` q2,`

]>
, input ut =

[
p0,` q1,r q2,r

]>
and output yt =

[
p1,r p2,r q0,`

]>
.

B.2.1 Derivation

Building on (B.2), consider Assumption B.2 and suppose that additional losses at the inter-

section are accommodated by appropriately adjusting the friction factor for all pipes. Continuity

at the boundary of pressure and mass flow means

p0,r = p1,` = p2,`,

q0,r = q1,`+q2,`,

which sets the input signal of the single pipe model of pipe P0 as the sum of two other state

variables. The related matrices for a branch model immediately follow. The extension to a split

into more than two pipes is direct and hence for brevity not presented.

B.2.2 Conservation of mass

The state-space realization above satisfies conservation of mass, which follows from the

first row of the steady state equation 0 = Ax+Bu and conservation of mass of the single pipe

model.

B.3 Joint

We present models first for the case of two joining pipes and then consider the more

complex case of multiple pipes joining.
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mass flowPipe P1

Pipe P2

Pipe P0

Figure B.2. Joint of 2 pipes merging into one

B.3.1 Two joining pipes

Simple joint model

Under the assumptions in Section B.1.1 and boundary conditions

p1,r = p2,r = p0,`,

q1,r +q2,r = q0,`,

two pipes merging into a single pipe are described by the following state-space model:

ẋt =




0 −α0 0 0 0

β0 γ0 κ0 0 0

0 α1α2
α1+α2

0 α2
1

α1+α2
−α1 − α1α2

α1+α2

0 0 β1 γ1 0

0 0 β2 0 γ2




xt +




0 0 α0

0 0 0

0 0 0

κ1 0 0

0 κ2 0




ut ,

yt =




1 0 0 0 0

0 0 0 1 0

0 0 0 0 1




xt ,

with yt =

[
p0,r q1,` q2,`

]
, xt =

[
p0,r q0,` p1,r q1,` q2,`

]>
, and ut =

[
p1,` p2,` q0,r

]>
.
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Derivation

Building on (B.2), each joining pipe can be described by

ṗ j,r = α j(q j,r−q j,`), (B.6a)

q̇ j,` = β j p j,r +κ j p j,`+ γ jq j,`, (B.6b)

where the subscript j corresponds to pipe Pj, with coefficients as defined above and j ∈

{0,1, . . . ,n}. Every p j,r and q j,` are state variables and every p j,` and q j,r are input variables

related to pipe Pj.

Consider Assumption B.2 and algebraic constraints

p1,r = p2,r = p0,`, (B.7a)

q1,r +q2,r = q0,`, (B.7b)

which express continuity of the pressure and mass flow. Assume further that additional losses at

the intersection are accommodated by appropriately adjusting the friction factor for all pipes.

Note that (B.7b) cannot directly be incorporated into the state-space formulation since

it is not immediate how the signal q0,` is split between the flow of pipes 1 and 2. To eliminate

variables q1,r,qr,2, consider (B.7a), take the derivative and use (B.6a) to obtain

(α1 +α2)q1,r = α1q1,`+α2(q0,`−q2,`), (B.8a)

(α1 +α2)q2,r = α2q2,`+α1(q0,`−q1,`), (B.8b)

which yields the state-space description above.
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Conservation of mass

The state-space realization above satisfies conservation of mass, which follows from the

third row of the steady state equation 0 = Ax+Bu and conservation of mass of the single pipe

model.

B.3.2 Multiple joining pipes

mass flowPipe P1

Pipe P2

...

Pipe Pn

Pipe P0

Figure B.3. Joint of n pipes merging into one

Joint model

Consider the assumptions in Section B.1.1 and matching conditions at the junction

p1,r = p2,r = · · ·= pn+1,r = p0,`,

q1,r +q2,3 + · · ·+qr,n +qr,n+1 = q0,`.

A joint of n pipes with dynamics (B.6) can be described by the state-space model,

ẋ =




02,2 A12

A21 A22


x+




B1

B2


u, y =




1 0 0 0

0 0 0 1
02,n−1

0n−1,4 In−1




x,
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where

u =

[
p1,` p2,` . . . pn,` q0,r

]>
, x =

[
p0,r p1,r q0,` q1,` q2,` . . . qn,`

]>
,

y =
[

p0,r q1,` q2,` . . . qn,`

]>
∈ Rn+1,

A12 =



−α0 0n

a −a1n


 , A21 =




β0 0 0 . . . 0

κ0 β1 β2 . . . βn




>

, A22 = diag(γ0, . . . ,γn)

B1 =




0n α0

0n 0


 , B2 =




0n+1

κ1

. . .

κn

0>n



,

with

a = α1




n

∑
j=1

n

∏
i=1
i 6= j

αi




−1
n

∏
i=2

αi.

Derivation

We wish to extend the model for n = 2 joining pipes to any finite number of joining

pipes. In particular, first we would like to obtain an expression for q j,r only depending on state

variables and sources, as in (B.8).

Definition B.1. We say sources for inputs into the joint model that are not related to states of

any other pipes via algebraic constraints. We say internal variables for input variables that are

not sources.
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We derive the model by induction. Consider the algebraic constraints for n = 3,

p1,r = p2,r = p3,r = p0,`,

q1,r +q2,r +q3,r = q0,`.

Then,

ṗ1,r = ṗ2,r,

(α1 +α2)q1,r = α1q1,`+α2(q0,`−q2,`−q3,r),

ṗ3,r = ṗ2,r,

(α2 +α3)q3,r = α3q3,`+α2(q0,`−q2,`−q1,r)

= α3q3,`+α2

(
q0,`−q2,`− (α1 +α2)

−1[α1q1,`+α2(q0,`−q2,`−q3,r)]
)
.

so that

(α1α2 +α1α3 +α2α3)q3,r = α1α2(q0,`−q1,`−q2,`)+(α1α3 +α2α3)q3,`. (B.9)

Similarly,

(α1α2 +α1α3 +α2α3)q1,r = α2α3(q0,`−q2,`−q3,`)+(α1α2 +α1α3)q1,`, (B.10)

(α1α2 +α1α3 +α2α3)q2,r = α1α3(q0,`−q1,`−q3,`)+(α1α2 +α2α3)q2,`. (B.11)

Comparing equations (B.9)–(B.11) with (B.8) we recognize a certain pattern, which we explore

next. Facilitated by observations above we derive a general statement.

Proposition B.1. Consider n joining pipes with individual dynamics (B.6a) - (B.6b). Let q j,`, j ∈

{0,1, . . . ,n}, be state variables. The internal variables qk,r, k ∈ {1,2, . . . ,n}, can be described
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by state variables,




n

∑
j=1

n

∏
i=1
i6= j

αi


qk,r =

n

∏
i=1
i6=k

αi


q0,`−

n

∑
i=1
i 6=k

qi,`


+




n

∑
j=1

n

∏
i=1
i 6= j

αi−
n

∏
i=1
i6=k

αi


qk,` (B.12)

Proof. We prove the theorem by induction. We observe that (B.12) holds for n ∈ {2,3}. Hence,

assume it holds for some n and for n+1 note that interconnections dictate the algebraic constraints

p1,r = p2,r = · · ·=pn+1,r = p0,`, (B.13a)

q1,r +q2,3 + · · ·+qr,n +qr,n+1
.
= qn

0,`+qr,n+1 = q0,`. (B.13b)

Hence, by the algebraic constraints on the pressure and the pipe dynamics,

qn+1,r =
1

αn+1
(ṗk,r− ṗn+1,r)+qn+1,r

=
1

αn+1

(
αk(qk,r−qk,`)− ṗn+1,r

)
+qn+1,`+

ṗn+1,r

αn+1

=
1

αn+1
αk(qk,r−qk,`)+qn+1,`,
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where without loss of generality k ∈ {1,2 . . . ,n−1}. Then (B.12) yields




n

∑
j=1

n

∏
i=1
i6= j

αi


qk,r =

n

∏
i=1
i6=k

αi


qn

0,`−
n

∑
i=1
i 6=k

qi,`


+




n

∑
j=1

n

∏
i=1
i 6= j

αi−
n

∏
i=1
i6=k

αi


qk,`

=
n

∏
i=1
i6=k

αi


q0,`−qn+1,r−

n

∑
i=1
i 6=k

qi,`


+




n

∑
j=1

n

∏
i=1
i6= j

αi−
n

∏
i=1
i6=k

αi


qk,`

= −
n

∏
i=1

αi
1

αn+1
(qk,r−qk,`)+

n

∏
i=1
i 6=k

αi


q0,`−qn+1,`−

n

∑
i=1
i 6=k

qi,`




+




n

∑
j=1

n

∏
i=1
i 6= j

αi−
n

∏
i=1
i6=k

αi


qk,`

= − 1
αn+1

n

∏
i=1

αiqk,r +
n

∏
i=1
i6=k

αi


q0,`−

n+1

∑
i=1
i 6=k

qi,`




+




n

∑
j=1

n

∏
i=1
i 6= j

αi−
n

∏
i=1
i 6=k

αi +
1

αn+1

n

∏
i=1

αi

)
qk,`

.

Move the first term of the right-hand side to the left, multiply the equation by αn+1 and observe

that the left-hand side is

n

∑
j=1

n

∏
i=1
i6= j

αiαn+1 +
n

∏
i=1

αi =
n

∑
j=1

n+1

∏
i=1
i 6= j

αi +
n

∏
i=1

αi =
n+1

∑
j=1

n+1

∏
i=1
i 6= j

αi.

This identity can also be used for the last term on the right-hand side. Then,




n+1

∑
j=1

n+1

∏
i=1
i 6= j

αi


qk,r =

n+1

∏
i=1
i6=k

αi


q0,`−

n+1

∑
i=1
i6=k

qi,`


+




n+1

∑
j=1

n+1

∏
i=1
i6= j

αi−
n+1

∏
i=1
i6=k

αi


qk,`,

which is equivalent to our induction hypothesis and thus concludes the proof.

The state-space realization above is a direct consequence of Proposition B.1, the pipe
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dynamics in (B.6), the algebraic constraint of equal pressure at the intersection in (B.13a), and

the observation that for the ODE of p1,r,

α1




n

∑
j=1

n

∏
i=1
i 6= j

αi




−1


n

∑
j=1

n

∏
i=1
i6= j

αi−
n

∏
i=2

αi


−α1 =−α1




n

∑
j=1

n

∏
i=1
i6= j

αi




−1
n

∏
i=2

αi.

Conservation of mass

As for n = 2 joining pipes, the state-space realization above satisfies conservation of

mass, which follows from the third row of the steady state equation 0 = Ax+Bu and conservation

of mass of the single pipe model.

B.4 Star junction

Consider the pipe geometry illustrated in Figure B.4, combining the branch and joint

model to so called star junction.

mass flowPipe P1

Pipe P2

...

Pipe Pn

Pipe Pn+1

Pipe Pn+2

...

Pipe Pn+m

Figure B.4. Star junction of n+m pipes

Star junction model

Consider the assumptions in Section B.1.1 and matching conditions at the junction

p1,r = · · ·= pn,r = pn+1,` = · · ·= pn+m,`,

q1,r + · · ·+qr,n = qn+1,`+ · · ·+qn+m,`.
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A star junction of n pipes connecting to m pipes with individual dynamics (B.6a) - (B.6b)

can be represented by the state-space model,

ẋt,1 = A1xt,1 +B1ut ,

ẋt,2 = A1xt,2 +B2ut ,

ẋt,3 = A1xt,3 +B3ut ,

ẋt,4 = A1xt,4 +B4ut ,

yt =C(xt,1 + xt,2 + xt,3 + xt,4),

where

xt,1 = xt,2 = xt,3 = xt,4

= [p1,r pn+1,r pn+2,r . . . pn+m,r q1,` q2,` . . . qn+m,`]
> ∈ Rn+2m+1,

ut = [p1,` p2,` . . . pn,` qn+1,r qn+2,r. . . qn+m,r]
> ∈ Rn+m,

yt = [pn+1,r pn+2,r . . . pn+m,r q1,` q2,`. . . qn,`]
> ∈ Rn+m,

A1 =




0m+1 −a −a1n−1 a1m

0n+2m,n+2m+1


 , B1 = 0n+2m+1,n+m,

A2 =




0n+2m+1,n+m+1

0m

−αn+1 0
. . .

0 −αn+m

0n+m




,
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B2 =




0n+m

0m,n

αn+1 0
. . .

0 αn+m

0n+m,n+m




,

A3 =




0m+1,n+2m+1

β1

...

βn

0n,m

γ1 0
. . .

0 γn

0n,m

0m,n+2m+1




, B3 =




0m+1,n+m

κ1 0
. . .

0 κn

0n,m

0m,n+m




,

A4 =




0n+m+1,n+2m+1

κn+1

...

κn+m

βn+1 0
. . .

0 βn+m

0m,n

γn+1 0
. . .

0 γn+m




,

B4 = 0n+2m+1,n+m,

C =

[
0n+m In+m 0n+m,m

]
,

Derivation

Proposition B.1 also facilitates a statement about a general star junction, which consists

of n pipes connecting to m pipes, as illustrated in Figure B.4. Towards a state-space realization

and akin to the case of a joint, we wish to express internal variables in terms of state variables.
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Corollary B.1. Consider a star junction with n joining pipes connecting to m branching pipes

with individual dynamics (B.6a) - (B.6b). Let qi,`, i ∈ {1,2, . . . ,n+m}, and p1,r be state vari-

ables. The internal variables qk,r, k ∈ {1,2, . . . ,n} and p j,`, j ∈ {n+1,n+2, . . . ,n+m}, can

be described by state variables through




n

∑
j=1

n

∏
i=1
i6= j

αi


qk,r =

n

∏
i=1
i6=k

αi




n+m

∑
i=n+1

qi,`−
n

∑
i=1
i6=k

qi,`


+




n

∑
j=1

n

∏
i=1
i 6= j

αi−
n

∏
i=1
i 6=k

αi


qk,`, (B.14)

p j,` = p1,r. (B.15)

Proof. Consider (B.12) from Proposition B.1 and note that therein that q0,` = ∑
n+m
j=n+1 q j,`. The

result for the first equation follows immediately. The second equation is a direct consequence of

the algebraic constraint of all pressures being equal at the intersection.

The state-space realization above follows directly: the system related to x1 describes

the solution to ṗ1,r and directly follows from (B.14). The system corresponding to x2 describes

p j,r, j ∈ {n+ 1,n+ 2, . . . ,n+m} and is immediately obtained by the dynamics (B.6a). The

systems for x3 and x4 relate to q j,`, j ∈ {1,2, . . . ,n+m} and are a consequence of the dynamics

(B.6b) and the algebraic constraint (B.15).

Conservation of mass

Conservation of mass can be established from the branch and joint above and is omitted

for brevity.

B.5 Control valve

We present two models for control valves: firstly, we use a static gain (less or equal than

1) on the pressure and unity gain on mass flow; secondly, we provide a more complex model

with the mass flow varying with in- and outlet pressure and cross-sectional area.
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B.5.1 Static model

Static valve model

For the static gain model let the states and inputs be:

xt =

[
pr q`

]>
, ut =

[
p` qr

]>
, (B.16)

and define the static relationship

xt =




kv 0

0 1


u,

where kv ∈ (0,1).

Conservation of mass is immediate.

B.5.2 Dynamic model

Here we develop a model based on a static relationship commonly used for orifices

combined with a first order low pass filter approximating the dynamics between command and

actuation.

Dynamic valve model 1

Assume an isentropic expansion and approximate the command-to-actuation relationship

by a first order model. Define the state, about and input signals as

xt =

[
Ao

]
, yt =

[
qv

]
, ut =

[
uv p` pr

]>
.
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The dynamics are

ẋt =

[
−1/τ

]
xt +

[
K/τ 0 0

]
ut , (B.17a)

yt =

[
go(Ao, p̄`, p̄r)/Ao

]
xt +

[
0 ζo(Ao, p̄`, p̄r) ξo(Ao, p̄`, p̄r)

]
ut , (B.17b)

where g0 is the orifice equation from (B.18), τ and K the time constant and gain from

transfer function (B.20) between the control command and actual actuation, qv the mass

flow through the valve, uv ∈ (0,1) the control input, Ao the cross-sectional area of the

valve, and ξo and ζo the linearization terms from (B.21) and (B.22).

Conservation of mass as defined in Definition 2.2 does not apply here, since there are no

mass flows as model inputs.

Derivation

The static mapping is justified by pipe time constants and the usual sampling time, which

both vastly exceed the low time constants of the valve [18].

In [32, Equ. (3-34)], assuming an isentropic expansion the mass flow through an orifice

is approximated by

qo =Cpo,`Ao

√√√√ 2
RsT0z0

µ

µ−1

[(
po,r

po,`

)2/µ

−
(

po,r

po,`

)(µ+1)/µ
]
, (B.18)

.
= go(Ao, pr, p`) (B.19)

where C .
=Cd/

√
1− (Do/D)4 corrects for the head loss, with Cd being the discharge coefficient,

µ the ratio of specific heat, µ = cp/cv and Do(D) the orifice (pipe) diameter.

For the control valve let the cross-sectional area, Ao, from (B.18) represent the manipu-

lated variable. To approximate the dynamics of the actuator itself, i.e., the relationship between

1The dynamic valve model has not been fully tested in operational models.
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the control command and actual actuation, consider a first-order low pas filter with transfer

function,

K
1

τs+1
, (B.20)

where τ > 0 is the time constant, K = Ao,max is the gain. The control input is constrained, i.e.,

uv ∈ (0,1), where 0 is closed and 1 is open. Towards a linear model:

∂go(Ao, p`, pr)

∂ pr

.
= ξo(Ao, p`, pr), (B.21)

∂go(Ao, p`, pr)

∂ p`
.
= ζo(Ao, p`, pr). (B.22)

Combining these equations with (B.20) yields the state-space model above.

B.6 Tank

We next introduce two tank models: the first model approximates pressure changes while

assuming a constant temperature; the second model additionally admits temperature changes.

B.6.1 Isothermal tank

Isothermal tank model

Assume there are multiple in- and outlets at the tank and the temperature is constant.

Under the assumptions below, for the pressure as the single state, x = p, and input vector

ut =

[
q1,` . . . qn`,` q1,r . . . qnr,r

]
,
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with n` ∈ N as the number of inlets and nr ∈ N as the number of outlets, the linear

state-space model is

ẋt =
Rsz0T0

V

[
1n` −1nr

]
u,

with V as the constant volume.

Conservation of mass as defined in Definition 2.2 does not apply here, as all mass flows

are model inputs. However, we observe that bounded pressure implies equalizing mass flows.

Assumptions

Assumption B.3. Suppose:

B.3(i) there is perfect mixing inside the volume;

B.3(ii) the compressibility factor, z, changes negligibly or if necessary can be represented by a

time-varying parameter;

B.3(iii) the gas is described by the ideal gas equation;

Derivation

For the pressure inside the constant volume, we have

p = ρRsT0z0,

ṗ = Rsz0T0ρ̇ = Rsz0T0
q
V

=
Rsz0T0

V

(
n`

∑
j=1

q j,`−
nr

∑
k=1

qk,r

)
(B.23)

where the first equation is the ideal gas equation. The derivative uses Assumption B.3(ii) and the

last line conservation of mass: change in mass equals mass flow in minus mass flow out. The

variables are: ρ density; Σ jq j,` (Σkqk,r) sum of mass flowing in (out). The state-space model

above follows directly.
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B.6.2 Non-isothermal tank

We now drop the isothermal assumption and incorporate temperature dynamics. This

also has an effect on the pressure dynamics themselves.

Non-isothermal tank model

Consider Assumptions B.3 and B.4. We obtain a nonlinear representation relating the

entering mass flows and temperatures, qi,` and Ti,`, i = {1, . . . ,n`}, and exiting mass flows,

qi,r, i = {1, . . . ,nr}, to the pressure and temperature inside the tank, p and T :

ṗ =
Rsz0µ

V

(
n`

∑
j=1

q j,`Tj,`−
nr

∑
k=1

qk,rT

)
,

Ṫ =
RsT z0

pV cv

(
n`

∑
j=1

qi, j
(
cp, jTj− cvT

)
−RsT

nr

∑
k=1

qo,k

)
.

Therefore, with xt =

[
p T

]>
and

ut =

[
q1,` T1,` . . . qn`,` Tni,` q1,r . . . qnr,r

]
,

we can use the linearized dynamics for pressure and temperature to generate a linear

state-space model.

As for the isothermal case, conservation of mass does not apply here, as all mass flows

are model inputs.

Assumptions

Assumption B.4. Suppose:

B.4(i) potential and kinetic energy are negligible;

B.4(ii) the reference states for internal energy and enthalpy are set to zero at zero degree Kelvin;

B.4(iii) specific heats are constant;
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B.4(iv) the heat flux to the environment is negligible.

Derivation

The pressure dynamics are akin to the isothermal case but differ as the temperature is not

a constant anymore:

ṗ = Rsz0

(
∑

n`
j=1 q j,`−∑

nr
k=1 qk,r

V
T +ρṪ

)

= Rsz0

(
∑

n`
j=1 q j,`−∑

nr
k=1 qk,r

V
T +

p
RsT z0

Ṫ

)
(B.24)

We next derive an expression for Ṫ , which we will plug back in.

Temperature dynamics

As mentioned in Assumptions B.3(iii) and B.4(ii) we assume ideal gas and select the

reference states for the internal energy and enthalpy to be zero at zero degree Kelvin: Tref =

0 =⇒ Uref,Href = 0 (see for example [34, Ch. 3.6.3]). Then, the derivative of the total energy

of a system, E, is [34, Equ. (2.27)]:

d
dt

E
Ass.B.4(i)

=
d
dt

U (B.25)

Ass.B.3(i),B.4(ii)
=

d
dt
(mcvT )

Ass.B.4(iii)
=

(
n`

∑
j=1

q j,`−
nr

∑
k=1

qk,r

)
cvT +mcvṪ (B.26)

with U being the internal energy. Moreover, conservation of energy implies [34, Equ. (4.9)-

(4.12)]

d
dt

U
Ass.B.4(i)

= Q̇+
n`

∑
j=1

q j,`h j−
nr

∑
k=1

qk,rhk

Ass.B.3(i)
= Q̇+ cp

n`

∑
j=1

q j,`Tj− cpT
nr

∑
k=1

qk,r, (B.27)
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where h is the specific enthalpy, and Q̇ is the rate of heat transfer to the environment, which is

a function of the temperature (deviations) inside and outside the volume. Usually, empirical

formulations are used for conduction, convection and radiation (see [34, Ch. 2]). Here for brevity

we assume it is negligible (cf. Assumption B.4(iv)). Combining (B.26) and (B.27) yields

Ṫ =
1

mcv

[
cvT

(
nr

∑
k=1

qk,r−
n`

∑
j=1

q j,`

)
+

n`

∑
j=1

q j,`cpTj −cpT
nr

∑
k=1

qk,r

]

=
1

mcv

[
n`

∑
j=1

q j,`
(
cpTj− cvT

)
−RsT

nr

∑
k=1

qk,r

]

=
RsT z0

pV cv

[
n`

∑
j=1

q j,`
(
cpTj− cvT

)
−RsT

nr

∑
k=1

qk,r

]
, (B.28)

which represents the nonlinear temperature dynamics from the model. Note that (B.28) also

coincides with that in [16, Ch. 13.4.5]. Using this equation in (B.24) yields the stated nonlinear

dynamics for the pressure.

B.7 Valve manifold

Consider a valve manifold as illustrated in Figure B.5. The following model is derived by

mass flow

Tank 1
(pT1

, qT1
, VT1

, hT1
, wT1

)
Tank 2

(pT2
, qT2

, VT2
, hT2

, wT2
)

AT1,`

pT1,`

qT1,`

pT1,1,r

qT1,1,r

pT1,2,r

qT1,2,r

...

pT1,n,r

qT1,n,r

AT2,r

pT2,r

qT2,r

pT2,1,`

qT2,1,`

pT2,2,`

qT2,2,`

pT2,n,`

qT2,n,`

V1
P1a P1b

V2
P2a P2b

V3
Pna Pnb

x

Figure B.5. Valve manifold

using the tank models from above for Tanks 1 and 2, the single pipe model for each pipe-valve-

pipe connection with adjusted friction factor, and the orifice equation for the entrances of the

tanks. We provide more details in the derivation subsequently.
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Valve manifold model

Consider Assumptions B.2–B.3 (for isothermal pipes and tanks) and approximate the

entering mass flow into Tanks 1 and 2 as an isentropic expansion described by orifice

equation (B.18). Further, let each pipe-valve-pipe connection be approximated by single

pipe models with adjusted friction factors. Let the state, output and input vectors be

defined as

xt =

[
pT1 p1,r q1,` p2,r q2,` pT2

]>
,

yt =

[
pT2 qT1,`

]>
,

ut =

[
pT1,` qT2,r

]>
,

where subscript i = {1,2} refers to middle section Pia−Vi−Pib and other terms as shown

in Figure B.5. Then the overall dynamics are described by

ẋt =




αT1ξT1 0 −αT1 0 −αT1 0

0 α1ζT2 −α1 0 0 α1ξT2

κ1 β1 γ1 0 0 0

0 0 0 α2ζT2 −α2 α2ξT2

κ2 0 0 β2 γ2 0

0 αT2ζT2 0 αT2ζT2 0 2αT2ξT2




xt

+




αT1ζT1 0 0 0 0 0

0 0 0 0 0 −αT2




>

ut ,

yt =




0 0 0 0 0 1

ξT1 0 0 0 0 0


xt +




0 0

ζT1 0


ut ,
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where ξT1 = ξT1(p̄T1,`, p̄T1) from (B.21) and ζT1 = ζT1(p̄T1,`, p̄T1) from (B.22) are related

to the linearized orifice equation for the entrance into Tank 1, and accordingly for Tank 2.

The parameters αi,βi,κi and γi, i = {1,2,3} are as defined in (B.1) for pipes, whereas

αTi =
Rsz0T0

VTi
, i = {1,2}.

Conservation of mass (as a steady state property) follows from B.30 applied to Tank 1

and 2, and conservation of mass of the single pipe model from Section B.1.3.

B.7.1 Derivation

The model is based on the assumptions of each component, stated in the corresponding

sections above. The primary motivation for including the orifice model for the entrance but

not the exit is to obtain compatible boundary conditions. Our focus here is application and

control orientation; an experimental validation is out of the scope of this work. Without loss of

generality, we assume a positive flow, two middle sections, and that all outlets of Tank 1 and

inlets of Tank 2 are of identical geometry, resp.

Tanks

For Tank 1, (B.23) from the tank model above yields

ṗT1 = αT1(qT1,`−qT1,1,r−qT1,2,r), (B.30)

where qT1,` is the mass flow at the inlet of Tank 1 and qT1,i,r is the mass flow at its ith outlet. We

interpret the tank entrance as an orifice, and as in (B.21) and (B.22) define

∂go(pT1 , pT1,`)

∂ pT1

.
= ξT1 ,

∂go(pT1 , pT1,`)

∂ pT1,`

.
= ζT1 . (B.31)
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Therefore, with (B.30) – (B.31), we obtain a model for Tank 1:

xt =

[
pT1

]
,

yt =

[
pT1 qT1,`

]>
,

ut =

[
pT1,` qT1,1,r qT1,2,r,

]>

with dynamics

ẋt =

[
αT1ξT1

]
xt +

[
αT1ζT1 −αT1 −αT1

]
ut , (B.32a)

y =




1

ξT1


xt +




0 0 0

ζT1 0 0


ut . (B.32b)

Similarly, for Tank 2 we have:

xt =

[
pT2

]
,

yt =

[
pT2 qT2,1,` qT2,2,`

]>

ut =

[
pT2,1,` pT2,2,` qT2,r

]>
,

with dynamics

ẋt = αT2(ξT2 +ξT2)xt +

[
αT2ζT2 αT2ζT2 −αT2

]
ut , (B.33a)

yt =




1

ξT2

ξT2




xt +




0 0 0

ζT2 0 0

0 ζT2 0




ut . (B.33b)
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Composite valve manifold model

The state-space models for Tanks 1 and 2 in (B.32) and (B.33) as well as the single

pipe model from (B.2) for each connection, P1a−V1−P1b and P2a−V2−P2b, resp., share the

following boundary conditions,

pT1,i,r = pia,`, pT2,i,` = pib,`

qT1,i,r = qia,`, qT2,i,` = qib,`,

for i = {1,2}. Connecting tank and pipe models accordingly generates the model stated above.

B.8 Compressor

Similar to the valve modeling, we present a static gain model as well as a more complex

dynamic model for the compressor.

B.8.1 Static model

Static compressor model

For the static gain model let the states and inputs be :

xt =

[
pr q`

]>
, ut =

[
p` qr

]>
, (B.34)

where the suction side corresponds to subscript ` and discharge side to subscript r. We

define the static relationship

xt =




kc 0

0 1


ut ,

where kc > 1.

Conservation of mass is immediate.
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B.8.2 Dynamic model

Compressor

ω
p1
q1
T1

Duct

q2, L2,
A2, T2p2,` p2,r

Plenum

p3
V3

T3

q3,r

Figure B.6. Compressor system consisting of compressor, duct and plenum. The compression is
isentropic, whereas duct and plenum are isothermal. We consider boundary conditions p1,q3,r
and T1 as known. Variables at internal boundaries are continuous.

Consider a compressor system as shown in Figure B.6, which consists of a compressor, a

duct and a plenum. Similar to [22] and [16], we model each of these elements separately and

then connect them via boundary conditions, akin to the valve manifold model above.

Dynamic compressor model

Consider Assumptions B.2 (for duct), B.3 (for isothermal plenum) and B.5 (for compres-

sion) below. Define state, input and output vectors as

xt =

[
p3 q2

]>
, (B.35)

ut =

[
p1 q3,r T1 ω

]>
, (B.36)

yt =

[
p3 q2 T3

]>
, (B.37)

with terms as shown in Figure B.6, and ω the compressor speed. The the nonlinear

dynamics are

ẋt =




RsT2z0
V3

(q2−q3,r)

A2
L2
(Φ(q2,ω)− p3)


 (B.38)

yt =




xt

T1

(
Φ(q2,ω)

p1

)(η−1)/η


 , (B.39)
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where Φ(q2,ω) = p2,` is the suction pressure after the isentropic compression modeled as

a static map. A linear state-space model can be derived by linearization.

Conservation of mass directly follows from setting (B.38) to zero and the fact that

q2 = q1.

Assumptions

Assumption B.5. Suppose:

B.5(i) The compression is isentropic.

B.5(ii) The discharge pressure of the compressor, p2,`, is defined by a static relation between

speed, ω , suction pressure, p1, and mass flow, q2: Φ(q2,ω) : R>0×R>0→ R>0.

B.5(iii) The friction in the duct is negligible.

B.5(iv) The temperature change in the duct is negligible.

B.5(v) The gas in the duct and plenum is perfectly mixed.

Derivation

For the plenum we obtain from the isothermal tank model in (B.23),

ṗ3 =
RsT2z0

V3
(q2−q3,r). (B.40)

For the duct, by (B.2b) and boundary condition p2,r = p3,

q̇2 =
A2

L2
(p2,`− p3). (B.41)

The suction pressure after the isentropic compression is modeled as a static map, p2.` = Φ(q2,ω),

with compressor speed ω . The mapping is usually based on empirical formulas [41], or compres-
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sor geometry [16, Ch. 13]. It follows that

q̇2 =
A2

L2
(Φ(q2,ω)− p3). (B.42)

By the hypothesis of isentropic compression and isothermal duct and plenum,

T3 = T1

(
p2,`

p1

)(η−1)/η

= T1

(
Φ(q2,ω)

p1

)(η−1)/η

, (B.43)

with isentropic coefficient η . The model above immediately follows. Note that conservation of

mass is immediate: by hypothesis and (B.40), q̄1 = q̄2 = q̄3,r.

B.9 Heat exchanger

We provide a heat exhanger model based on the non-isothermal one-dimensional pipe

model presented in Chapter 1. The assumptions are therefore similar to those for the pipe in

Section B.1.1. Given the fact that under usual operating conditions no phase change occurs

within the gas our model is similar to that in [40] in the context of air conditioning systems.

While we provide a nonlinear formulation, linearization around the nominal operating point

directly leads to a linear state-space realization.

Our rudimentary model replaces the heat exchanger with a single pipe, with the geometric

and conductivity properties accommodated by adjusting the heat transfer coefficient, krad, and

friction factor, λ , to parametrize the exchanger design and nominal operating point. The

temperature output of the model can be used to set the temperature parameter for subsequent

downstream isothermal (or other) pipe models.
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Heat exchanger

Considering Assumption B.2, if the heat flux is dominated by radial conduction we define

the state and input vectors to be

xt =

[
pr q` Tr

]
,

ut =

[
p` qr T`

]
.

Then, the nonlinear dynamics of the heat exchanger are governed by

ṗr =
Rsz0

Acv

[
kradπDo(Tamb−Tr)−

qr−q`
L

Tr (cv +Rsz0)+
pr− p`

L
Rsz0Trqr

pr

−Tr−T`
L

qr (cv +Rsz0)+
λR2

s z2
0T 2

r q2
r |qr|

2DA2 p2
r

]
(B.44a)

q̇` =−A
pr− p`

L
− λRsT`z0

2DA
q`|q`|

p`
− Ag

RsT`z0

dh
dx

p` (B.44b)

Ṫr =
Rsz0Tr

Acv pr

[
kradπDo(Tamb−Tr)−

qr−q`
L

TrRsz0 +
pr− p`

L
Rsz0Trqr

pr

−Tr−T`
L

qr (cv +Rsz0)+
λR2

s z2
0T 2

r q2
r |qr|

2DA2 p2
r

]
(B.44c)

Conservation of mass as defined in Definition 2.2 only applies to isothermal models.

B.9.1 Derivation

This is the spatially discretized model of non-isothermal pipe flow developed in Chapter

1. As remarked above, the heat transfer coefficient, krad, is deliberately non-negligible and the

friction factor, λ , can be significant depending on exchanger geometry.

B.10 Interconnections

Suppose each component is described by a state-space model with signals describing

pressures, p, and mass flows, q. In this section we show how these component models can be
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interconnected to build an entire network model. Towards this goal, we recall interconnection

rules from Chapter 2, which translate allowable boundary conditions to signal flows.

B.10.1 Directed pipe connections and ‘ports’

The signal flow graph models derived later have directions associated with each signal.

Thus, p` and qr are input signals, indicating that they are specified from outside the component,

and pr and q` are output signals, meaning that they are determined by the component itself and

the input signals. The spatially localized connection sites, however, possess one input signal and

one output signal, namely (p`,q`) at the left end and (pr,qr) at the right. We further appropriate

circuit terminology and identify two distinct location types, which we term ports. As in [5],

every element in our interconnected system presents signal interfaces to other elements and to

the outside world.

Definition B.2 (Ports).

ppp-port of a component possesses two signals: an input pressure signal p` and an output flow

signal q`.

qqq-port of a component possesses two signals: an input flow signal qr and an output pressure

signal pr.

Internal series connection of two components, 1 and 2, will involve the cascading of

signals p2,` = p1,r and q1,r = q2,` at the junction point. This describes a p-port to q-port

connection. Likewise, connection to the outside of the network must respect the type and

causality of the signals. These rules are specified below.
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B.10.2 Interconnection rules

Interconnection rules

I. Connections are permitted only between:

i. a p-port and a q-port, or

ii. a p-port and an external pressure source/input signal plus an external flow

sink/output signal, or

iii. a q-port and an external flow source/input signal plus an external pressure

sink/output signal.

II. Pressure input signals must connect to pressure output signals, and flow input signals

must connect to flow output signals.

III. Connection of one variable of a port requires connection of the other.

IV. All ports must be connected and algebraic loops avoided.

These rules conform to the connections examined in Chapter 1 to formulate the systematic

interconnection of state-space models. Each component model possesses input and output signals

and, in Proposition 1.3, it is shown how a (possibly non-minimal) state-space realization of the

interconnection of gas system elements can be directly constructed with the above rules. This

construction replaces and extends the graph-theoretic DAE methods of [5] and yields a new

input-output transfer function satisfying Mason’s Gain Formula, see Proposition 1.4.

B.10.3 Matrix methodology

Recalling Section 1.8, we begin by stacking the state-space models of the individual

network components:

ẋt = Axt +Bwt , y =Cxt +Dwt (B.45)
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where

A = blkdiag(A(1),A(2), . . . ,A(N)), (B.46a)

B = blkdiag(B(1),B(2), . . . ,B(N)), (B.46b)

C = blkdiag(C(1),C(2), . . . ,C(N)), (B.46c)

D = blkdiag(D(1),D(2), . . . ,D(N)), (B.46d)

with superscript (i), i = {1, . . . ,N}, denoting the respective matrix of component i, and xt ∈

Rnx ,w ∈Rnw and yt ∈Rny . Interconnections and external sources ut ∈Rnu and sinks zt ∈Rnz are

described by

wt = Fyt +Gut , zt = Hxt + Jut , (B.47)

with structured matrices [F,G,H,J] with 0-1 elements:

[F ]i, j =





1, if [y] j = [w]i,

0, otherwise.
(B.48)

Matrix interconnection methodology

A (perhaps non-minimal) state-space realization of (B.45) and (B.47) is given by

xt = Āx+ B̄ut , y = C̄xt + D̄ut , (B.49)

where

Ā = A+BF(I−DF)−1C, C̄ = (I−DF)−1C,

B̄ = B
[
I +F(I−DF)−1D

]
G, D̄ = (I−DF)−1DG.
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We next show an example applying the methodology.

Example: two pipes in series

Consider two pipes in series, 1 and 2, with aggregated input and state/output vectors,

xt = yt =




p1,r

q1,`

p2,r

q2,`



, wt =




p1,`

q1,r

p2,`

q2,r



, (B.50)

We further define the sources and sinks:

ut =




p1,`

q2,r


 , zt =




p2,r

q1,`


 . (B.51)

As p1,r = p2,` and q1,r = q2,`, this leads to the following matrices:

F =




0 0 0 0

0 0 0 1

1 0 0 0

0 0 0 0



, G =




1 0

0 0

0 0

0 1



, (B.52)

H =




0 0 1 0

0 1 0 0


 , J = 0. (B.53)

The aggregate system can directly be implemented in MATLAB using (B.49).

MATLAB example: vented gas loop

We recall a similar example to Section 1.9 in Figure B.7.

The gas flows clockwise, entering through pipe P1 and exiting through pipes P6 and P9.
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P4 P5 P6

P7

P8

P9

P10P2

P1

P3

suction
pressure distal

pressure

disturbance
flow

vent
flow

fill
pressure

model input signal
control variable
gas flow direction

Figure B.7. Pipe network with compressor and valve ./. In process control parlance, the fill
pressure and vent flow are manipulated variables, the suction and distal pressures are controlled
variables, and the flow from P6 is a disturbance signal.

The compressor and valve, whose corresponding variables are respectively labeled by subscripts

c and v, are modeled as static gains as in Sections B.5 and B.8,

Dc =




kc 0

0 1


 , Dv =




kv 0

0 1


 ,

where kc = 4 and kv = 0.8. Further, pipes (P1,P2,P3) are modeled as a joint, as in Subsec-

tion B.3.1, and (P5,P6,P7) and (P8,P9,P10) as branches, as in Section B.2. Composing the system

according to (B.46), results in the component input vector,

wt =

[
p1,` p2,` q3,r pc,` qc,r p4,` q4,r pv,` qv,r p5,` q6,r q7,r p8,`q9,r q10,r

]>
,

and the total output vector,

yt =

[
p3,r q1,` q2,` pc,r qc,` p4,r q4,` pv,r qv,` p6,r p7,r q5,` p9,r p10,r q8,`

]>
.

The external sources are

ut =

[
p1,` q6,r q9,r

]>
.
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MATLAB code

1 %% Parameters

2 clear all

3 close all

4

5 pbar = 2.54e6; % nominal pressure Pa

6 qbar = 15.44; % nominal flow Kg/s

7 Re = 1.0901e7; % Reynolds number

8 T = 300; % nominal temperature K

9 z = 1; % gas compression factor

10 Rs = 518.28; % specific gas constant JKˆ{-1}molˆ{-1} methane

11 lambda = 0.0113; % friction factor

12 gamma = Rs*T; % constant gas state

13 mu = 1.31; % from https://www.engineeringtoolbox.com/methane

-d_1420.html

14

15 %% System J123 join of three 10m pipes

16 La = 10; % m

17 Da = 27.25*2.54/100; % m

18 Aa = pi*Da*Da/4;

19

20 alfa = gamma*z/Aa/La;

21 beta = Aa/La;

22 kappa = lambda*gamma*z*qbar/Da/Aa/pbar;
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23

24 Lb = 10; % m

25 Db = 17.25*2.54/100; % m

26 Ab = pi*Db*Db/4;

27

28 alfb = gamma*z/Ab/Lb;

29 betb = Ab/Lb;

30 kappb = lambda*gamma*z*qbar/Db/Ab/pbar;

31

32 Lc = 10; % m

33 Dc = 27.25*2.54/100; % m

34 Ac = pi*Dc*Dc/4;

35

36 alfc = gamma*z/Ac/Lc;

37 betc = Ac/Lc;

38 kappc = lambda*gamma*z*qbar/Dc/Ac/pbar;

39

40 gammab = alfa/(alfa+alfb); % splitting ratio for joining

problem

41

42 F123 = [0 alfa*(1-gammab) alfa*(1-gammab) 0 -alfa*(1-gammab)

;

43 -beta -kappa 0 0 0;

44 -betb 0 -kappb 0 0;

45 0 0 0 0 alfc;

46 betc 0 0 -betc -kappc];
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47 G123 = [0 0 0;beta 0 0;0 betb 0;0 0 -alfc;0 0 0];

48 H123 = [0 0 0 1 0;0 1 0 0 0;0 0 1 0 0];

49 J123 = zeros(3,3);

50

51 %% Systems Br567 and Br8910 identical branching systems

52 F567 = [0 alfa 0 -alfa 0 -alfa;

53 -beta -kappa 0 0 0 0;

54 0 0 0 alfb 0 0;

55 betb 0 -betb -kappb 0 0;

56 0 0 0 0 0 alfc;

57 betc 0 0 0 -betc -kappc];

58 G567 = [0 0 0; beta 0 0; 0 -alfb 0;0 0 0;0 0 -alfc;0 0 0];

59 H567 = [0 0 1 0 0 0;0 0 0 0 1 0;0 1 0 0 0 0];

60 J567 = zeros(3,3);

61 F8910=F567; G8910=G567; H8910=H567; J8910=J567;

62

63 %% Single pipe 4

64 F4 = [0 alfa;-beta -kappa];

65 G4 = [0 -alfa;beta 0];

66 H4 = eye(2);

67 J4 = zeros(2,2);

68

69 %% System C compressor

70 kC = 4;

71 FC = zeros(0);

72 GC = zeros(0,2);
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73 HC = zeros(2,0);

74 JC = diag([kC,1]);

75

76 %% System resistor

77 kR = 0.8;

78 FR = zeros(0);

79 GR = zeros(0,2);

80 HR = zeros(2,0);

81 JR = diag([kR,1]);

82

83 %% Compose interconnected system

84

85 % stack up components

86 A = blkdiag(F123,FC,F4,FR,F567,F8910);

87 B = blkdiag(G123,GC,G4,GR,G567,G8910);

88 C = blkdiag(H123,HC,H4,HR,H567,H8910);

89 D = blkdiag(J123,JC,J4,JR,J567,J8910);

90

91 % Internal connections

92 F = zeros(15,15);

93 F(2,14)=1; F(3,5)=1; F(4,1)=1; F(5,7)=1; F(6,4)=1; F(7,9)=1;

94 F(8,6)=1; F(9,12)=1; F(10,8)=1; F(12,15)=1; F(13,11)=1; F

(15,3)=1;

95

96 % External sources

97 G = zeros(15,3);
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98 G(1,1)=1; G(11,3)=1; G(14,2)=1;

99

100 % Interconnected systems

101 Abar = A+B*F/(eye(15)-D*F)*C;

102 Bbar = B*(eye(15)+F/(eye(15)-D*F)*D)*G;

103 Cbar = (eye(15)-D*F)\C;

104 Dbar = (eye(15)-D*F)\D*G;

105

106 %% State space model

107 complete_sys = ss(Abar, Bbar, Cbar, Dbar);

B.10.4 MATLAB’s connect function

As an alternative to the matrix methodology we can use the connect function in

MATLAB. This is best explained by the example below. For each component we name the input

and output signals, respecting the boundary conditions. We then define the input and output

signal names of the aggregate system and call the connect function.

MATLAB example: two pipes in series

1 % sys1 - Pipe 1

2 % sys2 - Pipe 2

3

4 % Pipe 1

5 sys1.InputName = {'p1l', 'q2l'}; % q1r = q2l

6 sys1.OutputName = {'p1r', 'q1l'};

7

8 % Pipe 2
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9 sys2.InputName = {'p1r', 'q2r'}; % p1r = p2l

10 sys2.OutputName = {'p2r', 'q2l'};

11

12 % Connect pipes

13 sys_inputs = {'p1l', 'q2r'};

14 sys_outputs = {'p2r', 'q1l'};

15 sys = connect(sys1,sys2, sys_inputs, sys_outputs);

MATLAB example: vented gas loop

1 %% Parameters

2 clear all

3 close all

4

5 pbar = 2.54e6; % nominal pressure Pa

6 qbar = 15.44; % nominal flow Kg/s

7 Re = 1.0901e7; % Reynolds number

8 T = 300; % nominal temperature K

9 z = 1; % gas compression factor

10 Rs = 518.28; % specific gas constant JKˆ{-1}molˆ{-1} methane

11 lambda = 0.0113; % friction factor

12 gamma = Rs*T; % constant gas state

13 mu = 1.31; % from https://www.engineeringtoolbox.com/methane

-d_1420.html

14

15 %% System J123 join of three 10m pipes

16 La = 10; % m
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17 Da = 27.25*2.54/100; % m

18 Aa = pi*Da*Da/4;

19

20 alfa = gamma*z/Aa/La;

21 beta = Aa/La;

22 kappa = lambda*gamma*z*qbar/Da/Aa/pbar;

23

24 Lb = 10; % m

25 Db = 17.25*2.54/100; % m

26 Ab = pi*Db*Db/4;

27

28 alfb = gamma*z/Ab/Lb;

29 betb = Ab/Lb;

30 kappb = lambda*gamma*z*qbar/Db/Ab/pbar;

31

32 Lc = 10; % m

33 Dc = 27.25*2.54/100; % m

34 Ac = pi*Dc*Dc/4;

35

36 alfc = gamma*z/Ac/Lc;

37 betc = Ac/Lc;

38 kappc = lambda*gamma*z*qbar/Dc/Ac/pbar;

39

40 gammab = alfa/(alfa+alfb); % splitting ratio for joining

problem

41
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42 F123 = [0 alfa*(1-gammab) alfa*(1-gammab) 0 -alfa*(1-gammab)

;

43 -beta -kappa 0 0 0;

44 -betb 0 -kappb 0 0;

45 0 0 0 0 alfc;

46 betc 0 0 -betc -kappc];

47 G123 = [0 0 0;beta 0 0;0 betb 0;0 0 -alfc;0 0 0];

48 H123 = [0 0 0 1 0;0 1 0 0 0;0 0 1 0 0];

49 J123 = zeros(3,3);

50 sys123 = ss(F123,G123,H123,J123);

51 sys123.InputName = {'p1l','p10r','qCl'};

52 sys123.OutputName = {'p3r','q1l','q2l'};

53

54

55 %% Systems Br567 and Br8910 identical branching systems

56 F567 = [0 alfa 0 -alfa 0 -alfa;

57 -beta -kappa 0 0 0 0;

58 0 0 0 alfb 0 0;

59 betb 0 -betb -kappb 0 0;

60 0 0 0 0 0 alfc;

61 betc 0 0 0 -betc -kappc];

62 G567 = [0 0 0; beta 0 0; 0 -alfb 0;0 0 0;0 0 -alfc;0 0 0];

63 H567 = [0 0 1 0 0 0;0 0 0 0 1 0;0 1 0 0 0 0];

64 J567 = zeros(3,3);

65 sys567 = ss(F567,G567,H567,J567);

66 sys567.InputName = {'pVr','q6r','q8l'};
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67 sys567.OutputName = {'p6r','p7r','q5l'};

68 sys8910 = sys567;

69 sys8910.InputName = {'p7r', 'q9r', 'q2l'};

70 sys8910.OutputName = {'p9r', 'p10r', 'q8l'};

71

72 %% Single pipe 4

73 F4 = [0 alfa;-beta -kappa];

74 G4 = [0 -alfa;beta 0];

75 H4 = eye(2);

76 J4 = zeros(2,2);

77 sys4 = ss(F4,G4,H4,J4);

78 sys4.InputName = {'pCr', 'qVl'};

79 sys4.OutputName = {'p4r', 'q4l'};

80

81 %% System C compressor

82 kC = 4;

83 FC = zeros(0);

84 GC = zeros(0,2);

85 HC = zeros(2,0);

86 JC = diag([kC,1]);

87 sysC = ss(FC,GC,HC,JC);

88 sysC.InputName = {'p3r', 'q4l'};

89 sysC.OutputName = {'pCr', 'qCl'};

90

91 %% System resistor

92 kR = 0.8;
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93 FR = zeros(0);

94 GR = zeros(0,2);

95 HR = zeros(2,0);

96 JR = diag([kR,1]);

97 sysR = ss(FR,GR,HR,JR);

98 sysR.InputName = {'p4r', 'q5l'};

99 sysR.OutputName = {'pVr', 'qVl'};

100

101 %% Compose interconnected system

102 inputs = {'p1l', 'q6r', 'q9r'};

103 outputs = {'p3r','q1l','q2l','p6r','p7r','q5l','p9r','p10r',

'q8l','p4r','q4l','pVr', 'qVl'};

104 complete_sys = connect(sysR,sysC,sys4,sys123,sys567,sys8910,

inputs, outputs);

B.11 Conclusion

We derived composite state-space models for the transient dynamics of gas flow through

intersecting pipe geometries, valves, compressors, and valve manifolds that are well-suited

candidates for model-based control design. They also capture conservation of mass at steady

state by subsuming algebraic constraints that would otherwise appear as part of a system of

DAEs. Additionally, we provide examples of how to use the matrix methodology introduced in

Section 1.9 in MATLAB and alternatively show how to use MATLAB’s connect function.

Appendix B, in full, is a reprint of the material as it appears in: Sven Brüggemann,

Robert H. Moroto, and Robert R. Bitmead. “ Compendium of Control-Oriented Models of Gas

Processing Equipment Components.” ArXiv e-prints, November 2022.
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