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ABSTRACT Agrobacterium sp. strain 33MFTa1.1 was isolated for functional host-
microbe interaction studies from the Thlaspi arvense root-associated microbiome.
The complete genome is comprised of a circular chromosome of 2,771,937 bp, a lin-
ear chromosome of 2,068,443 bp, and a plasmid of 496,948 bp, with G�C contents
of 59%, 59%, and 58%, respectively.

Agrobacterium is a diverse genus of soil-dwelling bacteria in the alphaproteobacte-
rial family Rhizobiaceae. Many Agrobacterium species cause plant diseases, includ-

ing Agrobacterium tumefaciens (crown gall disease), Agrobacterium rhizogenes (hairy
root disease), and Agrobacterium vitis (lesions and tumors on grape vines). First de-
scribed in 1897 (1), Agrobacterium has been widely studied, largely because of its ability
to transform plant cells with its DNA (which is known as transfer DNA [T-DNA]). As a
result, A. tumefaciens has become the workhorse of plant genetic engineering (2–4).
Other strains of Agrobacterium are commensal inhabitants of plant tissue. For example,
Agrobacterium sp. strain 33MFTa1.1 was isolated from the root endophytic compart-
ment of Thlaspi arvense, a close relative of the model plant Arabidopsis thaliana (5), and
recolonizes gnotobiotic A. thaliana plants without producing disease symptoms (6, 7).
This report describes the complete genome sequence of Agrobacterium sp. 33MFTa1.1
and will facilitate plant-microbe interaction studies.

Agrobacterium sp. 33MFTa1.1 (NCBI taxon identifier [ID] 1279031) was obtained from
Jeff Dangl. A previously published (5) draft shotgun assembly of this strain consists of
15 contigs, and we posited that long-read sequencing techniques would enable
assembly at the chromosome level. Bacteria were streaked onto LB plates, single
colonies were amplified, and an aliquot was used for 16S V1 and V4 PCR (8) and
sequence identification (reviewed in reference 9). DNA was isolated (10), and whole-
genome sequencing was performed at Lawrence Berkeley National Laboratory (LBNL)
using a combination of Oxford Nanopore long-read sequencing on the MinION Mk1B
(11) and Illumina paired-end 300-bp read sequencing for quality (12). Oxford Nanopore
sequencing libraries were constructed from 5 to 10 �g DNA using the Oxford Nanopore
1D native barcoding genomic DNA protocol (version NBE_9006_v103_revO_21Dec2016) and
sequenced on three FLO-MIN107 R9 version flow cells. Oxford Nanopore data were
demultiplexed with Porechop (13). Sequencing yielded 61,147 reads with a length of
�2,000 bp and a filtered mean read length of 6,862 bp, totaling 419,565,480 bp
(�79-fold coverage). The Illumina sequencing library was constructed from 1.5 �g DNA.
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The DNA was fragmented using a Diagenode Bioruptor, and libraries were constructed
using the NEBNext Ultra DNA library prep kit for Illumina. Sequencing yielded 2,529,890
paired-end reads, which were trimmed using Trimmomatic (14), resulting in a filtered
mean read length of 270 bp and totaling 631,387,669 bp (�128-fold coverage).
Nanopore and Illumina sequencing data were used as inputs for a de novo hybrid
assembly constructed using Unicycler version 0.4.1 with the “bold” option (15, 16). The
assembly produced 3 contigs, a single circular chromosome, a single linear chromo-
some, and a plasmid. Annotations of protein-encoding open reading frames and
noncoding RNAs (ncRNAs) were predicted with the NCBI Prokaryotic Genome Annota-
tion Pipeline (17).

The circular chromosome annotation predicts 2,654 protein-coding genes, 63 pseu-
dogenes, 2 rRNA operons, and 40 tRNAs, with canonical anticodon triplets that base
pair with codons for amino acids. It also encodes the telomerase A (telA) gene that
encodes the protein required to generate the covalently closed hairpin loops at the
ends of linear chromosomes (3). The linear chromosome annotation predicts 1,800
protein-coding genes, 69 pseudogenes, 2 rRNA operons, and 14 tRNAs. In addition, the
genome includes a single 496,948-bp plasmid, p_JBx_073812, which contains candi-
date genes for plasmid replication initiation proteins (repA, repB, and repC) and for
conjugative transfer (traA, traB, traC, traD, traF, traG, traH, and traM). It also carries genes
for arsenic resistance (arsH and ACR3) and arsenate metabolism (two copies of the
arsenate reductase gene arsC). A comparison of the new assembly with the previous
15-contig assembly (NCBI taxon ID 1279031) using the Joint Genome Institute (JGI)
microbial species identifier (MiSI) genome-wide average nucleotide identity, alignment
fraction (gANI, AF) calculator (https://ani.jgi-psf.org/html/calc.php) reveals high similar-
ity, as expected, with gANI values of 100 and AF values of 0.99 (previous assembly-
¡new assembly) and 0.98 (new assembly¡previous assembly) (18).

To identify gene clusters of interest for further research, we analyzed the genome
with the antibiotics and Secondary Metabolite Analysis SHell (antiSMASH) version 4.2.0
(19) tool. A total of 41 clusters and putative clusters were identified. These included a
type I polyketide synthase cluster, a terpene cluster, and a nonribosomal peptide
synthetase cluster. Of the remainder, 5 were putative fatty acid clusters, 5 were putative
saccharide clusters, and 28 were putative clusters of unknown type, as identified by the
ClusterFinder algorithm (19).

Data availability. The complete circular and linear chromosomes and plasmid
sequences described here are deposited in GenBank under the accession numbers
CP036358 (circular chromosome), CP036359 (linear chromosome), and CP036360
(plasmid). The SRA accession number is PRJNA523206.
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