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ON THE GENERAL FORM OF THE CROSS-SECTION 

* OF DEEP INELASTIC COLLISIONS 
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and 

** Christiane Leclercq-Willain 
Universit~ Libre de Bruxelles 

Physique nucl~aire th~orique, CP 229 
Boulevard du Triomphe, 8~1050 Bruxelles 

ABSTRACT 

The general form of the energy-averaged 11 macroscopic 11 cr?ss­

section for deep inelastic (DI) collisions is derived on the basis of 

semi-classical approximations. The amplitude for DI reactions is 

t'elated to the incompletely relaxed part of the fluctuating S-matrix. 

The poss·ibility of diffraction effects modifying the DI cross-section 

is investigated. In the limit of a classical treatment of the external 

variables, the average DI cross-section is shown to be uniquely de-

termined by a classical distribution function . 

* This \vork was done with support from the U.S. Energy Research and 
Development Admi ni stt·ati on. 

**Maftre de Recherches au F.N.R.S., Belgium 
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1. Introduction 

In studies of collisions between heavy ions, a new type of nuclear 

reactions was discovered1-4) and termed "deep inelastic (DI)", "Quasi­

fission (QF)" or "heavily damped" reaction. In fact, the first indication 

of this reaction mechanism had been seen in a rather early experiment5) 

in 1959 which was not followed by more extensive investigations. 

The most prominent features of the DI reactions are: 

i) A substantial part of the initial kinetic energy of relative motion 

is transferred into other degrees of freedom, so that the final kinetic 

energy of the outgoing fragments is close to their reciprocal Coulomb 

energy in a contact configuration -which is the situation encountered 

in nuclear fission {"quasi-fission") 

ii) The angular distribution of the final nuclei is not symmetric with 

respect to 90° (CMS), thus ruling out the formation of a compound nucleus 

in the conventional sense. Instead it is peaked sideways or in 

forward angles depending on the system, on the energy of the incident 

particles referred to the interaction barrier, and on the final channels 

considered. 

iii) In recent experiments6), a gradual transition to isotropic angular 

distributions ~~has been observed in many systems as one moves to final 

states which involve a large transfer of mass and apparently a longer 

lifetime of the intermediate complex. 7) 

Recent surveys of the rapidly growing wealth of experimental and 

theoretical work are put together in ref. 8. Apparently, there is 

general agreement that we ought to look at the deep inelastic reactions 

a·s a phenomenon of partial relaxation of certain external, "macroscopic" 

variables, which, in a lowest approximation, can be treated classically. 
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Thus several authors9-14 ) described the reactions in terms of classical 

equations of motion for certain 11 external 11 degrees of freedom with the 

inclusion of friction forces to describe the coupling to the 11 internal 11 

variables. Derivations of these equations have been given from per­

turbation theory of the couplin~ between external and internal degrees, 15 ) 

linear response theoryl 6) and the Mori formalism. 17) These theories 

yield only the mean values of the external variables. 

Distributions of these variables were obtained18- 20 ) on the basis of 

Master- or Fokker-Planck equations invoking diffusion or transport processes 

between the nuclei in contact. Different derivations of these equations 

were presented21 ,22) also leading to different types of Fokker-Planck equations.* 

A somewhat different picture is pursued by Broglia et ~and 

Glas and Mosel23). Here the usual semi-classical theory of nuclear 

reactions is extended so as to include the excitation of a large number 

of intrinsic excitations. In the case of the work of Broglia et ~. 

the excited modes are harmonic vibrations. This is reminiscent of the 

theory of atomic and molecular collisions where the excitation of vibra-

tional modes is known to be the main origin of the damping. 

In all the theories, the cross-section for DI-reactions involves 

only squares of amplitudes, i.e. probabilities. It is, of course a 

prerequisite of any description based on classical statistical mechan­

ics that the cross-section can be formulated as a function of proba-

bi 1 iti es only. 

It is the purpose of this paper (i) to investigate the conditions 

for which the cross-section of Dl reactions is a function of .. coarse 

*footnote: In this respect we also wish to draw the reader's attention 
to a very recent prep1~int by D. Agassi, C. M. Ko and H. A. Weidenm ller, 
MPI for Kernphysik, Heidelberg, which arrived after completion of our 
paper. 
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probabilities" only, 

0i) to establish the connection between the coarse probability and the 

basic S-matrix, 

(iii) to find out whether and how diffraction effects may influence 

the DI cross-section. 

In any case, the actual experiments involve an averaging over 

the energy of the incident beam and a summation overall the microscopic 

final channels which are compatible with a few measured "macroscopic" 

observables like the scattering angle, masses, charges, and excitation 

energies. We shall argue that interference terms may be disregarded 

on account of this double averaging procedure. 

Our final result will be that the measured average cross-section 

for DI reactions can indeed be written as a function of a macroscopic 

probability distribution only. In order to achieve this result we 

proceed as follows: 

(i) We define the quantal amplitude for DI reactions as a function of 

the incompletely equilibrated part of the fluctuating S-matrix (§2.1)~ 

(ii) We evaluate this amplitude within the semi-classical theory 

using, separately, the pure "stationary phase approximation" (SPA) 

(§2.2) and the SPA with sharp lower and upper angular momentum cut-offs . 

(§2.3). The sharp cut-offs are to represent the effect of a sudden 

onset of direct and compound reactions (and thus "absorption") as 

a function of the orbital angular momentum while the pure SPA may be 

applied if this transition turns out to be very smooth. 

The cut-offs result in diffraction effects which are consecu-

tively smoothened by the double averaging process. 
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(iii} In§ 3, we perform a summation of the microscopic cross-section 

within "coarse cells" defined by external variables only and show that 

the resulting "macroscopic cross-section" may be calculated, once a 

classical distribution function for the external variables is known. 

As will be seen, the theory leans on the use of the "Poisson 

representation" of the reaction amplitude24 whose different discrete 

terms are semi-classically related to the number of revolutions of 

the intermediate system. We assume that at least that 
shows 

reactions which;a strongly peaked angular distribution 

to the"no orbiting term"of the Poisson representation. 

part of the DI 
D! 

(~~) is due 

Therefore, 

only this term is considered in the chapters 2 and 3, whereas the 

generalization to arbitrary numbers of orbitings is presented in 

appendix Al. Appendix A2 contains an improved Airy treatment of the 

rainb01'J region. In § 4 we summarize the results and lay emphasis on 

critical physical assumptions as well as open problems. 

.. 
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2. The General Form of the Amplitude for Deep 

Inelastic Heavy Ion Reactions 

2. 1 QUANTAL FORM OF THE DI A~1PL !TUDE 

We only consider experiments with unpolarized beam and target 

particles and without measurement of the spin direction of the outgoing 

particles. The cross-section of any reaction with two final particles 

is given as a function of the reaction amplitude 

by 

a lb.rl} Izr..: d.;];~ I.u ____ 1 ___ --:--
dYll r• - - - fP;a.+I)(ZI;vltl} 

/. . 2' ~If lfp Iy li:y< /Zd. 11;"' J;., ltu I (2, 1) 

where and #;~J /0oc (Ny3/ #7) 
are the intrinsic spins and the corresponding magnetic quantum numbers 

of particle 1 and 2 in the entrance (exit) channel <X (f); A..~, md (Jipi ·m;) 
are the relative wave number and reduced mass in the entrance (exit) 

channel~(('). Transforming into the representation where the intrinsic 

spins are coupled to the channel spin /)o( r~~) and its projection 

Ma(~1r) we find: 
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Referring to the coordinate system S defined in section 2.2 and to the 

CM system, the reaction amplitude in the channel spin representation 

is given by 25 ) 

where £a(16) is the orbital angular momentum in the entrance (exit) channel 

and I is the to~al angular momentum. The symbol a(S) denotes all the quan­

tum numbers not explicitly listed which are needed to completely specify 

an entrance (exit) channel. Since we do not consider the elastic channel, 

we, henceforth 1 drop the term with J"'f> ~i.t..£{'> in (2.2). FUI~themore. in what 

follows, we omit the explicit listing of the quantum nrs Ila' I2a' IlB' 128 
for the amplitudes. 

For heavy ion reactions, the summation in (2.2) extends effec­

tively over a wide range of orbital angular momenta, and, at the same 

time, the main contributions originate from angular momenta which are 

large compared to 1. We may, therefore, use the following asymptotic 

approximations for the spherical harmonics and the 

.ff. . t 26 ) coe 1 c1en s : 

Cl ebsch -Gordan 

•·, 
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. 
l(<lf 

~ (V; r) ~ f r~ /h;/DzT "~ .t'- fl t 7t .4m if L :; 

H ~ q,_, - ,01 
valid for >-»1 in the angular range ·.~ ( {/ "- z- A 

.( J: ?»; 4 m / J;_ m.z. > "'=::.- h /j P (tJ oe tl) 
~, --<'7 - m / I 

I :Z. J 

valid for ) 2 >> <S with a defined by 
/ 

~ -
;r~ (J: 1- !)' 

In heavy ion reactions, the orbital angulal~ momenta ,;:;
1 

fwhich effec­

tively contribute to the cross-section are large compared to the 

channel spins in the entrance and exit channels: ~ >) 4~ / f >;'>~ · 
Since the projection M

6 
is of the order of the channel spin quantum 

nrs ~tX. J -t we have 

?r 
{{7:) tx = -.2. 

We, therefore, use the asymptotic formula (2.4) with 

for both the CG-coefficients in (2.2) . Inserting (2.3)-(2.5) into 

(2.2), introducing the nev.J summation variables tfo' =(I-f)/ 
~~:;:: {I-~.};/=~ and using the Poisson repl~esentation 24 ), v.Je arrive 

at the following form of the reaction amplitude: 

{2.3) 

{2.4) 

(2.5) 

{2, 5 I) 
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We use the D-functions in the convention of ref. 27. The integrals 

--(t-) 
I l,.f I IV/ I 

1{-x:_ I {6 p 

rr:t) 
- I I 

~~r 

, . 

are defined by 

Tl/nf)(rfo;-_!;rr) . /p J 

(2.6) 

e 5~ MI. AAI (,(/ j1f.' 1f> I tX'..dd lti (2. 7) 

In (2.7), .._..,~"" M'. ,.~ ..... !1' (f'}is the quantity obtained by 
I J . fl' y> I U\J J.:J_ (;{ 

replacing the variables I, l ,£a in Sfi A t1f .. · A ll a fJ • /.Jf.> ..<- ex. .. /,.>.,/ /...t 
I I ( I v .... c.._ 

by the vari ab 1 es /1. t16 f 
..x.. I f • I 
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So far the only approximations used are the asymptotic expressions 

(2.3) for the spherical harmonics and (2.4), (2.5) for the Clebsch-

Gordan coefficients, both of them valid for large orbital angular 

momentum. Therefore, the reaction amplitude (2.6) still describes 

direct, deep inelastic, as well as compound nuclear reactions. The 

summation index p in the Poisson rep1~esentation may be classically 

interpreted as the number of orbitings (see eq. (Al- 12)). Con-

sequently, one expects that for compound nuclear processes all the terms 

of the p-sum in (2.6) are of comparable importance. On the other 

hand, semi-quantal treatments of direct reactions have shown that con-

tributions from orbiting trajectories {p * 0) are unimportant except 

close to resonances of given partial waves where anyhow different 

approaches are ~dequate28 ). 

For DI reactions, the question whether the terms with p=i=O in 

(2.6) are of importance is still open to discussion (see appendix Al). 

In order to single out the DI reactions from the total amplitude 

we proceed as follows: First we decompose the S-matrix into an energy-

averaged matrix < S > which describes the di1·ect reactions, and the 

fluctuating part 

(2 • 7 I) 

(2.8) 
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The average <A> over a quantity A{E) depending on the total energy 

E of the system is defined by 
£+4 ...e. 

<A (E)> : ~ JaE' A (E') 
E-L1 .z. 

The energy interval appropriate for defining the direct amplitude is 

of the order of 1 MeV. The fluctuating part of the S-matrix contains 

both the compound nuclear and the deep inelastic reactions. We define 

the formation of a 11 Compound nucleus., (occasionally referred to as 
crv fl 

11 Complete fusion") to be described by that part S of S which 

corresponds to a statistical equilibrium of all the degrees of freedom 

(2. 9) 

of the intermediate system. The remainder s01 represents the DI collisions 

where only a partial equilibration is achieved, more precisely, where 

a limited number of external (macroscopic) degrees of freedom do not 

reach statistical equilibrium: 

(,!) 5
C!V 

j3~ ~~;' d~,: ft.:! 
(I') i-

-f 5nJJI (L') 7' 4j3 /jy : · .x /.I._: /f-c I 
The decomposition (2.8) and (2.10) entails a corresponding one for 

the total amplitude tis "'jJ 't ;' d 4~ ~ 

(2.10) 

• 
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' 

{ ~ ts 1ft i dd,c #a > 
(A/ 

~"}1~id/.ld~ 
JJI 

f- ~/.)/> 'J.I / eX 4 ~ 

< r~~ It;/ ot4 4 > 

I~ leN /or The explicit form of the amplitudes , . ~nd is obtained 

by replacing the matrix Sin (2.6), (2.7) by sl'f, SCN, and 

s01 resp. 

As already mentioned, only the term with p=O is of importance for 

·the evaluation of the direct amplitude and all the terms in the p-sum are 

expected to contribute for the compound nuclear amplitude. 

As for the number of tenns of the p-sum which contribute to 

the amplitude for or-reactions, the following simple classical estimate 

may be useful 8 '18 ): The number p of orbitings is simply related 

to the lifetime T of the intermediate nuclear system : 

The stationary phase condition for the integrals (2.7) will be shown 

(appendix Al) to be (~scattering angle) 

--
where ~A as defined in eq. (2.29 ), is classically interpreted 

«./. I 

as the deflection angle. This angle measures the orientation of the 

(2.11') 
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'' 
vector joining the centres of the outgoing nuclei with respect to 

the beam axis including full rotations during the collision. Apparently, 

p >' 0 determines the number of orbitings. Multiplying the classical 

relation 

(I.ft =angular momentum, :;1 =moment of inertia, {J =angular 

frequency) by the contact time z- and putting 

the relation 

between the lifetime t and the number of Ol~bitings. 

, we find 

Moretto ~~~8 ) find that for final channels with large mass 

transfer the angular distribution ~pproaches the one of a compound 

nuclear reaction. If, on the other hand, the final masses are far 

from the equilibrated values (i.e. if only a small mass transfer has 

occurred), the angular distributions are strongly peaked. The con­

tact timer is an important parameter in the diffusion model 18 •19 ) 

and can be determined from the measured mass transfer and the 

angular distribution. Since the angular momentum hft and the momen­

tum of inertia._.7 are grossly known, this leads to an estimate of p. 

From this analysis it appears that the "least l~elaxed" part which 

is characterized by strongly peaked angular distributions, is described 

by the term with p = 0 of the Poisson representation. It may even 

be so, v-1ith less certainty, for the strongly relaxed part. In appendix 

Al we shall discuss in more detail different ways for the system to 
J>I 

acquire an almost isotropic angular distribution&%-. 
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In the main chapters, we treat the case that the DI amplitude 

is described by the p = 0 term only deferring the more general case 

to the appendix Al. Henceforth, the amplitude for deep inelastic 

reactions is thus defiried to be 

JJI 

~ "'/3 If;; t( 4i !!,;_ 

I 

by replacing Ulc total S-matxix by the incompletely relaxed part s0I 

of the fluctu3ting S-matrix. We extract from the matrix SDI a factor 

\'lhich describes elastic scattering by the real potentials in the 

t d . t h l th d f. . t • RDI b 25) en ·ranee an ex1 · c anne s, us e 1n1ng a ma,:nx y 

(2.12) 

(2.13) 



where 

. -.-

-14-

We implicitly assume that the elastic phase shifts c£ ~} 
1 
~ 0 ) 

vary insignificantly as a function of the energy E in the interval ~ 

which serves to define the direct reaction part. This is incorrect 

in the region of narrow shape resonances which we believe to be of 

minor importance for the dominant part of DI reactions. 

Note that the phase shifts should correspond to elastic 

scattering at the kinetic energy E~~ : = E - E8 , where E
8 

is the sum of the intrinsic energies of the two nuclei in channel 

8 and E the total energy. 
{!) 

The exp 1 i cit form of the integra 1 s I I I is thus 
/t~ 0 

- fat (/t; / /'t/ ts !f.;~! (-) ifo~. 
rj):flT 1 I (_t) 
1}3~ ;p / d --1d ;t . 

where -1J = f / and the phase function 11 'Z is defined by 
t /lc<:.f 

1xr 'l (/; /fo~) : = cf (/ r lfo~) r cjdt)- f /?!~ l) /} -f} 

The energy-averaged cross-section is given by 
. •' 

(2.13') 

(2.14) 

(2.15) 
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(2.16) 

+ interference terms 

with the following definition for the different parts: 

(2.17 1
) 

(2.17 11
) 

f- c. 1> (2.17'" 



-16-

As usual, it is implied that the wave numbers ka, k
6 

may be treated 

as constant within the energy interval 6. The index B{a) includes 

the intrinsic spins 116 , 126 {Ila' I2a) whenever these are not explicitly 

noted. Because the phase of the amplitudes f=N and for are un-

correlated, the energy average is expected to make the interference 

terms very small. This will be even more so in the actually measured coarse 

cross-section {see § 3) due to the summation over many microscopic 

channels B. 

The experimental separation of the OI and truly compound cross-

section is problematic only in the case of almost completely relaxed 

Ol Pl'Ocesses. The separation of the direct cross-section from the OI 

is difficult whenever both cross-sections are non-zero for given 

final channels B . 

We now turn to a more detailed evaluation of the cross-section 

for or reactions. 
I I 

As in ref. 25, we wish to interpret the summation over tl1a M13 
in (2.12) as a rotation from the 11 focal 11 coordinate frame SF into the 

ordinarily used system S. These coordinate systems are defined as 

fo 11 ovJs: 

+ -~ e and e lie in the reaction plane; 
xF YF 

-+ 
e

2 
is perpendicular to it. 

F 
-+ 
ex points in the direction of the symmetry axis of the classical 

F 
trajectory defined by'{j-JaB, such that the point of closest distance 

-+ 
(A in fig. 2.3) has a positive_ x.F -· value. The direction of e 

ZF 

* footnote on page 18. 

•. 
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is chosen such that the asymptotic initial point of the trajectory has 

·a positive xs-value. In fig. 2.3 we show the two frames and a trajec­

tory. The two coordinate systems differ only by the direction of the 

coordinate axes, the origins being the same. The orientation of the 

reaction plane in space is defined by the azimuthal angle ~ of ex 
s 

and the wave vector ka . If the common origin of SF and S is at rest 

in the laboratory {moves with the center of mass of the system) SF and 

S are laboratory (CM) systems. 
t t 

The proof that the sum over M~ , M
8 

can be interpreted as a 

rotation proceeds in 3 steps: 

{i) Using again that the angular momenta are large compared to the 

channel spins { ~>)4~i ~>>/.y>) we may interpret the quantities 

N},
1 

ly{ as projections of the channel spins /.J:; ~ on the Z-axis 

of the focal system sF25 ,33). 

This can be seen as follows: 

The Z-component of -~ in a state / ~ 4~ I~ > of the 

coupled representation is defined as -('./;/.)~I Jtt /(.Jc.<. ).zp/ 

!' P A I /'i) The asymptotic form {2.4) of the CG-coefficients leads .{..<, / {;{, t.l( / I' 

to 

* {footnote from page 17)· 
We note that the orientation of the focal system depends on the choice 

of the EULER angles and the definition of the 0-function. Our choice of 
SF implies the definition used in ref. 27.:,. . "' . A 

o_!...,, (<'1,/J): = ~j m J e-,~x.Iz. e -<j'>r, e -ttJk_ /;j'WI ~> ~ 
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Since, in the focal system, we have 

~I 

we may put a ~ 0 and thus arrive at 

(t4I~ lf4Jr/r(-4:IJ:t. > ~ 

~ (J;_m (t;t;t7)/ 
Vv ) ·~ ~ 

17~. 
,{ 

11~.< f ~· ::.- /t 
(2.18) 

(ii) Within the validity of semi-classical approximations the amplitude 

jf_JJZ (f) \IJhich Hself is independent of the 
(3 /.};0 /~I/ ,;i ~<' 0 I 

choice of the coordinate system can be shown to be equa1
1
apart from a 

DI(SF) tt I ) phase, to the semi-classical reaction umplitude C r ->.J f3-t>1// 0:-<Jv{ ~/ / ~ - 'Cb 



U' ' ,J I 7·; 'j. • . :.; •. •' . J ,., \ ; l t • )' 1 . }' •• 
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calculated in the focal coordinate system25 ), i.e., we have 

The quantity on the righthand side of (2.19) is referred to the focal 

system and transforms under rotations as the direct product of irreducible 

defined in (2.15) depends on 

tensors of rank /.J~ and ~o( 

(iii) Thephasefunction ~p~ 
/'0.~ :::::: ~ -k An interpretation of the sum L 

1 1- !K'II~ 
as a 

rotation is only possible if this dependence may be approximated to 

be linear. SinEe for DI processes the transfer from orbital into 

intrinsic angular momentum may be 

l 0 units ;/(:) we expand Z./' 'I 
an average va 1 ue 

quite large (say of the order of 

not around :)1: = V but around 

of the "angular momentum mismatch." A coarse average of. (ic;.ir) can 

be calculated from distribution function d
0 

to 

chapter 3. An expansion of Jxp Y(_ ( _/
1 

11}.·...:.- ) 

linear order leads to '1 

be introduced in 
I -

around /~s -=Af up to !·( 

(2.20) 
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From (2.15) we have 

(~! l~~=,;l 
where the "quantal deflection functions" ~ are defined as 

and ana 1 ogous ly for X.-> j3 . 
Substituting (2.19), (2.21), and (2.22)into (2.12) and (2.13) 

\'Je find 

}JI 

~1' /~JI· lX>{ot /"?. 

with the definitions ((,""±I ) : 

, -.. -
0 

•. 

(2.21 r 

(2.22) 

(2.23) 

(2.24) 

(2.25) 
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7Jf (-ot <) -Y) -
~ml l/1/1 ~/ 

?/~ ;v; 
.-JJl 11/ I ,XI (J/ /) 
71- 1&: til Ac) 

Since the first Euler angle o(_ == -_ 
2 

!X · depends 

on the var·iable / , the amplitude defined i.n (2.26) has no simple 

physical meaning. 

shall compute the 

In the subsequent sections of this chapter we 

integrals /l t in various approximations. 

vf%·~ 

(2.26) 
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2. 2 SEMI- CLASS I CAL FORf~ OF THE DI AMPLITUDE 

If the matrix C ]>I (f'. 19/(/.;.A/)) depends fJ ,jt: f!jj / {)(_ /JrX t1tX. / ~ ' 
smoothly on the orbital angular momentum ~.throughout the whole 

integration domain, we may evaluate the inte~ral ~ ( by the 

~~ 
"stationary phase approximation (SPA)." A detailed discussion of the 

validity of this method is found in refs. 29. 

The main contribution to the integral (2.25) originates from 

the vicinity of the stationary points -~;:;'~~)of the phase 

which satisfy the condition 

Here we have defined the microscopic average deflection function 

~ (L) by 

(2. 27) 

(2.28) 

#:. l,t): = _l_ ;;&! (£f.<!Z)-A/#(/14Z) I ~ !I'Jj (2.29) •y.> (A/ ~ L 'L.x a 'f> _.. 

If the "average angular momentum mixmatch" ;;J is ~a 11, ~ (t') becomes 

the mean va 1 ue of i!f and ~ independent of .(jf : 

(2.29') 
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For each scattering angle and each sign ~ , eq. (2.28) 
(ps 

defines in general a finite number of solutions ~"'"! (it; j3) . + 
Restriction to real stationary points implies that we neglect ~ 

dftc~ 
for attractive scattering 

scattering (~f > {f) 

c{~ 
7- = {/ 

ri~1s 

for repulsive 

for-

This signifies that the index { is henceforth given by 

t= ~'2 '$ (f:2) 
Let ~(> ff.Jt) be the inverse of the rea 1 deflection function 

!f)i (A!) . In fig. 2.2 we show a typical case of deflection 
.-,;_p 14 I" A4t 

functions v:, !/Jt. • and G.-.:~ll at energies E above the interaction 
.x; '?..S ;-

* barrier E1 ; in fig. 3.1 an inverse deflection function is seen 

in a case where negative (attractive) deflection angles also occur. 

Whenever there are rainbow angles ( defin. see ( 2. 41 ) , ( 2. 41')) • the 

inverse deflection function is multi va 1 ued. We denote the different 

branches by ff .(GJ} where the index )7 = I, · ' "1 IV designs the 

branches of ~f (~)in increasing orde1~ of the angular momentum. 

The number N of branches is equa 1 to N r- -1-/ where N,~ is the number 

of ,~ainbow angles. Restricting ourselves to!:~~ stationary points 

only, \'/e may denote the solutions of (2.28) by the same index v. 

ifootnote, see p. 24 

(2.30) 

(2.30') 

(2.30") 
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Since the scattering angle ~ is by definition positive, real solutions 

_fv;(~f}of (2.28) occur only for y~;.J if rBJ;;>O and for ?:-/ 
if "i(t < r/. In genera 1, for given J' and 11 , not each branch of the 
~ L s 

inverse deflection function conta,j~s a stationary point /yl (~ (J}. 
Henceforth, the symbo 1 L s i gni fi es a summation 

over a the real solutions 
("'1 

[. (:V.A}of (2.28) (or, later, of (3.26)). 
· Jln t I 

In evaluating the integr~l ~"ZM we qistinguish the case 
Il. I s I ~ I I() 

(A) that the derivative 'u;_~ {fv't) is substantially different 

from zero and the case (B) that it is close to zero: 

(AJ 

(?J) 

In case A we expand the phase ~~~ up to quadratic order around 

A.r If)~ A? 1£5 )f ~ u:J 'l-/._;)2. ·Y' ( / L~ {A J/ z :1 (A_ r t 

"* footnote from p. 24. 

The function of fig. 3.1 is -to represent the ·inverse of an "macroscopic" 

deflection function tfi(~·d). Its featul~es are the same as for the 

"mi cl~oscopi c" functions ~ 1.\ 'v{(, • 

(2.31) 

(2.32) 

(2.33) 
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,replace /by 1,-; in the remainder of the integrand and evaluate 

the resulting integral. One obtains 

with the definitions: 

0 
or 

and 1 

[: = ~'}12 ~~ ()) 

c; (1): ~ f!/&tch () )/ 
1 

I 2 
The, complementary error (unction is defined by30) 

00 

,Z ( -t2. 
~lf: z :== f? .. J e tit 

z 
and has the asymptotic limit 

/,!m~· -"t 
~~!-> 00 

(2.34) 

(2.35) 

(2.35') 

(2.36) 

( 2. 36') 

(2. 37) 
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I s . 

/~~,~y ( /;%- ) / ;/ s 
"r _( - /{? >> / we thus have the simpler result For 

~ (4) 

which is equivalent to extending the integration in (2.35) from -~ to +.oo. 

Our basic assumption is that the amplitude c!I ~ . M ~l{}j) 
~ r~ I ('J 1 £X/.U, b<:. 

is a smoothly varying function of the orbital angular momentum ~ 

It is consistent to assume in addition that it depends smoothly 

on the rotation angle 1tt._ (/ f- L1f) · . We may, therefore,. ,.. 

approximately replace the angle lf?i f/ 5 rL.t!) by rfJ!. (/;2
5

)= 1Jjt': 
. <X (Apr / «:p c 

(2.38) 

(2.39} 
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can indeed be interpreted as the original amplitude (2.19) transformed 

from the focal system SF into the systemS defined in section 2.1. This 

is demonstrated in fig. 2.3. 

We now turn to the case of eq. (2.32) implying that the angular 

momentum fiT~ { 1J'i f} as defined b~ tile SP condition ( 2. 28) is equa 1 

or close to an angular momentum )Is ~)corresponding to an extremum 

of the average deflection function (2.29): 

The corresponding deflection angles 

are called 11 rainbow angles ... 

Thet·e may be a finite number IV;- ~V of rainbow angles; in cases 

of practical interest N,::::J; 1 or 2 dependent on the nuclear inter­

action. A discussion of different types of deflection functions is 

found in ref. 31. 

(2.40) 

(2.41) 

(2.41 1
) 
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In the vicinity of an angular momentum lg" , the expansion 
.... 

(2.33) must obviously be carried to higher order which leads to the 

well-known 11 Airy approximation .. : Expanding A~l (f}up to 3rd order 
pr ~ 

around A-f 

{j (f)~;{; ({}f ft-4J~J:;}r ~-L//~'/4/ (2.42) 

)substituting fy' for J in the remainder of the integrand of (2 .25); 

and
1 
~;sequently1 ropl acing ~ (4"1#) by ~ /!;/~ 6):"'" in the argument 

of C leads to the following result for the integral 77 
J3"f> 11!', · oc1J.I/I/( . 0i 11, 

r;_ 'Z - ""J3 
)' t ~ (~ r .1)_{- t {; (4'/ Y.T ( /:'. ¥f 'J. '7 ~ r j ,. ( 2. 43) 

c/-t'/; I 'I~~ e ?J1~1 a4~ J 1 ~ hfl t'J···~ 
( ( JJ."') 11 • ·r)/ Z 

lf: == Joad' tl i ;(1-!/)f&/-y!;J+-;:L ·f!:rJls f (2.44) 

· iA ,{ e c;· 
() 

or 

(2.45) 

where 

........... 

l" : 2. 45') 
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The "incomplete Airy function" is defined by31 ) 

(>0 

At· (l;y) : = .z: jdt 
y 

and the arguments X, Y by 

I 

-(; 1 ~3 I . ~- ,JJ _{:= [ /{f" (L// i ~ l / ¥ f 

_ ..._....!/ (' (,f;}j 7J fr 
£ · 2 j A; 

Using the stationary phase condition (2.28) '"e may write the 

argument X as 
I 

This is the form \>thich lends itself t'ead·ily to the general case with 

orbiting (appendix Al). 

Some properties of the incomplete Ait~y function are discussed 

in ref. 31. If the stationa1~y points of the phase ( ;(t f j f 3 
) in 

(2.46) are far away from the l01ver integl~ation limit Y, one may replace 

Y by -oo, in 1vhich case the incomplete Airy function becomes the 

ot~dinary Airy function 

(2.46) 

(2. 47) 

(2.47 1
) 

(2.47 11
) 

(2.48) 
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where 

Afr)= ~: (2.49) 

-oo 
or, equivalently, 

(2.49') 

0 
Properties of the Airy-function are given for 

instance in ref. 30. A plot of the Airy-function is shown in fig. 3.2. 

The Airy appl~oximation is valid only in a small angular 

range ±!Jt(Ji around the rainbow angles rCJr-r- or, equivalently, in 

a small range ±f>f around the rainbow angular momenta ~ycr_ Within 

the accul~acy of the Airy method, ~tie may replace the arguments ~r- and ;6}...,.... 

by ~; ( iJ;/'} and '\f; /Z; ) ::: 7 ih , respective 1 y, in the first three 

smoothly varying factors of (2.43). Within the rainbow region, the quantity 
41 

~:lfo 
thus assumes the form 

In order to write the general result in a concise form we introduce 

the following function: 

(2.51) 
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e
0 

is the ordinary "Heaviside function 11 

J 1 for z > 0 
8o(z) = l 0 for z<O 

We imply that .4ftv.!} vanishes for all angles .J', if the deflection 

"' function it refers to contains no rainbow angle. 

Then the quantity c;/,~ Z may be given the form 

~'0 

(2.51') 

;V 1 • A '? 1 ll s) __ 
- L_ 1 (1/ 1 -?)£ e t ·C/' f£,7 cy1 f'>) /J./) 

)7=/ z ~?if~/·~-<1~/k '! 

114 
-~sr~tt;; /! iu;;tj f 

f=l ;v,.. / 

~ Tf-11<~'/Zr!t;J 
J.z:! - (2.52) 

! --, 
where ,4<ft , ,z/ and ·¥ ~-regiven by (2.27), (2.35') and (2.45) 

resp. The stationary points 4-y ( l';f) are the real solutions of 

(2.2~) -~nd i is defined by (2.30"). The reaction amplitude 

flflL u (~ w) is obtained by substituting (2.52) into 
J"j.L/y!> I "f0 / d /J.i. /'1.x_ I 1 

(2.24). "The summation over IT can be interpreted as the superposition 

of the contributions of all trajectories (repulsive for r= 1-1, 

attractive for ~=-I ) which asymptotically end up with the same 

scattering angle [f Whenever more than one term is of appreciable 
?'JI 

magnitude, the cross-section $,& (see (2.17")) contains interference 
a-'-

tel~ms. The question whether these interference terms are of impol~tance for 
the measured energy-averaged cross-section will be treated in§ 3. 
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2.3 SEMI-CLASSICAL FORM OF THE DI N1PLITUDE INCLUDING DIFFRACTION 

EFFECTS. 

So far we neglected the influence that direct as well as compound 

nuclear processes may have on the amplitude fDI of DI processes. 

Physically, the main effect of these channels is to produce the imag­

inary part of an optical potential which acts in the subspace of the 

DI channels. This absorptive potential may generate diffractive 

phenomena in close analogy with the scattering from a black body. 

Such diffraction effects are known to be a dominant feature in direct 

reactions as described by the DWBA and have been beautifully visualized 

in the theory of W. E. Frahn 31 •33 -35 ). In what follows we apply the 

same methods in the description of DI reactions. 

We assume that the effect of the imaginary potential is to 

confine contributions to the amplitude fDI to a limited range of 

orbital angular momenta. A drastic way to achieve this is to intro-

duce sharp cut-offs. Let us thus assume that DI reactions only occur 

if the orbital angular momentum ~in the entrance channel is smaller 

than a cri t i ca 1 va 1 ue If.,; and if the orb ita 1 angu 1 a r mom en tum t in 

the exit channel is larger than a critical angular momentum /1(' 

(2.53) 

(2.54) 
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The cut-off parameter ;1o( depends on the kinetic energy ~in in the 

entrance channel a. The meaning of the upper cut-off is that partial 

waves with fx_ >f1o( do not penetrate anymore into the region of strong 

peripheral overlap and thus do not contribute to or reactions. 

The lower limit 11[;- might be defined as follows: 

Let us assume that for 
the /IJ<0 the tota 1 al1

1
angular momenta 

average potential in the exit channel 13 exhibits a "quasimolecular 

va 11 ey" with the top of the outer barrier being E 1 (if; p) . 
Let us then define )Jt by the requirement that the kinetic 

energy E~in in the exit channel is to be smaller than the top of this barrier 

r.1easured 

for all 

with respect 

EJ.~ < 
f f 

~<10· 

to the asymptotic intrinsic energy 

EI {1~, pJ- !p 
If defined in 

is at most equal to the limit /1p 
this way, the cut-off parameter 

{11)'f- /1;) and depends on the 

final kinetic energy. 

The underlying picture is: Whenever, as a result of energy 

dissipation, the final kinetic energy falls below the outer barrier 

of the effective final potential, the lifetime of the intel·mediate 

complex is large enough to achieve complete relaxation. Thus for 

~ <11t 
SCN(t) is finite. 

the 5 -matrix s01 (£.) ·is zero while the S-matrix 

We note that, in a large variety of cases, 10 ' 13 ) the measured 

fusion cross-section can indeed be understood on the basis of this 
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The relation between ~ and ~::= ~ is 

~=f., r ~ = /r ~ 
Replacing ~~ by the average angu 1 ar momentum mismatch .!J. £ , the 

restriction (2.53) takes the form 

""" 
_,( ,e ~ ({zk) -dL ==-4 (E~) (2.53') 

The condition that s01(~) and thus C~~(S) (~) is only unequal to zero for 

-~ <' £ < /[ can be taken into account by redefining the 

integrals (2.25) as~ 

Z 7 J vc(t Jj_ t//t)(/,&!)-Lif.rff;f/!4?/J 
u #It; 

a/ :tfx e z . 
.xj/.5 F - . 

A; , ?.L (S) (_;; 1ff (/N/J) (2.55) 

(J~ ~/oC~v<l~ 
As in section (2.2) we evaluate this integral under the assumption 

')JI(5) · - 1 l 
that the amplitude CA !1 ,/-1M (~ffj/;..4.()/ varies 

I "' /.Jf) .'/> ; ve- {.,( , fX 

smoothly as a function of~ and;f!t. in the whole domain of integration. 
Ot. 

A) In the l~egion far from rainbow angles we obtain again the result 

~ (J): (2.56) 
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and evaluated as 

l;fJ)= L::;) etEl/,t;fcfe-tE~rVf(-1. 

The quantities E and C
0

(A) are defined by (2.36) and (2.36•) resp. 
y--

B) In the region close to a rainbow angle ~ , we retrieve the 
,.__ J 

result (2.43), but with the integral Jf being defined as 

(2.57) 

,._ ¥ 

2~ j ~;f·li- c/t(t-h1/(ttif':{zf!')t- ?f-/f7~A,11(/,'j? (2.58) , // /} e / ;x;l.) r _; 
~ . = L U.t . t;.> 7 -

1/f­
,1' 

and evaluated as 

: I 

Z;f = /rz/;~~~;471/A·~~ J)-J(/;jl (2.59) 
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Here, [and A are again defined by (2.45') and (2.47") resp. 

The second arguments have the form 
I r: = z-/1~i (ij/Jf A/-4/ 

){: z-j!~(!jlj'lz -~/ 

The general form of 

with Ll~ and 

tt;:_ quantity 0t7/'t 
7f b. <>~-.~ 
(;,~ e1 ng g 1 ven 

persists to be (2.52) but 

by (2.57) and (2.59), resp. 

(2.60) 

(2.61 ) 

While the sharp cut-off approximation has the virtue of simplicity, 

its quantitative predictions may be altered appreciably by the more 

realistic assumption of a "smooth cut-off" 31 ). On the other hand, the 

smooth cut-off prescription implies a knowledge of the reaction amplitude 

in the vicinity of the cut-off parameters or at least a parametrization 

of it. This seems to preclude a form of the final (coarse--gained) 

cross-section depending on probabilities only. The coarse average leads to an 

averaging over the cut-off parameters we introduced. We presume that thereby 

the defects of the sharp cut-off assumption, are alleviated . 

• 
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3. The Cross-Section for DI Reactions 

3.1 THE AVERAGE OVER COARSE CELLS 

In an actual experiment, a complete determination of all the 

quantum numbers A~;~ of a final channel is usually not possible. 

At an energy of some 100 MeV or more above the interaction barrier, one 

will usually only determine a limited number of properties of the 

final state. Using the terminology of statistical mechanics we may 

say that in the HI experiment we determine only the distribution of the 

system over 11macroscopic 11 or 11 Coarse 11 cells of phase-~;pace which are 

defined by a limited number of 11 macroscopic va1·iables 11 
i 

1 
•• • a{ - a. 

The most important examples of such variables are: scattering angle, 

charges, masses, kinetic energy of relative motion, intrinsic angular 

momenta of the outgoing fragments. 
the 

In order to vwitejformulae in a concise form we define the 

first observables a1 ... 

angle, the wave number k8 
m8 in the final channel: 

a4 to be the polar and azimuthal scattering 

and the reduced mass 

(3.1) 

(3.1 11
) 
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The measured "coarse" cross-section for DI reactions is obtained 

by summing the energy-averaged microscopic cross-section (2. 17' 1
) over 

all the final channels which lie in a given interval (a,a+~a) of the 

measured macroscopic variables: 

ala}Jz 
(3.2) 

The symbol (a, a+~a) signifies the interval between the macroscopic 

observables a1 .•. af and a 1 +~a 1 , ..• , af+~af. The summation over the 

"coarsecell" in (3.2) as well as the energy-averaging which is already 

. 1 . . . h d f. . . f fs-l./ . 1 . h . f f 1mp 1c1t 1n t e e 1n1t10n o .- '..!1.. 1mp 1es tat 1nter erences rom 

different trajectories annihilate each other to zero due to the 

randomness of their phases. This also holds for the interferences 

(2.17 1 
• •) between compound and deep inelastic amplitudes. 

We thus obtain from substitutions of (2.17 11
), (2.24), and (2.52) 

into (3.2): 
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l [' 

(3.3) 

The quantities and are given by (2.57) and (2.59) 

if diffraction effects at~e importunt, and by (2.35') and (2.45) resp. 
(f/5 I) §S 

if they are unimportant. We have replaced { -r'vt f _T by A 11't in (3.3) 

since the orbital angular momenta at stake are always much larger than 1. 

Furthermore, we have assumed that the variatbn of the stationary 
s ' 

angular momentum J;Z (11.~·f} within an interval of length 6 of the total 

energy is negligible. 
jl r- r- J?J I 

A~alogously, we consider the quantities ~f 
1 

1if} 1 ~)> 1 
1¥ 

and ~ as being constant v~ithin the averaging interval of the 

energy except if these quantities appear in the argument of rapidly 

oscillating functions. 

If one finally ass~nes that the energy averages of the probability 

/c .?JI (5) 2. 

I and of the remaining factor are 73 /}'1 f-_0; 'd --1ve: 11vt 
uncorrelated, one arrives at the following result: 

J 
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with the definitions 

(3.6) 

A (A) . ! 2 lj /-I z I , 
. ·f ; : = j If;'(~/(. I </A//;;: )j > f- < ;Yhfr:% /) 

-2 Jle <AlA; ;:)A/t; tJ>j (J.l) 

-l;tlJ: = ;,e/().)1/( Fr-fr;,a)f1!-J!f i<Fr/GPJflrJ!P 

!>' . 

In tl (z~~) the index r is given by (2. 30") 
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The Fresnel function is defined by31 

&(XJ:=/Im/fe-'Efx_}j
2 

/ /P.ftj/r~J/
2 

Furthermore, C
0 

= C
0

(A) is given by (2.36 1
) and the arguments 

XJ lz by (2.47 11 )J (2.60), (2.60 1
), resp. 

Making use of the relation 

where the 11 Fresne1 integrals .. are defined by30 

z 

C(z): " fdt COj (J f 2
) 

0 

z 

S(z): 

0 

one finds the alternative form of BaB 

0 

~ = f~r </fcfr,)-Cfzz!/~ [5fz,)-Srz~J;> (3 . 8 .) 

Z;: c= If c. (l}t- )) 
z,2:: /![(~ (1/;-/7) 



-42-

The Fresnel function is shown in fig. (3.4) and the Fresnel integrals 

in fig. (3.5). 

We introduce the number ~~ A.t) of microscopic channels in 

the coarse interval (a,a+6a) and a "macroscopic" ("coarse.,) probability 

-~~ 

~Ja): = z 1 =l jt~J crp-~;~,;)) (3.9) 

;c (~ a;4a) ;Jtk tiiAv) - !>0 · 

_) v 
-L Otf> 

.. -
~-

(Jt-~aiLt<:tJ 

= L j~ Jj)-4/ ~q,;!/ ~~ ()) 
, ~ 

jJc-"!~tti/.f<l)- r>O 

The average of the function ~~ in the coarse cell (a,a+~a) is 

given by 

(3.10) 
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and the deviations of the functions ¥ and from ·the average 

values in the coarse cell by 

Lll!;fl : ""' ~ (/;; f4;jiJ) - 2? (a) (3.12) 

7j (a)da (3.13) 

Using these definitions, the measured coarse transition probability 

(3.4) may be written as a sum of a term which contains only the product 

of the average quantities and a second term which expresses a correlation 

between the fluctuations (3.12) and (3.13): 

I z'7j_(a) z;;_(a)LJa -~-
JY - -/ j 

f- 2_ )_ Lf~/> Liz~/ 
jJ-t{a_/u.d«) Y 

(3.14) 

We assume that the fluctuations of the functions ~/' and ..V-y-1 
are uncorrelated and that the summation is over sufficiently many 

states to make the second term in (3.14) negligibly small. Our final 

result is thus 

I L/ ?-fa) v; !a J Lf<-2 (3.15) 

1/ 

We are now left with the problem of evaluating the average quantities 

Pv(a) and ''li~,. from a theory which does not involve a detailed knowledge 

of the dynamics on the microscopic scale. 
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3.2 THE EVALUATION OF THE COARSE CROSS-SECTION FROM A CLASSICAL 

DISTRIBUTION FUNCTION 

We assume that the system is described by f
0 

external (macroscopic) 

variables. We denote the operators which represent these variables 

and their conjugate momenta by A; and i (A . ~ ~) =A, j-... i; :::f) 
{, "; j ;tv / 'IJ / 1/) / 

and the corresponding classical variables by A; and ~ . 

The decomposition of the degrees of freedom of a system into 

external and internal ones is based on their time-dependence: The 

development in time of the internal variables must be so fast that the 

"memory" of any initial state is lost after a time interval which is 

short compared to the collision time, while this is not so for the 

external variables. Examples of external variables are: the vector 

; joining the fragment centers, mass and charge of the fragments, 

shape variables and the corresponding conjugate momenta. 
"' 

We assume that there are f commuting obser·vabl es _/)_J/ (A~ T) 
which are functions of the external variables; in the simplest case 

A 
A ~ 

they are equal to one of the A; or ~~ . The eigenvalues a 
\) 

of these 

observables represent the "macroscopic quantum numbers" which we 

have used to define the coarse cells. 

The evaluation of the reaction amplitude by the stationary 

phase method implied already that a classical description of the 

relative motion was a valid lowest approximation. We now hypothesize 

that the classical description holds also for all the other external 

degrees of freedom of our system as well. 

assume to know a classical time-dependent 

~ (A/1(. i} which provides the probability 

Consequently, we may 

distribution function 

tio (A; 1iJ I)LJ~1 ~!J-
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for finding the system at timet in the 2f
0
-dimensional volume element 

L1"A jjfif' of the phasespace of external variables. The probability 

density P
0
class (a1, ... , af) to find the system asymptotically 

at the macroscopic observables a1, •.. , af =a is given as a function 

of the distribution d
0
(A,/r,t) by 

I 
J;'c&M(a): = }t14rll7 l:f(_[]lcftT}-a-ji/iJil-?;=) 

' £::::/ ( 3. 16) 

We agree that A11 , '7T tr = 1 ,2 ,3 should represent the vector r joining 
" ''v J 

the centers of the nuclei and the relative momentum t . It wi 11 be 

convenient to use as a variable A1 the "classical deflection angle" '~r 

-}-

rather than the polar angle of r . The classical deflection 

angle ~ is defined as the angle betvJeen the direction of the ..,. 
z-axis of the coordinate systemS (see§ 2.1) and the direction of the 

vector r inclusive of any number p of full revolutions. We define~r 

to be positive for repulsive and negative for attractive scattering. 

As already noticed, we choose the observable n1 to be the polar 

scatter·ing angle {}' 

(3. 18) 
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which implies the relation {see appendix Al) 

~ t- -!z-jJ - 7 ;r 
where l = '!/?? ( t&; f .lTjJ) 
and p = 0,1 ,2 

Since, so far, we treated only the case of no orbiting in DI 

reactions, we put p 0 in what follows. 

Classically, the orbital angular momentum /fXf/ can be 

measured at the same time as the scattering angle ~ . Quantum­

mechanically, these variables at'e not commensurable and thus /i::xp=>J 
1\ 

does not qualify for one of the observables Qv . Nevertheless, it 

will turn out to be useful to define a classical distribution function 

d(~a_zj'''t tl{i[) v1hich depends on the deflection angle 1!3-t as well as on 

the angular momentum 1 : 

(3.19) 

&~(&: 0 ... cy//): jdl/1 diY r>(rt;-#) cfjir::rr!-£/j 
I !! j_(J

1
Jf11TJ-aJ a{ II;!; f-'> roo) (3.20) 

We use it to introduce a "macroscopic (classical) deflection function" 

ltft !!;, a) by* 

ltft/4 t?t "'. cy )=If); I!;«):-jct&t $1 d/&; t!r; "/ ~/ /) (3.21) 

In analogy to {2.28), a given scattering angle a
1 

= !f gives rise to 

a finite number of angular momenta /,7 ( Y; <?.t ••. cr) = 4;/:.) by 

*(see footnote p. 47) 



-47-

;(}t /t:; f ~ f0: .. rrl a}=! zt 
= fj»# '=r&· a/ (3.22) 

The index ~ specifies again the branch of the inverse deflection ~[~). 
function f(a). For a deflection function with 2 rainbows(~;-~r; the dif­

ferent "branches" refer to the angular momenta J!<"L~ -t(/'(L~and J>,fz~ 
The number of branches is called N and the rainbow angular momenta 

~(a) ((~ ~ .. 1 ;1~} are defined by 

J-62t / 4./a);· a) - (r 

and the rainbow angles 

cot·t·esponding to the "macroscopic" deflection function 

With the specifications (3.17} (3.18) \ve may write the probubility 

density ~class(a) as 

(3.23) 

(3.24) 

*footnote p. 46. Note that the integration c/1&(- extends over all possible 
deflection angles, i.e. in general from - oo to ;r . If ot·bitings are 
excluded its t·ange is from -1{ to t-17. 
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or 

We use the function #(~·a) of (3.21} for introducing a new integration 

variable A instead of the deflection angle t{}t: 

where
1
as before

1 
the prime indicates that the summation is extended over 

those branches of the inverse deflection furiction which contain real 

stationary points 44a)we find: 
t cd:u> / # s . 

--11 C~>') . II I ? ( £j)"?f (« ~- t{z ·_· I 'l) 
/; (tt) .= L /ltJ!I(Ls;t<J. v) J 

Jr.::/ (,(//?!I /I .· I 
s t 

The pl~obability density pclassct;Jf (a)/· a{ II ,o-7) is defined by 
t I I . 

(3.26) 

(3. 27) 
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or, equivalently 

?(-?jPl~ .. ·cy)= /«lffJ/?-4;(:!/ . 
. 'a a~ ... cr/ /) 

with 

(3.28) 

(3.28') 

Compa1·ing (3.27) with (3.10) we see that Pc.lass(£~(a);a.<'"1') 
is indeed the classical limit of the average probability P (a): v 
The summation over microscopic transition probabilities ~;e. within 

the macro-cell (a,a+l:la) is replaced by an integration over the classical 

a ("";:- ' distribution function d
0

C,--,
1 
/1/ T-:-) f-OO) which describes the fluctuations 

' ,..__ 
of the external variables /~1 /' due to the coupling to the internal 

degrees of freedom. The integration is restricted to the macro-cell 

(a,a+lla) by the 6-functions appearing in (3.25). 

In particular, the restriction to a given scattering angle 
a cj- vS . J} 

fZ = z/' is achieved by the 6 -functions o )-,lv 11 (~·J!);Jin (3.10) 
1 ~; 17 L- I 

and by JjJ-fvr (a!J in (3.27) and (3.28). :he fact that in 

(3.27) and (3.28) only the stationary points .,(7(a) of the "ma·cl~o­
scopic" deflection function appear does not imply that fluctuations of 

the orbital angular momentum are neglected. In the formulat-ion (3.28) 

they are seen' to be conta·ined in the integration over the last argument. 
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Qualitatively, the dependence of a(~t?'e ·~"'Y;·iJon & and / for 

given values of the observables a2 ... af is shown in fig. 3.1. We expect 

the distribution d to be different from zero in a domain which surrounds 

the average deflection function. This area is shaded in fig. 3.1. 

Depending on the variables a2 ..• af, especially on the total excitation 

energy of the final fragments and the amount of diffused mass, the 
' . 

region where~;(~ ~···~~~·~is large differs. Thus for large excita-

tion energy~ and mass transfer, one may expect d to be largest in the 

region of small angular momenta. 

These considerations suggest the following decomposition of 

tf'i ltj t?t " . 'Y / (} ;V 

a f/1: /{r ... r;/J-L at?;#: 0 ... ?j; /) (3.29) 

?-==/ 

where s s 
r _,,/ L- (I ) £} /_k'/ (a ) T 4 f, ~ /rt} _ ~ 7 

t?/tf~ ·t/1= a;¥/1(·"·7///Cbf " ~ ' A_/ 
. /)j£- £;·(a)f4_< 11 p]J ,· (3.30) .. a - ' ' ' z r~ ·; 

0 t- ,t 1' '>P" ';;"f 
t •' 

&o is the usual step function (2.51 1
); the scattering angle .f-' is 

equal to the modulus of the deflection angle: fr=- jt&t/ =}717ft 
By definition we have 

/o; ==- ;:; ( 3 • 30 I) 

£.5" = f- DO 

~I-/) z ( 3 • 30 I I) 

where ~ == {N 
N-1 

for ~ >u 
( 3 • 30 II I, 



I, 

The evaluation of the average angular function 'l1v {u._) from a 

classical distribution function is somewhat less trivial. We treat 

the general case including diffraction effects, since the simple SPA 

limit can be easily obtained from it. 

The function Zl;> (l/ ( J;·jJ J) depends on the microscopic 

channel quantum numbers S in 3 ways: (i) by the dependence of the 
5" 

argument 4-z (a1 ;j3) 
11microscopic 11 deflection 

on ;(JJ 
function 

( i i ) through the fact that the 

~ and its derivatives depend 
4-<. ~ 

(iii) by the dependence of the cut-off parameters 

and the t~a i nbow parameters 4~ tjt r on j3 . 
/[;, J A~ r - / 

The dependence on S causes these quantities to "fluctuate 11 

around averages which depend only on the external variables a. 

on fo . 

We neglect the fluctuation of the cut-off parameters, replacing 
Ai1- -;-

them by avet~age values /~ 1 //2 and, analogously, we substitute the 

rainbow parameters {tf),fo/~/J) by the corresponding average quantities 

4~ )i It/;(~}- defin~d by (3.23)) and (3.24). 

The fluctuations of the deflection angle# and the orbital 

angular momentum ~are described by the distribution function 

/{&;~·.,r·t} (eq. (3.2C)) or its decomposition (3.29). This function 
nt u p 

does not contain fluctuations of 'tt' and ;&f for given values of{,. 
'Jl I ,1 /f 

By establishing the dependence of lc;Tf and 1{>'1 on the basic external 

val~iables one could construct a distl~ibution function from ~.-fo ~ ;{/ f-> -r o:;} 
/]/ Jill -~ f ) which contains tut and'(')'fas arguments in addition to (!{jl {/. oo> ()f • - . 

I . .?/ I I 

Since we expect that the fluctuations of 1(}/ and f9/1for fixed values of 

we replace these derivatives in ~j3 by 

and i(}/1(~- ,1._) of the "macroscopic" 

deflection function introduced in (3.21). This results in the following 

((}-1 a.z .• v flf! • /) are sma 11 , 
I ! I I 

the derivatives t(}r (~·a) 



-52-

function 2/ : 

zrf&: iJr'/1«) &/1:-o/; .tJ= a~{-lz_a (!JI/i/}l-/f¥J!JJ!t;/ (3.31 . 
/ I '/ . f 7->C (f f _rl /-" J 

where_;he f':"ctions A(/) and B(f) are obtained from A"? u; (1/;f'J) 
and~ f(,.Z(~/'}) as defined in (3.7), (3.8) by the following 

replacements: 

t; (zl';J) -7/ 

~l-1 I£:: t~· t<Jj -> ;?fo 
~-''; '- i ;/' --

~/ !~; !~;!/-> ;f)/~. 4) 
I! . -1ft It/ !il;l J.j-.~ & ,.~-·1: 2 J 

L ~ /.3) .. ), / j!,) -~ ./r:') re-f r:;) 
. ~/' f/ .. I r; (; ),.. -07 r~-t, I .l ( . 

r ~ r ~ 
414 --}>~14 

The ~ouble step tu~ction ~t1fis defin.e:- by replacing in (2.51) 

~~1 ft}j;) by /{and ~ /)3) by {: {«). 
{ The average of the function ?I with the classical distribution 

function dv, with a restriction to the measured scattering angle 

~ =) yields a classical approximation v;.nizn (a) of the average .. 

function nfr(} defined by eq. (3.11): 

(3.31') 
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ctk.>s/.) 2{; rtl : -
Jt!ii~fd/ v{tf#IL;t?i1#/:t:rt)§ll!/l;~ ... !l;;.l)ffo-;~/~~ 
jd1fltjli' t:(/!:~···oy1/)tfj&-sy411 ij (3.32) 

The final result for the coarse transition probability Q01(a,6a) is 

and equivalently, for the coarse cross-section 
I 
.f !)~ AI .. 

tJ(! 47/I.L I 

2
-1 Ct.~s; > . d~ . 

. ~ ~ . a ? (4.'/a/·tt;··lJJ~) ~ (a) 

.,/ . /I', ,.-~ V't/1 I 'f I 
aa1<2; tttt ···ur ?=; 

We now discuss this result in more detail: 

(i) Stationary phase approximation (SPA) and purely classical limit 

We first consider the simplest case that the part of the 

fluctuating amplitude which is to represent DI reactions is everywhere 

a smooth function of the orbital angular momentum. The resulting 

reaction amplitude was investigated in section 2.2; the corresponding 

macroscopic cross-section is retrieved from the general formula 

(3.32) by choosing the cut-off parameters to be 

;1; - fOO 

11~ - 00 

tL 

( 3 • 33 I) 

(3.34) 

(3.34') 
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I 

This leads to the following form of the function(!': 

where the argument .Ais given by (see (2.47'' )) 
I 

J'~)= 'Jn#/4f%u)~71j~~~Jl/(~fq)-&} 
Figure 3.2 shows the Airy function and its square; in fig. 3.3 we present 

a deflection function for the system Ar + Th at ELAB = 388 MeV together 

with its lst and 2nd derivative. The deflection function of fig. 3.3 

was obtained by a classical trajectOJ~y calculation including friction 

fOJ~ces 13) while the function !fl!/£; d} is defined as an average 

deflection function .fOI~ elastic scattedng in the coarse cell (a,a+6a). 

Nevertheless, the general features of the two functions are expected 

to be the same. 

The averaging process (3.32) will affect the function Ai 2 (~) 

through softening the steep decrease for ~~>t;-and broadening the 

first maximum at ;l";.-/. This first maximum represents the peak 

(3.35) 

(3.35') 
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of the angular distribution and is expected to occur at a deflection 

angle~ax and a corresponding scattering angle 1;9';ax given by 

~Je note 

angular distribution and the average rainbow angle may be as large 

as about 10°. The rainbow oscillations for}((-/ are expected .~o 
be wiped out by the averaging (3.32) whenever the width of the 

J-distribution is sufficiently large. In the example of fig. 3.3 

we estimate this to be so if the width exceeds 20. In an actual 

experiment~ usually only a few macroscopic observables are measured, 

which implies an integration of the cross-section (3.33') over all the 

unmeasured obse,~vab 1 es O..c . This integration has the effect of 

an additional smoothening of the angular distribution. Thus the fact 

that rainbow oscillations have as yet not been observed in DI reactions 

does not mean that they cannot be seen in a "maximal" experiment, 

i.e. one in which all the macroscopic observables are measured. 

An observable feature should be that the descent on the "dark" 

side of the rainbow is expected to be steeper than the one on the 

"bright" side. If the sign of the deflection function /t?r(f; a·) 
remains the same throughout the effective integration interval 

( 3.36) 
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* in (3.32) , one finds that the "dark" side of the·rainbow occurs for 

and for 

In the purely classical limit, the 2nd term in (3.35) is considered 

to be valid for all scattering angles .J'. In the classical theory; 

one usually introduces the impact parameter b instead of the orbital 

angular momentum. We define the impact parameter by 

and the "stationary" values of the impact pal·ameter by 

~:(a) 

Furthermore, we introduce a J-dependent deflection function J~ by 

*footnote. This assumption cannot be made if the rainbow region is in 

forward direction. 

( 3. 37) 

(~.37') 

(3.38) 
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we arrive at the result: 

I 
-----

A/ _,.::z;c&>~ s #5 . 
IV ~ /_ '/;( 1; 1 tJ ..... t(/) -t::._ (a) 

I I {£~11t'{~ " , r~1 

, L j;IIJ~I0) I 
p::::r .. ( /8 / /s /) 

t?;"" --&~z t« 
We note that the fact~r ~j_ in ( 3. 40) ·is a consequence 

of defining the. impact parameter with the wave number a3 instead of ko( 

wh~ch seems reasonable since in our theory the orbital angular momenta 

refer to exit channels. Analogously to (3.38) .~class is defined by 

Due to the azimuthal symmetry of the initial state and the Hamiltonian, 

the quantities on the righthand side of (3.40) do not depend on a2 = r. 
If only the scattering angles a1 • a2 are determined the 

, c)__{QPI ) 
measured cross-section is given by (/u3 , .. ()C<fl·-, ---- . .} c.;·' . 

. Y '" t tlcMti
1 
t;{~ ((tJ_; ·•· <ry/ · 

In the case of the classical limit this leads to 

(3.39) 

(3.40) 

(3.38') 
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(3.41) 

I (Jti; .6' I 
;J;: /,;? 5 ) ) II II I 

where ! = ~n (.fl'/Z /tl)/ and \vhere in analogy to (3.1 ) and (3.1 

we have defined 

The fun~tion ~class describes a distribution of all the macroscopic 

observables in the final state. Let· us define average values ale._ of 

the observables IC 5::-3 for given scattering angle a 1 : 

(3.41 1
) 

(3.41") 

(3.42) 

.·' 
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If one calculates classical trajectories from Newtonian equations 

f . . 1 d. f . t. f 1 O-l 4 1 d. t th o mot1on 1nc u 1ng r1c 1on orces , one on y pre 1c s e averages 

- /, . c:lvfr . h h t t ale ( e<
1

) • The cross-sect1 on -- 1 n sue a t eory urns out o 
c:/J2 

be 

ag-fr _ d~r 
d .12 - tit&Jt? a'~ =Z 

p 
(3.43) 

;1 fr . r. .14-
where J::,-pZ (a,) and f-6H' (g) represent the impact parameters 

which contribute to scattering into the angle 0 = ]/> (!' = -vnJ&',?-1(1' J) 
and the deflection function, resp. Such a theory is only meaningful 

if the fluctuations of the external variables are small. The cross-

section (3.43) must thus be identified with the cross-section (3.41) 

in the limit that ~class describes narrow distributions of the 

macroscopic variables around the mean values (3.42). The classical 

t1·ajectory calculations so far performed do not allow. for mass transfer. 

They thus only apply to systems where 
:Ll,""' average deflection function ·~' 

tJ.-._ VVI 

the factor ---;---- ~ / 
.:17' 

, which contains the effect 

The 

fr 
of the ene1·gy lass due to friction, and its inverse Jf;,i! (a,) must thus 

[ 

satisfy the relat·ion 
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(ii) Inclusion of diffraction effects 

Let us now discuss the result (3.33 1
) in the general case that 

the amplitude of the or reaction changes rapidly in the vicinity of a 

lower and upper angular momentum. Then the general form of the 

functions A and B (see (3.7), (3.8) with the replacements (3.31•» applies. 

In general, the inner rainbow region, which matters.for DI 

reactions, corresponds to angular momenta £ largely different from ;1f 
r--

and Aa. In this case one of the arguments X:?_ (see (2·60). 
J 

(2.60 1
)) is a large negative number and the other one a large positive 

number. Thus, we have again the results contained in (3.35): 
2 

A (iJ.fi;a~·a) ~h&t~f,;)j-j:J <' /A/f)j~ 

The function B is readily discussed for specific ranges of 

the argument l by considering the relations 

/w Cfr) ~~ 5/x) 
I 

- -= ? 
-"\/ 

x-:-~ r-oo X-?> fa<:> 

C(-x} - C(xJ 

as well as the asymptotic behavior (2.37} of the complementary 

error function. 

(3.45) 

(3.46) 

( 3. 47) 

( 3. 471) 
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Co (Jt;_- J) >;>f/ 
there is no effect of diffraction 

-61-

and for 

I 
(.3.4S> 

Finally, if Jis close to one of the cut-off parameters 

and far from the other, one of the C-functions and one of the $-functions 
I in (3.8 1

) can be replaced by 1.. , while the other ones describe oscilla-

tions. Of course, the averaging process (3.32) will smoothen these 

11 Fresnel 11 oscillations, and so does an integration over unmeasured 

macroscopic variables. The question whether Fresnel and rainbow oscilla­

tions should be vis!bfuat all in DI heavy ion reactions can only be 

determined by careful calculations based on a realistic distribution 

function d
0 

which we intend to carry out. 

Let us discuss the expected effects on the angular distribution 

for the (fictitious)cut-off parameters ;1~ =/tO (which would grossly 

correspond to the measured fusion corss-section) and Jt =!gO in fig. 3.3: 

For ,(} > .J~ = t/fi{u = 65° ) the function B and thus the 

cross-section would have to tend to zero. 

For J'~; if;>····?~;&/~ 27°, it is the ../-values 

and for 

/1: ( £ < 11; 
,f < J]) it is the f-values 

4 <J'<J: :I> 
which contribute (for definition of ~;~(}~; iJt see fig. 3.3). 
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Let us finally coiTITient on the problem of distinguishing DI and 

CN reactions: In appendix A2 we have generalized the semi-classical 

and the classical result to an arbitrary number N
0 

of orbitings. Since 

the semi-classical approximation as well as the purely classical limit 

may also be applied to the totally equilibrated amplitude, the result­

ing average cross-section (Al-17) and, more specifically, its limit 

{Al-22) also apply for the CN cross-section with the difference that 

~class is then to be replaced by the corresponding transition density 

f>Cl ass 
CN for totally equilibrated reactions. Contrary to the transition 

probability for DI reactions,the distribution Pclass would factorize CN 
into a formation and decay probability (see Al-23). Since even the 

angular distribution ~Imay approach isotropy without complete . &1a, 
equilibration being reached (see Appendix Al), an experimental separa-

tion of CN and DI reactions may be very difficult in certain cases. 

Theoretically, the problem may consist in decomposing a classi-

cal distribution function of the external variables into a part de-

scribing a fully relaxed component of the reaction and the partially 

relaxed remainder, \·lhich is called cia (fl1 '7(t) in this paper. 
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4. Summary and Discussion 

We defined the amplitude for deep inelastic reactions as being 

generated by the incompletely equilibrated part of the fluctuating 

S-matrix. By applying well-known semi-classical approximations~ we 

derived a general form of the amplitude and of the average cross-section 

for DI reactions. 

We distinguished the treatment without and with diffraction effects 

as 1 imi ti ng cases of a very smooth and a sudden onset of DI reactions 

as a function of the orbital angular momentum. The experimental results 

indicate that the deflection angle relaxes more slowly than other external 

variables like the radial translational motion. Therefore~ the Poisson 

representation which achieves a decomposition of the total amplitude into 

terms related to given numbers of orbitings was chosen as a starting 

point. We believe that the contribution from events without any orbiting 

is at least responsible for that part of the DI reactions which exhibits 

a strongly peaked angular distribution, perhaps even for the entire cross­

section of DI reactions (see appendix Al). 

Thus the main chapters contain the results for the case without 

orbiting only, while the general case of an arbitrary number of orbit­

ings is dealt with in appendix Al. 
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We believe that the following results should be drawn to the 

reader's attention: 

{i) The measured cross-section involves a summation over very many 

microscopic channels compatible with given values of the macroscopic 

external observables. apart from the averaging over the energy width 

of the incident beam. It is shown that this measured .,macroscopic 

cross-section., is determined by a coarse transition probability only. 

{ii) For the case that the external variables of the system are 

amenable to a classical treatment, it is demonstrated that the macro-

scopic cross-section can indeed be calculated from the knowledge of 

a classical distribution function. 

(iii) It is found that diffraction effects are produced if the 

amplitude for DI reactions turns out to decrease rapidly to zero 

in the vicinity.of a lower and upper value of the orbital angular 

momentum. Although such diffraction effects are beyond the scope of a 

description by classical statistical mechanics, their evaluation is 

shown to involve only the above-mentioned distribution function. 

(iN) We point out in the appendix Al that an isotropic angular 
~I 

distribution 1!· may be produced either if contributions from 

various numbers of orbitings superimpose or if the dominant part of 

the cross-section is due to the smooth low impact parameter part of 

the macroscopic deflection function. In the strongly relaxed DI 

reactions which were recently studied by Moretto et al, apparently the 

latter case seems to be realized. 

(iv) Whenever any direct channels are open, the energy average of the 

S-matrix is not zero and thus the fluctuating part of the S-matrix 

is not unitary. On the other.hand, the 11macroscopic 11 probabilities 
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can only be expected to describe the DI and the CN reactions, not the 

direct reactions. The coarse probability in our final result for the 

DI reactions may be considered to be the partially equilibrated part 

of a total coarse probability describing both the DI and CN reactions. 

Even this total macroscopic probability does not add up to 1, if 

summed over all coarse cells whenever direct reactions exist. Thus, 

it also cannot be expected that the classical distribution function 

clc, (!f;l; t) strictly satisfies the ordinary Master or Fokker­

Planck equations. We cannot exclude, of course, that this will be 

so in a meaningful approximation. 

(ivi) In all the experiments hitherto performed
1 

only a part of the 

macroscopic observables was actually measured. This implies that 

the experimental cross-section is an integral of our resulting expres­

sion (3.33 1
) over all the unobserved variables ~~- In the case that 

the scattering angle z9'.- a/ J the mass (charge) a3land the 

kinetic energy a4 of the outgoing fragments are observed the measured 

coarse cross section is given by 

Even in the case of a purely classical approximation, where 

I 

the result of the integration is generally not of the fonn (3.33•). 

( 4. 1 ) 
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{ivfl} Last, not least, we wish to emphasize that the use of the SPA 

with or without cut-off is based on the hypothesis that the matrix 

~ lJI(§J / . 
CA4A M ·rx4o<:.ft· r'L') depends smoothly on the orbital angular /" /- '/>/ V'C-

momentum. It is by no means obvious that this is correct. Inde.ed, 

if one were to make the opposite assumption that this amplitude differs 

from 0 only in a narrow 11Window" of /values around a 11 grazing 11 

angular momentum" f- , an assumption which was demon­

strated to be appropriate 35} in many cases of elastic as well as direct 

inelastic reactions,-a totally different result would be obtained. 

Then the amplitude for DI reactions would be given essentially by 

The differences between this approach and the SPA were recently 

pointed out in a succinct and lucid \vay by S. Kahana 36 . 

We believe that two arguments may be given in favor of our 

smoothness assumption: 

a) Only the applicability of the SPA makes the success of 

purely classical methods understandable. 

b) As one compares DWBA amplitudes with the more complex 

amplitudes resulting from coupled channel calculations, the dependence 

of the S-ma tri x on ~ tends to become smoother, as the number of 

participating degrees of freedom increases. 



-67-

One of the authors {K.O.} kindly acknowledges illuminating and 

helpful discussions with W. E. Frahn, L. Moretto, and H. A. Weidenmuller, 

and expresses his thanks. for the kind hospitality which was extended 

to him at the Lawrence Berkeley Laboratory, where a large part of this 

work was completed. 



-68-

APPENDICES 

1. STRONGLY RELAXED DI REACTIONS 

We have already noted in §2.1 that there may be a smooth transition 

between or reactions where a few external degrees like the mass asymmetry 

and the deflection angle remain far from equilibration and the limit of 

the compound nucleus formation where all the external degrees of freedom 

reach equilibrium. In the chapters 2 and 3 we then treated the special 

case that contributions from orbiting events may be neglected, i.e. 

we considered the limit of DI reactions with completely unequilibrated 

deflection angles. 

We now treat the more general case that the lifetime of the 

intermediate system is long enough to permit one or several full 

revolutions. This is expected to introduce a gradual transition to 

the typical features of compound nucleal~ reactions. In our theory, it 

implies that we have to study the terms with p * 0 in the Poisson 

distribution as well. Since the calculation is completely analogous 

to the one in the chapters 2 and 3 we confine ourselves to a short 

presentation of the results. 

The general quantal form of the amplitude for partially 

relaxed collisions is 

(Al-l) 
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(Al-3) 

(Al-4) 

Xt)-r ((AI):- c£fhA2}f cfi If) -;/fz, J)fr- r]~-

1- (L~.~/) 27tj:J 
7JI 

The amp 1 itude Cj~ l-!;3 /x/J.x.ltx. is again defined by ( 2. 26). 

We note that it is in fact undesirable to expand around the same average 

angular momentum mismatch LJ.i irrespectively of the value of p. On 

the other hand, the resulting formulae become considerably more compli­

cated if one were to consider Llf. to be ~ function of p. 

As in chapter 2, we evaluate the integrals (Al-2) by the SPA 

with and without cut-offs at finite values of the angular momentum. 

The stationary points ~;; (~·~) are given as solutions 

of the equation 

(Al-5) 
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Since we limit ourselves to real solutions of (Al-5), the index p may 

only assume positive values p = 0,1,2, .... Furthermore, it is easily 

seen that for given deflection angle ~;1 and given p, the sign n 

is uniquely defined as 

{Al-6) 
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Because of 

4:~ 
/.lr ftc.' 4d /. 

(df,t~fl~f) = e Jk,4 r~jJ,J) 
, a rotation by 21t introduces a sign-change of the amplitude 

C :~ /'t ; oC .<la H.x (/,; f' ;' "/J-2'1') if one of the channe 1 s pi ns 

is odd. ~is has no influence on the probability ZJ~;1 
(see equation (3.5)). Consequently, for even values of p, the 

• I I •- f z-.;1,-fr' . 1· 
rotation by the lst Euler angle o(.~ - L. t 1- Jlt is equivalent 

{!.. 
7?1 'H 1/ 

to a rotation by o(:::- .2..(;. 
1

and for odd p, it is equivalent to 

(J, 

f T-1-;tV -j 
one by o( = ...z z. 7 

/t • On the other hand, for trajectories 

with odd p, the point of closest approach is on the opposite side 

of the beam than the point at time t = - oo • Thus the focal coordinate 

system SF for odd p - trajectories differs from the one for even p -

trajectories by just the Euler rotation ,6~.-x = r as provided for by 

eq. (Al-7). 

(Al-8) 
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The sum E1 extends over those branches of the inverse deflection 
s 

function which contain a real stationary solution ./;!JO fJ;;) The 

double step function ~JP is defined in (2.51) and only serves to 

separate the region of the Airy approximation from the one of the 

ordinary SPA. The function ~ is defined by (2.36), if diffrac­

tion effects are negligible, and by·(2.57) if diffraction effects 
"-

are accounted for by sharp cut-offs. The'" integra 1 ~)"J is defined 

~ffJ. = ~t/!7--fJ(!&Jr_ ,~~2Kj1 )" rt;rJ 3~" r:trJL£7 
oe;> • .J t {A.( 

. ~ (Al-9) 

where f; =tf't7r-f>Oj ;f;__=foo without diffraction effects and 

L = /I;,F · _L. = X including diffraction effects. The result 
I r· I A- d. 

is again given by (2.45) without and by (2.59) with diffraction effects 

if only we replace the argument.)~-' (see eq. (2.47)) by 

The cross-section (2.17 11
) contains interferences between 

traject01~ies differing by // ... (i.e the branch of the inverse deflection 

function) and p (i.e. the number of orbitings). Since the actually 

measured cross-section (3.3) involves a summation of micro-channels B 
I 

within a coarse cell (a,a+~a) as well as the energy-averagingJthe con­

tribution from the var·ious interferences is given by the sum over a 

(Al-10) 
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large number of terms with random phases. It may thus be neglected . 
• 

Assuming again that the fluctuations of the transition probabilities 

~~ and angular functions ZJ(~ are uncorrelated (see (3.14)) 

we arrive at the result ( 1 means summation over real stationary 

points only): 

(Al-11) 

The macroscopic transition density PVP (a) and the average angular func­

tion "'~-- Lfa_)are defined by (3.10) and (3.11) resp. with the only dif-
UJJ'P 

ference that the argument /,~(,~f) is rep 1 aced by d;~ f;J; ·(') 
and the argument~ of the Airy-function by~ (see Al-10)). 

The derivation of the average quantities ~ (a) and 
~r~ 

from the classical distribution function d (A,Jr· t -;) ;- oo 
0 I 

in complete analogy to §3.2. : 

u.: (a.) 
'~f 

)proceeds 

Since we now allow for any number of orbitings, the argument i(}t 

of the distribution function d (see (3.20)) may have values between 

- 00 and 7{: -oo<~~4 . It is convenient to note the number p 

of full revolutions as a supplementary argument of the function 

d(~ tl.z1 • .. 1 a1 / 4;(1).' 
As for the macroscopic deflection function (3.21), we may 

now have stationary values J;;j<> (z/) a) corresponding to a finite 

number p of orbitings, replacing (3.22) by 
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(Al-12) 

where n is defined to be 

(Al-12'} 

Usually the deflection function !tJ-1 ~~-a) through eq. (Al-12), 

only allows for a finite maximal number N
0 

of orbitings which may depend 

on the scattering angle, i.e. we have tl~pfl(. Analogously to the 
II, . ool . 

case of L. . we sha 11 imply by the symbo 1 L that the sum is 
¥-1 r=o 

only to be extended over those values p, which correspond to real solu­
s 

tions. !vzfl ftl;·a) ()/ (A 1- /2) 

With obvious modifications of the derivation in §3 one finds 

within the validity of a classical theory of external variables that 

the macroscopic probability density P~p(a) becomes equal to the 

classical probability density 

with 

tl?J a · .. a/ · L j;J) = dtift (f.tt 1 tl? · · ·a/ · / J:J) (/f; -< l I ;;· (7/ . I I; < / I I I . (Al-13') 
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For evaluating the average ~ (t<} we decompose the distr·ibution 

o(fPJt~z·"&'/;. {jJ) into components ~ (lz9j t? "'t?/';" _;;/') 
related to the different branches of the macroscopic deflection 

function. In complete analogy to (3.29), (3.30) we have 

A/ 

tl/110·"tft (;;)=[; c?(&:t& '"cy; 4) (Al-14) 

a{.f&:~ .. ·rr~/;;)= ti#;0 ... r/ ~rJ· 
. 4/l;j1faJ!/ 61 fi-"(; !I'] {Al-15) 

(Al-15 1
) 

(Al-15 11
) 

,{1/11 /.J: = -;-oo . 
o J t If 

Where ~o is defined by (3.3o•••) 
The classical approximation of the average angular function 

(Al-16) 
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In (Al-16) the range of the19-integration depends on p: 

- Jt- --lli)J < 15?-( 7C 

and the function 1T is defined by (3.31). 

For the purely classical limit we find as a generalization of 

(3.40) 
0o IV 

a'w}'L - i!J - m~; ) f' /)- i .t L't)_-1 
,/~ 4 ... d'r:~ 41#~ -{;'- tlf ro P~l 

·I jrc/4-:('! a,. ·a,-} ff / 

I Jr&t(~a1 ---a;-) j ) _ if's '( 1 J _t ~"" kll1!i1 ~I 
. pS ......._... ,...._. cf'cv.Y.J tf 

where the quantities J'(; 11tf> J 1-[)-t and ? are defined 

as in (3.37'), (3.38), and (3.38') resp .. 1 is defined by (Al-12'). 

There are various ways by which the double sum on the right hand 

side of (Al-17) may become independent of the scattering angle LZ1 • 

We discusss two alternative ways which represent physically opposite 

situations: 

(i) The probability density Pclass , is unequal zero only for p = 0 
(' 

(no orbiting) and v· = 1 (low impact parameter branch of the deflection 

function, see fig. 3-1) and is independertt of L in this range of 

]-values. 

(Al-17) 

{Al-18) 
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Furthermore, the 2nd factorin (Al-17) is independent of ~ too: 

Ob . 1 . th . th t. t( I&_]JI d d v1ous y, 1n 1s case
1 

e coarse cross-sec 1on j ~/.. ,.,/ epen s 
&-f'Mtl;U0 · · · tft«;' 

on a1 only through si~ a which is a part of the differential space 
1 . 

angle ( t/ .... 1 = 4VWa/ ~/ da2 ): 

tJ(I()YI 

At first sight, the conditions (Al-18), (Al-19) seem to be rather 

artificial. Nevertheless, they may be fulfilled for the strongly 

relaxed component of HIR : 

The macroscopic probability obtained from solving a Master­

equation is indeed found to depend slowly on ~ for the very relaxed 

component of DI reactions (see L. Moretto and P. Schmitt in ref. 8). 

Furthel~more, eq. (Al-19) holds whenever can be 

approximated by a parabola 

(Al-19) 

(Al-20) 
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(Al-20) 

where k
0 

and k1 may still be functions of a 3 ... af. For the low .impact parameter 

branch of the deflection function this may not be a bad approxima-

tion as is ~een qualitatively from figs. 3.1 · ~nd 3.3. 

(ii) A large number N
0 

» 1 of terms in the sum L 1 
contributes 

r 
to (Al-17) to the extent that the discrete values b~~palj a3 ... af) 

lie on a smooth interpolating curve b(p ; a3 ... af) whose dependence 

on the scattering angle a1 =~is negligible whenever the points 

b are sufficiently closely spaced. From fig. Al-l it is seen that 
V"tP 
this is the case for N

0 
>> 1. 

One then has 

(Al-21) 
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The function p(b) = p(b, a3 ... af) is the inverse of b(p, a3 ..• af). 

In the last step of (Al-21) we neglect the term y~ in 

r-

1# /~) = { zJ'- 2?' 
The limits b1 , b2 of the integral depend on the scattering angle. 

As is seen qualitatively from fig. Al-l, this dependence is negligible 

if a very large number N
0 

contributes. Thus the cross-section 
/;_ 

tf/jJI . 1 == ~ 2 ::-< " y,, if _tfJ~~ rJJ ... 12. ) 
trftY1cJ /{!, ... ;-/, R/U tl £ af :( .r . I r 

.V./' It{~ tAtf 1,/l I 4k 
. u!t~A-1 .£: 

depends on the scattering angle a-r= !f' only through the trivial factor 
1 

sin a 1 

The semi-classical approximations and the neglect of fluctuation 

correlations which lead to the result (Al-22) can also be upheld for 

(Al-22) 

th d 1 · · h" h -class · 1 d b th e compoun nuc eus cross-sect1on 1n w 1c case p 1s rep ace y e 

probability density, p~~ass describi~g the macroscopic transition density 

for fully equilibrated external variables. It is characteristic for 

this case (neglecting the restrictions imposed by the conservation of 

angular momentum) that this probability density factorizes into a part 

describing the formation of the compound system and a probability for 

its decay 

(Al-23) 
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It is typical for partly relaxed systems that the factorization (Al-23) 

is not possible. 

~2, Improved Airy-method 

The Airy-approximation holds only in a very small range of the 

scattering angle. In the case that the amplitude C~~(S)1 ·«A. H (_£} 
1 

r ~ .~1 r-vc w 
is a very slowly varying function of J the Airy approximation can be 

somewhat improved by carrying the expansion of the phase A1 (~) 
. f, otr;f . 

(see Al-3)) to one additio~rder: 

. ,..._ f /(1 

The integral ~b/ (see Al-9) is thus replaced by 
v'J.IJ . tt~ . f/ll ~.,- J/j;7 Q 9 , ) (f-.tf/3,/,11 /P?- )~ 7,f;? i! ( ,l ~,tf j ( ltTp - '}J Z/ 1- .-< iij1 / f- / lf7: ( A:Jj j 

~fl = di' e J 
1 

" "0 ~ 

J; . (!-L'// ;#It! ( /, ') 
t ,/y ~;5 J 

"e 
(A2-2) 
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A straightforward evaluation leads to the result: 

(i) 11 = 0; i2 = +oo (no diffraction) 

(A2-3) 

The arguments Xp, Yp v1 , and v2 are given by (Al-10), (2.47'), (2.60). 

and (2.60') resp., while the new argument Z is defined by 

I 

~3 

/2 

The function Ai(x,y,zi represents the integral 

It is seen that the results are in all cases the same as for the ordinary 

Ait·y-method with the only difference that the incomplete Airy functions 
,..._, 

(2.46) are replaced by the functions Ai of (A2-6). Since, in practice, 

(A2-4) 

(A2-5) 

(A2-6) 
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the incomplete Airy functions must be numerically evaluated, one may 

as well evaluate the functions (A2-6) in their place. 
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Figure Captions 

+ + + Coordinate axes ex , e , e (~) of the focal system 
F YF 2 F 

+ + + SF and coordinate axes ex , ey , e
2 

(--~ ) of the 
s s s 

system S in combination with a classical trajectory for 

repulsive scattering. Also shown are the x-axis (ex) 

of the LAB (or CM-) system and the aximuthal angle ~ 

orienting ex with respect to it. The vectors e s XF 
+ + + + ey , ex , and e

2 
, and e lie in the reaction plane. 

F S S 2 S 

Schematic plot of deflection functions !&f: {---) r{J., (-)) 
~ I -~ 1~ 

~/'1.. (- ·- ·) for a case with two rainbow angles ( 1&/ 2 ) . 
~~ ~ 

The indicated geometrical construction of ~;0 from 

~ and ~ (CA is tangent to ~ in A; CD = DB) 

shows that ~ usually 1 ies between ~ and '~ . 

Display of the rotation from system SF to system S by 3 

successive (positive) Euler rotat~ons: 

~-~- ().. tr-21" + 
o<. =- 2. around e 

ZF 
?r d+ y= -;- aroun e 

0 .r-
2 S2 

1st line, left: Systems SF for repulsive scattering in 

the case with and without a full revolution. 

1st line, right: System SF for attractive scattering 

without orbiting. 



Fig. 3,1: 

Fig. 3,2: 

Fig. 3,3: 

Fig. 3,4: 

Fig. Al,l: 
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Schematic plot showing the regions of the(~~)- plane 
. I 

(shaded area) where the distribution d('~a..z···af i 1) 
is expected to be different from zero. Also shown are 

the inverse .J~·~ .. .,~}of the "macroscopic" deflection 

function (fully drawn line) and the stationary ~values 
for a given scattering angle a,= !f. An almost isotropic 

tf&J5I 
angular distribution tt is produced if the function 

a, 
d(~a.?.·~·alif) is unequal to zero only in the flat part 

of ./(1fi;· a,~, •. " al) (encircled by a full line). 

Airy function Ai(x) and square of Airy functipn [Ai(x)J 2. 

Deflection function t6J-i(L) (-), 
1st and 2nd derivative thereof (----represents 10 x !fft~·V; 
.... represents 100 x t&t'fl}), and modulus of the 

I 
reci proca 1 1st deri va ti ve (-. - ·- represents 10 x /;&I{ f)/} 

~/'~} is calculated 13 for the system Ar +That ELAB = 

388 MeV including friction ( {H:3.1f9;rpr of equ.(3.43)). 

Fresnel integrals (from ref. 30). 

Inverse classical deflection function in a case where 

a large number of orbitings contribute to the cross­

section. The discrete values of the impact parameter ~ 
q., ,._ 

which contribute to a scattering angle 4:::v =It are 

shown by dots. Also shown is the limit ~ (see 
I.. 

equ. (Al-21)) for this case (1;=-tl). 

•• 
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