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ON THE GENERAL FORM OF THE CROSS-SECTION
OF DEEP INELASTIC COLLISIONS*

Klaus Dietrich

Physikdepartment of the Technische Universitdt
Miinchen, 8046 Garching, James Franck Str.

and
**k
Christiane Leclercqg-Killain
Université Libre de Bruxelles

Physique nucléaire théorique, CP 229
Boulevard du Triomphe, B-1050 Bruxelles

ABSTRACT

The general form of the energy-averaged “macroscopic" cross-
section for deep 1ne}ast1c (DI) collisions is derived on the basis of
semi-classical approximations. The amp]ftude for DI reactions is
re]éted to the incompletely relaxed part of the fluctuating S-matrix.
The possibility of diffraction effects modifying the DI cross-section
is -investigated. In the 1imit of a classical treatment of the external
variables, the aveﬁage BI cross-section is shown to be uniquely de-

termined by a classical distribution function;

* This work was done with support from the U.S. Energy Research and
Development Administration.

**Maftre de Recherches au F.N.R.S., Belgium



1. Introduction

In studies of collisions between heavy ions, a new type of nuclear
reactions was discovered]'4) and termed "deep 1ne]astfc (DI)", "Quasi-
fission (QF)" or "heavily damped" reaction. In fact, the first indication
of this reaction mechanism had been seen in a rather early experiments)
in 1959 which was not followed by more extensive investigations.

The most prominent features of the DI reactions are:

i) A substantial part of the initial kinetic energy of relative motion
is transferred into other degrees of freedom, so that the final kinetic
energy of the outgoing fragments is close to their reciprocal Coulomb
energy in a contact configuration — which is the situation encountered

in nuclear fission (“"quasi-fission")

ji) The angular distribution of the final nuclei is not symmetric with
respect to 90° (CMS), thus ruling out the formation of a compound nucleus
in the conventional sense. Instead it is peaked sideways or in
forward angles depending on the system, on the energy of the incident
particles referred to the interaction barrier, and on the final channels
considered.

iii) In recent experimentsﬁ), a graduaf transition to isotropic angular
distributiohs %%}has been observed in many syétems as one moves to final
states which involve a large transfer of mass and apparently a longer
lifetime of the intermediate comp]ex.7)

Recent surveys of the rapidly growing wealth of experimental and
theoretical work are put together in ref. 8. Apparently, there is
general agreement that we ought to look at the deep inelastic reactions

as a phenomenon of partial relaxation of certain external, "macroscopic"

variables, which, in a 1owestvapproximation, can be treated classically.



-2-

Thus several authorsg']4) described the reactions in terms of classical
equations of motion for certain "external" degrees of freedom with the
inclusion of friction forces to describe the coupling to the "internal"

variables. Derivations of these equations have been given from per-

turbation theory of the coupling between external and internal degrees,]s)

]6)

linear response theory and the Mori forma]ism.]7) These theories

yield only the mean values of the external variables.

Distributions of these variables were obtained]8‘20) on the basis of
Master- or Fokker-Planck equétions invoking diffusion or transport processes
between the nuclei in contact. Different derivations of these equations
were presented?1,22) also leading to different types of Fokker-Planck equations.*®

A somewhat different picture is pursued by Broglia et al and
Glas and Mose123). Here the usual semi-classical theory of nuclear
reactions is extended so as to inc]udé the excitation of a large number
of intrinsic excitations. In the case of the work of‘Brog}ia et al,
the excited modes are harmonic vibrations. This is reminiscent of the
theory of atomic and molecular collisions where the excitation of vibra-
tional modes is known to be the main origin of the damping.

In all the theories, the cross-seétion for DI-reactions involves
only squares of amplitudes, i.e. probabilities. It is, of course a
prerequisite of any description based on classical statistical mechan-
ics that the cross-section can be formulated as a function of'proba—
bilities only.

It is the purpose of this paper (i) to investigate the conditions

for which the cross-section of D1 reactions is a function of "“coarse

*footnote: In this respect we also wish to draw the reader's attention
to a very recent preprint by D. Agassi, C. M. Ko and H. A. Weidenm 1ler,
MPI for Kernphysik, Heidelberg, which arrived after completion of our
paper. ‘
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probabilities” only,

(ii) to establish the connection between the coarse probability and the
basic S-matrix,

(iii) to find out whether and how diffraction effects may influence
the DI cross—éection.

In any case, the actual experiments involve an averaging over
the energy of the incident beam and a summation over all the microscopic
final channels which are compatible with a few measured "macroscopic”
observables like the scattering angle, masses, charges, and excitation
energies. We shall argue that interference terms may be disregarded
on account of this double averaging procedure.

Our final result will be that the measured average cross-section
for DL reactions can indeed be written as a function of a macroscopic
probability distribution only. In order to achieve this result we

proceed as follows:

(i) We define the quantal amplitude for DI reactions as a function of
the incompletely equilibrated part of the fluctuating S-matrix (§2.1),
(ii) We evaluate this amplitude within the semi-classical theory
using, separately, the pure "stationary phase approximation" (SPA)
(82.2) and the SPA with sharp lower and upper angular momentum cut-offs.
(52.3). The sharp cut-offs are to represent the effect of a sudden
onset of direct and compound reactions (and thus "absorption") as
a function of the orbital angular momentum while the pure SPA may be
applied if this transition turns out to be very smooth.

The cut-offs result in diffraction effects which are consecu-

tively smoothened by the double averaging process.
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(iii) In 8§ 3, we perform a summation of the microscopic cross-section
within “coarse cells" defined by external variables only and show that
the resulting "macroscopic cross-section" may be calculated, once a
classical distribution function for the external variables is known.

As will be seen, the theory leans on the use of the "Poisson

24 whose different discrete

representation” of the reaction amplitude
terms are semi-classically related to the number of revolutions of
the intermediate system. We assume that at least that part of the DI
reactions whichjgogirong]y peaked angular distribution (%%;i) is due
to the"no orbiting term'of the Poisson representation. Therefore,
only this term is considered in the chapters 2 and 3, whereas the
generalization to arbitrary numbers of orbitings is presented in
appendix Al. Appendix A2 contains an improved Airy treatment of the

rainbow region. In § 4 we summarize the results and Tay emphasis on

critical physical assumptions as well as open prob]ems.
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2. The General Form of the Amplitude for Deep

Inelastic Heavy Jon Reactions

2.1 QUANTAL FORM OF THE ﬁI AMPLITUDE

We only consider experiments with unpolarized beam and target
particles and withéut measurement of the spin direction of the outgoing
particles. The cross-section of any reaction with two final particles
is given as a function of the reaction amplitude

' o w L M T
o T T i LM

Lo Tyazite _ ! Z
62(/ _j (;ZZ# *‘4/7Q145x7kcj

/% M 2z
P ”7’ /f//[%ﬁ/‘*z;/}%/s//z/;c /%xJ;x/Zz/ (2.1)

where .Z;,( ; —Zz(x /'2;3, ‘Z;ﬂ) and /Za/ /Z’o( //17/‘, /{Z/—‘ )

are the intrinsic spins and the corresponding magnetic quantum numbers

of particle 1 and 2 in the entrance (exit) channe]cx.Oﬂ); Aé&) My (4%0} 77%})
are the relative wave number and reduced mass in the entrance (exit)
channelc{(76). Transforming into the representation where the intrinsic

spins are coupled to the channel spin /2x,(;%6) and its projection
MQ(MB) we find:

J/(%Zﬂ -Z:’/’a / X "ZZI l:’o( . i
o' - (27 1-/// 1)
A0 Tprens

2

/éxm/& /7/[ z/w, /‘/73/'0(—2;-2;,{44/‘/1/

(2.1")



Referring to the coordinate system S defined in section 2.2 and to the
CM system, the reaction amplitude in the channel spin representation

is given by 25)

* where ﬁa(QB) is the orbital angular momentum in the entrance (exit) channel
and I is the total angular momentum. The symbol a(p) denotes all the quan-
tum numbers not explicitly listed which are needed to completely specify
an entrance {exit) channel. Since we do not consider the elastic channel,
we, henceforth, drop the term with é&ﬁ é&;f% in (2.2). Furthernore, in what
follows, we omit the explicit listing of the quantum nrs I]a, IZa’ 113’ 128
for the amplitudes.

For heavy ion reactions, the summation in (2.2) extends effec-
tively over a wide range of orbital angular momenta, and, at the same
time, the main contributions originate from angular momenta which are
large compared to 1. We may, therefore, use the following asymptotic
approximations for the spherical harmonics and the Clebsch ~Gordan

coéfficientsZG):
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valid for A>>1 in the angular range —(;:); 4 f’( z"—_/f;i_

3
([777/ 4”4/’5”‘2>’<’/]///_42_m /ﬂ,o{/ﬂ/ (2.4)
valid for ,{2 >/ with o defined by
(0T = L, (2.5)

/}’/g/’-/?%//v

In heavy ion reactions, the orbital angular momenta Aéi jé;which effec-
tively contribute to the cross-section are large compared to the
channel spins in the entrance and exit channels: Aé? >> Ay / jéi 29’f36-

Since the projection M_ is of the order of the channel spin quantum

B
nrs '414/,/?4 we have

.: /P
” (59 = ==
; | %///”//

a

We, therefore, use the asymptotic formula (2.4) with <25==;5~

(2.5")

’\’\f&} or o(—v'z?g_

for both the CG-coefficients in (2.2) . Inserting (2.3)-(2.5) into
/
(2.2), introducing the new summation variables /7%5 = /3?‘-1§§,Z/°

/@24: /2?{;/L-//25§Z and using the Poisson representation24), we arrive
at the following form of the reaction amplitude:
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/{7,/1(/76 Z,2, 2 /%/% Z, 00 2
YA/

/%; /> (2.6)

We use the D-functions in the convention of ref. 27. The integrals

f[f} ‘
/V’/V //) are defined by

oo

P ZW///%;/-
Gk o |

GNP irp)

= "%/3/5/} ’A.//}a//{/ ///

In (2.7) u/, /}/\?} OC/JJ(MI { )15 the quantity obtained by
replacing the variables I, £ f in

/H/) l/b D"/},‘L/
/
by the variables o(', y M/s/ /
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So far the only approximations used are the asymptotic expressions
(2.3) for the spherical harmonics and (2.4), (2.5) for the Clebsch-
Gordan coefficients, both of them valid for large orbital angular
momentum. Therefore, the reaction amplitude (2.6) still describes
direct, deep inelastic, as well as compound nuciear reactions. The
summation index p in the Poisson representation may be classically
interpreted as the number of orbitings (see eq. (Al- 12)). Con-
sequently, one expects that for compound nuclear processes all the terms
of the p-sum in (2.6) are of comparable impartance. On the other
hand, semi-quantal treatments of direct reactions have shown that con-
tributions from orbiting trajectories (p # 0) are unimportant except
close to resonances of given partial waves where anyhow different
approaches are édequate28).

For DI reactions, the question whether the terms with p#0 in
(2.6) are of importance is still open to discussion (see appendix Al).
In order to single out the DI reactions from the total amplitude
we proceed as follows: First we decompose the S-matrix into an energy-
averaged matrix <S> , which describes the direct reactions, and the

fluctuating part

(2.7')

(2.8)
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The average <A> over a quantity A(E) depending on the total energy

E of the system is defined by

<AE)> : = Z/——/ﬂ/f/ AE") | (2. 9)

The energy interval appropriate for defining the direct amplitude is
of the order of 1 MeV. The fluctuating part of the S-matrix contains
both the compound nuclear and the deep inelastic reactions. We define
the formation of a "compound nucleus" (occasionally referred to as

f1

C
"complete fusion") to be described by that part S of S which

corresponds to a statistical equilibrium of all the degrees of freedom

DI represents the DI collisions

of the intermediate system. The remainder S
where only a partial equilibration is achieved, more precisely, where
a limited number of external (macroscopic) degrees of freedom do not

reach statistical equilibrium:

o w= 5" @) -

/43A}3 /3%// G //5135 Cz%//IQKZZi 1% (2.10)

;5 /L)

TBAp s A I

The decomposition {2.8) and (2.10) entails a corresponding one for

the total amplitude 7/7/4 M .
/’3 /2 ;/5/ X At /Zk
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74
The explicit form of the amplitudes 7/¢ s of CN and 7/0115 obtained
by replacing the matrix S in (2.6), (2.7) by Si%? , SCN, and

SDI resp.

As already mentioned, only the term with p=0 is of importance for
‘the evaluation of the direct amplitude and all the terms in the p-sum are
expected to contribute for the compound nuclear amplitude.

As for the number of terms of the p-sum which contribute to -
the amp]itude for DI-reactions, the following simple classical estimate
may be usefu]g’]s): The number p of orbitings is simply related
to the lifetime 1 of the intermediate nuclear system :

The stationary phase condition for the integrals (2.7) will be shown

(appendix Al) to be (€93 scattering angle)

/tﬁ/& = _"ﬁ-,c”%‘/)

where Q%;G ,as defined in eq. (2.29 ), is classically interpreted

as the deflection angle. This angle measures the orientation of the
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vector joining the centres of the outgoing nuclei with respect to
the beam axis including full rotations during the collision. Apparently,
p $>0 determines the number of orbitings. Multiplying the classical

relation _
1A = Fw

(14 = angular momentum,‘-;;f = moment of inertia, ({J = angular
frequency) by the contact time 7 and'putting @%Z =07  , we find
the relation

' b_ o, _LE
/Z;L = 77 - /31749 =7 z
s
between the lifetime 7~ and the number of orbitings.
Moretto'gz_gl?) find that for final channels with large mass
transfer the angular distribution approacheé-the one of a compound
nuclear reaction. If, on the other hand, the final masses are far
from the equilibrated values (i.e. if only a small mass transfer has
occurred), the angular distributions are strongly peaked. The'con—
tact time 7  is an important parameter in the diffusion mode]lg’]g)
and can be determined from the measured mass transfer and the
angular distfibution. Since the angular momentum 12 and the momen-
tum of inertia F are grossly known, this leads to an estimate of p.
From this analysis it appears that ﬁhe "least relaxed" part which
is characterized by strongly peaked angular distributions, is described
by the term with p = 0 of the Poisson representation. It may even
be'so, with 1e$s certainty, for the strongly relaxed part. In appendix
Al we shall discuss in more detail different ways 1%¥é1?he system to

acquire an almost isotropic angular distribution 3%;.
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In the main chapters, we treat the case that the DI amplitude
is described by the p = 0 term only deferring the more general case
to the appendix Al. Henceforth, the amplitude for deep inelastic

reactions is thus defined to be

27
= &
?%73//24/05/&/’/; ¢ ,?/’t"'/’”/ Al

/.:z 7 v/}/’/‘ /zzrz_z),
2027 32 2120 2,
/7

‘ /?2“/73 Y

~

5{

JV) o)
are obtained from /:/’/?3/ﬂ1

by replacing thc total S-matrix by the incompletely relaxed part SDI

where the quantities

of the fluctuating S-matrix. We extract from the matrix SDI a factor
which describes elastic scattering by the real potentials in the

. o R DL , 25
entrance and exit channels, thus defining a matrix R by™")

2 [ J ) = s ()
SP -l Ff
//3;k5<;é / C('ék./ZL

27 |
st oo prt (Y
//5/7‘ & A M

/

’

(2.12)

(2.13)
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where

We implicitly assume that the elastic phase shifts q§;/2§‘) cS K%Z )
P

vary insignificantly as a function of the energy E in the interval A
which serves to define the direct reaction part. This is incorrect
in the region of narrow shape resonances which we believe to be of
minor importance for the dominant part of DI reactions.

Note that the phase shifts should correspond to elastic

"

Kin :=E-E ,» where E

p. B B

is the sum of the intrinsic energies of the two nuclei in channel

scattering at the kinetic energy E

B and E the total energy.
)
The explicit form of the integrals ;Z‘ is thus
&/}0

w7 L
/'w,’/%'o‘ & /)

27
A 4
Tonene

where 7= f/ and the phase function: )/ is defined by
/ R

N
I
N
N
I~
TN

(2.15;)

(2.14)

/:/‘?///%i)~cfﬂ/f /fcﬂf/// 7// 24 - / (215)

- The energy-averaged cross-section is given by



UUJJ B R X SY Ji 2504

-15-
26 Ton - 526729/? 46 v 74
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+ interference terms

with the following definition for the different parts:

o
il

7 / | Ao 4 7 =
/ = / ;géi———- <
A1 (2500250 Z w 7 / Y X I % >/ (2.17)
oV
éﬁ%&ﬁi;z / zzgj ,_ffz_%ﬁx (i// v 2
i ey L o Ippmeak)> .,
{ )

_ N -
4%?§EEPT / ;;‘ li 778 <, 7/szr 2
70/ T pt) e ﬁ 7 B0 11, XD/, e
ﬂ,./"“/‘ /,ZZ{;;‘///,(,{{;‘//&/%%% /5 /4/2' / © (2.17'")
interference terms = — / | zZij ffé;j?éﬁ .

(s enst) - T 73

, NV ' }v%
<[4y e 7‘5‘,&/ L
| 7;“%%/%/’1 ///A 1 ol f 0wy
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As usual, it is implied that the wave numbers ka, k, may be treated

B
as constant within the energy interval A. The index g(a) includes

the intrinsic spins 118’ IZB (I]a, IZa) whenever these are not explicitly
noted. Because the phase of the amplitudes fCN and fDI are un-
correlated, the energy average is expected to make the interference

terms very small. This will be even more soin the actually measured coarse
cross-section (see § 3) due to the summation over many microscopic

channels B.

The experimental separation of the DI and”tru]y compound Cross-
section is problematic only in the case of almost completely relaxed
DI processes. The separation of the direct cross-section from the DI
is difficult whenever both cross-sections are non-zero for given
~ final channels 8 .

We now turn to a more detailed evaluation of the cross-section

for DI reactions.

B
in (2.12) as a rotation from the "focal" coordinate frame SF into the

t
As in ref. 25, we wish to interpret the summation over Ma M

ordinarily used system S. These coordinate systems are defined as
follows:

S (unit vectors e, , e. , 6_ ):
F X’ YRS 2

e and e lie in the reaction plane 6. s perpendicular to it.
Xp Yg J zZp _
gx points in the direction of the symmetry axis of the classical
F
trajectory defined by:S&B , such.that the point of closest distance

(A in fig. 2.3) has a Eositivq_xF - value. The direction of 32
F

* footnote on page 18.
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is chosen such that the asymptotic initial point of the trajectory has
a positive xs-value. In fig. 2.3 we show the two frames and a trajec-
tory. The two coordinate systems differ only by the direction of the
coordinate axes, the origins being the same. The orientation of the
reaction plane in space is defined by the azimuthal angle ¢ of EXS‘
and the wave vector Ka . If the common origin of SF and S is at rest

in the laboratory (moves with the center of mass of the system) SF and

S are laboratory (CM) systems.

The proof that the sum over M; s M'

8 can be interpreted as a

rotation proceeds in 3 steps:

(i) Using again that the angular momenta are large compared to the
cha?nel ip1ns ( ,éz ébAaf/ /ég)$>€}s) we may intfzfr?f>the quantities
/%Q/ M. as projections of the channel spins IQ‘J'A%G on the Z-axis

of the focal system SF25’33)

This can be seen as follows:
—

The Z-component of ‘42" in a state /(/4§/Qk.jzi/%z; > of the

L] [ : A
coupled representation is defined as \/,54)“2‘/77( //4x )ZF/
'/éf,<&’;z'/%z;>, The asymptotic form (2.4) of the CG-coefficients leads
to

Ao 4 TH N [ Zhy > =

/ZF

* (footnote from page 17)

We note that the orientation of the focal system depends on the choice
of the EULER angles and the definition of the D-function. Our choice of

SF implies the definition used in ref. 27:

“et pt - %
0 i (epg): = <pm 1552 P TIT ol
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77, "~k

— /
7 ,Jz,’f -7 :.Z“/o?:/Z/ (2.18)

(i1) Within Lhe va11d1ty of semi-classical approximations the amplitude -

o
choice of the coordinate system can be shown to be equal, apart from a

01(sp)
phase, to- the semi-classical reaction amplitude (j F 'ZL'>'/OO
pr (4 520

PPl

¢’/ which itself is independent of the
/17 {A(/(// //
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calculated. 1in the focal coordinate systemzs), i.e., we have

The quantity on the righthand side of (2.19) is referred to the focal
system and transforms under rotations as the direct product of irreducible

tensors of rank A}gand /2(

(iii) The phase function ;h; K defined in (2.15) depends on

/
rotation is only possible if this dependence may be appédximated to

/ _ ! . S
/?;%( = /4i /éﬁa . An interpretation of the sum;l;7 as a

be linear. Since for DI processes the transfer from orbital into
intrinsic angular momentum may be quite large (say of the order of

10 units /%f) we expand /}?/3 not around ’fz = ¢ but around

.an average va]ue |
e = AF) A

of the "angular momentum mismatch." A coarse average of,@éé'f%) can

be calculated from distribution function d to be introduced in

chapter 3. An expansion of Xf /%7‘L around /7' zﬂ[7up to
/%c/s i

linear order leads to 1
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2;/5//////}%/&’/;/5 //{A//%/% A// /_é&/w=&7 (2.21)

From (2.15) we have | | |
/f%ﬁ/ = }/— /'éf' //K‘Zf?/ | (2.22)
e Iy = a7

where the "qUanta] deflection functions" 72% are defined as

Jcac (L)
/ﬂf / / (2.23)
and analogously for 95-%7K3.
Substituting (2.19), (2.21), and (2.22)into (2.12) and (2.]3)
we find ‘
- WGALS,
7/7;21 € * }p //;Zf7L ///,cx7i v
V395 'y X AT ///Z’// /Mi’/ )
(2.24)

- 4 42
7 Llud)- &g a?)f
//;7% /é///ﬂﬂ,)
d 2

: 4 /154 (L+42) (2.25)
%?‘/7‘ “ A/ / /
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By definition, the amplitude CDI M [/ /ﬂiﬁ/d //
P T ey My
. . DI(Sp) . .
is obtained from C :‘°F (fz?) by a 3-dimensional
BopMpy ot M . —
rotation w1th the Eu]er ang es x ::-EZZ:%§!2?fgi// //3 :T/éi
and C)/::;Z‘ . In deriving (2.24), use is made of the relations

/2717/ (w7t /// glﬁ%jm’ @////)
24”/777/ /‘0(//)/ 7// B Q//‘/’/zf/ / ///

T+ G Al

Since the first Euler angle o = = > depends

on the variable ,{? , the amplitude defined in (2.26) has no simple
physical meaning. In the subsequent sections of this chapter we

shall compute the integrals /5;? 27 in various approximations.
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2.2 SEMI-CLASSICAL FORM OF THE DI AMPLITUDE

If the matrix C /2? é?qéf?;ﬂ@&) depends
/3 O 1T, o A M
smoothly on the orbital angular momentum _throughout the whole

integration domain, we may evaluate the integral C;;r ? by the

&

"stationary phase approximation (SPA)T" A detailed discussion of the
validity of this method is found in refs. 29.
The main contribution to the integral (2.25) originates from

S
the vicinity of the stationary points ,{if /%53/3) of the phase

/{(/(? M/ —_—_/Z;/;//jd’/?/~ /_g_/éf//ﬁd?/ (2.27)

which satisfy the condition
557P/ (// /) (2.28)
R x/ 7

Here we have defined the microscopic average deflection function

T (4w
@ /// . :f/é?//fj}?*d%é%zﬂ?/% ﬁ///// (2.29)

If the "average angu]ar momentum m1>match” zﬁxf is small, /G (21/ becomes
the mean value of Qé? and ?éé independent of <Q(Z

Gplt) ~ [0 40 e
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For each scattering angle é?j and each sign 'n , eq. (2.28)
defines in general a finite number of solutions (?;b /[?)

Restriction to real stationary points implies that we neglect ’}2r

/6

for attractive scattering /@r/} <ﬂj and Jf/fzﬁ for repulsive
scattering (Q%;G > CT)

_7/.
= 7 for x/ <

57222/??3 — éjy /ﬁ;}b ;> er

This signifies that the index ? is henceforth given by

7= o % 6y

o)
Let /éiyg (&7# be the inverse of the real deflection function

Qf%% /CC?/) . In fig. 2.2 we show a typical case of deflection
(¥

functions Téi Q;Z , and ’ﬁg;a at energies E above the interaction

barrier EI; in fig. 3.1 an inverse deflection function is seen*

in a case where negative (attractive) deflection angles also occur.

Whenever there are rainbow angles ( defin. see (2.41), (2.41)), the

inverse deflection function is multivalued. We denote the different
N , .

branches by Af; /gi)where the index [=1, /'““ N designs the

branches of ,{Vf,ﬂ5¢1n increasing order of the angular momentum.

The number N of branches is equal to fvrf'/ where fV}»1s the number

of rainbow angles. Restricting ourselves to real stationary points

only, we may denote the solutions of (2.28) by the same index v.

:footnote, see p. 24

(2.30)

(2.30")

(2.30")
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Since the scattering angle iaﬁ is by definition positive, real solutions
S

//‘MZ (ﬁ;/}}of (2.28) occur only for y=+/' if }12-1/5 >0 and for 7; -/

if &é? </ . In general, for given é% and 4? » not each branch of the

v

3
inverse deflection function contaNins a stationary point /K,z /27;%)

!
Henceforth, the symbol 2f signifies a summation
=1
over a the real solutions zgiiqt/g)of (2.28) (or, later, of (3.26)).
v
In evaluating the integral ’ 7;7 we distinguish the case

. . / . . .
(A) that the derivative ézé (Zii/) is substantially different

from zero and the case (B) that it is close to zero:

(A) /@/1 //V;) + g | (231

KZ)/ /ﬁj / ///775/ ~ f (2.32)

In case A we expand the phase /6&7@ up to quadratic order around /[iry

5 Qé%/ /QZ;i/ s )%
Ai/% //} ~ /{///f //i/?)% ﬁé——ﬁ’ //*/;Z/ (2.33)

-*footnote from p. 24.

The function of fig. 3.1 is to represent the inverse of an "macroscopic"
deflection function ﬁfb/kiw{/. Its features are the same as for the
"microscopic" functions /43/5 .
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s
)rep]ace ,{V by 4417 in the remainder of the integrand and evaluate

the resulting integral. One obtains :
t o4l sy - -
D 3P ) PR ),
(]Z% L ly3) e Pttty 7

"g/j //;Zs) (2.34)

with the definitions:

, .
@ 1y ) .
Gs1): = ﬁ//e‘ el (2.35)
7
or
, Vo "5;{2— /‘ “/?‘g / (2.35')
Z0)= s e Tote/re T 6l)
and / (2.36)
. . '
G07): :,/Z%—?M (2.36')
The{comp]ementary error function is defined by30)
2 [
o 2= o et
P4

and has the asymptotic limit
0 o fargz < e
| 7 fag <
/> —
/)= 0o 2 for /4/772/227_’3
y %



-26-

AV IEYL ' o
. (4 s
For /// 0/(/5,2/ at/d )//”; >>/ we thus have the simpler result

e

~ //7 7 v 2.35"
L%ﬁ,/j/mfo//?) e (2.35")

which is equivalent to extending the integration in (2.35) from —oo Zo +. 00,

o (6

"js a smoothly varying function of the orbital angular momentum
It is consistent to assume in addition that it depends smoothly

on the rotation angle ’?‘72’[/7‘ A// . We may, therefore,'

approximately rep1a§e the angle /éf/é; %AZ/ by )12;} /,/VZS):: YV%

L LS B ral))~
P i e AL

e "y ;
R C‘ ot M, //6/,/27/ (2.38)

L 2r(S) ”
o ‘%4/}/7 /044/& /”7) - (2.39)

The amplitude C]’L[S //;;) defined by (2.39),

/5 M ;o Ay My
and more explicitly bg/" -/b/
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:DI (s) 9 y: '(,Z
/3€%3 oCZZ(AQ KZV ) zf?ij ;;Z) // = J,Z /Z
i,

//3 /3/?% a{AQg/QZ /Z;’eé //2 &

can indeed be interpreted as the original amplitude (2.19) transformed

from the focal system SF into the system S defined in section 2.1. This

is demonstrated in fig. 2.3.

We now turn to the case of eq. (2.32) implying that the angular
momen tum /{7 {if-f, as defined by the SP condition (2.28) is equal

or close to an angular momentum /0 gﬂcorreCpond1ng to an extremum

of the average deflection function (2.29):
4 (L)
01
The corresponding deflection angles

Gy = G4

are called "rainbow angles",

There may be a finite number /V; >>57/ of rainbow angless; in cases
of practical interest A/ 1 or 2 dependent on the nuclear inter-

action. A discussion of different types of deflection functions is

found in ref. 31.

(2.40)

(2.41)

(2.41")
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v
In the vicinity of an angular momentum ,1; , the expansion
(2.33) must obviously be carried to higher order which leads to the

well-known "Airy approximation": Expanding /€7Z ﬂvup to 3rd order
>
around /4}

/4@7{/// ~ /{{j %774 //-%7/@[/;7* %ﬁé/’éj}”//}y (2.42)

’
jsubstituting /{; for ,Zy in the remainder of the integrand of (2. 25)

andlsggsequentlylrep]acing ﬁ%/Q?Cng by ééb /?7/L—é% in the argqument

leads to the following result for the integral 4

of C
R0 M - '
/‘/ség | /V/fg

;¢ ?/[7 ]j s (2.43)
/7; <l Pyl /” //; S
@

Tl
¥5.
;;; J&a’/ e

(2.44)

7 A / ///7// /% o)) 15

where

= 5/77 ”‘ﬂ //r/ : 2.45")
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The "“incomplete Airy function" is defined by3])

g ; " ‘42"7
At/,}f}/) .':zi/:" fﬂ/f e At 3es | (2.46)

and the arguments X, Y by

/’/v //’tg/”//r/// / / _ (2,47).
Vo-£ // /@)// o

Using the stationary phase condition (2.28) we may write the

argument X as ;
3 o *——2—,—*——? " 5/ (2.47")
1)~ & [z (F-4%)

This is the form which lends itself readily to the general case with
orbiting (appendix Al)}.

Some properties of the incomplete Airy function are discuésed
in ref. 31. If the stationary points of the phase ( ka t 5'293 ) in
(2.46) are far away from the lower integration Timit Y, one may rep]aCé

Y by —po , in which case the incomplete Airy function becomes the

ordinary Airy function

%/ﬂ”/: /%,,4 /%//// (2.48)
)—> 0o
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where

A - - /ff@l//ﬁw/ o ew

or, equivalently,

///'//fa)_é/_/z [fa)i;/ /‘(o‘l:ﬁ/gé Z‘j_*/f/ 27 (2.49")

J
P Properties of the Airy-function are given for
(4>, /-%a//e
instance in ref. 30. A plot of the Airy-function is shown in fig. 3.2.

The Airy approximation is valid only in a small angular
. r
range -5‘79’ around the rainbow angles ’U’J% or, equivalently, in
a small range +84 around the rainbow angu]ar momenta [;; Within

the accuracy of the Airy method, we may replace the arguments //7 and Qéb

by /;7/j/5) and "/2’/4 ) 7#’ , respectively, in the first three -

smoothly varying factors of (2.43). Within the rainbow region, the quantity

9
¢ thus assumes the form
K

7 K //7 2 //

In order to write the general result in a concise form we introduce

the following function:

ﬂf /‘fé’:/ S = é/gzc/ﬁ/.//j)’f/%/é///fﬂ,wvégé}?/ (2.51)

L g7
Lo S ) i)
éé% ~ KZ%r’ e 4 J? $ %wﬁ/ )

(.<. 230)
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6, is the ordinary "Heaviside function"

1 for z>0
eo(z) = )0 for z<0 ‘ (2.51")

We imply that ¢ (7 ) vanishes for all angles ", if the deflection
2

function i1t refers to contains no rainbow angle.

Then the quantity Z 2 may be given the form

J“/Z’ Z/ / 84/4/3//»)}1/9 %)

/75 p=/ /;/’M"‘ gl

_

dy s l3) 2///,//”

, //// WA
=/

(2.52)

where /1 , s {/@ an 2;4 are given by (2.27), (2.35') and (2.45)

Lp,z, /:)2 //;) are the real solutions of
(2.28) and % is defined by (2.30"). The reaction amplitude
DL
/Gé” } is obtained by substituting (2.52) into
/4/0 P XA P ¥

(2.24) The summation over # can be interpreted as the superposition

resp. The stationary points

of the contributions of all trajectories (repulsive for ?7= #'7,

attractive for ?:r-/ ) which asymptotically end up with the same

scattering angle 'SL . Whenever more than one term is of appreciable

P ere

magnitude, the cross-section . (see (2.17")) contains interference
1Y

terms. The question whether these interference terms are of importance for
the measured energy-averaged cross-section will be treated in § 3.
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2.3 SEMI-CLASSICAL FORM OF THE DI AMPLITUDE INCLUDING DIFFRACTION
EFFECTS.
So far we neglected the influence that direct as well as compound

DT 4¢ pI processes.

nuclear processes may have on the amplitude f
Physically, the main effect of these channels is to produce the imag-
inary part of an optical potential which acts in the subspace of the

DI channels. This absorptive potential may generate diffractive
phenomena in close analogy with the scattering from a black body.

Such diffraction effects are known to be a dominant feature in direct
reactions as described by the DWBA and have been beautifully visualized

in the theory of W. E. Frahn 3]’33"35).

In what follows we apply the
same methods in the description of DI reactions.
We assume that the effect of the imaginary potential is to

DT

confine contributions to the amplitude f— to a limited range of
orbital angular momenta. A drastic Qay to achieve this is to intro-
duce sharp cut~offs. Let us thus assume that DI reactions only occur
if the orbital angular momentum /éz in the entrance channel is smaller

than a critical value ‘/{L and if the orbital angular momentum ;§% in
Vi

the exit channel is larger than a critical angular momentum ,/1

/3
/éz (4;6 (2.53)

‘ = PN 7£k (2.54)
%_/~/
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The cut-off parameter /1x. depends on the kinetic energy Eﬁjn in the
entrance channel a. The meaning of the upper cut-off is that partial
waves with 4Z'>’1x do not penetrate anymore into the region of strong
peripheral overlap and thus do not contribute to DI reactions.

The Tower Timit /4;?'nﬁght be defined as follows:
Let us assume that for a1];gﬁ%u]ar momenta ‘;2 <:%Z3 the total
average potential in the exit channel B exhibits a "quasimolecular
valley" with the top of the outer barrier being EI ﬂgg;/B) .

Let us then define /4¥h by the requirement that the kinetic

kin /B

energy EB in the exit channel is to be smaller than the top of this barrier

‘measured with respect to the asymptotic intrinsic energy

E/fjm < Ep (hp)- 7

for all 4¢g <f/¢zz. If defined in this way, the cut-off parameter /4ih
is at.most equa]Ato the 1imit /16 (>?fﬁ<7/1ﬁn) and depends on the
final kinetic energy. '
The underlying picture is: Whenever, as a result of energy
dissipation, the final kinetic energy falls below the outer barrier
of the effective final potential, the lifetime of the intermediate
complex is large enough to achieve complete relaxation. Thus for
/ég < /4;6( the S -matrix sPT (2) is zero while the S-matrix
SCN(Q) is finite. We note that, in a large variety of cases,]o’]3) the measured
fusion cross-section can indeed be understood on the basis of this

picture.
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The relation between /{p and Afy ,fa is
/
/1:? ::ffé 7 //&x -4/7" /ﬁ/
Replacing <22£ by the average angular momentuh mismatch ‘i]?r , the

restriction (2.53) takes the form
R My | |
£€¢//Z; (/2§24é%://__£ﬁcgﬂ :::/<Z: (fZi; //) (2.53")

The condition that SPX(2) and thus cOX(S)

Ro. (2) s only unequal to zero for
,/waéf,f7<f//lt can be taken into account by redefining the

integrals (2.25) as ~—

/ / 4 #
/é///%%/ ///3// 7)-Z //4//

/‘ s
| /‘ . (Jl//
/Zdﬂ %/'OZAO(/V

As in section (2.2) we eva}uife this integral under the assumption
PI(S) . —

that the amplitude C y4 ?§y/2¢£A@?Z) varies

/@é%,@k,;o(4&fﬁ§ [ /%

smoothly as a function of & and‘gi in the whole domain of integration.

('

/ﬁ?’éé&/?/zif?ﬁ/ (2.55)

A) In the region far from rainbow angles we obtain again the result

(2.34), but with the integral /C?) now béing defined as

7
el Zs (4
T |
A /f?//,' = |47 e < | | | (2.56)
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and evaluated as

A Y
A /ﬂ/f/e e

(2.57)
- T -
-~ &
*/7%/6 ?c;é?//%‘////
The quantities € and Co(k) are defined by (2.36) and (2.36') resp.
B) 1In the region close to a rainbow angle ﬁ§Vr_, we retrieve the
result (2.43), but with the integral L;rf being defined as
Y | . |
3 LT 8
~ (7L - S Gadide S ANy, / (2.58)
(/{% s . 8
ﬂfa
/°

‘

and evaluated as

Léfx /Zg//mﬂ//ff//“%%{/// (2.59)



-36-

Here, 2?’and‘A}/are again defined by (2.45') and (2.473') resp .

The second arguments have the form

o~ /ﬁ////r/ 3/ 77 2.60
X" 4 zf///¢f~'%/ o

_ ')//? Y _
L/:ZE/@%KL/‘/ J/%-—%/ | (2.61 )

I

7
/%17

with L224 and Lgédf being ziﬁgh by (2.57) and (2.59), resp.

The general form of the quantity persists to be (2.52) but
While the sharp cut-off approximation has the virtue of simplicity,
its quantitative predictions may be altered appreciably by the more

3]). On the other hand, the

realistic assumption of a "smooth cut-off
smooth cut-off prescription implies a knowledge of the reaction amplitude
in the vicinity_of the cut-off parameters or at Teast é parametrization
of it. This seems to preclude a form of the final (coarse--gained)

cross-section depending on probabilities only. The coarse average leads to an

averaging over the cut-off parameters we introduced. We presume that thereby

the defects of the sharp cut-off assumption, are alleviated.
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3. The Cross-Section for DI Reactions

3.1 THE AVERAGE OVER COARSE CELLS

In an actual experiment, a complete determination of all the
quantum numberslﬁéﬁzgaj;zgg of a final channel is usually not possible.
At an energy of some 100 MeV or more above the interaction barrier, one
will usually only determine a limited number of properties of the
final state. Using the terminology of statistical mechanics we may
say that in the HI experiment we determine only the distribution of the
system over "macroscopic" or "coarse" cells of phase-space which are
defined by a limited number of "macroscopic variables" (1...qf z a.
The most important examples of such variables are: scattering angle,
charges, masses, kinetic energy of relative motion, intrinsic angular
momenta of the outgoing fragments.

In order to writgvgormu]ae in a concise form we define the
first observables ay ... g to be the polar and azimuthal scattering

angle, the wave number kB and the reduced mass

mB in the final channel:

Z:=10 | (3.1)
622 o= 4 (3.1")
5?} ;S o= /¢§§3 (3.1'")

6%; .= 7??3 (3.1'1)
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The measured “coarse" cross-section for DI reactions is obtained
by summing the energy-averaged microscopic cross-section (2.17'') over
all the final channels which 1ie in a given interval (a,a+Aa) of the

measured macroscopic variables:

A/
Vi y
. w2, Ja ity =& /ﬂM) (3.2)
d/’éfz@[@u@/ A

:Z: _/i,/zszc__

87
[3€(aarda)

The symbol (a, a+Aa) signifies the interval betweeﬁ the macroscopic
observables ay ... ag and ajthay , ..., agthag. The summation over the
"coarse cell" in (3.2) as well as the energy-averaging which is already

implicit in the definition of :Z—lﬁi implies that interferences from
different trajectories annihilate each other to zero due to the
randomness of their phases. This also holds for the interferences
(2.17'*'"') between compound and deep inelastic amplitudes.

We thus obtain from substitutions of (2.17''), (2.24), and (2.52)

into (3.2):
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Pt et 7))

ﬂ€@ arde ) «40(/)/5 M. /"//> s

S -
M /4 Py [5) . /2
a4 aima, /G A //'(5,,7@19/4*)
¢.'Z{ e, /%/%/l)v/ﬂ‘\{% Z i Tl

#

S ‘

The quantities bézg and »éékf ére given by (2.57) and (2.59)
if diffraction effects are important, and by (2.35') and (2.45) resp.
if they are unimportant. We have replaced /QZ; *J%,) by ,165 in (3.3)
since the orbital angular momenta at stake are always much larger than 1.
Furthermore, we have assumed that the variation of the stationary
angular momentum Zi%(@}/gj within an interval of length A of the total
energy is negligible. - ,
A2§1ogous1y, we consider the quantities Aéf/ Qf? ; ?é%é , 4?%2
and “75 as being constant within the averaging interval of the
energy except if these quantities appear in the argument of rapidly

oscillating functions.

If one finally assumes that the energy averages of the probability
2L(S) / 2
/’7 /3/1 %/ ‘X /L( /‘7(,(_'

uncorrelated, one arrives at the following result:

and of the remaining factor are
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Z Z Yullyoif) //w)) (34

with the definitions

, o/ 2L(5)
%/J/°“p@f¢ﬁ_§(,44§ /ﬂﬂ/s/y Y /))/} (3.5)

/

y/’/ = @4 Zﬂ WA, /;/J/r;f/l/i—,;/j/ o%/z)/ (.6)

Ap ) 7&5;%;’7// 3/( SN ) > + <Y )
T AL e

/;; () = y @//} 7 / ¢ ﬁ}/ f /J////jf‘ //) -7‘.(/'7—%‘///%//: -//»

Sy %//@%%////“ ) ent "%‘ﬁj/ > | (3.8)
2 /(’ / ' X / /€ 5 A |
s

In Ay /Ef;/%/ the index ?’ is given by (2,30")
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The Fresnel function is defined by3]

Furthermore, Co = Co(x) is given by (2.36') and the arguments ,%jv
},// ), by (2.47") (2.60), (2.60'), resp.

Making use of the relation

/= é‘/f‘z.gg{/z/C/K;Vﬁj‘/zzi//%/'E'/f/g_}/?‘j%g*/

where the "Fresnel integrals" are defined by30

jdz‘ e /ffz)

0

f&/f D /f:z“/
5

one finds the alternative form of BaB

C(z):

S(z):

#

/

7, = s et ctfs [ 5E)Fs

¥
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The Fresnel function is shown in fig. (3.4) and the Fresnel integrals
in fig. (3.5).

We introduce the number ﬁglhz) of microscopic channels in
the coarse interval (a,a+Aa) and a "macroscopic" ("coarse") probability

density P (a):

M”ﬂ/ Z 7 =Z /a/// r{fé vy (4 //)/ (3.9)

ﬁé/ﬂa#d&) /)’é(/[{/ziu - oo

ZDA)/Z’” = E/Q/, " “/A/Z%g 4, d% £

=) U (4, (0,
felyira

= 2: /%’// c{//‘/m /// =% A) (3.10)
//76/9f7fz¢z/ o

The average of the function 27)6 in the coarse cell (a,a+Aa) is

given by

56 =77 4 ()

€4 araz)

.__#7_/;_‘__2 ////j / /)’y(((/(/;/ (3.11)

e/aa Aa)
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and the deviations of the functions %%G and Z%;g from ‘the average

values in the coarse cell by

Aoy = % //,j; /a,//z))- 2 (a) (3.12)

//B/Q/dd (3.13)

A3y i = ZZ{% [ /f;ﬁ/’// Mo

Using these definitions, the measured coarse transition probability

(3.4) may be written as a sum of a term which contains only the product

of the average quantities and a second term which expresses a correlation

between the fluctuations (3.12) and (3.13):
2L / "D /)
Ko ae) = = é /5 (2) 2 ) #
Y —/
— ) g (3.14)
vl 2. Z 4%{/5 43&/5)2

/55[2/ atda) v
We assume that the fluctuations of the functions Q§/$ and \}%;@

are uncorrelated and that the summation is over sufficiently many

states to make the second term in (3.74) negligibly small. Our final

result is thus

0 ae L S RA) pl) e o

A &, pu

We are now left with the problem of evaluating the average quantities

Pv(a) and ‘Q}ZP from a theory which does not involve a detailed knowledge

of the dynamics on the microscopic scale.
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3.2 THE EVALUATION OF THE COARSE CROSS-SECTION FROM A CLASSICAL
- DISTRIBUTION FUNCTION
We assume that the system is described by fo external (macroscopic)
variables. We denote the operators which represent these variab]es

and their conjugate momenta by A- and /' ///Q; .,./4 /4 4/

and the corresponding classical variables by A; and 47

z\\h

The decomposition of the degrees of freedom of a system into
external and internal ones is based on their time-dependence: The
development in time of the internal variables must be so fast that the
"memory" of any initial state is lost after a time interval which is
short compared to the collision time, while this is not so for the
external variables. Examples of external variables are: the vector
" joining the fragment centers, mass and charge of the fragments,
shape variables and the corresponding conaugate momenta

We assume that there are f commuting observables .(2 (§4 ,///
which are functions of the external ggriab]es; in the simplest case
they are equal to one of the Ai or QZ-. The eigenvalues av of these
observab]es represent the "macroscopic quantum numbers" which we
have used to define the coarse cells.

The evaluation of the reaction amplitude by the stationary
phase method implied already that a classical description of the
relative motion was a valid lowest approximation. We now hypothesize
that the classical description holds also for all the other external
degrees of freedom of our system as well. Consequently, we may

assume to know a classical time-dependent distribution function

[]{/o //{,'%Tz‘) which provides the probability s/, /%//(/7 [L/A/}fd/f
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for finding the system at time t in the 2f -dimensional volume e]ement
{4 A{}*EV’ of the phasespace of external variables. The probability

density Qf]ass

(a], cees af) to find the system asymptotically
at the macroscopic observables Ays +.es 3¢ = 2 is given as a function

of the distribution d (A 7h't) by

) = JOU T /(f/_/? U747 7
(

V,?Z;) = 1,2,3 should represent the vector s joining

3.16)
We agree that A

the centers of the nuclei and the relative momentum E . It will be

convenient to use as a variable A] the "classical deflection angle” '6}

Ay =1, | ' (3.17)

father than the polar angle of v . The classical deflection

angle Q§k is defined as the angle between the direction of the
z-axis of the coordinate system S (see § 2.1) and the direction of the
vector ¥ inclusive of any number p of full revolutions. We defineHG}
to be positive for repulsive and negative for attractive scattering.

As already noticed, we choose the observable 2, to be the polar

scattering angle é?’

JQV E’é% (3.18)



-46-

which implies the relation (see appendix Al)
oo JZ’/? = Z# | (3.19)
) [/ :
where ? = ";}7’7 /’éz’i # 4[/9/

and p = 0,1,2 ...

Since, so far, we treated only the case of no orbiting in DL
reactions, we put p = 0 in what follows.

C]assica]]y, the orbital angular momentum /Sg:(}gp/ can be
measured at the same time as the scattering angle 57 . Quantum-
mechanically, these variables are not commensurable and thus / ?:XIBb/
does not qualify for one of the observables ﬁv . Nevertheless, it
will turn out to be useful to define a classical distribution function
d(%ﬁd£)|u,&y;[3 which depends on the deflection ang]ecéfaé well as on

the angular momentum 4?:

e 4, ) = Jull A LT S8 |17

7 |
a//i{/ﬁ/f //77///(7*"/(/ /4/4//2\'%9’”/ (3.20)
-2 : |

We use it to introduce a "macroscopic {classical) deflection function"

/ﬁi///j'lg/ by*
/%//// @ e DQ///:‘E /64////4/_,://;,/5«//{;/@/ “ ?/’//7 (3.21)

In analogy to (2.28), a given scattering angle a, = é% gives rise to

a finite number of angular momenta /&;; /<;f a, 6?5) 55’4ii;§/2/ by
A E d 4 ‘

*(see footnote p. 47)
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= 5/”@4/ ' ;7::‘ )’/Wﬂ , (3.22)

The index ) specifies again the branch of the inverse deflection /yﬂ%)
function l%a). For a deflection function with 2 rainbows (2p AZ7) the dif-

ferent "branches" refer to the angular momenta 4%23(? (4/(/Z; and AZ>A/
The number of branches is called N and the rainbow angu]ar momenta

/;r/“/ A’= /, o /K} are defined by
/ﬂ///?%//“/ = 7 | | (3.23)

and the rainbow angles

’Zé‘%r/ﬂ/ S = /ﬁz///{ar/“// ‘2/ | (3.24)

corresponding to the "macroscopic" deflection function ’L};/{éi'ai//

With the specifications (3.17) (3.18) we may write the probability

c]ass( ) as

LWM// {/ 5 Q/ Cé%// // /// ()/54/— ?/79&4’ 2/
e (3.25)

e (74 4 (477 £v)

*footnote p. 46. Note that the integration¢QZ§? extends over all possible
deflection angles, i.e. in general from - to 72 . If orbitings are
cxcluded its range is from -2 to » 4

density P
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D)= Jooatr Sfo-gr Silfon, 98

We use the function 45;/2y‘§/0f (3.21) for introducing a new integration
variable X instead of the deflection ang]e‘f”:

Using the relation

A/ . s
fee)-yriaf~, Ty el

where,as before,the prime indicates that the summation is extended over

those branches of the inverse deflection function which contain real
5

stationary points ﬁ,éa)we find:
2 o S
PG )
¥4
// //;_7 /2‘7*// () z/// (3.26)

The probability density P ]ass(/ (a), cz, // is defined by

P ey ) s = fird 0 ity
/c=//z C(/ﬂ/c /4//7/~41@/V§ H/?/\-ZZ‘W 'QO/ (3.27)
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or, equivalently

()45 )= /y//ﬁ//rf// 4y )

with

f//, 4 e 2 )= ////z%///-cz// @wg//-//

(3.28)

(3.28")

. IS ,
Comparing (3.27) with (3.10) we see that P?]ass(cg;z(/gz,az‘n??,)

is indeed the classical limit of the average probability ﬁ,(a):

The summation over microscopic transition probabilities .}%%ﬁ within

the macro-cell (a,atAa) is replaced by an integration over the classical

distribution function d (/%,/ e #c0) which describes the fluctuations

of the external variables g@/y due to the coupling to the internal
degrees of freedom. The integration is restricted to the macro-cell
(a,a+Aa) by the §-functions appearing in (3.25).

In particular, the restriction to a given scattering angle
@E 7/% is achieved by the & -functions (5//7 /Ly,,f/"( ﬁ%n (3.10)
and by fiﬁy X;w4/&/67 in (3.27) and (3.28). The fact that in
(3.27) and (3.28) only the stationary points . yyza/) of the "macro-
scopic" deflection function appear does not imply that fluctuations of
the orbital angular momentum are neglected. In the formulation (3.28)

they are seen to be contained in the integration over the last argumen

t.
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Qualitatively, the dependence of M/ﬁ’%“’%'lyon /f’ and // for |

given values of the observables ay «.. g is shown in. fig. 3.1. We expect
the distribution d to be different from zero inva domain which surrounds
the average deflection function. This area is shaded in fig. 3.1.
Depending on the variables Ag...8g, especially on the total excitation
energy of the final fragments and the amount of diffused mass, the

region where 52?42% 42~-4?<;4ﬁ)is large differs. Thus for large excita-
tion energy, and mass transfer, one may expect d to be largest in the
region of small angular momenta.

These considerations suggest the following decompostition of

//44 iy //

4,4 Zm»/m y, 4 e

where

ﬂ//‘ /”/{/74/' /Z/ -
“ 7 5

o

&’

él is the usual step function (2.51'); the scattering angle 27 s
) »

equal to the modulus of the deflection angle: 2712'/@5%/f= ;Z/Uy

By definition we have
A(as
oy T T
/ 7
24,
=
/

N for &4 >0

where p, = v
N=] far 154 < /Y

.»ZVZQ)%zfswﬂ/

(3.30)

(3.30")

(3.30'")

(3.30"""
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The evaluation of the average angular function 2%,64) from a
classical distribution function is somewhat less trivial. We treat
the general case including diffraction effects, since the simple SPA
1imit can be easily obtained from it.

The function ZZ;G /Zf;f/;aYQZ) depends on the microscopic
channel quantum numbers g in 3 ways: (i) by the dependence of the
argument //;; /d,/'ﬁ/ on /J} (1'1') through the fact that the
"microscopic" deflection function /5 and its der1vat1ves depend on]g
(iii) by the dependence of the cut-off parameters //7 /ﬁ£>
and the rainbow parameters A/¢7" €§L7P /43 . ’

The dependence on B8 causes theqe quantities to "fluctuate"
around averages which depend only on the external variables a.

We neglect the f]uctuqzion of the cut-off parameters, replacing
them by average values /ﬂg/ 1, and, analogously, we substitute the
rainbow parameters /4/}/f”76/ by the corresponding average quantities
/ﬁ /H %/ defined by (3.23))and (3.24).

The fluctuations of the deflection ang]eﬁﬁ’and the orbital
angular momentum /Varedescribed by the distribution function
477¢§é7" {i/ (eq. (3. 20) or its decompos1t1on (3.29). This function
does not contain fluctuations of’éz and ”% for given values of{?

By establishing the dependence of %% and 1" on the basic external

variables one could construct a distribution function from 42/ (;7 //

Since we expect that the fluctuations of Q?r and ﬁéb for fixed values of

/Z@ Qk""?k /Zv are small, we replace these derivatives in 2471 by

the derivatives Q§b KZ712} and ﬁ?» /2? (4/) of the "macroscopic"

deflection function introduced in (3.21). This results in the following

Z *>7‘<>\y

which contalns’fz and“@as arguments in addition to (Qﬂbg Q“,C%k {7 ).
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function 27 :

e / 7 .
I 20e) bl U= 3524 w/////;///yf/yj/z/ o1

s

where the functions A({) and B(f) are obtained from /ﬁgé /QZZ(/;Z/G/&)
| and_)z? /9/5/9% Z) as defined in (3.7), (3.8) by the followin
VAT 7)) (3.8) by :

GO 4
L4 ) — &
G [ p]— &%)
@4% /4541 — L)

- [}
7

7 T 27 7
Z /// T)ﬁ Vi )/’ “ // e )

fo o o N T
///% = 4//‘Z
The double step function /44/2715 defined by replacing in (2.51)
- , g e
;2:/%;?3 by Adi and 'ffé?ﬁ/ by /éfq(é%/).
4 ' ) \

The average of the function 2» with the classical distribution

(3.31")

function d),, with a restriction to the measured scattering angle

ss _
a4,z ZfL yields a classical approximation ngtgbs(a) of the average

function 27 /«) defined by eq. (3.11):
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, c/e.gs/@ )i = /A/’zﬂf /o// y/é%/ﬁ’//;a //ﬂ%e// {74%‘% -ty //(%4/,/,497
o 4oy, I ] o

The final result for the coarse transition probability QDI(a,Aa) is

W
7 !l .
i )/”/M Tom 4 Z 7’ //u}/“//”‘“”// %0%}4%& 44 Ly
v=/ ' (3.33)

and/equiva]ently, for the coarse cross-section

il
dare, &,y

4
ﬁ—~£:__. )~ clss . 43y, |
= e, Z //0/4;@//{%’/$ (<) (3.33")
r=/ ,

We now discuss this result in more detail:

(i) Stationary phase approximation (SPA) and purely classical limit

We first consider the simplest case that the part of the
fluctuating amplitude which is to represent DI reactions is everywhere
a smooth function of the orbital angular momentum. The resulting
reaction amplitude was investigated in section 2.2; the corresponding

macroscopic cross-section is retrieved from the general formula

(3.32) by choosing the cut-off parameters to be

O

/& = F 00 (3.34)

A

t

- po (3.34")
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This leads to the following form of the functionzf:

522?4;9%/ 4é;;22%7“€/L 75;}?22f14;//, {f;27:==, fﬁ; | ;gg@./{%7 |

7 G A

# 2 ;
‘ fZ/ 4 ///ﬂi/é%w//p AL >
, |

- /
a //,/4;*145/?2Q) /17
y s ,/%43/4%74§&/‘ (3.35)
where the argument ,*f/is given by (see (2.47''))

7 | 3%.‘ . / |
/*?Z?;/:: 2§?¢765%%425A§&&;/;{;;@?%52%;422722//%ééﬂé/"755/ (3.35")

Figure 3.2 shows the Airy function and its square; in fig. 3.3 we present

a deflection function for the system Ar + Th at ELAB = 388 MeV together

with its 15t and 2™

derivative. The deflection function of fig. 3.3
was obtained by a classical trajectory calculation including friction
forces]3) while the function 46%%2f¢e// is defined as an average
deflection thction.for elastic scattering in the coarse cell (a,atAa).
Nevertheless, thc general features of the two functions are expected
to be the same. |

The averaging process (3.32) will affect the function AiZ(XV)
through softening the steep decrease for,ﬂ{}yﬁrénd broadening the

V&~
first maximum at A = */’. This first maximum represents the peak
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of the angular distribution and is expected to occur at a deflection

ang]e??%ax and a corresponding scattering angle i?;ax given by

b = smt, % %/d/ /W/Z f/@é’/‘
/ S A/A/a/// (3.36)

We note that the difference /%éﬁbq“ 7%%&24/ between the peak of the

angular distribution and the average rainbow angle may be as large
as about 10%. The rainbow oscillations for /Y?ﬁ-/ are expected to
be wiped out by the averaging (3.32) whenever the width of the
A{—distribution is sufficiently large. In the example of fig. 3.3
we estimate this to be so if the width exceeds 20. 1In an actual
experiment, usually only a few macroscopic observables are measured,
which implies an integration of the cross-section (3.33') over all the
unmeasured observables CZC . This integration has the effect of
an additional smoothening of the angular distribution. Thus the fact
that rainbow oscillations have as yet not been observed in DI reactions
does not mean that they cannot be seen in a "maximal" experiment,
i.e. onc in which all the macroscopic observahles are measured.

An observable feature should be that the descent on the "dark"
side of the rainbow is expected to be steeper than the one on the
"bright" side. If the'sign of the deflection function /%§¢7ﬁ5743/)

remains the same throughout the effective integration interval
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« v
in (3.32) , one finds that the "dark" side of the-rainbow occurs for

e, Vg OUR) gt

and for

I A B IGH) 7 Br =/

In the purely classical limit, the 2nd term in (3.35) is considered

]

~/

to be valid for all scattering angles -zﬁh. In the classical theory}
one usually introduces the impact parameter b instead of the orbital

angular momentum. We define the impact parameter by

/. _ _/_/f_ ‘ (3.37)

and the "stationary" values of the impact parameter by

£ ) = A (371

.)

B

Furthermore, we introduce a,ZZ—dependent deflection function ﬁéy'by

/%4 é//) ”Zf”// 2, - / o (3.38)

*footnote. This assumption cannot be made if the rainbow region is in

forward direction.
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Assuming that ) |
S G U (P2 "%//J/ﬂ%ﬁi
ALY . (84, g, LT S

(3.39)

we arrive at the result:

7 2
//Qh - /4 Zy
. 4
ﬂfm;ﬂ{zaf}?, A, & 4,

. class ~ ]
///z e 42//4/&/ (3.40)

va / 9«95// /
e / // (e) /

n

We note that the factor /Zé? in (3. 40) is a consequence
C A

of defining the impact parameter with the wave number aq instead of &(

which seems reasonable since in our theory the orbital angular momenta

refer to exit channels, Ana1ogous1y'to (3.38),7‘5‘“aSS is defined by
~ - v g ;o f )
7 el . :;ZD L u By
/ /A{%"'ff-’//’“ zq /2 FS (3.38")

Due to the_azimutha] symmetry of the initial state and the Hamiltonian,
the quantities on the righthand side of (3.40) do not depend on an = }o.
If only the scattering angles ay, ay are determined the

AfQ P

measured cross-section is g'lVGn b_y ()‘1113 d&(/ 5{[’ P
- - V/l.' e

[(Z (/(657 e 5((//
In the case of the classical limit this leads to
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Vil 7 & ”

Sty [ _

. J / Q/ZM@L/ZQ .-,a/% ﬂ/fwé? J(é/(;
s

v
4 1) Pl )
W)/

where Zy "f}“7f§27254/@¢/ and where in analogy to (3.1 ) and (3.1 )

we have defined

o %’ V. /‘{3’ Z@M S (3.81)
_ZWM/ Sy @7//(/* '
V=r - |

//°

wr '

@ Lz :/i (3.41")

wm A . (3.41")
4 o = My

The funct1on Pc]ass

describes a distribution of all the macroscopic
observables in the final state. Let us define average values 5;} of

the observables £ >3 for given scattering angle ay :

5 iy PV ) 0500 )

/ ™ cluss .
ﬁ_/éé,/}%? //5/1(/47,--‘5;//

Y an
. :

(3.42)

4. %) :
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If one calculates classical trajectories from Newtonian equations
of motion including friction forces]o°]4, one only predicts the averages
56; /Z;// . The cross-section ?;él in such a theory turns out to
be
) o,
/(7)4 _ 4/1/’7’74 Z /{iy é/) /
— frmened l/ N -
AL dierg alty P, / DA% ] / |
N4 //’ (3.43)
4

where Aé7 /&, and 46;/%ZZ/) represent the impact parameters
which contribute to scattering into the angie u? ,>b //:; {/4 © /45154&/

and the deflection function, resp. Such a theory is only meaningful

if the fluctuations of the external variables are small. The cross-
section (3.43) must thus be identifiedlwith the cross-section (3.41)
in the limit that P p class describes narrow distributions of the
macroscopic variables around the mean values (3.42). The classical

trajectory calculations so far performed do not allow for mass transfer.

7

a2,
They thus only apply to systems where the factor P // . The
4
average deflection function '5%’ , which contains the effect

7,

. . . //7{”/.
of the energy loss due to friction, and its inverse £y, (af) must thus
‘

satisfy the relation

C&%
_ / bl T (6500 )

%%u/
/ p// (3.44)
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(ii) Inclusion of diffraction effects

Let us now discuss the result (3.33') in the general case that
the amplitude of the DI reaction changes rapidly in the vicinity of a

lTower and upper angular momentum. Then the general form of the

functions A and B (see (3.7), (3.8) with the replacements (3.31')) applies.

In general, the inner rainbow region, which matters for DI

reactions, corresponds to angular momenta £ largely different from /4z%
)/ (see (2.60),
1,2 :

(2.60')) is a large negative number and the other one a large positive

£~

and /\a . In this case one of -the arguments

number. Thus, we have again the resu}ts contained in (3.35);

/4/441/44/,4/ %//ﬁ/f/;zj///f(//f///ﬁ/z)

The function B is readily discussed for specific ranges of

the argumentI{pby considering the relations

Lo Cl) = Lo S6) =

¥ =7 o0 Y—>foe

Clx) = - (W'_
St = = St)

as well as the asymptotic behavior (2.37) of the complementary

error function.

4
L

(3.45)

(3.46)

(3.47)

(3.47"
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For Co //" ja}&(/ >>+/ and for
G //[’:-— //})#/

there is no effect of diffraction

/

s - (G 14y 6)/ o
LS N
Finally, 1f‘)71s close to one of the cut-off parameters //1 4/4é

and far from the other, one of the C-functions and one of the S-functions
in (3.8') can be replaced by 2% , while the other ones describe oscilla-
tions. Of course, the averaging process (3.32) will smoothen these
"Fresnel” oscillations, and so does an integration over unmeasured
macroscopic variables. The question whether Fresnel and rainbow oscilla-
tions should be visibleat all in DI heavy ion reactions can only be
determined by careful calculations based on a realistic di;tribution
function d0 which we intend to carry out.

Let us discuss the expected effects on the angular distribution
for the (fictitious)cut-off parameters /qf“ = [0 (which would grossly
correspond to the measured fusion corss-section) and /4a'= /9C)in fig. 3.3:

For é% > é%ﬁ“*: Qghﬂx“'ég;o ) the function B and thus the

cross-section would have to tend to zero.

For ﬁ% 79’ >7?Iv~ ;62;2’ = 270, it is the /—va]ues
4ﬂ</<4
and for é% < é}jp it is the A/ivalues

A<l

2D
which contribute (for definition of /46)49yf‘ 75; see fig. 3.3).



-62-

Let us finally comment on the problem of distinguishing DI and
CN reactions: In appendix A2 we have generalized the semi-classical
and the classical result to an arbitrary number NO of orbitings. Since
the semi-classical approximation as well as the purely classical limit
may also be applied to the totally equilibrated amplitude, the result-
ing average cross-section (A1-17) and, more specifically, ifs limit
(A1-22) also apply for the CN cross-section with the difference: that

Ny,
PC]aSS is then to be replaced by the corresponding transition density

gg&ass for totally equilibrated reactions. Contrary to the transition

probability for DI reactions}the distribution Pé&ass would factorize
into a formation and decay probability (see A1-23). Since even the
' V2
angular distribution c may approach isotropy without complete
A Aa,

equilibration being reached (see Appendix A1), an experimental separa-
tion of CN and DI reactions may be very difficult in certain cases.

Theoretically, the problem may consist in decomposing a classi-
cal distribution function of the external variables into a part de-

scribing a fully relaxed component of the reaction and the partially

ar /
relaxed remainder, which is called 0&;/7%’Zf7) in this paper.

13
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4, Summary and Discussion

We defined the amplitude for deep inelastic reactions as being
generated by the incompletely equilibrated part of the fluctuating
S-matrix. By applying welli-known semi-classical approximations, we
derived a general form of the amplitude and of the average cross-section
for DI reactions.

We distinguished the treatment without and with diffraction effects
as 1imiting cases of a very smooth and a sudden onset of DI reactions
as a function of the orbital angular momentum. The experimental results
indicate that the deflection angle relaxes more slowly than other external
variables like the radial translational motion. Therefore, the Poisson
representation which achieves a decompositibn of the total amp]ftude into
terms related to given numbers of orbitings was chosen as a starting
point. We believe that the contribution from events without any orbiting
is at least responsible for that part of the DI reactions which exhibits
a strongly peaked angular distribution, perhaps even for the entire cross-
section of DI reactions (see appendix Al).

Thus the main chapters contain the results for the case without
orbiting only, while the general case of an arbitrary number of orbit-

ings is dealt with in appendix Al.
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We believe that the following results should be drawn to the
reader's attention:
(i) The measured cross-section involves a summation over very many
microscopic channels compatible with given values of the macroscopic
external observables, apart from the averaging over the energy width
of the incident beam. It is shown that this measured "macroscopic
cross-section” is determined by a coarse transition probability only.
(ii) For the case that the external variables of the system are
amenable to a classical treatment, it is demonstrated that the macro-
scopic cross-sectiqn can indeed be calculated from the knowledge of
a classical distribution function.
(iii1) It is found that diffraction effects are produced if the
amplitude for DI reactions turns out to decrease rapidly to zero
in the vicinity.of a lower and upper value of the orbital angular
momentum. Although such diffraction effects are beyond the scope of a
description by classical statistical mechanics, their evaluation is
shown to involve only the above-mentioned distribution function.
(iv) We point outljn the appendix Al that an isotropic angular
distribution &Eai may be produced either if contribut1ons from
various numbers of orbitings superimpose or if the dominant part of
the cross-section is due to the smooth low impact parameter part of
the macroscopic deflection function. In the strongly relaxed DI
reactions which were recently studied by Moretto et al, apparently the
latter case seems to be realized.
(iv) Whenever any direct channels are open, the energy average of the
S-matrix is not zero and thus the fluctuating part of the S-matrix

is not unitary. On the other hand, the "macroscopic" probabilities
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can only be expected to describe the DI and the CN reactions, not the
direct reactions. The coarse probability in our final result for the
DI reactions may be considefed to be the partially equilibrated part
of a total coarse probability describing both the DI and CN reactions.
Even this total macroscopic probability does not add up to 1, if
summed over all coarse cells whenever direct reactions exist. Thus,
it also cannot be expected that the classical distribution function
aé /////(\/.f/ strictly satisfies the ordinary Master or Fokker-
Planck equations. We cénnot exclude, of course, that this will be
so in a meaningfu] approximation.
(ivi) In all the experiments hitherto performed/on]y a part of the
macroscopic observables was actually measured. This implies that
the experimental cross-section is an integral of our resulting expres-
sion (3.33') over all the unobserved variables a,. In the case that
‘the scattering angle 293549 ) the mass (charge) a3’and the
kinetic energy ay of the outgoing fragments are observed the measured

coarse cross section is given by

i
A ()
e, Py Plisn) 52

Even in the case of a purely classical approximation, where

%"/“/ /@4///, 4-9)/

the result of the integration is generally not of the form (3.33').
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(ivit ) Last, not least, we wish to emphasize that the use of the SPA

with or without cut-off is based on the hypothesfs that the matrix

(f»ZQZrY/SL/ /f&f/ |

/A$7;4 /V’ 6¥/4Lc/@7" depends smoothly on the orbital angular
momen tum. It 1s by no means obvious that this is correct. Indeed,
if one were to make the opposite assumption that this amplitude differs

from 0 only in a narrow "window" of,/?values around a "grazing"

an assumption which was demon-

angular momentum" /é??/ >

35) in many cases of elastic as well as direct

strated to be appropriate
inelastic reactions,—a totally different result would be obtained.
Then the amplitude for DI reactions wouid be given essentially by

a sort of Fourier transform of the form
fg//e //f //7/ fJ //"4//" //{}I/f/
/f/ﬁ Ay M

The differences between this approach and the SPA were recently
36

)

pointed out in a succinct and lucid way by S. Kahana

We believe that two arguments may be given in favor of our
smoothness assumption:

a) Only the applicability of the SPA makes the success of
purely classical methods understandable.

b) As one compares DWBA amplitudes with the more complex
amplitudes fesu]ting from coupled channe) calculations, the dependence
of the S-matrix on /{? tends to become smoother, as the number of

participating degrees of freedom increases.
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APPENDICES
1. STRONGLY RELAXED DT REACTIONS

We have already noted in §2.1 that there may be a smooth transition
between DI reactions where a few external degrees like the mass asymmetry
and the deflection angle remain far from equilibration and the 1limit of
the compound nucleus formation where'all the external degrees of freedom
reach equilibrium. In the chapters 2 and 3 we then treated the special
case that contributions from orbiting events may be neglected, i.e.
we considered the limit of DI reactions with completely unequilibrated
deflection angles.

We now treat the more general caée that the lifetime of the
intermediate system is long enough to permit one or several full
revolutions. This is expected to introduce a gradual transition to
the typical features of compound nuclear reactions. In our theéry, it
implies that we have to study the terms with p # 0 in the Poissdn
distribution as well. Since the calculation is completely analogous
to the one in the_chapters 2 and 3 we confine ourselves to a short
presentation of the results.

The general quantal form of the amplitude for partially

relaxed collisions is

e / Vi '/%)y .

oty ean” Tt - ;W/

/U
Kty

+ // (//:Z/%f - (A1)
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with oo ' (A1-2)
? 2, 6/‘&//4 /// 2L . .
(//Z/%/O of///ﬂ ?) % /1/45/ Al / 79,///47//
_— (A1-3)
/4 (4 = / [ 4l / - éﬁ/ Z tral)
0 vk -

jo/g/_%//) /547/ = é///d@/%///—/ﬁ/f//.j/#_{/f

£ (Lt F)Cap
2r |

The amplitude fghﬁszs/aaﬁi/%k is again defined by (2.26).
We note that it is in fact undesirable to expand around the same average
angular momentum mismatch Aﬂlf irrespectively of the value of p. On
the other hand,'the resulting formulae become considerably more compli-
cated if one were to chsidef Alé. to be & function of p.

As in chapter 2, we evaluate the integrals (A1-2) by the SPA

with and without cut-offs at finite values of the angular momentum.

S
The stationary points Aéi"yo 39;?/3/) are given as solutions

of the equation

7
o /s / oy )0 p ot

7/0 (A1-5)
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Since we timit ourselves to real solutions of (A1-5), the index p may
only assume positive values p = 0,1,2,... . Furthermore, it is easily
seen that for given deflection angle "é/ﬂ and given p, thé sign n

is uniquely defined as

/205(2/ /47;0 /;/’/// # ,277/0/ (A1-6)

As in chapter 2, we replace the angle ﬁﬂ?zﬁf)by Zs /// in the

argument of C e (see A1-2)) thus obtaining

/34 /q/cx/Z(

2r rs (4, +42) -~
%/‘/5/0‘45 /[VZ/O/ A /

2z
~ Can by oy i p o)

)ﬁ— S Sy -
%} /&/KZ/ /-ZWV_/{/??/

B X4 y |
A IS : T/ C]’I (5
— /5 L L7 *EH L Z / /
= L?Q-;/Z;S% /-—'Z—“Z » Z'//,-Z/X/ /4//75/%4)(/%
) .
2I(S)
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Because Of4c 122’/1/
%,/%( (Zr 4, /3, y) = € Z /0‘//,//

, a rotation by 27 dintroduces a sign-change of the amp1litude

27 s . .
Cﬂ”/}%/ X Ay My %7ﬁ/ 7;—/173/11’ one of the channel spins

is odd. This has no influence on the probability 2()06/3

(see equation (3.5)). Consequently, for even values of p, the

I
rotation by the Ist Eu]er‘ angle o(g/ LAl ~ ﬁs equivalent

»{5/"7’1/

to a rotation by o( = — sz /and for odd p, it is equivalent to

G
7#27/ o
one by & ""/: 2 "!"]. On the other hand, for trajectories

with odd p, the point of closest approach is on the opposite side

of the beam than the point at time t = - « . Thus the focal coordinate
system SF for odd p - trajectories differs from the one for even p -
trajectories by just the Euler rotation AX =T~ as provided for by
eq. (A1-7). |

By a straightforward calculation one finds the following

%
general form of the integrals /’ZZ N
7

/

j 2\//@4 2./ ‘ “/5/?//5 -

/} /},/17/5 0(4,4
i

Tl // 7, //1,/) j
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The sum &' extends over those branches of the inverse deflection

. s @%
function which contain a real stationary solution ,Afzzfa///yﬁz The
double step function 4%? is defined in (2.51) and only serves to
separate the region of the Airy approximation from the one of the

x

ordinary SPA. The function ”?;G is defined by (2.36), if diffrac-
tion effects are negligible, and by-(2.57) if diffraction effects

are accounted for by sharp cut-offs. The integral Q;nyois defined

by //3
’Vf/? / LNy 2 )5 éﬂ/ // //
(A1-9)

where /éf = or oof,fz ;*oo without diffraction effects and
;éf 4/4 fQ{ /Z¢ 1nc1uding diffraction effects. The result
is again g1ven by (2.45) w1thout and by (2.59) with diffraction effects

if only we replace the argument /} (see eq. (2.47)) by

7 /bé’ /# # /ﬁ‘/// (A]—]vO)

N// 00,

The cross-section (2.17'') contains interferences between
trajectories differing by p-(i.e thé branch of the inverse deflection
function) and p (i.e. the number of orbitings). Since the actually
measured cross-section (3.3) involves a summation of micro-channels 8
within a coarse cell (a,atAa) as well as the energy—averaging)the con-

tribution from the various interferences is given by the sum over a
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large number of terms with random phases. It may thus be neglected.
Assuhing again that the fluctuations of the transition probabitities
and angular functions Z/ are uncorrelated (see (3.14))
% ’ >
we arrive at the result ( / means summation over real stationary

points only):

g /1/
VL D o
&tfm?/aégée = i, Zo VL 4 /)/—o /Q) (A1-11)

The macroscopic transition density R’P (a) and the average angular func-

tion ZZb {a)are defined by (3.10) and (3.11) resp. with the only dif-
ference that the argument f:%(' /5 is replaced by ,{fl (/27’//1/
and the argument /rl/of the Airy- funct1on by /(P (see A] 10))

The derivation of the average quantities @r}(a) and 2 /)ﬁk)
from the classical distribution function dO(A,Z:-z‘*af-oo Yproceeds
in complete analogy to 83.2. ¢

Since we now allow for any number of orbitings, the argumeﬁt L2
of the distribution function d (see (3.20)) may have values between
-oand Z ot ~co< 7 . It is convenient to note the number p
of full revolutions as a supplementary argument of the function
d(4 2y dy ).

As for the macroscopic deflection function (3.21), we may
now have stationary values ’éi;;/o /2%%‘2// corresponding to a finite
number p of orbitings, rep]acing_(3.22) by
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P4, 2 Gra)yaf= 7= 7 (M1-12)

where n is defined to be

/ = 074////(4’%;/9 /%’-cz//% /7/7] (A1-12')

Usually the deflection function éfl//ﬁf'a’) through eq. (A1-12),

only allows for a finite maximal number N of orbitings which may depend

on the scatter1ng angle, i.e. we have 57<y@<1/?< Analogously to the
2/
case of :Z we shall imply by the symbol S that the sum is

=0
only to be extended over those values p, which correspond to real solu-

tions., Z,Z/o /#Q o/ /A’/ /2)

With obvious modifications of the derivation in §3 one finds
within the validity of a classical theory of external variables that
the macroscopic probability density P, _(a) becomes equal to the

vp
classical probability density

2y
7()//47/9ﬁ/5? / }/j/flcf///”///&é/éjﬂz"d ///

(A1-13)
with

24 a; Lp) =dBG2) 05, L) s
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For evaluating the average /n>/&3) we decompose the distribution

Q//ﬂ/d ;/// //y) into components / /ﬁ"ﬁ / 4/3}

related to the different branches of the macroscopic deflection

function . In complete analogy to (3.29), (3.30) we have

4
U4, z//r-zma;@ o L) ww

. 0/7/h/~/7ﬂ0///. V_é?/y] (A1-15)

= . Zﬁwﬁﬂ@)* ;M/ﬁﬁ /) (A1-15")

pp’ T 17 o (A1-15'")

r=707 (A1-15'"")

Where , is defined by (3.30''")
The classical approximation of the average angular function

2, /Z;) is then given by

el JHJL? v f 6102 | € a), LS B2 dap [l ()
2 a/)s = — .

4 N fite 2, (84, -y £0)

(A1-16)
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In (A1-16) the range of the’g’-integration depends on p:
—Z =L < < T
and the function 9 1is defined by (3.31).

For the purely classical 1limit we find as a generalization of

(3.40) -

ﬁz/422jzz- A@’? P /Zz:;/

=

/sz? f/ﬂ /M“’/ % /oo =/

/Zﬂ_; a/// /
/0/197//@ ﬁ/j/ JK

szo ) and w9 are def1ned
as in (3.37'), (3.38), and (3.38') resp.. qz is defined by (A1-12').

(A1-17)

1) 7’

where the quantities

There are various ways by which the double sum on the right hand
side of (A1-17) may become independent of the scattering angle &, .
We discusss two alternative ways which represent physically opposite
situations:
(i) The probability density PC] 5S J'is unequal zero only for p = 0
(no orbiting) and v = 1(1ow impact parameter branch of the deflection

function, see fig. 3—1) and is independent ofAZ? in this range of

Af-va1ues.
:jigcdiao ‘ r\¢‘ZZ44

L

o~ 4 / ), 43y )

(A1-18)
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nd

Furthermore, the 2 factorin (A1-17) is independent of /&? too:

(A1-19)

| 2787~
Obviously, in this case the coarse cross-section

/ Ao10,06, g

depends

51; 2, which is a part of the differential space

nite (42 = prise, e, s ) :

s :
é%/ Cg/ a |
42?53%3 &é% ‘~142%;? /é@474; ’€§252y [// 0,/ ~7 //i//l4(é;?} //{/)

(A1-20)

on a, only through

At first sight, the conditions (A1-18), (A1-19) seem to be rather
artificial. Nevertheless, they may be fulfilled for the strongly
relaxed component of HIR »

The macroscopic probability obtained from solving a Master -
equation is indeed found to depend slowly on A@l for the very relaxed
component of DI reactions (see L. Moretto and P. Schmitt in ref. 8).
Furthermore, eq. (A1-19) holds whenever /Q;;;ZZ;/ can be

approximated by a parabola
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e e

where ko and k] may still be functions of ag...85. For the low impact parameter
branch of the deflection function this may not be a bad approxima-

tion as is seen qualitatively from figs. 3.1. and 3.3.

. ' , f .

(ii) A large number N, >> 1 of terms in the sum 2 contributes
_ P

o (A1-17) to the extent that the discrete values b éa s Qg ... Ag)

v 1; 73 f

1ie on a smooth interpolating curve b{p ; az ... af) whose dependence
on the scattering angle 2y = i?’ is negligible whenever the points
BQP are sufficiently closely spaced. From fig. Al-1 it is seen that
this is the case for N0 >> 1,

One then has
P )

/057//@%@ 2y

”Z/’

%
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The function p{(b) = p(b, ag ... af) js the inverse of b(p, ag ... af).
In the last step of (A1-21) we neglect the term Z?iig in

ﬁ//jz Z;V-ZF/O

The ]imits'b], b2 of the integral depend on the scattering angle.
As is seen qualitatively from fig. Al-1, this dependence is negligible

if a very large number NO contributes. Thus the cross-section
/L “ |
g //ir d7 45547
é?/ é§7 /2 L//C;i?7457;z> (42’5? //) (A1-22)
o dydy | 972 4
! Mo /

depends on the scattering angle é;f?éyﬂon]y through the trivial factor

_1
sin a,

The semi-classical approximations and the neglect of fluctuation

correlations which lead to the result (A1-22) can also be upheld for

~class

the compound nucleus cross-section in which case p is replaced by the

'

E&ass describing the macroscopic transition density

probability density, p
for fully equilibrated external variables. It_is characteristic for
this case (neglecting the restrictions imposed by the conservation of
angular momentum) that this probability density factorizes into a part
describing the formation of the compound system and a probability for
its decay

S clara |
B )= ) 8) Bl ) -2

v
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It is typical for partly relaxed systems that the factorization (A1-23)

1

is not possible.

A2, Improved Airy-method

The Airy-approximation holds only in a very small range of the

) . DI(S)
scattering angle. In the case that the amplitude %536’16 o /2?/

1s a very slowly varying function of 4? the Airy approximation can be
somewhat 1mproved by carrying the expansion of the phase IVY (Q(i)
(see A1-3)) to one add1t1o§b/ider.

4 0= Ay )0 5
%L—Jﬁz /////7& é/_i__ ///

(A2-1)

The integral &;? /b (see A1-9) is thus replaced by

/6
LN B //"@ ////

S’/? |
- i e
/ [[__.rl ///// "/ | (h2-2)

- C
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A straightforward evaluation leads to the result:

(i) !1 = 0; ZZ = +o (no diffraction)

JrZ %%}5/////2'//;9////// /%/ /Z/ (A2-3)
(17)/ /1/‘ /;, /T

T gl ity 1 A1)

(A2-4)

The afguments Xps Yys Yy and Y, are given by (A1-10), (2.47'), (2.60),

p)
and (2.60') resp., while the ncw argument Z is defined by

S = _’{3‘1 ﬁé’%ﬂ///ﬁ’r/ - (A2-5)
’ /& 4 )/ %
AT

The function Ai(x,y,z) represents the integral

o0
4 4
~ / zﬁ?;b‘?{?"’?% Z?/
Vi e L (12-6)
LAY 2/~
)/

It is seen that the results are in all cases the same as for the ordinary

Airy-method with the only difference that the incomplete Airy functions

(2.46) are replaced by the functions i of (A2-6). Since, in practice,
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the incomplete Airy functions must be numerically evaluated, one may

as well evaluate the functions (A2-6) in their place.
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Figure Captions

Fig. 2,1: Coordinate axes Ex , Zy . Ez (—>) of the focal system
FoYe, %F
SF and coordinate axes e. , 6. , e (--> J of the
X' Vs %

system S in combination with a classical trajectory for
repulsive scattering. Also shown are the x-axis (EX)
of the LAB (or CM-) system and the aximuthal angle 99

orienting EX with respect to it. The vectors EX >
F

P , e , and e , and e lie in the reaction plane.

Yp %s Zs Zg

Fig. 2,2: Schematic plot of deflection functionsﬁ%(---/ ,'% (—),
1b

“

3

The indicated geometrical construction of @%b from

(—-—-) for a case with two rainbow angles (4522 ).
42? and ?2% (CA is tangent to é%& in A; CD = DB)

% “y 7
shows that 5 usually lies between '¢x and - 73

Fig. 2,3: Display of the rotation from system SF to system S by 3

successive (positive) Euler rotations:

Ist line, left: Systems SF for repulsive scattering in

the case with and without a full revolution.

I1st line, right: System SF for attractive scattering

without orbiting.
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Sch.ematic»p]ot showing the regions of the (49//) - plane
(shaded area) where the distribution d('quzma/; l)

is expected to be different from zero. Also shown are
the inverse //ﬁj'dz"'ﬂ/)of the "macroscopic" deflection
function (fully drawn line) and the stationary//ivames

for a given scattering angle a,_—':?7’. An almost isotropic

angular distribution T is produced if the function
/

d(@a vor(d [) is unequal to zero only in the flat part

of //’ﬁ" al-wcz/) (encircled by a full line).

Airy function Ai(x) and square of Airy function [Ai(x)]z.

 Deflection function "9’/[/ (=),

1st and 2nd derivative thereof (— — — represents 10 xf&’/()
. represents 100 x 4 ﬂ) , and modulus of the

reciprocal 1st derivative {(—.—-— represents 10 x
P " ( P /W///)
@Mj is calculated ~ for the system Ar + Th at E| pp =

388 MeV including friction (’C’I’E’W% of equ.{3.43)).
Fresnel integrals (from ref. 30).

Inverse classical deflection function in a case where

a large number of orbitings contribute tq the cross-
section. The discrete values of the impact parameter %
which contribute to a scattering angle ﬂ/z?/c’i’—~~ 7 are

shown by dots. Also shown is the limit ,4 (see
equ. (A1-21)) for this case (4: ﬂ}.
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