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Abstract Single nucleotide polymorphisms (SNPs) in
and near ABCA7, BIN1, CASS4, CD2AP, CD33,
CELF1, CLU, complement receptor 1 (CR1), EPHA1,
EXOC3L2, FERMT2, HLA cluster (DRB5-DQA),
INPP5D, MEF2C, MS4A cluster (MS4A3-MS4A6E),
NME8, PICALM, PTK2B, SLC24A4, SORL1, and
ZCWPW1 have been associated with Alzheimer’s dis-
ease (AD) in large meta-analyses. We aimed to deter-
mine whether established AD-associated genes are

associated with longitudinal cognitive decline by exam-
ining aggregate variation across these gene regions. In
two single-sex cohorts of older, community-dwelling
adults, we examined the association between SNPs in
previously implicated gene regions and cognitive de-
cline (age-adjusted person-specific cognitive slopes)
using a Sequence Kernel Association Test (SKAT). In
regions which showed aggregate significance, we ex-
amined the univariate association between individual
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SNPs in the region and cognitive decline. Only two of
the original AD-associated SNPs were significantly as-
sociated with cognitive decline in our cohorts. We iden-
tified significant aggregate-level associations between
cognitive decline and the gene regions BIN1, CD33,
CELF1, CR1, HLA cluster, and MEF2C in the all-
female cohort and significant associations with ABCA7,
HLA cluster, MS4A6E, PICALM, PTK2B, SLC24A4,
and SORL1 in the all-male cohort. We also identified a
block of eight correlated SNPs in CD33 and several
blocks of correlated SNPs in CELF1 that were signifi-
cantly associated with cognitive decline in univariate
analysis in the all-female cohort.

Keywords SNP associations . Candidate AD genes .

Cognitive decline

Introduction

Single nucleotide polymorphisms (SNPs) have been
identified as risk/protective factors for Alzheimer’s dis-
ease (AD). Variants in the well-studied APOE gene have
the strongest known genetic association with AD. In
addition to APOE, SNPs in and near ABCA7, BIN1,
CASS4, CD2AP, CD33, CELF1, CLU, complement re-
ceptor 1 (CR1), EPHA1, EXOC3L2, FERMT2, HLA
cluster (DRB5-DQA), INPP5D, MEF2C, MS4A cluster
(MS4A3-MS4A6E), NME8 , PICALM , PTK2B ,
SLC24A4, SORL1, and ZCWPW1 have been identified
in large meta-analyses as being associated with AD
(Harold et al. 2009; Hollingworth et al. 2011; Lambert
et al. 2013; Naj et al. 2011; Seshadri et al. 2010). In
general, the effect sizes for individual SNPs, other than
those in APOE, are modest (odds ratios <1.25) and the
extent to which these variants are causally linked to AD
is still unclear.

While genome-wide association studies (GWAS)
have been valuable platforms for identifying candidates
for disease-related genetic variants, there are several
limitations to these large-scale association studies. Most
notably, the vast number of statistical comparisons being
performed without a priori hypotheses requires correc-
tions for multiple comparisons, thereby setting a strin-
gent requirement to achieve statistical significance. In
addition, large-scale GWAS have generally not exam-
ined additive or multiplicative SNP interactions within
genomic regions. This is particularly problematic as
collections of variants within genomic regions do not

work in isolation and likely have a combined influence
on phenotypic expression, particularly for complex phe-
notypes such as AD and cognitive decline (Schork et al.
2009; Torkamani et al. 2008).

To address some of the limitations encountered with
univariate SNP-based analysis, novel methods have
been developed to examine groups of SNPs in aggre-
gate. Aggregate SNP methods reduce the total number
of tests performed and increase power by taking advan-
tage of the linkage disequilibrium (LD) across multiple
SNPs (Wu et al. 2010). By reducing the number of tests
and increasing power, smaller sample sizes are required
compared with traditional GWAS. The Sequencing Ker-
nel Association Test (SKAT) is one such method that
can simultaneously test the association betweenmultiple
SNPs and a single outcome while controlling for covar-
iates (Wu et al. 2011). Significance from SKATanalysis
for a particular gene provides additional evidence for the
involvement of the gene in the phenotype and provides a
more focused target to search for functional variation
contributing to underlying biology.

We set out to determine whether established AD-
associated genes are associated with longitudinal cogni-
tive decline by examining aggregate variation across
these gene regions in two populations of older adults.
This analysis posits that variation across an entire gene
region—rather than a single SNP in isolation—plays a
role in cognitive decline.

Methods

Participants

We examined two longitudinal cohorts of Caucasian
older adults, one male (Osteoporotic Fractures in
Men—MrOS) and one female (Study of Osteoporotic
Fractures—SOF). During the MrOS baseline examina-
tion from 2000 to 2002, 5994 community-dwelling men
65 years or older were enrolled at six clinical centers in
the USA: Birmingham, Alabama; Minneapolis, Minne-
sota; Palo Alto, California; Pittsburgh, Pennsylvania;
Portland, Oregon; and San Diego, California as previ-
ously described (Blank et al. 2005; Orwoll et al. 2005).
During the SOF baseline examination from 1986 to
1988, 9704 community-dwelling white women 65 years
or older were enrolled from population-based listings in
four areas of the USA: Baltimore, Maryland; Minneap-
olis, Minnesota; Pittsburgh, Pennsylvania; and Portland,
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Oregon as previously described (Cummings et al. 1990).
For both studies, individuals were not eligible to partic-
ipate if they reported bilateral hip replacement or re-
quired the assistance of another person in ambulation at
the baseline examination. Written informed consent was
obtained from all SOF and MrOS participants, and the
Institutional Review Board at each study site approved
the study. Only participants with at least two cognitive
testing time points were retained (SOF N=3267, MrOS
N=3026).

Measures

For each cohort, we examined cognitive decline over
10 years of follow-up using a global cognitive test (ab-
breviated Mini-Mental Status Examination (MMSE) in
SOF, Modified Mini-Mental Examination (3MS) in
MrOS); each test was administered up to four times.
Cognitive decline (person-specific slope) was calculated
using linear mixed-effects regression models adjusted for
age (Gould et al. 2001). Genotyping, imputation, and
quality controls were performed identically in both co-
horts using the Illumina HumanOmni1_Quad_v1-0 B
array. Genotypes were called using the Illumina’s
BeadStudio calling algorithm. The sample quality control
exclusion criteria were sample call rate <97 %, excessive
autosomal heterozygozity, first and second degree rela-
tives, genotypic sex mismatch using X and Y chromo-
some probe intensities, and gross chromosome abnormal-
ities. Genotyped SNPs with GenTrain scores <0.6, cluster
separation scores <0.4, call rates <97 %, or minor allele
frequency (MAF) <0.01 were excluded. Also, autosomal
SNPs with Hardy-Weinberg Equilibrium (HWE) p value
<10–4 were excluded and genotype clusters for SNPs on
chrX, chrY, chrXY, and chrMT (mitochondrial chromo-
somes) were reviewed manually. Autosomal SNPs
(714,543) passed quality control. Imputation was done
using MaCH (v 1.0.17, phasing) (Li and Abecasis 2006)
and Minimac v 2011-08-12 beta (Howie et al. 2012) for
HapMap phase II release 22 build 36, oriented on the
positive strand. A combined panel of CEU, YRI, CHB,
and JPT HapMap samples was used as a reference panel
for the consensus-phased haplotypes.

Statistical analyses

First, we evaluated the relationship between the previ-
ously identified Bsentinel^ SNPs associated with AD
and cognitive decline (person-specific age-adjusted

cognitive slopes as outcome) in our cohorts using linear
regression adjusting for the first four cohort-specific
principal components. The sentinel SNPs we considered
achieved genome-wide significance in recent, large me-
ta-analyses. Then, we evaluated the associations be-
tween cognitive decline and candidate genes across
multiple SNPs simultaneously using the SKAT package
in R with a MAF cutoff of ≥2 % for SNP inclusion in
this analysis (Wu et al. 2011). We considered multiple
kernel functions: weighted and unweighted versions of
the linear kernel and the identity-by-state (IBS) kernel.
The linear kernel models each SNP as a variable in a
regression model having its own beta coefficient. The
IBS kernel models the aggregate variation using genetic
similarity between individuals. The weighted kernel
functions upweight rarer variants, whereas all SNPs
are treated the same in the unweighted version (Wu et
al. 2010). We also considered a kernel function which
allows for multiplicative SNP interactions within the
gene region. The different kernel functions for a given
gene region and sample are not independent tests but
may provide clues to the structure or relationship of the
SNPs underpinning the association. For each gene, we
included all available SNPs 30 kb upstream and down-
stream from the gene boundaries (RefSeq NCBI36/
hg18), with two exceptions: NME8 for which we went
47 kb downstream and PICALM in which we went
88 kb upstream in order to capture the sentinel SNPs.
The first four principal components (cohort specific)
were included in SKAT analyses to control for popula-
tion stratification. For genes which showed a significant
association, we performed a further SKAT analysis
dropping the sentinel SNPs and all other SNPs in high
LD with the sentinel SNPs (R2≥0.80 HapMap CEU
from 1000 genomes). Gene-level p values for the pri-
mary SKAT analyses have not been adjusted for multi-
ple comparisons as these analyses were based on a priori
hypotheses. For gene regions exhibiting statistical sig-
nificance (p value<0.05) in the SKAT analysis after
dropping the top associated SNPs, univariate analysis
was performed on the remaining SNPs within the gene
region in order to determine how additional SNPs at
these loci contribute to cognitive decline (adjusted for
first four cohort-specific principal components). P
values for univariate analyses have been adjusted as
noted in the results. Expression quantitative trait loci
(eQTL) were examined for significant SNPs across ten
human brain regions using the UK Brain Expression
Consortium database (Ramasamy et al. 2014). Finally,
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we performed permutation tests to identify significant
enrichment of nominally significant results. In each
cohort, the SKAT analysis was repeated 350 times with
a different permutation of cognitive slopes as the
outcome.

Because the two cohorts used different cognitive tests
and differed in composition in several ways, including
sex and study initiation date, we did not combine the
cohorts. Rather, we performed stratified analyses and
compared the results from both cohorts qualitatively.
Although SOF had a longer follow-up at the time of
analysis, having been initiated earlier, for the purpose of
consistency, we have restricted follow-up for both stud-
ies to the first 10 years after baseline.

Results

The average baseline age of male participants (MrOS)
was 73.4 years (standard deviation (SD) 5.7); average
baseline age of female participants (SOF) was 71.0 years
(SD 4.9) (p<0.001). MrOS participants were more like-
ly to have high education (56 %with a college degree vs
18 % in SOF, p<0.001). SOF participants had a higher
number of cognitive assessments with 74 % of SOF
participants having had four cognitive assessments as
compared to 21 % of MrOS participants with four
assessments (p<0.001). The average baseline cognitive
assessment score in both cohorts was high (24.8±1.5
out of a possible score of 26 in SOF and 94.4±4.5 out of
a possible score of 100 in MrOS).

We first tested each sentinel SNP available in our
data for an association with cognitive decline (Table 1).
Only two of the individual sentinel SNPs showed sig-
nificant associations with cognitive decline in the female
cohort (rs3764650 in ABCA7, p=0.01; rs3865444 in
CD33, p=0.01). None of the top AD-associated SNPs
were associated with cognitive decline in the male co-
hort. Ten of the 35 sentinel SNPs were not available in
our data and could not be tested individually.

Next, we tested each gene region for aggregate asso-
ciation. Several gene regions showed significant aggre-
gate associations with cognitive decline using one or
more kernel functions: BIN1, CD33, CELF1, CR1,HLA
cluster, and MEF2C in the female cohort and ABCA7,
HLA cluster, PICALM, PTK2B, SLC24A4, and SORL1
in the male cohort (Table 2). The significance was
largely consistent regardless of whether the analytical
method for assessing SNP structure/variation (kernel

function) was linear or IBS. In contrast, most gene
regions which showed any significance, showed signif-
icance using either weighted or unweighted methods,
not both, which may provide some clue as to the rarity
of the group of SNPs driving the significance. Two gene
regions showed significance with the interaction kernel
function CELF1 in women and SORL1 in men. We then
tested each significant gene region for continued aggre-
gate association with cognitive decline after removal of
the sentinel SNP(s) which led us to these particular
genomic regions of interest. After dropping the sentinel
SNP(s) and all SNPs in LD with them (R2 ≥ 0.80
HapMap CEU), the aggregate significance in gene re-
gions which were significant in the primary analysis
remained largely unchanged. Resulting p values along
with the number of SNPs dropped is shown in Table 2.
Our data did not contain the sentinel SNP or any corre-
lated SNPs for the HLA cluster, so the secondary anal-
ysis is identical to the primary analysis.

Next, we performed univariate analysis within sig-
nificant gene regions to identify new candidate variants
for cognitive decline. In all 11 gene regions which
showed aggregate significance with cognitive decline,
we found individual SNPs that were nominally signifi-
cantly associated with cognitive decline in univariate
analysis in their respective cohorts. After correction for
multiple comparisons by gene region, only univariate
associations in CD33 and CELF1 in the female cohort
remained significant.

Univariate analysis in CD33 in the all-female cohort
revealed a block of eight SNPs (rs273638, rs273639,
rs1697553, rs2455069, rs12609179, rs1566576,
rs1697573, rs273634) in strong LDwhich were individ-
ually significantly associated with greater cognitive de-
cline (all unadjusted p=0.0001, all p=0.001 after ad-
justment for false discovery via Benjamini-Hochberg
procedure (Benjamini and Hochberg 1995) (shown in
Supplementary Fig. 1). These SNPs were not associated
with CD33 gene expression across ten brain regions
(Sherry et al. 2001). Several of the CD33 SNPS exhibit
highly significant effects on hyaluronan synthase-1
(HAS1) expression in the temporal cortex, with the
strongest effect for rs2455069 (p=1.4e-05), which en-
codes an Arg69Gly substitution in CD33.

Also in the female cohort, we identified eight SNPs
in CELF1 which remained significant (p=0.002–0.02)
after adjustment for false discovery within the gene.
Two blocks of SNPs (rs11604680, rs1317149,
rs4752845 and rs7124681, rs7928842) were associated
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with better cognitive performance; another block of
three SNPs (rs2242081, rs10742814, rs11039280) were
associated with worse cognitive performance. The

rs11604680 and rs1317149 SNPs from the first block
are located 3′ of CELF1. Each of these SNPs was
associated with CELF1 expression in the hippocampus

Table 1 Gene regions examined

Gene Chrom. Bounds No. MrOS SNPs No. SOF SNPs SNP ID SOF
p value

MrOS
p value

ABCA7 19 961–1047 49 49 rs3764650 0.01 0.60

rs4147929 – –

BIN1 2 127,492–127,611 125 126 rs744373 0.84 0.17

rs6733839 – –

rs7561528 0.46 0.24

CASS4 20 54,391–54,498 105 105 rs7274581 – –

CD2AP 6 47,523–47,733 131 131 rs9349407 0.43 0.48

rs10948363 0.33 0.77

CD33 19 56,390–56,465 80 69 rs3865444 0.01 0.35

CELF1 11 47,414–47,561 44 44 rs10838725 – –

CLU 8 27,480–27,558 75 74 rs11136000 0.18 0.68

rs9331896 0.16 0.56

rs1532278 0.16 0.66

CR1 1 205,706–205,912 133 133 rs3818361 0.99 0.13

rs6656401 0.84 0.08

rs6701713 0.95 0.12

EPHA1 7 142,768–142,846 34 33 rs11767557 0.99 0.52

rs11771145 0.56 0.45

EXOC3L2 19 50,378–50,459 38 38 rs597668 0.87 0.96

FERMT2 14 52,364–52,518 120 120 rs17125944 0.58 0.94

HLA cluster
(DRA-DQB1)

6 32,486–32,772 305 304 rs9271192 – –

INPP5D 2 233,603–233,811 160 160 rs35349669 – –

MEF2C 5 88,020–88,266 135 137 rs190982 0.06 0.35

MS4A cluster (MS4A3-MS4A6E) 11 59,551–59,895 345 343 rs670139 0.87 0.45

rs610932 0.76 0.41

rs4938933 – –

rs983392 – –

NME8 7 37,808–37,937 227 226 rs2718058 – –

PICALM 11 85,316–85,547 210 210 rs3851179 0.75 0.64

rs10792832 0.74 0.68

rs561655 0.90 0.40

PTK2B 8 27,195–27,403 238 236 rs28834970 – –

SLC24A4 14 91,829–92,068 229 228 rs10498633 0.80 0.66

SORL1 11 120,798–121,040 175 172 rs11218343 0.82 0.38

ZCWPW1 7 99,806–99,894 26 26 rs1476679 0.11 0.07

SNPs 30 kb up/downstream from NCBI36/hg18 gene boundaries were included with the exception of NME8 for which we included 47 kb
downstream and PICALM in which we included 88 kb upstream in order to capture the sentinel SNP(s). P values reflect the strength of
association between named SNP and cognitive slope in each cohort. SNPs without p values were not available in our data

Chrom. chromosome, Bounds start and end position used in SKAT analysis

Significant (p< 0.05) p-values are presented in bold
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Table 2 P values for aggregate SNP association with cognitive decline by gene region in SOF and MrOS

All available SNPs in gene region Excludes sentinel SNPs (and LD R2 ≥ 0.8)

Gene Cohort Linear IBS W. Linear W. IBS Interaction Linear IBS W. Linear W. IBS Interaction No. SNPs dropped

ABCA7 SOF 0.18 0.12 0.64 0.59 0.19

MROS 0.17 0.04 0.04 0.047 0.12 0.16 0.04 0.04 0.05 0.11 2

BIN1 SOF 0.57 0.68 0.03 0.03 0.36 0.55 0.66 0.03 0.03 0.36 3

MROS 0.34 0.36 0.44 0.40 0.23

CASS4 SOF 0.10 0.17 0.23 0.57 0.07

MROS 0.27 0.39 0.36 0.80 0.31

CD2AP SOF 0.69 0.58 0.22 0.19 0.81

MROS 0.80 0.92 0.71 0.42 0.79

CD33 SOF 0.01 0.02 0.24 0.23 0.06 0.02 0.02 0.24 0.23 0.07 2

MROS 0.65 0.86 0.46 0.83 0.56

CELF1 SOF 0.004 0.01 0.50 0.56 0.01 0.003 0.01 0.50 0.56 0.01 3

MROS 0.41 0.59 0.14 0.40 0.45

CLU SOF 0.85 0.81 0.93 0.92 0.91

MROS 0.26 0.25 0.15 0.21 0.21

CR1 SOF 0.51 0.46 0.005 0.003 0.52 0.48 0.43 0.005 0.003 0.49 18

MROS 0.26 0.21 0.35 0.35 0.36

EPHA1 SOF 0.55 0.24 0.18 0.17 0.52

MROS 0.47 0.87 0.69 0.75 0.45

EXOC3L2 SOF 0.17 0.17 0.60 0.63 0.14

MROS 0.50 0.48 0.18 0.22 0.73

FERMT2 SOF 0.18 0.24 0.38 0.40 0.17

MROS 0.80 0.86 0.61 0.80 0.73

HLA SOF 0.13 0.18 0.03 0.02 0.11 0.13 0.18 0.03 0.02 0.11 0

MROS 0.30 0.28 0.02 0.03 0.16 0.30 0.28 0.02 0.03 0.16 0

INPP5D SOF 0.63 0.78 0.86 0.95 0.68

MROS 0.19 0.32 0.76 0.52 0.50

MEF2C SOF 0.06 0.03 0.36 0.51 0.12 0.06 0.03 0.36 0.51 0.12 2

MROS 0.74 0.66 0.94 0.68 0.28

MS4A SOF 0.99 0.41 0.95 0.95 0.56

MROS 0.75 0.84 0.23 0.23 0.45

NME8 SOF 0.76 0.82 0.50 0.47 0.80

MROS 0.90 0.95 0.87 0.88 0.91

PICALM SOF 0.73 0.74 0.68 0.79 0.42

MROS 0.08 0.04 0.02 0.04 0.12 0.07 0.04 0.02 0.04 0.08 14

PTK2B SOF 0.62 0.73 0.79 0.43 0.80

MROS 0.79 0.81 0.03 0.04 0.81 0.79 0.81 0.03 0.04 0.82 1

SLC24A4 SOF 0.90 0.97 0.70 0.69 0.84

MROS 0.40 0.56 0.06 0.03 0.59 0.39 0.55 0.06 0.03 0.59 2

SORL1 SOF 0.32 0.40 0.10 0.07 0.32

MROS 0.04 0.04 0.69 0.73 0.03 0.04 0.04 0.70 0.74 0.03 1

ZCWPW1 SOF 0.23 0.13 0.56 0.46 0.52

MROS 0.33 0.24 0.70 0.63 0.60

W weighted
a For the calculation of the BExclude sentinel SNPs^ p value, sentinel SNP along with any SNPs which were in high linkage disequilibrium
with sentinel SNP (R2 ≥ 0.8) were dropped
Significant (p< 0.05) p-values are presented in bold
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(rs1317149, p=0.025, and rs4752845, p=0.015). The
remaining SNPs are intronic within CELF1 and are
associated with gene expression CELF1 in the thalamus.
The rs7124681 and rs7928842 SNPs from the second
SNP block that were associated with improved cogni-
tive performance exhibited lower CELF1 expression
with each copy of the minor allele (rs7124681,
p=0.022, and rs7928842, p=0.013). The three SNPs
from block three that were associated with poor cogni-
tive function exhibited higher CELF1 expression with
each copy of the minor allele (rs2242081 and
rs10742814, p=0.02, and rs11039280, p=0.027). Sev-
eral of the CELF1 SNPS exhibit highly significant ef-
fects onMTCH2 expression in the cerebral cortex, with
the strongest effect for rs7928842 (p=8.1e-07).

Finally, we performed permutation tests to identify
significant enrichment of nominally significant associa-
tions across multiple gene regions. We focused the
permutation analyses on the linear and weighted linear
kernel functions since the linear and IBS kernel func-
tions performed similarly in the original analyses. We
considered a gene region Bsignificant^ if the p value for
either of the kernel functions was <0.05. In our main
analysis, we found significant results for six gene re-
gions in each cohort. The probability of finding signif-
icant results for six or more gene regions in the female
cohort was 0.006, and the probability of six or more
significant gene regions in the male cohort was 0.01.

Discussion

We examined gene regions based on previously identi-
fied AD-associated SNPs using an aggregate testing
method (SKAT) and found that several regions were
associatedwith cognitive decline in each cohort. Among
SOF women, BIN1, CD33, CELF1, CR1, HLA cluster,
and MEF2C1 were significantly associated with cogni-
tive decline and remained so even after removing the
sentinel SNPs and all other SNPs in high LD (R2≥0.8,
HapMap CEU) with the sentinels. Among MrOS men,
ABCA7, HLA cluster, PICALM, PTK2B, SLC24A4, and
SORL1 were significantly associated with cognitive de-
cline and remained significant after dropping the senti-
nel SNP and SNPs in LD with the sentinel SNP.

It is perhaps not surprising that dropping the top AD-
associated SNPs did not alter the gene-level aggregate
since the individual AD-associated SNPs were largely
not associated with cognitive decline in these cohorts. In

fact, CD33 in SOF was the only gene region that had
both a significant AD-associated SNP and showed a
significant aggregate association with cognitive decline.

The fact that some gene regions exhibited aggregate
associations using only kernel functions which
upweight rarer SNPs (BIN1, CR1, and HLA cluster in
females; HLA cluster and PTK2B in males) and others
only showed association using unweighted kernel func-
tions (CD33 and CELF1 in females; SORL1 in males)
likely reflects the SNP characteristics underlying the
gene-level associations. The SNPs which were nominal-
ly significant in univariate analysis in BIN1 and CR1 in
the female cohort had relatively rare minor alleles (MAF
0.02–0.07). In contrast, in CD33 and CELF1, which
were only significant in the female cohort using un-
weighted kernel functions, the nominally significant
SNPs had a much higher MAF (0.06–0.44, with most
SNPs in the 0.31–0.44 range). A similar result occurred
in the all-male cohort: in nominally significant SNPs in
PTK2B, which showed weighted aggregate signifi-
cance, the minor alleles were less common (MAF
0.02–0.16); the MAF was higher in nominally signifi-
cant SNPs from SORL1, which showed unweighted
aggregate significance (0.04–0.50, with MAF for most
SNPs >0.20). The HLA cluster was a curious departure
from this pattern in both cohorts. Despite having aggre-
gate significance in both cohorts using only kernel func-
tions which upweight rarer SNPs, only 11 % of the
nominally significant SNPs in the female cohort and
40 % of the nominally significant SNPs in the male
cohort had MAF≤0.05. The reason for this result is
unclear, although none of the SNPs were strongly asso-
ciated enough to remain significant after adjustment.

In addition to a significant aggregate association with
CD33, we found eight SNPs forming an LD block in
CD33 that were also significantly associated with great-
er cognitive decline in univariate analysis. CD33 is a
transmembrane glycoprotein, a member of the sialic
acid-binding immunoglobulin-like lectins (Siglecs).
CD33 is known to perform a number of functions in-
cluding cell–cell communication inhibiting immune re-
sponse (Crocker et al. 2012; Pillai et al. 2012), immune
cell growth, adhesion processes in immune or malignant
cells, and endocytosis (Crocker et al. 2007; von Gunten
and Bochner 2008). Recent research has focused on
understanding how CD33 may modify AD susceptibil-
ity or disease course. CD33 expression is modestly
increased inAD, and the previously identified protective
minor allele of the top AD-associated SNP (rs3865444)
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has been associated with reductions in CD33 microglia
expression (Griciuc et al. 2013; Malik et al. 2013).
Microglia are hypothesized to play a role in phagocyto-
sis of amyloid-beta, a primary pathological protein in
AD, and recent research has borne out an association
between the protective allele and increased uptake of
amyloid-beta, as well as reduced amyloid plaque burden
and insoluble amyloid-beta levels (Bradshaw et al.
2013; Griciuc et al. 2013). In our study, the large
eight-SNP LD block in CD33 exhibiting significant
univariate associations with cognitive decline is located
within the 5′ end of the gene region including the
promoter, suggesting it may affect expression levels or
protein function. However, these SNPs did not impact
CD33 expression across several brain regions in a large
eQTL database. It is possible that these SNPs impact
expression of nearby genes and not CD33. Indeed,
several of these SNPs, including rs2455069 encoding
the Arg69Gly substitution in CD33, were associated
with strong effects on HAS1 gene expression in the
temporal cortex, a region of the brain affected in AD.
While the HAS1 gene is approximately 500 kb away
from rs2455069, Ramasamy et al. (2014) observed that
numerous brain eQTL signals were within 1 Mb of their
target gene and often acted heterogeneously among
genomic regions and exons. Hyaluronan (encoded by
HAS1) transcription increases with aging.HAS1 is tran-
scriptionally upregulated in astrocytes during normative
aging and is linked to the accumulation of the
hyaluronan in gray matter where it potentially inhibits
astrogliosis and limits oligodendrocyte progenitor cell
maturation (Cargill et al. 2012). Further study is re-
quired to identify the function of rs2455069 andwhether
its effects on neurodegeneration are mediated through
CD33 or another gene (e.g., HAS1).

In addition to the strong aggregate result inCELF1 in
the female cohort, we also found eight SNPs which were
significantly associated with greater cognitive decline in
the CELF1 region. The CELF family of proteins are
involved in the regulation of RNA processing including
pre-mRNA alternative splicing, RNA editing,
deadenylation, mRNA stability, and translation. CELF
proteins have been implicated in a number of disease
including AD, potentially through the regulation of tau
protein aggregates (Dasgupta and Ladd 2012). Interest-
ingly, the two CELF1 SNPs that were associated with
improved cognitive performance exhibited lower
CELF1 expression levels in the thalamus and the three
CELF1 SNPs that were associated with poor cognitive

function exhibited higher CELF1 expression in the thal-
amus. While these results suggest that the CELF1 SNPs
impacting cognition may be modifying expression
levels in the thalamus, it is possible that these SNPs
are also impacting expression of nearby genes. Several
of these SNPs are highly associated with MTCH2 ex-
pression levels in the cerebral cortex.MTCH2 is located
approximately 100 kb away from rs7928842, the SNP
with the strongest effect on MTCH2 expression.
MTCH2 encodes mitochondrial carrier 2 which likely
plays a role in cellular apoptosis (PMID nos. 18614015
and 15899861) and has been associated with obesity
(PMID no. 21795451).

Although the sentinel SNP from CR1 was not signif-
icantly associated with cognitive decline in either sam-
ple, CR1 showed the strongest aggregate association
with the weighted kernel functions in SOF. We found
nine nominally significant SNPs, but none were signif-
icant after adjusting for multiple comparisons. CR1 is
one of 30 proteins that make up the complement system,
which participate in the regulation of inflammation and
immune reaction. CR1 is expressed in the brain and may
play a role in amyloid-beta clearance (Crehan et al.
2012).

To our knowledge, this analysis is the first to look at
aggregate-level genetic associations with cognitive de-
cline. Using previously identified AD-associated SNPs
as sentinels, we targeted the entire gene region to assess
whether there was aggregate association with cognitive
decline, with and without the sentinel SNP. This ap-
proach allowed us to test whether variation across the
entire gene region impacts cognitive decline. Both SOF
and MrOS are community-based samples rather than
clinical samples, giving our results greater generalizabil-
ity. Another strength of our analysis was the ability to
follow participants longitudinally to capture cognitive
decline rather than simply observing cognitive status at a
single time point, which can be subject to greater con-
founding. Although several of the sentinel SNPs and
gene regions were associated with cognitive decline in
each cohort, it is unclear why the results in the two
cohorts differed. The most obvious difference between
the cohorts is in their single-sex composition. Theremay
be biological differences in risk of cognitive decline due
to sex-related differences in hormones, immune regula-
tion, inflammatory response, and comorbidities. There
were also differences in cognitive testing: SOF used a
less sensitive global cognitive test (MMSE); however,
the participants were more likely to have had four

41 Page 8 of 10 AGE (2016) 38: 41



testing time points. Thus, cognitive change observed in
SOF may have been quite pronounced. By contrast, the
MrOS study used a more sensitive global cognitive test
(3MS), but many of the participants only had two testing
time points, which may not have been adequate to
observe substantial change or may have created noise
by identifying inconsequential change. This analysis
had several limitations. First, we were unable to test
several of the sentinel SNPs because they were unavail-
able in our data. Second, the candidate genes we select-
ed were motivated by AD-associated SNPs, whereas we
have examined cognitive decline, which likely results
from multiple pathologies, not just AD. AD is the most
common form of dementia, and a large proportion of the
cognitive decline that we observed in these cohorts is
probabilistically due to AD (Barker et al. 2002). But the
fact that the top AD-associated SNPs were largely un-
associated with cognitive decline in both cohorts might
suggest that AD-targeted regions do not translate well to
general cognitive decline. Finally, the MMSE is not the
most sensitive test for capturing early cognitive decline
but more sensitive cognitive tests were unavailable in
the early years of the SOF study.

Many of the sentinel SNPs and associated gene re-
gions were not associated with cognitive decline in
either sample. This finding is supported by two recent
studies in other cohorts which found limited or no
association between risk genes for AD and cognitive
aging (Harris et al. 2014; Verhaaren et al. 2013). One
potential explanation for the lack of consistent associa-
tions is that the gene regions suggested by the top AD
SNPs were not causally associated with AD, and the
associated SNPs are in LD with the causal SNPs in a
different genomic region. Another possibility is that the
AD-associated sentinel SNPs which informed our anal-
ysis are AD specific and other pathologies such as
vascular disease have stronger contributions to the cog-
nitive decline in these cohorts. A recent study found
evidence of synergistic interaction effects among AD-
associated genes and the development of AD (Ebbert
et al. 2014). Thus, an association between AD risk genes
and cognitive decline may involve more complicated
relationships than have been tested here. Another possi-
ble explanation is that our study was insufficiently
powered.

In conclusion, we identified aggregate-level associa-
tions between cognitive decline and the gene regions
ABCA7, BIN1, CD33, CELF1, CR1, HLA, MEF2C,
PICALM, PTK2B, SLC24A4, and SORL1. In addition

to the gene-level association, novel CD33 and CELF1
SNP associations independent of previously identified
sentinel SNPs were identified for cognitive decline. If
replicated in independent population-based studies of
cognitive function, our results suggest that CD33 and
CELF1 may be important targets for functional follow-
up studies related to cognitive aging.
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