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ABSTRACT

The nuclear pore complex (NPC) is a large protein assembly that perforates the nuclear envelope and provides a sole gateway for traffic
between the cytoplasm and the nucleus. The NPC controls the nucleocytoplasmic transport by selectively allowing cargoes such as proteins
and mRNA to pass through its central channel, thereby playing a vital role in protecting the nuclear component and regulating gene
expression and protein synthesis. The selective transport through the NPC originates from its exquisite molecular structure featuring a large
scaffold and the intrinsically disordered central channel domain, but the exact mechanism underlying the selective transport remains elusive
and is the subject of various, often conflicting, hypotheses. Moreover, recent studies have suggested a new role for the NPC as a
mechanosensor, where the NPC changes its channel diameter depending on the nuclear envelope tension, altering the molecular
transportability through this nanopore. In this mini-review, we summarize the current understandings of the selective nature of the NPC and
discuss its emerging role in cellular mechanotransduction.

VC 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0080480

I. INTRODUCTION

The genetic information of eukaryotic cells is packaged within
a double-layered nuclear envelope (NE), which comprises an inner
and outer nuclear membrane (INM and ONM). Several transmem-
brane proteins are located in the nuclear envelope. Chief among
them are two integral protein complexes that span the nuclear enve-
lope and connect the inside of the nucleus to the cytoplasm, namely,
(i) the nuclear pore complex (NPC) that tunnels the nuclear enve-
lope and acts as an exclusive gateway for molecular traffic into and
out of the nucleus and (ii) the LINC (linker of the nucleus and cyto-
skeleton) complex that physically bridges the nucleoskeleton and the
cytoskeleton (Fig. 1). By providing chemical and physical linkages
across the nuclear envelope, respectively, the NPC and the LINC
complex are believed to play important roles in cell and nuclear
mechanotransduction.1 Recent studies suggest that mechanotrans-
duction on stiff substrates is dominated by focal adhesions that are
directly linked to the nucleus.2–7 Although the molecular mecha-
nisms of mechanosensing and force transmission across the cell
plasma membrane at the sites of cell adhesion have been extensively

studied, the mechanisms of mechanotransduction at the nuclear
envelope (NE) have remained largely elusive.

The LINC complexes provide a direct physical connection
between the interior of the nucleus and the cytoplasm.8,9 The tethering
of the extracellular matrix (ECM), the cytoskeleton, and the nucleoske-
leton mediated by these complexes allow for a direct transmission of
forces to the nucleus.1,10–13 Transmission of forces through LINC
complexes has been shown essential for several basic biological func-
tions of the cell including polarization, differentiation, division, and
migration and other processes dependent on nuclear deformation and
positioning. LINC complexes are composed of SUN (Sad-1 and Unc)
and KASH (Klarsicht, ANC-1, Syne Homology) domains containing
proteins, which interact in the perinuclear space (PNS) (Fig. 1). Recent
studies have shown that the successful transmission of forces from the
cytoskeleton to nucleoskeleton relies on a strong interaction between
the SUN domains of SUN-domain containing proteins with a small
peptide of KASH domain proteins in the nuclear envelope.14,15

Insights into molecular mechanistic regulatory roles of LINC complex
proteins in sensing and responding to mechanical stimuli can allow a
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significant development in the understanding of cellular mechano-
transduction and the role of these proteins in health and disease (see
recent review16).

While the LINC complex is the physical connector of the cytoskel-
eton to the nucleus, exquisite nanochannels called nuclear pore complex
(NPC) offer the sole passageway for bidirectional transport of vital car-
gos, ranging from different functional proteins to RNAs and ribosomes,
between the cytoplasm and the nucleus in eukaryotic cells.17 The com-
plex, yet delicate, geometry of the NPC and the fine spatiotemporal res-
olution at which the nucleocytoplasmic transport takes place have so far
hindered the direct, experimental investigation of this nanomachinery.
Using a hybrid of state-of-the-art experimental techniques and compu-
tational modeling approaches, ranging from continuum mechanics and
coarse-grained Brownian dynamics to molecular dynamics and new
agent-based modeling methods to statistical thermodynamics and bioin-
formatic approaches, researchers have conducted a multifaceted inquiry
into the structure and function of the nuclear pore complex and the
dynamics of nucleocytoplasmic traffic.18–43 Understanding the biome-
chanics of the nuclear pore complex and nucleocytoplasmic transport is
anticipated to broadly impact our understanding of viral diseases and
will ultimately revolutionize therapeutic approaches (e.g., gene therapy)
and will also open the door to many industrial applications of biomi-
metic artificial nanopores.17,27,44–46

In this minireview, we focus on the NPC and discuss recent dis-
coveries in relation to nucleocytoplasmic transport. We first review the
structure (Sec. II) and function (Sec. III) of the NPC in relation to
some recent findings. Then we discuss the suggested contribution of
the NPC to the mechanotransduction (Sec. IV). We highlight the
importance of this nanopore in the regulation of cellular
mechanotransduction.

II. THE STRUCTURE OF THE NPC

The NPC is a large (65–120 MDa) protein assembly embedded
in a nuclear envelope (NE).17,42 The NPC is composed of some 30 dif-
ferent proteins, generally referred to as nucleoporins (Nups).18 Each
Nup is presented in multiples of eight copies, and the estimation of the
total number of Nups per NPC is 500–1000,28,37 which varies depend-
ing on the species. The Nups collectively create sub-complexes in the
NPC, classified into four groups: the structural scaffold, the central
channel, the cytoplasmic filaments, and the nuclear basket47–49

(Fig. 2). The structural scaffold (containing�1=2 of all Nups) builds a
platform to shape the whole structure of the NPC, anchoring the NPC
to the NE. The central channel (containing �1=3 of all Nups) is
the main nanopore domain where molecules diffuse through for the
nucleo-cytoplasmic transport; the central channel is filled with the
intrinsically disordered proteins called phenylalanine- and glycine-rich

FIG. 1. Schematics of the nuclear envelope and transmembrane proteins. The LINC complex, made up with SUN and KASH domains, connects the nuclear components, such
as nuclear lamina and chromatins, to the cytoskeletons, such as actin, intermediate filament, and microtubule. The NPC perforates the nuclear envelope providing a molecular
pathway between the nucleus and the cytoplasm. ONM: outer nuclear membrane; INM: inner nuclear membrane.
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Nups (FG-Nups). The cytoplasmic filament and the nuclear basket
protrude from the NPC into the cytoplasmic and nucleoplasmic sides,
respectively. It is postulated that they may function as the docking sites
for some molecules initiating nucleo-cytoplasmic transport,1,39,50,51

but their functional role is still under debate. In Subsections IIA
and IIB, we review some molecular details about the structural scaf-
fold and the central channel of the NPC.

A. Structural scaffold

The structural scaffold is composed of eight identical sub-units
called spokes, which are arranged symmetrically around the central
axis of the NPC.52–54 The eightfold rotational symmetry maximizes
the bending stiffness of each spoke and stabilizes the whole scaffold
against structural distortions.26 The spokes are radially connected to
form the concentric sub-complexes, namely, inner ring, outer ring,
and membrane ring. Two inner rings run parallel along the equatorial
plane of the NPC, which are sandwiched with two outer rings. The
outer rings are named cytoplasmic ring and nucleoplasmic ring,
depending on whether it is on the cytoplasmic or the nuclear side. The
membrane ring penetrates the perinuclear lumen and harbors the
whole scaffold to the NE. All of these ring complexes are joined to
each other by an extensive network of short linear motifs (SLiMs),55,56

which exist in the intrinsically disordered regions of some Nups. The
relatively weak but multiple interactions via SLiMs give flexibility as
well as integrity to the structural scaffold.57,58

The inner ring is the most conserved module in the structural
scaffold; its overall morphology and dimension are similar among dif-
ferent species.52,59–62 The diameter of the inner ring changes depend-
ing on the energy state from �40 nm for the constricted state to
�60 nm for the dilated state.63 The inner ring radially spans from the
NE to the central channel. At the periphery of the NE, the inner ring is
connected to the membrane either directly or via the membrane ring.
The direct bindings between the inner ring and the NE are mediated
through the membrane-binding motifs (MBMs),64–66 which are
amphipathic short amino acid sequences inserted into the membrane
lipid bilayer. In the face of the central channel, the inner ring serves as

the anchoring point for FG-Nups. The structured domains of
FG-Nups, i.e., coiled-coil and b-sheet motifs, are considered to provide
the grafting link to the inner ring,23,67 but the exact anchoring spots
for them remain elusive.68 Most of the inner ring components are
formed by either a-helical solenoid or a combination of N-terminal
b-propeller and C-terminal a-helical solenoid,69 which provide flexi-
bility and elasticity to the structure.70

The outer ring shows the significantly diverse size and conforma-
tion from species to species47 with an outer diameter of �98nm for
yeast and �120nm for humans.54,61 The outer ring exists both on the
nuclear and the cytoplasmic sides, harboring the nuclear basket and
the cytoplasmic filaments, respectively. The outer ring has a connec-
tion to the NE via MBMs,71 through which they regulate the NE cur-
vature at the inner and outer membrane fusion.72 Despite its variation
of the overall morphology, the outer rings share the conserved build-
ing block so-called Y-complex.73 Y-complex comprises six to nine
Nups containing a-helical solenoid and b-propeller,74 and it has a
characteristic Y-shape. Y-complexes are arranged in a head-to-tail
fashion to form the ring structure, and the set of eight complexes
builds one ring.75 While the yeast NPC contains one ring on each side,
i.e., one ring per nucleoplasmic or cytoplasmic ring, the human NPC
contains two rings arranged in parallel on top of each other.47 As a
result, there are 16 copies of Y-complexes in the yeast NPC and 32
copies in the human NPC. As one possible explanation, the difference
in the number of Y-complexes stems from the different thickness of
the NE (�25nm for yeast and �40nm for humans).62,76,77 Still, the
exact cause for the outer ring’s structural variation remains unknown.

B. Central channel and FG-Nups

The central channel is a 40–60nm in diameter conduit sur-
rounded by the structural scaffold,52,63 through which molecules dif-
fuse for the nucleo-cytoplasmic transport. The central channel is filled
with intrinsically disordered proteins called FG-Nups,18 whose one
end is tethered to the structural scaffold while the other end dangles
freely inside the channel. There are 200–300 FG-Nups in the NPC,42

collectively forming a molecular “cloud,” i.e., relatively high-density

FIG. 2. Molecular compositions of the NPC. The NPC is made up of four building blocks, namely, cytoplasmic filament, structural scaffold (outer ring, inner ring, and membrane
ring), nuclear basket, and central channel. Nups included in each sub-complex are listed for yeast and human NPC. The right panel shows the overall architecture and the
location of each sub-complex within the NPC.
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region of them, so-called transporter.78 The transporter is a dynamical
entity that changes its overall shape and the internal density map over
time due to the unfolded nature of FG-Nups.21,32,33 The transporter has
several stable configuration states, namely, the “open” and “closed”
states, where FG-Nups assemble near the channel wall or around the
central channel axis, respectively.79,80 The transporter switches between
these configurational states through thermal fluctuations and selectively
allows molecules to pass through the central channel. (Further details
on the selective transport are provided below in Sec. III.)

There are some 10–15 subtypes of FG-Nups whose fully
stretched length varies between �50 and 300nm.81 Each subtype dif-
fers as to its net charge and the Stokes radius, yielding various shapes
continually ranging from collapsed to extended structure,81 but their
overall hydrophobicity and the unfolded nature are conserved.23 FG-
Nups contain multiple short motifs of phenylalanine and glycine resi-
dues (FG-motifs), which mostly appear in the form of FGFG, FxFG,
and GLFG.23 FG-motifs exist separately in the sequence by having
spacer regions between the neighboring motifs.81 The spacer regions
contain hydrophilic amino acids, which promote the unfolding of the
structure.21 Although FG-motifs themselves are hydrophobic, the exis-
tence of the spacer regions prevents them from clustering and helps
maintain the disorderedness of the structure. As a result, FG-Nups
behave as highly flexible polymers with a persistence length approxi-
mately �0.43 nm,22 which is close to the backbone length per one
amino acid. FG-Nups are considered to be one of the most flexible pol-
ymers among intrinsically disordered proteins,82 and flexibility plays a
key role when regulating selective molecular transport.

Inside the central channel, FG-motifs are weakly attracted to
each other via hydrophobic interactions. Since the FG–FG interaction
is weak enough, FG-motifs do not make a stable connection in the
central channel.22,25,83,84 Instead, they repetitively bind on and off to
each other, giving morphological flexibility to the transporter.85

Interestingly, the attractive interactions between FG-motifs are per-
fectly balanced with the repulsive interactions of the excluded-volume
effect,86 so on average, FG-Nups behave as ideal polymers, i.e., their
morphology and dynamics are simplified with the assumption of no
inter-segment interaction. Similarly, FG-motifs can have hydrophobic
interactions with nuclear transport receptors (NTRs),42,85 molecules
that aid the nucleo-cytoplasmic transport (see Sec. III for details).
There are several binding pockets on the surface of NTRs, where FG-
motifs form weak and transient interactions.24,87 Although the individ-
ual affinity between each binding pocket and FG-motif is small [their
dissociation constant is 1–10mM (Refs. 88 and 89)], the multivalency
of the interaction sites and FG-motifs increases their overall avidity
into 1–10lM, making the FG–NTR interaction more stable.85

Aside from the hydrophobic feature of FG-motifs, the electro-
static interactions mediated by the spacer regions also come into play
to create the selective barrier.29 The spacer regions contain positively
or negatively charged residues randomly distributed in their sequen-
ces. Since the evolutionary substitution rate of the spacer regions is
much higher than FG-motifs,23 they include no specific sequential pat-
tern essential for the molecular transport, and the functional role of
the spacer region is rather limited to keeping the disorderedness of the
structure. Nevertheless, the free energy landscape during the molecular
transport changes significantly by adding or removing the charged res-
idues in the FG-Nup sequences,29 so we cannot neglect the effect of
electrostatic interactions inside the central channel. Recent studies

showed that FG-Nups contain a characteristic pattern formed by posi-
tively charged residues; toward the N terminus of FG-Nups, they have
large-scale patterns of positively charged residues that appear with an
interval of 40–60 amino acid residues.90–93 This pattern is named larg-
est positive like-charge regions (lpLCRs), and the uniqueness of
lpLCRs among other intrinsically disordered proteins and their role in
molecular transport have been studied extensively.

III. REGULATION OF THE NUCLEOCYTOPLASMIC
TRANSPORT AT THE NPC

The primary function of the NPC is to selectively transport mole-
cules across the nuclear envelope. The selective transport is based on
the size of the transported molecules and their association with the
nuclear transport receptors (NTRs).17,42 While small molecules less
than 5–9 nm in diameter can pass through the NPC freely,94–96 large
molecules cannot do that unless bound to NTRs. Although the molec-
ular transport through the NPC happens in a short time, taking
1–10ms for a molecule to pass through the central channel,97–99 the
selectivity is precisely maintained so that the NPC can protect the
nuclear component intact. In Subsections IIIA and IIIB, we first
review the detailed process of the NTR-dependent molecular trans-
port. Next, we discuss the physical mechanism underlying the selective
barrier formation inside the central channel, which has been debated
for decades.

A. NTR-dependent molecular transport through
the NPC

Molecules larger than 5–9nm in diameter are transported
through the NPC only when bound to NTRs. There are various kinds
of NTRs found in the cell.17 Depending on their role in the nucleo-
cytoplasmic molecular transport, they are named importin or expor-
tin, which helps import or export molecules into/out of the nucleus,
respectively. The NTRs contain multiple hydrophobic pockets on their
surface, to which FG-motifs are attracted.24,87 The binding pockets are
characterized by their overall hydrophobicity rather than specific
sequence patterns. Hence, in principle, any molecules can potentially
become NTRs by modifying their surface chemical properties.40 In
addition, there are some other features suggested as factors character-
izing NTRs, including the geometrical distribution of the hydrophobic
pockets,24,41,86,100 the mechanical flexibility of the whole molecular
structure,101 and the existence of the unique amphiphilic structures.102

The NTRs repetitively bind with FG-Nups and guide their associ-
ated molecules to pass through the central channel.85 The molecules
are transported either from the cytoplasm to the nucleus or vice versa.
What determines the directionality of the transport process is the
asymmetrical distribution of RanGDP (guanosine diphosphate) and
RanGTP (guanosine triphosphate) across the NE.20,103 The Ran pro-
teins exist abundantly in their RanGDP form in the cytoplasm and
RanGTP form in the nucleus. This asymmetry is created by the locali-
zation of RanGAP (GTPase activating protein) in the cytoplasm and
RanGEF (guanine nucleotide exchange factor) in the nucleus, which
catalyzes the GTP hydrolysis and GDP dehydration, respectively.104

Because RanGDP and RanGTP are involved in the initiation/termina-
tion of each transport cycle,103 the direction of molecular transport is
uniquely determined, as outlined in the following.

The most-studied import pathway is the importin-dependent
transport pathway (Fig. 3). This is employed by molecules containing
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special sequence patterns called nuclear localization signal (NLS).
There are various types of NLS identified so far; classical NLS contains
many arginine (R) and lysine (K) residues, and non-classical NLS has
more unique compositions.105 Below, we explain the canonical import
pathway, i.e., the most-studied pathway for NLS-containing molecules
among many different pathways. In the cytoplasm, importina binds to
NLS and importinb to form a trimeric complex.106–109 The complex
passes through the NPC using interactions between importinb and
FG-Nups. In the nucleus, RanGTP binds to importinb, promoting the
dissociation of importina and importinb from the NLS-containing
molecule.103 After the molecule is released in the nucleus, importinb-
RanGTP complex is re-exported to the cytoplasm. Importina is also
exported by forming a trimetric complex with CAS (cellular apoptosis
susceptibility protein) (exportin) and RanGTP.110 Importina and
importinb exported back to the cytoplasm are reused for the next
round of the molecular import. The export pathway is similar to the
import pathway (Fig. 3). In the nucleus, exportin binds to the protein
containing nuclear export signal (NES) and RanGTP, forming a trimeric

complex.111,112 The interactions between exportin and FG-Nups bring
the complex to the cytoplasm, where RanGTP is hydrolyzed into
RanGDP. The GTP hydrolysis results in the dissociation of RanGDP
and the NES-containing molecule from exportin. After the molecule is
released in the cytoplasm, the free exportin is shuttled back to the
nucleus for the next cycle. It should be noted that all reactions except
RanGTP hydrolysis are thermodynamically reversible.20,113,114 Thus,
the only factor creating the directionality of the process is the asymmet-
ric distribution of RanGTP/RanGDP. This was confirmed by the obser-
vation that reversing the RanGTP gradient between the cytoplasm and
the nucleus resulted in the revered accumulation of the imported/
exported molecules.115

B. Physical mechanism for the selective transport

The NPC employs unique mechanisms to select molecules that
can pass through it. Understanding such mysterious mechanisms has
remained an active research topic for experimental, theoretical, and
computational biophysicists.42 Unlike other transmembrane channels

FIG. 3. Import and export cycles through the NPC. Molecules larger than 5–9 nm in size need to be bound to NTRs (importin or exportin) to pass through NPC’s central chan-
nel. Although diffusion inside the nuclear pore is a reversible process, the localized RanGTP/GDP distribution either in the nucleus or cytoplasm determines the directionality of
the molecular transport.
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being responsible for the selection of ions, the NPCs transport macro-
molecules as large as �39nm (Ref. 116) in diameter. Revealing the
physical mechanism creating the selectivity would potentially open the
way for a wide range of engineering applications such as nano-scale
molecular filters.27,117–120

It is widely considered that FG-Nups in the central channel play
a key role in forming the selective barrier.121 Depending on how to
understand the dynamical state of FG–FG connections, two major
models have been proposed describing the physical mechanism under-
lying the selective transport, namely, the virtual gate model41,122 and
the selective phase model.97,123 The virtual gate model assumes that
each FG–FG connection lasts only for a short period and that FG-
Nups behave as non-cohesive polymers dangling freely inside the cen-
tral channel.22,25,83,84 On the other hand, the selective phase model
supposes that the FG–FG connections are stable enough to form the
hydrogel of FG-Nups, which creates the mesh-like structure inside the
NPC.124,125 In reality, FG–FG connections feature the intermediate
characteristics between these two extreme assumptions, and thus,
knowing both of these models is indispensable for understanding the
physical mechanisms underlying NPC’s selectivity. There are, of
course, many other, often conflicting, hypotheses proposed to explain
the selectivity at the NPC126 such as the polymer brush model,127

reduction-of-dimensionality model,128 and forest model.81

The virtual gate model41,122 assumes that FG-Nups are highly
dynamic and constantly change their structure without being sus-
pended by the FG–FG interactions. This assumption, together with
their natively disordered nature, enables FG-Nups to form a variety of
different conformations inside the central channel, thereby generating
a high conformational entropy for the system. However, the confor-
mational entropy decreases when a molecule is transported through
the central channel, because it restricts the space available to FG-Nups,
reducing their conformational freedom. When the size of the molecule
is large enough, the reduction in conformational entropy, �DS,
becomes non-negligible, which virtually prevents the passage of over-
sized molecules. On the other hand, when the transported molecule
carries an NTR, it interacts with FG-motifs and changes the energy
landscape of the system. Consequently, the free energy of the system
changes by DF ¼ DE � TDS, where DE is the energy change associ-
ated with the NTR–FG binding and T is the absolute temperature.
When the change in free energy, DF, is less than thermal energy, kBT
(kB is the Boltzmann constant), the molecule-NTR complex can pass
through the NPC, which explains the size- and NTR-dependent selec-
tivity. Several computational studies29,36,41,118,129–133 have shown that
the effect of the conformational entropy is large enough to block pas-
sages of large cargoes. (The free energy change associated with the
conformational entropy was DF ¼ 10–100 kBT when the size of trans-
ported molecules was larger than 5–6 nm.)41,129 It has been also shown
that the energetic gain by the NTR–FG interactions effectively coun-
teracts the entropic penalty, lowering DF to less than kBT .
Furthermore, most computational simulations yielded the dynamically
moving FG-Nups inside the central channel,33,134–137 consistent with
the virtual gate model.

The selective phase model,97,123 on the other hand, assumes that
FG-Nups are cross-linked, forming a three-dimensional meshwork
inside the central channel. The meshwork poses a diffusion barrier
allowing only molecules smaller than the mesh size pass through the
NPC. Meanwhile, since NTRs contain hydrophobic pockets on their

surface, they can interact with FG-motifs and merge themselves into
the cross-linked meshwork. By constantly rearranging the local struc-
ture of the meshwork, i.e., breaking the existing FG–FG connection
and making the new FG–NTR link, NTR-carrying molecules can
move through the central channel. We can view the motion of the
NTR-carrying molecule as “binding-diffusion,” where the molecule
switches between FG-bound and FG-non-bound states while undergo-
ing the Fickian diffusion.138,139 Theoretical and computational calcula-
tions have shown that the binding-diffusion not only offers selective
permeability but also enhances the diffusivity of the NTR-carrying
molecules.138–140 In vitro, it is possible to make FG-Nups cross-linked
to each other and generate an elastic FG-hydrogel.124,125,141 Such
hydrogel produces a selective permeability that mimics NPC’s func-
tion, lending support to the selective phase model. However, it is
unclear if the hydrogel formation can happen in the physiological
environment since the chemical conditions and the FG-Nups density
required to create a saturated hydrogel in vitro are different from those
in the cellular environment.35

IV. EMERGING ROLE OF THE NPC IN THE CELLULAR
MECHANOTRANSDUCTION

The potential role of the NPC and nucleo-cytoplasmic transport
in the regulation and mediation of mechanotransduction was origi-
nally proposed in 2009 by Wolf and Mofrad.142 As a molecular con-
duit on the nuclear envelope, the NPC aids the transport of some
mechano-sensitive transcription factors into the nucleus.142 Upon
mechanical stimuli, some transcription factors, including myocardin-
related transcription factors (MRTFs), Yes-associated protein (YAP),
and extracellular signal-regulated kinase (ERK), move into the nucleus,
where they activate the corresponding gene transcriptions.143 The
NPC-mediated translocation of transcription factors is a critical piece
of mechanotransduction, as the dysfunction of the NPC leads to
reduced mechano-sensitivity of the cell.2,142,144 There are two mecha-
nisms suggested regarding how the mechanical force promotes the
nuclear entry and accumulation of some specific transcription factors
(Fig. 4). The first one is that the NPC increases its diameter under
mechanically stretched conditions. The dilated NPC reduces the trans-
port barrier and promotes the nuclear entry of transcription factors.
The second mechanism hypothesizes that the relayed biochemical sig-
nals starting from the mechanical stimuli ultimately change the struc-
tural state of the transcription factors, changing their binding affinities
with NTRs. In Subsections IVA and IVB, we further discuss these
two scenarios highlighting the possible event happening at the NPC
during the mechanotransduction.

A. Nuclear pore dilation upon mechanical stimuli

The relation between the NPC pore dilation and the mechano-
transduction was first suggested in 2009 by Wolf and Mofrad.142 The
first experimental evidence for this hypothesis was presented in 2017
by Elosegui-Artola et al.,152 who demonstrated that a direct force
applied to the nucleus by atomic force microscopy induces the YAP
translocation into the nucleus. Because this happened without explic-
itly activating the biochemical signaling pathway in the cytoplasm,
they suggested that increased tension on the NE membrane is suffi-
cient to make YAP move into the nucleus. Furthermore, they specu-
lated that the pore dilation of the NPC occurring in a high-tension NE
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membrane is the critical factor being responsible for the increased
YAP transport rate.

Supporting the idea of the NPC pore dilation, experimentally
observed conformations of the NPC display two distinct states,
namely, constricted and dilated (Table I). While the constricted NPC
contains a small central channel (�40–50nm in diame-
ter),52,60–63,77,132,145,149–151 the dilated NPC has a large one
(�55–70nm in diameter).59,63,76,146–149 The differences between these
two states are mostly attributed to the radial contraction/expansion of
the inner ring, and the overall structure of the outer ring remains
nearly constant between states.59,63 While the constricted states are
often observed in either isolated NPCs or purified NEs, the dilated

states are observed in in situ NPCs, i.e., NPCs in the native cellular
environment.149 This implies that the tension experienced by the
nuclear envelope membrane radially stretches out the NPC causing
the pore dilation.59,148 The transition between the constricted and
dilated states in a single cell type was also observed by Zimmerli
et al.,63 who demonstrated that NPCs constrict under conditions of
energy depletion or hypertonic shock, both of which decrease the ten-
sion of the NE membrane.

One of the important factors facilitating the pore dilation is
the structural flexibility of the NPC. When seen as a continuum struc-
ture, the NPC can employ a variety of different mode shapes,
according to finite element models and modal analysis conducted by

FIG. 4. Suggested response to the mechanical stimuli. The mechanical stimuli increase the tension on the nuclear envelope, which increases the NPC diameter. The mechani-
cal stimuli also trigger the biochemical signaling cascade, which eventually changes the conformation of the transcription factors. Both of these effects increase the transport
rate of the transcription factors through the NPC.

TABLE I. Diameter of the inner rings for constricted and dilated NPCs. The morphologies of the NPCs were captured using cryo-(cryo-electron microscopy) and/or cryo-ET
(cryo-electron tomography) in the isolated NPC sample, purified NE sample, and native cellular environment. Cryo-FIB milling technique was used to obtain NPC images in the
native cellular environment except the case of Ref. 145.

Constricted Dilated

Diameter (nm) State References Diameter (nm) State References

H. sapiens 41 Purified NE 60, 62, 77 66.146 2.96 Native environment 146
50 Native environmenta 145 57 Native environment 59
�42.5 Purified NE 61 64 Native environment 147

S. cerevisiae �45 Isolated NPC 52 �63 Native environment 148
42.5 Isolated NPC 149 58.5 Native environment 149

S. pombe 48.66 3.2 Native environmentb 63 68.86 7.9 Native environment 63
X. laevis 46 Purified NE 150

49 Purified NE 132 and 151
C. reinhardtii 64 Native environment 76

aWithout cryo-FIB milling.
bIn the energy depleted cells.
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Wolf and Mofrad.26 Specifically, one of the characteristic shapes named
“breathing shape” features the radially stretched scaffolds and the
increased pore size, corresponding to the dilated NPC. The molecular-
level details enabling such scaffold flexibility are under discussion.
Solmaz et al. proposed that the structured domains of Nup54 and
Nup58 undergo the large-scale rearrangement during the pore dila-
tion;153 in the constricted state, one homotetramer of Nup58 and two
homotetramers of Nup54 are stacked on top of each other building one
spoke. In the dilated state, the nuclear pore complex subunit architecture
reassorts into a dodecameric module to increase the pore diameter. On
the other hand, the NPC architecture recently estimated by the artificial
intelligence did not contain such a sub-modular level molecular rear-
rangement.68 They suggested that the individual modules in the inner
ring shift inwards/outwards to change the pore diameter while preserving
their modular shapes. In this model, there emerge some gaps between
modules when the NPC is dilated, which are filled out by the intrinsically
disordered SLiMs to maintain the integrity of the structure.52

Aside from the dilation of the inner ring, the structural change of
the nuclear basket is also suggested as a potential response to the
mechanical stimuli.126,154 Since the nuclear basket is extended out of the
NEmembrane and less restricted as to its structure, it can employ a vari-
ety of conformations without spending too much entropic cost. It is
known that the nuclear basket can open or close its distal ring depend-
ing on the calcium ion concentration.31,155 This conformational change
is driven by the electrostatic interactions between negatively charged
basket arms.156 Additionally, direct mechanical force application can
potentially work to change the nuclear basket structure.126,154 Since
there is a direct connection between Nup153 (the nuclear basekt Nup),
and SUN2 (a component of the LINC complex),1,157 the nuclear basket
is expected to be sensitive to the external force stimuli. The combination
of electrostatic and mechanical forces on the nuclear basket produces a
torsional motion in the structure.156 A computational study by Liu
et al.156 showed that in some specific parameter ranges, the conforma-
tional state of the nuclear basket has a bistable landscape, and the transi-
tion between them occurs sensitively to the mechanical force, implying
its role as a mechano-sensitive molecular switch.

B. Structural transformation of transcription factors

Another key factor that may influence the nuclear import of tran-
scription factors is their molecular structure and their corresponding
structural transformation.158 As discussed in Sec. III, the nucleo-
cytoplasmic transport of large molecules requires their bindings with
NTRs. Some transcription factors undergo conformational changes
upon mechanical stimuli, expose the NLS domain on their surface and
thereby increase their affinity for NTRs, promoting their passage
through the NPC. On the other hand, other transcription factors do
not include classical NLS in their sequences. This implies that they
pass through the NPC either by using non-classical NLS or without
binding to NTRs. For the latter case, the structural properties of the
transcription factors play a crucial role, considering that the surface
property40 and the mechanical flexibility101 are the leading factors that
may modulate the transportability of molecules without NTRs. Below,
we review how some transcription factors (YAP, MRTF-A, and
ERK1/2) are imported into the nucleus by highlighting the possible
structural changes happening during mechanotransduction. The read-
ers may find biochemical functions of these transcription factors in the
accompanying paper by Amar et al.143

MRTF-A diffuse through the NPC by binding to importina and
importinb.159,160 MRTF-A contains NLS in the conserved domain
called the RPEL (arginine, proline, glutamic acid, and leucine)
domain.161 Since the RPEL domain also serves as a G-actin binding
site, importin and G-actin compete for binding with this domain. In
the absence of mechanical stimuli, the concentration of G-actin in the
cytoplasm is high enough to prevent MRTF-A from binding to
importina–importinb. On the other hand, applications of mechanical
stimuli promote actin polymerization and reduce G-actin concentra-
tion in the cytoplasm. This increases MRTF-A’s binding rate with
importina–importinb, and the MRTF-A–importin complex is trans-
ported into the nucleus through the NPC.

The mechanism by which YAP translocates through the NPC
has remained largely unknown. Considering its relatively small size
(�65 kDa),162 which is slightly over the passive diffusion threshold
(�40 kDa),17 it might be able to adopt the passive diffusion when the
nuclear pore is dilated. The possibility of the NTR-dependent diffusion
is also unclear since there is no NLS (canonical or non-canonical)
found within the YAP sequence. Yorkie, the Drosophila homolog of
YAP, contains NLS which can bind with importina,163 but it is not
conserved in YAP. Future work needs to identify whether YAP passes
through the NPC passively or NTR-dependently. The possibility that
YAP itself can work as an NTR (by directly interacting with FG-Nups)
cannot be eliminated either. Another factor to consider is the struc-
tural variation of YAP that potentially changes its transport dynamics
through the NPC. YAP can undergo various post-translational modifi-
cations, including phosphorylation, O-GlcNAcylation, acetylation,
and methylation.164 For example, when Hippo signaling is activated,
large tumor suppressor (LATS) kinase phosphorylate S127. S127-
phosphorylated YAP interacts with 14–3-3 protein, which leads to the
sequestration of YAP in the cytoplasm. The relation between those
post-translational modifications and the force application currently is
under debate. Another important factor determining YAP’s localiza-
tion is its binding with angiomotin family proteins (AMOT).165,166

AMOT competitively binds to either YAP or F-actin. When the
mechanical stimuli are applied, the concentration of the F-actin in the
cytoplasm increases, and YAP is released from AMOT, which is fol-
lowed by YAP’s nuclear entry. However, there are some conflicting
observations to this model, and the involvement of AMOT in the
YAP’s transport regulation is still unclear.167,168

ERK1/2, a member of the mitogen-activated protein kinase
(MAPK) family, can pass through the NPC by either free diffusion,169

NTR-dependent diffusion,170 or direct interaction with FG-Nups.171,172

ERK1/2 does not have a canonical NLS. Instead, it contains a unique
nuclear translocation signal (NTS) composed of 19 amino acids.170 The
NTS includes the SPS (serine and proline) motif, an amino acid
sequence pattern made up of serine and proline residues. When the SPS
motif is phosphorylated, NTS increases the binding affinity to impor-
tin7, and therefore, the SPS motif works as a molecular switch control-
ling ERK1/2’s nuclear transportability. When a force is applied, it
activates the MAPK/ERK signaling pathway. This leads to the phos-
phorylation of ERK1/2, which releases ERK1/2 from its cytoplasmic
sequestrators173 and/or promotes its interaction with importin7, leading
its rapid translocation into the nucleus.174,175

V. CONCLUSIONS AND OPEN QUESTIONS

In this mini-review, we discussed the basic structure and
functions of the NPC along with its emerging roles in cellular
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mechanotransduction. By controlling the import of transcription fac-
tors into the nucleus and the export of mRNA out of the nucleus, the
NPC can play a vital role in mechanotransduction. Two hypotheses
have been proposed for how the NPC can accomplish this role, as fol-
lows: The first hypothesis proposes that the NPC nanopore dilates
under mechanically stretched conditions, reducing the transport bar-
rier and promoting the nuclear entry of transcription factors or the
exportation of mRNA. The second hypothesis suggests that mechano-
transduction signals ultimately lead to conformational change of the
transcription factors, altering their binding affinities with NTRs. Both
these scenarios and their potential underlying mechanisms were dis-
cussed here. As to the nuclear pore dilation hypothesis, several open
questions remain to be addressed. First, the molecular arrangement of
the structural scaffold in its dilated and constricted states needs to be
resolved. With the current model of the NPC assembly, some gaps
emerge between sub-complexes of the dilated inner ring.59 It is not
clear if the gaps are formed by coiled-coil domains that appear by
refolding the sub-complexes153,176 or are filled with the extensive net-
work of SLiMs. Depending on the molecular architecture of the dilated
state, the energy input needed for the rearrangement of the sub-
complexes changes, which determines the mechanosensitivity of the
NPC. Second, the molecular links that transmit the mechanical force
to the NPC must be identified. The tensional stress that radially
stretches the NPC comes from either the NE, the LINC complex, or
some other connections between the cytoskeletal elements and the
NPC.1 Identification of the force transmission pathway would provide
better insight into the targeted activation or inhibition of the mecha-
notransduction process. Third, further investigations are needed to
understand the effect of the pore dilation on the nucleo-cytoplasmic
transport. While the exact mechanism for the selective molecular
transport at the NPC remains unknown, there are many possibilities
for how the pore dilation may influence the selectivity of the NPC. It is
intuitive enough to expect the pore dilation increases the passage rate
of molecules without NTRs. Still, its effect on the transportability of
the NTR-carrying molecules would be more complicated and differ
among different models.
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