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ABSTRACT OF THE DISSERTATION

Geometric Ways of Understanding Voting Problems

By

Tomas J. McIntee

Doctor of Philosophy in Mathematical Behavioral Sciences

University of California, Irvine, 2015

Distinguished Professor Donald G. Saari, Chair

General conclusions relating pairwise tallies with positional (e.g., plurality, antiplurality

(“vote-for-two”)) election outcomes were previously known only for the Borda Count. While

it has been known since the eighteenth century that the Borda and Condorcet winners need

not agree, it had not been known, for instance, in which settings the Condorcet and plurality

winners can disagree, or must agree. Results of this type are developed here for all three-

alternative positional rules. These relationships are based on an easily used method that

connects pairwise tallies with admissible positional outcomes; e.g., a special case provides the

first necessary and sufficient conditions ensuring that the Condorcet winner is the plurality

winner; another case identifies when there must be a profile whereby each candidate is the

“winner” with some positional rule. Previous work relating the probability of positional and

pairwise tallies have used specific selected distributions (primarily the Impartial Culture and

Impartial Anonymous Culture assumptions) and specific voting rules (particularly plurality).

Techniques are developed here that can be applied to analyzing the probability of conflict

between all different positional methods, and between combinations of pairwise tallies with

positional results. Results are given for several broad categories of probability distribution,

along with a qualitative analysis of the relationship between probability distributions over

voter profiles and the likelihood of voting paradoxes. A method of geometrically comparing

multiple-stage and single-stage elections is developed, which shows that multiple stage elec-

xi



tions are not necessarily more vulnerable to being manipulated, but less vulnerable when all

rank-order outcomes matter, and specifically only similar when an election only identifies

a first-place winner. In the case where results are defined in terms of a singular winner, a

plurality vote is identified as less manipulable in a single stage than in multiple stages, while

an antiplurality vote is identified as more vulnerable in a single stage than in multiple stages.

xii



Chapter 1

Overview

After a several centuries of mathematical study of voting systems, it is clear that determining

which voting method most accurately reflects the views of the voters in some particular set of

circumstances is a surprisingly subtle challenge. In the last half century, it has become widely

accepted that there is no perfect voting system when there are more than two candidates in an

election. Several lists of unattainable combinations of properties for elections with more than

two candidates or options are now famous impossibility theorems for voting problems. This

includes Arrow’s theorem (Pareto unanimity and independence of irrelevant alternatives),

Sen’s theorem (Pareto unanimity and liberal rights), and the Gibbard-Satterthwaite theorem

(non-manipulable and deterministic). Efforts to determine which voting system is best have

continued in spite of acceptance that no system is perfect, primarily but not exclusively by

the use of examples constructed to show differences between voting systems.

Even the oldest puzzles surrounding voting theory remain of interest. The most famous

puzzle is perhaps the Condorcet paradox, the namesake of which was alive during the French

Revolution; results are still being published in voting theory relating to the nature and

importance of the Condorcet paradox. The Condorcet parodox is not a result that relates to
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the outcome of voting rules directly; it is a problem that occurs as the result of preference

structures alone, and looks at inconsistences within pairwise comparisons. The fact that a

Condorcet (pairwise) winner may not exist, even when all voters have transitive and complete

preferences, is an intrinsic property of profiles of transitive preferences. The frequency with

which Condorcet paradoxes occur remains a matter of current interest; this question is

answered with new thoroughness in Chapter 3.

More generally, the Condorcet paradox is a paradox of the relationship between profiles

and pairwise majority votes. A complete qualititative understanding of the full relationship

between profiles as collections of transitive preferences, and the pairwise tallies related to

those collections of transitive preferences, has been elusive until fairly recently (see Chapter

2). That understanding is in turn necessary for a full understanding of the context of the

Condorcet paradox and its true importance in Chapter 3).

However, the puzzle of the profile is only half of the problem. The effect of Condorcet-

type components (i.e., the general component of preference profiles that lead to a Condorcet

paradox) on particular voting systems, and how different voting systems treat Condorcet

winners and Condorcet losers, brings us to a second class of puzzle. There are almost

certainly questions which we have not thought to even ask about the different behaviors of

particular voting systems, which are nevertheless of some importance. Additionally, there

exist a number of questions whose answers are known but whose significance is not necessarily

well understood.

Several examples: Will the system elect a Condorcet winner if one exists? Can it elect a Con-

dorcet loser? Is it monotone? Prior research has led to a library of criteria for distinguishing

between voting systems has been developed; many of which, though not all, are related to

specific voting paradoxes or impossibility theorems. This work adds to the understanding of

the significance of impossibility theorems and of criteria violations.
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Most of these criteria are binary in nature. That is to say, the criteria is either satisfied

or not. The questions they pose are yes or no questions, such as the above answers. For

example, a Condorcet winner can lose in a plurality vote, a Borda count, and most other

voting systems that do not explicitly check for a Condorcet winner. A Condorcet loser

cannot win a Borda count, but can win in any other positional method, and any multi-stage

elimination method consisting of two or more positional votes over three or more candidates

has the potential for non-monotonicity. In regard to this vein of research, the present work

aims to answer the question of how likely a voting paradox is to occur. Prior research on

this has involved a fairly narrow set of conditions, or a small set of actual elections (e.g., as

in Gehrlein and Lepelley [2011]); Chapter 3 attempts to put the question of the probability

of a Condorcet paradox to rest for the general setting, inasmuch as any theoretical work can

do so. (Empirical measurement of the actual frequency of a Condorcet paradox within a

given population is beyond the scope of any theoretical work.)

Chapter 4 examines the problem of manipulability, and the sensitivity of multiple-stage

elections to manipulation. It is known that all multi-stage systems can exhibit non-monotone

behavior, which produces a strong incentive for strategic manipulation; does this mean that

a multi-stage election is necessarily more vulnerable to strategic manipulation than a single-

stage system? Not necessarily; in fact, introducing additional stages to a voting system tends

to increase its stability.

The same tools which allow us a complete understanding of how likely the Condorcet paradox

is under a variety of large classes of probability distributions can also be used to explore a

variety of other events - such as the probability that a plurality vote elects someone other

than a Condorcet winner. By tying together these sorts of different results, we can better

see the larger picture of the relationships between voting systems and voting paradoxes.

The primary method used in this work is decomposition. To better understand a problem

that exists in n! dimensions, we reduce it to a more tractable and understandable combination

3



of lower-dimensional subspaces. The essential profile; the representation cube; result space;

reversal components; all of these are lower-dimensional spaces that display salient features

of interest. This is not to say that we need to, or should, ignore the full dimensionality of

the problem; but by dealing with different sets of dimensions separately, results can be made

simpler, more understandable, and more general.

In Chapter 2, the 6-dimensional simplex of possible profiles over n = 3 candidates is broken

up between an essential profile - corresponding precisely to a point on the representation

cube - and the reversal components which produce all differences between different positional

methods. Understanding the relationships between the magnitude of those two spaces is

simple: The closer to the surface of the representation cube, the smaller the supporting

space of reversal components is, and the smaller the class of binary-equivalent profiles.

This simple relationship lets us go from the essential profile to the magnitude of variation

between the different possible positional rules (for n = 3 candidates, rules which give (1, s, 0)

points to first, second, and third place on each ballot); and from there we have explicit equa-

tions laying out when it is possible for various events to happen, e.g., a plurality winner and

a Borda winner disagreeing or a plurality winner and Condorcet winner being the same. Ex-

amining the magnitude of the spaces provides qualitative information about the probabilties

of these events. Without knowledge of the underlying probability distribution of profiles,

this qualitative information is very useful; and allows for rapid estimation of the relative

magnitude of probabilities once a particular probability distribution is selected.

In Chapter 3, the essential profile is placed directly and explicitly on the representation

cube (and a variant thereof) in order to display the relationship between pairwise majority

tallies and probability distributions over the space of possible profiles. This also allows direct

specification and further understanding of the types of probability distributions we may be

dealing with on the representation cube itself. By integrating separately over the supporting

space, a probability density distribution in the original profile space can be transformed into

4



a probability density distribution on either the representation cube or another similar space.

Having the probability distribution function over the representation cube, instead of profile

space, allows us to make easier quantitative calculations of the probability various voting

paradoxes or events of interest. It also shows, qualitatively, what happens to the relation-

ship between pairwise majority tallies and positional results as the probability distribution

function over profile space is varied. This in turn provides an understanding of how these

phenomena vary over the space of possible probability distributions. (Or rather, over part

of that space; the space of all possible probability distributions is very large.)

In the event that a Condorcet paradox occurs, for example, it does not matter what the vari-

ance of the probability distribution is on the representation cube, simply the overall shape;

this leads to easy calculation of the probability of a Condorcet paradox. In the event that

a plurality winner agrees with the Condorcet winner, by contrast, this probability is much

more sensitiv to variance on the representation cube. The variance on the representation

cube is the more important factor because close to the origin, the large variation within the

supporting space becomes more important; and in particular, the relationship between the

variance on the cube and the variance on the supporting space becomes critical.

Chapter 4 takes the reduction as far as possible and make use of the result space, which is

to say the space of possible point totals - a reduction from n! dimensions to n dimensions.

Using this space allows for the comparison of methods which are not simply positional or

multiple positional methods. In particular, this method can be used to analyze multi-round

and single-round versions of positional and multiple positional methods.

In spite of the limited information the space of results provides, this turns out to be entirely

adequate for discussing stability of the results against some small change in the votes cast

- some small amount of counting error, fraud, or other form of manipluation. The details

of the supporting profile that produce a result are only relevant as part of the underlying
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probability distribution; the two factors which matter are the density distribution of subtotal

results, and the structure of the votes that can be added or subtracted.

The present work aims to take a general and conceptual approach. While there are some

specific calculations offered on probabilities under particular probabilistic assumptions (par-

ticularly in Chapter 3), the only specific figure offered that is particularly important is the

range of probabilities for a Condorcet paradox under a broad range of assumptions: Be-

tween 6.25% and 8.8%. Within that range, it is very difficult to empirically distinguish

between different probability assumptions; evidence falling outside of that range, on the

other hand, implies that the underlying distribution of preferences is very unlike the sorts

of distributions usually assumed. Most other probabilistic calculations are important only

qualitatively; since the true distribution of preferences is not known, and may not be the

same in all populations, it is important to understand qualitatively what is going on.

It is often said that a picture is worth a thousand words. What follows in Chapters 2-4 in the

body of this work is an expression of agreement with that statement. Geometric methods

make full use of this asymmetry between words and pictures, because they can be readily

illlustrated, leading to easier conceptual understanding of paradoxes, voting criteria, and the

qualitative differences in different voting systems.
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Chapter 2

Connecting Pairwise and Positional

Election Outcomes

This chapter consists of joint work with D. Saari. A version of this chapter has been published

in Mathematical Social Sciences (Vol. 6 #2, p140-151).

2.1 Introduction

After a quarter of a millennium of study, it is clear that the objective of determining which

voting method most accurately reflects the views of the voters is a surprisingly subtle, major

challenge. The complexity of this issue has forced researchers to adopt secondary measures,

such as seeking properties of specific rules or probability estimates of paradoxical events.

While providing useful information, these approaches remain surrogates for the true intent of

identifying which profiles cause different kinds of election outcomes. Rather than determining

the likelihood of particular paradoxical outcomes, for instance, a preferred outcome would

be to identify all profiles that cause these difficulties.
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To advance our understanding of which profiles create various conclusions, the approach

introduced here identifies all three-alternative profiles that support specified paired majority

vote tallies. An advantage of knowing all possible supporting profiles is that it makes it

possible to determine all of the associated positional outcomes.

To illustrate the variety of new questions that can be answered, suppose all we know about

a profile is that its majority vote pairwise comparisons are

A beats B by 70:30, A beats C by 60:40, and B beats C by 55:45.

Here A is the Condorcet winner (she beats all other candidates) and C is the Condorcet

loser (she loses to everyone). Just from these tallies, where the two involving the Condorcet

winner A are of “landslide proportions” (winning 60% or more of the vote), the goal is to

determine all admissible plurality (vote-for-one), antiplurality (a “vote-for-two” is equivalent

to a “vote against one”), Borda (assign two and one points, respectively, to a ballot’s first

and second positioned candidate) and other positional outcomes. Even though Condorcet

winner A badly defeats the Condorcet loser C, are there profiles with these majority votes

where C, rather than A, is the plurality winner? Could C be an antiplurality winner? Could

middle-ranked B win a plurality election? Do the Borda and Condorcet winners agree or

differ? (Complete answers are in Sect. 2.4.2.)

The easily used approach developed here connects majority votes with positional outcomes,

so this method becomes a central tool to answer all such questions. As our intent is to

develop relationships between positional methods and pairwise votes, only sincere voting is

considered. (Proofs are in Appendix A.1, but the basic ideas are developed in Sects. 2.3.1,

2.3.2)
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2.1.1 Basic definitions

A profile lists each voter’s ranking of the alternatives where it is assumed that each voter

has complete, strict (no ties), transitive preferences. As for outcomes, assume in an {A,B}

majority vote that A always has at least as many votes as B, and, in a {B,C} majority vote,

B has at least as many as C. With this assumption and by denoting a strict preference by

“�,” a strict transitive outcome of these paired comparisons is A � B � C. So, if there is a

Condorcet winner in what follows, it always is A, and C always is the Condorcet loser. If the

rankings define a cycle, it has the A � B,B � C,C � A form. A “name change” converts

any other situation into our setting, so this assumption does not affect the generality of our

conclusions.

Rather than using the actual tallies, the differences between majority vote tallies turns out

to be a more useful way to analyze these issues.

Definition 2.1. For an {X, Y } majority vote election with N voters, let

P (X, Y ) = {X ′s majority vote} − {Y ′s majority vote}. (2.1)

Illustrating with the introductory example, P (A,B) = 70− 30 = 40, P (A,C) = 20, and

P (B,C) = 10; e.g., the larger the P (X, Y ) value, the better X does against Y . Also,

P (X, Y ) = −P (Y,X); e.g., in the introductory example, P (B,A) = 30−70 = −40. This no-

tation converts our A � B,B � C assumption about the paired elections (where “�” has the

obvious “preferred or indifferent to” meaning) into the equivalent P (A,B) ≥ 0, P (B,C) ≥ 0

condition.

With N voters, because N = {X ′s vote}+ {Y ′s vote}, it follows that

{X ′s vote} =
1

2
[N + P (X, Y )]. (2.2)
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So, with N = 60 voters, a P (A,B) = 10 outcome means that A received 1
2
[60+P (A,B)] = 35

votes while B received 1
2
[60 + P (B,A)] = 1

2
[60 − 10] = 25 votes. Because X’s tally is an

integer, it follows from Eq. 2.2 that N and all three P (X, Y )’s must have the same parity; i.e.,

either all are odd integers, or all are even integers. This parity agreement is used throughout

the paper.

Different profiles can yield the same pairwise tallies, so the following definition is introduced

to collect all of them into one class.

Definition 2.2. Two profiles p1 and p2 are “binary equivalent” (p1 ∼BE p2) if they have

identical P (A,B), P (B,C), P (A,C) values.

The ∼BE connection is an equivalence relationship. (That is, for each pi, pi ∼BE pi; if

p1 ∼BE p2, then p2 ∼BE p1; and, finally, if p1 ∼BE p2 and p2 ∼BE p3, then it must be that

p1 ∼BE p3.) Thus ∼BE partitions the space of profiles into equivalence classes; each class

consists of all profiles with the same P (X, Y ) values, X, Y = A,B,C. To be useful, a trait

must be found to identify which profiles belong to a particular ∼BE class. As described in

Thm. 2.5, this is the profile’s “essential part” – the unique portion of a profile that determines

the P (X, Y ) values.

Answers for the above questions are found by characterizing how profiles in a ∼BE class

differ. As a preview of what will be discovered, although profiles from the same class have

identical P (X, Y ) values, their plurality and other positional rankings can differ.

Definition 2.3. A positional voting rule tallies a ballot by assigning specific points to the

three alternatives according to how they are positioned on a ballot. Here, wj points are

assigned to the jth positioned choice. The conditions are that not all wj values are equal,

and w1 ≥ w2 ≥ w3 = 0. The normalized positional rule is obtained by dividing all wj values

by w1 to create ws = (1, s, 0) where s = w2

w1
represents the number of second ranked points.
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The plurality vote is w0 = (1, 0, 0), the anti-plurality vote is w1 = (1, 1, 0), and the Borda

Count (normally defined by (2, 1, 0)) has the w 1
2

= (1, 1
2
, 0) normalized form. Although

we discuss only positional methods, all results extend immediately to other rules, such as

Approval Voting and Cumulative Voting, by using the techniques developed in Saari [2010].

A technical assumption, which is needed to separate the different cases, follows:

Definition 2.4. A profile satisfies the strongly non-cyclic condition if

P (A,C) ≥ min(P (A,B), P (B,C)). (2.3)

To explain Def. 2.4, if the pairwise rankings define a transitive A � B � C outcome, the

strongly non-cyclic condition (Eq. 2.3) just means that Condorcet winner A’s victory over

the Condorcet loser C is at least as decisive as A’s victory over B, or B’s victory over C.

With the P (A,B), P (B,C) ≥ 0 assumption, Eq. 2.3 requires P (A,C) ≥ 0, so it precludes

cycles; this leads to its “non-cyclic” name. The “strongly” modifier refers to the fact that

even if weaker P (A,C) values fail Eq. 2.3, they do not define cycles if P (A,C) ≥ 0. An

N = 100 example is where P (A,B) = 20, P (B,C) = 14 and P (A,C) = 10. (To create all

profiles with these pairwise values, see Thm. 2.5 and Sect. 2.3.)

2.1.2 Sample of outcomes

Our approach decomposes a profile into the part that determines the P (X, Y ) paired com-

parison values – the portion essential for a profile to be in the ∼BE equivalence class – and

the part that affects only positional outcomes. This decomposition simplifies discovering and

proving new conclusions. Samples of the kinds of results that can be found are given in the

following four theorems. (Proofs are in Appendix A.1, but intuition and partial proofs are

given in Sects. 2.3.1, 2.3.2.)
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To introduce the first theorem, it is reasonable to wonder whether the plurality and Con-

dorcet winners agree. The first two parts of Thm. 2.1 ensure that this always is true for at

least one profile that supports the pairwise tallies. But the next two parts show that the

pairwise tallies must satisfy exacting conditions in order for the Condorcet winner A to be

the plurality winner for all supporting profiles.

Theorem 2.1. With the strongly non-cyclic condition (Eq. 2.3), the following are true:

1. A profile supporting the paired outcomes always exists where the Condorcet winner A

is a plurality winner. She may, however, be tied with another candidate.

2. If P (A,B), P (A,C) > 0, there is at least one profile supporting the paired tallies where

the Condorcet winner A is the sole plurality winner.

3. If with alternative Y , P (A, Y ) > 0 is the largest pairwise victory, then a necessary and

sufficient condition for all supporting profiles to have the Condorcet winner A as the

sole plurality winner (where X is the third alternative) is

2P (A,X) + P (A, Y ) > n. (2.4)

If Eq. 2.4 is an equality, there are profiles where A is tied with X. If the Eq. 2.4

inequality is reversed, then some profiles have X as the sole plurality winner.

4. For P (B,C) > max(P (A,B), P (A,C)), a necessary and sufficient condition for all

profiles to have A as the sole plurality winner is

2P (A,B) + P (B,C) > n. (2.5)

Statement 1 is required for completeness. The ten-voter profile where five voters prefer

12



A � B � C and five prefer C � A � B, for instance, has:

P (A,B) = 10, P (A,C) = P (B,C) = 0 (2.6)

so it satisfies Def. 2.4 but not the part 2 condition. It will turn out (Thm. 2.5) that this is

the only ten-voter profile supporting these P (X, Y ) values; its plurality A ∼ C � B outcome

(where “∼” means a tie) is as stated in Thm. 2.1, part 1.

Part (2) asserts that some supporting profiles must elect A, but not necessarily all of them.

For instance, the fifteen voter profile where eight prefer A � B � C, five prefer C � A � B

and two prefer C � B � A has the P (A,B) = 13, P (B,C) = P (A,C) = 1 values with the

plurality A � C � B outcome. In contrast, the profile where six prefer A � B � C, seven

prefer C � A � B and two prefer B � A � C has identical P (X, Y ) values but a different

plurality winner with the C � A � B plurality ranking.

This example motivates Eq. 2.4, which identifies all possible settings where the plurality

winner always is the Condorcet winner. With P (A,C) = 10 and P (A,B) = 8 (so Y =

C,X = B), for instance, the Condorcet winner A must be the plurality winner if and only

if the number of voters satisfies 2(8) + 10 = 26 > n. Thus, A is both the plurality and

Condorcet winner for all supporting profiles if and only if there are no more than 24 voters.

With 26 voters, a profile exists with these P (A,B), P (A,C) values where A and B are tied

in a plurality election; with 28 voters, a supporting profile has B as the plurality winner.

(Equations 2.4 and 2.5 differ slightly because the pairwise middle-ranked B, rather than the

Condorcet winner A, defines the largest pairwise victory.) In this way, Thm. 2.1 provides

new, general results about the number of voters required for various assertions.

The lower bounds for Eqs. 2.4, 2.5 involve N, which can require huge P (X, Y ) victory

margins to ensure agreement between the plurality and Condorcet winners. To satisfy Eq.

2.4, for instance, it must be that P (A, Y ) > 1
3
n, which means that the Condorcet winner A
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receives more than two-thirds of the vote when compared with Y .1 In other words, unless

the Condorcet winner A exhibits exceptional dominance over the other alternatives in paired

comparisons, expect the Condorcet and plurality winners to differ.

This required level of dominance exceeds even the landslide proportions of the introductory

example! To use Thm. 2.1 to analyze this case, because P (A,B) = 40 is the strongest

pairwise victory, Y = B, X = C, and N = 100. These pairwise tallies define a strict

transitive ranking, so (Thm. 2.1, part 2) some supporting profiles have A as the sole plurality

winner. But 2P (A,C) + P (A,B) = 80 < 100 reverses the Eq. 2.4 inequality, so other

supporting profiles have the Condorcet loser C as the sole plurality winner. (As developed

later, there are no supporting profiles that elect B.)

If the strongly non-cyclic condition is not satisfied, the requirements for A to always be the

plurality winner are slightly more complicated, but similar in form.

Theorem 2.2. Suppose Eq. 2.3 is not satisfied (so P (A,C) < min(P (A,B), P (B,C))).

Whether there is, or is not, a cycle, a necessary and sufficient conditions for A to always

beat B, and for A to always beat C, in a plurality vote are, respectively,

2P (A,B) + P (B,C) > n, P (A,B) + 2P (B,C) > n. (2.7)

Both inequalities must be satisfied for A to always be the plurality winner. A benefit of

Thm. 2.2 is that it also applies to cycles, such as P (A,B) = 6, P (B,C) = 14, P (A,C) = −4.

Although C beats A in their pairwise vote, it follows from Eq. 2.7 that A always is plurality

ranked over C if and only if 6 + 2(14) = 34 > n, or if there are no more than 32 voters.

It follows from the first Eq. 2.7 inequality that for A to always beat B (and to be the sole

plurality winner for all supporting profiles), there can be no more than 24 voters.

1The best case for Y is if P (A,X) = P (A, Y ) where P (A, Y ) > n
3 . According to Eq. 2.2, A receives

1
2 [n+ P (A, Y )] > 1

2 [n+ n
3 ] =

2
3n votes.
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These stringent conditions make it difficult for the Condorcet and plurality winners to always

agree. This suggests exploring whether other positional rules enjoy more relaxed require-

ments. But as asserted next (Thm. 2.3), this is not the case for the antiplurality rule; instead,

conditions ensuring that the Condorcet and antiplurality winners always agree impose more

demanding constraints on the paired victories.

Theorem 2.3. With the strongly non-cyclic condition (Eq. 2.3), the following are true:

1. If with alternative Y , P (A, Y ) is the largest paired victory, a necessary and sufficient

condition for A to be the only antiplurality winner for all supporting profiles is

2P (A, Y ) > n+ P (B,C). (2.8)

2. If P (B,C) > max(P (A,B), P (A,C)), A cannot be the only antiplurality winner. If

2P (B,C) > n+ P (A,C), then A never can be an antiplurality winner.

With the P (B,C) ≥ 0 value on the right-hand side, Eq. 2.8 requires a stronger pairwise

victory for A over some alternative than needed for the plurality vote (Eq. 2.4). Illustrating

with the introductory example, where 2P (A,B) = 80 < 100 + P (B,C) violates Eq. 2.8, it

follows that some supporting profiles elect someone other than A as the antiplurality winner.

The Eq. 2.8 condition also demonstrates how difficult it is for A to be the sole antiplurality

winner. Even in the extreme case where B and C tie (so P (B,C) = 0, which means from

Eq. 2.8 that P (A, Y ) > n
2
), it follows from Eqs. 2.2, 2.8 that A’s victory over some candidate

must give her more than 75% of the vote!

The last assertion shows that a strong pairwise victory of middle-ranked B over the Con-

dorcet loser C jeopardizes A’s antiplurality standing. With N = 60 voters, if P (B,C) = 40

and P (A,B) = P (A,C) = 16, then the Condorcet winner A can never be an antiplurality

winner! In contrast, all supporting profiles have A as the sole plurality winner (Eq. 2.5).
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A last illustration of the kind of results that can be derived from our approach compares the

Condorcet and Borda winners.

Theorem 2.4. In all cases (that is, independent of whether Eq. 2.3 is satisfied), if A is a

Condorcet winner, then a necessary and sufficient condition for the Borda and Condorcet

winners to agree is the more relaxed:

2P (A,B) + P (A,C) > P (B,C). (2.9)

Illustrating with the introductory example, as 2P (A,B) + P (A,C) = 100 > P (B,C) = 10,

it follows from Eq. 2.9 that A is the Condorcet and Borda winner.

By avoiding a lower bound with N , Eq. 2.9 is a significantly more relaxed condition than

required for the plurality and antiplurality rules. This means it is easier and far more likely

for the Condorcet and Borda winners to agree than, say, the Condorcet and plurality winners.

But to indicate how to extract new statements from these inequalities, notice that Eq. 2.9

imposes an upper bound on P (B,C) while Eq. 2.5 does not. This difference allows profiles

to satisfy Eq. 2.5 (so A is the Condorcet and plurality winner) but not Eq. 2.9 (B, not

the Condorcet winner A, is the Borda winner). As an example requires a large P (B,C)

value, with N = 2k + 1 ≥ 5 voters, let k + 1 of them prefer A � B � C while k prefer

B � C � A. Because P (B,C) = n and P (A,B) = P (A,C) = 1, Eqs. 3, 2.5 are satisfied, as

they must because A is the plurality and Condorcet winner. But Eq. 2.9 is not satisfied, so B

is the Borda winner. (With this profile, B’s superiority over A is obvious.) More generally,

it follows from these inequalities that if P (B,C) > P (A,C) ≥ P (A,B), then a necessary

(but not sufficient) condition for A to be the sole plurality, Borda, and Condorcet winner is

4P (A,B) + P (A,C) ≥ n+ 2.

The form of Eq. 2.9 also suggests that it can be difficult to find actual elections where

the Condorcet and Borda winners differ. This is because to violate Eq. 2.9 (to make B
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the Borda winner), the Condorcet winner A must experience narrow victories over both

the Condorcet loser C and the middle-ranked B, while the middle-ranked B must enjoy a

relatively substantial victory over the Condorcet loser C. (Also see Saari [1999].)

2.1.3 Contributions to the literature

It is often stated that the Borda and Condorcet winners need not agree. To appreciate

whether this comment has any significance, it is necessary to identify the settings in which

the two winners disagree. Theorem 2.4 does this; it specifies precisely where agreement can,

and cannot, happen. For the winners to differ, the profile must be of a special, perhaps

unusual type. (How unusual is explored in Section 2.3.)

Beyond settling this question for the Borda and Condorcet winners, it would be useful to

derive similar relationships for other positional rules. As the plurality vote is so widely used,

for instance, a valuable result would specify when the plurality and the Condorcet winners

must agree, and when they can disagree. Prior to this paper and Thm. 2.1, general conditions

in terms of the paired comparison tallies were not known.

The plurality and antiplurality rules fare so poorly with respect to the Condorcet winner

that the next step is to explore whether this burden extends to other positional voting rules.

More relaxed requirements do hold for the Borda Count (Thm. 2.4), but it is not clear what

conditions are needed, for example, to ensure that the (3, 1, 0) winner (i.e., w 1
3
) always is the

Condorcet winner. Necessary and sufficient conditions of this kind are developed (Thms. 2.6,

2.7) for all three-alternative positional voting rules. They prove that as s → 1
2

(i.e., as the

normalized form of the positional rule approaches that of the Borda Count), requirements

ensuring that the ws and Condorcet winners agree become more relaxed. Thus consistency

is more likely to occur with positional methods that more closely resemble the Borda Count.
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Another contribution of this paper is to introduce an easily used method to construct profiles.

To illustrate, while various P (X, Y ) values are specified in the above discussion, it need not

be obvious whether profiles exist to support them. This is particularly true with lopsided

values such as P (A,B) = 20, P (B,C) = 40, P (A,C) = −30. But should the P (X, Y ) values

satisfy a minimal requirement (Cor. 1), profiles always exist. A way to construct them is

developed in Thm. 2.5 and Sect. 2.3.1. This result makes it simple to find, say, all possible

100 voter profiles with specified P (X, Y ) values. This new ability to identify all possible

supporting profiles is our central tool.

As this method also permits us to find all possible profiles that generate specified conflicting

outcomes, it allows new concerns to be addressed. For instance, while it has been known

since the eighteenth century that the Borda and Condorcet winners can disagree, to the best

of our knowledge the likelihood of this disagreement has not been computed. Similarly, it

is worth determining the likelihood that the Condorcet and plurality winners disagree (Eq.

2.4). By using results and the approach developed here, issues of this kind are addressed in

a companion paper.

2.1.4 Finding all outcomes

The above theorems, and the following extensions, are derived by identifying all profiles that

support specified paired comparison tallies. That is, all profiles in a ∼BE equivalence class

are found, which means that all associated positional outcomes can be determined. This

emphasis on which positional election outcomes can accompany specified paired majority

vote tallies makes our results a converse to the ( Sieberg and McDonald [2011]) contribution

of identifying which majority vote outcomes can accompany specified plurality tallies; e.g.,

they examined when a plurality tally ensures whether a Condorcet winner, or cycle, can

arise.
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Table 2.1: Rankings for Fig. 2.1a

No. Ranking No. Ranking No. Ranking
1 A � B � C 2 A � C � B 3 C � A � B
4 C � B � A 5 B � C � A 6 B � A � C

(2.10)

Our emphasis on tallies also distinguishes our results from the literature; e.g., for any number

of candidates, it is known which majority vote and positional rankings can accompany each

other ( Saari [1989, 2000, 2008]). With three candidates, for instance, anything can happen

with a non-Borda method (i.e., for ws, s 6= 1
2
). Namely, select any ranking for each pair of

candidates and any ranking for the triplet; there exists a profile with these majority and ws

vote outcomes. (To construct illustrating profiles, see Saari [1999] or [Saari, 2008, Chap. 4].)

The missing refinement (which is developed here) is to connect majority vote tallies with all

associated positional outcomes. Our approach depends upon a profile decomposition ( Saari

[1999, 2008]) that identifies the precise profile portions that cause all possible differences

between, say, the plurality and antiplurality election outcomes, or with paired comparisons.

2.2 Paired comparisons

Central to our approach is a geometric way to tally ballots (developed in Saari [1995, 2011];

for applications to actual elections, see Nurmi [2002]). Start by assigning each alternative,

A, B, C, to a vertex of an equilateral triangle. The ranking assigned to a point in the

triangle is determined by its distance to each vertex where “closer is better.” Thus, points

in the Fig. 2.1a labeled regions have the rankings: For a given profile, let Nj be the number

of voters with the jth preference ranking; place Nj in the jth ranking region as indicated

in Fig. 2.1b. The geometry conveniently separates these values in a manner to simplify

the tallying of ballots. For example, to compute pairwise votes, just sum the numbers on

each side of an edge’s perpendicular bisector as indicated in the first Fig. 2.1c triangle; the
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Figure 2.1: Computing tallies
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paired comparison tallies are listed below the appropriate edge. For instance, the vertical

line separates preferences where A � B (on the left) from B � A (on the right) leading to

the 40:0 tally supporting A � B. Similarly, A � C by 30:10 and B � C by 25:15.

2.2.1 Computing positional outcomes

A candidate’s plurality tally is the sum of entries in the two regions sharing her vertex. For

A, this tally is the sum of entries in the two Fig. 2.1a shaded regions. A candidate’s ws tally

is

{her plurality tally} plus {s times the number of voters who have her second

ranked}.

For A with Fig. 2.1b values, add to her plurality tally s times the sum of entries in the

two Fig. 2.1a regions with arrows in them; e.g., the ws positional tallies for A and B are,

respectively, (n1 +n2)+s(n3 +n6) and (n5 +n6)+s(n1 +n4). For the first Fig. 2.1c triangle,

the positional tallies for

A : B : C are, respectively, 30 + 10s : 25s : 10 + 5s. (2.11)
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With these tallies, the Condorcet winner A wins with any ws, the Condorcet loser C is

second ranked for ws, 0 ≤ s < 1
2
, but B advances to second position for 1

2
< s ≤ 1.

To list the tallies as a point in R3, let Vs(p) be profile p’s ws tallies listed in the (A, B, C)

order. So with Eq. 2.11 (p from the first Fig. 2.1c triangle), Vs(p) = (30 + 10s, 25s, 10 + 5s).

Notice that Vs(p) = (1−s)(30, 0, 10)+s(40, 25, 15) = (1−s)V0(p)+sV1(p) defines a straight

line connecting the profile’s plurality and antiplurality tallies. This line (which is used in

Sect. 2.4) represents a general behavior: For any profile p,

Vs(p) = (1− s)V0(p) + sV1(p), 0 ≤ s ≤ 1. (2.12)

The Eq. 2.12 line segment in R3 is called the procedure line ( Saari [1995]); the point sth of

the way along this line (from the plurality to the antiplurality tally) is the ws tally for p.

2.2.2 The “essential profile”

Because the P (X, Y ) values in the first Fig. 2.1c triangle agree with those of the initial

example, any profile supporting the initial example and this Fig. 2.1c profile belong to the

same ∼BE equivalence class. Even stronger, it will follow from the next theorem that the

Fig. 2.1c profile is the essential profile, denoted by pess, for the original choice. What makes

this profile “essential” is that, as developed below, all possible profiles that support these

P (X, Y ) values build upon pess; i.e., the essential profile characterizes all profiles in its ∼BE

equivalence class.

Definition 2.5. For specified P (A,B), P (A,C), P (B,C) values, the essential profile is the

profile with the smallest number of voters that have the specified P (X, Y ) values.

As it will become clear, each profile in a ∼BE equivalence class includes the class’s essential

profile as a component. For strongly non-cyclic settings, a way to derive pess is to take the
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Figure 2.2: The four essential profiles
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largest P (X, Y ) > 0 value, and subtract Y ’s tally from each candidate’s tally in each pairwise

comparison. Illustrating with the initial example, while the original A:B tallies were 70:30,

the reduced tallies are A:B by 40:0, B:C by 25:15, and A:C by 30:10. It follows from Thm.

2.5 (below) that these reduced tallies uniquely define the essential profile.

Theorem 2.5 identifies all essential profiles (four of them) and the corresponding number of

pess voters. In defining an essential profile, the Nj value is given by ej. But an essential

profile has the smallest number of voters, so certain Nj terms must be expected to equal

zero. This is the case; for each pess, Thm. 2.5 specifies which Nj values are set equal to zero.

If Nj = ej need not equal zero, the ej value is determined by its Fig. 2.1b ranking; i.e. if the

jth ranking is X � Y � Z, then:

ej =
1

2
[P (X, Y ) + P (Y, Z)]. (2.13)

Illustrating with e1 that represents A � B � C, it follows from Eq. 2.13 that e1 =

1
2
[P (A,B) + P (B,C)]. Similarly, e5 = 1

2
[P (B,C) + P (C,A)] = 1

2
[P (B,C) − P (A,C)]. A

useful relationship when computing outcomes with Eq. 2.13 is that ej+3 = −ej, j = 1, 2, 3.

(So if a computation involves e1− e6, it could be computed as e1 + e3 with Eq. 2.13 values.)

Figure 2.2 represents the four essential profiles; the first three correspond to strongly non-

cyclic settings. The last one, Fig. 2.2d, represents where the strongly non-cyclic condition

is violated. Recall from the comments following Def. 2.4 that Fig. 2.2d includes cyclic and
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those non-cyclic outcomes that fail to qualify as being “strongly non-cyclic.”

Theorem 2.5. A specified set of P (X, Y ) values defines a unique essential profile: The

values of Nj = ej terms that need not equal zero are given by Eq. 2.13. With the standard

assumptions that P (A,B) ≥ 0, P (B,C) ≥ 0, there are four essential profiles.

1. With the strongly non-cyclic condition, the essential profile has one of the Fig. 2.2a,

b, c forms where the choice is defined by the largest P (X, Y ) > 0 value; call it the XY

essential profile. The XY pess has P (X, Y ) voters. The three essential profiles are:

(a) If P (A,B) is the largest value (Fig. 2.2a), then the AB essential profile has N4 =

n5 = n6 = 0.

(b) If P (A,C) is the largest value (Fig. 2.2b), then the AC essential profile has N3 =

n4 = n5 = 0.

(c) if P (B,C) is the largest value (Fig. 2.2c), then the BC essential profile has N2 =

n3 = n4 = 0.

2. If the P (X, Y ) values do not satisfy the strongly non-cyclic condition, the “cyclic es-

sential profile” is given by Fig. 2.2d where N2 = n4 = n6 = 0. The number of pess

voters is {P (A,B) + P (B,C)− P (A,C)}.

A direct computation using Thm. 2.5 with P (X, Y ) values from the introductory example

proves that the first Fig. 2.1c triangle is its essential profile. To illustrate a different aspect

of Thm. 2.5, if three arbitrarily selected integer values with the same parity are specified as

tentative P (X, Y ) values, it need not be clear whether there is a supporting profile. But an

immediate corollary of Thm. 2.5 is that such a profile always exists.

Corollary 1. For any three integers with the same parity, I1, I2, I3, there exists a profile

supporting the values P (A,B) = I1, P (B,C) = I2, P (A,C) = I3
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If I1 and/or I2 are negative, changing the candidates’ names converts everything to our

setting. (For instance, P (A,B) = −7, P (B,C) = −11 is equivalent to P (C,B) = 11 and

P (B,A) = 7, so rename C as A∗, B as B∗ and A as C∗; the A∗, B∗, C∗ names satisfy the

required P (A∗, B∗), P (B∗, C∗) ≥ 0.) Thus, assume that I1, I2 ≥ 0. The Ik values both

identify the appropriate essential profile and define the ej’s (Eq. 2.13).

If, for instance, P (A,B) = 10, P (B,C) = 6, and P (A,C) = 8, the AB essential profile

is given by e1 = 1
2
[P (A,B) + P (B,C)] = 8, e2 = 1

2
[P (A,C) + P (C,B)] = 1

2
[8 − 6] = 1,

e3 = 1
2
[P (C,A) + P (A,B)] = 1

2
[−8 + 10] = 1, and N4 = n5 = n6 = 0. This pess has ten

voters; all other supporting profiles have an even number of voters where N > 10.

2.3 Positional voting outcomes

All possible supporting profiles for given P (X, Y ) values are found by adding to pess profile

components that never affect P (X, Y ) values; all ways this can be done identify all profiles

in a given ∼BE equivalence class. With the original N = 100 voter example, for instance,

its AB essential profile has 40 voters, so 60 voters must be added in appropriate ways. The

different choices of doing this is what creates the different positional outcomes.

One approach to add terms without affecting P (X, Y ) values is to use “reversal pairs;” e.g.,

a voter preferring A � B � C has a companion who prefers the reversed C � B � A. As

a reversal pair defines a tied majority vote for all pairs of candidates, it does not change

P (X, Y ) values. This is illustrated in the second Fig. 2.1c triangle where α voters have

A � B � C preferences and another α voters have the reversed C � B � A preferences.

The other reversal pairs are indicated by the β and γ terms in this triangle. Notice, each

candidate in each paired comparison receives α + β + γ votes to create complete ties.

What is not obvious is that, as proved in Saari [1999, 2008], adding reversal pairs to a
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pess is the only way to preserve all P (X, Y ) values.2 This result is what makes it possible

to identify all possible supporting profiles; just add reversal pairs to pess. Conversely, to

compute the pess for a specified profile, remove as many reversal pairs as possible. Illustrating

with the 40 voter profile (10, 8, 2, 6, 11, 3), removing pairs (6, 0, 0, 6, 0, 0), (0, 8, 0, 0, 8, 0), and

(0, 0, 2, 0, 0, 2) creates the eight-voter BC essential profile (4, 0, 0, 0, 3, 1).

The reason “pairs” can be added to pess to create N -voter profiles is that Eq. 2.2 ensures

that N and each P (X, Y ) have the same parity. Thus (Thm. 2.5) for any admissible N ,

the number of voters not in pess is an even integer 2q, which allows q pairs to be added.

In particular, it follows from Thm. 2.5 that with the strongly non-cyclic condition and if

P (X, Y ) is the maximum pairwise victory, then

q =
1

2
[n− P (X, Y )] (2.14)

pairs are added. If the strongly non-cyclic condition is not satisfied, the number becomes

q =
1

2
[n− (P (A,B) + P (B,C) + P (C,A))]. (2.15)

In all cases, the reversal pairs (see the second Fig. 2.1c triangle) must satisfy the equality

α + β + γ = q. (2.16)

2.3.1 Finding new results

To use Thm. 2.5 to discover and prove new results, first determine which Fig. 2.2 choice

applies. Next, add the α, β, γ terms (as in the second Fig. 2.1c triangle) and then just

2This statement is not true for four or more alternatives. Thus our results do not extend in a simple way
to settings with more than three alternatives.
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compute and compare tallies. To illustrate by developing an explanation why B can never

be a plurality winner for the initial example, notice that answers depend on the value of q

(the number of reversal pairs to be added to the essential profile). A large q value provides

a rich assortment of positional outcomes. But large q values correspond to small P (X, Y )

values, which require more competitive, closer pairwise election outcomes. So, expect a

wealth of positional outcomes to accompany competitive paired comparison elections. A

listing of what can happen with plurality winners follows:

Corollary 2. With the strongly non-cyclic condition, if P (X, Y ) is the largest paired victory,

a necessary and sufficient condition to have at most two different plurality winners is

3P (X, Y ) > n− 4. (2.17)

If this largest P (X, Y ) satisfies 3P (X, Y ) ≤ n− 4, then, for each of the three alternatives, a

supporting profile exists where that alternative is the plurality winner.

If the strongly non-cyclic condition is not satisfied, then a necessary and sufficient condition

that A is the sole plurality winner is

min(2P (A,B) + P (B,C), 2P (B,C) + P (A,B)) > n. (2.18)

Furthermore, a necessary and sufficient condition for there to be at least one profile where

alternative X is the sole plurality winner is

n− 4 ≥ 3P (Y,X) (2.19)

where Y is the alternative immediately preceding X in the listing A,B,C,A.

Equations 2.18 and 2.19 hold whether there is, or is not, a cycle. The reason B cannot be

a plurality winner with the initial example follows from Eq. 2.17; its left-hand side is 120
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while the right is 96. These pairwise outcomes, then, allow at most two different plurality

winners. But it already has been established that the Condorcet winner and loser, A and C,

can be plurality winners, so B cannot.

Corollary 2 identifies interesting properties about settings with small number of voters. With

N = 8, for instance, Eq. 2.17 is satisfied should any candidate win a majority election. (As

N is an even integer, a victory requires P (X, Y ) ≥ 2.) So, with the strongly non-cyclic

condition and no more than eight voters, some alternative never is the plurality winner.

With more voters, the situation changes. To ensure for N = 100 that, for each candidate, a

profile can be constructed where that candidate is the plurality winner, it follows from Eq.

2.17 that this happens if each P (X, Y ) ≤ 32. In other words, each candidate is the plurality

winner with some supporting profile if no candidate receives more than 66 of the 100 votes

in paired comparisons. Even landslide outcomes, such as where A beats B by 62:38, A beats

C by 66:34, and B beats C by 64:36, admit enormous flexibility in the associated plurality

winners; with this example, for each candidate there is a supporting profile where she is the

plurality winner.

Intuition and proofs of parts of Thm. 2.1 and Cor. 2.

To illustrate how to use Thm. 2.5, Cor. 2 is proved for the strongly non-cyclic case where

P (A,B) has the largest victory (as with the initial example). The structure builds upon the

AB essential profile, so the plurality tallies for A, B, and C are, respectively,

e1 + e2 + α + β, β + γ, e3 + α + γ. (2.20)

For only A to be the plurality winner, A must always have the largest tally; that is, it must

always be that e1+e2+α+β > β+γ (for A to always beat B) and e1+e2+α+β > e3+α+γ
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(for A to always beat C). These inequalities reduce, respectively, to e1 + e2 > γ − α and

P (A,C) = e1 + e2 − e3 > γ − β.

The worse case scenario threatening A’s status is where α = β = 0 and γ = q; these

inequalities are satisfied if P (A,C) > γ = q = 1
2
[n − P (A,B)]. Collecting terms leads to

P (A,B) + 2P (A,C) > n, which is Eq. 2.4 in Thm. 2.1. With equality, this γ = q value

creates a profile with an A ∼ C tie; if the inequality is reversed, then a profile exists where

C is the plurality winner.

Again with the AB essential profile, to determine what it takes for each candidate to be a

plurality winner with some supporting profile, because (as just shown) it is easier with an

AB essential profile for C to be a plurality winner, just find conditions where B can be the

plurality winner. Using Eq. 2.20, this requires finding a profile where in a plurality election

B beats both A and C. Computing these tallies leads, respectively, to the inequalities

β + γ > e1 + e2 + α + β, β + γ > e3 + α + γ, or γ > e1 + e2 + α and β > e3 + α.

Thus, minimal conditions for such a profile are where α = 0, γ ≥ γmin = e1 + e2 + 1, and

β ≥ βmin = e3 + 1. Such values exist if and only if Eq. 2.16 is satisfied, or if:

βmin + γmin = (e3 + 1) + (e1 + e2 + 1) = P (A,B) + 2 ≤ q =
1

2
[n− P (A,B)] (2.21)

Collecting terms leads to the 3P (A,B) ≤ n − 4 condition. This inequality establishes

necessary and sufficient conditions for each of the three candidates to be the plurality winner

with some supporting profile, so it is equivalent to Eq. 2.17.

Illustrating with P (A,B) = 6, P (A,C) = P (B,C) = 4 (so pess has the Fig. 2.2a form), it

follows that each candidate can be a plurality winner with some profile as long as 3P (A,B) =

18 ≤ n− 4. Thus, with any even number of voters where N ≥ 22, these pairwise outcomes

allow such profiles to be constructed. For large N values, then, expect this behavior to occur

if the winner of each pairwise election receives less than two-thirds of the vote. Stated in a
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different manner, to avoid this behavior, some candidate must have an exceptionally strong

pairwise victory. All remaining assertions in Thms. 2.1 - 4 and Cor. 2 are proved in this

same manner by applying elementary algebra to the admissible tallies.

2.3.2 Results for other positional rules

With this approach, Thms. 2.1 - 4 can be extended to all ws rules. To see how to do this,

the strongly non-cyclic assumption makes pess one of Fig. 2.2 a, b, or c; e.g., if P (A,B) has

the largest value, the AB pess is given by Fig. 2.2a. To Fig. 2.2a, add the α, β, γ values and

compute the ws tallies. To ensure it always is true that A � C with ws, for instance, A’s

tally must always be larger so that:

(e1 + e2 + α + β) + s(e3 + 2γ) > (e3 + α + γ) + s(e2 + 2β) (2.22)

Collecting terms leads to:

e1 + (1− s)(e2 − e3) > (1− 2s)γ + (2s− 1)β. (2.23)

The (1 − 2s) term (on the right-hand side with reversal pairs) differs in sign depending on

whether s > 1
2

or s < 1
2
. To make it difficult for A by enhancing C’s tally, let β = 0 and

γ = q for s < 1
2
, and let β = q and γ = 0 for s > 1

2
. This means that the right-hand side of

Eq. 2.23 becomes |1− 2s|q. Using the Eqs. 2.13 and 2.14 values leads to the assertion that,

in this setting, A always beats C in a ws election if and only if

(s+ |1− 2s|)P (A,B) + sP (B,C) + 2(1− s)P (A,C) > |1− 2s|n. (2.24)
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Similarly, by writing down the tallies and collecting terms, it follows that A always beats B

in a ws election if and only if (1− s)e1 + e2 + se3 > |1− 2s|q, or

(1 + |1− 2s|)P (A,B) + (1− s)P (A,C) > |1− 2s|n+ sP (B,C). (2.25)

For A to always be the sole winner, both inequalities must be satisfied. The two extremes

of s = 0, 1, capture and prove Thms. 2.1 and 3 statements.

It is interesting how these two equations capture the transition from Eq. 2.4 for s = 0 to Eq.

2.8 for s = 1. Here, Eq. 2.24 is the more demanding for s = 0, while Eq. 2.25 is the more

demanding for s = 1. It also follows from this computation that if either Eq. 2.24 or 2.25

is an equality, the above choices (β = q or γ = q) create a profile with A being tied with

the appropriate candidate; if the inequality is reversed, the construction shows how to select

reversal terms to create profiles where the appropriate candidate is the ws winner.

An interesting Borda Count feature is how the s = 1
2

value forces Eq. 2.23 to drop the

right-hand side, which consists of reversal terms. (This also happens with Eq. 2.25.) This

demonstrates the known fact (e.g., Saari [1999, 2000] and [Saari, 2008, Chap. 4]) that the

Borda Count is the only positional method never affected by reversal terms. These equations

also illustrate why conditions for the Borda Count are more relaxed and do not involve the

N value. The Eq. 2.23 condition for A to be the Borda winner is P (A,B) + P (B,C) +

2P (A,C) > 0, which, unless there is a complete tie, must always be satisfied. This statement

is a special case of the following (also see Thm. 2.4 and Saari [1999]):

Corollary 3. With the strongly non-cyclic condition and an alternative Y where the largest

pairwise victory is A over Y , then A is both the Borda and Condorcet winner. .

The following theorem, which generalizes Thms. 2.1 - 4 to all ws rules, is proved in the

same manner as Eqs. 2.24, 2.25. Each strongly non-cyclic essential profile defines a pair of

conditions. The minor differences in the expressions for the pairs reflect subtle differences
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in the essential profiles.

Theorem 2.6. With the assumption that the strongly non-cyclic condition holds:

1. If P (A,B) is the strongest pairwise victory, then

(a) A always beats B in a ws election if and only if

(1 + |1− 2s|)P (A,B) + (1− s)P (A,C) > |1− 2s|n+ sP (B,C) (2.26)

(b) and A always beats C in a ws election if and only if

(s+ |1− 2s|)P (A,B) + sP (B,C) + 2(1− s)P (A,C) > |1− 2s|n. (2.27)

2. If P (A,C) is the strongest pairwise victory, then

(a) A always beats B in in a ws election if and only if

2(1− s)P (A,B) + (s+ |1− 2s|)P (A,C) > |1− 2s|n+ sP (B,C), (2.28)

(b) and A always beats C in a ws election if and only if

(1− s)P (A,B) + sP (B,C) + (1 + |1− 2s|)P (A,C) > |1− 2s|n. (2.29)

3. If P (B,C) is the unique strongest pairwise victory, then

(a) A always beats B in a ws election if and only if

2(1− s)P (A,B) + sP (A,C) > |1− 2s|n+ (s− |1− 2s|)P (B,C), (2.30)
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(b) and A always beats C if and only if

(1− s)P (A,B) + (1− s+ |1− 2s|)P (B,C) + 2sP (A,C) > |1− 2s|n. (2.31)

For the Condorcet winner A to always be the ws winner, both (a, b) conditions in a pair

must be satisfied. Notice that, with the possible exception of Eq. 2.30, the Borda Count

(s = 1
2
) satisfies all of these conditions, so these favorable conclusions always hold for Borda’s

method. For s = 1
2
, Eq. 2.30 reduces to Eq. 2.9, which guarantees that A is the Borda winner.

Incidentally, the “uniqueness condition” prior to Eq. 2.30 is imposed only to ensure that the

Fig. 2.2c essential profile, and only this pess, is the relevant one. Without uniqueness, one

of the other Thm. 2.6 conditions would apply.

As an example with P (A,B) = 30, P (B,C) = 10, P (A,C) = 20, and N = 100, Eq. 2.26 is

not satisfied for the plurality vote (s = 0) because 2P (A,B) + P (A,C) = 80 is smaller than

N = 100, nor for the antiplurality vote (s = 1) because 60 is smaller than 110. Thus these

P (X, Y ) values admit supporting profiles where B is plurality ranked over A and supporting

profiles where B is antiplurality ranked over A. But as noted, Eq. 2.26 is satisfied by the

Borda Count (s = 1
2
), so all supporting profiles have A Borda ranked above B. The fact Eq.

2.26 is satisfied for one positional rule (the Borda Count) motivates the goal of finding all

s values for which A always beats B. With these P (X, Y ) values and 0 ≤ s ≤ 1
2
, Eq. 2.26

becomes 80(1−s) > (1−2s)100+10s, so Eq. 2.26 is satisfied if 2
11
< s ≤ 1

2
. With 1

2
≤ s ≤ 1,

Eq. 2.26 becomes 60s+ 20(1− s) > 100(2s− 1) + 10s, or 12
17
> s. Thus, for 2

11
< s < 12

17
and

these P (X, Y ) values, A always is ws ranked above B.

This example suggests that the positional ws rules that satisfy certain Thm. 2.6 conditions

can cluster around the Borda Count. The following corollary asserts that this clustering

effect holds for most of the Thm. 2.6 conditions.

Corollary 4. With the possible exception of Eq. 2.30, if the P (X, Y ) values satisfy a par-
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ticular Thm. 2.6 inequality for s1 in 0 ≤ s1 ≤ 1
2

and for s2 in 1
2
≤ s2 ≤ 1, then they satisfies

the inequality for all s in s1 ≤ s ≤ s2. So, if a condition holds for the plurality vote, it must

hold for at least all s in 0 ≤ s ≤ 1
2
. If it holds for the plurality and antiplurality rules, it

holds for all positional rules. These statements extend to Eq. 2.30 if Eq. 2.9 holds.

Incidentally, Eq. 2.30 (which extends Eq. 2.9) proves that if P (B,C) has the largest value in a

strongly non-cyclic setting, then A cannot be the sole antiplurality winner (which proves the

last statement of Thm. 3). This is because Eq. 2.30 would require the impossible P (A,C) >

n; i.e., A would need more than all of the votes in an {A,C} election.

The next result specifies what happens without the strongly non-cyclic condition.

Theorem 2.7. If P (A,C) < min(P (A,B), P (B,C)) (the outcome is not strongly non-

cyclic), then

1. A always is ws ranked above B if and only if

(1+|1−2s|)P (A,B)+(−s+|1−2s|)P (B,C)+(s−1+|1−2s|)P (C,A) > |1−2s|n. (2.32)

2. and A always is ws ranked above C if and only if

(s+|1−2s|)P (A,B)+(1−s+|1−2s|)P (B,C)+(−1+|1−2s|)P (C,A) > |1−2s|n. (2.33)

Notice the added burden (from Eqs. 2.26, 2.28, 2.30 and Eq. 2.32 when there is a Condorcet

winner) for the Condorcet winner A to always ws beat the middle pairwise ranked B; A’s

pairwise victories must be sufficiently dominant to overcome the P (B,C) terms that make

the inequalities more stringent. But, the Eq. 2.32 condition for A beating B need not ensure

that with a Condorcet winner (remember, if Eq. 2.3 is not satisfied, the paired outcomes

could define a cycle, or a Condorcet winner), she is the ws winner; e.g., for smaller values

of s, there may be profiles where C beats A. This reflects the fact that with each pair of
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equations from Thms. 2.6, 2.7, different s values make one inequality more difficult to meet

than the other. Illustrating with the AB setting of Eqs. 2.26, 2.27, Eq. 2.27 is the more

difficult to meet for s = 0 while Eq. 2.26 is more demanding for s = 1.

Indeed, the first of two variables in play is the choice of the positional ws voting rule. It

follows immediately from Thms. 2.6, 2.7 that the larger the |s− 1
2
| value, the more difficult it

becomes to satisfy the conditions. Stated in another manner, the closer a ws rule resembles

the Borda Count, the easier it is for the ws winner to be the Condorcet winner (Cor. 4);

conversely, the more removed a positional rule is from the Borda Count, the more freedom

there is to admit profiles forcing the ws and Condorcet winners to differ.

This added freedom to create conflicts is captured by the second variable; this is the q term

(from Eqs. 2.14, 2.15) that determines the number of reversal pairs (Eq. 2.16) to add to an

essential profile: The smaller the number of reversal pairs that can be added, the smaller the

variance in the possible positional outcomes. But small q values require large P (X, Y ) values,

so unless the pairwise victories are very decisive, expect differences between the positional

and Condorcet winners.

2.3.3 Smaller victories

If sizable pairwise victories are required to have consistency between the ws and Condorcet

winners, it is reasonable to wonder what happens with smaller, more common P (X, Y )

values. (Many other new results can be discovered in the following manner, so our emphasis

is to show how to find them.) The question we explore whether there exists a single profile

that allows each candidate to win with an appropriate ws rule.

To illustrate with N = 100 where Condorcet winner A beats B by 55:45; B beats C by

58:42, and A beats C by 60:40, as P (A,B) = 10, P (A,C) = 20, P (B,C) = 16, all support-
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ing profiles are created by adding q = 40 reversal pairs to the AC essential profile. The

objective is to determine whether there is a profile where each candidate is the winner with

an appropriate ws rule. As computed next, it is not possible, but only barely.

The AC essential profile’s positive entries are

• e1 = 1
2
[10 + 16] = 13

• e2 = 1
2
[20− 16] = 2

• e6 = 1
2
[−10 + 20] = 5.

As A is the Borda winner (Cor. 3), our objective requires some non-Borda positional method

to elect B while another elects C. It follows from the procedure line (Eq. 2.12) that if this

can be done, the easiest way to do so is with the plurality and antiplurality rules. The most

undemanding approach is to have A as the Borda winner, B the plurality winner (Thm. 2.1,

part 3), and C the antiplurality winner.

By substituting the ej and α, β, γ values into Fig. 2.2b and computing the plurality tallies, it

follows that a necessary and sufficient condition for B to be the plurality winner is γ > 10+α.

Setting the antiplurality tallies so that C beats A, it follows after collecting terms that this

occurs if and only if β > 18 + γ. The minimal values satisfying these expressions are αmin =

0, γmin = 11, and βmin = 30, which must satisfy (Eq. 2.16) αmin + βmin + γmin ≤ q = 40.

But the sum is 41, which barely violates Eq. 2.16, so no profile has this property. However,

a slightly tighter {A,C} election, say 59:41 instead of 60:40, has the larger q = 41 value, so

these computations show how to construct such a profile.

Using this kind of analysis, the following result is proved. This theorem indicates how easy

it is to have a variety of positional election outcomes.

Theorem 2.8. With the strongly non-cyclic conditions and an alternative Y where P (A, Y )
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is the maximum paired victory, a necessary and sufficient condition for a profile to exist

where the plurality, Borda, and antiplurality winners all differ is

2P (A, Y ) + 4P (A,X) + P (X, Y ) ≤ n− 6. (2.34)

Examples, then, never exist for N ≤ 7. To explore what Thm. 2.8 allows, Eq. 2.34 is

satisfied with N = 100 voters even if each paired election winner receives around 56 votes.

(For instance, if P (A,C) = 14 (so A receives 57 votes) and P (A,B) = P (B,C) = 12, then

Y = C, X = B and 2(14) + 4(12) + 12 = 88 < 100 − 6 = 94.) As such, rather than

being an unusual event, Eq. 2.34, which allows almost anything to happen, is satisfied with

even decisive paired election outcomes. Also notice how if the strongest pairwise outcome

is P (A,B), then Eq. 2.34 is easier to satisfy because P (X, Y ) = P (C,B) = −P (B,C) ≤ 0.

Related results using the other XY essential profiles are proved in the same manner.

2.3.4 General statement

The above results connect paired tallies to positional election outcomes. The following

more general conclusions (Thm. 2.9) completely specify all possible ws rankings that can

accompany specified P (X, Y ) values.

As reversal pairs are central to what follows, let rX,Y = {X � Z � Y, Y � Z � X}; i.e.,

the subscript names the pair’s two top-ranked candidates. For example, rB,C = {B � A �

C, C � A � B}. The number of pairs of voters with rA,C , rA,B, rB,C preferences are given,

respectively, by α, β, γ where α + β + γ = q.

Theorem 2.9. a. The ws tally for rX,Y assigns one point to X and to Y , and 2s points to
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Z. Thus

Vs(rA,C) = (1, 2s, 1), Vs(rA,B) = (1, 1, 2s), Vs(rB,C) = (2s, 1, 1). (2.35)

b. For N voters, all possible supporting profiles for specified P (X, Y ) values are given by

{pess +αrA,C + βrA,B + γrB,C |α, β, γ are non-negative integers; α+ β + γ = q}. (2.36)

c. The set of all associated ws tallies is

Vs(pess) + α(1, 2s, 1) + β(1, 1, 2s) + γ(2s, 1, 1), α + β + γ = q. (2.37)

According to Thm. 2.9, all possible ws tallies for the introductory example are given by

(30 + 10s, 25s, 10 + 5s) + (α+β+ 2sγ, β+ γ+ 2sα, α+ γ+ 2sβ); α+β+ γ = 30. (2.38)

All corresponding election rankings are computed in Sect. 2.4.2 and Eq. 2.40.

For an N = 20 voter cyclic outcome example where P (A,B) = 4, P (B,C) = 10, P (A,C) =

−2, the essential profile (Thm. 2.5) is (7, 0, 3, 0, 6, 0). Because N = 20 and the essential

profile has 16 voters, so 2q = 4 and only two rX,Y pairs can be added. Thus all six supporting

profiles are:

• (9, 0, 3, 2, 6, 0)

• (7, 2, 3, 0, 8, 0)

• (7, 0, 5, 0, 6, 2)

• (8, 1, 3, 1, 7, 0)
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• (8, 0, 4, 1, 6, 1)

• (7, 1, 4, 0, 7, 1).

As V ((7, 0, 3, 0, 6, 0)) = (7 + 3s, 6 + 7s, 3 + 6s), the α = 2 tally is (7 + 3s, 6 + 7s, 3 + 6s) +

2(1, 2s, 1) = (9 + 3s, 6 + 11s, 5 + 6s).

2.4 The associated positional rankings

Although Thm. 2.9 completes the problem by identifying all profiles and ws tallies associated

with specified P (X, Y ) values, the algebraic computations required to find new results and

determine positional rankings can be messy. In this section, a geometric tool is developed

to simplify the analysis of the ws rankings. This tool plays a central role when computing

probabilities of paradoxical behavior.

2.4.1 Geometry

To simplify the geometry of the Vs(p) points in R3, let I{X,Y } be the indifference plane of

points where X and Y are tied; e.g., I{A,B} = {(x, y, z) |x = y}. Figure 2.3 represents how

the three indifferences planes intersect a plane given by x + y + z = c, where constant c

is described below. The numbers (from Fig. 2.1a) between indifference lines identify the

ranking of a tally that lands in the region. The three indifference planes intersect along the

main diagonal t(1, 1, 1) of R3, where all alternatives are tied. This diagonal (a point in each

of the above triangles) is the line of complete indifference.

For a specified q, the set of all ws tallies, Vs(αrA,C + βrA,B + γrB,C), is in a convex hull

defined by the three extreme tallies {Vs(qrA,C), Vs(qrA,B), Vs(qrB,C)}. According to Thm.

2.9 and Eq. 2.35, these Vs(qrX,Y ) points are the vertices of an equilateral triangle in the
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Figure 2.3: Positional outcomes

a. w0 outcomes b. w1 outcomes c. ws d. Pyramidal cone, 0 ≤ s ≤ 1
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plane defined by c = (2 + 2s)q; the triangle’s center point is on the complete indifference

line. Denote this triangle by Ts(q).

Figure 2.3a depicts the T0(q) triangle defined by the vertices (q, 0, q), (q, q, 0), (0, q, q), which

are the V0(qrX,Y ) plurality tallies. Similarly, Fig. 2.3b represents the antiplurality T1(q)

triangle in the c = 4q plane; the three vertices are (q, 2q, q), (q, q, 2q), (2q, q, q). When

applied to reversal terms, the plurality and antiplurality rankings reverse each other; e.g.,

the plurality ranking for qrX,Y is X ∼ Y � Z, while the antiplurality ranking is the reversed

Z � X ∼ Y. This ranking reversal is indicated by the arrows between Figs. 2.3a and 2.3b

for the rB,C ranking.

The diagram depicting all Vs tallies is Fig. 2.3d; the vertical direction depicts different

c = (2 + 2s)q values, 0 ≤ s ≤ 1. (This direction is along the complete indifference diagonal.)

Think of this figure as placing Fig. 2.3b (on the c = 4q plane) above Fig. 2.3a (on the

c = 2q plane). Next, connect with straight lines the V0(qrX,Y ) and V1(qrX,Y ) vertices (in

the plurality and antiplurality planes); that is, with the procedure lines (Eq. 2.12) defined

by the reversal pairs. The pyramid is the region defined by these lines. All three procedure

lines (actually, all procedure lines of reversal terms) cross at a common point on the c = 3q

plane, which is the w 1
2

complete tie outcome. (This condition reflects the requirement (Eq.

2.35) that the Borda outcome (s = 1
2
) of reversal terms must be a complete tie.)
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The Ts(q) triangle is the intersection of the pyramid with the c = q(2 + 2s) plane; the

vertices are (q, 2qs, q), (q, q, 2qs), (2qs, q, q). Notice how T 1
2
+t(q) and T 1

2
−t(q), 0 < t ≤ 1

2
,

have the same size; they differ only in orientation where one is the reversal of the other.

This geometry reflects how the w 1
2
+t and w 1

2
−t rankings of an rX,Y reverse each other. Also,

the Ts(q) triangles are embedded in the manner indicated by Fig. 2.3s with centers along

the complete indifference line; the dashed lines represent the T0(q) and T1(q) triangles. As

the Fig. 2.3c shaded Ts(q) has the same orientation as T0(q), it represents an s value where

0 < s < 1
2
. For 1

2
< s < 1 s values, the Ts(q) orientation is that of T1(q).

The above figure and descriptions, Thm. 2.9, and Eq. 2.37 provide all tools needed to describe

what ws rankings could possibly accompany specified P (X, Y ) values. In particular, no

matter what reversal pairs are added to pess, the Borda ranking always agree with the

V 1
2
(pess) ranking. All Vs rankings now are given by rankings in the set

Vs(pess) + Ts(q).

2.4.2 The initial example

To conclude, these methods are illustrated by finding all ws rankings for the initial example.

They are determined by

Vs(p) = (30 + 10s, 25s, 10 + 5s) + Ts(30), 0 ≤ s ≤ 1. (2.39)

So the Borda ranking (s = 1
2
) is A � B ∼ C.

To find the admissible plurality rankings, if the translated T0(30) crosses any Fig. 2.3 rank-

ing region, it intersects the triangle’s boundary. Thus, to identify all admissible plurality

rankings, just analyze what happens with the s = 0 extreme points (30, 0, 10) + (30, 0, 30) =
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(60, 0, 40), (60, 30, 10), and (30, 30, 40); the boundary lines between these vertices give tran-

sition rankings. To illustrate, the vertices define, respectively, the rankings A � C � B,A �

B � C, and C � A ∼ B. Then our three boundary lines are:

• The line between the first two vertices, (1− t)(60, 0, 40) + t(60, 30, 10) = (60, 30t, 40−

30t). This boundary admits a tie when 30t = 40 − 30t, or t = 2
3
. Thus the only new

ranking is the transition ranking A � B ∼ C that lies between the first two strict

rankings.

• The line between the first and third vertex, (60− 30t, 30t, 40); it admits a tie only at

the t = 1 endpoint, so no new rankings are created.

• Finally, (60−30t, 30, 10+30t), which admits a 60−30t = 10+30t, or t = 5
6

point with

an A ∼ C � B ranking transitioning from the first ranking to a C � A � B plurality

outcome.

Thus, the only admissible plurality rankings by profiles supporting the initial P (X, Y ) values

are A � C � B,A � B � C,C � A ∼ B and the obvious need for the transition rankings

A � B ∼ C and A ∼ C � B.

To analyze this example for any s, the vertices are equal to (30 + 10s, 25s, 10 + 5s) plus one

of the three possible permutations of (30, 60s, 30), i.e.:

• (60 + 10s, 85s, 40 + 5s)

• (60 + 10s, 30 + 25s, 10 + 65s)

• (30 + 70s, 30 + 25s, 40 + 5s)

Again, the analysis reduces to elementary algebra. For instance, with the first vertex,

{A,B}, {A,C}, {B,C} ties require, respectively, 60 + 10s = 85s, 60 + 10s = 40 + 5s, 85s =
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Table 2.2: Possible rankings by value of s

s Rankings s Rankings

s = 0, A � C � B,A � B � C,C � A ∼ B 0 < s < 2
13, A � C � B,A � B � C,C � A � B

s = 2
13 , A � C � B,A � B ∼ C,C ∼ A � B 2

13 < s < 1
2 , A � C � B,A � B � C

s = 1
2 , A � B ∼ C 1

2 < s < 4
5 , A � B � C,A � C � B,

s = 4
5 , A ∼ B � C,A � C � B,A � B � C 4

5 < s < 10
11 , B � A � C,A � C � B,A � B � C

s = 10
11 , B � A � C,A ∼ C � B,A � B � C 10

11 < s ≤ 1, B � A � C,C � A � B,A � B � C

(2.40)

40 + 5s), which have respective solutions s = 4
5
,−4, 1

2
. As only the first and third lie in the

0 ≤ s ≤ 1 range, the vertex has the A � C � B ranking for 0 ≤ s < 1
2
, the A � B � C

ranking for 1
2
< s < 4

5
, and the B � A � C ranking for 4

5
< s ≤ 1, with two obvious

transition rankings involving a tie.

The second vertex defines A � B � C for 0 ≤ s < 1
2
, A � C � B for 1

2
< s < 10

11
, and

C � A � B for 10
11
< s ≤ 1 with transition rankings with ties at s = 1

2
, 10
11

, while the third

vertex has the plurality C � A ∼ B that becomes C � A � B for 0 < s < 2
13

, continues as

A � C � B for 2
13
< s < 1

2
, and ends as A � B � C for 1

2
< s ≤ 1.

A complete analysis follows from the above with the transition values of s = 0, 2
13
, 1
2
, 4
5
, 10
11
.

Leaving out the obvious transition rankings for each s, a complete analysis of the initial

example is given by the following list of vertex rankings: Thus, for 0 ≤ s < 2
13

, either A or

C could be the ws winner, for 2
13
< s < 4

5
, A must be both the Condorcet and ws winner,

for 4
5
< s < 10

11
, either A or B could be the ws winner, and for 10

11
< s ≤ 1, anyone could be

the positional winner.
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Chapter 3

A Geometric Approach to Voting

Probability Problems

3.1 Introduction

In Chapter 2, we introduced a method of discerning the complete relationship between pair-

wise comparisons and possible election results for positional methods with n = 3 candidates.

This allowed us to establish necessary and sufficient conditions for a profile to exist that

meets a given set of pairwise and positional criteria - for example, when the plurality winner

and the Condorcet winner can differ. These necessary and sufficient conditions tell us which

pairwise outcomes are associated with which positonal results.

In this chapter, we will extend these techniques to determine how probable these combina-

tions are, using natural extensions of the techniques of Chapter 2. We will compute the

probabilities that certain combinations of pairwise and/or positional criteria are met; in par-

ticular, how likely it is that Condorcet winner fails to win a Borda or plurality vote, how

likely it is that a Condorcet winner exists at all, and how likely it is that a Condorcet winner
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or loser will, under a plurality or antiplurality (“vote for two”) rule, win an election.

Importantly, these new techniques are both intuitive and transparent, and they give robust,

meaningful results across a wide range of probabilistic assumptions. In particular, we can

compute results for large classes of probability distributions of voter preferences, rather than

being restricted to one or two particular probability distributions, as is the case in the analysis

of Gehrlein and Lepelley [2011], which explores the probability of a Condorcet paradox under

the Impartial Culture (IC) and Impartial Anonymous Culture (IAC) assumptions.

Since the actual probability distribution of profiles (collections of preferences of voters) for

n ≥ 3 candidate elections is not well-known (and, for that matter, may differ substantially

among different populations), computing results for an entire class of probability distribu-

tions at once sharply increases the scope of our ability to predict electoral anomalies. The

transparent and intuitive nature of the techniques means that we can qualitatively under-

stand how all these probabilities change as the probability distributions associated with

voters’ voting behavior change.

3.2 Contributions to the literature

There is interest in computing how likely voting paradoxes are in principle and in practice,

though the techniques used previously have limitations. Some prior techniques also only

apply to a single assumed probability distribution. For example, Gehrlein and Fishburn

[1976] showed that under the assumption of Impartial Anonymous Culture (IAC), the prob-

ability of a Condorcet paradox approaches 6.25%, or 1
16

, as the number of voters, becomes

large. However, the method of calculation used in Gehrlein and Fishburn [1976] is specific to

IAC; and it is not intuitive. This pattern continues in subsequent literature, e.g., Gehrlein

and Lepelley [2011], which investigates the rate at which Condorcet paradoxes occurs under

44



Impartial Culture (IC) and IAC, and compares these rates to a selection of empirical data.

Using our techniques, it is easy to show that large classes of probability distributions lead to

the exact same conclusions with regard to the calculated probability of a Condorcet paradox.

In particular, a large class of distributions that includes the distribution associated with IAC

produces a 1 in 16 (6.25%) chance of a Condorcet paradox; and a large class which includes

good approximations of the distribution associated with IC (for large numbers of voters),

produces a probability of a Condorcet paradox equal to twice the solid angle of a tetrahedron

out of a sphere (about 8.8%). It is already known (see again Gehrlein and Lepelley [2011])

for IAC and IC specifically that the limiting chance of a Condorcet paradox as N → ∞

approaches these two values; the extension to a larger class of probability distributions is

new.

This will be accomplished by use of the representation cube. Some of the analysis will be

done within on the tally space in which the representation cube was originally introduced.

We will also introduce essential octohedral coordinates for the representation cube, and show

how this coordinate change is a useful tool for furthering the understanding of probability

distributions over profile space and their effects on the relationships between different voting

rules, and between those different voting rules and pairwise voting criteria.

Both of these classes of probability distribution in question are large (containing related

families of distributions superficially very unlike those associated with IC and IAC) but are

tractable using our approach. Further, within this framework, it is easy to see that nearly

any probability distribution we are likely to assume a priori for large N will produce a

theoretical estimate between the values associated with these classes, i.e., 6.25% and 8.8%.

This is because those two classes of probability distribution represent natural extreme cases.

Moreover, that the percentage of profiles that are strongly non-cyclic (as defined in Chapter

2) holds steady at 75% for both classes of distributions, suggesting this is likely to remain

constant for most a priori choices of probability distribution.
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Although of importance, the rate at which a Condorcet winner can be expected to win a

Borda Count election has not been carefully investigated. In this chapter, we provide an

exact calculation for the probability with 3 candidates and two different classes of probability

distributions, showing that a Condorcet winner is 91.2-90.2% likely to win for a large class

of probability distributions that either includes or closely approximates most distributions

of theoretical interest.

We will address, though significantly less completely, the question of how likely a Condorcet

winner is to win a plurality or antiplurality vote. The answer to this question is very sensitive

to the choice of probability distribution even within the classes of tractable symmetric distri-

butions, but usually not more than 89% or 64%, respectively. In the case of an antiplurality

vote, 77.5% represents an upper limit for a very large class of probabilities. We will also

address the issue of agreement between a plurality vote and a Borda count, noting that it is,

in cases where a Condorcet winner exists, strictly less likely than either the plurality vote or

Borda count agreeing with a Condorcet winner. Finally, we will also address the subject of

the Condorcet loser, which is generally unlikely to win a plurality or antiplurality vote (and

never wins a Borda count.)

3.3 Constructing the spaces of interest

There are three spaces used in Chapter 2 to compute all possible positional tallies for each

combination of pairwise majority voting outcomes. The first space is the most fundamental

and best known: Profile space, an n!-dimensional space where each dimension represents

a separate voter preference. In this case, profile space is a subset of R6. This space is not

utilized directly, but is instead broken up into two orthogonal component subspaces. The first

is the representation cube, an object in R3 which represents all possible pairwise majority

votes, introduced in Saari [1995]; while the second is the supporting space, lying in another
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R3, which underlies each point in the representation cube. The supporting space is also

known as the reversal component. We will mostly be concerned with the representation cube

itself (a subset of R3), within two coordinate systems: The tally coordinates in which it was

originally introduced, and also essential octohedral coordinates, in which the representation

cube takes the shape of a regular octohedron.

3.3.1 The representation cube

The representation cube is an object lying in R3. In Saari [1995], the representation cube is

given in tally space where the three axes are the pairwise majority votes margins, or tallies.

(This is exhibited in Figure 3.1.)

• P(A,B) - the majority vote margin of A over B.

• P(B,C) - the majority vote margin of B over C.

• P(C,A) - the majority vote margin of C over A.

To translate from R6 of profile space to the R3 of the representation cube, that is to say

to go from (pABC , pACB, pCAB, pCBA, pBCA, pBAC) to (P (A,B), P (B,C), P (C,A)), we use the

following linear transformation:

L =


1 1 1 −1 −1 −1

1 −1 −1 −1 1 1

−1 −1 1 1 1 −1

 (3.1)

For our purposes in this chapter, it is most convenient to use a normalized representation

cube in R3, based on a normalized profile space in R6. A normalized profile has all compo-
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Figure 3.1: Representation cube

P (B,C)

P (C,A)

P (A,B)

nents adding up to one, meaning that normalized profile space corresponds to ∆5, the unit

5-simplex within R6. We will use the natural inscription of the representation cube into a

proper subset of [−1, 1]3, and assume that N , the number of voters, is large. By “large,”

we mean large enough that error in approximating the representation cube as a continuous

object are small enough to be neglected. If N itself is not entirely constant in addition to

being large (e.g., overall population is fixed but turnout is variable), this makes the continu-

ous approximation more accurate and more useful, but even if N is fixed, the approxmation

tends to be close when N ≥ 100, and is generally very good when N ≥ 1000.

The representation cube is a cube that has had two of its vertices truncated. This is because

it is the convex hull of unanimous points, and there are only six combinations of pairwise

preferences which describe a transitive ordering of three candidates. Each of the six possible

unanimous preference orders corresponds to a vertex, and a full cube has eight vertices. If

(1, 1, 1) were included, we would need all voters to hold the preference A � B, B � C, and

also C � A. (One might consider relaxing the assumption of individually transitive prefer-

ences. The resulting analysis, wherein each P (X, Y ) ranges freely from -1 to 1 independently,
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is relatively straightforward, but outside of the scope of this chapter.)

3.3.2 Essential octohedral coordinates

The essential profile is introduced in Chapter 2 as the minimum sub-profile with the same

pairwise majority votes (P (X, Y ) values). While essential profiles enjoy a bijective correspon-

dence with points in the representation cube, tally space is not always the most convenient

space in which to display essential profiles. The essential profile can be easily defined directly

in terms of its three non-zero components; assigning signs to each component and assigning

each component along with its reversal to the same axis (only one of which will be non-zero

for the essential profile) gives us a space in which the essential profile’s components can be

immediately identified. This is a more natural space for understanding the essential profile,

and in the normalized case, we can see that all profiles are mapped to a regular octohedron.

We will demonstrate that this is, in fact, isomorphic to the standard representation cube.

Formally, the following linear transformation takes essential profiles in R6 (profile space) to

unique points in R3 (the essential coordinates):

E =


1 0 0 −1 0 0

0 1 0 0 −1 0

0 0 1 0 0 −1

 (3.2)

That is to say, the three component axes are:

• pABC − pCBA

• pACB − pBCA

• pBAC − pCAB

49



As with the representation cube, we find it convenient to normalize by defining the above

quantities not in terms of the number of voters (which would give us a lattice of inte-

gers from −N to N) but in terms of a fraction of the population, starting with a nor-

malized profile that is the unit simplex ∆5 ⊂ R6. In the essential octohedral coordi-

nates, the representation cube is then the set of ordered triplets in the convex hull of

{(1, 0, 0), (0, 0,−1), (0, 1, 0), (0,−1, 0), (0, 0, 1), (0, 0,−1)}. (Only ordered triples of rational

numbers correspond to specific voting situations with a finite number of possible voters.)

3.3.3 Relating tally space and essential octohedral coordinates

To relate these two coordinate systems, we state the following lemma:

Lemma 1. The essential octohedral coordinates and tally coordinates describe the same

underlying space, and in particular, there exists a natural isomorphism between them, T ,

such that with L from Eq. 3.1 and E from Eq. 3.2:

TL = E−1T (3.3)

From this lemma we may infer that the representation cube can be displayed equivalently

both in tally space and in essential octohedral coordinates. A simple proof of this lemma can

be had by exhibiting such an isomorphism; in particular, the following linear transformation:

T :=


1
2

1
2

0

0 1
2

1
2

1
2

0 1
2

 (3.4)

We can note that each vertex of the representation cube is transformed from its coordinate in
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tally space by T : R3 → R3 to a unanimous point, i.e., standard unit vector showing a value

of 1 for one profile coordinate and 0 for all other profile coordinates, in essential octohedral

coordinates:

• T (1, 1,−1) = (1, 0, 0)

• T (1,−1,−1) = (0, 1, 0)

• T (−1, 1,−1) = (0, 0, 1)

• T (−1,−1, 1) = (−1, 0, 0)

• T (−1, 1, 1) = (0,−1, 0)

• T (1,−1, 1) = (0, 0,−1)

This linear transformation T and its inverse T−1 allow us to freely move between tally

space and essential octohedral coordinates. The bijective correspondence tells us that the

information contained in the representation cube is available within both coordinate systems.

Any object (point, boundary, subset, or even density function) in either space has a unique

corresponding object in the other; since T is linear, this object’s structure is largely preserved.

This also means that the maps from the full profile space to essential octohedral coordinates

and to tally space share the same kernel within profile space.

The kernel of the maps from profile space to tally space or essential octohedral coordinates

(the kernels of these two maps are the same) contains what we will call the supporting

space for each essential profile. The space of all supporting spaces is, for n = 3 candidates

and normalized profiles, adequately termed the reversal component, as contrasted with the

essential component displayed in the representation cube.
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3.3.4 Supporting space

All profiles leading to the same essential profile we call binary−equivalent. The space of all

profiles which are binary-equivalent to some essential profile will be called the supporting

space of a particular essential profile; that is to say that for each point in the representiation

cube, there is a slice of profile space which corresponds to that particular point. For n = 3

candidates (the scope of this chapter), the supporting space is most naturally represented

as a two-dimensional object lying inside of a three-dimensional space.

Consider the space spanned by a set of three linearly independent vectors:

{(1,−0.5,−0.5, 1,−0.5,−0.5), (−0.5, 1,−0.5,−0.5, 1,−0.5), (1, 1, 1, 1, 1, 1)} (3.5)

Each of these is in the kernel of L from Eq. 3.1 and E from Eq. 3.2, and each is linearly

independent from the other two. In particular, this set of vectors spans the neutral com-

ponent of the profile and the reversal component of the profile. The neutral component -

the component spanned by (1,1,1,1,1,1) - is not of interest in this chapter. In particular,

normalization trivializes the neutral component - for a normalized profile P , we have that:

P



1

1

1

1

1

1


= 1 (3.6)

This, the meaningful components of the supporting space is the reversal component of the

profile. However, while the reversal component can be described completely using two coor-

dinates, it is meaningful to talk about three different reversal components (RA, RB, and RC),
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and this is the natural space in which to describe the supporting space. We then define a

map from profile space to the supporting space, ignoring the trivial component and mapping

from ∆5 in R6 to ∆2 in R3:

R =


1 −1

2
−1

2
1 −1

2
−1

2

−1
2

1 −1
2
−1

2
1 −1

2

−1
2
−1

2
1 −1

2
−1

2
1

 (3.7)

Note that R is injective if the domain is restricted to a set of binary-equivalent profiles. It

is also worth noting that in each set of binary-equivalent profiles, there is a unique profile

which maximizes each of the three coordinates within the reversal component, so the set of

all RPi in a set {Pi}i∈I of binary-equivalent profiles make up the convex hull of {kA + (1−

rP )RA, kB+(1−rP )RB, kC +(1−rP )RC} for some (1−rP ) ∈ (0, 1) and (kA, kB, kC) ∈ R3. In

this case, rP turns out to b a very useful radius-like quantity within the space of the essential

octohedon or representation cube. We will define it, and then show that (1 − rP ) happens

to be the relevant parameter determining the size of the supporting space associated with a

given essential profile.

3.3.5 Defining rP and rS

To fully understand the relationship between an essential profile and its supporting space,

it is necessary to define a useful radius-like quantity rP . This variable is also the key to

understanding a large class of convenient probability distributions. We will also define a

similar quantity rS. Within tally space, we can define rP in terms of pairwise comparisons:

rP := max
X,Y,Z

{|P (X, Y )|, |P (X, Y ) + P (Y, Z) + P (Z,X)|} (3.8)
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While in essential octohedral coordinates, we define rP in terms of the profile components:

rP := |pABC − pCBA|+ |pACB − pBCA|+ |pBAC − pCAB| (3.9)

Finally, if we plot the essential sub-profile in profile space, we can write that:

rP = |eABC |+ |eACB|+ |eCAB|+ |eCBA|+ |eBCA|+ |eBAC | (3.10)

The following theorem gives three useful properties of rP :

Theorem 3.1. 1. Eqs. 3.8, 3.9, and 3.10 are equivalent definitions of rP .

2. The natural distance function defined by rP induces a metric on tally space and essential

octohedral space, and a pseudometric on profile space, with the maximum radius from

the origin being N (non-normalized cas) or 1 (normalized case).

3. rP gives the quantity of voters in the essential profile.

4. 1 − rP (normalized) or N − rP (non-normalized) gives the quantity of voters in the

supporting space.

That is to say, rP is a radius-like quantity that can be defined within any of the spaces we

are interested in.

We will define a second useful radius-like quantitity. To define rS on the representation cube,

the following formula suffices:

rS :=
1

2

√
(P (A,B) + P (B,C))2 + (P (A,C) + P (C,B))2 + (P (B,A) + P (A,C))2 (3.11)

Or, equivalently, in essential octohedral coordinates:

rS :=
√

(pABC − pCBA)2 + (pACB − pBCA)2 + (pBAC − pCAB)2 (3.12)
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Within the original profile space, a third equivalent definition comes from the essential

octohedral coordinates:

rS :=
√
e2ABC + e2CBA + e2ACB + eBCA)2 + e2BAC + e2CAB (3.13)

The following theorem gives some useful properties of rS:

Theorem 3.2. 1. Eqs. 3.11, 3.12, and 3.13 are equivalent definitions of rS.

2. At the origin of each space, rS = 0, and rS is at most N in a non-normalized space,

or 1 in the normalized version of the space.

The proof of part (1) relies on the equivalences established in the proof of the earlier theorem,

namely, that:

eXY Z = |pXY Z − pZY X | = max

{
P (X, Y ) + P (Y, Z)

2
, 0

}
(3.14)

To show (2), note that rS is exactly the Cartesian radius in essential octohedral coordinates,

which indeed produces a metric. The fact that rP and rS are familiar metrics within essential

octohedral coordinates is one of the things which makes essential octohedral coordinates a

natural choice for carrying out related calculations.

3.4 Measure and probability

In general, to calculate the probability that something happens, we take a measure of the

set of ways in which that can happen; the measure of the set of all things that could possibly

happen; and divide the former by the latter. For any particular number of voters N and

any particular number of candidates n, the natural measure to turn to would be the count-

ing measure; that is, counting the number of points; and in the general case, probability
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distributions over that space are equivalent to an assignment of a weight to each particular

point.

Counting measures are not practical for many real-world cases (where N can be approx-

imately guessed before the election, but not precisely known) or the general case (where

N is left undefined). Nor is it computationally tractable for specific N when N is large

(particularly as n, the number of candidates, increases, though we will only consider n = 3

here), because there are
(
N
n!−1

)
points in the set. (Note that if voters are not anonymous, a

complete coding of a general N voter n candidate profile requires Nn! points.)

For our purposes, it is adequate to approximate the set of interest - the representation cube

and its supporting sets of profiles - as continuous spaces; with density functions on those

spaces. The integrals of those density functions then become measures on the space of

possible results; and by appropriate choice of normalization, become probability measures.

3.4.1 Density functions

We now turn to the problem of constructing an appropriate density distribution. In principle,

common assumptions about density distributions are defined in terms of profile space. Two

common assumptions within social choice literature are:

Impartial culture (IC) is the assumption that each preference order is equally likely

for each voter, independently. That is to say, each one of the N voters’ preferences is an

independent random variable, distributed uniformly over the n! possible preference orders

between the n candidates. To draw a profile from a profile distributed per the IC assumption

is equivalent to drawing N independent draws from a uniform distribution. This defines a

very specific multinomial distribution in the n!-dimensional profile space. This means that

a unanimous profile is exceptionally unlikely under the assumption of IC.
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Impartial anonymous culture (IAC) is the assumption that every possible profile of

the population is equally likely. This means that voters do not act independently, and

that profiles are distributed uniformly in profile space. For example, in an IAC probability

distribution over a population of 120 voters, we are as likely to have a unanimous profile

with 120 voters preferring A � B � C as 60 voters preferring A � B � C and 60 preferring

C � B � A. (This assumption was introduced in Gehrlein and Fishburn [1976]).

In both cases, the probability measure of any particular set S of possible events is defined

via the integral over S of the probability density function ρ within R6:

|S| =
∫
S

dV =

∫
S

ρdpABCdpACBdpCABdpCBAdpBCAdpBAC (3.15)

That is to say that a differential element of measure is given on R6 by:

ρdpABC ∧ dpACB ∧ dpCAB ∧ dpCBA ∧ dpBCA ∧ dpBAC (3.16)

Profile space, however, is not the natural space for solving problems of the type this chapter

is concerned with. Six-dimensional structures can be dealt with mathematically, but it is

less convenient, less intuitive, and does not display the same symmetries as are visible on

the representation cube.

It is convenient to define density functions directly and explicitly in essential octohedral

coordinates (or, equivalently, representation cube) - and in particular, to do so systematically

and correctly.

Lemma 2. Given a probability density function ρprofile defined on profile space and a point

x ∈ R3 within essential octohedral coordinates, E defined in Eq. 3.2, we can construct the

density function ρessential in essential octohedral coordinates as:

ρessential(x) =

∫
RE−1(x)

1

8
ρprofiledVR (3.17)
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Or, equivalently, with Sx, the supporting space of x in the space of reversal components, write

that:

ρessential(x) =

∫
Sx

1

8
ρprofiledVR (3.18)

To convert from a measure (density function) on R6 to a measure on R3 × R3 (the product

space of the representation cube with the supporting spaces), we note that by differentiating

Eq. 3.2, we get, for each triplet (X, Y, Z):

dpXY Z−ZY X = dpXY Z − dpZY X (3.19)

Differentiating Eq. 3.7 gives:

dpXY Z+ZY X = dpXY Z + dpZY X (3.20)

Combining Eqs. 3.19 & 3.20 , we have, by the antisymmetry of the wedge product, that:

1

2
dpXY Z−ZY X ∧ dpXY Z+ZY X = dpXY Z ∧ dpZY X (3.21)

Instantiating and applying Eq. 3.21 several times tells us that:

ρdpABC ∧ dpBAC ∧ dpBCA ∧ dpCBA ∧ dpCAB ∧ dpACB =

1

8
ρ(dpABC+CBA ∧ dpCAB+BAC ∧ dpACB+BCA) ∧ (dpABC−CBA ∧ dpCAB−BAC ∧ dpACB−BCA)

(3.22)

I.e., that the differential volume element of profile space is equal to 1
8

times the wedge product

of the differential volume element of essential octohedral space. This tells us, conveniently,

58



that:

∫
S

ρdV =

∫
ES

(∫
RE−1(x)∩RS

1

8
ρdVR

)
dVE (3.23)

That is, ρessential(x) is defined as the integral over the region RE−1(x) of the natural pro-

jection of the original density function ρprofile on E−1(x) ⊂ R6 - adjusted by an important

factor of 1
8
.

We will define three large classes of density functions in essential octohedral coordinates

(R3); these classes will have equivalent classes of density functions on the representation

cube. One includes IAC, one includes density functions which correspond closely to IC

(for large N); the third class is constructed from the first two classes, a considerably larger

superset that includes both.

Definition 3.1 (ρP -type density function). Suppose that ρ is a density function on the

representation cube. We say that ρ is a ρP -type distribution if and only if we may write:

ρ(~x) = α(rP (~x)) (3.24)

Where rP is the radius-like quantity defined in Eq. 3.8, and ~x is the position vector on the

representation cube.

This class includes the distribution induced by the IAC assumption. It also includes a large

number of other distributions, some of which are superficially unlike IAC. Any function of

rP that is integrable on the representation cube falls within this class, and there are a very

large number of integrable functions of one variable on a bounded domain.

Definition 3.2 (ρS-type density function). Suppose that ρ is a density function on the

representation cube. We say that ρ is a ρS-type distribution if and only if we may write:

ρ(~x) = α(rS(~x)) (3.25)
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Where rS is the radius-like quantity defined in Eq. 3.11.

Definition 3.3 (ρP+S-type density function). Suppose that ρ is a density function on the

representation cube. We say that ρ is a ρP+S-type distribution if and only if we may write:

ρ(~x) = αρS + (1− α)ρP (3.26)

Where α ∈ [0, 1].

3.4.2 The assumption of IAC

We begin with a simple statement:

Lemma 3. The Impartial Anonymous Culture assumption induces an rP -type density func-

tion on the representation cube.

Proving this is straightforward. Since fixing the three majority vote comparisons fixes the

essential profile, we can recall that each point in essential octohedral coordinates corresponds

one to one with an essential profile. Per Chapter 3.1, the total fraction of the population in

the essential profile component plus the total fraction in the supporting profile is constant

at a normalized value of 1. Recall that we can compute the density function in essential

octohedral coordinates as:

ρessential(x) =

∫
RE−1(x)

=
1

8
ρprofile (3.27)

We know exactly what ρprofile is: Some constant number k. We also know exactly what the
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measure of RE−1(x) is: The surface area of Sx. So, for IAC:

ρessential(x) = ‖Sx‖ (3.28)

How large is Sx? The natural way to describe the supporting space of profiles behind each

point of the representation cube is as a triangle in R3. This means that our integral is the

integral of some constant function k over an equilateral triangle with side length
√

2(1−rP ),

i.e.,
√
3
2
k(1− rP )2. In particular, it is useful to work with one of the following three density

functions in R3:

ρ(rP ) = (1− rP )2 (3.29)

This density function makes some calculations simple. It is not a probability distribution;

but it is the simplest density distribution that has the correct form.

ρ(rP ) =
15

8
(1− rP )2 (3.30)

This density function integrates to 1 over the entire cube, and so is a probability density

function over the representation cube.

ρ(rP ) = 12(1− rP )2 (3.31)

For this choice of leading constant, the integral over a single transitive octant is conveniently

1, making this an appropriate choice when dealing with conditional probabilities contingent

on the existence of a Condorcet winner and loser.
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3.4.3 The assumption of IC

The Impartial Culture (IC) assumption induces a very specific probability distribution for

each choice of N , the number of voters. However, we may state that:

Lemma 4. The IC (Impartial Culture) assumption is, for large values of N , closely approx-

imated by an rS type distribution.

We will prove this lemma in the context of essential octohedral coordinates. Lemma 3.2

immediately extends this to all other spaces of interest. The assumption of impartial culture

is that each voter decides with equal probability between each possible preference, indepen-

dently If N voters express preferences in accordance with an Impartial Culture distribution,

the resulting profile can be considered to have been constructed as a sum of N unit vectors:

P =
N∑
i=1

ei (3.32)

Where each ei is one of the unit basis vectors:

• (1,0,0,0,0,0)

• (0,1,0,0,0,0)

• (0,0,1,0,0,0)

• (0,0,0,1,0,0)

• (0,0,0,0,1,0)

• (0,0,0,0,0,1)

Applying the transformation of Eq. 3.2 then gives us:

EP =
N∑
i=1

Eei (3.33)
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For each possible ei, Eei is then, with equal probability:

• ±(1, 0, 0)

• ±(0, 1, 0)

• ±(0, 0, 1)

To draw a series of N independent random voter vectors is, in essential octohedral coordi-

nates, equivalent to taking N steps of unit size in a random walk along a three-dimensional

lattice. This is a very well known problem, the solution to which has been explored very ex-

tensively. As might be expected from the Central Limit Theorem, the resulting distribution

closely approximates a particular multinormal distribution; as might be expected from the

symmetry of the vectors, it happens to be spherically symmetric:

ρ = e−
r2

9πN (3.34)

Where r is the ordinary Cartesian radius, and thus:

ρ = e−
r2S
9πN (3.35)

Which is to say that the density distribution induced by the IC distribution is, for large

N , approximated closely (via the Central Limit Theorem) by a ρS-type distribution. This

means that while the density distribution induced by the IC distribution is not a ρS-type

distribution, it is (for large N) close enough to a ρS-type distribution that the ρS class of

distributions meaningfully approximates it. It is also worth noting that a variety of similar

statistical assumptions lead to similarly symmetric bell-curve type distributions; so this class

includes many distributions that are of potential interest.
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3.5 Simplifying symmetries

There are several useful symmetries present in the general model of voting behavior. The

first thing to take note of is that names are generally considered to be arbitrarily chosen.

Because names are arbitrarily chosen, we can know everything that is going on by examining

simply two octants of the entire space. First, the octant in which:

P (A,B) > 0, P (B,C) > 0, P (C,A) < 0 (3.36)

I.e., the transitive octant in which A � B � C transitively by pairwise majority votes.

Second, the octant in which:

P (A,B) > 0, P (B,C) > 0, P (C,A) > 0 (3.37)

I.e., the cyclic octant in which we have a Condorcet cycle where A � B � C � A. There are

six transitive octants and two cyclic octants in total. The operation of candidate permutation

can be used to map each transitive octant onto each other transitive octant; and likewise with

the two cyclic octants. Conceptually, “candidate permutation” refers to changing the map

between candidates; unless we are concerned with ordering effects (or incumbency, or other

asymmetric effects) it does not matter which candidate is identified with which variable.

This means we only need to examine at most one transitve octant (which gives us the result

for 15
16

of the space) and one cyclic octant (which gives us the result for 1
16

of the space).

In cases where we assume the existence or nonexistence of a Condorcet winner, we need only

examine only a single representative octant. If we assume a Condorcet winner, such as when

considering the probability of a Condorcet winner winning under a particular (1, s, 0) rule,

we only need a single transitive octant; and if we assume that no Condorcet winner exists,

we need only examine a single non-transitive octant.
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Some calculations are easier to perform in essential octohedral coordinates, where each octant

contains only one face; and each octant contains 1
8

of the total space. In this case, the octants

may be divided into six strongly non-cyclic octants (accounting for 75% of the total space),

and two octants which are not strongly non-cyclic (weakly cyclic octants accounting for 25%

of the total space).

3.6 Probability of a Condorcet paradox

We have at this point the tools needed to calculate the probability of a Condorcet paradox,

where P (A,B), P (B,C), and P (C,A) all share the same sign on several probability distri-

butions. We will start with a uniform distribution on the representation cube, and extend

this to a large class of probability distributions including the one induced by IAC.

3.6.1 Uniform distribution, IAC, and related distributions

The first and simplest case to consider is that of a uniform distribution. The Condorcet

paradox occurs in the two cyclic octants of the representation cube. When this is translated

to the more symmetric essential octohedral coordinates, the faces become symmetric, and

the cyclic octant now occupies the central quarter of one face of the regular octohedron

(Figure 3.2.) The geometry of the situation is simple. Each octant of the representation

cube occupies equal and identical spaces in essential octohedral coordinates (R3); the two

weakly transitive regions each take up 1
8

of the total octohedron. The Condorcet paradox

occurs in the blue region - a pyramid with a base equal to one quarter of the whole face,

going to a singular point at the origin. Each region in which the Condorcet paradox occurs

takes up 1
4

of a weakly transitive region, or 1
32

of the entire reperesentation cube. That there

are two such regions immediately brings us to the figure of 1
16

, which (not coincidentally)
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Figure 3.2: Representation cube in tally space and essential octohedral coordinates
(Condorcet paradox region in blue)

P (B,C)

P (C,A)

P (A,B)

pABC − pCBA

pACB − pBCA

pCAB − pBAC

is equal to the probability of a Condorcet paradox under the IAC assumption and a large

number of voters.

That is volume in R3 - equal to probability only if we assume a uniform probability distribu-

tion over R3 (the representation cube) - and the probability density function implied by the

IAC assumption is not a uniform distribution. However, it is an integrable ρP -type distribu-

tion, which means that we can construct arbitrarily good approximations of the distribution

induced by IAC with a stepwise function of rP . In this case, the following version of the

classic Riemann sum will suffice:

ρk(rP ) =
k∑
i=1

aiH

(
i

k
− rP

)
(3.38)

Where H is the Heaviside function (0 if < 0, 1 if ≥ 0). The same geometry that holds for

the uniform distribution, moreover, holds for each aiH( i
n
− rP ) in that summation, as each

is simply no more than a scaled copy of the original representation cube; and in holding for

each component function, holds for the entire sum. More to the point, this holds, in effect,

66



for every integrable function of rP :

Theorem 3.3. If the probability distribution of pairwise majority votes follows a probability

distribution ρ which may be written as an integrable function ρP (rP ) of the single variable

rP , the probability of a Condorcet paradox is 1
16

.

Since IAC leads to a probability distribution that can be written as a function of rp, namely:

ρP (rp) = k(1− rP )2 (3.39)

The known fact that assuming IAC leads to a 6.25% chance of a Condorcet paradox for

large N is a special case of the more general theorem above. The extension to any integrable

function of rP describes a much larger class of probability distributions. This makes a much

stronger case for why we might expect to continue to see figures close to 6.25% in empirical

data; but also means that the case for IAC being an accurate description of the structure of

voter preferences is not greatly helped by empirical data matching this prediction.

3.6.2 Approximating IC and related distributions

In essential octohedral coordinates, the class of ρS-type distributions become the class of

spherically symmetric integrable functions. Of particular note with respect to the calculation

of the probability of a Condorcet paradox, it takes the convex hull of {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)}

to the regular tetrahedron whose corners are {(0, 0, 0), (1
2
, 1
2
, 0), (1

2
, 0, 1

2
), (0, 1

2
, 1
2
)}.

While integrals over ρS-type distributions can be computed readily within the original repre-

sentation cube, it is in essential octohedral coordnates that results about those distributions

become most intuitive. It is the case that rS, like rP , is independent of the boundaries deter-
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Figure 3.3: Condorcet paradox region

pABC − pCBA

pACB − pBCA

pCAB − pBAC

mining whether or not a Condorcet winner exists, so we can start with a sphere of arbitrary

radius inside essential octohedral coordinates, and compute the fraction of the sphere taken

up by the region in which no Condorcet winner exists. Just as in the case of a ρP -type

distribution, we can approximate integrable functions of rS with summations:

ρk(rP ) =
k∑
i=1

aiH

(
i

k
− rP

)
(3.40)

Meaning they all give the same result for the likelihood of a Condorcet paradox. At this

point, the only thing that remains to calculate the probability of a Condorcet paradox under

any assumption leading to a ρS-type distribution (which in turn closely approximates the

multinormal distribution produced by the Impartial Culture assumption, for large numbers

of voters) is computing the solid angle of the blue region in Figure 3.3.

That region is a regular tetrahedron. The solid angle occupied by a regular tetrahedron

in R3 as viewed from one of its vertices (the origin, in this case) is well known -
cos−1( 23

27)
4π

.

There are two such regions, and so we may state:

Theorem 3.4. If the probability distribution of pairwise majority votes follows a probability
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distribution ρ which may be written as an integrable function ρP (rP ) of the single variable

rP , the probability of a Condorcet paradox is
cos−1( 23

27)
2π

.

This is, in other words, about an 8.8% chance; meaning that, since the IC assumption may be

closely approximated by such distributions, that IC gives us an approximately 8.8% chance

of a Condorcet paradox. This is higher, although not greatly distinct from, the probability

of a Condorcet paradox under IAC and similar distributions.

By the intermediate value theorem, we have as an immediate consequence of our two theo-

rems the following corrolary:

Corollary 5. If ρ(rS, rP ) = tρS(rS) + (1 − t)ρP (rP ) is a probability distribution over pair-

wise majority votes that can be written as the linear combination of a ρS type and ρP type

distribution, then the probability of a Condorcet paradox given the distribution ρ is between

1
16

and
cos−1( 23

27)
2π

.

In other words, every function that can be approximated by summing together ρS and ρP

type distributions will predict Condorcet paradoxes at a rate that falls somewhere within a

relatively narrow range. This class of probability density functions is considerably larger than

either the class of ρP -type distributions or the class of ρS-type distributions, and includes

almost every distribution that is likely to be considered as a candidate for describing voter

behavior a priori.

3.7 Probability that a Borda count selects a Condorcet

winner or loser

It is known that a Borda count cannot select a Condorcet loser. A slightly more complex

example is the probability that a Borda count selects a Condorcet winner. The first problem
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we face is that we must exclude the probability of a Condorcet paradox from our set of

possible results; the answers to that problem are in Sec. 3.6, however, and are in particular

6.25%− 8.8% under our favored assumptions.

This is not the most complex example we will demonstrate. The Borda count is constant

over the supporting space at any point in the representation cube; all binary-equivalent

profiles result in the same Borda count totals. We may therefore still read results directly off

the representation cube, or any reasonable fascimile thereof, and the techniques used largely

mirror the above techniques used to find the probability of a Condorcet paradox.

3.7.1 ρP -type distributions

If A is the Condorcet winner, and C is the Condorcet loser, the necessary and sufficient

condition for A to be the Borda winner is given by the following condition from Chapter 2:

2P (A,B) + P (A,C) > P (B,C) (3.41)

Where A is the Condorcet winner and C is the necessary Condorcet loser. As we are

restricting our attention to situations in which there is a Condorcet winner, we can (per the

argument of Sec. 3.5) restrict our attention to a single octant where:

• P (A,B) ≥ 0

• P (A,C) ≥ 0

• P (B,C) ≥ 0
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Figure 3.4: Borda-Condorcet agreement
(Full cube, left; transitive octant, right)

P (B,C)

P (C,A)

P (A,B)

P (B,C)

P (C,A)

P (A,B)

With our final boundary equation given by the original requirement that individual voters

have transitive preferences (and thus, by the plane that truncates the representation cube):

P (A,B) + P (B,C) ≤ 1 + P (A,C) (3.42)

The figure below shows both the Condorcet paradox region and the regions where the Borda

count disagrees with the Condorcet winner on the whole of the representation cube, and the

region where the Borda Count disagrees with the Condorcet winner within a single transitive

octant (Figure 3.4).

Note that Eq. 3.41 describes a plane through the origin, a scale-invariant surface. Conse-

quentially, as in Sec. 3.6.1 any density distribution function ρP that is a function of rP will

yield an equal probability of the Borda winner and Condorcet winner coinciding as in the

constant case ρP ≡ k. All that is needed, therefore, is to calculate the volume of the regions

where Eq. 3.41 does and does not hold.
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In this case, the smaller and simpler region is that which fails to meet Eq. 3.41. The portion

within a given transitive octant has volume 13
162

. The total volume of the entire transitive

octant of the normalized representation cube is 5
6
; which gives us 13

135
as the probability of a

Condorcet winner losing given that our election result falls within that transitive octant in

R3. Symmetry dictates that the same figure holds in each of the other five transitive octants.

It is worth emphasizing that this calculation holds accurate for any ρP -type distribution.

Theorem 3.5. If the probability distribution of pairwise majority votes, ρ, may be written as

an integrable function ρP (rP ) of the single variable rP , and there exists a Condorcet winner,

the probability that the Condorcet winner wins a Borda count is 122
135

.

That is to say, if we have a large number of voters whose voting behavior is distributed in

the way we would expect from the assumption of Impartial Anonymous Culture (IAC) and

sincere accurate voting, Condorcet winners should win Borda counts 122
135

of the time; and

this rate will hold for a wide variety of similar distributions.

3.7.2 ρS-type distributions

If we want to move to an approximation of IC, or a ρS-type density distribution, it is

convenient to transition to essential octohedral coordinates; at which point the boundaries

of the region where a Condorcet winner A with Condorcet loser C is also a Borda winner

are given by:

pABC−CBA + pCAB−BAC > 2pBCA−ACB (3.43)

pABC−CBA + pCAB−BAC > pBCA−ACB (3.44)
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pABC−CBA + pBCA−ACB > pCAB−BAC (3.45)

pABC−CBA > pCAB−BAC + pBCA−ACB (3.46)

This lends itself naturally to a very direct representation in terms of spherical coordinates on

R3; letting pABC−CBA become the azimuthal axis with azimuthal angle φ and lateral angle

θ, we transform that set of equations into a set of constraints on φ as functions of θ:

φ < Mφ = min



cot−1 (2 sin(θ)− cos(θ))

cot−1 (sin(θ)− cos(θ))

cot−1 (− sin(θ) + cos(θ))

cot−1 (sin(θ) + cos(θ))


(3.47)

Which gives us a simple integral to find the solid angle:

∫ 2π

0

∫ Mφ

0

sin(φ)dφdθ (3.48)

Integrating over φ and θ gives us a solid angle of about 1.72 steradians; after factoring in

the fact that we have six different possible pairs of Condorcet winner and loser, and the

regions in which there is no Condorcet winner, we come up with the following conditional

probability:

Theorem 3.6. If the probability distribution of pairwise majority votes follows a probability

distribution ρ which may be written as an integrable function ρS(rS) of the single variable

rS, and there is a Condorcet winner, the probability of a Condorcet winner being the winner
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of a Borda count is ≈ 90.1%.

It is worth noting that this is very close to the probabliity cited in Thm. 3.5, the probability

of affirming the Condorcet winner under a very different class of probability distributions.

Significant changes in how likely a Condorcet winner is to win a Borda count require very

unusual underlying probability distributions that are, by and large, not being considered in

the current literature.

3.7.3 Generalizing

As in Sec. 3.6, we have an immediate corollary giving us a range of figures for a much larger

class of probability functions; a class large enough to include or closely approximate most

probability functions that people are likelyto use. Combining Thms. 3.5 and 3.6, we have as

an immediate corollary a useful statement about a wide range of probability distributions:

Corollary 6. If ρ(rS, rP ) = tρS(rS)+(1−t)ρP (rP ) is a probability distribution over pairwise

majority votes that can be written as the linear combination of a ρS type and ρP type distri-

bution, then if pairwise majority votes follow the distribution ρ, the conditional probability of

a Condorcet winner losing a Borda count (given the existence of such a Condorcet winner)

is ≈ 9.6− 9.9%.

Note that this happens slightly more often than a Condorcet paradox; but is higher for

the IC-related distributions than the IAC-related distributions, just as with the Condorcet

paradox. These are not the only probability distributions which produce a probability of a

Condorcet winner losing a Borda count between 9-10%; however, it contains most probability

distributions of interest or close approximations thereof. Any empirical study of electoral

behavior would be hard-pressed to distinguish between most behavioral assumptions based

on the frequency with which Condorcet winners lose Borda counts.
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An empirical measurement of this frequency falling outside of this range by a significant

margin would suggest that the underlying distribution of voter preferences, or at least be-

havior, does not tend towards any of the common assumptions made in the current literature,

including both Impartial Culture and Impartial Anonymous Culture.

3.8 Probability that a plurality vote selects a Con-

dorcet winner or loser

To examine the cases where a plurality vote agrees or disagrees with the Condorcet criterion,

it helps to start first with the case of the Condorcet winner. In calculating the probability of

a plurality vote selecting a Condorcet winner, we cannot consider all ρS-type distributions

simultaneously, nor all ρP -type (IAC-type) distributions simultaneously. We will, in fact,

only consider five distributions, three of which are ρP -type (IC-type) distributions, and infer

a few things about the class of distributions.

3.8.1 Limiting cases

We will first consider some extreme cases. First, if all possible votes are concentrated tightly

in a tiny structure with a maximum radius of ε, but distributed uniformly across the sup-

porting space, symmetry dictates that the Condorcet winner has a chance of winning that is

within an O(ε) error term of 1
3
. This is because the effect of the supporting space dominates.

A second limiting case: If all possible votes are concentrated on the external boundary, the

Condorcet winner always wins the plurality vote. This leads to the following summarization

of results:

Theorem 3.7. 1. Given a probability distribution that is a linear combination of ρP and
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ρS type distributions, the probability of a Condorcet winner winning a plurality vote

falls between 1
3

and 1.

2. Conversely, given a probability p ∈
(
1
3
, 1
)
, a probability distribution that is a ρP -type

distribution can be constructed that gives a probability p of a Condorcet winner winning

a plurality vote.

The proof of this follows immediately from the boundary cases. It can be illustrated very

easily by picture. As shown in Figure 3.5, the rP ≡ 1 surface contains no cases in which

the Condorcet winner is defeated by another candidate in a plurality vote. Figure illustrates

what happens at the origin.

3.8.2 Condorcet winner under IAC

Thms. 1-2 in Chapter 2 give the following five conditions determining the winner of a

plurality vote:

• If P (A,C) is the largest pairwise victory, A must win if 2P (A,B) + P (A,C) > 1.

• If P (B,C) is the largest pairwise victory, A must win if 2P (A,B) + P (B,C) > 1.

• If P (A,B) > P (A,C) > P (B,C), A must win if P (A,B) + 2P (A,C) > 1.

• If P (A,B) > P (B,C) > P (A,C) A must win if P (A,B) + 2P (B,C) > 1.

• It is possible for any candidate to win if and only if P (X, Y ) < 1
3

for all X, Y .

These conditions give boundaries, which in turn describe two surfaces enclosing two regions.

These are pictured in Figure 3.5.

The region U (left) gives the boundaries where A must win; the region V (right) gives the
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Figure 3.5: Regions where the plurality vote only sometimes agrees with the Condorcet
winner (left) and where all winners are possible (right)
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P (A,C)
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P (A,C)
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Figure 3.6: Plurality-Condorcet agreement in the supporting space, X � A cases

A X
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(on ∂U)

A X

Y
rU = 0.8

A X

Y
rU = 0.6

A X

Y
rU = 0.4

A X

Y
rU = 0.2

A X

Y
rU = 0

(at origin)

cases where both B and C can win. This region U has a volume V = 5
27

. It is worth noting

that any scaled copy of ∂U has a uniform density of the Condorcet winner A defeating the

next-most likely candidate to win. (Over the larger part of the surface, this is B; over the

smaller part of this surface, this is C.) Defining rU ≡ 1 on this surface, dropping linearly to

0 at the center, the associated differential volume of is 5
9
r2UdrU .

It is at this point necessary to consider the supporting space. In Figure 3.6 , we see a series

of boundaries between A winning a plurality vote and X winning a plurality vote, as we

move from a point on the boundary of U to the origin. The shaded region in Figure 3.6

marks areas in the supporting space where X defeats A.

In particular, X is C if P (B,C) is larger than both P (A,C) and P (A,B), and B otherwise.
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Figure 3.7: Plurality-Condorcet disagreement in the supporting space
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Y
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(at origin)

The scale of the supporting space varies; the dimension of the shaded triangle is linearly

proportionate to 1− rU . The total density of B defeating A and goes from a density of 0 at

the boundary of U to a density of 1
2

of the total density at the center. Using the probability

density function of 12(1− rP )2 as a basis, the probability density of A being defeated by the

second place Borda candidate in a plurality vote is then exactly 6(1− rU)2.

∫
U

ρ2dV =

∫ 1

0

6(1− rU)2
5

9
r2Udr

2
U =

1

9
(3.49)

This gives a probability of 1
9

of the total space. This is already a good estimate of the cases

in which a Condorcet winner loses; but not quite an exact calculation. It is not only possible

that we have X � A by the plurality vote it is also possible, for some cases, to have Y � A

by the plurality vote. To add cases where Y � A (but not X � A) is fairly simple. In

particular, this happens inside the region V . Figure 3.7 shows the supporting space for a

selection of values of rU and rV .

The red region represents the region where the plurality vote gives the result of Y � A � X.

The size of this region depends on rV but not rU , and has a limiting value of 1
6

as we go

towards the origin. It increases simply by a square factor, in particular:

∫
V

ρ3dV =

∫ 1

0

2(1− rV )2
1

9
r2V drV =

1

135
(3.50)
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Note that if ρ∗ is the total density of A (the Condorcet winner) losing a plurality vote, we

have that:

ρ2 + ρ3 = ρ∗ (3.51)

Combining Eqs. 3.51, 3.49 & 3.50 allows us to compute the integral of ρ∗ over a sample

transitive octant T , giving:

pCWP =

∫
T

ρ∗dV =
1

9
+

1

135
=

16

135
(3.52)

This is fairly unlikely, in other words; but it is sensitive to distribution. We will consider

another ρP -type distribution next.

3.8.3 Condorcet winner under another ρP−type distribution

In particular, we will use the example of a piecewise function, such that:

ρP (rP ) =

k1(1− rP )2, rP ∈ [0, 1
3
]

k2(1− rP )2, rp ∈ (1
3
, 2
3
]

k3(1− rP )2, rp ∈ (2
3
, 1]

(3.53)

With the distribution within the supporting space of any point x being held to some constant

cx. To compute this case, we consider two additional geometric objects, Q and W , which we

will associate to radius-like quantities rQ and rW , illustrated in Figure 3.8.

Note that:

W ( V ( Q ( U (3.54)
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Figure 3.8: Plurality-Condorcet disagreement.
From left to right, rP ≤ 2

3
, and rP ≤ 1

3

P (A,B)

P (A,C)

P (B,C)

P (A,B)

P (A,C)

P (B,C)

If we restrict ourselves to the domain of a single transitive octant and the following pair of

conditions is met:

k1 + k2 + k3 = 36 (3.55)

k1 ≥ k2 ≥ k3 ≥ 0 (3.56)

Then the density function ρP is, in fact, a probability distribution, and we have that the

probability of a Condorcet winner losing is given by:

p =
k1 − k2

12

∫ 1

0

fWdrW +
k2 − k3

12

∫ 1

0

fQdrQ +
k3
12

∫ 1

0

fUdrU +
k2
12

∫ 1

0

fV drV (3.57)

Given, in each case, that fI an appropriately function of rI . This is already done for fU

and fV in, respectively, Eq. 3.49 and Eq. 3.50. Note that on the surface of Q, if we define

a parameter s on ∂Q, the density function of the Condorcet winner being defeated by the
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Figure 3.9: Density of plurality-Condorcet disagreement

P (A,B)

P (A,C)

P (B,C)

candidate who would place second is given by:

ρ∗ = 6
(

1 +
rQs

3
− rQ

)2
(3.58)

This parameter s is uniformly zero on the lightly shaded portions of Q, and attains a value

of 1 on the P (B,C) = 0 plane, as well as the point where the dark regions intersect the

P (B,C) axis in Figure 3.9.

This treatment leads to breaking the integral into three separate parts. The two darkly

shaded triangular regions at the base each have:

∫ 1

0

∫ 1

0

√
3

9
(1− s)r2Q

(
1 +

rQs

3
− rQ

)2
dsdrQ =

79
√

3

48600
(3.59)

The dark rectangular panel on top, which is equivalent to the lower panel plus the smaller

triangular region, gives:

∫ 1

0

∫ 1

0

2

3
r2Q

(
1 +

rQs

3
− rQ

)2
dsdrQ =

31

810
(3.60)
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Figure 3.10: Plurality-Condorcet agreement, central region
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The lightly shaded regions can be combined in the following integral:

∫ 1

0

∫ 1

0

23

36
r2Q(1− rQ)2dsdrQ =

23

1080
(3.61)

Combining Eq. 3.59, Eq. 3.60, and Eq. 3.61, we get:

∫
Q

fQdrQ = 2
79
√

6

48600
+ 2

31

810
+

23

1080
=

4755 + 158
√

3

48600
≈ 0.103 (3.62)

Note this is almost the total given by Eq. 3.49 - this is not coincidental, as most cases where

the Condorcet winner loses a plurality vote occur with rP ≤ 2
3
. We may now consider W , as

illustrated in Figure 3.10.

Within W , all three candidates can win; we have, as with the original computation, two

different cases to consider, one in which A loses to the candidate who would place second

with the essential profile alone - first, on the sides and top:

∫ 1

0

∫ 1

0

4

9
r2W

(
1 +

2

3
srW − rW

)2

dsdrW =
52

1215
(3.63)
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Then the triangular region, which must be divided into two components:

∫ 1

0

∫ 3
4

0

2
√

6

9
sr2W

(
1 +

2

3
srW − rW

)2

dsdrW =
11
√

6

1920
(3.64)

∫ 1

0

∫ 1

3/4

(
7
√

6

24
− 4
√

6s

6

)
r2W

(
1 +

2

3
srW − rW

)2

dsdrW =
163
√

6

51840
(3.65)

Or, in total:

∫
W

ρ2 =
52

1215
+

11
√

6

1920
+

163
√

6

51840
(3.66)

Then there is the case in which the Condorcet winner places second - and is defeated by the

candidate who would place last with the essential profile alone:

∫ 1

0

∫ 1

0

(
4

27
r2W (1− rW )2 +

√
3

108
(1− s)

(
1 +

1

2
srW − rW

)2
)
dsdrW =

2

405
+

29
√

3

15552
(3.67)

(Note that the first term is simply 2/3 of Eq. 3.50.) Combining Eqs. 3.66 and 3.67 then

gives:

∫
W

ρ∗ =
52

1215
+

11
√

6

1920
+

163
√

6

51840
+

2

405
+

29
√

3

15552
≈ 0.073 (3.68)

Taking each of Eqs. 3.49, 3.50, 3.62, and 3.68, and plugging these values back into Eq. 3.57,

we can compute direct values for any particular choice of (k1, k2, k3). The following table

gives several examples:

Of note for the third line is that it roughly mirrors a normal distribution. Simply working

within the center third of representation, instead of the entire cube, comes close to doubling

the probability that a Condorcet winner loses; note that this still includes a large number of
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Table 3.1: Condorcet-plurality agreement in a piecewise ρP distribution

k1 k2 k3 Probability
12 12 12 0.1185
18 12 6 0.1510
24 10 2 0.1785
36 0 0 0.2181

highly decisive elections where a single candidate, out of a field of three, achieves as much

as two thirds of the vote.

3.8.4 Condorcet loser under a plurality vote

In a subset of the cases where the Condorcet winner does not win a plurality vote, the

Condorcet loser wins instead. The conditions relevant to this are:

• If P (A,B) > P (A,C) > P (B,C), A must win if P (A,B) + 2P (A,C) > 1.

• If P (A,B) > P (B,C) > P (A,C) A must win if P (A,B) + 2P (B,C) > 1.

• It is possible for any candidate to win if and only if P (X, Y ) < 1
3

for all X, Y .

This gives us the regions U and V , illustrated in Figure 3.11. We will calculate, as a

specific example, the probability of a Condorcet loser winning a plurality vote under the

IAC assumption; this can be compared to the probability under the IAC assumption that

the Condorcet winner loses a plurality vote.

The method of calculating this again to construct a density function ρ∗ where our case of

interest happens - here, ρ∗ is the density of C winning.

pCLP =

∫
ρ∗dV∫
ρdV

=

∫
ρ2dV −

∫
ρ3dV∫

ρdV
(3.69)
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Figure 3.11: Condorcet loser conditions, plurality vote
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Here ρ2 is defined as the density of cases where C (the Condorcet loser) defeats A (the

Condorcet winner), and ρ3 is the density of cases where C defeats A but loses to B. The

support for ρ2 is U .

As before, ρ2 is zero on ∂U , and it is convenient to construct a radius-like quantity rU that

is 1 on ∂U and 0 at the origin to produce the explicit form of ρ2:

ρ2 = 6(1− rU)2 (3.70)

Noting that the volume of U is 5
81

, we can construct a differential volume element for inte-

grating over rU :

dV =
5

27
r2UdrU (3.71)

Note that ρ3 and V are just the same as in the case of the Condorcet winner and plurality

vote, so we can refer back to Equation 3.50 and compute the probability of a Condorcet loser

winning as:

∫ 1

0

6(1− rU)2
5

27
r2UdrU −

∫ 1

0

2(1− rV )2
1

9
r2V drV =

1

27
− 1

135
=

4

135
(3.72)

85



Figure 3.12: Region where Borda Count disagrees with a Condorcet winner:

P (B,C)

P (A,C)

P (A,B)

So the probability of a Condorcet loser winning under the IAC assumption for n = 3 candi-

dates and a large number of voters is 4
135

. As an intermediate result, we have also that the

probability that a Condorcet loser defeats a Condorcet winner in those circumstances with

probability 1
27

(and the ranking B � C � A happens only with probability 1
135

).

3.8.5 Borda-plurality agreement under IAC

A further question that might be asked is this: How frequently does a plurality vote agree

with a Borda count? For n = 3 and ρP -type density distributions, this turns out to be

a relatively simple question. It is simplified by the fact that, per Thm. 3.5, any ρP -type

density function leads to a hard and fast 122
135

probability that a Borda count gives victory

to a Condorcet winner. First, we note that the region in which the Borda and Condorcet

winners disagree is given by a theorem from Chapter 2, which is to say Eq. 3.41:

2P (A,B) + P (A,C) > P (B,C) (3.73)

Figure 3.12 displays this region, which we will call M . Note that M makes up 13
135

of the

transitive octant under any ρP -type distribution. Also note that we have reflected coordi-

86



Figure 3.13: Regions in which a plurality vote sometimes, but not always, disagrees with a
Borda count within M
(To the left, the subregion by itself; to the right, the subregion inside M .)
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nates, to better display the object in question.

M ∩U , in Figure 3.13, shows the region where the plurality vote sometimes, but not always,

disagrees with the Borda count. Note that the volume of M∩U is 1
12

. Producing a differential

element gives:

dV =
1

4
r2M∩UdrM∩U (3.74)

Which leads to the computation that B defeats A by plurality vote in this region, under the

IAC assumption:

∫ 1

0

6(1− rM∩U)2r2M∩U
1

4
drM∩U =

1

20
(3.75)

Then we should, of course, consider M ∩ V , which gives us the cases where C wins.

dV =
1

324
r2M∩V drM∩V (3.76)
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Figure 3.14: Cases within M where any candidate can win a plurality vote:

P (B,C)

P (A,C)

P (A,B)

Which leads to the computation that C � B � A in this region under the IAC assumption:

∫ 1

0

2(1− rM∩V )2r2M∩V
1

324
drM∩V =

1

4860
(3.77)

How often do the plurality vote and Borda count agree and disagree? Well, within the

transitive octant, we can:

• Take the probability that a plurality and Condorcet winners are not the same. (For

IAC, 16
135

.)

• Add all cases in M , where the Borda and Condorcet winner are not the same. (For

any ρP distribution, 13
135

).

• Subtract the cases where the plurality and Condorcet winner agree within M (For IAC,

1
20
− 1

4860
.)

This gives us a probability (for the IAC assumption) of:

p =
16

135
+

13

135
− 1

20
+

1

4860
=

1703

10800
≈ 0.165 (3.78)

It is worth noting this is higher than the probability that the plurality vote fails to elect
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Figure 3.15: Level sets, Borda-Plurality interactions, for rP ≡ 1 and rP ≡ 2
3
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the Condorcet winner under IAC. We might ask if this holds qualitatively for all ρP type

distributions. The answer is yes:

Theorem 3.8. For n = 3 candidates and a probability distribution leading to a ρP -type

distribution on the representation cube and a locally uniform distribution on each supporting

space Sx, if a Condorcet winner exists, a plurality vote is at least as likely to select the

Condorcet winner than it is to select the Borda winner. This becomes a strict inequality if

the distribution assigning all weight to the rP ≡ 1 shell is excluded.

The proof of this is simple geometry: Take any shell of rP = k, and examine the level of

agreement or disagreement on that shell. For rP = 1, we have a disagreement of 13
135

. Figure

3.15 illustrates k = 2
3
.

The bright green and red regions show no change in agreement between the plurality vote and

Borda count from the case of rP = 1. The light red and blue regions show increased disagree-

ment with the Condorcet winner; which means, for the blue regions, increased disagreement

with the Borda winner as well; the peak densities occurring on the P (A,C)−P (A,B) plane

and P (B,C) axis (where rU is minimized; note that rU takes the same values at those two

peaks). Note that eventually, these regions engulf the entire shell.
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On any shell of rP ≡ k < 1, we have that the relative density of the plurality vote agreeing

with the Borda count, as opposed to the Condorcet winner, is lower. To complete the proof,

one need simply refer to the contrapositive case of the intermediate value theorem and note

that any ρP -type distribution is non-negative in the density it assigns to each value of rP .

3.9 Condorcet winners and losers in an antiplurality

vote

3.9.1 Condorcet winner

The following conditions (per the techniques of Chapter 2) determine the winner of an

antiplurality vote:

• If P (A,C) is the largest pairwise victory, A must win if 2P (A,C)− P (B,C) > 1.

• If P (A,C) is the smallest pairwise victory, A must win if 2P (A,B)− P (A,C) > 1.

• If P (A,B) > P (A,C) > P (B,C), A must win if 2P (A,B)− P (B,C) > 1.

• If P (B,C) is the largest pairwise victory, B must win if 2P (B,C)− P (A,C) > 1.

• If P (A,C) is the largest pairwise victory, C can win if 2P (A,C) + P (B,C) > 1.

• If P (A,B) is the largest pairwise victory, C can win if 2P (A,B) + P (B,C) > 1.

• If P (B,C) > P (A,C) > P (A,B), C can win if 2P (B,C) + P (A,C) > 1.

• If P (B,C) > P (A,B) > P (A,C), C can win if 2P (B,C) + P (A,B) > 1.

• It is possible for any rank ordering of candidates to occur if and only if P (X, Y ) < 1
3

for all (X, Y ).
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Figure 3.16: Regions of interest under an antiplurality vote

P (B,C)

P (A,C)
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It is worth taking special note of the fourth of these conditions. There is a portion of the

representation cube where B is at an advantage in an antiplurality vote, and accordingly,

this sector contributes a significant probability that a Condorcet winner loses. The sixth

and seventh conditions are therefore not relevant to the question of how likely a Condorcet

winner is to win an antiplurality vote, as when P (B,C) is largest and > 1
3
, the ranking

C � B � A can occur, but not the ranking C � A � B.

The region with multiple possible winners, which we will call Q, is shown in in blue in Figure

3.16. It is useful to defining a radius-like quantity rQ on the surface of this region Q, and

divide Q into piecewise parts Q1 and Q2. The yellow region adjacent to Q is the region

where B must win not favored to win on the entire surface of the representation cube. The

region on the right we will refer to as R with associated radius-like quantity rR. (We have

also re-oriented the axes, as this perspective shows the shape a little better.)

Here it is useful to define ρ2 as the density of B defeating A and ρ3 as the density of C

winning while A defeats B. Thus, we divide up the calculation of ρ∗ as follows:

∫
T

ρ∗dV∫
T

ρdV

= 12

(
1

12
−
∫
Q1

ρ2 −
∫
Q2

ρ2 −
∫
R

ρ3

)
(3.79)
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Note that the sub-region where P (B,C) is the largest has a volume of 1
4
. Integrating over

rP using the density function 12(1− rP )2 gives:

∫
ρdV =

∫ 1

0

12(1− rP )2
3

4
r2PdrP =

3

10
(3.80)

Which is a 3
10

probability. This region can be divided in halves with volume 1
8

each by

the boundary where A defeats B with zero density. The density with which A defeats B

increases quadratically to 6 at the origin (half the peak probability density value of 12 at

the origin).

∫
Q1

ρ− ρ2dV =

∫ 1

0

6(1− rQ)2
3

8
r2QdrQ =

3

40
(3.81)

Combining these gives a total probability of 3
40

for the case where B defeats A while P (B,C)

is the largest pairwise victory. We have a 7
10

probability of landing elsewhere in the octant.

We can then calculate the total proability that B defeats A (but P (B,C) is not the largest

pairwise victory):

∫
Q2

ρ2dV =

∫ 1

0

6(1− rQ)2
5

8
r2QdrQ =

1

8
(3.82)

We should now consider the case where A defeats B but loses to C. The region R in which

this occurs has volume 19
324

, so in terms of a tailored radius rR we have a differential volume

element 19
108

:

∫
R

ρ3dV =

∫ 1

0

2(1− rR)2
19

108
r2V drV =

19

1620
(3.83)
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This gives us everything we need to compute how frequently A wins:

∫
T

ρ∗dV∫
T

ρdV

= 1− 9

40
− 1

8
− 19

1620
=

517

810
(3.84)

Which is to say about 63.8%. The majority of the exceptions happen when P (B,C) is the

largest pairwise comparison.

3.9.2 Condorcet loser

The conditions which apply to a Condorcet loser winning an antiplurality vote are:

• If P (A,C) is the largest pairwise victory, C can win if 2P (A,C) + P (B,C) > 1.

• If P (A,B) is the largest pairwise victory, C can win if 2P (A,B) + P (B,C) > 1.

• If P (B,C) > P (A,C) > P (A,B), C can win if 2P (B,C) + P (A,C) > 1.

• If P (B,C) > P (A,B) > P (A,C), C can win if 2P (B,C) + P (A,B) > 1.

• It is possible for any rank ordering of candidates to occur if and only if P (X, Y ) < 1
3

for all (X, Y ).

These conditions give the boundaries for two regions: An outer region Q in which C can

place first by surpassing the candidate who would place first if the reversal component were

zero, and an inner region R where C can defeat that candidate but still lose. As in the

previous sections, this leads directly to the definition of two surfaces, which we will label Q

and R, respectively.
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Figure 3.17: Condorcet loser winning an antiplurality vote (left)
Any ranking possible (right)
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As before, we construct ρ∗, the density function of interest, from a pair of easier-to-compute

functions:

ρ∗ = ρ2 − ρ3 (3.85)

Here ρ2 represents the density of C defeating the candidate who would place first without

a reversal component (B if P (B,C) is the largest pairwise comparison, A otherwise), and

ρ3 represents the probability of them doing so but losing. Q is the support of ρ2 and R the

support of ρ3, and rQ and rR can be conveniently used to show their density functions. Note

that the volume of Q is 59
972

, so this gives a differential volume element of 59
324
r2QdrQ, while

the volume of R is 1
27

. We can then integrate ρ2 and ρ3:

∫
Q

ρ2dV =

∫ 1

0

6(1− rQ)2
59

324
r2QdrQ =

59

1620
(3.86)

∫
Q

ρ2dV =

∫ 1

0

2(1− rQ)2
1

9
r2QdrQ =

1

135
(3.87)
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So our probability is:

∫
T

ρ∗dV∫
T

ρdV

=

∫
Q

ρ2dV −
∫
R

ρ3 =
47

1620
(3.88)

This is about 2.9% - surprising as that may be, it is only slightly less likely than a Condorcet

loser winning a plurality vote, in spite of the significant difference in probabilities of a

Condorcet winner winning under the IAC assumption. This will vary slightly with different

ρP -type distributions.

3.10 Conclusions

3.10.1 Discussion: rP and rS distributions, [anti]plurality, and Con-

dorcet rankings

IAC is a special case of rP -type distribution, in particular one in which the distribution in

supporting space is uniform and can easily be reduced to a function of a single variable.

However, our method of calculating the probabilities for IAC has clear extension to other

rP -type distributions, and moreover, we can tell which portions of the space contribute to

the probability of a Condorcet winner or loser winning or losing an election.

For example, we can see readily that while the probability of a Condorcet loser winning

under IAC is similar for both plurality and antiplurality are quite close (2.96% and 2.90%,

respectively), the two cases rely on a different underlying geometry.

Both share in common the (0, 1
3
)3 inner region; but a Condorcet loser can win a plurality
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Figure 3.18: Comparison of Condorcet loser under plurality with Condorcet loser under
antiplurality
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P (A,C)

P (B,C)

vote even when rP is very close to 1; a Condorcet loser cannot win an antiplurality vote

when rP >
2
3
. Lower the variance of an rP -type distribution in the representation cube, and

the advantage a Condorcet loser has in a plurality vote over an antiplurality vote will be

reduced or even reversed. Reduce the variance in the supporting space, and this will generally

disadvantage the Condorcet loser, who is under no circumstances advantaged without a

reversal component. Reversal components must align in favor af a Condorcet loser in order

for a Condorcet loser to win; basic profile components disfavor Condorcet losers.

For Condorcet winners, the story is different, and in particular different for different rules.

For a plurality vote, a Condorcet winner benefits by having a high variance in the distribu-

tion on the representation cube and also from low variance in the supporting space. The

less of a role the supporting space plays in a plurality vote, the more likely a Condorcet

winner is to win, as the basic profile components dominate. If the supporting space is ir-

revelant, the Condorcet winner wins 100% of the time. For an antiplurality vote, however,

the effect of basic components is more ambiguous. The limiting value of a Condorcet winner

as the supporting space plays a smaller and smaller role is in fact 77.5%, and while this is

higher than with the IAC distribution, the Condorcet winner receives a much smaller benefit

from reducing the variance of the supporting space or increasing the variance of the density
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distribution in the representation cube.

The antiplurality vote is simply less friendly to a Condorcet winner. The differences become

smaller as distributions concentrate nearer the origin, and in particular as we move away

from the outer edges and corners of the representation cube - which is also one consequence

of shifting to an rS-type distribution. Closer to the origin, the behavior of plurality and

antiplurality become more similar.

3.10.2 The larger picture

There are several significant results that should be emphasized in addition to the computa-

tional results. The most important development within this chapter is the demonstration

of an intuitive method of calculating the probability of a Condorcet paradox under a given

probability distribution. While the specific results of 6.25% for IAC itself and 8.8% for large

numbers of voters and IC are known, we can extend these figures to large numbers of other

related distributions, and also provide a method of swiftly computing the results for most

possible probability distributions.

Another key result is that there are certain figures which are highly insensitive to choice of

probability distribution; that is to say, nearly every ”natural” choice of probability distri-

bution gives us an identical probability that a profile is strongly transitive (75%), and an

incredibly wide variation in probability distributions all give us a similar small chance that a

Condorcet winner loses a Borda count (9-10%). What this tells us is that if we observe rates

outside this range, some very basic assumptions common in the literature are wrong; and

it also tells us that we cannot meaningfully distinguish between probability distributions by

observing those particular rates.

Predictions of Condorcet upset probabilities with plurality and antiplurality votes are, on the
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other hand, sensitive to choice of distribution. While a large class of distributions underlies

any particular observation of (for example) the probability with which a Condorcet winner

wins, It is also worth noting that the antiplurality vote has significantly more difficulty in

meeting the Condorcet winner criterion, and that this rate is not especially sensitive to the

distribution of reversal components though antiplurality votes violating the Condorcet loser

criterion is highly dependent on the presence of reversal components.

This is not true of all combinations, and some, such as the combination of a Condorcet

winner and a plurality vote, have a predicted frequency that varies wildly based on different

probability distributions. In spite of this, the techniques of this chapter illustrate a potential

hazard in trying to guess the probability distribution of profiles based on plurality vote

outcomes: For intermediate figures, there are a wide range of very different probability

distributions that give the same probability of a Condorcet winner losing a plurality vote.
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Chapter 4

A Geometric Model of Manipulation

and Error in Single and Multiple

Stage Elections

4.1 Introduction

In the study of voting systems, a common concern is whether or not particular systems are

vulnerable to strategic action. From the Gibbard-Satterthwaite theorem (Gibbard [1973]

and Satterthwaite [1975]), it is known that nearly all voting systems1 become vulnerable to

strategic action when there are three or more candidates - in theory. It has been suggested

that in practice, the Borda count is less vulnerable (see saa and Forsythe et al. [1996])

to strategic action than other positional methods, but others have also suggested that in

practice, it encourages insincere voting (in the sense used in Bassi [2014], insincere voting is

a subset of strategic voting). It is also well known that multiple stage systems (runoffs) have

1The principal exceptions being a dictatorship, and a lottery system where a random voter is selected to
be the single decisive voter.
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difficulties with non-monotonicity, which provides an incentive for strategic voting. Some

have even suggested that runoff elections are less likely (e.g., Niou [2001]) to inspire strategic

behavior from voters. The element of strategic voting is one of the chief reasons for advocacy

both for and against runoff elections.

This chapter uses a geometric model to explore the interaction between positional voting

rules used in a given stage, whether that voting stage is final or intermediate (to be followed

by another election), and the depth of vulnerability to a certain type of strategic action. By

certain type of strategic action, we are referring to a comparison between the results with

a given electorate, and the results given the addition of a fixed share ε of votes controlled

by an agent who has full information about the other votes cast. In addition to providing

an estimate of the power of good information about other voters’ votes, this model can also

be applied to the case of accidental error, random variations in turnout, small shifts in the

electorate, or the fraudulent addition of a small number of ballots during the counting stage.

this chapter does not address large-scale strategic manipulation on a platform or ticket level.

Under the most basic assumptions, in which results of the voting rule are uniformly dis-

tributed, the model in question suggests parity between particular single and multiple stage

voting rules. It also exhibits a set of symmetries which show that a single stage election using

a plurality vote is most closely related to a multiple stage election using an antiplurality vote

to eliminate one candidate at a time. Conversely, an antiplurality vote carried out in a single

stage is most closely related to a multiple stage election using a plurality vote to eliminate

one candidate at a time. More sophisticated treatment bringing in a class of more plausible

probability distributions will suggest that having more stages generally makes a system less

vulnerable to manipulation or error; this breaks the symmetries described above.

The model also shows the Borda count to be considerably less vulnerable to small-scale

manipulations, particularly as the number of candidates n increases, in line with saa. There

is little difference between a single and multiple stage Borda count under the assumption of a
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uniform distribution of results; however, as with all other positional methods, more plausible

probability distributions suggest a significant difference between a single stage election using

a Borda count and a multiple stage election using a Borda count.

4.2 Contributions to the literature

Studies of actual voters voting in actual elections can and have been conducted which ask

voters how they would have voted with a different electoral system (for a professional society

election, see Saari [2001] & Brams and Fishburn [2001]; and for a political election, see

Laslier and Van der Straeten [2008]). There is a long list of difficulties faced by this empirical

literature:

• Voters may vote strategically more often, less often, or in a qualitatitively different

way if the voting rule is different.

• Voters may express preferences based post hoc on their strategic vote in the election

at hand, rather than write down what is effectively an admission of strategic voting on

their ballot.

• Voters may collectively learn how a voting rule works for a given electorate over mul-

tiple elections; thus, the general behavior of a given body of voters under an alternate

electoral system may not emerge immediately even after actual elections, making vot-

ers’ forecasts of their own hypothetical behavior less likely to be accurate.

• Different voting rules may alter the dynamics of the campaign leading up to the election.

• In some cases, voters may fail to understand a voting system that is not currently

being used, and not be willing to invest time into thinking seriously about how to vote

in that system when there is little reason to.
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• It is very difficult to obtain the information necessary to begin an analysis of a 3+

candidate election under alternate voting rules; thus, most studies examine a relatively

small number of elections. In such an environment, it is difficult to understand what

appears to be a general case and what is particular to a given election; and extremely

difficult to test hypotheses about probability distributions of profiles of voters.

Some of these difficulties are amenable to study in the laboratory.Strategic behavior has been

noted in voters in a laboratory setting (see Forsythe et al. [1996] Bassi [2014] Blais et al.

[2007] Blais et al. [2010] directly, and Palfrey [2009] for an overview of multiple experiments).

Past experiments have generally been restricted to three candidates, limiting the ability to

measure the strategic response, especially for elections with multiple stages, and have often

used a small number of very specific profiles of voter preferences (as in Forsythe et al. [1996]).

The model developed in this chapter is useful for several reasons. First, it provides a theoreti-

cal framework under which choice of probability distribution is relatively easy to manipulate;

and under which it can be seen that some results emerge not simply for a couple of par-

ticular probability distributions, but for a large class of probability distributions meeting

a simple set of criteria. Second, it will offer some perspective in systematically examining

the dynamic of strategic behavior. The model used in this chapter shows that a Duverger’s

Law type dynamic emerges naturally in a plurality system as the product of a feedback loop

between information and intention to engage in strategic voting; but that other voting rules

will show a different dynamic.

4.3 Result space

To begin with, we consider the space of possible outcomes of a given voting rule over a given

number of candidates. This could be viewed as a discrete set, containing the set of possible
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rankings, but doing so is trivial. We will take result space to be a subset of Rn, and in

particular normalized to be a subset of [0, 1]n; each axis gives each of the n’s candidates

share of points, relative to the maximum number of points they could receive. (If votes are

assigned a rational weight and the voting body is finite, the actual result space is a subset

of (Q ∩ [0, 1])n, but this distinction is not useful in the present work.)

This produces two general classes of voting rules. For convenience, when referring to the

result space of a particular rule over n candidates, we will refer to the normalized result space

for the general case for that voting rule. Every specific election has a particular result space

associated with a particular election and electorate; it has N voters, each with a weight wi,

leading to a grid of possible results. By normalizing, we restrict our analysis to a familiar

space; and by examining the general case, we avoid dealing with specific integer effects tied

to some particular value of N or combination of weights. (For example, even-odd effects

related to ties.) Note that for some theoretical scenarios involving infinite voters, the space

cannot be normalized; we are excluding such cases a priori from our analysis. This defines

a continuous subspace of [0, 1]n, Rrule, for each voting rule.

Each particular positional voting rule (plurality, anti-plurality, “vote for 2,” etc) has a result

space contained within a minimal continuous object Rrule of dimension n−1 within Rn. Some

multiple positional rules (such as an approval vote) have a result space Rrule corresponding

to a non-planar object of dimension n. To give a number of specific examples:

For an approval vote,in which a voter may choose to give each candidate either 0 or 1

point, , Rn,approval is [0, 1]n. For any point (x1...xn) ∈ [0, 1]n with rational points and common

denominator dividing a number of voters N , we can construct that point by placing N voters

in order, having the first xiN of the voters approve of candidate i, and the next (1 − xi)N

disapprove. Since [0, 1]n is the maximum possible result space, a proof is complete.

For a range vote, in which a voter may choose to give each candidate any number of points
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from 0 to 1, Rn,range is also [0, 1]n. Again, for any (x1..xn), we may construct this outcome by

having a unanimous election where each voter gives candidate i points equal to xi; summed

over all voters, this averages out to xi of the maximum possible vote.

For a plurality vote, where each voter votes for a single candidate (giving them 1 point

and other candidates 0 points), Rn,plurality is the standard unit simplex ∆n−1 of dimension

n − 1; or equivalently, the intersection of [0, 1]n with the plane of points whose coordinates

sum to 1. We can see this by noting that every outcome must lie inside the convex hull of

unanimous outcomes; and each unanimous outcome is one of the standard unit vectors.

For a cumulative vote, where each voter divides up a single point between as many can-

didates as they like, Rn,cumulative is the same as Rn,plurality. For any point in the standard

unit simplex, (x1..xn), we have that
∑
xi = 1, which means that if a voter assigns xi points

to each candidate i, the voter has cast a complete cumulative vote; so we can construct the

result (x1..xn) with a unanimous electorate by having every voter assign xi points to the ith

candidate.

For an antiplurality vote, where each voter votes against one candidate, giving them 0

points and all other candidates 1 point, Rn,antiplurality is a simplex that is the convex hull of

1 − ei, where ei is one of the stardand unit vectors and 1 is the sum of all standard unit

vectors. This is, as with the plurality vote, the convex hull of the n unanimous outcomes

where voters unanimously vote against candidate n. Note that we may write, as a vector

equation:

Rn,antiplurality = {1− x | x ∈ Rn,plurality} (4.1)

This tells us that Rn,antiplurality is an inverted image of Rn,plurality. In particular, it is reflected

through the point 1
2
1.
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For a voting rule that assigns 1 point to the candidates ranked above average, and 0 points to

candidates below average, with a median candidate (for odd n) getting 1
2

point, Rn,approvehalf

is equal to
{
x|
∑n

i=1 xi = n
2

}
∩ [0, 1]n. Note that any result within this object (up to the

rational restriction) can be constructed using a range vote. Moreover, it can be constructed

with a unanimous electorate, whose average level of approval of candidates is 1
2
. Assuming

the index is ordered such that xi ≥ xj when i < j, we begin at the center with the indices

i, j closest to but not equal to n/2, and add k0 = min{xi, 1−xj} ballots which assign 1 point

to all candidates with index ≤ i, assign 0 points to candidates with index ≥ j, assigning a

1
2

1/2 point to a candidate with index n/2 if such exists. Then we define xi,1 to be the ith

largest value of {xj − k | j ≥ n/2} ∪ {xj | j ≤ n/2}, re-indexing our remaining needed total,

and repeat this process. This algorithm completes to a legal “approve half” set of ballots

after at most n steps.

For a Borda count, Rn,borda is a subset of Rn,approvehalf . Note that there are n! unique

permutations, and thus n! unique unanimous electorates; Rn,Borda is thus the convex hull of

the set of points of form ( m1

n−1 ...
m2

n−1), where {mi}i=1..n = {0, .., n− 1}. For n = 3, this convex

hull is the whole of R3,approvehalf ; for n ≥ 4, this is a strict subset of Rn,approvehalf . (For a

particular point of reference, consider (0, 0, 1, 1); it is not in R4,Borda, as at most one candidate

may have a normalized score of 1 (being then top-ranked on all ballots unanimously), and

at most one candidate may have a normalized score of 0 (being then bottom-ranked on all

ballots unanimously).

When we talk about an undefinined number of voters N and make Rn,rule a continuous ob-

ject, as in the above treatment, results tend to apply very accurately when the number of

voters is large, and especially when it is both large and not fixed; though it is less accurate

with a fixed small number of voters. The analysis produced by the continuous approxima-

tion remains qualitatively useful, however, even in those cases. As exhibited above, the result

space is not necessarily unique to a given rule. In scenarios where the number of voters is
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Figure 4.1: Result spaces for plurality, Borda count, antiplurality, approval, and restricted
approval
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large enough that a continuous result space is a reasonable approximation, the difference

between a cumulative vote and plurality vote is not very different when it comes to manip-

ulating the results. (Such differences that exist in this model will exist solely in terms of

probability distributions on result space.) We have listed seven distinct rules, but only four

unique result spaces for n = 3. A fifth space emerges with the “non-trivial” or restricted

approval vote - an approval vote where voters must approve at least 1 and at most n − 1

candidates. Those five n = 3 result spaces are shown in Figure 4.1

Reflecting the C axis gives a useful perspective on the three planar result spaces relative to

the approval cube (left in Figure 4.2), and also gives a better look at the restricted approval

vote result space (right in Figure 4.2).

Note that the restricted approval vote is the convex hull of the plurality and antiplurality

result spaces. It is also worth noting that positional and multiple positional voting rules,
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Figure 4.2: Result spaces compared

A

B

C

A

B

C

once normalized appropriately, all have the same characteristic type of result space; that

result space a subset of the intersection of [0, 1]n with a band of possible point totals. In the

case of a plurality vote, that total is 1, meaning that the result space is the intersection of

the level set of 1 total vote with the [0, 1]n cube; in the case of an antiplurality vote, it is

n− 1; in the case of a Borda count, it is n
2
.

This relationship goes both ways. Each level set corresponds to a class of positional and

multiple positional rules where a voter has that many points to cast (once first place is

normalized to 1 and last place is normalized to 0); while each band from one level set to

another level set corresponds to a class of multiple positional rules where a voter can cast a

number of points ranging from the first level set’s value to the second level set’s value. These

classes can be further distinguished in a discrete treatment; but from within a continuous

approximation (and therefore when the number of voters is fairly large), these classes are

treated as equivalence classes of voting rules.

4.4 Regions of influence

The next key tool is the region of influence. This is a subset of the result space, tied to a

value ε representing the proportion of the total vote in play.

Definition 4.1 (Region of influence for n candidates). Given a positional or multiple posi-

tional rule, a number ε ∈ (0, 1), and a number of candidates n, the region of influence Iε,n,rule
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is the subset of Rn,rule in which the results could be altered by the addition of ε votes.

We restrict our definition to ε ∈ (0, 1) because cases outside of (−1, 0) ∪ (0, 1) are trivial,

and for ε < 0, we are dealing with subtraction of votes rather than addition of votes. We

will also define the region of influence over a particular set S as being:

Definition 4.2 (Region of influence over a set S of candidates). Given a positional or

multiple positional rule, a number ε ∈ (0, 1), and a set S of candidates the region of influence

Iε,S,rule is the subset of Rn,rule in which ε votes can be added to produce an outcome where

the members of S are ranked in any order.

The indifference set over a set S of candidates, a related concept, is:

Definition 4.3 (Indifference set). Given a particular voting rule, a space of possible out-

comes, and a set of candidates S, the indifference set IS,rule is the set of possible voting

outcomes where all candidates in S have the same ranking. These may be familiar as a

generalization of the indifference planes described in Section 2.4.

We use I to represent both sets, because we have that necessarily:

IS,rule ( Iε,S,rule (4.2)

Moreover, for any set X such that for each ε > 0:

X ( Iε,S,rule (4.3)

We have that:

IS,rule = X (4.4)
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That is, IS,rule is the unique subset common to Iε,S,rule for each ε > 0. Subset operations

give us relations common to IS,rule, and over Iε,S,rule:

Lemma 5. If S ⊆ T , then IS,rule ⊇ IT,rule.

Likewise:

If S ⊆ T , then Iε,S,rule ⊇ Iε,T,rule.

To prove this, note that if S ⊆ T , and all members of T are tied, as they are within IT,rule,

then all members of S, being members of T , are also tied, so we are within IS,rule. Then, to

address the region of influence, suppose that P is an ordering of of S, a set of m candidates

and a subset of T . Then the ordering P ∗ such that P ∗’s first m terms are equal to P , followed

by all members of T − S, is an ordering of T , and the ordering P ∗ produces the order of P

on the set S. So any point within Iε,T,rule, an agent with ε votes can produce P ∗ on T , and

therefore P on S.

Lemma 6. I∪iSi,rule ⊆ ∩iISi,rule

Likewise:

Iε,∪iSi,rule ⊆ ∩iIεSi,rule

This follows from the previous lemma by finite induction; we need only recall the basic

set-theoretic fact that A ⊆ B and A ⊆ C together imply that A ⊆ B ∩ C.

The basic building blocks are regions of influence over pairs of candidates. These are the

maximally sized regions of influence; the intersections of those sets bound regions of influence

over triplets and larger sets. Regions of influence over pairs of candidates are also the only

regions of influence of scale ε, as opposed to ε2 and higher order terms; thus, if ε is small,

accurate approximations of the vulnerability of a system to manipulations of order ε need

only consider regions of influence over pairs.

109



Figure 4.3: Regions of influence over {A,B} in, respectively, plurality, Borda count, antiplu-
rality, approval, and restricted approval result spaces
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4.4.1 Motivating examples

To illustrate the regions of influence over pairs, we go to n = 3 candidates and each of the

five distinct result spaces we have constructed for n = 3. Figure 4.3 shows I0.1,{A,B},plurality,

I0.1,{A,B},borda, I0.1,{A,B},antiplurality, I0.1,{A,B},approval, and I0.1,{A,B},restrictedapproval

Compare these with the equivalent regions of influence over {A,B,C} in Figure 4.4

For sets of 2 candidates, {X, Y }, we may state that:

Iε,{X,Y },rule = Iε,{X,Y },approval ∩Rrule (4.5)

Essentially, this is a consequence of normalization; after normalization, each rule offers an

equal opportunity for an added set of ε votes to give ε points to one candidate in the set

while giving 0 points to the other candidate in that set. It is, however, worth using the case

of a region of influence over two candidates to demonstrate the systematic construction of a

region of influence.
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Figure 4.4: Regions of influence over {A,B,C} in, respectively, plurality, Borda count,
antiplurality, approval, and restricted approval result spaces
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The construction is as follows:

Iε,S,rule =
⋃

x∈IS,rule

{
y ∈ Rrule | ∃z ∈ Rrule∃k ∈ R

(
y + εz = x+

ε

n
(k, .., k)

)}
(4.6)

Specifically, k in the above equation will be a number in the set of possible total number of

points given by a ballot under the rule in question. So for a plurality vote, k = 1; for an

antiplurality vote, k = n− 1. For convenience, we will refer to the maximal such k as krule.

To explain this process as a step by step algorithm:

• Consider a target point within Rrule, x = (x1, .., xn).

• An equivalent outcome is given by x′ = (x1 + εkrule
n
, .., xn + εkrule

n
) for any particular

choice of k.

• For each point y ∈ Rrule, let Y be the set given by the possible addition of ε votes. (Y

is then the ε-scale image of Rrule, translated to (1 + kε)Rrule).

• Define Ex as follows: y ∈ Ex iff x′ ∈ Y . X is then the set of results within Rrule that
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Figure 4.5: Constructing a region of influence
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can become equivalent to x with the addition of ε votes.

• The union of all such Ex over every choice of x in the indifference set over S is the

region of influence.

An important fact about Ex that allows for better conceptual understanding is that it is a

reflected, ε-scaled, and translated image of Rrule. k in the above process will be a number

of points that can be legally assigned by the rule

A visual illustration of this process is shown in Figure 4.5

If the result space Rrule is an n − 1 dimensional object within the n dimensional space of

candidate outcomes, the indifference set over the set S containing all n out of n candidates

is necessarily a point, which in turn means that the region of influence Iε,S,rule is a reflected

and ε−scaled image of the original result space. We may also state that:

Iε,{X,Y,Z},rule ⊆ Iε,{X,Y,Z},approval ∩Rrule (4.7)

This follows directly from Lemma 6 and Eq. 4.5. That this subset relation is not always

equality is illustrated directly by the plurality and antiplurality examples.
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4.5 A simplistic analysis of the approval vote

As exhibited in Eq. 4.7, we know that analysis of the approval vote (or, equivalently in this

treatment, the range vote) gives us very interesting information about all other positional

and multiple positional methods. Exploring this further, we may very directly compute the

exact size of Iε,S,approval for any S and an approval vote over n candidates. Letting s be the

number of elements of S, we have that:

‖Iε,S,approval‖ = sεs−1 − (s− 1)εs (4.8)

Similarly, we can count the number of such distinct regions of influence as
(
n
s

)
; so the total

volume of all regions of influence over sets of size s in an approval vote is approximately:

(
n

s

)
sεs−1 (4.9)

If we have that, for some particular s:

ε <<
s+ 1

sn− s−2
(4.10)

Then:

(
n

s+ 1

)
(s+ 1)εs <<

(
n

s

)
(s)εs−1 (4.11)

Implying that the sum total area of regions of influence over sets of 3 candidates is consider-

ably smaller than the sum total area of regions of influence over sets of 2 candidates. Note

that the right half of Eq. 4.10 is increasing in s. So if Eq. 4.10 holds for any particular s, it
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holds for all larger s. Inductively, then, if we have the simple base case of:

ε <<
3

2

1

n− 2
(4.12)

Then we have that the regions of influence over 2 candidates are significantly larger than

all other regions of influence. So in the case that Eq. 4.12 holds, it is appropriate to focus

almost entirely on regions of influence over 2 candidates; and further, the total volume within

non-trivial regions of influence is approximately:

2

(
n

2

)
ε1 = n(n− 1)ε (4.13)

This is an overestimate, with higher order (e.g., ε2) terms reducing this volume. On the other

hand, the areas where multiple regions of influence overlap are also regions in which that

influence can be exercised in more directions, and hence it is far more likely that this influence

can be exercised to produce a more desirable outcome; so if this is a good approximation of

how likely someone controlling an ε-share of the vote is able to influence the outcome, then:

n(n− 1)ε

2
(4.14)

is an excellent (that is to say, better) approximation of the probability that such an agent

would be able to influence the outcome in favor of their own preferences; or that a randomly

acting agent would cause the result of an election to change. This total volume increases

roughly linearly with ε, and roughly quadratically in n. The total volume of the result space

is 1; if we assume a uniform distribution over possible results (not a particularly realistic

assumption) the total volume of the regions of influence is also a measure of total probability.
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4.5.1 Approval vote, runoff, uniform distribution

We may now compare what happens if we conduct, instead of a single approval vote over n

candidates, a sequence of approval votes. We will assume that the distribution of results is

independently uniform over the candidates in each stage. (This is an exceptionally unrealistic

assumption for typical scenarios, but useful for the purpose of creating a baseline case.)

During each stage, one candidate is eliminated. During the kth stage, we have eliminated

k − 1 candidates, and there are n− k + 1 candidates remaining. Thus, the total volume of

the regions of influence is approximately:

(n− k + 1)(n− k)ε (4.15)

Within each region of influence over a pair of candidates {X, Y }, outside of the subset that

overlaps other regions of influence, we may divide the region of influence into n− k distinct

sub-regions: One where X and Y are in first and second place, one with X and Y in second

and third place, all the way out to n − k + 1th place and n − kth place. For an approval

vote, each of these sub-regions is of equal size (this is not true of a plurality or antiplurality

vote). Moreover, since each stage decides the elimination of a single candidate alone, rather

than deciding a complete rank order of candidates, only the sub-region where X and Y

are competing for last, i.e., n − k + 1th, place is relevant to the final outcome. This is

approximately 1
n−k of each region of influence over a pair of candidates; so the total volume

in which the final results can be influenced is given by:

(n− k + 1)ε (4.16)

Summing over k = 1 to k = n− 1 for all stages gives a simple finite summation:

n−1∑
k=1

(n− k + 1)ε =
n∑
k=2

k =
n(n+ 1)

2
− 1 (4.17)
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This is strictly less than the quantity seen in Eq. 4.13. As n increases, Eq. 4.17 rapidly

approaches one half of Eq. 4.13. It would appear as though introducing runoff stages

makes an approval vote less easily manipulated. This is true, provided that one of two

conditions holds. The first of those two conditions is that we are equally concerned with

all place rankings. The alternate condition is that the probability distribution of results is

more favorable (meaning more decisive more often) for elections involving smaller numbers

of candidates. We will examine the first condition, as it is particularly relevant to elections,

and also serves to further illuminate distinctions between plurality and antiplurality votes.

4.5.2 The special case of a unique winner

For many elections (or competitions), there is very little difference between a second-place

finish and a third-place finish - or last-place finish - but a great deal of difference between a

first-place finish or a last place finish. In the extremal (but not at all uncommon) case that

a competition or election is designed to select a single winner, we may optimistically ignore

most possible manipulations, concentrating our intentions strictly on those that chance the

first-place winner. By the symmetry of the approval vote, we have that in a single stage

election, approximately 1
n−1 of each region of influence over pairs involves a difference between

first and second place, giving us a total volume of:

n(n− 1)ε

n− 1
= nε (4.18)

For a multi-stage vote, the reasoning becomes more complex. Note first that the size of O(ε2)

terms suggests that in most cases where alteration of the results is possible, it occurs only

in one key stage. If that key stage is the final (k = n− 1) stage, any alteration of the rank-

ordering is decisive. However, for all previous stages, causing candidate X to be eliminated

in place of candidates Y alters the results under a more narrow set of circumstances. In
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particular, the direct methods of doing so:

• Candidate X, who wins without the addition of ε votes, would otherwise survive all

subsequent rounds, including the final round, winning out of the remaining n − k

candidates.

• Candidate Y who loses without the addition of ε votes, would subsequently survives

all subsequent rounds, including the final round, winning out of the remaining n − k

candidates.

Considering the direct methods of influence, we divide Eq. 4.16 by n − k, which in turn

implies a summation of:

n−1∑
k=1

n− k + 1

n− k
ε = nε+ ε

n−1∑
k=2

1

k
(4.19)

This is close to Eq. 4.18; it is higher, although ratio between the two is no higher than

7:6. The basic possibilities for direct manipulation are comparable; the question is balancing

the expected positive correlation in the electorate from stage to stage (which decreases the

likelihood of earlier eliminations affecting the eventual first-place winner) against indirect

manipulation for n ≥ 4. This is, in some sense, a negative result: This analysis shows a

significant difference in manipulability only in the case where the complete ranking matters,

but not in the case where only a first place winner matters.

This is important as a base case. We will next consider what happens with systems other

than an approval vote.
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Figure 4.6: Regions of influence over {A,B} in plurality (left) and antiplurality (right) result
spaces
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4.6 Plurality and antiplurality, uniform distribution

For plurality and antiplurality votes, the indifference sets over pairs of candidates are sim-

plexes of dimension n− 2, within the result space that is a simplex of dimension n− 1. To

recall the regions of influence, see Figure 4.6.

The ratio between the original result space and Iε,S,plurality over a pair is then approximated,

to within O(ε2), by the ratio between simplex volumes:

‖Iε,S,plurality‖
‖Rplurality‖

= (n− 1)ε+O(ε2) (4.20)

Which means that the total region of influence is approximately given by:

‖
⋃
S Iε,S,plurality‖
‖Rplurality‖

= n(n− 1)2ε (4.21)

These two figures apply, identically, to an antiplurality vote. However, the symmetry present

in the regions of influence for an approval vote is absent. Combining with Eq. 4.13, we have

that:

Lemma 7. The region of influence over S with an approval vote is approximately 1
n−1 of the

region of influence over S in a plurality or antiplurality vote.

This suggests, but does not prove, that as n increases, plurality and antiplurality votes gain
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Figure 4.7: First-place and last-place subregions of influence over {A,B}
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a signficant amount of resistance to small-scale manipulation and small errors. In order

to examine the case for a multi-stage election, we must specifically examine the regions of

influence over different place ranks. In particular, we will focus on the region of influence

over first place (important to the case of a unique winner) and over last place (important

for a maximized series of elimination stages).

From left to right in Figure 4.7: First place in a plurality vote, first place in an antiplurality

vote, last place in a plurality vote, last place in an antiplurality vote. Note that these all

include, as a subregion, the region of influence over {A,B,C}. This is an antisymmetric

relationship; the last place region in an antiplurality vote corresponds to the first place

regions in a plurality vote, and vice versa. In the case of n = 3, these subregions are

approximately 1/3 and 2/3 of the region of influence over a pair of candidates.

The indifference set over {A,B} for a plurality vote over n candidates is an n−2-dimensional

object (for n = 3, a line segment)
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For general n, in a plurality vote, we have that the indifference set over {A,B} in last place

is given by the convex hull of the universal indifference point (where all candidates receive

1
n

votes) and the following set of n− 2 points:

{(0, 0, x1, .., xn−2) | ∃k(xi = 1↔ i = k&xi = 0↔ i 6= k)} (4.22)

The set in 4.22 plus the indifference point forms an n− 2-simplex. The volume of an n− 2-

simplex is given by:

√
det(W TW )

(n− 2)!
(4.23)

Where W is the matrix of column vectors of form vi − v0 for i = 1..n− 2. In this particular

case, taking the indifference point as v0 gives:

W =



− 1
n

. . . − 1
n

− 1
n

. . . − 1
n

n−1
n

. . .
...

− 1
n

. . . − 1
n

...
. . . n−1

n


(4.24)

Which means that:

W TW =



n−1
n

−1
n

. . . −1
n

−1
n

. . . . . .
...

...
. . . . . . −1

n

−1
n

. . . −1
n

n−1
n


(4.25)

Conveniently:

det(W TW ) =
1

n
(4.26)
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Which leads to the conclusion that:

‖Iplurality,{X,Y }‖ =

√
det(W TW )

(n− 2)!
=

1

(n− 2)!
√
n

(4.27)

The first order approximation of the volume of the subregion of influence over last place is

then:

‖Iε,{X,Y },plurality,last‖ =

√
n− 1ε

(n− 2)!
√
n

(4.28)

Note that the volume of the result space is given, similarly, by:

‖Rplurality,n‖ =

√
n

(n− 1)!
(4.29)

The ratio of this subregion to the whole space is then:

‖Iε,{X,Y },plurality,last‖
‖Rplurality,n‖

=
(n− 1)3/2ε

n
(4.30)

Compare this with Eq. 4.20, which is linear in n: What this tells us is that the share of

the result space taken up by the subregion of influence over last place is persistently large,

taking up an increasingly disproportionate share of the total region of influence. If the

subregions were equal, the ratio between 4.30 and 4.20 would be n − 1. Correspondingly,

the subregion of influence over first place shrinks significantly as n increases, taking up a

similarly disproportionately small share of the region of influence. These leads immediately

to a large set of results:

Theorem 4.1. 1. In the case where an election leads to a unique winner, rather than a

ranking outcome, a plurality vote, conducted in a single stage, offers fewer possibilities

for manipulation than an antiplurality vote, conducted in a single stage.
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Figure 4.8: Region of influence over {A,B} in a Borda count
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2. In the case where an election is carried out in multiple stages, an antiplurality voting

rule in each stage offers fewer possibilities for manipulation than a plurality voting rule.

3. An antiplurality voting rule n−1 stage election over n candidates, eliminating one can-

didate per stage, offers fewer possibilities for manipulation than a single stage election

using a plurality voting rule.

4. A plurality voting rule n−1 stage election over n candidates, eliminating one candidate

per stage, offers fewer possibilities for manipulation than a single stage election using

an antiplurality voting rule.

This theorem extends from possibility to probability if we add certain assumptions relating

the probability distribution of results for different voting rules.

4.7 Borda Count and the complete n = 3 comparison

For n = 3, Iε,{X,Y },borda is shown in Figure 4.8.

This region has an area of:

‖Iε,{A,B},borda‖ =
√

3ε (4.31)
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Note, incidentally, that this is only an O(ε2) term away from the area of the region of

influence over the same pair for a plurality or antiplurality vote. The result space, however,

is larger for the Borda count:

‖R3,borda‖ =
3
√

3

4
ε (4.32)

Which leads to a smaller ratio:

Iε,{X,Y },borda
‖R3,borda‖

=
4

3
ε (4.33)

Recall that the corresponding figure for a plurality or antiplurality vote is given by:

Iε,{X,Y },plurality
‖R3,plurality‖

= 2ε−O(ε2) (4.34)

This is, in other words, quite substantially less. As a first-order approximation of the total

region of influence, we have that:

⋃
{X,Y } Iε,{X,Y },borda

‖R3,borda‖
= 4ε−O(ε2) (4.35)

The Borda count is symmetric with regard to first and last place; so in the event that we

are only concerned with first place manipulations, we have that:

⋃
{X,Y } Iε,{X,Y },borda,first

‖R3,borda‖
= 2ε−O(ε2) (4.36)

Up to O(ε) terms, this is comparable to the subregions of influence over first place in a

plurality vote, which represent roughly one third of the total region of influence for a plurality

vote at n = 3:

⋃
{X,Y } Iε,{X,Y },plurality,first

‖R3,plurality‖
= 2ε−O(ε2) (4.37)
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This suggests the following result:

Theorem 4.2. For n = 3 candidates, if ε is small, the following holds:

1. Under a uniform probability distribution over possible results, a Borda count with ma-

jority runoff has regions of influence that differ only by a small amount from a single

stage election using a Borda count

2. A Borda count result space has first-place subregions of influence that differ only by a

small amount from the first-place subregions of influence for a positional or multiple

positional method that distributes between 1 and 3
2

normalized points per ballot; and

by a larger amount for positional or multiple positional methods that distribute ≥ 3
2

normalized points per ballot.

3. A Borda count result space has smaller regions of influence, relative to its result space,

than any other positional or multiple positional method.

Part 1 is proven by the above calculations. The above calculations also demonstrate the spe-

cific case of plurality and antiplurality for parts 2-3. To extend this to the whole continuum

of possible results is fairly simple.

To prove part 2, we note first that for n = 3 all positional and multiple positional rules that

are normalized (i.e., a maximum value of 1 for a first place candidate, and minimum value

of 0 for a last place candidate) produce a result space that is simply a cross-section of the

approval result space at the level set of k points. From k = 1 to k = 3
2
, the area of these

cross sections increases linearly; from k = 3
2

to k = 2 it decreases linearly; and from k = 2

to k = 3 quadratically.

At the same time, the size of the indifference subsets presenting ties between first and second

place increases linearly from k = 1 to k = 2. The base case of a plurality vote shows that

the ratio of the size of the indifference sets to the size of the result space is equal at k = 1
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and k = 3
2
; since this is a ratio of two linearly increasing components, it must be monotone,

which gives us equality throughout this span. For k > 3
2
, we have a decreasing area of the

result space as the indifference subsets increase in size, which necessarily means that the

ratio between the indifference subset affecting first place and the result space increases. This

extends, up to O(ε2) terms, to the regions of influence.

To prove part 3, we use a similar argument: The indifference sets remain of constant size

from k = 1 to k = 2. Moving away from this band with k < 1 (k > 2), the indifference sets

decrease in size linearly, while the cross-sectional area decreases quadratically as k decreases

(increases, for the k > 2 case). The ratio of cross-sectional size to indifference set size is

therefore maximized at k = 3
2
, where the cross-sectional area is maximized.

4.8 Dynamics

One of the key results of this chapter is taking note of the strong symmetry between an

n − 1-stage plurality vote over n candidates, and an antiplurality vote. In the above, the

reasoning is quantitative and static. We considered the result space as it is, with a single

strategic agent who has a single opportunity to attempt to change the results.

Elections are frequently preceded by a period during which voters form opinions about can-

didates, and also consider predictions about how other voters are likely to vote (a campaign,

in other words). This is a dynamic process, and strategic voting in reality occurs within this

dynamic process. Different voters have, at different points in a campaign, different amounts

of information. Voters support candidates based on a combinaiton of preferences, viability,

et cetera.

Does the choice of voting rule affect this dynamic? It seems that it ought to. There can be

a feedback cycle between information about the likely outcomes of an election, and voters’
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intentions. In particular, Duverger’s Law (see Riker [1982]) can be viewed as a dynamic

result: Voters perceive a candidate as non-viable, and make plans to vote for a more viable

candidate. This, in turn, makes the candidate look less viable, leading eventually to removal

of that candidate from the set of considered candidates entirely.

In this section, we will move from a single stage of manipulation to an iterative process,

which can be viewed as simulating either a dynamic exchange between voting intentions and

information over time, or increasing level-k information about the rest of the electorate.

4.8.1 A response heuristic

Formally speaking, rational evaluation of information requires careful evaluation of error

structures. In practice, the typical error structure will be closely associated with a normal

or lognormal distribution. When information is of good quality, there will generally only

be one region of influence over one pair of candidates which contains a non-trivial weight

of probability. If we have an agent with ε share of the vote (with ε small), who views all

candidates as having non-trivial differences, the rational utility-maximizing behavior of that

agent closely approximates a very simple heuristic:

• Identify the nearest indifference set over a pair of candidates.

• Cast an ε share of the vote, maximizing the component of vote orthogonal to that

indifference set.

Figure 4.9 illustrates this process.

From left to right in Figure 4.9, we have a projected election result; the nearest indifference

set; and then the two vectors which maximize moving towards or away from that indifference
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Figure 4.9: Process of voting strategically, plurality vote
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Figure 4.10: Iterated strategic votes
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set. Note that we have illustrated a plurality vote. If we iterate this process, we construct

a path; this can be viewed as a sequential response to increasing information, changing

information, or k-level responses.. There are several interesting features of the paths in

question. (Figure 4.10 shows several sample paths, viewed from two different perspectives.)

The salient boundary (nearest indifference set) remains the same regardless of how many

voters are added. This, in turn, implies that the strategic responses remain the same - in

the case of a plurality election, to vote for one of the two most popular candidates. It is also

worth noting that the strategic response is to vote in alignment with existing voters, rather

than against it. This behavior holds for higher n, and is more striking in that environment.

This dynamic reproduces Duverger’s Law.

Note that the same dynamic - with the same illustrations - applies to any given stage of a

multi-stage election using an antiplurality vote and eliminating one candidate at a time.
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Figure 4.11: Process of voting strategically
Plurality, antiplurality, and Borda Count
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Next, we consider the case of a single-stage election using an antiplurality voting rule, dis-

played in Figure 4.11.

In the case of a plurality vote, the strategic responses move inward. Agents acting to make

B defeat A, or vice versa, add support to C along the way. This may eventually bring the

projected result closer to the {A,C} or {B,C} indifference set, at which point the appro-

priate strategic response shifts, as well. Strategic voters are encouraged to vote differently

from how the projected population votes. Anti-coordination leads to an unstable dynamic,

diverging to different possible results depending on the order in which voters respond to

information about the projected outcome of the election. Again, the geometric symmetry

of the situation dictates that this instability also applies to multi-stage elections run with a

plurality vote, eliminating a single candidate at a time.

Instability, interestingly, leads to strong motive for deception if strategic voters are numerous.

We now consider a Borda count, also illustrated in Figure 4.11.

The dynamic of the Borda count is unstable, but marginally so. Rather than heading towards

the origin, it tends towards orbiting at a fixed radius from the axis of universal indifference.

A large shift in one or the other direction can bring the projected result closer to another

indifference set; albeit considerably more slowly than with an antiplurality vote.
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4.9 Conclusions

The models used in this chapter has implications for comparing the various positional and

multiple positional voting systems. In particular, they tell us about two different forms of

stability. In a static sense, we can think of stability as resistance to manipulation by a small

number of well-informed voters, and resistance to random errors. In a dynamic sense, we

can think of stability in terms of whether a dynamic feedback cycle between information and

voting intentions involves significant changes; and also, whether or not it tends to lead to a

stable equilibrium.

This model shows a number of intriguing relationships between systems, and between the

two types of stability (dynamic and static). A plurality election has a strong kinship to a

Coombs rule. An antiplurality election has a strong kinship to a plurality vote with successive

elimination stages. A Borda count is somewhat akin to an approval vote if voters approve and

disapprove symmetrically, but especially close kin to the positional rule where the top half

of candidates get points. Plurality votes and Coombs elections show coordination between

voters to vote similarly to one another in a dynamic setting (leading to a Duvergian-type

dynamic), and also have less vulnerability to manipulation of first place rankings in a static

setting; while antiplurality votes, and plurality-based runoff systems, show anti-coordination

in a dynamic setting and a strong chance of manipulation of first-place winners.

The Borda count performs relatively well in all theoretical settings, both in a single stage

and as a rule for multi-stage elimination elections; it does not stabilize dynamically in a

Duvergian fashion. For n = 3, it and other positional and multiple positional methods that

share in common with a Borda count assigning n
2

all minimize the static vulnerability to

small-scale manipulations; and it can be strongly suggested that somewhere in this class of

rules is the rule that minimizes static vulnerability to small-scale manipulations.

In general, elections involving fewer candidates are better behaved. Classically, this is ex-
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hibited in the difference between May’s Theorem, for n = 2 candidates, and the various

impossibility theorems for n ≥ 3 candidates. A multiple stage rule takes advantage of this

fact by dividing the regions of influence up between elections with a large number of can-

didates and elections with a small number of candidates; in spite of this, though, eventual

first-place candidates are in theory vulnerable to elimination in an early stage, especially if

the electorate itself shows more independent behavior from stage to stage.
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Chapter 5

Concluding remarks

Ultimately, understanding of electoral dynamics requires both empirical understanding and

a good theoretical framework. The preceding work addresses, in general terms, questions

of probability and possibility regarding positional and multiple positional voting methods,

and iterative voting over subsets of candidates. This began in Chapter 2, which provides a

complete classification, for n = 3, of all possibilities for all positional methods compared to

the collected votes over subsets of size n = 2 (pairwise votes). Pairwise votes are of particular

interest, in that they are the simplest form of election. Condorcet winners, Condorcet losers,

and the Condorcet paradox are determined in terms of pairwise votes. May’s theorem applies

to majority votes, and the question of which rule to use for a pairwise vote (majority vote)

is a simple one.

Chapter 3 extends the work in Chapter 2 to probabilities, and also introduces probabilistic

comparisons between different positional methods via the intermediary of pairwise criteria.

One key feature of Chapter 3 is that it answers the question of what sort of probability

distributions over profiles lead to what probability of various voting paradoxes; and in par-

ticular, this work tells us that it is very difficult to distinguish empirically between a very
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large class of probability distributions using the probability of a Condorcet paradox alone, or

of any part of the relationship between pairwise votes and Borda counts, as these are highly

insensitive to otherwise dramatic changes in probability distribution of profiles. Another key

feature of Chapter 3 is that it shows that plurality and antiplurality do not lead to simply

symmetric outcomes; although the methods are symmetric pairs in the most obvious way,

pairwise criteria behave qualitatively differently, and in particular are much more strongly

consistent with a plurality vote.

Chapter 3 also opens up probabilistic comparisons of results directly between different posi-

tional methods, not merely between positional methods and pairwise votes. It answers the

question of how likely a plurality vote and Borda count are to agree, again contingent upon

choice of probability distribution. We can again see from this comparison as well that the

plurality and antiplurality votes are not simply mirror images of one another, but behave

qualitatively differently when it comes to agreement with Borda votes as well as pairwise

votes.

With Chapter 4, the n = 3 barrier of analysis is broken in looking at questions related

to stability - stability with respect to small-scale manipulation by informed voters, small-

scale errors, and also stability in terms of an informational dynamic between voters and

polling. Chapter 4, in looking at this relatively narrow problem, does so for all n and

most voting systems that have arisen in the literature, comparing positional methods and

multiple positional methods over n candidates with successive stages of elimination rounds,

each of which uses a positional or multiple positional method. Chapter 4 directly addresses

possibilities and does not directly address the problem of variable probability distributions,

although the question of likelihood can be expected to qualitatively follow the measures given

for the spaces of possibilities. (Some discussion of the influence of probability distributions

is found in an appendix.)

A key result of Chapter 4 is that plurality and antiplurality have a counter-intuitive anti-
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symmetry when reflected across multiple rounds; a series of plurality vote elimination rounds

is, with respect to strategic action, manipulation, and random error, more akin to an antiplu-

rality vote carried out in a single stage than with a plurality vote carried out in a single stage.

Chapter 4 does not answer whether or not this relationship will be visible in actual voting

behavior, that is, that voters will recognize the symmetry; an outline for an experiment to

test that hypothesis in a laboratory setting is contained within an appendix.
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Appendix A

A.1 Supplemental proofs for Chapter 2

Proof of Thms. 2.1 – 4: Some assertions are proved in Sect. 2.3, others are special cases

(s = 0, 1) of Thms. 2.6, 2.7. The exceptions are proved here. Assume Thm. 2.5 is correct.

To prove Thm. 1, parts 1 and 2, add α, β, γ values to each of the first three Fig. 2.2 essen-

tial profiles and determine what it takes to ensure the assertion. With Fig. 2.2a, because

P (A,C) ≥ 0, we have that e1 + e2 ≥ e3, or that the plurality tally for the essential profile

has A at least tied for first. If the ranking is strict (i.e., P (A,C) > 0), then A is the sole

plurality winner. Adding β terms improves A’s tally at the expense of C. (B cannot gain

enough advantage.) The same argument holds for Fig. 2.2b by interchanging B and C. A

similar argument holds for Fig. 2.2c, where the P (A,B) ≥ 0 assumption ensures A can be

a plurality winner. If P (A,B) > 0, A is the sole plurality winner for the essential profile.

Adding α terms helps A at B’s expense.

The argument for Thm. 3 and the antiplurality rule involves minor differences. To prove Eq.

2.8, start with the AB essential profile where the A,B,C antiplurality tallies are, respectively,
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e1 + e2 + e3 + α + β + 2γ, e1 + 2α + β + γ, e2 + e3 + +α + 2β + γ. (A.1)

By comparing tallies, for A to always beat B, it must always be that e2 + e3 > α− γ, for A

to always beat C, it must always be that e1 > β − γ. So, for A to beat B for all supporting

profiles, it must be that e2+e3 = 1
2
[P (A,C)+P (C,B)]+ 1

2
[P (C,A)+P (A,B)] = 1

2
[P (A,B)−

P (B,C)] is greater than q = 1
2
[n− P (A,B)]. This requires 2P (A,B) > n+ P (B,C), which

is Eq. 2.8. The other constraint of e1 = 1
2
[P (A,B)+P (B,C)] > q = 1

2
[n−P (A,B)] provides

the more relaxed 2P (A,B) + P (B,C) > n.

The analysis for the AC essential profile is the essentially the same; the A,B,C antiplurality

tallies are, respectively, e1 + e2 + e6 + α+ β + 2γ, e1 + e6 + 2α+ β + γ, and e2 + α+ 2β + γ.

The sharpest constraint again involves ensuring that A always beats B; this requires e2 =

1
2
[P (A,C)+P (C,B)] > q = 1

2
[n−P (A,C)], which becomes the Eq. 2.8 condition 2P (A,C) >

n+P (B,C). The condition ensuring that A beats C is the more relaxed 2P (A,C)+P (B,C) >

n.

To prove the Thm. 3 assertion that a BC essential profile makes it impossible for A to be

the sole antiplurality winner, the A,B,C antiplurality tallies with the BC essential profile

are, respectively, e1 + e6 + α + β + 2γ, e1 + e5 + e6 + 2α + β + γ, and e5 + α + 2β + γ.

By comparing the A and B tallies, for A to always be the sole antiplurality winner, it

must always be that γ > e5 + α. Because e5 ≥ 0 and γ can be set equal to zero, this

inequality cannot always be satisfied. But if γ < e5 + α always is true, then (as asserted

in Thm. 3), A never is an antiplurality winner. This holds if and only if e5 > q ≥ γ, or

1
2
[P (B,C) + P (C,A)] > q = 1

2
[n− P (B,C)], or 2P (B,C) > n+ P (A,C).

To prove Thm. 4 and Eq. 2.9, it is well known that a Condorcet winner (A) always is

Borda ranked over a Condorcet loser (C). Thus, the only three strict Borda rankings are
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A � B � C,A � C � B, and B � A � C. To show when the last choice cannot occur,

compute A’s and B’s Borda tallies. Because a candidate’s Borda tally is the sum of her tallies

from all paired comparison elections, they are, respectively, (P (A,B) + n
2
) + (P (A,C) + n

2
)

and (P (B,A) + n
2
) + (P (B,C) + n

2
). By setting A’s tally over B’s, canceling terms and using

P (B,A) = −P (A,B), Eq. 2.9 follows. �

Proof of Cor. 2: All settings satisfying Def. 2.4 are proved as described in Sect.2.3.1. Only

the case not satisfying Def. 2.4 remains. From Fig. 2.2d, the plurality tallies for A, B, and

C are, respectively,

e1 + α + β, e5 + β + γ, e3 + α + γ.

The proof reduces to simple algebra; e.g., for A to always beat B, it must be for all α, β, γ

that e1 + α + β > e5 + β + γ, or e1 − e5 > γ. As the largest choice of γ is q, the condition

becomes

e1−e5 =
1

2
[P (A,B)+P (B,C)−P (B,C)−P (C,A)] > q =

1

2
[n−P (A,B)−P (B,C)−P (C,A)],

which is 2P (A,B) + P (B,C) > n. All other assertions are similarly proved. �

Proof of Thm. 2.5: Results in Saari [1999, 2008] prove that only reversal pairs have no effect

upon P (X, Y ) values. Start with any profile in the Fig. 2.1b form and remove reversal pairs;

these are pairs where one entry is in region j, j = 1, 2, 3, and the other is in the diametrically

opposite region j + 3. Removing entries from each {j, j + 3} pair until one entry is zero has

no effect on P (X, Y ) values; as the remaining entry is non-negative there are, at most, three

positive entries.

This reduction defines eight possible arrangements; either all entries on one side of one of

the perpendicular dividers are zero, or an arrangement arises where the zeros occur in an

alternating fashion to define either (n1, 0, n3, 0, n5, 0) or (0, n2, 0, n4, 0, n6). All eight settings
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can be catalogued with Fig. 2.2; each case has a parallel arrangement where the ej’s in

the figure are replaced by zeros and the zeros with ej terms. That three of the sought

after arrangements aregiven by Figs. 2.2abc follows from the P (A,B), P (B,C), P (A,C) ≥ 0

assumptions; a direct computation proves that the parallel choices violate these conditions.

For the last two settings, the (n1, 0, n3, 0, n5, 0) choice is represented by Fig. 2.2d with appro-

priate nj values; Fig. 2.2d clearly is compatible with the P (A,B), P (B,C) ≥ 0 conditions.

To show that the remaining (0, n2, 0, n4, 0, n6) choice is not compatible, the P (A,B) ≥ 0

constraint requires n2 ≥ n4 + n6. But unless n4 = 0 and n2 = n6 (which defines a Fig. 2.2b

setting), this is incompatible with the P (B,C) ≥ 0 condition that requires n6 ≥ n2 + n4.

To find the ej values, each setting defines a linear algebra problem; e.g., Fig. 2.2a defines the

set of three equations and three unknowns

n1 + n2 + n3 = P (A,B), n1 − n2 − n3 = P (B,C), n1 + n2 − n3 = P (A,C), (A.2)

with similar equations for each of the three remaining settings. As each set of equations is

linearly independent, each set admits a unique solution. Thus, to show that these solutions

are giving by Eq. 2.13, it suffices to show that the ej values satisfy the equations. With the

first of Eq. A.2, for instance, this becomes

e1 + e2 + e3 =
1

2
[P (A,B) + P (B,C)] +

1

2
[P (A,C) + P (C,B)] +

1

2
[P (C,A) + P (A,B)].

Using the relationships P (C,B) = −P (B,C), P (C,A) = −P (A,C), it follows that the sum

is P (A,B) as required. All other sets of equations are verified in the same manner.

All remaining assertions in the theorem are immediate. �

Proof of Thms. 2.6, 2.7: This elementary algebra exercise follows the outline leading to Eq.

2.23. �
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Proof of Cor. 4: These conditions are equivalent to determining the s values for which a

linear equation is positive. To illustrate with 0 ≤ s < 1
2
, Eq. 2.26 can be expressed as

determining where the linear equation (1−s)[2P (A,B) +P (A,C)]− (1−2s)n−sP (B,C) is

positive. But if a linear equation is positive at two points, it is positive for all values between

these points. The conclusion follows because, with the possible exception of Eq. 2.30, all

conditions are satisfied for the Borda Count s = 1
2
. Thus, if the conditions hold for s1 <

1
2

and s2 >
1
2
, they hold for s1 ≤ s ≤ 1

2
and 1

2
≤ s ≤ s2, or for all s in s1 ≤ s ≤ s2. When

Eq. 2.9 is satisfied (so the Borda and Condorcet winners agree), the assertion extends to Eq.

2.30. (If Eq. 8 is not satisfied, then a similar “clustering” assertion holds for s values that

violate, rather than agree with, Eq. 2.30.) �

Proof of Thm. 2.8: Again, this is a direct algebraic computation following the lead of the

example developed before the statement of the theorem. �

Proof of Thm. 2.9: This is a direct computation. �

A.2 Proof of Theorem 3.1

(3) follows immediately from Eq. 3.10, which defines rP as the sum of each profile component

of the essential component, and (4) follows directly from (3), the fact that in a normalized

profile space:

pABC + pACB + pBAC + pBCA + pCBA + pCAB = 1 (A.3)

Or, in a non-normalized space:

pABC + pACB + pBAC + pBCA + pCBA + pCAB = N (A.4)

140



And that the profile equals the sum of its essential and reversal components, that is:

pXY Z = eXY Z + rXY Z (A.5)

To prove (1), we turn to Thm. 5 in Chapter 2, which gives a complete classification of

essential profiles. In particular, each essential component has a collection of at most three

nonzero profile components, which in no case includes both pXY Z and pZY X simultaneously.

If it did, it would be possible to remove an equal fraction of voters preferring X � Y � Z and

Z � Y � X, creating a smaller sub-profile with identical pairwise majority vote margins.

The reversal component consists entirely of such pairs of voters, such that:

rXY Z = rZY X (A.6)

Applying Eq. A.6 to Eq. 3.9 gives us that:

|pXY Z − pZY X | = |eXY Z + rXY Z − eZY X − rZY X | = |eXY Z − eZY X | (A.7)

Applying the fact that (eXY Z or eZY X} is zero, with the other being non-negative (possibly

also zero), we may write that:

|eXY Z − eZY X | = |eXY Z |+ eZY X | (A.8)

This shows that Eq. 3.9 and Eq. 3.10 are equivalent. Conveniently, Thm. 5 in Chapter 2

also defines explicitly the formula for each component of the essential profile; we have, for

each nonzero profile component pXY Z :

|eXY Z | = eXY Z =
P (X, Y ) + P (Y, Z)

2
=

∣∣∣∣P (X, Y ) + P (Y, Z)

2

∣∣∣∣ (A.9)
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Which three components are non-zero are determined (Thm. 5 from Chapter 2 again) by

the pairwise majority vote values. If the essential profile is weakly cyclic or cyclic, with

P (A,B) > 0 and P (B,C) > 0:

eABC + eACB + eCAB + eCBA + eBCA + eBAC + eACB = eABC + eCAB + eBCA (A.10)

And for any X, Y , we have that :

P (A,B) + P (B,C) + P (C,A) ≥ P (X, Y ) (A.11)

Applying Eq. A.9 to the classification of a cyclic or weakly cyclic profile in Thm. 5 of

Chapter 2:

eABC + eCAB + eBCA = P (A,B) + P (B,C) + P (C,A) (A.12)

This shows that Eqs. 3.9 and 3.10 are equivalent for the weakly cyclic and cyclic cases. In

the strongly non-cyclic case, we can write that if P (X, Y ) is the largest pairwise value,

eABC + eACB + eCAB + eCBA + eBCA + eBAC + eACB = eXY Z + eXZY + eZXY (A.13)

And that:

eXY Z + eXZY + eZXY = P (X, Y ) (A.14)

This then implies that Eqs. 3.9 and 3.10 are equivalent for strongly non-cyclic cases. We

may also state another useful lemma, which applies in particular to the normalized version

of the representation cube. To prove (2), first note that all of the above formulae are 0 when

each coordinate variable is set to 0; and at the origin of both spaces, each coordinate variable

is set to 0. To see that it is 1 on the surface of the representation cube, it suffices to note
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first that for any unanimous profile where pXY Z = 1, P (X, Y ) is the (non-unique) maximum

pairwise vote margin, so in a non-normalized space, we have at each unanimous vertex:

rP = P (X, Y ) = N (A.15)

Or in a normalized space:

rP = P (X, Y ) = 1 (A.16)

To show (2): Each unanimous profile occupies a vertex of the representation cube; each other

point on the surface of the representation cube is the linear weighted average of three such

points; and, within essential octohedral coordinates, lies within the same octant as every

other point sharing the same three generating points. Since Eqs. 3.8 & 3.9 are linear if

restricted to a single octant (with no sign changes in pXY Z−pZY X), the values of rP on each

face must lie between the values rP takes on the unanimous vertices surrounding that face,

which is to say rP ≡ 1 on the entire surface. This shows the bounds on rP ; to note that rP is

a metric, it suffices to note, first, that rP can be recognized immediately as a Minkowski dis-

tance from the origin (with p = 1) in essential octohedral coordinates; and second, that the

map from essential octohedral coordinates to tally space is a homeomorphism, so this prop-

erty is preserved across coordinates. The map from profile space down to the representation

cube is not one-to-one. In particular, has a three-dimensional kernel, or two-dimensional in

the normalized case, but remains locally linear, which gives us a pseudometric.
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A.3 An outline of an experiment testing the informa-

tional dynamics of Chapter 4

In Chapter 4, we outlined a mathematical model that explores the degree of potential vul-

nerability to manipulation; and creates qualitative distinctions between different types of

strategic action. There are, in particular, some symmetries and antisymmetries in strategic

action that are predicted across different positional rules and runoff systems. This leaves

open the question of whether or not these symmetries in structure would be reflected in

actual human behavior.

While the model addresses the whole class of positional and multiple positional methods,

there are several particular results that are of some interest, in particular, the kinship be-

tween a plurality vote and an antiplurality runoff. These methods also should show the most

dramatic differences in terms of convergent and divergent behavior.

A.3.1 Experiment design

The simple way to test this is using a 2 × 2 between-subjects factorial design. The two

variables are:

1. Whether a (simulated) election is carried out in a single round of voting, or multiple

rounds of voting (with one candidate eliminated per round).

2. Whether a (simulated) election is carried out using a plurality counting rule (“voting

for”) or an antiplurality counting rule (“voting against”).
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A between-subjects design is recommended, because otherwise, subjects may learn strategies

for one voting system and apply them to another haphazardly; or become confused. Prelim-

inary work suggests that subjects require some time to learn how voting systems other than

a plurality vote work.

A.3.2 Hypotheses

Although a relatively simple experiment in design, this could test a large range of results

from Chapter 4.

1. A plurality election, conducted in a single stage will show convergent strategic behav-

ior, where voters converge on (usually two) candidates as they gain information about

others’ preferences; that is, the individual voter tends to try to coordinate with their

peers. (This prediction is closely related to Duverger’s Law.)

2. An antiplurality election, conducted in a single stage, will show divergent strategic

behavior, where voters diverge in behavior, trying to vote against strong canidates;

that is, the individual voter tends to try to anti-coordinate with their peers.

3. The effect of system type on the type of strategic behavior is reversed if candidates

are eliminated one at a time; more plurality-like systems will show divergent behavior,

while more antiplurality-like systems will show convergent behavior.

4. In multiple-round systems, the effects of system type on the type of strategic behavior

is weaker, and less strategic behavior will be observed.
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5. Divergent strategic behavior is associated with increased levels of attempts at decep-

tion and decreased credibility of polls, while convergent strategic behavior is associated

with sincere elicitation of preferences.

6. A single-stage plurality vote, decided in a single stage, will show less strategic action

than a single-stage antiplurality vote.

In particular, we expect these effects to be reinforced by learning over time, as subjects

acclimate to the rule and dynamics thereof.

A.4 Building the relationship between stages

The type of analysis of Chapter 4 could be readily applied to any sequence of positional or

multiple positional rules, with any sequence of probability distributions. We could at this

point construct an example demonstrating nearly anything; which would prove nothing. In

order to get meaningful results, we must find a way to insure that we compare apples to

apples instead of apples to oranges. The main difficulty in this arises when we are comparing

elections over different numbers of candidates.

We can very easily imagine mixing different voting rules with different stages; we can perform

similar analyses with this. If I introduce a plurality stage after a Borda count, what does

it tell me about the Borda count’s interaction with runoffs? Formally speaking, a Borda

count over four candidates is not the same rule as a Borda count over three candidates, just

as it is not the same rule as a plurality count over three candidates. But the two Borda

counts are related in some fashion; and we wish to exploit this relationship to describe what

happens when we use the ”same” rule from stage to stage. Both a (1, 1, 1/2, 0, 0) rule and a
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(1, 3/4, 1/2, 1/4/, 0) rule are generalizations of a (1, 1/2, 0) rule; and nearly every positional

or multiple positional rule is a generalization of a majority vote over n = 2 candidates.

There is another formal difficulty we face: What about the underlying probability distribu-

tion on the space?

For example, we might assume subtotals are distributed uniformly when n = 5 and n = 4,

but at n = 3 suddenly become concentrated around the edges, and at n = 2 tend to be

concentrated in the middle. In such a case, minimizing sensitivity to small manipulations

tells us we wish to actually, we want to avoid n = 2 stages (in spite of the fact that any such

manipulation is unlikely to be classed as strategic in nature), and get great returns out of an

n = 3 stage; but this is due to our choice of probability distributions, rather than something

intrinsic to the space.

The analysis within Chapter 4 does not directly address the role of probability distributions

over different numbers of candidates; it implicitly considers a uniform distribution over

result space (which is unrealistic), but can be extended to cope with different probabilistic

assumptions without much alteration.

There are several caveats that should be explicitly included. To this end, we will define the

following four things:

• Related voting rules over m and n candidates.

• Corresponding voting rules over m and n candidates.

• Corresponding probability distributions over m and n candidates’ results.

• Related probability distributions over m and n candidates’ results.

• “Expanding” and “compressing” related probability distributions.
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Our main results relate to the combination of corresponding voting rules and expanding

related probability distributions.

A.4.1 Corresponding & related rules

It is intuitively clear that a plurality vote over five candidates is related to a plurality vote

over six candidates; and that a plurality vote over five candidates is somehow the uniquely

“best” way to capture the same spirit of a plurality vote over six candidates. (Moreover, we

cannot simply assert vica versa; more on that later.) To formalize this, we

To formulate this more precisely, we first define a general class of related rules:

Definition A.1 (Related voting rules). For a voting rule α over n candidates and a voting

rule β over n + k candidates, we say that α and β are related rules if the set of possible

results Rα for α over n candidates is the natural projection of a level set of k candidates in

the set of possible results Rβ for β down to n dimensional result space.

In other words, α is related to β if α looks like what happens if we hold k candidates constant

and keep using the rule β. This is not very restrictive; the trivial voting rule (0, 0) is related

to the three candidate plurality rule (1, 0, 0). However, if we look at the class of voting

rules related to a six-candidate plurality rule, we find that the Borda count is conspicuously

absent; as is anything but the trivial voting rule and (s, 0...0) rules, scale-equivalent to one

or another plurality vote.

We are almost there. We want, however, to use a method that will get us a unique rule; and

avoid trivial rules and the like. Refining our definition gets us this:

Definition A.2 (Corresponding voting rules, I). A voting rule α over n candidates corre-

sponds to a voting rule β over n+ k candidates if α and β are related, and there is no other
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rule γ related to β such that for the corresponding result spaces, Rγis larger than the result

space Rα.

That is to say, α preserves as much discrimination between candidates as possible from β.

Since the result space is a convex hull of the possible unanimous voting vectors, there is a level

set that is unique up to translation; so our corresponding rule is unique up to its result space.

Note that some rules may have the same result space in the continuous approximation, e.g.,

cumulative voting and plurality voting; the lower dimensional corresponding rule is nearly

unique. Existence of a corresponding rule is guaranteed.

The higher dimensional one is not; as most non-trivial voting rules correspond, at n = 2,

to the majority vote. We actually want the majority vote to correspond to all rules; so

we will add an additional rule to allow us to collapse a three-candidate approval vote to a

two-candidate majority vote instead of a two-candidate approval vote; this comes at the cost

of making the corresponding rule less unique:

Definition A.3 (Corresponding voting rules, II). Suppose a voting rule α over n candidates

with result space R corresponds to a voting rule β over n+ k candidates. Suppose that α′ is

a rule which has a result space R′ = R ∩ L, where L is a level set where
∑
xi = k for some

constant k; and L is a level set which maximizes the area of R∩L. Then we will say α′ also

corresponds to β.

What is worth noting is that α′ is constructed from β in the same way as α; we just have

one extra projection step, which is carried out in much the same manner. A very simple

theorem follows from fact that Rβ is normalized and we are constructing related voting rules

from maximal level sets of the result space. That is to say:

Theorem A.1. If β is a rule over n + k candidates whose result space is a q-dimensional

subset of [0, 1]n+k (usually q = n + k or q = n + k − 1), and α is a rule over n candidates
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corresponding to β, then the q-dimensional volume of Rβ is no larger than the q − k or

q − k − 1-dimensional volume of Rα.

This follows immediately from the fact that Rα is the largest possible q − k or q − k − 1

dimensional level subset and the intermediate value theorem. What is less immediately

obvious is that, for any positional or multiple positional rule, we have that:

‖RA,ε,α‖
‖Rα‖

≤ ‖RA,ε,β‖
Rβ

(A.17)

When dealing with positional and multiple positional rules, we are not only dealing with

a convex hull; but a convex hull with substantial symmetries, and with a fixed number of

possible faces for each cross-section. If we take a level set fixing k candidates’ vote totals,

and shift those vote totals by some small vector v, one of three things happens.

1. All possible faces of the level set expand together. Some may ”appear” out of a lower-

dimensional edge.

2. It contracts symmetrically, with possibly some faces collapsing into vertices or lower

dimension edges.

3. Distorts, with every other possible face moving outward and the others moving inward;

since there is an even number of faces, this means that pairs of opposite faces will have

one face moving inward and one outward.

When the length (area, 3-volume, etc) of the intersection between the indifference set and

increases, the area (resp. 3-volume, 4-volume, etc) of the level set it is contained increases

more quickly relative to its current value. This means that when we maximize the area, it

happens at a minimum of the ratio of length to area (resp. area to 3-volume, 3-volume to

4-volume) between the indifference set intersected with the level set and the level set itself.
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A.4.2 Corresponding & related probability distributions

We will define the relationship between probability distributions over n and n+k candidates

constructively, by creating a function f : Rβ → Rα.

Definition A.4 (Corresponding probability distributions). Let α be a voting rule over n

candidates and β be a voting rule over n+ k candidates.

Let Rα and Rβ be their respective result spaces.

Let ρβ be a probability distribution over Rβ.

Fix k particular candidates. Take each L that is a level set of Rβ, such that Lx fixes those k

candidates’ vote totals, and the cumulative total if and only if Rα does so. L therefore consists

of a slice of Rβ parallel (in a sense) to an image of Rα, and with the same dimension.

Take fL : ∂L→ ∂Rα such that if x(t) is a constant speed loop on ∂L, fL(x(t)) is a constant

speed loop on ∂Rα.

Take ∂Lr for each such L to be a scalar image of ∂L multiplied by r ∈ [0, 1], positioned such

that ∂Lr has the same center as ∂L; and likewise ∂Rαr and xr ∈ ∂Rαr

Define f(∂Lr) = f(∂L)r.

Define ρα(x) =

∫
f−1(x)

ρβ.

Then ρα corresponds to ρβ.

Given this constructive definition of a corresponding lower-dimensional probability distribu-

tion, we can naturally extend this to a looser definition of merely related lower-dimensional

probability distribution. This modifies the above definition in several ways:

• We relax the requirement that the inner versions of the boundaries ∂Lr and ∂Rαr are

necessarily the same shape as the original boundary. We require only that it be a

continuous family that takes each point x ∈ ∂L on a straight line from the edge to the

center as r goes from 1 to 0.
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• We relax the radial requirement to f(∂Lr) = f(∂L)g(r) for a strictly increasing function

g(r).

• In particular, if |f(x) − m|, the distance between f(x) and the center of the Rα, is

concave viewed as a function along any straight line from the center of L to ∂L, the

resulting ρg it is an expanding related distribution.

• Similarly, if |f(x)−m| is convex, the resulting ρg is a compressing related distribution.

It is worth noting that a uniform distribution corresponds to a uniform distribution. It may

be more useful use ∂Lr which rapidly become circular in terms of spherical shells rather than

the actual shape of the result space, especially when (say) dealing with normal distributions.

A.4.3 Expanding and compressive distributions

What should be readily apparent is that the more concentrated results are near the center

of the result space (nearer to an n-way tie), the more likely the result is to lie near a

boundary, and thus the more easily the result may be altered. So a compressive chain of

related probability distributions increases the chance of manipulation in later rounds; while

an expansive chain of related probability distributions decreases the chance of manipulation

in later rounds.

Whether having a runoff increases or decreases the amount of room for manipulation depends

some, in other words, on the true probability distribution; which is not clear. If the chain of

related probability distributions is expanding by any noticeable margin, then adding runoff

stages nearly always reduces the opportunity (with the mainly the exception of plurality). If

the chain of related probability distributions is compressive, however, there are no conclusive

results available (except that adding a plurality runoff at n = 3 would increase vulnerability).
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Arguments can be made in favor of both expanding and compressive distributions. It is

my considered opinion that the argument for distributions that are more concentrated at

higher n, i.e., leading to expansive chains of related probability distributions as n decreases in

subsequent rounds, is the case with the stronger argument. It may be the case that different

populations have different tendencies, and the ultimate answer to this question must be

empirical, though this answer may not be easily available.

We can answer the question directly for Impartial Culture. In this case, the variance of

the distribution in non-normalized result space is proportionate to
N(1− 1

n
)

n
, where n is the

number of candidates and N is the number of voters; normalization gives
(1− 1

n
)

n
√
N

. Note that

this is strictly decreasing with n, which means that if we reduce n, the variance increases.

The assumption of Impartial Culture therefore gives us (approximately; to the degree that

IC is approximated well by a normal bell curve) an expanding sequence of distributions.

We obtain a qualitatively similar result if we introduce a condition of dependence from round

to round, and assume that all candidates keep their existing pool of support; with the former

supporters of other candidates introducing noise (particularly suitable for discussing the

plurality vote). For this reason, it is very natural to expect normalized variance to increase

as n, the number of candidates, decreases, given the same population. It is ultimately this

relationship over probability distributions (and over informational dynamics) that can drive

a significant difference in the probability of the manipulation of first place rankings.
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