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Abstract

Coincidence timing calibration is fundamental to PET imaging. The electronics, cable lengths, 

and detector physics such as charge drift and depth dependence add to the measured time 

differences in coincidence sorting – increasing random rate, decreasing true rate, and degrading 

system performance. This work investigates the parameter selection for convex optimization 

(Ordinary Least Squares) for timing calibration. We test the correlation between commonly 

selected parameters and the experimentally measured coincidence time difference. Additionally, 

we test 127 nested models of a parameterized regression equation to identify the those which 

optimize MSE, BIC, and FWHM, respectively. In each of these models, the FWHM performance 

improved ~53%, though the value shifted from ~ 304 to 160 ns – far from ~ 10 ns FWHM CZT 

can achieve. The results point to the lack of a necessary parameter, such as trigger threshold level 

or temperature, or data which is too variable for the OLS optimization.
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1. INTRODUCTION

In Positron Emission Tomography (PET) imaging, adequate timing resolution (towards 

tens of picoseconds for time-of-flight (ToF) systems and within few nanoseconds in 

non-ToF systems) is necessary for coincidence assignment, random rejection, and ToF 

imaging. However, system intrinsic and physical sources of temporal delay degrade the 

timing resolution of modern systems. The experimentally measured time difference of a 

coincidence pair ΔTexp is thus the combination of factors beyond the true time-of-flight 

difference from point of annihilation to detector element. Such factors can include the time 

delay from charge drift ΔTdrift, channel crosstalk causing the signal trigger voltage threshold 

to fluctuate ΔTcrosstalk, the finite speed of electromagnetic waves in hardware (system) ΔTdelay, 

the actual time of flight from point of annihilation to detection (often ignored due to 

negligible magnitude), and more. The compounding of these delays alters the true time 

difference ΔTtrue:
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ΔTexp = ΔTtrue + ΔTdrift + ΔTdelay + ΔTcrosstalk

(1)

In essence, timing calibration is the removal of these sources of delay to recapture the true 

coincidence ΔT. As such delays differ stochastically for each coincidence detection and 

channel pair, the true (read, unknowable) value are replaced with estimates:

ΔTtrue = ΔTexp − ΔTdrift − ΔTdelay − ΔTcrosstalk

(2)

ΔTtrue = ΔTexp − ΔTerror

(3)

While many methods exist to correct for delay effects, it has been shown such timing 

calibration can be formulated as a convex optimization problem utilizing any number 

of parameters [1]. Thus, the solution can be found with well-known optimization 

methodologies. For systems similar to the target UCSC 2-Panel PET Scanner, typical 

parameters often include the ADC values of the analog quadrature timing signals of the 

application specific integrated circuits (ASIC) (described below), their combinations, and 

interaction depth, such as through the deposited energy readout out from cathode-to-anode 

ratio C/A. A few examples of models are presented below:

ΔTerror = a0U + a1V + a2U2 + a3V2 + a4UV + a5

(4)[1]

ΔTerror = a0Uc + a1Uc
2 + a2Vc + a3Vc

2 + a4 + a5Ua + a6Ua
2 + a7Va + a8Va

2 + a11 + a9 C/A + a10 C/A 2

(5)[2]

ΔTerror = a0, iUi + a1, iUi
2 + a2, iVi + a4, i(C/A)i + a5, i(C/A)i

2 + a6 − 44, iASeli
− a0, jUj + a1, jUj

2 + a2, jVj + a4, j(C/A)j + a5, j(C/A)j
2 + a6 − 44, jASelj

(6)[3]

where ai are the coefficients to solve for, U and V are the quadrature timing signals, and 

ASel is a vector to select for the anode where the interaction occurred. Here, U and V are 

sinusoids (with V lagging by 90°) with a signal frequency of 490 kHz (though this can vary 

from system to system). These waves are sampled at the time of each event such that phase 

difference between their U+iV vectors can be computed. This angle, ψ, in conjunction with 

the UV-Frequency, f, is used to compute a fast timing signal, ΔTexp, as shown in Eq. 7. The U 

and V signals from a single channel are plotted in Fig. 1.
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ΔTexp = ψ
2π

1
f

(7)

The diversity of construction of parameters in Eqs. 4–6 can be noted, especially as these 

were all formulated for low panel count, high resolution systems. This work strives 

to optimize the parameter selection and model construction for such systems. Failing 

to thoroughly investigate the model parameters can lead to slower optimization time, 

overfitting and poor generalizability, and overweighted parameter impact from collinearity 

between predictors. The inclusion of one additional parameter in the general formula 

increases the total number of parameters to solve for by the number of channels – which 

can number in the hundreds of thousands to millions – as each channel must be individually 

calibrated. Finally, complex models are less explainable than simple models – meaning 

abstraction back to the sources of delay in Eq. 1 may not be possible. In this work, we 

perform a parameter selection analysis on a series of models based up those collected from 

literature.

2. METHODS

2.1 System Design and Data

In this work, we are utilizing a PET system based on cadmium zinc telluride (CZT) with a 

RENA-3 ASIC. Data was obtained with a sub-system of this CZT-based design [4, 5]. The 

full scanner contains two panels of 5 × 30 stacked CZT detectors oriented in an edge-on 

configuration. Each of these detector modules contains two 40 × 40 × 5 mm3 CZT crystals 

with cross-strip designs: 39 anode strips (100 μm width and 1 mm pitch) and 8 cathode 

strips (4900 μm width and 5 mm pitch). As such, each crystal has 47 output signals which 

are read out using two RENA-3 ASICs (by NOVA R&D Inc., Riverside, CA) which digitizes 

the signal, provides a coarse time stamp, and generates the phase-locked sine signals U 

and V. The sub-system used here contains 506 cathode-anode channel pairs across the two 

panels. The system design is highlighted in Fig. 2. The experimental data was collected by 

placing a Ge-68 point source at the midpoint of the scanner field of view. A visualization of 

the experimental ΔTs is shown in Fig. 3 and of the parameters of interest in Fig. 4.

2.2 Data Treatment

Mapping from ADC units to keV, U-V phase distortion correction and center point 

extraction, and anode signal amplitude deficit calibration were performed with the software 

toolkits described in [2]. Coincidences were sorted based on the coarse time stamp with 

a window of 1 μs. From these coincidences, the experimental time differences ΔTexp for 

cathode-cathode events are computed via Eq. 7. In this system, we utilize cathodes as 

opposed to anodes for coincidence readout because they are wider (4900 μm for cathode 

and 100 μm for anode) and are triggered much faster during photon interactions within CZT 

crystals.
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This full set data is subject to randoms and scatters, which introduce erroneous ΔTexps to our 

target set. Further, the parameters chosen (summarized below) vary in magnitude greatly and 

are not zero-mean – two aspects which degrade or otherwise unsubstantiate the regression 

optimization performed below. To treat the ΔTexp, a simple outlier rejection is performed 

by fitting the ΔTexp histogram with a Gaussian and discarding events where ΔTexp,i > 3σ – 

Fig. 3 shows this data after such treatment. The collected regression parameters are z-score 

normalized to ensure similar value magnitude, allow for the solved regression coefficients 

to be more easily interpreted, and to ensure they are zero-mean. Additionally, channels with 

fewer counts than coefficients to solve for are discarded from the data set.

2.3 Model and Optimization

The full regression model selected to estimate ΔTerror is given by:

ΔTerror = a1Uc + a2Uc
2 + a3Uc ⋅ Vc + a4Vc + a5Vc

2 + a6 C A + a7 C A
2 + a8

(8)

We note “full model” here as the many tested models are nested versions of this one. In 

other words, each other model contains a subset of the parameters found in Eq. 8 with 

no new ones. Every combination of these parameters was tested (except always leaving 

a8 as a constant) by dropping terms from this general form. Independent optimization was 

performed over these 127 nested models to test their performances.

The convex optimization process [1] is formulated as an Ordinary Least Squares (OLS) 

regression solving:

Copt = argmin
C

ΔTexp − AC 2
2

(9)

Here, A ∈ ℝnc × np is the parameter matrix where nc is the number of coincidence events in 

the data set and np is the number of channels times the number of parameters per channel. 

In a simplified case of a two-channel system and the model described in Eq. 8, for row 

1, columns 1 – 8 would contain the parameter values for channel 1 coincidence 1 and 

columns 9 – 16 would contain the parameter values for channel 2 coincidence 1. Each 

channel has a full set of coefficients to solve for. In a system with more than 2 channels, the 

columns associated with the channels not participating in the event are set to 0. This way, 

the coefficient matrix C ∈ ℝnp × 1, and each parameter for each channel can be solved for at 

once. Namely, Copt is directly solvable via the pseudo-inverse:

Copt = AT ⋅ A −1 ⋅ AT ⋅ ΔTexp

(10)
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2.4 Training and Testing Sets

The training data set consisted of the channel pair with the greatest number of coincidence 

events between them. We are not solving for general coefficients here but rather which 

parameters to use in the general case. Limiting the test set to one channel pair allows for 

simpler analysis of the 16 total parameters rather than the hundreds involved in the full set. 

The testing set consisted of the total data of all channel pairs, ~35× larger than the training 

set.

2.5 Test Metrics

Performance of each model was gauged on three metrics: MSE (Mean Squared Error), 

BIC (Bayesian Information Criteria), and FWHM (Full Width Half Max). For each, smaller 

values indicate better performance. While MSE and BIC are standard statistics for model 

fitting, the FWHM is included as it is the performance metric of operational consequence. 

We are targeting a model which yields the best timing resolution as measured by the FWHM 

of the calibrated ΔTtrue. Additionally, the covariances of the parameters with each other and 

their partial variance with the target ΔTexp. Finally, the coefficients, their variances across 

channels, and their standard errors are probed.

3. RESULTS

First, the covariance matrix in Table 2 also captures the Pearson correlation matrix as the 

parameters are z-score standardized. The diagonal, however, contains the variance of the 

corresponding parameter. The final column is the partial covariances between the parameters 

and the target ΔTexp. These values are from the panel 1 value of the training data set. Mean 

centered on zero, the range of the U and V data is from ~ −0.8 to 0.8 while the C/A 

data is from ~ −1.5 to 1.5, meaning the variances and correlations are quite small among 

parameters. The largest correlation is between C/A and its transformation (C/A)2 at 0.316. 

The partial correlations with ΔT are of a different scale as the target is not standardized. 

With this, we can observe strong correlations between U and C/A with the target and 

moderate to weak for the remainder.

Three separate models were found, one to optimize each of MSE, BIC, and FWHM for the 

training (one channel pair) data. The scores on the selected test metrics as well as the chosen 

variables are shown in Table 2. Additionally in Table 2, the performance of that model’s 

parameter choice is given as applied to the testing set. The model selecting for MSE retained 

all parameters, which makes sense given the metric simply minimizes error. The BIC stat, 

which accounts for model complexity, threw out the U2 parameter but kept the remainder. 

Physically, this finding may make sense as U2 and V2 can be thought of as surrogates for 

cos and sin – meaning the sum of their squares hold little information. The model which 

prioritized FWHM minimization kept only 5 of the 8 parameters, discarding U2, V2, and U · 

V – akin to removing 37.5% of the available parameter data.

Looking at the generalized performance of the model structures (not coefficients) on the 

testing set reveals a swap in performance for the BIC and FWHM models. Channel-to-

channel variations exits, and so, for example, U may be of great importance to one set 
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of parameters while V hold that position for another set. In all cases, the FWHM of the 

experimental ΔTs was improved nearly two-fold from the 303.1 ns FWHM to ~ 158 ns. The 

models’ application to the data can be seen in Fig. 5. This resolution is far from the ~10 ns 

FWHM CZT can achieve [6] – pointing to either a confounding variable or sub-optimal data 

quality. In [1], the uncalibrated to calibrated timing performance moved from 16.3 to 6.92 ns 

(a 57% decrease), on par our level of performance improvement.

Finally, for the testing set, we show the regression coefficients’ mean and standard 

deviations in Table 3. Shown is also the mean standard error and its standard deviation 

for each parameter. The C/A ratio was assigned the largest coefficient on average while 

U2 and V2 had the largest standard errors on average. In all cases, however, the spread 

of the coefficients and standard errors are quite large compared to the magnitude of 

the coefficients themselves. This behavior again points to either poor input data quality, 

confounding variables, or both.

4. CONCLUSION

In this study, we optimized the timing calibration regression equation given the test metrics 

of MSE, BIC, and FWHM. Three parametric equation constructions were identified based 

on their performance of the three test statistics, and their performances were generalized 

to a larger testing set. Their generalizability did not hold, yielding poorer test statistic 

performance in all cases. The coefficients themselves varied greatly among the channels 

and their average standard errors were large compared to the coefficient magnitude except 

C/A. While the optimization improved FWHM from ~300 to ~160 ns (matching the percent 

performance improvement in literature), the obtained FWHM is far from that expected. 

Either a confounding variable exists, such as temperature or trigger threshold level, or the 

data at hand is too variable for such a simple optimization technique.

REFERENCES

[1]. Reynolds Paul D., Olcott Peter D., Pratx Guillem, Lau Frances WY, and Levin Craig S.. “Convex 
optimization of coincidence time resolution for a high-resolution PET system.” IEEE transactions 
on medical imaging 30, no. 2 (2010): 391–400. [PubMed: 20876008] 

[2]. Gu Yi. High-resolution small animal positron emission tomography system based on 3-d position-
sensitive cadmium zinc telluride photon detectors. Stanford University, 2014.

[3]. Abbaszadeh Shiva, Gu Yi, Reynolds Paul D., and Levin Craig S.. “Characterization of a sub-
assembly of 3D position sensitive cadmium zinc telluride detectors and electronics from a 
sub-millimeter resolution PET system.” Physics in Medicine & Biology 61, no. 18 (2016): 6733. 
[PubMed: 27551981] 

[4]. Wang Yuli, Herbst Ryan, and Abbaszadeh Shiva. “Development and Characterization of 
Modular Readout Design for Two-Panel Head-and-Neck Dedicated PET System Based on CZT 
Detectors.” IEEE Transactions on Radiation and Plasma Medical Sciences 6, no. 5 (2021): 517–
521. [PubMed: 37711549] 

[5]. Li Mohan, Yockey Brett, and Abbaszadeh Shiva. “Design study of a dedicated head and neck 
cancer PET system.” IEEE transactions on radiation and plasma medical sciences 4, no. 4 (2020): 
489–497. [PubMed: 32632397] 

[6]. Meng Ling J., and He Zhong. “Exploring the limiting timing resolution for large volume CZT 
detectors with waveform analysis.” Nuclear Instruments and Methods in Physics Research 
Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 550, no. 1–2 
(2005): 435–445.

Romanchek and Abbaszadeh Page 6

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2024 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
V vs U values from one panel with an average radius of 729.17 and standard deviation 

(thickness of the circle perimeter) of 19.22. Each plotted dot captures the U and V values 

of a single detection event. If the red arrow indicate two events which were detected in 

coincidence, the angle between their U, V vectors is ψ.
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Figure 2. 
We are utilizing a PET system based on CZT with a RENA-3 ASIC. Each of the CZT uses a 

cross-strip configuration consisting of 39 anode strips and 8 cathode strips. A description of 

the detector system and design is found in [3–5].
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Figure 3. 
Histogram of the uncalibrated ΔTs after coarse outlier removal. While centered near the 

ideal of 0 ns at −1.93 ns, the spread of the distribution (FWHM of 302.1 ns) is attributed to 

the delays discussed in Eq. 1 and is to be corrected.
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Figure 4. 
Data histograms of the uncalibrated ΔTs vs the parameters U, V, C/A, U2, V2, and (C/A)2 

from panel 1. A density map is overlayed atop the scatter to better visualize the structure of 

the data. These represent the input parameters to the optimization problem at hand.
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Figure 5. 
Model performances of the three formulations which optimized MSE, BIC, and FWHM. 

The top row is the training set performance, and the bottom row is the testing set. The 

calibrated ΔT (orange) are plotted against the uncalibrated ΔT (blue).
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Table 1.

Covariance between treated parameters and partial variance with ΔT. Between the parameters, small 

magnitudes are preferred meaning the parameters supply different information structure. Against ΔT, larger 

magnitudes are preferred. The diagonal is the variance of the parameter.

U U2 U · V V V2 C/A (C/A)2 ΔT

U 0.216 −0.003 0.025 −0.154 −0.001 −0.006 −0.003 −5.558

U2 0.193 −0.169 −0.041 0.191 0.004 0.007 1.489

U · V 0.184 0.020 −0.171 0.001 0.000 −0.346

V 0.210 −0.042 0.009 −0.006 0.450

V2 0.194 0.003 0.006 1.374

C/A 0.316 0.316 −2.363

(C/A)2 0.349 −0.738
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Table 2.

Optimized model performances. Bolded text highlights the minimum value (optimum) of each test criteria 

(each column).

Training Set Metrics Testing Set Metrics

Optimized Parameters Selected MSE BIC FWHM MSE BIC FWHM

MSE Full Model 8357.74 8028.56 144.08 9825.06 288405.1 156.41

BIC All but U2 8360.30 8015.28 140.90 9860.02 287718.6 155.95

FWHM U, V, C/A, (C/A)2, 1 8750.20 8028.15 138.35 10373.79 287685.9 166.95
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Table 3.

The standard errors are quite large, as are the variances in the parameter coefficients. The C/A ratio is quite 

prominent.

Coefficient Standard Error

For Mean StDv Mean StDv

a l U −14.17 21.46 8.78 11.30

a 2 U2 17.38 122.99 86.61 67.42

a 3 U · V −5.18 22.29 7.72 7.96

a 4 V −38.12 38.84 9.22 14.91

a 5 V2 16.89 133.96 87.35 69.35

a 6 C/A 127.93 78.94 41.77 34.75

a 7 (C/A)2 −66.24 71.97 41.70 35.19
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