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ARTICLE

Epigenome environment interactions accelerate
epigenomic aging and unlock metabolically
restricted epigenetic reprogramming in adulthood
Lindsey S. Treviño 1,2,3,9, Jianrong Dong 2,9, Ahkilesh Kaushal1, Tiffany A. Katz1,2, Rahul Kumar Jangid1,2,

Matthew J. Robertson4, Sandra L. Grimm4, Chandra Shekar R. Ambati2, Vasanta Putluri4, Aaron R. Cox 5,

Kang Ho Kim2, Thaddeus D. May6, Morgan R. Gallo1, David D. Moore 2, Sean M. Hartig2,5,

Charles E. Foulds1,2,7, Nagireddy Putluri2, Cristian Coarfa 1,2,7,10✉ & Cheryl Lyn Walker1,2,5,7,8,10✉

Our early-life environment has a profound influence on developing organs that impacts

metabolic function and determines disease susceptibility across the life-course. Using a rat

model for exposure to an endocrine disrupting chemical (EDC), we show that early-life

chemical exposure causes metabolic dysfunction in adulthood and reprograms histone marks

in the developing liver to accelerate acquisition of an adult epigenomic signature. This epi-

genomic reprogramming persists long after the initial exposure, but many reprogrammed

genes remain transcriptionally silent with their impact on metabolism not revealed until a

later life exposure to a Western-style diet. Diet-dependent metabolic disruption was largely

driven by reprogramming of the Early Growth Response 1 (EGR1) transcriptome and pro-

duction of metabolites in pathways linked to cholesterol, lipid and one-carbon metabolism.

These findings demonstrate the importance of epigenome:environment interactions, which

early in life accelerate epigenomic aging, and later in adulthood unlock metabolically

restricted epigenetic reprogramming to drive metabolic dysfunction.
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Environmental exposures during early life exert a profound
influence on developing organs, which can affect health
across the life-course, and even transgenerationally1–4. The

adverse health impact of these exposures is thought to be medi-
ated by reprogramming of normal physiologic responses, and
forms the basis of the developmental origins of health and disease
(DOHaD) paradigm5,6. Fetal over- or under-nutrition has been
linked to metabolic dysfunction in adulthood and increased risk
for metabolic diseases including obesity, diabetes and metabolic
syndrome1,7,8. Besides nutritional stressors, early-life exposures to
environmental chemicals, including endocrine-disrupting che-
micals (EDCs), can influence health and disease susceptibility
across the life-course.

EDCs are defined as exogenous chemicals, or mixture of che-
micals, that interfere with hormone action9 and many have been
shown to impact metabolic function, and increase disease risk in
metabolic organs such as the liver10,11. Recently, the epigenetic
machinery has emerged as a target for EDCs and other envir-
onmental exposures12. When this machinery is perturbed early in
life, the resulting epigenetic alterations can persist long after the
initial environmental insult (often referred to as developmental
reprogramming)13,14. Accordingly, research on the causes of the
epidemic rise in metabolic diseases has expanded beyond genet-
ics, over-nutrition and energy expenditure to include the role of
early-life EDC exposures10,15–19. However, little is known about
what determines vulnerability to early-life exposures, or specific
targets and pathways linking developmental reprogramming by
early-life exposures to later-life metabolic dysfunction.

To understand how an early-life environmental exposure could
drive adult metabolic dysfunction, we performed longitudinal
epigenomic, transcriptomic and metabolomic profiling across the
life-course after an early-life exposure to the prototypical EDC,
bisphenol A (BPA). We report here that exposure to this EDC
during a key developmental window, when the rodent liver is
transitioning from a hematopoietic to a metabolic organ, induced
epigenomic reprogramming by hijacking age-related epigenomic
plasticity at specific genes and chromatin states in the neonatal
liver to accelerate acquisition of an adult epigenetic signature.
Although persistent into adulthood, much of this reprogramming
remained transcriptionally silent until a later-life challenge with a
Western-style diet high in fat, fructose, and cholesterol, which
disrupted metabolic function and caused a significant elevation in
serum cholesterol and lipids. Mechanistically, liver metabolic
dysfunction was driven by EDC-induced epigenetic reprogram-
ming of gene expression, signaling, and production of metabolites
linked to cholesterol, lipid and one-carbon metabolism. These
findings reveal that plasticity of the developing epigenome creates
a vulnerability to reprogramming by environmental exposures,
which may cause accelerated epigenomic aging and metabolic
dysfunction conditional on later-life diet.

Results
Neonatal EDC exposure reprograms lipid metabolism. Early
postnatal life is a critical window for murine liver
development20,21, and developmental exposure to several EDCs
has been shown to cause adult metabolic disease in animal
models9–11,15. To elucidate the mechanism(s) by which early-life
environmental exposure could cause metabolic dysfunction in
adulthood, integrated longitudinal epigenomic, transcriptomic
and metabolomic analyses were performed in Sprague-Dawley
rats after a brief neonatal exposure to BPA (Fig. 1a). The low dose
(50 μg/kg body weight) and brief exposure window (postnatal day
(PND) 1, 3, and 5) produced no observable gross change in liver
histology in young adult animals and had a minimal phenotype
impact: EDC-exposed animals at D70 exhibited no increase in

body weight, had significantly lower serum triglycerides, showed
no net change in serum or liver lipids relative to vehicle controls
(Supplementary Fig. 1a–d).

Diet composition is a known risk factor for metabolic disease
in humans22,23 and a Western-style diet (high in fat, fructose, and
cholesterol) has been used to promote metabolic dysfunction in
animal models. Although EDC-exposed animals exhibited no
overt metabolic dysfunction at D70, when subsequently placed on
a Western-style diet (Fig. 1a), male, but not female, rats exhibited
an altered metabolic phenotype that distinguished them from
vehicle (VEH)-exposed counterparts on the same diet (see
Supplementary Fig. 1f and Methods for information on the sex-
bias for this phenotype). Adult male rats exposed to EDC as
neonates exhibited significantly enlarged livers but no change in
body weight or increase in serum alanine aminotransferase (ALT)
levels, a measurement of liver damage (Fig. 1b and Supplemen-
tary Fig. 1e). They also exhibited an increase in serum
triglycerides and developed dyslipidemia, with significantly
increased serum LDL/VLDL accompanied by increased serum
cholesterol (Fig. 1b) relative to age-matched VEH-exposed
animals on the same diet. Unbiased lipidomic analysis identified
phospholipid [phosphatidylglycerol (PG), phosphatidylserine
(PS), phosphatidylethanolamine (PE), phosphatidic acid (PA),
phosphatidylcholine (PC), and phosphatidylinositol (PI)], cardi-
olipin (CL), cholesteryl ester (CE), diacylglycerol (DG), triglycer-
ide (TG), and plasmenyl-PE levels as significantly increased in
EDC-exposed animals on Western-style diet compared to VEH-
exposed animals on this diet (Fig. 1c). This phenotype was not
caused by global organ-level metabolic disruption, as no signi-
ficant differences were observed in bile acids levels (0.5868 versus
0.5276 μmol/g liver tissue), glucose (197.6 versus 195.3 mg/dl),
plasma insulin (3.3 versus 3.1 ng/ml) or circulating FGF21
(1277.1 vs. 1236.7 pg/ml) in VEH- versus EDC-exposed animals
fed a Western diet, respectively.

Neonatal EDC-exposure reprograms the epigenome. To
understand how a neonatal EDC exposure could reprogram adult
metabolism, we focused on the liver, which plays a central role in
whole-body metabolism. In neonatal and adult liver, chromatin
immunoprecipitation sequencing (ChIP-seq) was performed for
epigenetic histone modifications used to globally define epige-
nomic states24–26. These were histone 3, lysine 4, mono- and tri-
methyl (H3K4me1 and H3K4me3, respectively), two activating
histone marks found at enhancers and promoters; as well as
histone 3, lysine 27 trimethyl (H3K27me3), a facultative repres-
sive mark, and its cognate histone 3, lysine 27 acetyl (H3K27ac)
mark, which also marks active promoters and enhancers.

ChIP-seq analyses were conducted to identify epigenomic
changes that were: (1) associated with normal maturation of the
liver between neonatal (PND5) and adult (D70) animals; (2)
directly altered by EDC exposure in the neonatal liver (PND5
EDC- versus VEH-exposure); and (3) significantly different
between adult (D70) EDC-reprogrammed and VEH-exposed
liver. Focusing this analysis on neonatal and young adult animals
prior to liver metabolic dysfunction onset allowed us to identify
EDC-induced epigenetic changes that preceded, and could
potentially direct, changes in gene transcription and metabolic
function, versus changes occurring in response to diet and altered
metabolism. For each active and repressive histone modification,
differential peaks were identified using DiffReps, with significance
achieved at q < 0.01 and fold change exceeding 2×. Venn
diagrams were created for histone modifications associated with
target genes [differential peaks within (±3) kb of the transcrip-
tional start site (TSS)] or enhancers (compiled by the Fantom5
consortium27,28).
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Initially, Venn diagrams identified genes where epigenomic
changes occurred associated with age and/or EDC exposure. This
is illustrated for H3K4me1 (Fig. 2a), and H3K4me3, H3K27me3,
and H3K27ac in Supplementary Fig. 2. For this analysis, changes
in histone marks associated with normal maturation of the liver
between neonatal and adult life were first identified (labeled as
PND5-D70), and compared to differences in histone marks
between EDC- and vehicle-exposed livers seen immediately after
EDC exposure (labeled as PND5) or in adult animals (labeled as
D70). As illustrated for H3K4me1 (Fig. 2a), Venn diagrams
identified genes affected by three classes of epigenetic reprogram-
ming: Precocious Reprogramming where EDC exposure acceler-
ated acquisition of an adult epigenomic signature (characterized
by the acquisition of adult liver histone marks in the neonatal
liver); EDC-specific Reprogramming where changes in histone
marks were induced acutely and remained significantly different

between adult EDC- and VEH-exposed animals, but did not
occur during normal liver maturation; and Cumulative Repro-
gramming, where liver maturation changes were further exag-
gerated by EDC exposure (Fig. 2b).

Remarkably, EDC-exposure induced accelerated epigenomic
aging at 3003/3436 genes (87%) where H3K4me1 normally
increased with age during liver maturation (Fig. 2a). This
Precocious Reprogramming is illustrated in Fig. 2b with Adcy1.
In neonatal liver, EDC exposure induced an H3K4me1 peak at
the Adcy1 TSS, the same position where H3K4me1 increased with
age during normal liver maturation. Consequently, the H3K4me1
peak was indistinguishable at D70 between EDC- and VEH-
exposed animals (Fig. 2b). This is further illustrated with the
Circos plots shown in Fig. 2c. EDC-exposure induced genome-
wide epigenomic reprogramming of target genes in neonatal liver
at PND5, with H3K4me1, H3K27ac, and H3K27me3 exhibiting
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Fig. 1 EDC-induced metabolic reprogramming in the setting of a Western-style diet. a Schematic of the integrated longitudinal epigenomic,
transcriptomic and metabolomic analyses performed across the life-course in a rat model of early-life (postnatal days (PND)1–5) exposure to the EDC
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in exposed animals fed a Western-style diet as seen in the targeted serum lipidomic analysis of vehicle- and EDC-exposed animals (N= 5 biologically
independent animals per treatment). This analysis identified phospholipid [phosphatidylglycerol (PG), phosphatidylserine (PS), phosphatidylethanolamine
(PE), phosphatidic acid (PA), phosphatidylcholine (PC), and phosphatidylinositol (PI)], cardiolipin (CL), cholesteryl ester (CE), diacylglycerol (DG),
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more EDC-induced changes than H3K4me3. This finding
mirrors, and is largely driven by, the Precocious Reprogramming
shown in the Venn diagrams. Thus, at D70, far fewer epigenomic
differences are evident when livers from EDC-exposed animals
are compared to livers from VEH-exposed animals, reflecting the
acceleration of normal epigenomic aging by EDC exposure
(Fig. 2c).

Additional examples of Precocious Reprogramming (Kcnk15,
Fzd2, Prex1, and Rims1) are shown in Supplementary Fig. 2b.

Altogether, EDC exposure accelerated epigenetic aging and
induced an adult H3K4me1 signature at 3090 [3003 Precocious
+ 87 Cumulative (see below)] genes. Interestingly, H3K4me1
decreased with age at far fewer genes (475 as shown in
Supplementary Fig. 2a), and the impact of EDC-induced
reprogramming at these genes was minimal: only 64/475 genes
(14%) exhibited precocious decreases in H3K4me1. This suggests
that age-associated changes in H3K4me1 were not a reflection of
generalized tissue aging.
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EDC-exposure also accelerated epigenetic aging of H3K27ac
and H3K27me3. As shown in Supplementary Fig. 2a, at 5575/
6783 genes (82%) where H3K27ac increased with age and 909/
1830 genes (50%) where this mark decreased with age, EDC
exposure induced Precocious Reprogramming and accelerated
epigenetic aging, with neonatal livers acquiring an adult H3K27ac
signature at PND5. For H3K27me3, precocious increases in this
mark occurred at 4666/6127 genes (76%) and decreases at 513/
1492 genes (34%) where this mark normally changed with age.

Accelerated epigenomic aging was not observed for all marks,
and specificity was observed even within targets for a given
epigenetic writer. The COMPASS complex is responsible for both
the H3K4me1 and H3K4me3 histone methyl marks29, with the
histone methyltransferase MLL3/4 writing the H3K4me1 and
other SET/MLL methyltransferases writing the H3K4me3 mark.
In contrast to observations for H3K4me1, the primary H3K4me3
change with age was a decrease rather than increase: 363 genes
exhibited increases whereas 861 genes exhibited decreases in
H3K4me3 during normal liver maturation, an order of magnitude
less than was observed for other marks. In contrast to other
histone marks, EDC exposure had little effect on age-related
increases in H3K4me3, with only 55/363 (15%) exhibiting
Precocious Reprogramming, whereas EDC-exposure decreased
H3K4me3 at 338/861 (39%) genes where this change normally
occurred with age (Supplementary Fig. 2). Overall, the 393 genes
with Precocious Reprogramming of H3K4me3 were fewer than
seen for H3K4me1, H3K27ac, and H3K27me3, histone marks
that retained greater epigenomic plasticity during liver
maturation.

While accelerated epigenetic aging accounted for >98% of the
observed developmental reprogramming, a subset of genes
exhibited EDC-specific or Cumulative Reprogramming, primarily
due to changes in H3K4me1. EDC-specific Reprogramming of
H3K4me1 occurred in 308 genes, as illustrated by Nudt2 (Fig. 2b),
Hox10d and Zbtb4 (Supplementary Fig. 2b). Nudt2 showed no
H3K4me1 increase with age, but EDC exposure increased
H3K4me1 at TSS at PND5, and this reprogramming persisted
into adulthood (D70). Cumulative Reprogramming of H3K4me1
occurred at 87 genes, including an important regulator of liver
metabolism, early growth response 1 (Egr1). For Egr1, the age-
related H3K4me1 increase seen at the TSS was further
exaggerated by EDC exposure, and persisted in EDC- versus
VEH-exposed animals at D70 (Fig. 2b). Cumulative Reprogram-
ming examples for other genes (Fam181b and Cpm) are shown in
Supplementary Fig. 2b. Finally, reprogramming was seen in D70
livers of EDC-exposed animals that was not directly induced by
EDC exposure (i.e. not observed at PND5) nor associated with
normal epigenomic aging of the liver. However, these later-onset
changes in the livers of EDC-exposed animals comprised <2% of
all reprogramming observed (Fig. 2a and Supplementary Fig. 2a).

Enhancer elements also exhibited Precocious Reprogramming
of H3K4me1 and H3K27ac, which mark this important class of
cis-acting transcriptional regulators30. A lift-over of the compre-
hensive mouse Fantom5 enhancer data identified 25,527
corresponding rat enhancer elements. The vast majority of
EDC-induced changes at these enhancers were Precocious
Reprogramming. 877/1522 enhancers (58%) that gained/lost
H3K4me1 during normal epigenetic aging exhibited Precocious
Reprogramming, as did 2551/4530 enhancers (56%) that gained/
lost H3K27ac (Supplementary Fig. 2c), demonstrating that in
addition to promoters, early-life EDC exposure accelerated
epigenome aging of enhancers as well.

We next asked which chromatin states were the targets of, and
most vulnerable to, developmental reprogramming by EDC
exposure (Supplementary Fig. 3A). ChromHMM provides an
assessment of combinatorial and/or spatial changes in histone

modifications, and was used by both Encode and NIH Epigenome
Roadmap consortia to integrate multiple histone modifications
data using a Hidden Markov Model24–26. For each mark and
epigenomic state, we determined differential peak overlaps and
the odds-ratio enrichment based on the total epigenomic state
basepair size relative to the genome size.

This analysis revealed that chromatin states associated with
age-related increases in H3K4me1, H3K27ac, and H3K27me3 in
liver were the primary reprogramming targets, defined by an
odds-ratio enrichment ≥ 100. H3K4me1, H3K27ac and
H3K27me3 marks were enriched at Flanking Bivalent TSS/
Enhancers, Active TSS, Bivalent/Poised TSS and Bivalent
Promoters (Supplementary Fig. 3b). These epigenomic states
retained the most epigenomic plasticity in neonatal liver, defined
as having the greatest odds-ratio enrichment between neonatal
(PND5) and adult (D70) liver. In contrast, H3K4me3, which
exhibited little increase with age, exhibited virtually no EDC-
induced enrichment at any chromatin state, even at Bivalent
Promoters where this mark normally increased with age.
Interestingly, while there was no depletion of H3K4me1,
H3K27ac and H3K27me3 for any epigenomic state, decreased
H3K4me3 occurred at Bivalent TSS/Enhancers, the same
epigenomic state where this mark decreases during normal liver
aging (Supplementary Fig. 3c).

Neonatal EDC exposure reprograms metabolic gene expres-
sion. To explore how epigenetic reprogramming impacted gene
expression, we employed transcriptional profiling by RNA-
sequencing (RNA-seq), then executed DESeq2 differential gene
analysis, with significance achieved at q-value <0.1 and fold
change exceeding 1.25×. Hierarchical clustering identified 431
genes (246 up and 185 down) differentially expressed in EDC-
reprogrammed animals on Western-style diet relative to age-
matched VEH-exposed animals on the same diet (Fig. 3a). The
top 20 differentially expressed genes (up and down) are shown in
Supplementary Table 1. Principal component analysis (PCA)
confirmed a robust differential response to Western-style diet in
EDC-exposed animals (Supplementary Fig. 4a), with clear
separation between EDC- and VEH-exposed groups. Genes were
sorted by their contribution to the top three principal compo-
nents, and the top 25 major effect genes associated with variance
in each component are listed in Supplementary Table 2.

Overrepresentation analysis (ORA) using Hallmark and GO
databases (Fig. 3b) revealed enrichment for metabolism-
associated pathways in EDC-reprogrammed livers of animals
fed a Western-style diet. The top 25 Hallmark pathways included
cholesterol, xenobiotic, and fatty acid metabolism. Enrichment
was also seen for hormone response pathways, which was
interesting given the function of this EDC as a nuclear hormone
receptor ligand engaging estrogen receptor and related
pathways31,32. Enriched GO pathways included lipid and sterol
metabolism (Fig. 3b).

Although largely metabolically silent prior to feeding with
Western Diet, and subsequent development of an overt liver
phenotype, reprogramming of metabolism-linked gene expres-
sion was evident as early as D70, (Supplementary Fig. 4c and d,
and Supplementary Table 3). Differential transcriptomic analyses
using DESeq2 at D70 of EDC- versus VEH-exposed livers showed
significant changes in 592 differentially expressed genes (278 up
and 314 down); corresponding hierarchical clustering is shown in
Supplementary Fig. 4b. ORA analysis using Hallmark and GO
databases (Supplementary Fig. 4c and d), showed enrichment for
fatty acid, xenobiotic, and lipid metabolism, as well as steroid
hormone and steroid signaling. Of these 592 differentially
expressed genes, 55% of genes with increased expression (153/
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278) and >60% of genes with decreased expression (194/314)
were targets for Precocious Reprogramming (Supplementary
Fig. 4e). In contrast, comparatively few transcriptional changes
could be ascribed to EDC-specific or Cumulative Reprogram-
ming: 21/592 (~4%) and 7/592 (~1%), respectively.

EGR1 transcriptional response is epigenetically repro-
grammed. As shown in the volcano plot in Fig. 3c, Egr1 was one
of the top genes overexpressed in liver of EDC-reprogrammed
animals on Western-style diet. The EGR1 transcription factor
responds to diet and stress, and controls genes involved in liver
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metabolism33. As shown in Fig. 3d, Egr1 was a target for
H3K4me1 Cumulative Reprogramming and H3K27me3 Pre-
cocious Reprogramming. Notably, the impact of this epigenomic
reprogramming was silent (i.e., no change in Egr1 expression by
RNA-seq or RT-PCR) in EDC-reprogrammed neonatal (D5) and
adult (D70) livers, indicating that reprogramming of these his-
tone marks was not a consequence of increased Egr1 expression
(Fig. 3e). However, once reprogrammed animals were fed a
Western diet, Egr1 expression (Fig. 3e) and protein levels (Fig. 3f)
were significantly increased compared to controls on the
same diet.

To determine if increased EGR1 expression led to increased
transcription of downstream targets, the Harmonizome data-
base34 was used to identify EGR1 targets in the expression
signature of reprogrammed animals fed a Western-style diet. This
analysis revealed that among genes differentially expressed in
livers of animals on Western-style diet, >60% were EGR1 targets,
including both up- and downregulated genes (Fig. 3g). In
addition to epigenetic reprogramming of the Egr1 gene itself
(Fig. 3d), of the 431 genes differentially expressed in the setting of
Western-style diet, 206 were targets for Precocious Reprogram-
ming and 158 of these (77%; 158/206) were EGR1 targets
(Supplementary Fig. 4f). Similar to our observations at D70, very
few D240 differentially expressed genes were Cumulative or EDC-
specific Reprogramming targets, as only 4 and 5 reprogrammed
genes, respectively, were differentially expressed.

Epigenome:environment interactions impact liver metabolism.
To link reprogramming of the EGR1 transcriptome to altered
liver metabolism, we performed targeted metabolomics on livers
of animals fed a Western-style diet. We used a CBioPortal plat-
form35 approach to generate an Oncoprint-type heatmap, which
identified 16 recurrently increased and 10 recurrently decreased
metabolites in livers of EDC-exposed animals (Fig. 4a). We next
integrated recurrently up- or downregulated metabolites from
EDC-exposed animals with transcriptional signatures using the
hybrid metabolite/transcriptomics pathway compendium Wiki-
Pathways36. We performed a metabolomics set enrichment ana-
lysis (MetSEA) by combining metabolomic and RNA-seq data
(Fig. 4b and Supplementary Table 4). This approach identified
alterations in one-carbon metabolic pathways (5 of the top 10
pathways) as enriched in EDC-reprogrammed animals fed a
Western-style diet.

Driving the one-carbon metabolism enrichment were
increases in the metabolites glycine, betaine and methionine
(Fig. 4a and Supplementary Table 4) and increased expression of
genes involved in their metabolism: Chdh (choline dehydrogen-
ase), Shmt1 (serine hydroxymethyltransferase 1), Mthfd1

(methylenetetrahydrofolate dehydrogenase 1), and Ahcy (S-
adenosylhomocysteine hydrolase). To validate the aberrant
expression of these genes in reprogrammed animals, we confirmed
altered expression of Chdh, Shmt1, Mthfd1, and Ahcy in livers by
RT-PCR in a validation set of adult animals fed a Western-style
diet with prior exposure to EDC as neonates (N= 7) relative to
vehicle controls (N= 9) on the same diet (Fig. 4c). These data
confirmed significantly increased expression of Chdh (p < 0.0001),
Shmt1 (p < 0.0058), Mthfd1 (p < 0.0004) and Ahcy (p < 0.0490) in
livers of EDC-exposed animals. Additional genes involved in one-
carbon, lipid and/or cholesterol metabolism were confirmed by
RT-PCR in the test and validation cohorts (Fig. 4c): Apob,
encoding apolipoprotein B, a building block critical to formation
of very low-density lipoprotein (VLDL) (p < 0.0018), Abca1,
encoding the ATP-binding cassette transporter named cholesterol
efflux regulatory protein (CERP) (p < 0.0001), and ApoA1,
encoding apolipoprotein A-1, a component of high-density
lipoprotein (HDL) (p < 0.0358).

Finally, the conditional nature of EDC-induced metabolic
dysfunction, and its dependence on later-life diet, was shown by
examining expression of reprogrammed genes in EDC- versus
VEH-exposed animals at one year of age fed normal chow. No
significant differences were seen by RT-PCR in expression of
Shmt, Chdh, Mthfd1, Ahcy, Apob, Abca1, ApoA1, or any of 19
reprogrammed genes examined in these animals (Supplementary
Fig. 5a). The key role of diet in distinguishing between
reprogrammed and non-reprogrammed animals was further
confirmed by PCA analysis of the transcriptional profiles of
D70 EDC- versus VEH-exposed liver using the same principal
components that separated EDC- from VEH-exposed animals fed
a Western diet at D240. Principal components separating EDC-
reprogrammed animals from vehicle controls on Western-style
diet at D240 failed to separate EDC- versus VEH-exposed livers
of D70 animals (Supplementary Fig. 5b), highlighting the critical
interaction between early-life reprogramming and later life diet.

Together, these data suggest a model for how both early and
late epigenome:environment interactions can potentially impact
liver metabolic function. In this model (Fig. 5), early-life
epigenome:environment interactions can reprogram the develop-
ing epigenome, and cause life-long changes in histone modifica-
tions at key target genes and epigenomic states. This epigenomic
reprogramming may remain transcriptionally and phenotypically
silent until triggered by a later life event, such as a dietary
challenge. In the case of the EDC BPA, Egr1 reprogramming and
diet-induced increased expression resulted in altered gene
expression and production of metabolites in the cholesterol, lipid
and one-carbon metabolic pathways that drove metabolic
dysfunction in adulthood. Thus, both early- and later-life

Fig. 3 Transcriptional profiling reveals reprogramming of the EGR1 transcriptome. a Transcriptomic profiling by RNA-seq of vehicle- (VEH black bar)
and EDC- (EDC red bar) exposed livers animals fed a Western-style diet. N= 3 biologically independent animals per treatment. Heatmap showing DEseq
differential gene analysis, with significance achieved at q-value < 0.1 and fold change exceeding 1.25×. b Overrepresentation analysis (ORA) of differentially
expressed genes performed using a hypergeometric test, with significance achieved at q < 0.2, against the Hallmark gene set compendium and the GO
database. c Volcano plot of the transcriptomic footprint from EDC-exposed vs VEH-exposed livers of animals fed a Western-style diet. Red circles indicate
upregulated, while blue circles indicate downregulated genes, respectively. Larger circles identify the top 20 up- and downregulated genes. d
Reprogramming of histone marks for Egr1 illustrates Precocious Reprogramming of H3K4me1 and Cumulative Reprogramming of H3K27me3 shown with
IGV browser plots using ChIP-seq data obtained at PND5 (upper) and D70 (lower). e RT-qPCR analysis of Egr1 gene expression in the liver of animals at
PND5, D70, or D240 after feeding a Western-style diet. Vehicle (VEH)= black dots, EDC= red dots. N= 9 biologically independent animals for VEH and
N= 10 biologically independent animals for EDC. The p value generated by t test is indicated. *p < 0.05. f Western analysis for EGR1 expression in EDC- vs
VEH-exposed livers (left) and quantitation (right). N= 9 biologically independent animals for VEH and N= 10 biologically independent animals for EDC.
The p value generated by t test is indicated. ****p < 0.0001. g EGR1 targets within the significant differentially expressed gene signature (a) were identified
using the Harmonizome database (‘All’ shown with gray bars). EGR1 targets are represented as total gene number (left) or as the percent of the
differentially expressed genes (right). Genes that were increased are represented as ‘Up’, and genes that were decreased in the EDC signature are
represented as ‘Down’. Source data for a, b and e–g are provided as a Source data file.
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epigenome:environment interactions play important roles in
regulating hepatic metabolism across the life-course.

Discussion
We demonstrated that early-life EDC exposure can reprogram
the liver epigenome to create a conditional vulnerability to diet-
triggered adulthood metabolic dysfunction. Mechanistically,
developmental EDC exposure induced premature epigenomic
aging in H3K4me1, H3K27ac, and H3K27me3 epigenetic marks

in the liver, which targeted genes and chromatin states with age-
related plasticity, and mimicked changes normally occurring
during liver maturation with age. These alterations were observed
with short-term exposure (on neonatal days 1, 3, and 5) to the
chronic oral Reference Dose (by definition, likely to be without
lifetime risk of deleterious effects) for BPA of 50 μg/kg body
weight/day (USEPA, 2017. IRIS (Integrated Risk Information
System). Environmental Protection Agency, Washington, DC.
http://www.epa.gov/iris/index.html).
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Fig. 4 Reprogramming by early-life EDC exposures causes metabolic disruption in the liver. a Targeted metabolomics of livers of animals fed a Western-
style diet. For each metabolite and each EDC-exposed animal, we computed its z-score (number of standard deviations) compared to the vehicle-treated
animals. N= 5 biologically independent animals per treatment. The results were visualized with a CBioPortal Oncoprint-type exploration tool, and
metabolites increased by at least 1.5 standard deviations in at least 3 animals and down in none or decreased by at least 1.5 standard deviations in at least 3
animals and up in none are shown. Genes that encode enzymes associated with altered metabolites are depicted on the left in italics (Ahcy, Mthfd1, Chdh,
and Shmt1). S-Adenosylhomocysteine= SAH, homocysteine=HCY, S-ribosyl homocysteine= SRH, tetrahydrofolate= THF, phosphoenolpyruvic acid=
PEP, fructose-bisphosphate/glucose-bisphosphate= FBP/GBP, glycine=Gly, leucine= Leu. b Metabolism set enrichment analysis (MetSEA) using genes
identified by RNA-seq (shown in Fig. 3a) and metabolites identified in (a) to elucidate metabolic pathways disrupted in EDC-reprogrammed liver. MetSEA
was performed using integrated recurrently up- or downregulated metabolites from livers of EDC-exposed animals with transcriptional signatures using
the hybrid metabolite/transcriptomics pathway compendium WikiPathways. ORA using a hypergeometric distribution against WikiPathways identified
14 significantly enriched pathways at q < 0.2. c RT-qPCR validation of differentially expressed genes in key metabolic pathways identified by RNA-seq and
MetSEA. Data from an independent validation set of vehicle-exposed (VEH; black dots) and EDC-exposed (EDC; red squares) animals fed a Western-style
diet are shown. N= 9 biologically independent animals for VEH and N= 10 biologically independent animals for EDC. The p values generated by t test are
indicated. *p≤ 0.05; **p < 0.01; ***p < 0.001. Source data for c are provided as a Source data file.
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Our data add to the growing awareness that epigenome:
environment interactions play important roles in health and
disease susceptibility both early and late in life. During early life,
the epigenome is plastic, undergoing remodeling as part of nor-
mal development and aging processes. This plasticity creates a
vulnerability to environmental exposures, which can disrupt the
epigenome, and for in the case of the EDC BPA, accelerate
normal epigenomic aging to cause widespread epigenetic repro-
gramming. Later in life, epigenome:environment interactions can
unmask the impact of this reprogramming, with the repro-
grammed epigenome exhibiting aberrant responses to environ-
mental challenges (ex. a Western-style diet). The emerging
paradigm of early-life reprogramming by, and altered later-life
response to, the environment is a central theme of DOHaD
research, and has been observed in organs other than the
liver37,38. We have shown in prostates reprogrammed by early-life
EDC exposure that an adult testosterone challenge leads to
exaggerated expression of reprogrammed androgen-responsive
genes37, and in the uterus, reprogramming causes estrogen-
responsive genes to become hyper-responsive to even low estro-
gen levels38. However, our unbiased metabolomic data also hint
that not all EDC-induced reprogramming effects may adversely
affect health: BPA-exposed animals on normal diet exhibited
decreased serum triglycerides and ALT activity at D70 relative to
vehicle-exposed controls (Supplementary Fig. 1b and e).

Currently, little is known about how early-life exposures affect
epigenomic aging. Our data reveal EDC-exposure can induce
accelerated aging of histone marks, which exhibit modifier-,
mark- and gene-specificity. For active marks, H3K4me1 and
H3K27ac were preferentially altered by EDC exposure relative to
H3K4me3, which correlated with the amount of age-related
plasticity associated with these histone marks in the neonatal
liver. We speculate that retained plasticity may reflect the func-
tion of these histone marks. For example, addition of H3K4me3
at promoters of liver-specific genes may occur primarily during
organogenesis (a developmental window that precedes our win-
dow of exposure), reducing plasticity of this epigenetic mark in
the neonatal liver. Other amplifying (H3K4me1 and H3K27ac) or
dampening (H3K27me3) histone marks may remain more plastic
until liver maturation completes, and thus be more vulnerable to
perturbation by environmental exposures during early life (and
our exposure window), when the liver is undergoing functional
maturation20,21. Another implication of our data is that studies to

determine impact of developmental reprogramming by assessing
the adult epigenome could miss reprogramming events that
accelerate normal epigenetic aging: in adult livers, genes that were
targets for Precocious Reprogramming were indistinguishable
between exposed and unexposed livers. For genes targeted by
Precocious Reprogramming, the impact of early-life EDC expo-
sure was only apparent when epigenetic signatures were com-
pared early between exposed and unexposed neonates.

To date, the vast majority of epigenome:environment studies
using the EDC BPA have focused on DNA methylation9,11,39–44.
Of these, only a handful assessed the transcriptional impact of
altered DNA methylation and functional outcomes in the
liver40,43. Only one study has examined perinatal BPA exposure
effects on liver histone modifications, and the effect of these
modifications on gene expression and liver function were not
reported44. In contrast to the little that is known regarding the
impact of epigenome:environment interactions on histone mod-
ifications, aging-associated changes in DNA methylation
(DNAm-aging) have become well-established since the original
studies of Horvath45, and reflect the impact of both environ-
mental exposures and pathophysiological processes41,46–51. Pre-
vious studies have assessed epigenetic signatures in rodent and
human liver during normal aging by assessing DNAm-aging52–55.
In liver, DNAm-aging can be accelerated under conditions such
as obesity56,57, in utero malnutrition58, ovariectomy59, and
alcohol dependence48, and is seen in patients with nonalcoholic
steatohepatitis60. Accelerated epigenetic aging of histone mod-
ifications by early life chemical exposure opens new avenues for
exploring, and understanding, how early life exposures impact
health trajectory across the life course.

In our study, we observed changes in both active marks
(H3K4me1, H3K4me3, and H3K27ac) and repressive marks
(H3K27me3), and reprogrammed genes exhibited both increased
and decreased transcription. One pathway by which early-life
exposures reprogram the epigenome is by altering the activity of
epigenetic programmers that add and/or remove histone methyl
marks via several different mechanisms12. An early-life exposure
that increases or decreases the activity of epigenetic programmers
will cause a concomitant increase or decrease in their cognate
methyl mark in the reprogrammed epigenome. Thus, if an
exposure affects a histone methyltransferase/demethylase for an
active mark and a methyltransferase/demethylase for repressive
mark, it would not be surprising to see reprogramming of both
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Fig. 5 Model for developmental reprogramming of Egr1 by early-life EDC exposure. Schematic illustrating programming of Egr1 during normal
development (left) and reprogramming of Egr1 by early-life EDC exposure (right). Reprogramming may remain transcriptionally and phenotypically silent
until triggered by a later life event, such as a dietary challenge.
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active and repressive marks. Similarly, the transcription impact
when a specific mark is gained or lost will depend on the nature
of the mark itself. For example, gain of an active mark or loss of a
repressive mark could both increase gene expression.

Our findings in this longitudinal investigation into the early-
life EDC exposure impact overlap with human epidemiological
studies reporting higher urinary levels of BPA are associated with
adverse liver changes in young children61,62 and with increased
risk of NAFLD in adolescents63. One caveat of our study is that
non-fasted insulin levels, insulin sensitivity, and glucose tolerance
were not measured. Adding these measurements in future studies
would provide a picture of systemic alterations that may synergize
with EDC-mediated liver reprogramming to adversely affect
health. While a comprehensive mechanistic understanding of the
association of BPA exposure with hepatic disturbances in humans
remains incompletely understood, our interrogation of the rodent
hepatic epigenomic and transcriptional effects of an early-life
environmental exposure provides insights for understanding how
exposure to EDCs, such as BPA, may alter epigenetic states
leading to increased metabolic disease risk.

While these findings support the concept that the epigenome
influences the pathogenesis of metabolic dysfunction, it is clear
that overnutrition is a key driver of the current epidemic of
metabolic disease. Indeed, our finding that animals taken to one
year after exposure on a normal diet did not exhibit the changes
in metabolism-linked gene expression seen in those fed a Western
diet corresponds with this fundamental concept, and with past
observations that dietary manipulation can slow or reverse epi-
genetic changes associated with aging in the liver64–67. Our
findings raise the possibility that early life environmental expo-
sure to EDCs or other chemicals may be an overlooked risk factor
increasing risk of developing metabolic dysfunction by altering
the response to diets high in fat, fructose and cholesterol.

An improved understanding of how early-life environmental
exposures may increase metabolic disease risk, possibly through
accelerated epigenetic aging, has the potential to guide the
development of innovative strategies to prevent and manage adult
metabolic disease. The conditional nature of liver metabolic
perturbation caused by EDC exposure implies that it may be
possible to develop interventions to prevent, ameliorate, or
reverse effects of early-life environmental exposures that increase
risk of metabolic disease later in life. This possibility is particu-
larly relevant for children and adolescents, who exhibit a rapidly
increasing prevalence of metabolic disease68. Thus, our data
provide a springboard for DOHaD efforts to understand envir-
onmental factors contributing to the current NAFLD
epidemic10,18,19.

Also of note, while we focused on liver due to its role as
governor of the entire organism’s metabolic state, environmental
EDC exposures are usually systemic, making it likely that there
were effects on other organs/tissues, which could also potentially
impact liver function. For example, developmental exposure to
low-dose BPA has been shown to increase pancreatic β-cell mass
and induce hyperinsulinemia in non-fasted offspring later in
life69, and excess insulin could also contribute to altered liver
metabolism and subsequent liver disease. Coordinated efforts to
characterize epigenomic reprogramming across many organs and
target tissues, such as the liver, and more accessible surrogate
tissues, including blood and skin, are currently being undertaken
by the NIEHS TaRGET II Consortium70. The TaRGET II goal is
to understand how several environmental toxicants, including
BPA, reprogram the epigenome and to develop epigenetic bio-
markers for early-life toxicant exposures that increase future
disease risk. Findings of integrated longitudinal studies, such as
we present here, will inform TaRGET II and similar initiatives
aimed at identifying signatures for epigenomic reprogramming by

environmental exposures. It should also be noted that we
observed a more robust response in males than in females
exposed to BPA and fed the same diet (Supplementary Fig. 1f).
Sex-specific modifications of gene expression and epigenome after
developmental BPA exposure have been previously reported in
rodent liver44, highlighting a need to examine potential sex-bias
of observed phenotypes in future epidemiological studies. Our
discovery that early-life EDC-exposure causes a pattern of epi-
genomic aging associated with greater risk of metabolic dys-
function in adult liver represents an early advance towards
this goal.

Methods
Animal studies. Experimental procedures complied with all relevant ethical reg-
ulations for animal testing and research. These procedures were approved by the
Institutional Animal Care and Use Committee at Texas A&M Institute of Bios-
ciences & Technology. Sprague-Dawley rats aged 6–8 weeks were purchased from
Harlan and used as breeders to produce rats for this study. One breeder pair was
housed per cage. To reduce exposure to exogenous xenoestrogens, rats were housed
in polycarbonate-free caging and were fed a phytoestrogen-reduced diet (Phy-
toestrogen Reduced II 18-5, Ziegler Bros, Inc) ad libitum. Cages and bedding were
changed once per week. Rats were maintained on a 14-h light, 10-h dark cycle.

Neonatal rats were treated with vehicle (VEH; sesame oil) or bisphenol A (BPA;
50 µg/kg dissolved in sesame oil) orally via pipette tip on post-natal days 1, 3, and
5. Littermates of the same sex were randomly assigned to the treatment groups.
BPA was obtained from the National Institute of Environmental Health Sciences
(NIEHS). The dose and route of administration recapitulates human exposure to
BPA. At day 180 (D180), adult rats in both treatment groups were fed a diet high in
fat (40% kcal), fructose (20% kcal) and cholesterol (2%) (Western-style diet) for
60 days (D09100301, Research Diets, Inc). Rats were fasted overnight prior to
tissue collection.

Liver tissue was harvested on post-natal day 5 at 6 h after treatment (PND5;
VEH: n= 59 (34 males and 25 females); BPA: n= 37 (22 males and 15 females)),
on day 70 (D70; VEH: n= 37 (19 males and 18 females); BPA: n= 30 (15 males
and 15 females)), and on day 240 after challenge with Western-style diet (D240;
VEH: n= 20 (9 males and 11 females; BPA: n= 17 (10 males and 7 females)).
Tissue was snap-frozen in liquid nitrogen for downstream transcriptomic,
epigenomic, and metabolomic analyses or fixed in 10% neutral buffered formalin
and stored in 70% ethanol before processing and paraffin embedding by the
Research Histology, Pathology and Imaging Core at The University of Texas MD
Anderson Cancer Center, Science Park. Additionally, blood was collected from D70
and D240 animals via cardiac puncture at the time of tissue harvest. For separating
serum from the blood cells, the samples were allowed to clot at room temperature
for 20–30 min, followed by centrifugation for 10 min at 1000 × g, and storage of the
separated serum at −80 °C. Body weight was recorded at the time of tissue harvest
for D70 and D240 rats. Liver weight was recorded at the time of tissue harvest for
D240 rats.

Female rats failed to show the same robust response to EDC-exposure seen in
males, and for the purposes of the present study, we focused our analysis on male
rats. This assessment was made based on key metabolic, gene expression and
epigenomic indicators. Female rats on Western-style diet failed to exhibit the
increase in serum triglycerides seen in the males: vehicle (N= 6) and EDC (N= 7)
exposed female rats showed no significant difference in serum triglycerides, which
were 0.9 nmol/ul and 1.7 nmol/μl, respectively p= 0.23. RT-PCR for genes that
were overexpressed in the livers of male EDC-exposed animals on Western-style
diet (Shp, Ccne1, and Lrat) showed no differences in expression between vehicle-
and EDC-exposed females (Supplementary Fig. 1f). In males (D70), the promoter
region of these genes exhibited an increase in H3K4me3 that correlated with
elevated expression, but ChIP in female rat livers showed no increase for this
epigenetic histone mark (Supplementary Fig. 1f).

Serum alanine aminotransferase (ALT) assay. Serum ALT levels were deter-
mined in D240 (n= 7 per treatment group) male rats using Abcam’s Alanine
Transaminase Activity Assay kit (ab105134) per the manufacturer’s instructions.

Liver and serum lipidomics. Serum triglyceride levels were determined in D70
(n= 4 per treatment group) and D240 (n= 7 per treatment group) male rats using
Abcam’s triglyceride quantification kit (ab65336) per the manufacturer’s instruc-
tions. Serum LDL/VLDL, total cholesterol, and free cholesterol levels were mea-
sured in D240 male rats (n= 7 per treatment group) using Abcam’s HDL/LDL/
VLDL Cholesterol Assay kit (ab65390) per the manufacturer’s instructions.

For lipidomic analysis, frozen liver tissue and serum from D70 (n= 5 per
treatment group) and D240 (n= 5 per treatment group) male rats were sent to the
Metabolomics Core at Baylor College of Medicine for processing. Lipids were
extracted using a modified Bligh–Dyer method. Fifty µL of serum and 25mg of the
crushed liver was used for the extraction. The extraction was carried out using 2:2:2
volume ratio of water/methanol/dichloromethane at room temperature after
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spiking internal standards 17:0 LPC, 17:0 PC, 17:0 PE, 17:0 PG, 17:0 ceramide, 17:0
SM, 17:0PS, 17:0PA, 17:0 TAG, 17:0 MAG, 16:0/18:1 DAG, 17:0 CE. The organic
layer was collected and completely dried under nitrogen. Before MS analysis, the
dried extract was resuspended in 100 μL of Buffer B (10:5:85 acetonitrile/water/
Isopropyl alcohol) containing 10 mM NH4OAc and subjected to LC/MS. The
lipidome was separated using reverse-phase chromatography.

For internal standards and quality controls, we used high-performance liquid
chromatography (LC) grade acetonitrile, and dichloromethane from Sigma (St.
Louis, MO), isopropanol from optima- liquid chromatography/mass spectrometry
(LC/MS) Fisher (New Jersey, NJ), and methanol from J.T. Baker (Radnor, PA). We
obtained water from a Millipore high purity water dispenser (Billerica, MA). We
purchased MS grade lipid standards from Avanti Polar Lipids (Alabaster, AL). We
prepared the lipid stock solution by weighing an exact amount of the lipid internal
standards in chloroform/methanol/H2O resulting in a concentration of 1 mg/mL
and stored at −20 °C. We further diluted the stock solutions to 100 pmol/μL by
mixing appropriate volume of the internal standards LPC 17:0/0:0, PG 17:0/17:0, PE
17:0/17:0, PC 17:0/17:0, TAG 17:0/17:0/17:0, SM 18:1/17:0, MAG 17:0, DAG 16:0/
18:1, CE 17:0, ceramide d 18:1/17:0, PA 17:0, PI 17:0/20:4, and PS 17:0/17:0. We
used two kinds of controls to monitor the sample preparation and MS. To monitor
instrument performance, we used 10 μL of a dried matrix-free mixture of the
internal standards, reconstituted in 100 μL of buffer B (5% water, 85% isopropanol:
10% acetonitrile in 10mM NH4OAc). To monitor the lipid extraction process, we
used a standard pool of tissue samples made up of aliquots from these samples.

For data acquisition through LC/MS analysis, we used a Shimadzu CTO-20A
Nexera X2 UHPLC system equipped with a degasser, binary pump, thermostatted
auto sampler, and a column oven for chromatographic separation. The column
heater temperature was set at 55 °C. For lipid separation, the 5 μL of the lipid
extract was injected into a 1.8 μm particle 50 × 2.1 mm Acquity HSS UPLC T3
column (Waters, Milford, MA) which heats to 55 °C. Acetonitrile/water (40:60, v/v)
with 10 mM ammonium acetate was solvent A and acetonitrile/water/isopropanol
(10:5:85 v/v) with 10 mM ammonium acetate was solvent B. For chromatographic
elution we used a linear gradient over a 20 min total run time, with 60% solvent A
and 40% solvent B gradient in the first 10 min, then the gradient was ramped in a
linear fashion to 100% solvent B which was maintained for 7 min. After that the
system was switched back to 60% solvent B and 40% solvent A for 3 min. The flow
rate used for these experiments was 0.4 mL/min and the injection volume was 5 μL.
The column was equilibrated for 3 min before the next injection and run at a flow
rate of 0.4 mL/min for a total run time of 20 min. The data acquisition of each
sample was performed in both positive and negative ionization modes using a
TripleTOF 5600 equipped with a Turbo VTM ion source (AB Sciex, Concord,
Canada). The column effluent was directed to the electrospray ionization source.
The voltage of source was set to 5500 V for positive ionization and 4500 V for
negative ionization mode, the declustering potential was set to 60 V, and the source
temperature to 450 oC for both modes. The curtain gas flow, nebulizer, and heater
gas were set to 30, 40, and 45 units, respectively. The instrument performed one
TOF MS survey scan (150 ms) and 15 MS/MS scans with a total duty cycle time of
2.4 s. The mass range in both modes was 50–1200m/z. We controlled the
acquisition of MS/MS spectra by data-dependent acquisition (DDA) function of
the Analyst TF software (AB Sciex, Concord, Canada) with the following
parameters: dynamic background subtraction, charge monitoring to exclude
multiply charged ions and isotopes, and dynamic exclusion of former target ions
for 9 s. Rolling collision energy spread was set whereby the software calculated the
collision energy value to be applied as a function of m/z. Mass accuracy was
maintained by the use of an automated calibrant delivery system interfaced to the
second inlet of the DuoSpray source.

Lipidomics data analysis. Raw data were converted to the mgf data format using
proteoWizard software (2). The NIST MS PepSearch Program was used to search
the converted files against LipidBlast libraries. The m/z width was determined by
the mass accuracy of internal standards and were set to 0.001 for positive mode and
to 0.005 for negative mode with an overall mass error of less than 2 parts per
million. The minimum match factor used was set to 400. All raw data files were
searched against the library of identified lipids based on mass and retention time
using Multiquant 1.1.0.26 (ABsciex, Concord, Canada). Relative abundance of peak
spectra was used for the analyses. Lipids that were identified in both positive and
negative ion modes were initially analyzed separately for their relationship with
outcome to ensure persistent results. As the relationship with outcome was not
different in such lipids by ion modes, the values from positive mode were used in
the final analysis. For lipid features with multiple adducts, the sum of spectral peaks
from different adducts was used for the corresponding lipid. Identified lipids were
quantified by normalizing against their respective internal standard. Quality con-
trol samples were used to monitor the overall quality of the lipid extraction and
mass spectrometry analyses. The distributions of detected lipid species across the
quality control samples indicated high reproducibility.

RNA-sequencing and quantitative real-time RT-PCR (RT-qPCR). RNA from
liver of D70 (n= 3 per treatment group) and of D240 (n= 3 per treatment group)
male rats was prepared using the Qiagen RNeasy kit (cat no. 74101), including
optional on-column DNase digestion, according to the manufacturer’s instructions.
RNA concentration was measured using Thermo Scientific’s Nanodrop and then

sent to the Next Generation Sequencing Core at the University of Texas MD
Anderson Cancer Center Science Park for RNA quality analysis, library prep and
sequencing. RNA quality control was performed with the Agilent 2100 Bioanalyzer.
The RNA Integrity Number (RIN) was determined for every sample and all
samples used for sequencing libraries had RIN values > 8.4. Sequencing libraries
were prepared using the Illumina Truseq stranded total RNA kit using 1000 ng of
RNA per sample. Sequencing was performed using the HiSeq 3000 (Illumina).

To validate differentially expressed genes, frozen tissue from male rats was
pulverized and processed with TRIzol (Invitrogen) per the manufacturer’s
instructions. Isolated RNA was purified via ethanol precipitation and utilized for
cDNA synthesis using the SuperScript III First-Strand Synthesis System (Life
Technologies). 2 μg of RNA was incubated with RT reaction mix and RT enzyme
mix for 10 min at 25 °C, followed by incubation at 50 °C for 30 min, at 85 °C for
5 min. After chilling on ice, 2U of E. Coli RNase H were added, followed by
incubation at 37 °C for 20 minutes. Fast SYBR Green Master Mix (Applied
Biosystems) and a Viia7 RT-PCR System (Life Technologies) were used for real-
time RT-PCR measurement of mRNA levels via the 2−ΔΔCt method (using Gapdh
as the normalizer) under default reaction conditions. Primer sequences are
provided in Supplementary Table 5.

Transcriptomics data analysis. RNA-seq data yielded 29–37 million read pairs
per sample. Data was mapped onto the rat genome UCSC build rn6 using hisat2,
and gene expression was quantified using featureCounts against the GENCODE
gene definitions. Gene expression was normalized using the Remove Unwanted
Variation (RUVr)71 software. Differentially expressed genes were detected using
DESeq2 with the Wald method, with significance achieved for FDR-adjusted q-
value < 0.1 and fold change greater than or equal than 1.25× or lower than or equal
to 0.8×. RNA-seq visualization using principal component analysis (PCA) and
heatmaps were generated using the Python language scientific library. Enriched
pathways were inferred using the over-representation analysis method (ORA), as
implemented by the Molecular Signature Database (MSigDB)72 using the hyper-
geometric test and with significance achieved for FDR-adjusted q-value < 0.2.
Enriched pathways were plotted as -−log10(q-value) using the GraphPad Prism
software version 8.02. Targets of the EGR1 transcription factor were obtained using
the Harmonizome Compendium; they specifically comprise ChIP-seq targets of
EGR1 experimentally identified by ENCODE Consortium73, predicted based on
sequence motifs by databases such as TRANSFAC or JASPAR74,75, or identified by
hybrid methods such as Chip-X enrichment analysis76. We independently analyzed
upregulated genes, downregulated genes, and all genes for the D240 EDC vs D240
vehicle signature. Overlaps were plotted using the GraphPad Prism 8.02 software.

Chromatin immunoprecipitation (ChIP), ChIP-sequencing, and qPCR. Frozen
liver tissue was pulverized, followed by cross-linking of proteins to DNA with 37%
formaldehyde, and then incubation with 10X glycine to stop the reaction. Cross-
linked tissue was homogenized, and centrifuged at 400 × g for 5 min at 4 °C. The
cell pellet was resuspended with cell lysis buffer (PBS with 0.5 mM EDTA and
0.05% Triton X-100), incubated on ice for 15 min, followed by centrifugation at
2,500 × g for 5 min at 4 °C. The cell pellet was then resuspended with nuclear lysis
buffer (1% SDS, 10 mM EDTA, 50 mM Tris-HCl at pH 8.1) and incubated on ice
for 10 min. Chromatin was sonicated with a bioruptor (Diagenode, Denville, NJ) to
obtain fragment sizes of 100–1000 bp or 100–300 bp for ChIP-qPCR and ChIP-seq,
respectively.

ChIP was performed by incubating sheared chromatin with Magna ChIPTM

Protein A+G magnetic beads, and antibodies against H3K4me3 (Active Motif
#39915; 1:100 dilution), H3K4me1 (Abcam ab8895; 1:100 dilution), H3K27ac
(Abcam ab4729; 1:100 dilution) or H3K27me3 (Active Motif #39155; 1:100
dilution) overnight at 4 °C.The next day, the beads were washed with low salt wash
buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris-HCl pH 8, and 150
mM NaCl) high salt wash buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20
mM Tris-HCl pH 8, and 500 mM NaCl), lithium chloride wash buffer (0.25 M
LiCl, 1% IGEPAL CA630, 1% sodium deoxycholate, 1 mM EDTA, and 10 mM
Tris-HCl pH 8), and TE buffer (20 mM Tris-HCl pH 8 and 1mM EDTA) for 5 min
each at 4 °C. Immunoprecipitated DNA was recovered from the beads by
incubation with ChIP elution buffer (1% SDS, 1 mM EDTA, 50 mM NaHCO3, and
50 mM Tris-HCl pH 8) and proteinase K for 2 h at 62 °C with shaking, followed by
incubation at 95 °C for 10 min. DNA was purified using the QIAquick PCR
Purification kit (Qiagen) and DNA concentration was measured using a NanoDrop
spectrophotometer (Thermo Scientific). ChIP-sequencing was performed by the
Next Generation Sequencing Core at the University of Texas MD Anderson Cancer
Center Science Park. Sequencing libraries were prepared using the Bioo Kit Option
2 protocol using 1.7–10 ng of DNA per sample. Sequencing was performed using
the HiSeq 2500 (Illumina).

To validate genes with histone modification alterations, qPCR was performed
using Fast Sybr Green Master Mix (Applied Biosystems) and a Viia7 RT-PCR
System (Life Technologies) via the 2−ΔΔCt method under default reaction
conditions. Primer sequences are provided in Supplementary Table 5.

Epigenomics data analysis. ChIP-seq in rat liver samples yielded 14–44 million
single end reads per sample. Reads were trimmed for low quality basepairs using
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TrimGalore. Data was mapped to the rat genome build UCSC rn6 using the
bowtie2 software. Duplicate reads were removed, then ChIP-seq track were pre-
pared using bedtools, normalized to reads per million reads mapped (rpm). ChIP-
seq tracks were visualized using the Integrative Genome Viewer software. Differ-
ential ChIP-seq regions were determined using the diffReps software using the G-
test, with significance achieved for a fold change exceeding 1.5×, and an FDR-
adjusted q-value < 0.01. Differential regions were annotated for nearby genes using
BEDTOOLS; specifically, we considered genes with a differential region within 3 kb
from its TSS. To annotate differential regions using enhancers, we first considered
the Fantom5 enhancers compendium27, determined for a collection of mouse
tissues, then derived corresponding regions on the rat genome using the UCSC
liftOver tool28. Overall, we were able to identify 25527 enhancer regions on the rat
genome with this approach. Overlap between rat enhancers and differential peaks
was determined using BEDTOOLS. Venn diagram analysis of genes or enhancers
associated with differential peaks was carried out using the Python language sci-
entific library.

ChromHMM was used with the H3K4me1, H3K27ac, H3K4me3, and
H3K27me3 ChIP-seq data to generate an epigenomic states partition of the rat liver
epigenome. We down-sampled all ChIP-seq samples to 5 million deduplicated
single-end reads to ensure ChromHMM calling will not be biased by different
depth among samples. Epigenomic states were annotated based on the emission
matrix following the approaches used by the Encode and the NIH Epigenome
Roadmap consortia. Overlap of differential regions with epigenomic states was
determined using BEDTOOLS. Odds-ratio enrichments for individual epigenomic
states were then computed based on the cumulative genome-wise size of each
epigenomic state. Odds-ratio were graphed using GraphPad Prism 8.02.

Liver metabolomics. Frozen liver tissue (100 mg) from D70 (n= 5 per treatment
group) and from D240 (n= 5 per treatment group) was submitted to the Meta-
bolomics Core at BCM for targeted metabolomics analysis. Metabolites were
extracted from crushed liver samples and a mouse liver pool was used for quality
control. Twenty-five mg of crushed liver was used for the metabolic extraction. The
extraction step started with the addition of 750 µL ice-cold methanol:water (4:1)
containing 20 µL spiked internal standards to each tissue sample. Ice-cold
chloroform and water were added in a 3:1 ratio for a final proportion of 1:4:3:1
water:methanol:chloroform:water. The organic (methanol and chloroform) and
aqueous layers were mixed, dried and resuspended with 50:50 methanol: water. The
extract was deproteinized using a 3 kDa molecular filter (Amicon ultracel-3K
Membrane; Millipore Corporation, Billerica, MA) and the filtrate was dried under
vacuum (Genevac EZ-2plus; Gardiner, Stone Ridge, NY). Prior to mass spectro-
metry, the dried extracts were resuspended in identical volumes of injection solvent
composed of 1:1 water: methanol and were subjected to liquid chromatography-
mass spectrometry.

For internal standards, high-performance liquid chromatography (HPLC)-
grade acetonitrile, methanol, and water were procured from Burdick & Jackson
(Morristown, NJ). Mass spectrometry-grade formic acid was purchased from
Sigma-Aldrich (St Louis, MO). Calibration solution containing multiple calibrants
in a solution of acetonitrile, trifluroacetic acid, and water was purchased from
Agilent Technologies (Santa Clara, CA). Metabolites and internal standards,
including N-acetyl Aspartic acid-d3, Tryptophan-15N2, Sarcosine-d3, Glutamic
acid-d5, Thymine-d4, Gibberellic acid, Trans-Zeatine, Jasmonic acid, 15 N
anthranilic acid, and testosterone-d3, were purchased from Sigma-Aldrich (St.
Louis, MO).

Three LC- MS methods were used to separate metabolites. Method A: In ESI
positive mode the HPLC column was waters X-bridge amide 3.5 µm, 4.6 × 100 mm
(Waters, Milford, MA). Mobile phase A and B were 0.1% formic acid in water and
acetonitrile, respectively. Gradient flow: 0–3 min 85% B; 3–12 min 30% B, 12–15
min 2% B, 16 min 95%B, followed by re-equilibration till the end of the gradient 23
min to the initial starting condition of 85% B. Flow rate of the solvents used for the
analysis is 0.3 ml/min. Injection volume was 10 µL. Method B: In ESI negative
mode the HPLC column was waters X-bridge amide 3.5 µm, 4.6 × 100 mm (Waters,
Milford, MA). Mobile phase A and B were 20 mM ammonium acetate in water
with pH 9.0 and 100% acetonitrile, respectively. Gradient flow: 0–3 min 85% B,
3–12 min 30% B, 12–15 min 2% B, 15–16 min 85% B followed by re-equilibration
till the end of the gradient 23 min to the initial starting condition of 85% B. Flow
rate of the solvents used for analysis is 0.3 ml/min. Injection volume was 10 µL.
Method C: In ESI positive mode the HPLC column was Luna 3 µM NH2 100 A0

Chromatography column (Phenomenex, Torrance, CA). Mobile phase A and B
were 20 mM ammonium acetate in water with pH 9.0 and 100% acetonitrile,
respectively. Gradient flow: 0–3 min 85% B, 3–12 min 30% B, 12–15 min 2% B,
15–16 min 85% B followed by re-equilibration till the end of the gradient 23 min to
the initial starting condition of 85% B. Flow rate of the solvents used for analysis is
0.3 ml/min. Injection volume was 10 µL.

For data acquisition through LC/MS analysis, 10 µL of suspended samples were
injected and analyzed using a 6495 triple quadrupole mass spectrometer (Agilent
Technologies, Santa Clara, CA) coupled to a HPLC system (Agilent Technologies,
Santa Clara, CA) via Multiple reaction monitoring (MRM). Source parameters
were as follows: gas temperature, 250 °C; gas flow, 14 l/min; nebulizer, 20 psi;
sheath gas temperature, 350 °C; sheath gas flow, 12 l/min; capillary, 3000 V positive
and 3000 V negative; nozzle voltage, 1500 V positive and 1500 V negative.

Approximately 8–11 data points were acquired per detected metabolite. The data
acquired using Agilent mass hunter software and data were analyzed using mass
hunter quantitative analysis software.

Quantification and statistical analysis. Student’s t-test (GraphPad Prism) was
used to determine whether there were significant differences between VEH and
BPA treatment groups for body weight, liver weight, serum ALT, serum lipids
(measured by kits), liver gene expression (measured by real-time RT-qPCR), and
liver histone modifications (measured by ChIP-qPCR). P ≤ 0.05 was considered
significant.

For the lipidomics analysis, after data acquisition, the missing values for lipids
were imputed using the K nearest-neighbor method. Then the data were log2
transformed followed by normalization using the day median normalization. The
compound-by-compound two-sided parametric t-test was applied, followed by
false discovery rate (FDR) correction. Significance was assigned to fdr-adjusted q-
values < 0.25.

For the metabolomics analysis, the data were log2-transformed and normalized
with internal standards on a per-sample, per-method basis. For every individual
metabolite we computed the mean value and the standard deviation within vehicle-
treated animals. Next, we determined a z-score for each metabolite in each EDC-
exposed rat, reflecting its standard deviation from the median values observed in
vehicle-treated animals. Employing the approaches pioneered by the CBioPortal35

resource and its widely-used Oncoprint data exploration and visualization tool, we
identified and selected metabolites increased by at least 1.5 standard deviations in
at least 3 EDC-exposed animals and down in none, or decreased by at least
1.5 standard deviations in at least 3 EDC-exposed animals and up in none.

We next integrated hybrid metabolites and gene signatures using the hybrid
metabolite/transcriptomics pathway compendium WikiPathways36. We extended
the metabolites-only MSEA enrichment method to hybrid metabolites/genes
signatures using hypergeometric distribution with significance assigned to fdr-
adjusted q-values < 0.25. We implemented this approach in our MetSEA
(metabolomics set enrichment analysis) software.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The datasets generated during the current study have been deposited in public
repositories. ChIP-seq data have been deposited in the NCBI Gene Expression Omnibus
(GEO) with the accession code GSE130409. RNA-seq data have been deposited in the
NCBI GEO with the accession code GSE130434. The metabolomics and lipidomics data
are available at the NIH Common Fund’s National Metabolomics Data Repository
(NMDR) website (https://www.metabolomicsworkbench.org), the Metabolomics
Workbench, where it has been assigned Project ID PR000890 (https://doi.org/10.21228/
M8ND7K). This repository is supported by the NIH grant U2C-DK119886. The source
data underlying Figs. 1b, c, 3a, b, e–g, and 4c, and Supplementary Figs. 1a–c, e–f, 3c, 4a–f,
and 5a, b are provided as a Source Data file.
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