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Abstract 

Three-dimensional variation in structural components or fiber alignments results in complex 

mechanical property distribution in tissues and biomaterials. In this paper, we use a UNet-based neural 

network model (El-UNet) to discover the three-dimensional (3D) internal composition and space-

dependent material properties of heterogeneous isotropic and transversely isotropic materials without a 

priori knowledge of the composition. We then show the capabilities of El-UNet by validating against data 

obtained from finite-element simulations of two soft tissues, namely, brain tissue and articular cartilage, 

under various loading conditions. We first simulated compressive loading of 3D brain tissue comprising 

of distinct white matter and gray matter mechanical properties undergoing small strains with isotropic 

linear elastic behavior, where the El-UNet reached mean absolute relative errors under 1.5% for elastic 

modulus and Poisson’s ratio estimations across the 3D volume. We showed that the 3D solution achieved 

by El-UNet was superior to relative stiffness mapping by inverse of axial strain and two-dimensional 

plane stress/plane strain approximations. Additionally, we simulated a transversely isotropic articular 

cartilage with known fiber orientations undergoing compressive loading, and accurately estimated the 

spatial distribution of all five material parameters, with mean absolute relative errors under 2%. Our work 

demonstrates the application of the computationally efficient physics-informed El-UNet in 3D elasticity 

imaging and provides methods for translation to experimental 3D characterization of soft tissues and other 

materials. The proposed El-UNet offers a powerful tool for both in vitro and ex vivo tissue analysis, with 

potential extensions to in vivo diagnostics. 

Keywords: physics-informed deep learning, tissue biomechanics, model-based elastography, digital 

volume correlation, scientific computing.   
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1 Introduction 

 The three-dimensional kinematic behavior of materials under loading is an area of interest in 

various fields such as biomechanics, experimental mechanics, biomedical engineering and materials 

science [1]. Digital volume correlation (DVC), an extension of the widely known two-dimensional digital 

image correlation (DIC), is a technique that estimates displacement and strain distributions in opaque 

three-dimensional (3D) materials and tissues under deformation [1,2], with applications ranging from soft 

tissues and biomaterials to elastomers and composites [3]. The imaging tools that enable DVC across 

various scales include magnetic resonance imaging [4], X-ray (micro) computed tomography [3,5], 

ultrasound [6,7], optical coherence tomography [8,9], and confocal microscopy [10]. However, the 

existing DVC methods cannot directly resolve the spatial heterogeneity of mechanical properties in the 

3D domain. 

Elasticity imaging is a technique to reconstruct the spatial distribution of mechanical properties 

using available deformation and force measurements. In general, elasticity imaging is comprised of an 

inherently ill-posed mathematical problem because the stress distribution inside the domain is not 

available. Over the past three decades, many experimental, theoretical, and numerical studies in one- and 

two-dimensional geometries have tackled this topic, introducing various methods to solve the inverse 

problem [11,12]. The 3D studies in the field have been relatively limited, however, mainly due to the 

prohibitive computational cost of these methods. 

For 3D elasticity imaging, the existing approaches include direct methods, such as virtual fields 

methods, and domain decomposition methods, with varying levels of accuracy. Direct methods are known 

to have poor reconstruction accuracies when the material parameter field has sharp gradients [13,14]. The 

virtual fields method relies on generating as many independent virtual loadings as the number of 

unknown parameters before solving the inverse problem in one pass [15]. However, this requirement is 

non-trivial to achieve for high-resolution 3D domains. Domain decomposition methods attempt to 
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minimize an objective function that tracks the violation of constitutive compatibility in sub-domains to 

identify stress terms first, followed by solving for elasticity parameters through kinematic measurements 

and constitutive equations. Domain decomposition in 3D has shown successful 3D reconstructions for 

domains with smooth elastic modulus gradients [16]. A common yet important drawback shared by these 

methods is that they have been mostly validated using non-complex geometries, e.g., a simple spherical 

inclusion inside a background.  

In recent years, methods that employ neural networks with physics-based loss functions to solve 

inverse problems have addressed some limitations of other conventional methods. In these methods, fully 

connected feed forward networks estimate parameter (and stress) fields given spatial coordinates as 

inputs. Respective loss terms corresponding to the physical equations, comprised of network outputs and 

other known parameters, are minimized to solve the inverse problem [17–20]. However, as with other 

methods’ computational cost limitations, neural network implementation for 3D inverse problems in 

elasticity imaging remains a challenge. 

In this study, we use a modified version of El-UNet, an inversion physics-based neural network 

model that we previously developed based on the UNet encoder-decoder network [21], to solve inverse 

problems in linear isotropic and transversely isotropic elasticity in three dimensions. Our model infers the 

material parameters by taking strain distributions as “input images” and enforcing boundary and domain 

physics loss functions. We present our novel findings in two main sections. First, we employ El-UNet to 

solve the 3D inverse heterogeneous isotropic linear elasticity problem on a brain tissue specimen with its 

complex geometrical features under compressive loading. Second, we employ a modified 3D El-UNet 

configuration in a transversely isotropic example of articular cartilage under compressive loading, where 

we estimate the space-dependent distribution of the five material parameters with given element 

orientations and data from two orthogonal uniaxial compressions. We quantify the corresponding 

reconstruction error and show superior performance compared to other approximations for 3D elasticity 

imaging. 
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2 Methods 

2.1 Isotropic Linear Elasticity Formulation in 3D 

Elasticity constitutive equations in index notation is written as 𝜎!" = 𝐶!"#$𝜀#$, where 𝜎 and 𝜀 

represent the stress and strain tensors and 𝐶 is the fourth-order material properties tensor. This equation 

for isotropic linear elastic materials simplifies to 
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Where 𝜆 and 𝜇 are the Lamé parameters. Furthermore, the static equilibrium equations in the absence of 

body forces reduce to: 
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( 2 ) 

Finally, elastic modulus and Poisson’s ratio can be derived from the Lamé parameters using: 

 
𝐸 =

𝜇(3𝜆 + 2𝜇)
𝜆 + 𝜇

	

𝑣 =
𝜆

2(𝜆 + 𝜇)
. 

( 3 ) 

2.2 Transversely Isotropic Formulation 

In this section, the prime notation denotes quantities in the local coordinate system for the 

transversely isotropic element where 𝑥( is the longitudinal axis and 𝑦(𝑧( is the transverse plane. Linear 

elasticity equations for transversely isotropic materials for a point in the space are: 
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Because the measured strain information and boundary conditions are in the global system 

orientation, the local parameters need to be transformed to the global state before constructing the 

constitutive equations in the global system. For this purpose, we assume the local coordinate system 

orientation at any point in the domain can be discovered by performing three consecutive rotations in 

space. These rotations include a rotation of 𝜓 along the Z axis, followed by a rotation of 𝜃 around the 

now rotated 𝑌( axis, and finally a rotation of 𝜑 around the 𝑍" axis. 

 
𝑍 = K

cos(𝜓) sin(𝜓) 0
−sin(𝜓) cos(𝜓) 0

0 0 0
R	

𝑌( = K
cos(𝜃) 0 sin(𝜃)
0 1 0

− sin(𝜃) 0 cos(𝜃)
R ( 5 ) 

 
𝑍" = K

cos(𝜑) sin(𝜑) 0
−sin(𝜑) cos(𝜑) 0

0 0 0
R. 

The rotation matrix can be constructed by computing the multiplication of the matrices in Equation 

6. 

 𝑅 = 𝑍 × 𝑌′ × 𝑍". ( 6 ) 

Using this rotation matrix, R, each unit vector along the main axes of the global coordinate system 

can be transformed to its rotated state in the local coordinate system by 

 𝑢′ = 𝑅 × 𝑢  ( 7 ) 

where 𝑢 is a unit vector in the global coordinate system (𝑥, 𝑦 or 𝑧) and	𝑢′ is the corresponding unit vector 

in the rotated system (𝑥′, 𝑦′ or 𝑧′). Accordingly, the transformation matrix, 𝑇, is defined as. 
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Using the terms of the T matrix, the Bond transformation matrix is constructed as: 
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The last step to compute the global stiffness matrix (𝐶) from Equation 1 using 𝐶′ and 𝐵 is 

 𝐶 = 𝐵0𝐶(𝐵. ( 10 ) 

The equations can also be written in terms of five other independent parameters that are more 

physically relevant for fiber mechanics, i.e. longitudinal elastic modulus (𝐸11), transverse elastic modulus 

(𝐸22 = 𝐸33), transverse plane Poisson’s ratio (𝜈&') , transverse-longitudinal plane Poisson’s ratio (𝜈%& =

𝜈%') and, transverse-longitudinal plane shear modulus (𝐺%& = 𝐺%'). The transverse plane shear modulus 

(𝐺%&) is not an independent parameter itself and can be computed from other parameters. In the inverse 

implementation, the terms of the stiffness matrix from Equation 5 get discovered, after which the 

following conversion equations are used to obtain the alternative representation of transversely isotropic 

elasticity parameters: 
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The enforced static equilibrium equations remain the same as Equation 3. 
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2.3 Compressive Loading Simulation of a Heterogeneous Medium 

Following our work on using brain tissue as a complex and biologically relevant specimen to test 

the elasticity imaging inversion methodology in two dimensions [20,21], we generated a synthetic 3D 

example by simulating the 3D deformation of brain tissue under compressive loading. To perform the 

simulation, first, we collected a T1 scan of the brain from a 28-year-old male using a 3.0 Tesla MRI 

scanner (Skyra, Siemens Healthcare, Germany) and a 32-channel head coil (human subject imaging 

approved by University of Arizona Institutional Review Board, February 2020). We used BrainSuite [22] 

to segment the T1-weighted image volume and exported masks for different regions of the brain (Figure 1 

A). We simplified the segmentation by grouping deep brain structures under the white matter category. 

Therefore, the resulting geometry had three distinct regions: gray matter, white matter, and the ventricles. 

After manually refining some sharp edges of the geometry, we converted the masks to STL files using 

Slicer [23], and re-meshed them in InStep 3.0 (Solveering LLC, NM, USA) to reduce the number of 

triangles down to 10-15% to simplify the finite-element (FE) modeling. 

Next, we performed a finite element simulation of compressing a hydrogel cube containing the 

brain specimen. We imported the remeshed STL’s to SpaceClaim, part of the Ansys Workbench suite 

(Ansys, Inc, PA, USA), and created a solid model out of the surface geometries. Next, we made a model 

of the right hemisphere only, with a 200mm×200mm×100mm background region around the brain and 

symmetry boundary condition at the midsagittal plane. We performed this step to reduce the 

computational load of the forward finite element simulation. We assigned material parameters to the gray 

matter, white matter, ventricles, and background according to Table 1 [20,21]. The ventricle’s properties 

were assigned the same as the background material. The geometry was discretized using tetrahedral mesh 

and uniaxial compressive loading was applied in the Z direction by a uniform force of 1N on one side and 

frictionless boundary condition on the other. The other sides (other than the symmetry plane) were free 

boundaries. The loading led to a maximum axial strain of about -0.035 in the domain. After running the 

simulation, we interpolated the unstructured data into a structured grid of 160×160×160 using the 
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triangulation-based natural neighbor interpolation in MATLAB (MathWorks, MA). It should be noted 

that we exported the entire field by mirroring the results with respect to the sagittal plane of symmetry. 

2.4 Compressive Loading of Cartilage Simulation 

To test our model in discovering transversely isotropic material properties, we simulated 

compressive loading of an articular cartilage specimen. Articular cartilage consists of three distinct 

regions with different collagen fiber orientations and mechanical properties. Following the published 

anatomy and micromechanics of this tissue type [24–28], we developed a 2mm×2mm×2mm geometry 

consisting of superficial, intermediate, and deep regions with distinct material parameters and fiber 

orientations (Table 1). For simplicity, we assumed that all the fibers (elements) in each region are 

elongated along one direction and assumed a continuum in which the fiber orientation is represented as 

the entire element orientation in the finite element analysis of the transversely isotropic material. We 

performed compressive loadings along the X and Y directions of the specimen separately, with constant 

force on one side and frictionless boundary on the opposite side. Discovering the spatial distribution of all 

five material parameters would not be possible with only one loading as that only provides three 

equilibrium equations per voxel. 
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Figure 1. Details of synthetic data generation from elasticity imaging using finite element method (FEM) simulations for brain 
tissue (A-C) and cartilage (D, E) 

Table 1. Assigned material properties for finite-element modeling of loaded specimens. 

Material Material Parameters 
Isotropic linear elastic example: Brain 

 𝐸 (kPa) 𝜈 
White Matter 2 0.35 
Gray Matter 1.5 0.4 
Ventricles/ 
Background 

1 0.45 

 
Transversely isotropic linear elastic example: Articular Cartilage 

 Fiber angle (deg) 𝐸11	(MPa) 𝐸22 (MPa) 𝐺12 (MPa) 𝜈12  𝜈23 

Superficial 
region 35 2 0.4 0.3 0.35 0.3 

Intermediate 
region 60 

3 
 0.6 0.4 0.4 0.35 

Deep 
region 80 5 1 0.5 0.45 0.4 
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2.5 3D El-UNet Implementation for Isotropic Linear Elasticity 

For solving the inverse problems, we expanded our previously published 2D El-UNet – an encoder-

decoder structure based on the original UNet architecture [29] – to solve inverse elasticity problems [21] 

in 3D domains (Figure 2). In brief the neural network works as an operator taking in strain fields in 3D as 

input and returning stress and material parameters as outputs. The proposed physics-informed UNet 

solves one problem at a time, as opposed to data-driven models that get trained on numerous problems to 

infer a solution later on an unseen example. We used a three-level deep UNet for both examples in this 

work consisting of double convolutions with 64, 128, and 256 channels per depth moving in the 

downward path, and 512 channels in the bottleneck stage, and the reverse trend for the upward path. The 

volumetric resolution from examples in this study were purposefully resampled to be divisible by two for 

each pooling step to avoid the additional computation cost of resizing in the upward path. The network 

takes in a 6-channel input, each channel containing the volumetric distribution of a strain tensor term 

(three normal and three shear terms) and estimates eight volumetric distributions: first and second 

dimensionless Lamé parameters (𝛬	and	𝛭) along with three normal and three shear stress distributions. 

The algorithm then uses the isotropic linear elasticity constitutive loss equation, static equilibrium loss 

equation, and boundary condition loss equations, with self-adaptive spatial weights applied to constitutive 

and boundary condition equations according to our previous work [21]. The partial derivatives in the 

static equilibrium equations are computed using finite central difference approximation. We used the 

Adam optimizer with a learning rate of 0.001 to minimize the loss value and trained the model for 40,000 

epochs on an Nvidia v100 GPU. El-UNet was not given prior knowledge about the symmetrical 

conditions of the domain, but the sign for partial derivatives of stress with an X component for the 

mirrored side had to change when implementing static equilibrium loss equations. In addition to 

evaluating final reconstruction accuracy for 𝐸 and 𝜈, we also obtained relative stiffness maps by 

normalizing the elastic modulus and axial strain distributions using the maximum value in each field. To 

investigate the plane stress/strain assumptions for approximating a fully 3D problem, we used 2D El-
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UNet with plane stress and plane strain assumptions on five coronal slices of the volume spaced apart by 

25 mm increments to compare accuracy of reconstructions with the 3D solution. 

 
Figure 2. 3D El-Net for estimating heterogeneous distribution of isotropic linear elasticity parameters. 

2.6 3D El-UNet Implementation for Transversely Isotropic Linear Elasticity 

We implemented a modified variation of 3D El-UNet for the transversely isotropic parameter 

estimation problem (Figure 3). The network structure of the model remained the same as the isotropic 

elasticity El-UNet, however we used two UNets taking different inputs for this problem. The input 

channels for the first UNet, named Parameter UNet, consist of mean normalized strains from X, Y, and Z 

loadings of the specimen, resulting in six volumetric channels in total. The output consists of five 

volumetric channels, representing the five material parameters fully defining transversely isotropic linear 

elasticity in the element direction (local orientation of fibers). These volumetric channels are reshaped to 

1D arrays before populating the local stiffness matrix for each voxel, being stacked in the batch direction, 

creating a 6×6×n stiffness matrix, where n is the total number of voxels in the volume. The other UNet, 

named Stress UNet, takes in normalized strains from a single loading and outputs estimated stress 

distributions. Next, using the given fiber angles, we compute the Bond transformation matrix using 
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Equations 6-10, and compute the stiffness matrix in the global orientation using Equation 11, leading to 

another 6×6×n matrix. The proposed structuring of the 𝐵 and 𝐶′ matrices enables efficient parallelized 

computation of matrix multiplication in the batch dimension (n). Next, for each loading, first, the stress 

tensor is calculated by plugging in strain values, and fiber directions and material parameters (Output of 

Parameter UNet). The balance between these stress values and the output of the Stress UNet forms the 

constitutive equations loss, This loss is summed up with static equilibrium and boundary condition losses 

with a 0.01 weighting applied to the static equilibrium loss. This step is performed for the X, Y, and Z 

loadings separately, and the mean of the total loss from these three cases is calculated to perform the 

backpropagation and update of network parameters. 

 
Figure 3. 3D El-UNet for estimating heterogeneous distribution of transversely isotropic linear elasticity parameters. 
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3 Results 

3.1 3D El-UNet Resolves Linear Elastic Parameter Distributions with High 

Accuracy 

We tested the robustness of the isotropic linear elasticity El-UNet for a simulated imaging 

experiment of brain tissue under quasistatic uniaxial compression and investigated the performance in 

terms of estimation accuracy. El-UNet discovered the embedded brain shape and the corresponding 

regional elastic modulus and Poisson’s ratio estimations with high accuracy (Figure 4A). The error 

distributions reveal that the elastic modulus estimation had relatively higher errors inside the brain tissue, 

with an overall mean absolute relative error of 1.33% for elastic modulus and 0.33% for Poisson’s ratio. 

This UNet implementation benefitted from self-adaptive weighting of constitutive and boundary 

equations, with the former showing increased weighting learned through solving the inverse problem for 

areas in and around the brain, especially around the transition zones (Figure 4B). The evolution of total 

physics loss and elasticity parameter estimation errors across epochs reveal a steep drop of all these 

values for the first 5000 epochs, where the estimation errors fall below 10% (Figure 4C). 



15 
 

 
Figure 4. El-UNet estimation of isotropic linear elasticity parameters for a simulated brain tissue under compressive uniaxial 
loading. A) The estimations closely follow ground truth absolute values and spatial patterns. B) The self-adaptive spatial 
weighting algorithm learns to penalize the model more near the domain’s geometrical complexities. C) After 40000 training 
epochs the relative error rates for 𝐸 and 𝜈 fall to under 1.5%. 

3.2 3D El-UNet Produces Relative Stiffness Distributions Highly Agreeing with 

Ground Truth 

We generated relative stiffness maps from the 3D El-UNet solution and the conventional axial 

strain (𝜀'') field to compare our method to a simple reconstruction used in 3D elasticity imaging. Relative 

stiffness maps of the El-UNet estimation reveal advantages gained by fully solving the inverse problem 

compared to the simplified inversion of axial strain assumption (Figure 5). In terms of distinguishing 

between the three distinct material types in this example, El-UNet almost fully replicated the ground truth 

level of reconstruction, while the inverse of axial strain failed to capture the boundaries of different 

regions and did not distinguish between white and gray matter (Figure 5A). Quantifying the relative 

stiffness ratios with respect to the background shows that gray matter and white matter estimations from 
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El-UNet are much closer to expected ground truth ratios (Figure 5B). The background distribution of 

stiffness ratios indicates that while the inverse of axial strain results cluster around two points around the 

ground truth value of 1, the El-UNet results cluster around 1, indicating superior performance. 

 
Figure 5. Comparison of El-UNet with inverse of axial strain as a method to plot relative stiffness distributions. A) The relative 
stiffness map obtained from El-UNet estimations clearly distinguishes the different regions in the image while the inverse of axial 
strain misses the geometrical complexities. Ground truth and El-UNet estimations are normalized with respect to the maximum 
stiffness value in their respective fields whereas the inverse of axial strain map is obtained by normalizing with respect to 
maximum inverse axial strain. B) Comparing the statistical distribution of stiffness ratios across the various regions in the volume 
against ground truth values demonstrates the considerable improvement gained by El-UNet over the axial strain method. 

3.3 3D El-UNet Produces More Accurate Reconstructions than Plane Strain and 

Plane Stress Solutions 

We compared the performance of the 3D El-UNet to solve the inverse 3D problem to using 2D El-

UNet with plane stress and plane strain assumptions on coronal slices to evaluate the gain in accuracy of 

reconstructions in all regions of the image. Visualized results demonstrate the sharp contrast achieved in 

parameter maps from the 3D solution, while plane stress and plane strain assumptions fail to capture the 
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complex pattern inside the brain (Figure 6A). Quantified analysis of reconstruction error for different 

regions in the image also demonstrates the superiority of 3D solution compared to 2D approximations for 

the five slices under study (Figure 6B). The 3D configuration results in mean absolute relative errors of 

under 5% for either elasticity parameter on all regions. However, plane stress and plane strain 

assumptions lead to larger errors (>10% mean value) for gray matter and white matter reconstructions. 

Additionally, 2D reconstructions lead to a wider spread of errors. 

 
Figure 6. Comparison of 3D El-UNet with 2D El-UNet used for slices from the 3D volume using plane stress and plane strain 
assumptions. Both visualized maps and quantified error distributions reveal the accuracy gained by solving the fully 3D problem 
using El-UNet. 
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3.4 Five Transversely Isotropic Elasticity Parameters Are Spatially Discovered 

Using Information from Two Perpendicular Loadings 

We used the El-UNet model in a computer simulation of an articular cartilage specimen consisting of 

heterogeneous distribution of fibers and elasticity parameters under two uniaxial loading states (Figure 7). 

This scenario shows the ability of the proposed El-UNet in discovering heterogeneous fiber mechanics 

distributions. The results indicate highly accurate reconstruction of all five unknown elasticity parameters 

(Mean estimation errors: 𝐸11: 2.08%, 𝐸22: 0.76%, 𝜈%&: 1.13%, 𝜈&': 0.69%, 𝐺%&: 1.41%). 

 
Figure 7. El-UNet results for reconstruction of heterogeneous transversely isotropic elasticity parameters. El-UNet discovers the 
zones having different material parameters and estimates the parameters with high accuracy. 

4 Discussion 

We proposed a UNet-based neural network model to estimate the 3D spatial distribution of 

isotropic and transversely isotropic linear elastic material properties given the strain fields and normal 

stress boundary data. In this approach, the network learns the material parameters by taking in normal and 

shear strain distributions and enforcing constitutive equations, static equilibrium, and normal stress 

boundary conditions at the six sides of the geometry. More generally, our work extends current physics-

informed elasticity imaging to three dimensions while ensuring reasonable computation time. It also 
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provides a minimally invasive mechanical characterization method for deformable materials. Our 

approach has the potential to aid diagnostics, in vitro or ex vivo tissue characterization, and defect 

analysis. 

Typical applications of digital volume correlation are mostly limited to strain distributions as 

surrogates for a stiffness measure. This simplification does not provide any quantitative measure of 

mechanical properties and only produces a relative stiffness map, obtained by inversing the strain map 

and normalizing with respect to maximum inverse strain. However, as we show in this study, the relative 

stiffness distribution does not provide enough contrast to distinguish between the different heterogeneous 

regions in the specimen. On the other hand, the El-UNet solution of the inverse problem simultaneously 

captures the distribution of elastic modulus and Poisson’s ratio from the strain distributions and the 

normal-to-surface stress boundary conditions. 

We present a method for full mechanical characterization of two biologically relevant examples in 

a minimally invasive manner. The brain tissue is comprised of many distinct regions and the conventional 

method for mechanical characterization is dissection into small pieces and performing separate 

mechanical tests, affecting tissue properties in handling and long testing times [30–33]. Combining 3D 

full field measurement of deformation under loading coupled with using an inversion model such as El-

UNet enables discovery of material parameter distribution in larger samples without having to dissect into 

small pieces. The transversely isotropic example on the other hand demonstrates the capability of the 

model to discover tissue heterogeneities across five different parameters using simple compressive 

loadings. Directly identifying any of these parameters requires specific mechanical testing designs that 

isolates the effect of a given material parameter. 

The transversely isotropic example presented in our study demonstrates a feasible approach for 

inversion in multi-parameter material models. A drawback for quasistatic elasticity imaging scenarios is 

that the number of unknown parameters should be equal or smaller than the number of available static 

equilibrium equations, which is two for 2D and three for 3D examples from a single loading state. 
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Whereas simple material models such as linear isotropic elasticity and neo-Hookean hyperelasticity have 

less than three parameters, anisotropic linear elasticity and most other hyperelastic models have equal to 

or more than three parameters. Therefore, to adequately inform the physics-informed deep learning model 

for the five-parameter transversely isotropic example in our study, we performed two compressive 

loading simulations in orthogonal directions and enforced the mean loss of the two states to train the 

neural network. This modification effectively increased the number of available equilibrium equations 

from three to six, enabling the estimation of the five unknown parameters. We use the compressive 

normal stresses on the loaded boundaries along with strain data from this combined loading to estimate all 

elasticity parameters by having known fiber orientations in the model. 

The linearized formulation of constitutive equation ensures convergence to ground truth values for 

all parameters of the two material models in the current study. We observe through our experimentation 

with isotropic linear elasticity that the unknown parameters are discovered more accurately when the 

formulation is linear with respect to the parameters that are the outputs of the network. In our previous 

work, we used Lamé parameters for plane strain and plane stress followed by necessary conversions once 

the run finished to obtain elastic modulus and Poisson’s ratio [20,21]. The parameters of interest can then 

be computed using predefined or derived conversion equations. We employ the same analogy to the 

transversely isotropic example by estimating intermediary parameters that the constitutive equations 

remain linear with respect to and convert to physically relevant parameters after the model converges. The 

reason for this unique behavior could be the following. When the parameters that are the output of the 

network have non-linear contributions in the equations, slight changes in the output of the network from 

each update might lead to large perturbations in the loss function, effectively leading the model away 

from the global minimum of the optimization problem. Unlike iterative finite element approaches, where 

each forward update of the model based on a new distribution of parameters results in a complete solution 

of the problem for that distribution, each forward pass of the neural nets is simply an iteration of the 

model with its updated weights and not necessarily the converged solution. 



21 
 

We investigated the performance of the proposed models under non-ideal data quality conditions 

with input strain images having 5% Gaussian noise. Because the algorithm involves a finite difference 

approximation of first-order derivatives acting on stress values, physics-informed models that act on noisy 

data can potentially amplify the noise in the estimated distributions they discover, as we have 

demonstrated previously [21]. However, our proposed implementations have an internal regularization 

step that balances between stress estimations obtained via two different paths. The first path yields stress 

values that are calculated using constitutive equations with parameters that are neural network outputs and 

strains. The second path produces stress estimations as output of the neural network directly. Minimizing 

the mean squared error loss between these two stress outputs (while minimizing the summation of all 

physics and boundary losses) ensures internal denoising of estimated stress fields that eventually 

mitigates the noise amplification that might happen when computing the static equilibrium loss.  

Several aspects of our study can be improved in the future. While our study shows significant 

promise for solving the inverse mathematical problem, the inversion model requires further development 

to show robustness in data obtained in experimental and potentially clinical settings. The strain 

distributions can be obtained from digital image correlation while normal boundary stress distribution can 

either be measured using pressure mapping technology or derived by using a hydrogel with known 

properties as the background material. The next area that can be developed in future models is inclusion 

of more complex material models such as hyperelasticity or viscoelasticity. We anticipate that some 

strategies that we present in this study, including informing the model on multiple loadings and 

leveraging linearized formulation, can pave the way for using these physics-informed implementations for 

discovery of hyperelastic and viscoelastic material parameters from quasi-static and dynamic loadings. 

Finally, we trained the model on the entire volume and needed high-memory GPU units (16-32 GB 

memory) to meet the demand from this large dataset. Strategies to train the network in minibatches of 

data can be developed to tackle this problem in the future. 
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