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ABSTRACT OF THE THESIS 
 

Deep Learning Radiographic Assessment of Pulmonary Edema from Serum Biomarkers 
 

 
by 

 

Justin Huynh 

 

Master of Science in Computer Science 

University of California San Diego, 2022 

Professor Albert Hsiao, Chair 
Professor Manmohan Chandraker, Co-Chair  

 

A major obstacle when developing convolutional neural networks (CNNs) for medical 

imaging is the acquisition of training labels: Most current approaches rely on manual class 

labels from physicians, which may be challenging to obtain. Clinical biomarkers, often 

measured alongside medical images and used in diagnostic workup, may provide a rich set of 

data that can be collected retrospectively and utilized to train diagnostic models. In this work, 

we focused on assessing the potential of blood serum biomarkers, B-type natriuretic peptide 

(BNP) and NT-pro B-type natriuretic peptide (BNPP), indicative of acute heart failure (HF) 

and cardiogenic pulmonary edema to be used as continuously valued labels for training a 
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radiographic deep learning algorithm. For this purpose, a CNN was trained using 27748 

radiographs to automatically infer BNP and BNPP, and achieved strong performance 

(AUC=0.903, sensitivity=0.926, specificity=0.857, r=0.787). Also, the trained models 

achieved strong performance (AUC=0.801) for pulmonary edema detection when evaluated 

with radiologist labels. Since relevant radiographic features visible to the CNN may vary 

greatly based on image resolution, we also assessed the impact of image resolution on model 

learning and performance, comparing CNNs trained at five image sizes (64x64 to 

1024x1024). Increasing image resolutions had diminishing but positive gains in AUC. 

Perhaps more importantly, experiments using three activation mapping techniques (saliency, 

Grad-CAM, XRAI) revealed considerably increased attention in the lungs with larger image 

sizes. This result emphasizes the need to utilize radiographs near native resolution for optimal 

CNN performance, which may not be fully captured by summary metrics like AUC.
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INTRODUCTION   
 

Recently, convolutional neural networks (CNN) have been proposed to perform 

automated classification, localization or segmentation of various diseases and anatomical 

landmarks directly from medical images to facilitate medical image acquisition and 

interpretation. Most of these approaches rely heavily on supervised training using manual 

annotations from physicians, which must be created prospectively and may be labor and time 

intensive to obtain, or in certain disease states, may not be perfectly reliable. To overcome this 

obstacle, approaches such as transfer learning, semi-supervised learning, self-supervised 

learning, and natural language processing (NLP) based labels have been suggested. In this work, 

we propose and explore an additional, alternative data-centric approach: using clinical serum 

biomarkers as continuously valued training labels.  

Clinical biomarkers, specifically blood serum tests, have served a vital role in clinical 

diagnosis for over 70 years (Krebs 1950). Blood serum biomarkers are often measured alongside 

medical images and used in diagnostic workup and may provide a rich set of data that can be 

collected retrospectively and utilized to train diagnostic models. Specifically, we focus on the 

usage of B-type natriuretic peptide (BNP) and NT-pro B-type natriuretic peptide (NT-proBNP or 

BNPP), which are indicative of acute heart failure (HF) and cardiogenic pulmonary edema. In 

some instances, they may be concurrently obtained at the time of acquisition of a chest 

radiograph. 

Pulmonary edema is a condition characterized by excess fluid in the lungs, often caused 

by congestive heart failure (HF) among other etiologies (Staub 1974; Murray 2011). Diagnostic 

workup of pulmonary edema may involve a variety of techniques including patient history, 

clinical exam, chest radiograph, and blood serum tests (Ware and Matthay 2005). Due to its wide 
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availability and ability to provide alternative diagnoses that may share similar clinical features, 

chest radiographs are commonly used to diagnose and monitor the progression of pulmonary 

edema (Hammon et al. 2014; Halperin et al. 1985) 

 
Fig 1. Relationship of radiographic appearance to BNPP and radiologist grade of severity of pulmonary 
edema. In (a), patient with normal laboratory measurement shows no signs of pulmonary edema. In (b) a patient 
with mildly elevated BNPP shows Kerley B lines, peribronchial cuffing and indistinctness of pulmonary 
vasculature. In (c) patient with moderately elevated BNPP shows the addition of perihilar opacities. In (d) patient 
with highly elevated BNPP shows frank alveolar opacities. 
 

Radiographic assessment of pulmonary edema is complicated due to differences in 

features exhibited at different severity levels. While severe cases exhibit alveolar flooding and 

are relatively easy to identify in the chest radiograph (Fig. 1D), mild cases are characterized by 

interstitial fluid buildup and rely on much subtler findings such as Kerley B lines and 

peribronchial cuffing (Fig. 1B) (Milne et al. 1985; Gluecker et al. 1999; Aberle et al. 1988). 

Individual patients with mild edema can quickly progress into moderate and severe edema or 

vice versa (Barile 2020). Conditions such as heart failure can cause progressive worsening 

(Assaad et al. 2018; Gropper, Wiener-Kronish, and Hashimoto 1994). Therapies such as fluid 

diuresis or dialysis can reverse pulmonary edema (Krämer, Schweda, and Riegger 1999). Thus, 

accurate assessment of pulmonary edema is crucial for guiding and monitoring response to 

treatment. 

Recently, several groups (Lakhani and Sundaram 2017; Wang, Lin, and Wong 2020; 

Hwang et al. 2019) have reported the application of deep convolutional neural networks (CNNs) 
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to classify chest radiographs for various pathologies, including pneumonia, pulmonary edema, 

pneumothorax, and many others. While these early works show the promise of CNNs for 

radiographic interpretation, most lack the specificity and granularity in diagnosis at a level that is 

typically required for diagnostic utility. For example, prior work does not draw the distinction 

between mild, moderate, and severe pulmonary edema, aspects which help determine the 

necessity for intervention or change in therapy.  

There are several obstacles that impede the development of CNNs capable of quantifying 

the severity of pulmonary edema from chest radiographs. One obstacle is the lack of reliable 

labeled training data. Collecting a sufficiently large set of images that are annotated by 

radiologists is labor and time intensive, and specifically for pulmonary edema, may have limited 

agreement even amongst expert readers(Duggan et al. 2021). To address this problem, we 

explored an additional and objective source of ground truth for training CNNs for disease 

detection: B-type natriuretic peptide (BNP) and NT-pro B-type natriuretic peptide (BNPP). BNP 

and BNPP are continuously valued cardiac biomarkers measured from blood serum and are part 

of the diagnostic workup of suspected cardiogenic pulmonary edema (Ware and Matthay 2005). 

Elevated values of BNP and BNPP are indicative of atrial stretch, observed in acute heart 

failure and pulmonary edema (Ray et al. 2005; Huang et al. 2016). A CNN that could infer BNP 

and BNPP directly from a chest radiograph could perceive variations that correlate with 

pulmonary edema and heart failure. Such a model could be used as an assistive diagnostic tool to 

help clinicians further analyze a chest radiograph. 

We further observed that in the published literature, many CNN algorithms have been 

trained and evaluated on low-resolution down sampled images commonly provided in public 

databases(Pan, Cadrin-Chênevert, and Cheng 2019; Jaeger et al. 2014; Seah et al. 2019). Many 
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of the characteristics of pulmonary edema lie near the threshold of resolution of chest 

radiographs, including interstitial Kerley B lines and peribronchial cuffing. Thus, we investigated 

the ability of CNNs to infer BNP and BNPP when trained at a variety of input image sizes 

(64x64 – 1024x1024). 

Finally, to assess the visual fields used by CNNs to achieve their performance, we 

described two methods for assessing spatial attention, leveraging a separate anatomic 

segmentation CNN, which we called “area attention” and “blur sensitivity”. These methods were 

used to determine the ratio of lung attention and model sensitivity to image ablation in the lungs 

used by each CNN model. We proposed these methods to measure the use of essential regions of 

the radiograph in assessment of pulmonary edema. 
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METHODS 

A. DATASET 

 With institutional review board (IRB) approval and waiver of informed consent, we 

constructed a dataset of 27748 frontal chest radiographs with BNP or BNPP laboratory values from 

16401 patients curated from the electric medical record and picture archiving and communication 

system (PACS) of our institution. We included all radiographs and laboratory measurements from 

Nov 4th, 2017 to Dec 1st, 2020 for patients who underwent either measurement of BNP or BNPP 

within 24 hours of a radiograph.  

 

 Radiographs varied in image dimension depending on source x-ray device, ranging from 

1400 – 4700 in height and width. A total of 26667 of these radiographs from 15409 patients had a 

corresponding BNPP measurement and the 1423 remaining radiographs from 1325 patients had a 

corresponding BNP measurement (Table 1). There was little overlap in these populations – only 342 
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radiographs had both BNP and BNPP measurements. Mean absolute difference between time of 

radiograph and BNPP laboratory sample collection was 2 hours, 22 minutes. Mean absolute 

difference between time of radiograph and BNP laboratory sample collection was 8 hours, 44 

minutes. Mean and standard deviation of measured BNP values for the population was 556 ± 993 

pg/mL. Mean and standard deviation of measured BNPP values was 4902 ± 11294 pg/mL.  

 Data was then divided by patients, not by radiographic images, into training (80%), 

validation (10%) and test (10%) cohorts. There was no significant difference in BNPP or BNP 

value distributions between training, validation, and testing sets (p < 0.1, Kolmogorov Smirnov 

Test). 

B. CNN TRAINING 

1. TWO STAGE TRAINING 

 Because the BNP dataset was significantly smaller than the BNPP dataset (n=1423 vs 

26667 respectively), a two-stage pipeline was used to train a bifurcated CNN to jointly predict 

BNP and BNPP, shown in Fig. 2.  All CNNs were trained using Adam optimizer with a fixed 

learning rate of 1e-5 for 50 epochs, and batch size 16. In the first stage of training, a 

ResNet152v2 model(He et al. 2016), pretrained on the ImageNet dataset(Deng et al. 2009), was 

trained to infer BNPP from a chest radiograph. A custom loss function based on mean absolute 

error (MAE) was used. Given a dataset of n input radiographs, we defined the loss over the 

dataset as: 

𝑀𝐴𝐸!"## = $
%
∑ 𝐴𝐸&!"##&∈{$,…,%}                                                           

where 𝐴𝐸&!"## is defined as: 

𝐴𝐸&!"## = |ln(1 + 𝑦&!"##) − ln(1 + 𝑦/	&!"##)| 
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where 𝑦&!"## is the lab measured BNPP value and 𝑦/&!"## is the inferred BNPP value for the kth 

input radiograph in the dataset. The BNPP values range from (0-70,000 pg/mL) and are  

 
Fig 2. Flow chart of CNN training and evaluation. ResNet152v2 CNNs were trained in two stages, first 
to predict BNPP from the radiograph, then to predict both BNPP and BNP from the radiograph. Multiple 
CNNs were trained, each at different input resolutions. Each of these were evaluated for performance with 
Pearson’s R and AUROC. Finally, three attention mapping techniques (Saliency, Grad-CAM, and XRAI) 
and two metrics were used to quantify level of CNN attention in the lungs used to perform the inference. 

exponentially distributed, with a small number of values significantly higher than the mean. To 

account for this and prevent overfitting to outliers using MAE loss, we used log transformation 

of the measured and inferred BNPP values when calculating 𝐴𝐸&!"## .  

 In the second stage of training, an additional fully connected layer was added to the end 

of the ResNet152v2 to additionally predict BNP from a chest radiograph. Weights acquired from 

the first stage of training were frozen, except for the fully connected layers at the end of the 

model: one for BNPP and one for BNP. Both BNP and BNPP datasets were used to train the 

stage 2 model to jointly predict BNP and BNPP from a chest radiograph. A scheduler was used 

to balance the number of BNP labeled radiographs and BNPP labeled radiographs in each 

minibatch of training examples. This ensures that for each epoch, the entire BNP training set was 

used (n=1124), while an equal number of BNPP labeled images were randomly sampled without 

replacement from the BNPP dataset. We further modified our custom MAE loss function from 

stage 1 (eq 1) to train both tasks simultaneously. When computing the loss, we ignored missing 

BNP or BNPP measurements: 
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𝑀𝐴𝐸 =
1
𝑛 2 𝛼&𝐴𝐸&!"## + 𝛽&𝐴𝐸&!"#

&∈{$,…,%}

 

where 

𝛼& = 5				1, 𝑦!"##	𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒
				0,																				𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

𝛽& = 5					1, 𝑦!"#	𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒	
					0,																			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

2. TRAINING AT MULTIPLE RESOLUTIONS 

To explore the effect of image resolution on model performance, we trained multiple CNNs for 

each of five input resolutions with image sizes of 64x64, 128x128, 256x256, 512x512, and 

1024x1024. No additional architectural modifications were made to the models to adjust for input 

resolution. Images were cropped at their larger dimension to equal height and width and downscaled 

to the desired resolution with bilinear interpolation from python OpenCV 4.5.1.48 library.  

A single Nvidia V100 GPU was used to train lower resolution models (64x64 – 512x512) and 8 

NVIDIA V100 GPUs from an NVIDIA DGX cluster running in an NGC container on the Singularity 

runtime environment were used to train the 1024x1024 CNN. Synchronous distributed training was 

performed using TensorFlow 2.1.0 with MirroredStrategy. 

 

C. CNN EVALUATION 

 Each CNN was evaluated on the same test set, comparing Pearson r and area under the 

receiver operating characteristic curve (AUROC or AUC ROC). ROC curves were computed 

after binary thresholding of BNP and BNPP measurements, according to previously established 

screening thresholds for acute heart failure detection (greater than 400 for BNPP, greater than 
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100 for BNP) (Kim and Januzzi 2011). The Youden’s j index was computed for each CNN and 

used to calculate sensitivity, specificity, and confusion matrices for BNP and BNPP inference. 

 To further evaluate CNN performance, we recruited five subspecialty radiologists who 

independently graded the presence or absence of at least mild pulmonary edema for 250 

radiographs from 250 patients, randomly drawn from the test set. Each radiologist was randomly 

assigned 50 radiographs without overlap to serve as ground truth.  

 

D. CNN ACTIVATION MAPPING 

 To assess the effect of resolution on CNN activation, we applied three activation mapping 

techniques (Saliency(Simonyan, Vedaldi, and Zisserman 2014), grad-CAM(Selvaraju et al. 

2017), and XRAI(Kapishnikov et al. 2019)) to each trained CNN. Activation maps were 

generated for each radiograph in the BNPP test set (n=2691). 

  
Fig 3. Proposed metrics to quantify level of CNN attention. In 
(a), a lung segmentation CNN is used to produce masks for input 
images. In (b), lung area attention (AA) calculates the proportion 
of pixels from an activation map that are also located within 
the lungs. In (c), lung blur sensitivity (BS) calculates the decrease 
in AUC caused when pixels within the lung mask are blurred by 
convolution with a Gaussian filter. 
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E.  QUANTITATIVE ANALYSIS OF CNN ATTENTION 

 Activation maps were generated for each radiograph in the BNPP test set (n=2691). 

Currently, few metrics exist to quantitatively analyze deep learning saliency maps. To measure 

the degree of CNN attention within the lungs, we propose two metrics: lung area attention (AA) 

and lung blur sensitivity (BS), both of which utilize lung masks from a separately developed lung 

segmentation CNN. This lung segmentation module is part of a multi-organ segmentation U-

net(Ronneberger, Fischer, and Brox 2015) developed using 302 radiographs and their 

corresponding lung masks, manually annotated utilizing an in- house radiograph annotation 

software developed in Python (Fig. 3a). 

1. AREA ATTENTION 

 We define lung area attention (AA) as the proportion of the CNN activation map that 

overlaps with the lung segmentation mask (Fig. 3b). Lung AA is defined as the proportion of 

highly activated pixels in the activation map (and input image) that intersect with the lung mask: 

𝐴𝐴(𝑥) 	=
ℎ𝑒𝑎𝑡𝑚𝑎𝑝(𝑥) 	∩ 	𝑚𝑎𝑠𝑘(𝑥)

ℎ𝑒𝑎𝑡𝑚𝑎𝑝(𝑥)  

where x is the input chest radiograph, heatmap(x) is the activation map from inference on x, and 

mask(x) is the lung mask.  Activation maps were normalized to have values between 0-1, and 

thresholded based on the mean pixel value across all activation maps from a single model and 

technique. 

 Intuitively, a CNN with a high average lung AA value across the test set has focused 

mostly within the lungs rather than the rest of the image. In contrast, a CNN with an activation 

map concentrated on large regions of the image both inside and outside of the lungs will achieve 

a smaller lung AA. 

2. BLUR SENSITIVITY 
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 We define blur sensitivity (BS) as another way to estimate attention (Fig. 3c). Lung BS 

measures the sensitivity of the CNN to blurring of the image within the region denoted by a lung 

mask, generated by the separately developed lung mask CNN: 

𝐵𝑆(𝑦/, 𝑏) 	= 𝐴𝑈𝐶(𝑦/, 𝑦) − 𝐴𝑈𝐶(𝑏𝑙𝑢𝑟(𝑦/, 𝑏), 𝑦) 

where 𝑦/ is a vector of the inferred values from a trained CNN for the entire test set, blur(𝑦/, b) are 

the inferred values from the CNN when every image in the test set has lungs blurred with a 

gaussian kernel of size b, and AUC(𝑦/,y) is the AUC computed from a vector of inferred values 𝑦/ 

and ground truth vector y. In this work, we applied gaussian kernel sizes of (3,3), (5,5), (11,11), 

(23,23), and (47,47) for models trained at 64x64, 128x128, 256x256, 512x512, and 1024x1024 

input sizes, respectively. Gaussian kernel sizes were selected to increase proportionally with 

image size to ensure a similar effect relative to the field of view. 

 A CNN that relies on high resolution details within the lungs will have a large lung BS 

value. A CNN that overlooks such details within the lung area will have a smaller lung BS value. 
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RESULTS 
 

 
Fig 4. Plots showing the relationship of measured and inferred BNP and BNPP at multiple input 
resolutions. Plots are shown on a log scale. On the top row, correlation of measured and inferred B-type natriuretic 
peptide (BNP) increases with resolution (r=0.642-0.762, n=141). On the bottom row, correlation of measured and 
inferred NT-pro B-type natriuretic peptide (BNPP) increases with resolution (r=0.587-0.697, n=2691). Red lines 
indicate the line of best fit, while black lines indicate the line of best fit if all predictions were correct. To allow 
better visualization given the large BNPP test set size, a hex-bin plot was used for the bottom row. 

A. CNN EVALUATION 

 The relationship between measured laboratory values and the respective inferred values 

by CNNs are shown in Figure 4, for both BNP and BNPP test sets at different input image 

resolutions. There was relatively stronger correlation between measured and inferred BNP values 

than measured and inferred BNPP values at all image resolutions, though the number of 

measurements used in CNN training and evaluation were much fewer (r=0.642-0.762 for BNP 

and r=0.587-0.697 for BNPP). Pearson correlation coefficient between measured and inferred 

laboratory values increased with input image resolution, having the greatest effect at lower image 

resolutions. There was little change in Pearson correlation at higher image sizes of 512 and 1024 

with a tendency to a slight decline. For BNP, peak Pearson r was 0.787 for 512 image size and 

decreased slightly to 0.762 for 1024. For BNPP inference, peak Pearson r was 0.699 for 256, and 

plateaued at higher image sizes. 
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Fig 5.  Relationship between CNN input resolution and AUC for identification of 
patients exceeding thresholds for acute heart failure. Greater CNN performance 
for detecting patients with BNP>100 and BNPP>400 is observed at the higher 512 
and 1024 image sizes, despite observed declines in Pearson correlation.  

 The relationship between input image resolution and AUC obtained for prediction of 

BNP thresholded at 100 and BNPP thresholded at 400 are shown in Figure 5. Though Pearson r 

peaked earlier at smaller 256 and 512 image sizes, we observed continuous increments in AUC 

up to the 1024 image size. Increasing the image size from 64 to 1024 resulted in increased AUC 

(0.817 to 0.903 for BNP and 0.797 to 0.863 for BNPP). The greatest improvement in AUC was 

observed between the lowest resolutions.  
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Fig 6.  Confusion matrices for BNP and BNPP inference at thresholds for acute heart failure.  

TABLE II 
EFFECT OF RESOLUTION ON OPTIMUM THRESHOLDS, 

SENSITIVITY AND SPECIFICITY AT YOUDEN’S J INDEX.  
 

Image Size 64 128 256 512 1024 

BNP Threshold 
(pg/mL) 58 56 76 22 48 

Sensitivity  0.618 0.721 0.852 0.926 0.882 

Specificity 0.904 0.810 0.810 0.857 0.810 

BNPP Threshold 
(pg/mL) 250 300 440 320 460 

Sensitivity 0.728 0.746 0.790 0.709 0.815 

Specificity 0.728 0.780 0.763 0.831 0.723 

 Confusion matrices, sensitivity and specificity values calculated from the Youden’s j 

index of the AUROC at each input image size are shown in figure 6 and table II. For BNP 

inference, increased image size led to lower specificity and false negatives and higher sensitivity. 

For BNPP inference, increased image size did not lead to monotonic changes in sensitivity or 

specificity, although the sensitivity peaked at 1024 image size (0.815) and the specificity peaked 

at 512 image size (0.831).  
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TABLE III 
PULMONARY EDEMA DETECTION PERFORMANCE 

COMPARISON AGAINST RADIOLOGISTS COMBINED AND 
SEPARATED BY INDIVIDUAL READER. 

Image Size 64 128 256 512 1024 

Inferred 
BNPP at 
Youden’s  

680 880 970 900 760 

All Readers 0.774 0.783 0.780 0.801 0.795 

Reader 1  0.834 0.835 0.852 0.832 0.847 

Reader 2 0.760 0.784 0.754 0.790 0.771 

Reader 3  0.598 0.602 0.598 0.649 0.625 

Reader 4  0.838 0.853 0.836 0.863 0.867 

Reader 5  0.839 0.841 0.862 0.869 0.865 
 

 

 To further investigate the clinical potential of our proposed method, we evaluated 

performance of the algorithm relative to each of five subspecialty cardiothoracic radiologists, 

who evaluated 250 randomly drawn images from the test set. CNN models exhibited modest 

improvements with increased input image size (table III). CNN performance varied relative to 

the ground truth provided by each radiologist, notably reader 2 and reader 3, but generally 

increased with input image size across each of the five readers (table III). 

B. CNN ACTIVATION MAPPING 

 Grad-CAM activation maps were generated to visually assess the effect of resolution on 

CNN activation for each individual radiograph. Exemplar cases of patients with mild and severe 

pulmonary edema are shown in figures 7 and 8. 
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Fig 7. Comparison of grad-CAM heatmaps from models trained at different input 
resolutions on an exemplar case of mild pulmonary edema. The original image 
was independently annotated by cardiothoracic radiologist for peribronchial cuffing 
(yellow arrows) and Kerley B lines (red arrows), findings of mild pulmonary 
edema.  Low resolution models (64, 128) show attention in large, indistinct regions 
on the chest X-ray. Higher resolution models (512, 1024) show greater attention to 
the lungs. 
 

 

 
Fig 8.  Comparison of grad-CAM heatmaps from CNNs trained at different 
training image resolutions on an exemplar case of severe pulmonary edema.  
Low resolution models (64, 128) show attention in large, indistinct regions of 
the chest X-ray. Higher resolution models (512, 1024) show greater attention to 
the lungs, where airspace opacities are observed. 
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In both examples, Grad-CAM shows diffuse and inconsistent activation at lower 64 and 128 

image sizes, which increasingly focus on the lungs at higher 512 and 1024 image sizes. Multiple 

activation map strategies were then used to assess for consistent trends in CNN activation. This 

included saliency, grad-CAM, and XRAI, which were performed on CNNs trained at all image 

sizes. The resulting activation maps at each resolution were averaged over all test cases for each 

strategy, presented as average activation maps shown in figure 9.  

 
Fig 9.  Average heatmaps from 3 visualization techniques applied to models trained on different 
input resolutions. Three model visualization methods were used: Saliency (top), grad-CAM (middle), 
XRAI (bottom).  Resulting heatmaps were averaged over all images in the test set (n=2691), and 
overlayed on the average of chest radiographs from the test set. Areas of high activation are in red, and 
low activation are in blue.  Visually, model activation is spread throughout the image when low 
resolution training images are used. As training image resolution increases, model activation is 
increasingly concentrated in the lung area.  

 

 Overall, average heatmaps from all three techniques show increasing attention on the 

lungs and decrease in attention outside of the lungs with greater image resolution. For the 64x64 

model, saliency and XRAI show activations throughout the entire image, while grad-CAM 

activations are focused on the lower right corner of the image. For the 128x128 and 256x256 
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models, all three techniques show increased activations concentrated in the general lung area. 

Saliency and grad-CAM activation maps still focus on a single large region with no distinction 

between left and right lungs. For the 512x512 and 1024x1024 models, all three techniques show 

activation in two distinct regions: the left lung and right lung, with minimal activations outside of 

the lungs. 

C. QUANTITATIVE ANALYSIS OF MODEL ATTENTION 

  To better quantify the level of CNN attention to the lungs, we proposed two metrics, 

lung area attention (AA) and lung blur sensitivity (BS). We used both lung AA and lung BS to 

quantify the effect of image resolution on model attention to the lung region. 

 
Fig 10. Plots showing the relationship between image resolution and CNN attention in the lungs. A) 
shows results based on average lung area attention (AA) over the test set. Error bars indicate standard 
deviation. B) shows results based on lung blur sensitivity (BS). 

 

1. AREA ATTENTION 

 We calculated the average lung area attention over all images in the test set (n=2691). 

Fig. 10A plots the lung AA values for five CNNs, each trained at different input resolutions, 

using three activation mapping techniques (saliency, grad-CAM, XRAI). Overall, increasing 

input resolution from 64x64 to 1024x1024 led to increasing average lung AA (0.40 to 0.64 for 
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saliency, 0.26 to 0.80 for grad-CAM, 0.33 to 0.72 for XRAI).  The greatest changes in average 

lung AA were observed when input resolution was increased from 512x512 to 1024x1024 (0.46 

to 0.64 for Saliency, 0.58 to 0.80 for grad-CAM, and 0.54 to 0.72 for XRAI). At 64x64 image 

resolution, the average lung AA for all three techniques was less than 0.5, indicating that the 

64x64 trained CNN. This trend contrasts with the results observed at 1024x1024 image 

resolution, where all three techniques yielded lung AA greater than 0.5, indicating that the 

1024x1024 trained CNN mostly focused within the lungs. 

TABLE IV 
 EFFECT OF MEASURED BNPP ON LUNG AREA ATTENTION 
CALCULATED FROM GRAD-CAM SALIENCY MAPS. CASES 

WITH MEASURED BNPP ABOVE AND BELOW 400 WERE 
COMPARED BASED ON LUNG AA. 

Image Size 64 128 256 512 1024 

BNPP ≥ 400      

Mean 0.247 0.589 0.591 0.566 0.810 

SD 0.103 0.121 0.096 0.084 0.142 

BNPP < 400      

Mean 0.262 0.634 0.593 0.585 0.811 

SD 0.089 0.081 0.126 0.149 0.097 
 

 

 The relationship between measured BNPP level and lung AA is shown in table IV. There 

was no significant difference in measured attention in the lungs between samples with high 

(≥400) and low (<400) BNPP, which suggests that average lung AA is independent of BNP or 

BNPP values. Lung attention seemed to be consistent regardless of BNPP but varied greatly with 

input resolution. 

2. BLUR SENSITIVITY 

 We calculated the lung BS based on AUC obtained from inference on all images in the 

test set (n=2691).  Fig. 10B plots the average lung BS for five CNNs, each trained at different 

image resolutions. Overall, increasing input resolution from 64x64 to 1024x1024 resulted in 

increasing lung BS (0.01 to 0.13). For the models trained at lower image resolutions (64x64 – 
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256x256), lung BS was less than 0.02, indicating that blurring the lungs resulted in less than 2% 

decrease in AUC. The higher resolution models trained at 512x512 and 1024x1024 exhibit 

significantly higher lung BS values of 0.06 and 0.13 respectively, indicating that blurring the 

lungs resulted in AUC decreases of 6% and 13%.   
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DISCUSSION 
 

In this work, we demonstrated the feasibility of inferring BNP and BNPP directly from 

chest radiographs. Resnet152V2 CNNs achieved optimal performance at larger input image 

sizes, which highlighted the importance of higher resolution spatial details for assessing 

pulmonary edema. At 1024x1024 image size, Pearson R values for BNP and BNPP were 0.762 

and 0.697. Thresholding at BNP>100 and BNPP>400, AUROCs were 0.903 and 0.863 

respectively. The trained CNNs also achieved strong performance for pulmonary edema 

detection when evaluated against radiologist labels. By applying three activation mapping 

techniques (saliency, grad-CAM, XRAI) and two proposed quantitative metrics (lung AA, lung 

BS) to our CNNs, we confirmed that increasing input resolution increased model attention to the 

lungs.  

Few prior investigators have begun to explore the application of CNNs to assessing 

pulmonary edema, whether in isolation or as part of multiple class image classification. Prior 

investigators achieved similar AUROC for edema detection, ranging from 0.814-

0.924(Rajpurkar et al. 2018; Cicero et al. 2017; Sabottke and Spieler 2020) with a variety of 

CNN architectures. While direct comparisons of AUROC are difficult due to differences in 

patient test populations, these are comparable to our approach of applying serum laboratory 

markers as ground truth, rather than NLP-derived labels. We show that training CNNs with 

serum laboratory markers (BNP and BNPP) achieved similar results, while providing additional 

information that can help to grade severity. A previous work(Seah et al. 2019) showed initial 

feasibility of BNP for this task, albeit at very low resolution, and observed CNN attention 

predominantly outside of the lungs. We suspected this might have been the result of lower image 

resolutions used by the prior authors. In another work(Sabottke and Spieler 2020), investigators 
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showed little improvement in AUROC above 128x128 resolution when using NLP-derived 

image labels, and left uncertainty about where CNN attention was for this inference. 

We thus expanded on these pioneering works and show that while some performance is 

maintained at lower image sizes, CNNs require higher resolution images to ensure their 

inferences are the result of lung attention. Many known findings of pulmonary edema used by 

cardiothoracic radiologists, including Kerley B lines and peribronchial cuffing, are not visible at 

low resolution. We further devised two new metrics area attention and blur sensitivity to 

quantitatively measure lung attention. Our results provide insight into the effect of image 

resolution on CNN learning. 

Currently, most deep learning models are benchmarked and optimized by several 

different metrics, including accuracy or AUROC. However, our findings suggest that global 

performance metrics such as accuracy or AUC do not always provide a full description of model 

performance or value.  It is clear that assessment of pulmonary edema requires attention to the 

lungs. Thus, attention may be just as important for evaluation of CNNs, to confirm that models 

are not relying heavily on spurious relationships but instead focusing on areas of the image 

relevant for diagnosis, which may mitigate the problem of shortcut learning(DeGrave, Janizek, 

and Lee 2021).  

As the image size increases, the filter size of the CNNs stay at a fixed size. This means 

that the CNNs are forced to look at smaller details when image size increases. At different image 

sizes, the CNNs are using different features to make their inference. It is entirely possible that the 

image features most indicative of BNP or BNPP at one image size are different from those at 

another image size, which might explain the change in performance with image size. For 

instance, the model could be looking at body habitus at smaller image size, heart size at medium 
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image sizes, and lung opacities at large image sizes. Each of these feature sets will have different 

diagnostic value, leading to different levels of performance.  

Although BNP saw increasing performance with image size, BNPP seemed to peak after 

512. This might be because of the reliability of the serum biomarkers themselves: BNPP values 

seemed to fluctuate more than BNP values. This might have made it more difficult to infer the 

values using higher levels of detail, resulting in the performance curve exhibited.  

 Using higher resolution images seemed to improve sensitivity and specificity for BNP  

and BNPP inference, as shown in figure 6. For BNP inference, increased image size led to lower 

specificity and false negatives and higher sensitivity. For BNPP inference, increased image size 

did not lead to monotonic changes in sensitivity or specificity, although the sensitivity peaked at 

1024 image size (0.815) and the specificity peaked at 512 image size (0.831).  

 The ethical implications of this work are important to discuss(Char, Shah, and Magnus 

2018; Harvey and Glocker 2019; Vollmer et al. 2020; Geis et al. 2019; Kohli and Geis 2018). 

First, if this would possibly threaten the role of radiologists in the clinic. Overall, there is a 

shortage of radiologists in our healthcare system, and the number of patients and medical 

imaging procedures is increasing, so they need all the help they can get. Also, this model is not 

descriptive or explainable enough to be standalone, if used it should provide assistance rather 

than make its own diagnoses. Second, there are issues of bias towards certain racial groups 

highlighted by recently published papers. In our case, we used data from UCSD Health Jacobs 

hospital for our training set, so it is unclear whether the results will generalize to other patient 

demographics. We believe that for this approach to be deployed in other hospitals, it should be 

retrained with data from that specific institution so that it is optimized for that patient population. 
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It must be noted that one of the main focuses of this work was assessing the effect of 

input resolution on CNN performance and attention. We wanted to ensure that the results we 

observed were generalizable and not the result of a specific architectural modification or 

technique. Therefore, we intentionally used a well-known and commonly used ResNet152v2 

model architecture with minimal modifications. We chose this architecture over others due to its 

superior performance in preliminary experiments (appendix Fig. 11). Future work may focus on 

developing models structurally optimized for this task. 

TABLE V 
EFFECT OF RESOLUTION ON COMPUTATIONAL COST OF 

RESNET152V2 BASED MODEL (58M PARAMS), MEASURED IN 
FLOATING POINT OPERATIONS (FLOPs).  

Image Size 64 128 256 512 1024 

G-FLOPs 0.95 3.62 14.31 57.07 228.12 
 

 

Another potential limitation of our work is that we did not experiment with resolutions 

higher than 1024x1024, even though the native resolution of our chest radiographs was as high 

as 4700x4700. For our experiments, we selected resolutions to encompass the entire gamut of 

commonly used input resolutions when training CNNs on chest radiographs. 1024x1024 was 

selected as the maximum resolution in our work for two reasons: (1) this is the maximum 

resolution of images from the commonly used public NIH ChestX-ray14 dataset(Jaeger et al. 

2014) and RSNA-Pneumonia dataset(Pan, Cadrin-Chênevert, and Cheng 2019). (2) Compute 

resources required for training increase two-fold with resolution (Table V). Training a 

ResNet152v2 on 1024x1024 images pushed the memory limits of our available hardware. Future 

work may be directed at studying the performance gains at even higher resolutions.  

Finally, we observe variable performance relative to each of five different subspecialty 

radiologists in the final study of algorithm performance. Similar performance was observed for 

three of the readers but had considerably lower agreement with two of the readers. We believe 
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this is due to variable thresholds that individual radiologists may set for binary classification of 

the presence or absence of pulmonary edema and may deserve further study. This also speaks to 

the benefit of using objective serum laboratory data to define ground truth for CNN training, 

which can prevent subjective thresholds of individual radiologists from limiting algorithm 

performance. 

  



26 
 

APPENDIX 
 

A. Comparison to Other Architectures 

 We chose ResNet152v2 with MAE loss for its superior performance over other 

architectures for BNPP inference from radiographs. Figure 11 shows the ROC and AUC results 

using different methods using a threshold of 300 for measured BNPP and input image size of 

512x512. We compared two loss functions (MAE, MSE), weight initialization schemes (random, 

ImageNet), and architectures (ResNet, DenseNet, Inception, InceptionResNet).  

 
 

Fig 11.  Comparison of AUROC on BNPP > 300 inference 
between different CNN architectures, weight initialization 
strategies, and loss functions when using 512x512 image size. 
ResNet152v2 with MAE loss was selected for subsequent 
experiments. 
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B. Comparing Various Thresholds of Measured BNPP 

 While in the manuscript we used a previously established screening threshold of 400 to 

detect acute heart failure from measured BNPP values, here we provided the ROC curves and 

their respective AUC computed for other potential thresholds in Figure 12. 

 

Fig 12.  Comparison of CNN AUROC on various BNPP thresholds, when using 
ResNet152v2 model and 512x512 image size. 
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