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Cloud droplet formation depends on the condensation of water
vapor on ambient aerosols, the rate of which is strongly affected by
the kinetics of water uptake as expressed by the condensation (or
mass accommodation) coefficient, αc. Estimates of αc for droplet
growth from activation of ambient particles vary considerably and
represent a critical source of uncertainty in estimates of global cloud
droplet distributions and the aerosol indirect forcing of climate. We
present an analysis of 10 globally relevant data sets of cloud conden-
sationnuclei to constrain the value ofαc for ambient aerosol.Wefind
that rapid activation kinetics (αc > 0.1) is uniformly prevalent. This
finding resolves a long-standing issue in cloud physics, as the un-
certainty in water vapor accommodation on droplets is considerably
less than previously thought.

global climate | hydrological cycle | precipitation

Atmospheric aerosols affect the radiative balance of the Earth,
directly through absorption and scattering of solar radiation

and indirectly by influencing the microphysical properties, abun-
dance, and lifetime of clouds. Themagnitude of the indirect aerosol
radiative forcing represents the most uncertain component of the
estimated anthropogenic effect on climate (1). Cloud properties
are intimately tied to the activation of individual aerosol particles
and subsequent growth of the newly formed droplets by accretion of
water vapor. This process depends on the rate of transfer of water
vapor to droplets; the fraction, αc, of water molecules impinging on
the surface of droplets that are incorporated in the droplet, the
so-called uptake coefficient (2), is a critical parameter in global
climate models.
The value of αc has been a subject of research for decades; it is

commonly determined as an adjustable parameter tomatch growth
rate measurements of droplets containing a well-defined concen-
tration of solute (2, 3). The prevailing view is that αc for a pure
water surface is close to unity. Actual cloud droplets, however, may
contain solutes or surface films that affect growth kinetics even at
low concentrations (4, 5), because slow solute dissolution (6) or
glassy or highly viscous aerosol phases (7) may suppress droplet
growth rates. The effective αc (that accounts for all water uptake
processes) for droplets activated on ambient particles may be
considerably lower than unity, with estimates of αc for ambient
droplets ranging from 10−5 to 1.0 (8–14). The smallest values in
this range are unlikely to be representative of the global aerosol
population, but several of these studies report values of αc between
10−1 and 10−2, indicating significantly slower water uptake rates
than that for pure water droplets.
Droplet formation in climate model simulations can be very

sensitive to variations in αc, owing to the dependence of cloud

droplet number concentration (Nd) on the maximum supersat-
uration that develops in clouds. The latter is controlled by
a balance between supersaturation generation (from radiative or
expansion cooling) and depletion from condensation of water
vapor on existing droplets. A smaller value of αc results in slower
water vapor condensation, allowing supersaturation to develop
more fully and increasing Nd before reaching its maximum. This
phenomenon is demonstrated by the sensitivity of global annual
average vertical distributions of Nd to αc, computed with a state-
of-the-art climate model for preindustrial (Fig. 1A) and current-
day emissions (Fig. 1B). As expected, Nd correlates directly with
aerosol concentration. Decreasing αc from 1.0 to 0.1 results in
a 10–15% increase in Nd for current day emissions, whereas
reducing αc to 10−2 and 10−3 leads to considerable increases in
Nd by factors of 1.5–1.8 and 2.0–2.5, respectively (Fig. 1C). This
Nd variability far surpasses the predicted 20–40% change in Nd
between preindustrial and current-day emissions (for constant
αc; Fig. 1D). The implication is that for aerosol–cloud–climate
interaction studies, the extent to which αc varies over space and
time (especially if αc < 0.1) is critical in understanding its con-
tribution to Nd variability; hence, global cloud properties and
climate. Little is known, however, concerning the spatial and
temporal distribution of αc. This uncertainty translates to a con-
siderable, but unconstrained, source of uncertainty in estimating
aerosol indirect forcing.
Measurements of the droplet size distribution resulting from

exposure of aerosol particles to a given water vapor supersatu-
ration, the so-called Cloud Condensation Nuclei (CCN) data, can
provide the fundamental information on which values of αc can be
inferred. For this, threshold droplet growth analysis (TDGA) (15–
18) is based on comparing the growth of activated CCN against
a standard particle that rapidly grows [e.g., (NH4)2SO4 CCN with
αc > 0.1 (19)] for identical measurement conditions. If droplet
sizes from ambient particles are similar to the standard, they are
considered to have similar αc; a smaller droplet size may suggest
slower growth kinetics (and lower αc). TDGA is designed to detect
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the presence of potentially slowly growing CCN but does not
numerically constrain αc. Furthermore, the technique is subject to
uncertainty when the particle number concentration is sufficiently
high to deplete supersaturation in the instrument (19, 20). TDGA
is therefore most effective when used to exclude the presence of
slowly growing CCN.
A recently developed numerical model that simulates droplet

growth in theDropletMeasurement Technologies CCN instrument
(19) is able to analyze large field and laboratory data sets while
comprehensively accounting for supersaturation depletion effects
(20), variations in instrument operation parameters, and dry parti-
cle size distributions and hygroscopicity. The first applications of the
model to ambient CCN data sets, one collected close to the
Deepwater Horizon oil spill site (14) and the other collected from
transecting forest fire plumes (19), demonstrated that supersatu-
ration depletion effects and changes in dry particle size and hy-
groscopicity distributions caused depressions in observed droplet
size that TDGA would incorrectly interpret as changes in αc.
Extending the analysis to ambientCCNdata sets of global relevance
provides a novel constraint on the variability of αc and its de-
pendence on source type and chemical composition.
The eight data sets analyzed here (Table 1; Fig. 2) are large and

globally representative (SI Text), including urban outflows, boreal
forests, Arctic air masses, fresh and aged biomass burning plumes,
and continental air with anthropogenic and biogenic influences.
We also include two previous studies on the activation kinetics of
aged marine air in the eastern Mediterranean (15, 16) and near
a strong hydrocarbon source at Deepwater Horizon (14). Stringent
filtering to exclude data subject to instrument transients (fluctuat-
ing behavior in column pressure, temperature, and supersatura-
tion) and significant changes in dry particle size distribution during
the sampling/averaging is required, as these can notably influence
droplet size and the kinetic interpretation. The latter is especially
important for airborne data, where the environment changes

rapidly. Even with filtering, TDGA could not rule out the presence
of some droplets with depressed growth. To study whether the
observed depressed size is from αc < 0.1, instrument variability,
supersaturation depletion effects, or variability in aerosol size
distribution and hygroscopicity, we apply an approach proposed
by Raatikainen et al. (19) that is insensitive to observation and

Fig. 1. Global annual average vertical distributions of cloud droplet number concentration (Nd) computed with the NCAR Community Atmosphere Model 5.1
for (A) preindustrial emissions with fixed αc and (B) current-day emissions with fixed αc. (C) Nd for fixed value of α normalized by those computed for αc = 1 for
preindustrial (solid line) and current-day (dashed line) emissions. (D) Nd for current-day emissions normalized with those for preindustrial emissions. Curve
represents average of all constant αc simulations, whereas error bars reflect the corresponding SD.

Table 1. Globally representative data sets considered in this
study

Campaign Location Dates Supersaturation (%)

ICARTT (28) New Hampshire 7/04–8/04 0.2–0.6
EUCAARI (18) Hyytiälä, Finland 3/07–5/07 0.1–1.8
MIRAGE (29) Mexico City, Mexico 3/06 0.07–1.05
AMIGAS (17) Atlanta, Georgia 8/08–9/08 0.2–1.0
GoMACCS (30) Texas 8/06–9/06 0.3–1.0
ARCPAC (31) Alaska 4/08 0.1–0.6
ARCTAS (32) Saskatchewan,

Canada
7/08 0.20–0.57

CalNex (33, 34) California 5/10 0.31–0.34
FAME (15, 16) Finokalia, Crete 7/07–10/07 0.2–0.73
DWH (14) Gulf of Mexico 6/10 0.31

The growth kinetics analysis of the FAME and Deepwater Horizon (DWH)
data sets is published elsewhere; analysis of the other eight data sets is pre-
sented in SI Text. AMIGAS, August Mini Intensive Gas and Aerosol Study;
ARCPAC, Aerosol, Radiation, and Cloud Processes affecting Arctic Climate;
ARCTAS, Arctic Research of the Composition of the Troposphere from Air-
craft and Satellites; CalNex, California Nexus; EUCAARI, European Inte-
grated Project on Aerosol Cloud Climate and Air Quality Interactions;
FAME, Finokalia Aerosol Measurement Experiment; GoMACCS, Gulf of
Mexico Atmospheric Composition and Climate Study; ICARTT, International
Consortium for Atmospheric Research on Transport and Transformation;
MIRAGE, Megacities Impacts on Regional and Global Environments; DWH,
Deepwater Horizon.
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prediction biases. Because activated droplet size is a function of
aerosol size distribution, hygroscopicity, instrument operating
conditions (accurately known), and αc (not known), one can
simulate the activation and growth of CCN in the Droplet Mea-
surement Technologies CCN counter using a prescribed (con-
stant) αc. If the difference between observed and predicted
droplet size is essentially constant for all of the data, then a con-
stant αc is assumed valid. Indeed, this is found to be the case for
our globally relevant data sets. Prescribing αc = 0.2 [which is
representative of fast activation kinetics (19)] captures the tem-
poral variability of measured droplet size (Fig. 3) to within
a constant bias and a 0.3-μm variance (Fig. 4), which characterizes
normal instrument variability and the essentially unresolvable
range of αc between 0.1 and 1.0 (19, 21). With this result and the
fact that TDGA suggests that the majority of particles activate as
rapidly as (NH4)2SO4, one concludes that αc > 0.1 is globally
representative. Regions of the globe not directly sampled (e.g.,
eastern Asia, Amazon) generally follow one of the air types of
Table 1; CCN activation kinetics of globally important secondary
organic aerosol generated in environmental chambers further
supports the model of rapid activation (SI Text).

Important implications arise from our results. First, αc is ef-
fectively constant for all the data considered, even for particles
composed largely of organics with very low oxygen content. An-
thropogenic (compositional) impacts on αc are therefore limited
to the 0.1–1.0 range, considerably reducing the uncertainty for
cloud droplet number prediction in climate models. This study
resolves a decades-long uncertainty in cloud physics on the value
of αc, because it appears that αc for ambient aerosol can be rep-
resented in models with a constant value in the 0.1–1.0 range.

Materials and Methods
Ambient CCN Data Sets Considered. CCN data are collected with a Droplet
Measurement Technologies continuous flow streamwise thermal gradient
chamber (22, 23). This instrument consists of a continuous flow tube in which
the sample flow is focused on the column centerline by using a larger sheath
flow. Chamber walls are kept wet, and a positive wall temperature gradient is
maintained by three sets of thermo-electric coolers. Because water vapor
diffuses faster than heat in air, supersaturation increases with distance from
the wall, reaching a maximum at the column centerline. Due to the entry
length effects, particles are first exposed to a quickly increasing relative hu-
midity until a relatively stablemaximum supersaturation is reached. Activated
droplets exiting the chamber are counted and sized (20 size bins from 0.5 to

90

75

60

45

30

15

0

La
tit

ud
e 

(°
)

-180 -135 -90 -45 0 45
Longitude (°)

EUCAARI 2007
Hyytiälä, Finland

MIRAGE 2006
Mexico City, Mexico

CalNex 2010
Los Angeles, CA, USA

ARCPAC 2008
Fairbanks, AK, USA

AMIGAS 2008
Atlanta, GA, USA

ARCTAS 2008
Cold Lake, Alberta, 
Canada

GoMACCS 2006
Houston, TX, USA

ICARTT 2004
Durham, NH, USA

FAME 2007
Finokalia, Crete

Deepwater Horizon 2010
Gulf of Mexico
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10.0 μm) by an optical particle counter. Instrument supersaturation, typically
as a function of wall temperature gradient, is determined by conducting
calibration experiments with ammonium sulfate or sodium chloride aerosol.
The data sets for which CCN measurements are analyzed are described in
detail in SI Text.

CCN Instrument Model Description. The coupled instrument and droplet
growth model (19), freely available at http://nenes.eas.gatech.edu/Experiments/
CFSTGC.html, calculates flow velocity, pressure, and supersaturation profiles
from the measured sample pressure, column temperatures, sample and
sheath flow rates, and calibrated maximum supersaturation. Flow velocities
and supersaturation profiles are then used in a Lagrangian droplet growth
model to calculate the growth and activation of CCN as they flow through
the instrument chamber. The growth model input parameters are αc, dry
particle size distributions, and hygroscopicity. Number concentrations are
needed to account for water vapor depletion effects because CCN chamber
supersaturation is decreased due to water vapor condensation on growing
droplets, leading to coupling between the instrument and droplet growth
models (20).

Global Simulations. The impact of the mass accommodation coefficient αc on
cloud properties and indirect aerosol radiative forcingwas estimated using the
community atmosphere model (CAM5.1), which is a state-of-the-art atmo-
spheric general circulation model with fully coupled aerosol–cloud inter-
actions (24). We used the model configured with the finite volume dynamic
core, with a horizontal resolution of 1.9° × 2.5° and 30 levels in the vertical.
The three-mode version of the modal aerosol module (MAM3) was used,
which considers aerosol sulfate, ammonium, nitrate, primary organic matter,
secondary organic aerosol, black carbon, sea salt, and dust; particles are dis-
tributed into Aitken, accumulation, and coarse lognormal modes with pre-
scribed geometric SD. The mode diameter varies as aerosol number and total
mass change. The MAM3 is coupled to a double moment cloud microphysics
scheme. Particles can be removed by wet removal mechanisms or regenerated
to interstitial aerosol after cloud droplets evaporate. Activation of aerosol to
cloud droplets is calculated with the (25) parameterization, which includes the
effect of αc on the activation process. Simulations with αc = 1, 10−1, 10−2, and
10−3 were performed for current-day and preindustrial emissions of aerosol
precursors, with climatological sea surface temperatures and ice cover. Emis-
sions data sets used in the simulations are those of ref. 26 for both the present
day (year 2000) and preindustrial simulations (year 1850). The vertical distri-
bution of emissions follows the protocol of ref. 27. The reported fields of in-
cloud droplet number concentrations correspond to the annual average from
the last 5 y of simulation, after allowing 1 y of simulation for spin-up. The
annual average spatial distribution of cloud number concentrations for pre-
industrial and current-day emissions are provided in SI Text.
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