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Monte Carlo method and High Performance
Computing for solving Fokker-Planck
equation of minority plasma particles

E. Hirvijoki1,2†, T. Kurki-Suonio2,1, S. Äkäslompolo2, J. Varje2, T.
Koskela2 and J. Miettunen2

1 Department of Applied Physics, Chalmers Univ. of Technology, Gothenburg, 41296, Sweden
2Department of Applied Physics, Aalto University, Espoo, 02015, Finland

(Received September 26 2014; revised February 05 2015; accepted February 06 2015.‡)

This paper explains how to obtain the distribution function of minority ions in tokamak
plasmas using the Monte Carlo method. Since the emphasis is on energetic ions, the
guiding-center transformation is outlined, including also the transformation of the col-
lision operator. Even within the guiding-center formalism, the fast particle simulations
can still be very CPU intensive and, therefore, we introduce the reader also to the world
of high-performance computing. The paper is concluded with a few examples where the
presented method has been applied.

PACS codes:

1. Introduction

The density of high-performance plasma is about 1020 m−3 and the volume of, for
instance, the ITER vacuum vessel is over 800 m3. Therefore the total number of particles
in the system is of the order of 1023. Furthermore, since the plasma consists of charged
particles, the Coulomb interaction between them has, in principle, infinite range, and so
the motion of each particle is connected to the motion of all other particles. Therefore,
instead of trying to determine the dynamics of individual particles, a more efficient
description for the plasma is needed. In fact, the behaviour of plasma at microscopic
level is not even interesting in fusion applications: it is not important which particle is
at a given position with a given velocity. Rather, it is the number of particles in such a
phase-space position that will determine the macroscopic behaviour of the plasma.

The distribution function, f(x,v, t), gives the probability density at time t to find a
particle in phase-space volume element dx dv. There are two conventions for normalizing
the distribution function: If f is literally taken as a probability density, it is normalized
to unity,

∫
fdx dv = 1 – meaning that particle has to be found somewhere in the phase-

space. If, on the other hand, f is viewed as a distribution of the particles, then it is
normalized according to

∫
f(x,v)dx dv = N , meaning that when integrated over all

velocities and across all the space, it has to give the total number of particles in the
system. Regardless of the normalization, all the relevant macroscopic quantities can then
be obtained as different velocity moments of the function f . For instance, the number
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density of particles n(r) is obtained by integrating over the velocity space (and possibly
multiplying by N).

Adopting the distribution function, we have adopted a statistical description of the
plasma. For this to be a useful tool, we need a dynamic equation for the distribution
function in place of the equations of motion for individual particles. In the vast majority
of fusion problems, the equation to use is the so-called Fokker-Planck equation. How to
solve this equation is the topic of this paper.

The structure of the paper is as follows: In Sec. 2, we present a derivation of the
Fokker-Planck equation and in Sec. 3 relate it to stochastic processes, opening up the
possibility of solving the Fokker-Planck equation by means of Monte Carlo methods. In
Sec. 4, we give expressions for the coefficients in the Fokker-Planck equation for a few
cases important for studying fast particle physics. Section 5 is devoted to eliminating
the gyro motion that in many cases does not provide any useful information. The elimi-
nation is carried out using Lie-transformation perturbation methods. The details of the
transformation are not only lengthy and tedious, but also require several clever tricks
that are not obvious. As for anyone entering the field it is easy to become tangled in the
details, losing the view of the process itself, we try to outline the process and give refer-
ences to where to find those tedious details. Section 6 is dedicated to high-performance
computing, and in Sec. 7 we give a few examples of cases where the approach presented
here has been found indispensable.

2. Fokker-Planck equation

Let us first take a look at a situation where there are no external electric or magnetic
fields but, rather, the particles in the plasma move only in the presence of the microscopic
fluctuating electromagnetic fields produced by other particles. These microscopic fields
are assumed to be the ”left-overs” as the true fields are averaged over some reasonable
length scale to obtain the macroscopic fields, and the distribution function at macroscopic
scales. In plasmas, this length scale is the Debye length, and in typical fusion plasmas, the
Debye length is small compared to the interesting macroscopic scales. As the interaction
between the particles and these microscopic left-over fields essentially happens within a
sphere with a radius of the size of the Debye length, the effects of these microscopic left-
over fields are thus point-wise and referred to as the Coulomb collisions. For an interested
reader, the microscopic fluctuations are analyzed in detail in the book by Ichimaru (1973).

We will also have to assume that the interparticle forces cause only small-angle deflec-
tions in particle trajectories. Since the Coulomb force has a long range, the assumption
of only small-angle deflections is a reasonable in hot and dilute plasmas, such as most
plasmas in tokamaks are: The deflection of particle’s trajectory during a single collision
event can be shown small. With these assumptions in mind, we are now in the position
to illustrate a derivation of the Fokker-Planck equation.

Following Ichimaru (1973), let us assume that at a time t the particle is found at
z = (x,v), and that at an instant later, it is found at z + ∆. The likelihood of the
transition from z to z+∆ during a (short) time τ is described by a transition probability
Wτ (z,∆), with normalization

∫
Wτ (z,∆)d∆ = 1. Then the probability density for finding

the particle at z after time τ is given by summing up all possible jumps that lead to z

f(z, t+ τ) =

∫
d∆ f(z−∆, t)Wτ (z−∆,∆). (2.1)

Assuming small-angle collisions, the steps ∆ are small and one can carry out Taylor
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expansion of f and Wτ around z

f(z, t+ τ) =

∫
d∆

[
f(z, t)Wτ (z,∆)− ∂

∂z

(
f(z, t)Wτ (z,∆)

)
·∆

+
1

2

∂

∂z

∂

∂z

(
f(z, t)Wτ (z,∆)

)
: ∆∆ +O(∆∆∆)

]
. (2.2)

Dividing by τ and rearranging the terms one obtains

f(z, t+ τ)− f(z, t)

τ
= − ∂

∂z
·
(
f(z, t)

〈∆〉
τ

)
+

1

2

∂

∂z

∂

∂z
:

(
f(z, t)

〈∆∆〉
τ

)
+O

(
〈∆∆∆〉

τ

)
, (2.3)

Here the expectation value with respect to the transition probability is defined as

〈. . . 〉 =

∫
d∆Wτ (z,∆) . . .

When calculating the average change in the particle velocity due to Coulomb collisions,
〈∆v〉, and the second moment, 〈∆v∆v〉, the same logarithmic divergence appears as is
found when calculating the Rutherford scattering cross section. When the appropriate
cut-off for the integration is applied, i.e., limiting the range of Coulomb interaction within
the Debye length, these first and second moments become proportional to the Coulomb
logarithm, ln Λ. On the contrary, higher order moments will not contain such divergencies.

Therefore, if ln Λ� 1, the first two moments 〈∆〉τ and 〈∆∆〉
τ dominate higher order terms

by the factor ln Λ. Typically, for fusion plasma, ln Λ ∼ 15, and it is justified to drop the
higher order terms and write

∂

∂t
f(z, t) = − ∂

∂z
· [(a(z, t))f(z, t)] +

∂

∂z

∂

∂z
: [D(z, t)f(z, t)] , (2.4)

where the collisional friction (or drag) vector and diffusion tensor (the Fokker-Planck
coefficients) are defined as

a(z, t) = lim
τ→0

〈∆〉
τ
, (2.5)

D(z, t) = lim
τ→0

〈∆∆〉
2τ

. (2.6)

To illustrate how the effect of macroscopic electric and magnetic fields can be included,
let us neglect the microscopic interparticle forces for a while and consider the transition
probability to be a δ-function peaked at the change in z due to macroscopic forces, i.e.,
Wτ = δ(∆z−∆). All the moments thus become 〈(∆z)n〉 = (∆z)n. If τ is short, we find
〈(∆z)n〉 ≈ (żτ)n. In the limit τ → 0 the result becomes exact, ∆z→ żτ , and we obtain
an exact result

∂

∂t
f(z, t) +

∂

∂z
· (żf(z, t)) = 0, (2.7)

describing the time evolution of a function f(z(t), t) due to macroscopic forces. This is the
result one would expect, if only, e.g., Hamiltonian changes in the phase-space coordinates
were allowed. Now the full equation for the distribution function, applicable to fusion
plasmas, becomes

∂

∂t
f(z, t) = − ∂

∂z
· [(ż + a(z, t))f(z, t)] +

∂

∂z

∂

∂z
: [D(z, t)f(z, t)] , (2.8)
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Figure 1. The effect of collisions in particle space. The solid lines represent the deterministic
Hamiltonian trajectories in the phase-space and the red vertical arrows the effect of collisions.
Courtesy of Alain Brizard

and it is often referred to as the kinetic equation or the Fokker-Planck equation. Figure 1
illustrates the role of different terms in the Fokker-Planck equation for a 1-dimensinal
situation: the collisional terms kick the particles from one macroscopic trajectory to
another. As was discussed earlier, that the Coulomb interaction due to microscopic fields
is point-wise, the collisional kicks in the picture are necessarily vertical: the changes due
to Coulomb collisions operate only in the particle’s velocity space coordinates.

It is important to keep in mind that ln Λ determines the validity of the Fokker-Planck
theory. The theory completely breaks down when ln Λ → 1 as the error is proportional
to 1/ ln Λ. Such situations are encountered, for instance, in dense and cold plasmas in
white dwarfs, and in plasmas that are induced by laser pulses shot to solid targets. Such
systems are outside to scope of Fokker-Planck theory.

The collisional terms, a and D, are often written separately from the Hamiltonian
contribution:

∂

∂t
f +

∂

∂z
· (żf) = C [f ] , (2.9)

where the right-hand-side, C [f ], is called the collision operator

C [f ] =− ∂

∂z
·
[
af − ∂

∂z
· (Df)

]
≡ − ∂

∂z
· J, (2.10)

and J is the collisional flux density. Notice that the divergence form of the collision
operator guarantees conservation of particles: when integrating over velocity space, which
yields the number of particles from the operator, it gives zero, i.e., no particles are
created/destroyed in the collisions.

3. Connection to stochastic processes: the Langevin equation

In principle, the Fokker-Planck equation gives us a perfectly satisfactory description of
fusion plasmas. In practice, however, it is impossible to solve directly in full six dimensions
of the phase-space. Fortunately, already in the 1930’s it was shown (by Kolmogorov and
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others) that if the distribution function f is the solution of the Fokker-Planck equation

∂

∂t
f(z, t) = − ∂

∂z
· [(ż + a(z, t))f(z, t)] +

∂

∂z

∂

∂z
: [D(z, t)f(z, t)] ,

then all the particles belonging to that distribution obey the so-called Langevin equation,

dz = [ż + a(z, t)] dt+ σ(z, t) · Γdt1/2, (3.1)

where the matrix σ is defined via a decomposition of the diffusion tensor

2D = σσT , (3.2)

and the upper index T denotes a transpose of a matrix.
The Langevin equation is not a regular differential equation because it contains a

random variable Γ zero mean and unit variance. Therefore the Langevin equation is a
stochastic differential equation. Rewriting the last term as dβ = Γdt1/2, it stands for
an infinitesimal change in the so-called Wiener process β that now has zero mean and
variance t, and Langevin equation becomes

dz = [ż + a(z, t)] dt+ σ(z, t) · β. (3.3)

For an introduction to stochastic processes, see (Øksendal 2003).
Next, we prove that solving the Langevin equation is equal to solving the Fokker-

Planck equation. The proof relies on a few basic rules of the so-called Itô calculus that
extends the methods of ordinary calculus to stochastic processes.

Let us consider an arbitrary function φ of the stochastic process z that obeys the
Langevin equation and form a differential of it, keeping only the first two terms:

φ(z + ∆z)− φ(z) =
∂

∂z
φ ·∆z +

1

2

∂

∂z

∂

∂z
φ : ∆z∆z +O(∆z∆z∆z),

Without randomness (σ = 0), we have ∆z ∼ ∆t. In that case, dividing by ∆t and taking
the limit ∆t→ 0, one obtains

dφ =
∂

∂z
φ · dz.

When the random motion (σ 6= 0) is included, the second order term ∆z∆z no longer
vanishes because the variance of ∆β is proportional to ∆t and not to ∆t2. Based on this
argument, Itô generalized the rules for stochastic calculus with simple expressions for the
mixed differentials

dzdt = 0, dβdt = 0, dβdβ = Idt. (3.4)

Using the rules for stochastic differentiation, we find

dφ =
∂

∂z
φ · dz +

1

2

∂

∂z

∂

∂z
φ : dzdz

=
∂

∂z
φ · [(ż + a)dt+ σ · dβ] +

∂

∂z

∂

∂z
φ : Ddt.

(3.5)

Specifying the initial condition as z(0) = y, the value of the function φ(z) at later times
can be calculated as

φ(z) =φ(y) +

∫ t

0

dφ

=φ(y) +

∫ t

0

(
∂

∂z
φ · (ż + a) +

∂

∂z

∂

∂z
φ : D

)
dt+

∫ t

0

∂

∂z
φ · σ · dβ.

(3.6)
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Taking the expectation value of Eq. (3.6) with respect to z gives the so-called Dynkin’s
formula, a kind of stochastic generalization of the fundamental theorem of calculus,

Ez[φ(z)] = φ(y) + Ez[

∫ t

0

Aφ(z)dt], (3.7)

where the linear operator A, often called the generator for the stochastic process z, is
defined as

Aφ(z) =
∂

∂z
φ · (ż + a) +

∂

∂z

∂

∂z
φ : D. (3.8)

It is worth noting that the contribution from the stochastic term vanishes:

Ez[

∫ t

o

∂

∂z
φ · σ · dβ] = 0.

We now recall that the stochastic variable z obeys a probability density f(z, t), and
the expectation value is also given by

Ez[φ(z)] =

∫
φ(z)f(z, t)dz. (3.9)

Then Dynkin’s formula can be written as∫
φ(z)f(z, t)dz = φ(y) +

∫ ∫ t

0

Aφ(z)f(z, t)dtdz. (3.10)

Taking a time derivative of both sides gives∫
φ(z)

∂

∂t
f(z, t)dz =

∫
Aφ(z)f(z, t)dz =︸︷︷︸

part. int.

∫
φ(z)A†f(z, t)dz (3.11)

where A† is the adjoint of the generator A

A†f(z) = − ∂

∂z
· [(ż + a)f ] +

∂

∂z

∂

∂z
: [Df ] . (3.12)

Rearranging the terms yields∫
φ(z)

(
∂

∂t
f(z, t)−A†f(z, t)

)
dz = 0, (3.13)

and, since the function φ was arbitrary, it holds that

∂

∂t
f(z, t) = A†f(z, t) = − ∂

∂z
· [(ż + a)f ] +

∂

∂z

∂

∂z
: [Df ] (3.14)

which is the Fokker-Planck equation.
We have now an alternative means of solving the Fokker-Planck equation: we take an

ensemble of test particles, follow their stochastic trajectories integrating the Langevin
equation with Monte Carlo mehtods and, in the end, construct the corresponding dis-
tribution function as a statistical average of the test particle trajectories. This sampling
method has the additional advantage over more direct methods that complex bound-
aries of the simulation region are easier to handle. Also many complicated source and
sink terms, e.g., particles from nuclear reactions, can be handled in a straight-forward
manner.

In preparation for the guiding-center transformation, let’s now have a closer look at
the different parts of the Fokker-Planck equation.
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4. Particle phase-space Fokker-Planck equation

One could simply use the Lorentz force to write ż. However, here a more formal ap-
proach is taken and the particle motion is formulated in terms of a non-canonical Poisson
bracket. This is done because, as will be shown, the collisional part of the Fokker-Planck
equation can be expressed in terms of non-canonical Poisson brackets. This in turn will
be important for the guiding-center transformation of the collision operator.

4.1. The Hamiltonian motion

From classical mechanics (for an excellent reference, see, e.g., the book by Arnold (1989))
one recalls that the dynamics of a system is contained in the Lagrangian one-form,
γ = P · dx − Hdτ , where P is the canonical momentum, H serves as the Hamiltonian
constraining the motion of coordinates (x,P) along some path, and τ refers to the path
parameter, often measured as real time. The equations of motion for the coordinates
are obtained by minimizing the action integral,

∫
γ. Using non-canonical coordinates

zα = (x,v) does not really change the situation. One merely rewrites the canonical
momentum as P = qA +mv, or more precisely

P · x = γαdz
α, (4.1)

and again minimizes the action integral. Here, summation over repeated indices is as-
sumed. This leads to equations of motion

żα = {zα, H} (4.2)

where zα is any of the six phase-space coordinates (eight for time-dependent fields), and
on the right-hand-side we have the Poisson bracket,

{f, g} ≡ ∂f

∂zα
Παβ ∂g

∂zβ
, (4.3)

that is defined in terms of the Poisson matrix Παβ that is the inverse of the Lagrange
matrix

ωαβ =
1

2

(
∂γβ
∂zα

− ∂γα
∂zβ

)
. (4.4)

In the absense of time-dependent electric and magnetic fields, so that E = −∇Φ,
B = ∇×A, one can use time as the path parameter. The Hamiltonian and Lagrangian
are then given by

H =
1

2
mv2 + qΦ, (4.5)

γ = (mv + qA) · dx−Hdt, (4.6)

and the Poisson bracket becomes

{f, g} =
1

m

(
∇f · ∂g

∂v
− ∂f

∂v
· ∇g

)
+
qB

m2
· ∂f
∂v
× ∂g

∂v
. (4.7)

Then it is easy to explicitly verify that Eq. (4.2) leads to

ẋ = v, (4.8)

v̇ =
q

m
(E + v ×B), (4.9)

which are the familiar equations of motion. The reader should note that allthough the
time-dependence of the electromagnetic fields was dropped here, it can be included into
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the Poisson bracket formalism by extending the six dimensional phase-space (x,v) to
eight dimensions (x,v, w, t) where w is the total energy of the particle. The Hamiltonian
constraint then becomes H −w = mv2/2 + qΦ−w, and the path parameter is τ instead
of the time t. This approach also adds one more term to the symplectic part γαdz

α of
the Lagrangian. The key is to have a Hamiltonian constraint that is independent of the
path parameter which is now τ .

An additional useful relation delivered by this formalism is that the velocity space
derivative of any function can be expressed in terms of the non-canonical Poisson bracket:

∂f

∂vi
= {xi,mf}. (4.10)

This will turn out to be very practical when carrying out the guiding-center transforma-
tion of the collision operator later on.

4.2. The Collision operator

In order to get more specific expressions for the Fokker-Planck coefficients a and D,
we have to distinguish between the particle species suffering the collisions, a, and the
field particles, b, that serve as scatterers. One must, however, remember that a = b
is also possible. The explicit expressions for the Coulomb friction and diffusion coeffi-
cients describing the collisions of species a with field species b have been derived, e.g., in
Refs. (Rosenbluth et al. 1957; Ichimaru 1973):

aab =
cab
m2
a

(
1 +

ma

mb

)
∂hb
∂v

, (4.11)

Dab =
1

2

cab
m2
a

∂

∂v

∂

∂v
gb, (4.12)

where cab = q2
aq

2
b ln Λ/(4πε20), m is the particle mass, q is the charge, and f the distribu-

tion function. The Rosenbluth potentials or Trubnikov potentials, hb and gb, are defined
as

hb(v) =

∫
dv′fb(v

′)
1

|v − v′|
, (4.13)

gb(v) =

∫
dv′fb(v

′) |v − v′| . (4.14)

These potentials are related to each other:

∂

∂v
· ∂
∂v

gb = 2hb, (4.15)

which can be used to find a useful relation between the Fokker-Planck coefficients

aab =

(
1 +

ma

mb

)
∂

∂v
·Dab. (4.16)

The two coefficients can now be combined to yield the Landau form of the collision
operator:

Cab [fa] =
∂

∂v
· 1

2

cab
ma

∫
dv′

(
I

u
− uu

u3

)
·
(
fb(v

′)

ma

∂fa
∂v
− fa(v)

mb

∂fb
∂v′

)
, (4.17)

where u = v−v′ is the relative velocity between colliding and field particles. The Landau
form is useful for proving the density, momentum, and energy conservation (see, e.g., the
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excellent book by Helander & Sigmar (2005)), but here as a preparation for the guiding-
center transformation, we point out an equivalent form

Cab [fa] = − ∂

∂v
·
(

Kabfa −Dab ·
∂fa
∂v

)
, (4.18)

where the friction coefficient is now defined slightly differently:

Kab =
ma

mb

∂

∂v
·Dab =

cab
m2
a

ma

mb

∂

∂v
hb. (4.19)

Using Eq. (4.10), it is simple to express the particle collision operator in terms of the
non-canonical Poisson brackets:

Cab [f ] = −{xi,maK
i
abfa −m2

aD
ij
ab{x

j , fa}}. (4.20)

Then, if one knows how to transform the particle Poisson bracket into the guiding-center
Poisson bracket, the transformation of the collision operator is practically done, as will
be seen in Sec. 5. But first, more explicit expressions for the Fokker-Planck collision
coefficients will be given for special cases, important for fusion applications.

4.3. Collisional coefficients for minority ions with isotropic and Maxwellian background
plasmas

From here on, we are focusing on how to simulate minority ions in a stationary back-
ground plasma. We thus assume that the colliding particle a is not part of the field
particles and, furthermore, that it will not alter the state of the background plasma.
With these assumptions, the method can be used to study, e.g., the impurity ions as well
as fast ion distributions in plasmas that have reached a stationary state. From here on,
the self-collisions, Caa will thus be neglected.

Often the background plasma, i.e., the field particles, are assumed to have isotropic
velocity dependence, fb(z) = fb(x, v). This is a reasonably good assumption when the
field particles consist of the thermal plasma in a tokamak, but would not be applicable if
one were to evaluate collisions against, say, the fast ion population generated by neutral
beams. For isotropic background plasma the coefficients become simpler:

Kab =− νab v, (4.21)

Dab =D‖,ab
vv

v2
+D⊥,ab

(
I− vv

v2

)
, (4.22)

where the scalar coefficients are defined

νab =− cab
m2
a

ma

mb

1

v
h′b(v), (4.23)

D‖,ab =
1

2

cab
m2
a

g′′b (v), (4.24)

D⊥,ab =
1

2

cab
m2
a

1

v
g′b(v). (4.25)

Here, the symbols ‖ and ⊥ refer to the direction of the particle velocity.
When the background plasma is in thermal equilibrium, which is typically assumed of

today’s tokamak plasmas, the energy distribution of the field particles is Maxwellian,

fb =
nb

π3/2v3
b

exp
(
−v2/v2

b

)
. (4.26)
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Then the diffusion and friction coefficients have analytic expressions:

D‖,ab(v) =
1

2

cab
m2
a

nb
v
G(v/vb), (4.27)

D⊥,ab(v) =
1

2

cab
m2
a

nb
v

(
erf(v/vb)−

1

2
G(v/vb)

)
, (4.28)

νab(v) =
cab
m2
a

ma

mb

nb
v2
b

G(v/vb)

v
. (4.29)

where the Chandrasekhar function G(s) is defined as

G(s) =
erf(s)− 2s√

π
exp(−s2)

s2
, (4.30)

and erf(s) is the error function.

4.4. Particle phase-space Langevin equation

Now, also decomposing the diffusion matrix according to Eq. (3.2) becomes rather simple:

σ =
√

2D‖
vv

v2
+
√

2D⊥

(
I− vv

v2

)
, (4.31)

where D‖ =
∑
bD‖,ab and D⊥ =

∑
bD⊥,ab. By direct calculation, one can verify that

σσT = 2D.
The stochastic differential equation describing the particle motion is constructed ac-

cording to Eq. (3.3). As the Coulomb collisions only affect the particle’s velocity coordi-
nates, the equation for the spatial position reduces to the Hamiltonian motion:

dx = vdt. (4.32)

For the velocity, the equation includes also the Coulomb drag and diffusion, and is ex-
plicitly

dv =
[ q
m

(E + v ×B)− νsv
]
dt+

[√
2D‖

vv

v2
+
√

2D⊥

(
I− vv

v2

)]
· dβv, (4.33)

where νs =
∑
b(1 +mb/ma)νab.

5. Guiding-center formalism with Lie-transform perturbation
methods

Even though we now have practical means for finding the solution to the Fokker-
Planck equation, it is still not optimal for solving it numerically. For many applications,
resolving the full gyro motion of a charged particle is not only useless, it is also wasteful
as far as computing time is concerned. The Larmor frequency is typically two orders of
magnitude larger than the bounce frequency, i.e., the frequency at which the particle –
in an axisymmetric situation – returns to its original position in the poloidal plane. This
means that, when integrating the equations of motion corresponding to the Langevin
equation, the time step for following the full gyro motion is about one hundredth of the
time step that would be satisfactory if one were to follow only the guiding-center of the
orbit. This, again, translates into one hundred times more time steps in order to reach
the physical simulation time. As we shall see in Sec. 7, sometimes it is necessary to follow
the full gyro orbit, but in most cases both the magnetic field, and the plasma profiles
are practically constant across the Larmor orbit and then resolving the gyro motion does
not bring in any useful information. Even in the case of relatively energetic NBI ions,
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the Larmor radius is very small compared to the gradient length of the magnetic field
and plasma profiles in conventional tokamaks (thus excluding spherical tokamaks such
as MAST).

Computationally, getting rid of the rapid gyro motion would thus be very welcome.
This idea is not new: Alfvén (1940) proposed averaging the Lorentz force law over the
gyro motion explicitly, and his work was carried further before 1970’s, most notably
by Northrop (1961, 1963). The basic idea was to expand the magnetic field in a Taylor
series around the guiding-center, and then average the Lorentz force law over the gyro-
angle. Unfortunately, this simple formalism comes with serious drawbacks, with the most
deleterious one being that the equations of motion do not directly conserve energy or
posses a Hamiltonian structure. A further complication is related to obtaining the cor-
responding collision operator: how to average out the Larmor motion from the collision
operator? The energy conservation issue does not pose a problem if one integrates over
only a handful of orbits, but if one were to construct, say, the slowing-down distribution
of fusion alphas, the reliability of the results would be highly questionable. And as for
the technical problem with the collision operator, for decades it has simply been ignored
and codes around the world have simply used the collision coefficients presented in Sec. 2
for the particle coordinates.

Therefore, in order to carry out reliable simulations, it is clear that a more formal and
consistent approach to get rid of the gyro motion is useful.

5.1. From gyro-averaging to guiding-center transformation

The guiding-center is often misunderstood as the average of the particle position over a

single gyration around the fieldline, i.e., X ≈
∫ 2π

0
x dζ/(2π), where ζ is the gyro-angle.

However, a rigorous definition is a coordinate transformation

x = X + ρ,

where ρ is the vector from the guiding-center position to the particle position. Its length,
ρ, is called the Larmor radius. In principle, for any function we have simple transformation
rules

f(x) = f(X + ρ) =
∑
n

1

n!
(ρ · ∇)nf(X) = exp (ρ · ∇)f(X) ≡ F (X),

F (X) = F (x− ρ) =
∑
n

1

n!
(−ρ · ∇)nF (x) = exp (−ρ · ∇)F (x) ≡ f(x).

Unfortunately, it is not obvious how to define ρ, i.e., the transformation parameter. The
most straightforward approach would be as follows: define the push-forward operator that
pushes particle mappings to guiding-center mappings: f(x) = exp (ρ · ∇)f(X) = F (X),
where ρ is evaluated at the guiding-center position X. Accordingly, the pull-back operator
pulls guiding-center mappings back to particle mappings: F (X) = exp (−ρ · ∇)F (x) =
f(x), where ρ is now evaluated at the particle position x. If we now do the intuitive choice
and define ρ = −mv × B/(qB2) and evaluate it in the proper place (guiding-center vs
particle position), we run into problems: Integrating the particle orbit in nonuniform B
and evaluating the guiding-center position according to X = x + mv × B/(qB2) gives
a point that oscillates at the same frequency as the particle orbit, i.e., the motion of X
would not be independent of the gyrating motion.

5.2. About Lie-transformations

It was Littlejohn (1979, 1982, 1983), who first managed to construct the guiding-center
equations of motion where the rapid gyro motion was eliminated in such a manner that
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the equations preserved the Hamiltonian structure similarly as the particle phase-space
equations (Hamiltonian trajectories never cross, energy invariant exists). His work was
subsequently extended on many occasions. We encourage the reader especially to the
paper by Brizard (1995), and to the paper by Cary & Brizard (2009) (and the references
therein) where also the history of the guiding-center theory is outlined in detail. In this
contribution, we are mostly following these aforementioned works.

The basic idea behind modern guiding-center theory is to find the coordinate transfor-
mation which, first of all, defines the vector ρ from the spatial guiding-center position to
the particle’s spatial position, and, secondly, that in the new coordinates, both the com-
ponents of the new symplectic part of the fundamental Lagrangian one-form, i.e., γα, and
the Hamiltonian become independent of the gyro-angle. This will then guarantee that
the rapid gyro motion is disconnected from the other phase-space coordinates, as it will
not appear in the Poisson tensor. A tool that can accomplish all this is the Lie-transform
perturbation theory. The mathematics involved is rather tedious and not straightforward
and, therefore, only the procedure will be outlined here. Those interested in explicit in-
termediate steps in deriving the guiding-center transformation may find them, e.g., in
the dissertation of Hirvijoki (2014), and those interested in the geometric properties of
the Lie-transformation and the associated so-called Lie-derivative we refer to the books
by Flanders (1989) and Abraham & Marsden (1978)

A Lie-transformation is defined by the pull-back and push-forward operators

T = exp(LG), (5.1)

T −1 = exp(−LG), (5.2)

which are generalizations of the intuitive operators discussed above. Now, instead of the
expression ρ · ∇, we have LG, a Lie-derivative, that is generated by a vector field G that
specifies the transformation. Therefore G is also called the generating function of the
transformation. The reason why the ordinary transformation is abandoned is that we
need a tool that can opearate on differential forms: we will transform the Lagrangian
one-form that was discussed in Sec. 4.1. A Lie-transformation, however, is not that exotic
compared to the ordinary coordinate translation. A Lie-derivative of a function (functions
are zero-forms) reduces to LGf(x) = Gα∂f/∂xα, which is a directional derivative with
respect to the vector field G. A Lie-transformation is thus closely related to the expression
f(x) = exp (ρ · ∇)f(X), and a Lie-transformation of a zero-form is in fact a simple
coordinate translation along the direction pointed by the vector field G. One could then
imagine using Lie-transformations to push and pull functions between the particle and
guiding-center coordinates, after the transformation itself, the generating function G, is
chosen.

It will, however, turn out that a single transformation is not enough to completely
eliminate the gyroangle and, in the Appendix A, we explain why. As the transformation
from particle coordinates to guiding-center coordinates is a near-identity transformation
(the distance from particle position to guiding-center position is the length of the Larmor
radius which is small compared to any other macroscopic length-scale in a plasma), one
can adopt a perturbative approach. In the Lie-transform perturbation theory, a sequence
of transformations, Tn = exp (εnLGn

), with each individual transformation ordered ac-
cording to the power of ε, is thus used, and the guiding-center transformation is defined
as an asymptotic series

T ±gc = exp

(
±
∞∑
n=1

εnLGn

)
. (5.3)
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The dimensionless parameter ε, however, is not the familiar ratio of Larmor radius to
the typical length scales in the system. It is only used to keep track of different orders
while carrying out the transformations. Thus the proper name for ε is the guiding-center
ordering parameter.

5.3. Guiding-center transformation

For a charged particle moving in an external magnetic field, the symplectic part of the
Lagrangian one-form is

γαdz
α = ε−1qA · dx +mv · dx = ε−1γ0 + γ1, (5.4)

where we have already prepared the different order of the terms that will affect the motion
of the resulting guiding-center. In principle this preparation is simply renormalization of
the electric charge but it will result in clear separation of different time scales in the
guiding-center motion: order ε−1 for the rapid gyro motion, order ε0 for the intermediate
motion parallel to the magnetic field, and order ε for the slower motion accross the
magnetic field lines, i.e., the drift motion. Note, however, that after the transformation
is carried up to desired order, the parameter ε is set to unity and not needed anymore.

Next, applying the perturbative Lie-transform algorithm starts a sequence of the trans-
formations for both the coordinates and the Lagrangian not really knowing what the vec-
tor fields Gn generating the transformation truly are. In fact, the generating functions
are determined by requiring that the transformed Lagrangian (the symplectic part γα

and the Hamiltonian) is independent of the gyro angle ζ.
The transformation we are looking for, Tgc : zα → Zα, changes particle coordinates

zα = (x,v) to guiding-center coordinates Zα = (X, v‖, µ, ζ), where X is the guiding-
center spatial position, v‖ is the velocity parallel to the magnetic field, µ is the so-called
magnetic moment, and ζ is the gyro angle. The perturbative transformation was defined
as an asymptotic series, see Eq. (5.3), which up to second order is explicitly given by the
sequences

Tgc =1 + εLG1 + ε2(LG2 +
1

2
L2
G1

) + . . . , (5.5)

T −1
gc =1− εLG1 − ε2(LG2 −

1

2
L2
G1

) + . . . , (5.6)

and the transformed Lagrangian one-form Γ becomes

Γ = T −1
gc (ε−1γ0 + γ1 −H dt) + dS = (ε−1Γ0 + Γ1 + εΓ2 + ...). (5.7)

Here dS is a gauge function that can be chosen conveniently so that unwanted terms
can be cleaned up. It is analogous to the gauges used in electromagnetics and, just like
there, it will not affect the physical results. The generating functions Gn can now be
determined by requiring that each Γn is independent of ζ. After a fair amount of algebra
and very clever thinking when choosing the generating functions Gn, order by order, one
obtains

Γ =

(
ε−1qA +mv‖b̂− ε

mµ

q
R?

)
· dX + ε

mµ

q
dζ −Hgcdt,

≡ ε−1qA? · dX + ε
mµ

q
dζ −Hgcdt (5.8)

where the guiding-center Hamiltonian, Hgc is defined as

Hgc =
1

2
mv2
‖ + µB + ε−1qΦ ≡ 1

2
mv2
‖ + ε−1qΦ?, (5.9)
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and the so-called modified gyrogauge field is R? = R + (τ/2)b̂ with R being the Lit-
tlejohn’s gyrogauge field that quarantees the gyrogauge invariance of the theory. Here,
τ = b̂ · ∇ × b̂ is the magnetic field-line twist and b̂ ≡ B/B. In the Hamiltonian, the
charge is renormalized with the ordering parameter similarly as in the symplectic part of
the Lagrangian one-form, to separate the meaning of different terms: the E×B drift will
be of the same order as the parallel motion and the parallel electric field (if it exists, in
the absence of collisions, it is free to accelerate the guiding-center to arbitrary energies),
will be ordered stronger than the magnetic mirror force that is proportional to gradient
of the field and vanishes in a uniform magnetic field.

Knowing the guiding-center Lagrangian allows construction of the guiding-center ver-
sion of the Lagrangian matrix, ωαβ , the inversion of which gives the guiding-center Pois-
son matrix, Παβ , needed to construct the guiding-center Poisson brackets, {F,G}gc.
Explicitly, computation of the Poisson bracket gives

{F,G}gc =ε−1 q

m

(
∂F

∂ζ

∂G

∂µ
− ∂F

∂µ

∂G

∂ζ

)
+

B?

mB?‖
·
(
∇F ∂G

∂v‖
− ∂F

∂v‖
∇G

)
− ε b̂

qB?‖
· (∇F ×∇G) , (5.10)

where B? ≡ ∇×A? = B + ε
mv‖
µ ∇× b̂− ε2mµq2 ∇×R

? is the so-called effective magnetic

field, and B?‖ = B? · b̂. The equations of motion can be readily written down:

Ẋ ={X, Hgc}gc = v‖
B?

B?‖
+

b̂

qB?‖
× q∇Φ?, (5.11)

v̇‖ ={v‖, Hgc}gc = −ε−1 q

m

B?

B?‖
· ∇Φ?, (5.12)

µ̇ ={µ,Hgc}gc = 0, (5.13)

ζ̇ ={ζ,Hgc}gc = ε−1Ω + Ẋ ·R? (5.14)

where Ω = qB/m is the Larmor frequency of the particle.

A couple of important observations on the equations of motion can be made: first and
foremost they are all independent of ζ, as was desired, and µ is an explicit constant of
motion in the guiding-center formalism. Furthermore, we haven’t lost any information.
The gyro-angle ζ can still be followed if so desired. We now have a powerful tool that
allows to follow the drift orbits, traced by the guiding-center of a test particle, see Fig. 5.3.

5.4. Guiding-center Fokker-Planck and Langevin equations

In this section, for brevity and clarity, we drop the different species labels from the
collisional terms. The terms are still assumed to be summations over the different plasma
species.

As was discussed in Sec. 4, the particle phase-space Fokker-Planck kinetic equation
can be written compactly as

∂f

∂t
+ {f,H} = −{xi,mKif −m2Dij{xj , f}}. (5.15)

Transformation into guiding-center phase-space now becomes straight-forward, as we can
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Figure 2. The full gyro orbit (blue) and the corresponding drift orbit (red) traced by the
guiding-center of a 3.5 MeV alpha particle in ITER geometry.

apply the transformation rule {f, g} → {F,G}gc to obtain

∂F

∂t
+ {F,Hgc}gc = −{T −1

gc x
i,m(T −1

gc K
i)F −m2(T −1

gc D
ij){T −1

gc x
j , F}gc}gc, (5.16)

where F (Zα) is the transformed distribution function in transformed coordinates. If we
wish to use the Monte Carlo method to solve the guiding-center version of the Fokker-
Planck equation, we still need to cast it into a form that allows finding the corresponding
Langevin equation. Recalling Sec. 3, we have to write the equation in the divergence
form:

∂F

∂t
= − 1

J
∂

∂Zα

[
J
((

Żα +Kα
)
F −Dαβ ∂F

∂Zβ

)]
, (5.17)

where J is the phase-space Jacobian of the new coordinate system, and the guiding-center
friction and diffusion coefficients, Kα and Dαβ , are given by

Kα =m(T −1
gc K) ·∆α, (5.18)

Dαβ =(∆α)† ·m2(T −1
gc D) ·∆β , (5.19)

where ∆α = {T −1
gc x, Zα} are so-called projection vectors, defined by the guiding-center

Poisson tensor (Brizard 2004).
Before rushing into writing out the guiding-center Langevin equation, it should be

remembered that the guiding-center distribution function F (Zα) as well as the friction
and diffusion coefficients still contain the ζ dependence, so far only the equations of
motion, Żα are independent of the gyro-angle. Therefore, the Fokker-Planck equation
first has to be averaged over ζ. As the collisional time scale in typical fusion plasmas
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is much longer than the gyro motion time-scale, Brizard (2004) managed to construct a
closure scheme that gives the guiding-center collision operator in the reduced 5D guiding-
center phase-space. The resulting reduced guiding-center Fokker-Planck equation can be
expressed in a form that eventually allows us to identify the necessary coefficients for the
Langevin equation (Hirvijoki et al. 2013)

∂F
∂t

=− 1

J
∂

∂Zα

(
J (Żα + 〈A〉α)F

)
+

1

J
∂2

∂Zα∂Zβ
(
J 〈D〉αβF

)
. (5.20)

Here F = 〈F 〉 now stands for the gyro-averaged guiding-center distribution function, and
the gyro-averaged drift coefficient is defined as

〈A〉α = 〈K〉α +
1

J
∂

∂Zβ
(J 〈D〉αβ). (5.21)

Now we are in the position to use the connection to stochastic processes and to obtain
the guiding-center Langevin equation that is rid of the fast gyrating motion:

dZα =
(
Żα + 〈A〉α

)
dt+ ΣαβdWβ , (5.22)

where dWα is again a Wiener process with zero mean and variance t, and Σαβ can be
computed from

Dαβ =
1

2
ΣαγΣβγ . (5.23)

Unlike in the particle phase-space, decomposing of the matrix Dαβ is highly non-
trivial. For those interested, more details can be found in Refs. (Hirvijoki et al. 2013;
Hirvijoki 2014). As an example, we give the guiding-center Fokker-Planck coefficients in
a non-uniform magnetic field, but in case where the plasma density and temperature
are constant or vary little across the magnetic field lines: the gyro-averaged friction
coefficients are

〈KX〉 = εν
b̂

Ω?‖
× Ẋ +O(ε3), (5.24)

〈Kv‖〉 = −νv‖ − ελ
µB

mv‖
ν +O(ε2), (5.25)

〈Kµ〉 = −(2− ελ)νµ+O(ε2), (5.26)
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Figure 3. The effect of collisions in particle space and in the transformed guiding-center space,
indicated by the primed axes. It is clear that while in the particle space the particle is kicked from
one Hamiltonian trajectory to another only in the velocity (momentum) space, in guiding-center
picture the collisional kick also introduces a spatial step ∆X. Courtesy of Alain Brizard

where λ = v‖b̂ · ∇ × b̂/Ω, and the corresponding diffusion coefficients are

〈DXX〉 =ε2
[
(D‖ −D⊥)

µB

2E
+D⊥

]
I− b̂b̂

(mΩ?‖)
2

+O(ε3), (5.27)

〈Dv‖v‖〉 =
D‖

m2
+ (1− ελ)

D⊥ −D‖
m2

µB

E
+O(ε2), (5.28)

〈Dµµ〉 =(1− ελ)
2µ

mB

[
(D‖ −D⊥)

µB

E
+D⊥

]
+O(ε2), (5.29)

〈DXv‖〉 =ε2
v‖

(mΩ?‖)
2

(D‖ −D⊥)
µB

2E
∇⊥ lnB

+ ε2
v‖

(mΩ?‖)
2

[
D‖ +

µB

2E
(D⊥ −D‖)

]
b̂ · ∇b̂ +O(ε3), (5.30)

〈DXµ〉 =− ε µ

2mE
(D‖ −D⊥)

b̂

Ω?‖
× Ẋ +O(ε3), (5.31)

〈Dµv‖〉 =(1− ελ)
µv‖

mE
(D‖ −D⊥) + ελ

µ

v‖m2
D‖ +O(ε2), (5.32)

If the gradients in the plasma profiles would be accounted for, they would essentially in-
troduce Finite-Larmor-Radius effects into the scalar coefficients ν,D‖, D⊥. An interested
reader may consult Ref. (Decker et al. 2010) for more details.

It is clear that the increased efficiency of the computational effort comes at the price
of mathematical complexity. The most important feature to notice from the complicated
expressions for the diffusion coefficients is that, unlike in the particle picture, in the
guiding-center picture the collision operators no longer act only in the velocity space. The
collisions in the guiding-center picture change also the position of the guiding-center itself,
as indicated by the spatial indices in the friction and diffusion coefficients above. This
is easily understood, since a change in particle velocity changes its Larmor radius and,
thus, its guiding-center position. This is also illustrated in Fig. 3 that shows how applying
the same collision in particle frame and guiding-center frame-of-reference produces the
spatial step only in the latter.

We now have a powerful tool that allows us not only to follow the drift orbits of
charged particles in fusion plasmas but also reproduces neoclassical transport of minority
populations due to the combined effect of Coulomb collisions and toroidal geometry. This
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Figure 4. (a) A banana orbit traced by the guiding-center method for 100ms in ITER geometry.
Unlike in Fig. 2, here the collisions are included and the orbit no longer closes on itself in the
poloidal plane, leading to neoclassical transport, seen as displacements of the banana tips on
subsequent orbits (b). Eventually, the originally banana orbit becomes a passing orbit when the
upper and lower tips connect.

is illustrated in Fig. 4, where the guiding-center orbit changes in time due to collisions: a
banana orbit is transported into a passing orbit, and vice versa. In the next Section, we
discuss when and how supercomputers should be used to answer pressing questions in
fusion research that can be tackled with this method, and after that we devote a section
to a few examples where the method has been found indispensable.

6. High Performance Computing

In this section, we wish to first justify the need for supercomputers, then explain the
main differences between using a collection of regular computers or one supercomputer,
and finish the section by sketching how codes like ASCOT benefit from using supercom-
puters.

6.1. Who needs supercomputers?

In high performance plasmas, the magnetic field dominates the test particle behaviour.
How we get the values of the magnetic field and its derivative, needed for the equations of
motion, has been evolving over the years. Before the 1990’s, it was customary to assume
that the plasma had a large aspect ratio, R/a � 1 and was poloidally circularly sym-
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Figure 5. The strength of the toroidal magnetic field in ITER as a function of toroidal angle in a
single (R, z) point. The different colors correspond to different magnetic fields: The green one is
the field only due to the toroidal field coils. The red line shows how the ferritic inserts reduce the
toroidal ripple amplitude. The NBI beams limit the ferritic insert size near 90◦, which explains
the larger ripple there. The blue line shows the complete field, including the perturbation due
to the ferromagnetic TBMs.

metric with a simple material limiter. With these assumptions, it was possible to write
down an analytical expression for B. This method of simply calculating the field value
and its derivative is very fast and very accurate and, furthermore, using field-aligned
coordinates like Boozer coordinates is straightforward. Unfortunately, introduction of
plasma shaping and, in particular, the separatrix and the scrape-off-layer (SOL) due to
divertor operation of the plasmas made this approach practically useless. To take such a
non-trivial geometry into account in simulation forced adopting tabulated backgrounds,
where the field components (and possibly derivatives as well) are given on a discrete 2-
dimensional grid in (R, z) space. For instance, ASCOT got 2D magnetic backgrounds in
∼1997, allowing simulations in the SOL and divertor regions. Since the particle motion
is not restricted to the grid points, 2D interpolation is needed. This slows down the sim-
ulations significantly. Furthermore, the choice of the interpolation routine is not trivial,
but one has to pay a lot of attention not only to its speed but also to its accuracy and
smoothness.

The remaining symmetry is given by the assumption that tokamaks are axisymmetric
devices. This is a reasonable assumption for, e.g., JET, that has 32 toroidal field coils.
Unfortunately, it breaks badly down for devices like ITER, where the sparseness and lim-
ited extent of the 16 toroidal field coils makes the toroidal magnetic ripple unacceptably
large for confining energetic ions, see Fig. 5. Therefore ITER is equipped with ferritic
inserts that effectively reduce the ripple as indicated in Fig. 5. However, the situation is
worsened by the presence of other ferritic components, such as the Test Blanket Modules
(TBM) used to test tritium breeding in ITER, and external coils to mitigate the ELMs.
The total destruction of axisymmetry in the presence of these perturbations is obvious
from Fig. 5. Therefore, for devices like ITER, let alone stellarators, we need the full
3-dimensional magnetic field with the need for 3D interpolation. For instance, support
for experimental 3D backgrounds was implemented in ASCOT around 2007.

Simulating energetic ions in full 3-dimensional field brings us to the domain of super-
computing. For instance, a 3.5 MeV alpha-particle in ITER slows down in ∼1 s. Simu-
lating it in realistic 3D magnetic field, including collisions and a realistic description of
the machine first wall etc, takes ∼1 min when using the guiding centre approach, or ∼1 h
when following the full gyro orbits. Depending on the quantity of interest, one needs from
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Figure 6. Schematic picture of typical supercomputer components. Inside a node, the CPUs
have very fast access to the memory of that node, but access to the different memories outside
the node slow down quickly as indicated by the thickness of the green routes: the nodes can still
communicate with each other at reasonable speed, but one should avoid accessing data on the
disks since that connection is very slow.

thousands to millions of test particle alphas and, therefore, super computers become very
attractive. What follows applies to codes that are run with some thousands of CPUs.
Codes requiring more CPUs would use more advanced tools.

6.2. A surgical cut to the intestines of a supercomputer

The computational speed of individual computing devices today is limited by power and
cooling requirements. Simulating large systems consequently requires parallel computing,
in which the overall problem is divided into subtasks that can be computed concurrently
on numerous devices working in parallel.

The computational effort in a modern supercomputer is parallelized on multiple levels
(Fig. 6.2). A typical supercomputer is a cluster consisting of thousands of individual
computers, called nodes, connected through a fast network. Each node is an independent
computer typically running a Linux operating system. It contains 2-4 central processing
units (CPU), each of which consists of 4-16 parallel computing units or cores. Further-
more, each core is capable of processing machine instructions from multiple parallel
threads, meaning copies of the code running concurrently. Finally, so-called SIMD (Sin-
gle Instruction, Multiple Data) instructions can perform the same operation on multiple
data elements simultaneously, greatly increasing the throughput of the core.

In addition to the CPU’s, modern supercomputer nodes can include so-called accelera-
tors or coprocessors. They contain a large number of parallel cores, which are individually
simpler and slower than the cores in the CPU, but which can efficiently perform parallel
tasks. A typical mode of operation is to offload well parallelizable computations to the
accelerator device and process the results in the CPU.

A user on a supercomputer normally does not directly work on the computing nodes.
Instead, separate login nodes are provided for user access. The computing tasks are
submitted to a scheduling system, which handles the actual execution of the code on the
computing nodes. File access is also typically provided through separate storage nodes,
which the computing nodes can access over the network.

The limiting factor in modern supercomputers is typically communication between
the numerous parallel processes, which requires low latency and high bandwidth data
transfer. The processes within a single node often can all access the same memory space
in a shared memory environment, which enables very fast communication. However,
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processes running on separate nodes, a distributed memory environment, must use the
network layer for communication, which is typically orders of magnitude slower than
communicating through shared memory. This is emphasized in so-called computing grids,
in which the nodes may be connected through an ordinary local network or the Internet,
with limited bandwidth and high latency. The following section describes how these issues
influence Monte Carlo orbit-following codes.

6.3. Applying supercomputers to Monte Carlo orbit-following codes

Solving the distribution through Monte Carlo orbit-following involves simulating the
trajectories of test particles and gathering their distribution over time. An initial state for
the test particles is generated, for example representing the distribution of alpha particles
produced in fusion reactions. The stochastic differential equations describing the motion
of the particles are integrated numerically, which requires numerical representations for
the background fields and plasma and the geometry of the simulated region. Desired
parameters of the particles are computed at each step and gathered in a multidimensional
histogram, from which the distributions are computed at the end of the simulation.

In minority particle orbit-following, the behaviour of each test particle is independent
of the others. Consequently, the processes simulating the particles in principle need not
communicate with each other during the simulation run. Only at the end of the simula-
tion the distributions of the individual particles must be combined together to form the
final distribution. This is an example of an embarrassingly parallel problem which can
easily be computed at a massively parallel scale, and which is especially suitable for grid
computing. At the most basic level, this would involve executing copies of the code, each
producing a distribution for an individual particle, on each processor in the computing
system and combining the results.

In practice, several factors may still limit the performance of the code. The magnetic
field structure, multi-dimensional distributions and other simulation parameters require
a considerable amount of memory, which enforces a limit on the number of independent
processes that can be executed in parallel on a single node due to the limited memory
capacity. Single copies of the data structures suffice when simulating multiple particles in
a shared memory environment, but this in turn brings out issues with concurrent memory
accesses. In particular, updating the distributions requires synchronization of the parallel
threads, incurring a performance penalty, to avoid data loss from race conditions, in which
a thread attempts to update the distribution simultaneously with another thread.

Another factor that can affect the performance is file access. As the number of storage
nodes in a supercomputer is limited, reading and writing the data separately in each
process can have a significant impact on the execution time. To avoid this, file access
can be centralized to a separate process, which distributes the data to and gathers the
results from the computing processes.

A number of tools exist for efficiently running a code in a parallel environment. Message
Passing Interface (MPI) is a commonly used interface for executing multiple processes
over multiple nodes and communicating data between them. File access can be imple-
mented through libraries such as HDF5 or NetCDF, which provide parallelized reading
and writing and compressed data transfer, reducing the bandwidth requirements. Com-
puting grids can be created with tools such as HTCondor, which can be used to run
computations on workstations when they are otherwise unoccupied. On each individual
node, interfaces such as OpenMP or OpenACC can be used to execute the code concur-
rently in a shared memory environment. These provide a simple method for specifying
the concurrent segments of the code, which the compiler then automatically parallelizes
without the need for explicitly implementing the code for each parallel thread separately.
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The next section describes through examples how these tools and techniques are applied
in practice in the case of ASCOT orbit-following code.

7. Applying the formalism

In this section we give a few representative examples of cases where the formalism out-
lined in this paper been applied. All cases have 3-dimensional magnetic fields and realistic
3-dimensional wall configurations, which renders the problems essentially impossible for
any other means than Monte Carlo methods. All simulations have been carried out using
ASCOT, a suite of codes developed at the Aalto University. We start by introducing the
most important features of ASCOT, together with some key numbers related to its per-
formance. This is followed by three examples, representing different features that make
Monte Carlo approach attractive.

7.1. ASCOT – race track for tokamak particles

ASCOT is actually a suite of codes. The highly parallel, computationally intensive parts
are written in FORTRAN 90, while many preprocessing, postprocessing, analysis and
visualisation tools are written in MATLAB. The key components include particle gen-
erators, the main orbit following routine including operators representing various inter-
actions and wall-collision routines. Post-processing tools include models for synthetic
diagnostics. For particle generation, ASCOT features ab initio particle loading for fu-
sion alphas from thermo-nuclear and beam-target reactions, as well as ions generated
by neutral beam injection. These ions can be followed either by integrating their full
gyro motion (necessary, e.g., for beam ions in MAST), or using the guiding-center ap-
proach. ASCOT also provides a hybrid method, where the guiding-centers of the ions
are followed until the ion comes into the vicinity of a material surface. At this point,
the ion is shifted to its Larmor orbit and the full gyro motion is traced parallel to the
guiding-center motion. If the ion does not collide with the wall but starts receding from
it, the full orbit following is simply dropped. As for interactions, in addition to the col-
lision operators introduced above, ASCOT features a unique numerical model for MHD
modes of NTM (almost stationary) and TAE (rapidly rotating) type (Hirvijoki et al.
2012). This model is applicable in arbitray coordinate system and thus allows extending
the simulations across the separatrix. Furthermore, ASCOT can also take into account
the effect of SOL flows. As for diagnostics, a 4-dimensional, (R, z,E, ξ) or (R, z, v‖, v⊥),
distribution is collected, along with several one dimensional profiles and two dimensional
distributions of many quantities of interest, such as power deposition, electrical current
or torque exerted by the fast ions. For those interested, more details of ASCOT can be
found in Ref. (Hirvijoki et al. 2014).

7.2. How wall can make a world of difference

The 3.5 MeV alphas, born in large quantities in the fusion reactions, could jeopardize the
integrity of the ITER first wall and lead to cooling water accidents that are expensive
and time-consuming to repair. Therefore their confinement is of key importance, but
also the structure of the wall plays a role. Over the years, ITER design has undergone
several revisions, and the design of the first wall is no exception. Initially, the first wall
was foreseen to exhibit two limiters, placed toroidally opposite to each other as shown
in the upper row of Fig. 7. Figure 7(a) shows the power load on the wall due to fusion
alphas, calculated under the assumption of axisymmetric field, while Fig. 7(b) shows
the same for unmitigated toroidal ripple. The ripple increases the peak power loads to
alarming levels. When the effect of the FIs is included in Fig. 7(c), the calculated power
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Figure 7. The simualted power load due to lost alpha particles on the first wall of ITER
in the 9MA advanced scenario. (a) The power load assuming an axisymmetric magnetic field,
(b) the power load assuming unmitigated ripple, (c) the power load assuming ripple mitigated
by ferritic inserts and (d) the power load assuming a continuous limiter structure (with ripple
mitigation). Note the color scale is logarithmic.

loads are practically indistinguishable from the axisymmetric case. Figure 7(d) shows the
fusion alpha power load on the ITER first wall with the most recent limiter construction,
so-called continuous limiter, where limiter plates are placed at each of the 16 toroidal
sectors.

The ripple is known to be a risk for the ITER operation and, hence, ITER is equipped
with ferritic inserts (FI)that reduce the toroidal ripple. When the effect of the FIs is
included, the calculated power loads are practically indistinguishable from the axisym-
metric case. Figure 7(c) shows the fusion alpha power load on the ITER first wall with
the most recent limiter construction, so-called continuous limiter, where limiter plates
are placed at each of the 16 toroidal sectors. This configuration clearly spreads out the
power load to very benign levels.

Comparing the three pictures in Fig. 7 makes it clear that with the wall construction
one can greatly influence the power loads due to energetic particles.

7.3. TBM-mockup experiments at DIII-D

As explained in Sec. 6, the axisymmetry of the ITER magnetic field will be compromised
by the TBMs. Since lack of axisymmetry is directly translated into reduced confinement,
alarm was sounded on possible wall damage due to localized losses of energetic alphas
and/or NBI ions near the TBMs. This led to not only significant simulation efforts, but
even experimental studies where the effect similar to that due to TBMs was produced
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Figure 8. The simulated power load due to lost NBI ions on the first wall of DIII-D in the
test blanket module mock-up experiment. The TBM mock-up module is located inside the wall
in the middle of the figure.
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Figure 9. Simulation of 1 MeV DD-fusion tritons in DIII-D. (a) The full gyro-orbit of a 1
MeV tritium ion. (b) The number of confined tritons without and with the TBM mock-up coils,
normalized to the number without the mock-up.

by introducing mock-up coils behind the first wall tiles in the DIII-D tokamak (Kramer
et al. 2013).

ASCOT was used to simulate the confinement of NBI ions when the mock-up coils
were activated. The power load on the first wall is illustrated in Fig. 8. The highest
power is received by not only the two protruding limiters, but on four tiles between
them. These are exactly the tiles behind which the mock-up coils were located, and they
were also found to heat up during the experiment. Experimentally, the loss of beam ions
was also reflected in the neutron signal: even in deuterium plasma, a finite number of
DD reactions take place between the fast beam ions and the thermal plasma. As a result,
tritium appears in the plasma, and subsequent DT reactions produce the characteristic
13.5 MeV neutrons in large enough numbers to be experimentally measured. When the
mock-up coils were turned on, the neutron signal dropped about 30% (Kramer et al.
2011). ASCOT was used to simulate the tritium born in the plasma, in this case using
the option of following the full gyro motion of the particles. The need for this is indicated
in Fig. 9(a) that shows the orbit of the 1 MeV triton. Two simulations were carried out:
one with and one without the effect of the mock-up coils. The number of confined tritons,
normalized to the case without the coils, from the two cases is shown in Fig. 9(b), showing
quite good agreement with the experimental observation.
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Figure 10. Three-dimensional representation of 13C deposition in ASDEX Upgrade as simu-
lated with ASCOT. Highly localized deposition can be observed on the protruding wall structures
such as limiters on the outer wall.

7.4. Tracer injection experiments at ASDEX Upgrade

Besides wall damage due to fast ions, another potential show stopper for ITER operation
is provided by impurities in the form of tritium compounds. ITER is a nuclear device
and, therefore, licensing sets strict limits to the amount of volatile tritium contained in
the vessel. Therefore erosion, transport and deposition of impurities likely to form tritium
compounds has to be understood, so that the deposition regions can be predicted and,
if needed, occasionally cleaned.

ASDEX Upgrade has invested over ten years on studies of impurity migration in the
form of tracer injection with mainly carbon-13 serving as the tracer, see, e.g., for more
details (Hakola et al. 2013a). The experiment is always carried out on the last day of an
experimental campaign, and a large number of identical plasma shots are carried out with
the injection. This is to provide constant plasma conditions for the migrating impurities
which is beneficial for modelling. After the experiment, selected wall tiles are removed
for surface analysis.

In an experiment carried out in 2007, the post mortem analysis brought the puz-
zling result that over 90 % of the injected 13C was missing when assuming toroidally
symmetric deposition (Hakola et al. 2010). No obvious experimental explanation for the
disappearance of the carbon was found.

At this point it was decided that it was worth studying the problem with ASCOT.
This required some refurbishing of the code, most notably including relevant atomic
reactions and background plasma flows that had been found to play a very important role
for impurity transport in the scrape-off layer. Typically impurity transport simulations
assume an axisymmetric wall geometry and magnetic field, whereas with ASCOT both
the toroidal ripple and realistic 3D wall structure could be included, see Fig. 10.

According to the simulation results shown in (Miettunen et al. 2012), the deposition
pattern on the outer wall is far from uniform but, rather, is concentrated on protruding
elements such as antenna limiters as indicated in the figure. These results provided at
least a partial explanation to the mystery of the missing 13C since experimentally outer
wall deposition had been studied only from a region receiving rather low deposition ac-
cording to the simulations. Therefore, the ASCOT simulations indicated the assumption
of toroidally symmetric impurity deposition to be invalid on the outer wall which was
then also experimentally confirmed in (Hakola et al. 2013b).

8. Summary and outlook

This contribution reviewed the Fokker-Planck theory of minority particle populations
in plasmas in both particle and guiding-center phase-space. Along the way, also the Lie-
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transformation, needed for constructing the guiding-center formalism, was outlined. The
emphasis was in solving the distribution function of minority ions, such as energetic
particles or impurity ions in tokamak plasmas. The proposed solution method is Monte
Carlo because it requires the least amount of simplifying approximations. This approach
gives birth to the Monte Carlo -based orbit-following codes.

After the formal part, the attention was given to high-performance computing. First,
the need for super computers in solving the Fokker-Planck equation using Monte Carlo
method was justified. Then an introduction to the structure and functioning of a super-
computer was given, using Monte Carlo -based orbit-following codes as an example.

The contribution was finished with examples where the approach outlined here had
been applied. The examples were obtained using the Finnish Monte Carlo -based orbit-
following code ASCOT, that was briefly introduced before the examples.

The future of Monte Carlo -based orbit-following codes appears bright: it is fairly
straightforward to include more physics to it via different interactions with the back-
ground. However, this has to be done with care so that the structure of the formalism is
not broken and no numerical physics is introduced to the system.

Appendix A.

As the goal of the guiding-center transformation is to rid the particle phase-space
Lagrangian one-form from the gyromotion, we need to know what a Lie-derivative ac-
tually does for a differential one-form. As defined in (Abraham & Marsden 1978), a
Lie-derivative of a differential one-form γ = γαdz

α is another differential one-form

LGγ = Gαωαβdz
β + ∂β (Gαγα) dzβ , (A 1)

where the second term on the right-hand-side is a total differential ∂β (Gαγα) dzβ =
d (Gαγα), and ωαβ = ∂αγβ −∂βγα. From classical mechanics, one may recall that adding
a total derivative to the Lagrangian does not change the equations of motion, so we focus
on the first term Gαωαβdz

β and how that can be used to reach our goals. Now, consider
the Lie-transformation, defined as the exponential serie operator

exp (LG) γαdz
α = (γβ +Gαωαβ) dzβ + d (Gαγα) + ′′other terms′′, (A 2)

where the ”other terms” include the rest of the exponential serie, i.e.,

′′other terms′′ =
1

2!
LGLGγ +

1

3!
LGLGLGγ + . . . (A 3)

If some of the γα would depend on unwanted coordinates, e.g., the gyro-angle, we could
formally eliminate that by choosing the components Gα wisely, if the ”other terms” would
be neglected. In principle, one could for example solve for matrix equation ωαβG

β+γα = 0
to set the result of the transformation to zero. The generating function is thus solved
from the condition that the components of the transformed one-form become independent
of unwanted coordinates. Because of the ”other terms”, a single transformation is not
enough to completely eliminate the gyroangle from the components of the transformed
fundamental one-form and from the Hamiltonian. Even if the vector field G is chosen
to eliminate the gyro-angle from the first term, so that (γβ +Gαωαβ) dzβ becomes inde-
pendent of it, the other terms will depend on the gyro-angle through the vector field G.
Thus, more free parameters are needed.

In the Lie-transform perturbation theory, a sequence of individual transformations,
Tn = exp (εnLGn

), is used instead, with each transformation ordered using a dimension-
less ordering parameter ε. The guiding-center transformation is defined as an asymptotic
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serie

T ±gc = exp

(
±
∞∑
n=1

εnLGn

)
, (A 4)

which up to second order is explicitly given by the sequences

Tgc =1 + εLG1
+ ε2(LG2

+
1

2
L2
G1

) + . . . , (A 5)

T −1
gc =1− εLG1

− ε2(LG2
− 1

2
L2
G1

) + . . . . (A 6)

Now the ”other terms” can be taken care of, order by order, by defining always a new
generating vector field: in first order, choose G1, in second order choose G2 according to
the choice of G1, and so on.
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