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Background: Since the beginning of the coronavirus disease 2019 (COVID-19) pandemic, there has been
increasing urgency to identify pathophysiological characteristics leading to severe clinical course in patients
infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Human leukocyte antigen
alleles (HLA) have been suggested as potential genetic host factors that affect individual immune response to
SARS-CoV-2. We sought to evaluate this hypothesis by conducting a multicenter study using HLA sequencing.
Methods: We analyzed the association between COVID-19 severity and HLAs in 435 individuals from Ger-
many (n = 135), Spain (n = 133), Switzerland (n = 20) and the United States (n = 147), who had been enrolled
from March 2020 to August 2020. This study included patients older than 18 years, diagnosed with COVID-
19 and representing the full spectrum of the disease. Finally, we tested our results by meta-analysing data
from prior genome-wide association studies (GWAS).
Findings: We describe a potential association of HLA-C*04:01 with severe clinical course of COVID-19. Car-
riers of HLA-C*04:01 had twice the risk of intubation when infected with SARS-CoV-2 (risk ratio 1.5 [95% CI
1.1�2.1], odds ratio 3.5 [95% CI 1.9�6.6], adjusted p-value = 0.0074). These findings are based on data from
four countries and corroborated by independent results from GWAS. Our findings are biologically plausible,
as HLA-C*04:01 has fewer predicted bindings sites for relevant SARS-CoV-2 peptides compared to other HLA
alleles.
Interpretation: HLA-C*04:01 carrier state is associated with severe clinical course in SARS-CoV-2. Our findings
suggest that HLA class I alleles have a relevant role in immune defense against SARS-CoV-2.
Funding: Funded by Roche Sequencing Solutions, Inc.
© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
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Research in context

Evidence before this study

We have searched Pubmed for publications containing keywords
“HLA”, “COVID”, “association” and “severity” published before
June, 17th 2021 (exact search phrase: (covid) AND (severity) AND
(hla) AND (association) AND (("2019/12/3100[Date - Completion]:
"2021/06/1700[Date - Completion]). Among the 69 query results,
there were several studies, which involved Human leukocyte anti-
gen alleles typing and COVID-19. None of the analyses performed
included a multi-center, multi-cohort study and none included
additional covariates, which can potentially distort the observed
association, such as sex, age or genetic background. Furthermore,
none of these analyses attempted to compare the HLA typing
results with the results from genome-wide association studies. All
previously published analyses were based on small sample sizes.

Added value of this study

We have performed a systematic analysis of the association of
type I and type II HLA alleles in over 400 patients from several
countries. Furthermore, we have replicated the HLA association
analysis with an analysis of GWAS data (7796 cases and
875,694 controls) and combined our analysis with results of in
silico epitope modeling. Our models included covariates aimed
at excluding potential confounding effects (such as alleles
which are associated with age or sex rather than severity).

Implication of all the available evidence

COVID-19 severity is associated with at least one HLA allele. The
association is not limited to a single population and is not the
result of a confounding effect of other covariates.

TaggedEnd
TaggedH11. Introduction TaggedEnd

TaggedPSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
was first reported in Wuhan, China, at the end of 2019 [1,2]. It rapidly
spread to Europe, the United States (US), and the rest of the world,
manifesting as coronavirus disease 2019 (COVID-19) [3,4]. TaggedEnd

TaggedPSince the beginning of the pandemic, a striking clinical spectrum
has been described among patients with COVID-19. Some patients
remain asymptomatic, others may become “super spreaders” or
“super emitters” [5], while yet others have a severe clinical course
leading to respiratory or multiorgan failure with potentially lethal
outcome [6]. Various clinical risk factors for severe clinical course
have been described such as age, diabetes, hypertension, and obesity
[4,6]. At the genomic level, blood groups [7,8], as well as genes
involved in antiviral defense mechanisms and inflammatory organ
damage, may affect clinical outcomes [9]. TaggedEnd

TaggedPThe HLA system plays a crucial role in immune response [10,11].
Genetic polymorphisms of HLA have been reported to affect the
clinical course of patients infected with various RNA viruses (e.g.
influenza virus H1N1 [12], Hantaan virus [13], and SARS-CoV-1
[14]). HLA-B* 46:01 has been shown to be associated with a severe
clinical course in patients infected with SARS-CoV-1 [14]. Further-
more, a recent in silico analysis of HLA data from an international
database suggests that HLA-B* 46:01 predisposes patients to a more
severe clinical course of SARS-CoV-2 [15], similar to that found in
patients with SARS-CoV-1 [14]. While HLA-B* 46:01 frequency is
17% in Asia, where these data were obtained, the allele frequency is
0.05% in Germany and <0.01% in Spain, where the largest part of
our study was conducted (http://www.allelefrequencies.net) [16].
Therefore, we suspected that if an HLA risk allele was identified in
our data, it would differ from the one discovered during the SARS-
CoV-1 pandemic in Asia. TaggedEnd

TaggedPOur central hypothesis was that specific HLA alleles predispose
patients to a severe clinical course in COVID-19. Severe clinical course
was defined as intubation, intensive care requirement, or death. We

http://creativecommons.org/licenses/by-nc-nd/4.0/
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TaggedEndTaggedPalso sought to evaluate if specific HLA alleles predispose patients to
acute cardiac injury, which is another surrogate of severe illness. TaggedEnd

TaggedPTo test our hypothesis, we collected blood samples from patients
infected with SARS-CoV-2 for HLA sequencing during the first peak of
the European COVID-19 pandemic. Enrollment centers included hos-
pitals in Germany, Switzerland, and Spain. Furthermore, we lever-
aged existing RNA-Seq data obtained in the US to validate our
findings. Then, we tested our findings through meta-analysis of data
from several, large, recent GWAS studies to evaluate the reproduc-
ibility of the identified HLA risk allele in patients with severe clinical
course in COVID-19 and to investigate possible evidence of increased
susceptibility to COVID-19 in carriers of this risk allele. TaggedEnd

TaggedH12. Methods TaggedEnd

TaggedH22.1. Study participants and recruitment TaggedEnd

TaggedPWe analyzed the associations between all HLA class I and impor-
tant HLA class II loci and disease severity in 435 patients with mild to
severe symptoms of COVID-19 for HLA sequencing analysis. TaggedEnd

TaggedPAll patients of the Charit�e Universit€atsmedizin Berlin are included
in data set 1 (DS1) and patients from Switzerland and Spain in data
set 2 (DS2) according to the sequence of their enrollment into the
study. In addition to the 288 patients recruited for this study (DS1
and DS2), we used data from a public data set containing RNA
sequencing data for a total of 99 patients with COVID-19 containing
phenotypic information on requirement for intensive care or intuba-
tion (https://www.ncbi.nlm.nih.gov/geo; GSE157103 [17], GSE174818
[18]) and for 48 patients with COVID-19 enrolled in the UCSF COVID-
19 Multiphenotyping for Effective Therapies (COMET) Cohort with
available RNA sequencing data (data set 3, DS3; Supplemental Table
1). Through inclusion of multiple international data sets we tested for
broad applicability of our results. TaggedEnd

TaggedPParticipants in our cohort were representative of the full spectrum
of clinical presentation of COVID-19 from asymptomatic to multi
organ failure and death. Diagnosis was made based on detection of
SARS-CoV-2 viral RNA using a reverse transcription-polymerase
chain reaction (RT-PCR) test from nasopharyngeal swabs and/or
detection of SARS-CoV-2 specific antibodies in the blood through
enzyme-linked immunosorbent assay (ELISA). Sample collection took
place during the first peak of the pandemic at six European Hospitals:
Germany: Charite Universitaetsmedizin Berlin (3 sites, total 135
patients, DS1) [19,20]; Spain: Hospital Universitario de Valme, Sevilla
(total 115 patients, first part of DS2), Hospital Universitario San Ceci-
lio, Granada (total 18 patients, second part of DS2) and Switzerland:
Kantonsspital Baden AG, Baden (total 20 patients, third part of DS2).
All patients with COVID-19, who provided informed consent and
were 18 years or older were included. Whole-blood samples, buffy
coats, or peripheral blood mononuclear cells (PBMCs) were collected
from all patients for deoxyribonucleic acid (DNA) extraction during
routine diagnostic venipuncture. In addition to clinical and laboratory
data, we had access to first-measured viral load data for the cohort
from Germany (based on RT-PCR cycle threshold) [21].TaggedEnd

TaggedPWe used requirement for intensive care unit (ICU) admission and
intubation as categories for HLA analysis and standard reference
range for troponin T hs (<14 ng/l) to define troponin elevation. Acute
cardiac injury was defined as elevation of troponin T hs (>14 ng/l)
without obvious signs for acute coronary syndrome. We directly used
the troponin T hs levels to test for association. Troponin T hs levels
were available for 66 patients in whom the value was determined as
part of clinical routine, when indicated. Finally, we tested if the iden-
tified risk allele was associated with viral load. Dr. habil. January Wei-
ner, PD Dr. med. Bettina Heidecker and Mr. Phillip Suwalski had full
access to the data.TaggedEnd

TaggedPOur protocol included blood samples obtained during routine,
clinically indicated venipuncture, which were then frozen at �80 °C
TaggedEndTaggedPfor subsequent DNA extraction and sequencing. A minimal set of dei-
dentified clinical data was collected to protect data privacy. At Char-
ite Universitaetsmedizin Berlin procedures were performed within
the framework of the Pa-COVID-19 protocol [19].TaggedEnd

TaggedPGiven the exceptional situation of the pandemic and the interna-
tional character of this study, there were differences amongst local
ethics committees in consent procedures [8]. At each center, written
informed consent was obtained from patients or representatives
when possible, sometimes retrospectively if the patient was not able
to give consent at the moment of sample collection. TaggedEnd

TaggedPThis study was approved by the ethics committee of Charite Uni-
versitaetsmedizin Berlin, Germany (EA2/066/20), the Ethics Com-
mittee Nordwest- und Zentralschweiz, Basel, Switzerland
(2020�00,952), the Ethics Committee of the Hospital Universitario
de Valme, Sevilla Spain (1346-N-16), the Comit�e Ético de Inves-
tigaci�on (CEIM/CEI) Provincial de Granada (2577-N-20), and the
Ethics Committee at the University of California, San Francisco, IRB
protocol number 20�30,497. TaggedEnd

TaggedPData sets differ in the depth of clinical annotation and sites used
different criteria, e.g. for admitting patients to the ICU. The body-
mass index (BMI) was not available in the cohort from Sevilla. TaggedEnd

TaggedH22.2. DNA extraction, HLA sequencing, and quality control TaggedEnd

TaggedP2.2.1. DNA extraction TaggedEnd
TaggedPDNA was extracted either manually using the Quick-DNATM Mini-

prep Plus Kit (Zymogen, number D4068) or automatically on a Roche
LC2 robot according to the manufacturer’s instructions. On the robot
The MagNA Pure LC DNA Isolation Kit - Large Volume (Roche, number
03,310,515,001) was used. DNA concentration was measured using
Nanodrop (Thermo Fisher) for the Zymogen extracted samples and
QubitTM dsDNA HS Assay Kit (Thermo Fisher, number Q32851) for
robot-extracted samples. TaggedEnd

TaggedH22.3. HLA typing by Pacbio SMRT sequencing, PCR amplification of full-
length HLA genes TaggedEnd

TaggedPAliquots of patient genomic DNA samples were diluted to the
same concentrations in 96-well plates. To meet the challenges of a
high-throughput project, further pipetting steps were performed
with multichannel pipettes or on the epMotion 5075 pipetting robot
(Eppendorf). TaggedEnd

TaggedPFor each patient sample, eleven HLA genes were amplified using
NGSgo�-AmpX v2 HLAGeneSuite kit (#7371,662, GenDx). According
to the design of this protocol, amplicons cover all class I HLA genes
(HLA-A, -B, -C) and the most relevant parts of the class II HLA genes
(HLA-DRB* 1, -DRB* 3/4/5, -DQB* 1, -DPA* 1, -DPB* 1, -DQA* 1), which
have very long introns. TaggedEnd

TaggedPAmplification was performed according to the manufacturer’s
instructions (https://www.gendx.com/product_line/ngsgo-ampx-v2).
To improve PCR efficiency, the starting amount of template DNA was
increased from 45 ng to 80 ng per reaction for loci HLA-DRB* 1,
-DQB* 1, -DPA* 1, -DPB* 1 and �DQA* 1. In addition, elongation time
for HLA-DQA* 1 was extended to 5 min. Nevertheless, assay perfor-
mance differed between the loci. Amplification was typically unprob-
lematic for HLA-A, -B, -C, and DQA1 genes and less consistent in
terms of output for other loci. TaggedEnd

TaggedPAmplicons were purified with Agencourt AMPure XP beads
(#A63881, Beckman Coulter). Quality and quantity of purified PCR
amplicons were checked using D5000 Screen Tape assay
(#5067�5593, Agilent) on TapeStation (Agilent) and Qubit dsDNA
assay kit (#33,120, Thermofisher) on FLUOStar Omega microplate
reader (BMG Labtech), respectively. Confirmed amplicons were equi-
molar combined into two� for HLA class I and HLA class II � pools
per patient. TaggedEnd
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TaggedH22.4. HLA SMRTbell library preparation and sequencing TaggedEnd

TaggedPSingle molecule real-time (SMRT) sequencing libraries were pre-
pared according to the manufacturer’s protocol (Procedure & Checklist
-Preparing SMRTbellTM Libraries using PacBio� Barcoded Adapters for
Multiplex SMRT� Sequencing PacBio�). Barcoded Adapters were used
to label patient amplicon pools. Up to 72 amplicon pools were combined
per HLA class I and HLA class II library. Libraries were validated using
12,000 DNA Assay (#50,697�1508, Agilent) on Agilent Bioanalyzer and
quantified using Qubit dsDNA assay on Qubit Fluorometer.TaggedEnd

TaggedPLibraries were loaded on SMRT cells and sequenced on a Sequel
instrument (Pacific Biosciences) using 10 h / SMRT Cell 1 M sequenc-
ing runtime. Loading setup and run design was planned with
SMRTLink v9.0 (https://www.pacb.com/wp-content/uploads/Quick-
Reference-Card-Loading-and-Pre-Extension-Recommendations-for-
the-Sequel-System.pdf). In total, HLA genes amplicons for 229
patients were sequenced on 12 SMRT cells. TaggedEnd

TaggedPCircular consensus sequence (CCS) data analysis and demultiplex-
ing was performed within SMRT Link 9.0.0.92188 GUI.TaggedEnd

TaggedH22.5. HLA typing of RNA-Seq data (data set 3, DS 3)TaggedEnd

TaggedPPublicly available data were downloaded from the Gene Expres-
sion Omnibus (GEO identifier GSE157103). All RNA-Seq data were
analysed using the arcasHLA package, version 0.2.0 [22].TaggedEnd

TaggedPFinally, correlation analysis was performed to compare HLA allele
frequencies between all three data sets (DS1, DS2, DS3). TaggedEnd

TaggedP2.5.1. Exome sequencing TaggedEnd
TaggedPGenomic DNAs were quantified by Quant-iTTM dsDNA Assay Kit,

broad range (ThermoFisher Scientific) with a FLUOStar Omega micro-
plate reader (BMG Labtech). Illumina-compatible libraries were pre-
pared on a Bravo NGS Workstation Option B according to the manual
KAPA HyperPrep/HyperPlus Automated Workflow for Agilent Bravo B
NGS Instructions for Use, v3.0 (Roche Sequencing) using the KAPA
Hyper Plus workflow with the reagents included in the KAPA Hyper
Plus kit (Roche Sequencing). In short, 100 ng of genomic DNA was frag-
mented at 37 °C in an Eppendorf Mastercycler Plus S for 25 min with
subsequent end repair. Following end repair, fragments were ligated to
the KAPA Universal Adapter (Roche Sequencing) and purified by KAPA
HyperPure Beads (Roche Sequencing). Purified libraries were amplified
by 6 cycles of PCR utilizing the KAPA UDI Primer Mix* (Roche Sequenc-
ing) and again purified using KAPA HyperPure Beads*. Amplified sample
library concentration and size distribution was determined by Qubit
dsDNA HS assay kit (ThermoFisher Scientific) with a QubitTM 3 Fluorom-
eter (ThermoFisher Scientific) and D5000 ScreenTape assay (Agilent
Technologies) with a 4200 TapeStation system (Agilent Technologies).
Eight amplified sample libraries were pooled prior to enrichment. For
this purpose, 187,5 ng of each library was pooled into one well and the
final volume was adjusted to 45 ml with nuclease-free water as desig-
nated by themanual KAPA HyperCapWorkflow v3.0 (https://pim-eservi
ces.roche.com/eLD/web/pi/en/home) and all further steps were
performed following the recommendations of that manual.TaggedEnd

TaggedPThese included hybridization of the amplified sample library pool to
KAPA HyperExome Probes (Roche Sequencing) washing and recovery of
the capturedmultiplex sample library, as well as amplification and puri-
fication of the enriched multiplex sample library. Final library pools
were quantified by Qubit dsDNA HS assay kit with a QubitTM 3 Fluorom-
eter and correct size distribution was validated by High Sensitivity
D5000 ScreenTape assay (Agilent Technologies) with a 4200 TapeSta-
tion system. A total of 12 multiplex enriched sample libraries were
pooled equimolar utilizing the NextGen HyperCap Pooling Guide and
Calculator template (Roche Sequencing) and diluted to 1.3 nM. Each
final pool was sequenced on two lanes of an S4 FlowCell (Illumina, Inc.)
for 2£ 151 cycles on a NovaSeq 6000 system (Illumina, Inc.)TaggedEnd

TaggedP*For Research Use Only. Not for use in diagnostic procedures. TaggedEnd
TaggedP2.5.2. Exome analysis TaggedEnd
TaggedPExome data was aligned using BWA-MEM to the reference

GRCh37 (hs357d.fa) [53]. Samples were identified as KIR2DS4f-posi-
tive [54,55] by screening the GATK HaplotypeCaller v3.7 [23] variant
calls for presence of an insertion of CCCGGAGCTCCTATGACATGTA in
exon 4 of KIR2DS4. For a more detailed description of the analysis
please see methods in the data supplement. TaggedEnd

TaggedPPrincipal components analysis based on SNP genotyping from the
obtained exome data was performed with the R package SNPrelate v.
1.26.0 [24] as described below. TaggedEnd

TaggedH22.6. Statistical analysis TaggedEnd

TaggedP2.6.1. Composite disease score TaggedEnd
TaggedPDS1 consisted of patients of the Charit�e cohort. For patients in

DS1, we defined a composite score, including troponin T hs levels,
death, ICU and intubation status (binned in five categories). Then, we
used multiple correspondence analysis (MCA; R package FactoMineR
[25], v. 2.3) to obtain a score derived from the selected variables,
defined as the first dimension of the individual coordinates. TaggedEnd

TaggedP2.6.2. HLA association testing TaggedEnd
TaggedPThe dominant model of association (h/h and h/- vs -/-) with the

selected response variables was tested using a generalized linear
model as implemented in the HIBAG R package [26]. For DS1 (Ger-
man cohort), sex, age, and reported region of origin were used as
covariates; for DS2, sex and age, and for DS3, sex, age, and reported
ethnicity. In an additional analysis, BMI was used as a covariate. For
categorical variables such as ICU status, logistic regression was used.
In the analysis, we filtered alleles by minor allele frequency (MAF),
i.e. considered alleles with frequency in all data sets above 5% and
present in at least five individuals. Altogether, 35 alleles from 10 loci
were tested for association (detailed information about tested alleles
in Supplemental Table 2). The response variables differed between
the three data sets analysed. DS 1 (Germany) included the following
continuous variables: Troponin T hs (logarithmitized), maximum
WHO ordinal scale for clinical improvement score, as well as categor-
ical: Troponin T hs elevation above 14 ng/l, ICU, and intubation status.
For DS 2 and 3 (DS2: Switzerland/Spain and DS3: US, respectively) we
tested only for association with ICU and intubation status. For intuba-
tion and ICU status, we tested the association with alleles in all three
data sets separately and then integrated the results using meta-anal-
ysis (see below). Troponin T (as continuous or categorical variable)
and WHO score were only tested in DS1 and the results were cor-
rected for multiple testing using the Bonferroni correction. TaggedEnd

TaggedPIn addition, as a follow-up analysis, we tested for an association
between viral load and alleles in DS1.TaggedEnd

TaggedH22.7. Meta-analysis of association results TaggedEnd

TaggedPThe results of association tests in DS1-�3 were next subjected to a
meta-analysis. Given that only intubation status and ICU status were
present in all three data sets, our primary analysis was focused on
these two response variables. The log-odds ratios (beta-coefficients
from the logistic regression models) were combined, and p-values for
each allele were obtained using a weighted Z-test [27] (weight equal
to the reciprocal of standard error). Family-wise error rates (p-values
corrected for multiple comparisons) were derived using the Bonfer-
roni method over all meta-analysis results. TaggedEnd

TaggedH22.8. Genetic structure of DS1- DS3 TaggedEnd

TaggedPTo test presence of genetic subpopulations in DS 1 and 3, we lev-
eraged exome derived gene variants. We used the R package SNPre-
late, version 1.26.0, to process the VCF file and perform principal
components (PC) analyses. Next, we tested whether any of the PCs
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TaggedEndTaggedPwere associated with the presence / absence of the identified risk
allele using a t-test. Since exome typing was not available for roughly
half of the samples in DS1 and for no samples in DS3, we have used
self-reported region of origin for DS1 and ethnicity for DS3 as covari-
ates in the linear regression models. In addition, we tested whether
removing potential outliers based on exome data-derived PC analysis
and including the PCs as covariates in the models of DS1 and DS2 has
a major impact on the results of the meta-analysis. To this end, we
identified outliers using interquartile range method as implemented
in the R function boxplot.stats and removed them (as well as all indi-
viduals with no genetic background information) from DS1 and DS2.
Next, we recalculated the PC analysis using the selected samples only
and repeated the association tests, but now using PC1 and PC2 in lieu
of self-reported region of origin. Finally, we repeated again the meta-
analysis and compared its results with the results of the original anal-
ysis based on all data. TaggedEnd
TaggedP2.9. Association of HLA-C*04:01 with susceptibility to COVID-19 in
external cohort
TaggedEnd

TaggedPRecent reports demonstrated that some genetic risk alleles for
COVID-19 susceptibility are also associated with severity [28]. Studies
that investigate susceptibility to COVID-19 by comparing participants
who are COVID-19 negative vs. positive are generally much larger in
sample size than studies that investigate disease severity in COVID-
19. Therefore, we investigated data derived from studies of suscepti-
bility and severity.TaggedEnd

TaggedPWe hypothesized that HLA-C*04:01 might also be associated with
susceptibility to COVID-19. To test this hypothesis, we used an exter-
nal cohort of 12,139 clients of the genetic testing company Genotek
Ltd (Moscow, Russia). Genotek Ltd is part of the COVID-19 Host
Genetics Initiative (https://www.covid19hg.org/results). All partici-
pants were genotyped using Illumina Infinium Global Screening
Array. The HLA alleles were imputed using HIBAG software [26].
Cases were defined as individuals with self-reported positive COVID-
19 RT-PCR or antibody test. Controls were defined as individuals with
self-reported COVID-19 negative status. TaggedEnd

TaggedPPhenotyping was performed during November 2020— April 2021.
Samples from participants age > 18 years, and BMI >15 and <60 kg/
m2 were included in the final data set. The cohort consisted of 2113
cases and 10,026 controls (51.6% were females; average age
36.4 § 13.5 years). To test the association of HLA-C*04:01 with
COVID-19 susceptibility a logistic regression was fitted with age, sex,
and BMI as covariates. TaggedEnd
TaggedH22.10. Meta-analysis of previous GWAS studies TaggedEnd

TaggedPWe analyzed data from HLA-related studies and GWAS analyses
that investigated COVID-19 susceptibility and severity, including
studies in preprint stage. The list of studies included in the meta-
analysis is provided as a table in supplemental file 2. TaggedEnd

TaggedPIn most GWAS analyses, authors did not impute HLA alleles from
microarray data and report association results for the individual SNPs.
To show that a certain SNP is a tag-SNP for HLA-C*04:01, we calculated
D’, the corresponding normalized coefficient of linkage disequilibrium
and the squared correlation coefficient between pairs of loci (r2). These
linkage disequilibriummetrics were computed using R package genetics
and genotypes from the 1000 Genomes (1KG) Project.TaggedEnd

TaggedPConsortium [29]. HLA-alleles for the 1KG data set were derived
from a study by Abi-Rached and colleagues [30]. To detect the possi-
ble tag-SNPs we calculated linkage disequilibrium-metrics (D’,r2) for
all SNPs from 1KG EUR which are within 500 kb of the HLA-C gene
(provided as a table in supplemental file 3). We find that rs5010528
was presented in the summary statistics and could be used as tag-
SNP for HLA-C*04:01 allele (r2 = 0.966, D’ = 1 in 1KG EUR cohort). To
TaggedEndTaggedPestimate the overall effect, we performed the meta-analysis using R
package meta, assuming the fixed-effect model. TaggedEnd

TaggedH22.11. Role of funding source TaggedEnd

TaggedPThis study was partially funded by Roche Sequencing Solutions,
Inc., which also provided material for exome sequencing and helped
with project coordination and shipment of samples. TaggedEnd

TaggedPRoche Sequencing Solutions, Inc. contributed to study design and
data analysis. The other funding sources had no influence on study
design, data analysis or interpretation. TaggedEnd

TaggedH13. Results TaggedEnd

TaggedH23.1. PatientsTaggedEnd

TaggedPDescriptive data on age, sex, intensive care management, maxi-
mum respiratory support during hospitalization and relevant comor-
bidities (hypertension, coronary artery disease, diabetes) of patients
included in all three data sets are provided in table 1 and supplemen-
tal Table 1. TaggedEnd

TaggedPThe median age was similar in all three data sets, ranging from 57
to 60 years. The Spanish cohort consisted of more women (59%) than
the cohorts from Germany (33%), Switzerland (20%) and the US
(35%). In the Spanish cohort the prevalence of hypertension and dia-
betes was lower, and patients were less likely to have been intubated.
In DS1, the majority of the patients were of European ancestry (81% of
patients who reported ancestry). However, this information was not
available for 43% of the patients. TaggedEnd

TaggedPIn DS3, data on ethnicity was available for the majority of patients.
Patients were classified as being Asian, African American, Hispanic or
Caucasian.TaggedEnd

TaggedPWe found that HLA allele frequencies amongst the three data sets
(DS1, DS2, DS3, supplemental Figure 1 and supplemental Figure 2)
were correlated and no major differences in the frequencies of the
alleles were apparent. TaggedEnd

TaggedH23.2. Association of HLA alleles with disease severity TaggedEnd

TaggedPThe allele HLA-C*04:01 was associated with intubation (adjusted
p-value = 0.0074, Table 2, supplemental file 1) in all 3 data sets using
age, sex and ethnicity as covariates. The calculated odds ratio for
intubation was 3.5 [95% CI 1.9�6.6] while the risk ratio was 1.5 [95%
CI 1.1�2.1]. The OR for the association between HLA-C*04:01 with
intubation when no other covariates were included in the model was
2.9 [1.6�5.2], adjusted p-value = 0.02. TaggedEnd

TaggedPIn the individual data sets, HLA-C*04:01 was associated with a
higher percentage of intubated patients in DS1 (69% vs 35%) and in
DS3 (63% vs 37%), but not in DS2 (7% vs 6%, Fig. 1 and Fig. 2). In total,
out of 127 intubated patients in this study, 38 (30%) carried the allele
HLA-C*04:01, while among the 308 remaining patients, 56 (18%)
were carriers (for 7 patients, the HLA-C locus could not be deter-
mined). TaggedEnd

TaggedPWhen BMI was used as an additional covariate, the adjusted p-
value for the association of HLA-C*04:01 with intubation remained
significant (adjusted p-value = 0.025; supplemental Table 3). After
removing the cohort from Sevilla from the main analysis, the associa-
tion of HLA-C*04:01 with intubation remained significant with an
adjusted p-value = 0.0035 (supplemental Table 4). TaggedEnd

TaggedH23.3. Association of HLA-C*04:01 with COVID-19 severity and genetic
background TaggedEnd

TaggedPOne of the potential error sources of HLA analysis may be that an
allele occurs with a higher frequency in individuals with certain
genetic background and, incidentally, a different profile of the disease

https://www.covid19hg.org/results


TaggedEnd Table 1
Clinical parameters of patients in data set 1, 2, and 3.

Data set 1 Data set 2 Data set 3 Total

Characteristics Germany (n = 135) Spain, Switzerland (n = 153) US (n = 147) All data (n = 435)
Female sex � no. (%) 45 (33) 82 (54) 52 (35) 179 (41)
Median age (IQR) � years 60 (48�71) 57 (44�67) 60 (48�72) 58 (46�71)
Intensive Care Unit � no. (%) 77 (57) 13 (8) 85 (58) 175 (40)
Intubation � no. (%) 56 (41) 10 (7) 61 (41) 127 (29)
Diabetes � no. (%) 36 (27) 13 (10) 54 (37) 127 (29)
Hypertension � no. (%) 72 (54) 23 (17) N.a. 95 (35)
Coronary artery disease � no. (%) 17 (13) 11 (7) 6 (12) 34 (10)
Median BMI (IQR) 27 (23�31) 28 (26�31) 29 (26�34) 29 (24�32)
Death � no. (%) 17 (13) 3 (2) 5 (3) 25 (6)
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TaggedEndTaggedPdue to genetic or socioeconomic factors. For DS1 and DS2, partial
genetic data was available from exome sequencing for 153 out of 302
patients (51%). Rather than excluding all individuals with missing
genetic background information, we sought other means of testing if
genetic background has impact on the association. First, we did a PC
analysis based on SNP variants in the available data (Supplemental
Figure 3). Next, we tested whether there is any significant difference
in the first four components between individuals who are or are not
treated at the ICU, intubated, as well as difference between carriers of
the HLA C*04:01 allele and patients lacking that allele (Supplemental
Table 5). No significant associations of genetic background were
found. Then, we identified outliers in the PC analysis plot, removed
them and repeated the whole procedure again to detect any further
outliers (Supplemental Figure 4). Finally, we repeated the full meta-
analysis using only those samples from DS1 and DS2 for which
genetic data was available and which were not outliers on the PC
analysis (as determined by the IQR method of detecting outliers).
Then, we calculated the associations between alleles and ICU / intu-
bation status using PC1 and PC2 as covariates and compared the
results of the meta-analysis with the results from the total data set
(Supplemental Figure 5). The calculated effect sizes were highly simi-
lar (Pearson r2 = 0.90 for intubation status and 0.87 for ICU), indicat-
ing that the effect did not depend on the genetic background in DS1
and DS2. Moreover, the HLA-C*04:01 allele remained the allele with
the highest odds ratio (OR) in both meta-analyses. TaggedEnd

TaggedPWhile the majority of patients in DS1 were of European ancestry
(Supplemental Figure 6), the data set from the United States (DS3)
included patients from Asian, African American, Hispanic, and Cauca-
sian ethnicities (Supplemental Figure 7). While such designations can
be used at best as proxies of a genetic background [31], it is known
that among these ethnicities, severity and incidence of COVID-19 as
well as frequencies of alleles vary. Therefore, there was a possibility
that the association between HLA-C*04:01 (known to differ between
various populations) and COVID-19 severity is a statistical artifact in
DS3. The association of HLA-C*04:01 remained significant despite
including ethnicity designation as a covariate for the association test
TaggedEnd Table 2
Top five results for the association of human leukocyte antigen (HLA) alleles w
a significant association (adjusted p-value, p Adjusted) of HLA-C*04:01 with i
analysis, odds ratio from meta-analysis; RR, risk ratio with 95% CI; p-value,
testing using Bonferroni correction.

trait Allele OR DS1 OR DS2 OR DS3

icu HLA_C 04:01 3.4 [1.2�9.8] 0.9 [0.2�3.6] 3.2 [1.1�8
,, DQA1 01:02 0.8 [0.3�1.7] 5.2 [1.5�18.4] 0.6 [0.3�1
,, HLA_C 06:02 0.5 [0.2�1.3] 4.9 [1.1�21.5] 1.5 [0.6�4
,, DRB1 15:01 0.6 [0.2�1.6] 18.7 [2.6�135.9] 0.7 [0.2�2
,, HLA_C 07:02 1.0 [0.4�2.2] 2.3 [0.5�10.1] 0.4 [0.2�0
intub HLA_C 04:01 5.4 [1.9�15.1] 1.5 [0.3�6.9] 3.3 [1.3�8
,, DQA1 01:02 0.7 [0.3�1.5] 3.8 [1.0�15.0] 0.5 [0.2�1
,, DQA1 01:01 2.7 [1.0�7.1] 0.0 [0.0�Inf] 1.6 [0.5�4
,, DQA1 03:01 2.0 [0.7�6.2] 0.7 [0.1�6.1] 2.1 [0.9�5
,, HLA_A 03:01 0.7 [0.3�1.8] 1.6 [0.4�6.9] 4.3 [1.2�1
TaggedEndTaggedPin the DS3. On the level of individual ethnicities, we found the associ-
ation of HLA-C*04:01 with COVID-19 severity to be present in all
groups. Due to low sample size resulting from this subgroup analysis,
this association did not reach a level of significance in any ethnicity
except for Caucasian. However, all patients of African American, His-
panic, and Caucasian ethnicity, who were carriers of HLA- C*04:01
were hospitalized in the ICU, and all African American and Hispanic,
as well as 66% of Caucasian carriers of HLA-C*04:01 were intubated
(Supplemental Figure 7). TaggedEnd

TaggedH23.4. Association of alleles with viral load TaggedEnd

TaggedPFor DS1, first-measured viral load data were available. Notably,
measured viral load was not associated with severity of symptoms
such as ICU/intubation status or troponin T HS levels (Supplementary
Table 6). There were five significant associations of initial viral load
with HLA alleles at p < 0.05, none of which were significant after cor-
rection for false discovery rate, but with at least medium effect size.
The HLA-C*04:01 allele was not significantly associated with viral
load. Given that viral load was not associated with disease severity in
DS1 and that viral load data were not available for DS2 or DS3, we
did not attempt to confirm whether the lack of association between
HLA and viral load in DS1 was mirrored in the two other data sets. TaggedEnd

TaggedH23.5. Meta-analysis of HLA-C*04:01 allele and COVID-19 severity /
susceptibility TaggedEnd

TaggedPAfter having identified HLA-C*04:01 as a risk allele for severe clin-
ical course in COVID-19, we sought to test the hypothesis that it is
also associated with COVID-19 susceptibility. To test this hypothesis,
we analyzed data from the Genotek cohort of 2113 self-reported
COVID-19 positive individuals and 10,026 controls. In the Genotek
cohort, the frequency of HLA-C*04:01 was 13%. An association analy-
sis using logistic regression with age, sex, and BMI as covariates
showed that HLA-C*04:01 significantly increased the risk of infection
with COVID-19 (OR = 1.16, p-value = 0.005).TaggedEnd
ith admission to the intensive care unit (ICU) and intubation. There was
ntubation. OR 1�3, odds ratios (with 95% CI) in data sets 1�3; OR Meta-
p-value from meta-analysis; p Adjusted, p-value corrected for multiple

OR Meta-analysis RR p-value p Adjusted

.8] 2.5 [1.3�4.8] 1.2 [0.9�1.5] 0.0038 0.26

.3] 0.9 [0.6�1.6] 1.1 [0.8�1.4] 0.021 1

.1] 1.2 [0.6�2.2] 1.0 [0.8�1.4] 0.022 1

.1] 1.0 [0.5�1.9] 1.1 [0.8�1.5] 0.032 1

.9] 0.7 [0.4�1.3] 1.1 [0.8�1.4] 0.063 1

.5] 3.5 [1.9�6.6] 1.5 [1.1�2.1] 0.00011 0.0074

.2] 0.8 [0.5�1.3] 1.0 [0.7�1.4] 0.018 1

.7] 2.1 [1.0�4.4] 1.1 [0.8�1.6] 0.039 1

.0] 1.9 [1.0 - 3.6] 1.5 [1.1�2.1] 0.039 1
4.9] 1.4 [0.7�2.7] 0.9 [0.6�1.4] 0.046 1



TaggedEnd TaggedFigure

Fig. 1. Association between alleles and categorical response parameters in data sets, DS 1�3. Each dot represents one allele / response parameter association. Colors correspond to
response parameters in the meta-analysis (intensive care unit, ICU status and intubation status). The Y-axis represents the negative logarithm of the p-value obtained from the logis-
tic regression test. Sizes of dots correspond to the calculated effect size of the associations (log-odds ratios). Dashed vertical line corresponds to the minor allele frequency selection
threshold (0.05). Dashed horizontal line corresponds to p-value of 0.05 (not corrected for multiple testing). TaggedEnd
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TaggedPNext, we studied if HLA-C*04:01 was associated with COVID-
19 susceptibility and severity in previous GWAS and HLA analyses
reported in the literature. We conducted two meta-analyses on
HLA-C*04:01 and COVID-19 severity/susceptibility (Fig. 3). For the
severity meta-analysis we included association results from four
cohorts with 7796 cases and 875,694 controls in total. The overall
effect for HLA-C*04:01 on COVID-19 severity was OR = 1.1 (95%-
CI: 1.04�1.17, p-value = 5.8e-04). The leading variant,
rs143334143 (CCHCR1), was significantly associated with COVID-
19 severity (OR = 1.9, p-value = 8.8 £ 10�18). This variant is in
linkage disequilibrium with HLA-C*04:01 (r2 = 0.77, D’ = 0.97) in
the 1KG European cohort. TaggedEnd

TaggedPFor the susceptibility meta-analysis, we included association
results from four cohorts with 39,044 cases and 1,668,157 controls in
total. The overall effect for HLA-C*04:01 on COVID-19 susceptibility
was OR = 1.06 (95%-CI: 1.04�1.09, p-value = 1.4e-05). However, in
this meta-analysis significant heterogeneity between studies was
observed (I2 = 78%, t2 = 0.0115, p-value = 3.2e-03). TaggedEnd
TaggedEnd TaggedFigure

Fig. 2. Associations of HLA-C*04:01 with intensive care unit (ICU) and intubation status. E
C*04:01 status: Present) and patients who did not carry the allele (HLA C*04:01 status: Absen
patients. Data sets, DS 1�3.TaggedEnd
TaggedH23.6. Affinity analysis TaggedEnd

TaggedPA possible explanation for the effect of an HLA allele on disease
severity might be abnormal binding affinity with SARS-CoV-2 pepti-
des. To test that hypothesis, we used a previously described data set
of putative (computed in silico) binding affinities [15]. Following an
approach described by Iturrieta-Zuazo and colleagues [32], we calcu-
lated the number of SARS-CoV-2 peptides, which bind either “tightly”
(at < 50 mM) or “loosely” (at < 500 mM) for each allele. Using this
approach, we discovered that HLA-C*04:01 is among the ten alleles
with the fewest predicted binding SARS-CoV-2 peptides (supplemen-
tal Table 7). Therefore, we sought to systematically test the hypothe-
sis that the putative affinity with SARS-CoV-2 peptides is a correlate
of disease severity. First, for each of the response variables (ICU and
intubation status, troponin T hs levels, composite score) we tested
whether the effect size is correlated with the number of potentially
binding peptides. We included all alleles (not filtered for frequency)
in this comparison. While in all data sets combined there were no
ach panel shows the difference between patients who were carrying the allele (HLA
t). Colors correspond to variable status. The vertical axis shows the absolute number of



TaggedEnd TaggedFigure

Fig. 3. a. Meta-analysis on HLA-C*04:01 and COVID-19 severity.b. Meta-analysis on HLA-C*04:01 and COVID-19 susceptibility.Odds ratios (Effect column) for each variant and the
corresponding 95% confidence intervals (CI) are plotted as horizontal bars with a square in the middle. The size of the square is proportional to the weight of the corresponding
cohort in the meta-analysis. The overall effect for the fixed-effect model is plotted as a diamond and vertical dotted line. For those cohorts where HLA alleles were not studied, we
consider rs5010528 as tag SNP for HLA-C*04:01. Effective sample size (Eff. Sample Size) was calculated as 4/(1/N_cases + 1/N_controls). RAF: risk allele frequency. TaggedEnd
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TaggedEndTaggedPlarge effects in alleles with many potential binding peptides, negative
correlation was only significant in DS3 (Spearman test, p < 0.007,
r = 0.27). TaggedEnd

TaggedPNext, for each patient, we calculated how many SARS-CoV-2 pep-
tides can the type I alleles in that patient potentially bind and tested
whether there is an association between disease severity (using tro-
ponin T hs levels, intubation and ICU status and composite score as
proxies) and that number. However, none of these tests showed a sig-
nificant association in this subgroup analysis. TaggedEnd

TaggedPFurthermore, we tested if HLA-C*04:01 is associated with higher
C-reactive protein (CRP) levels as a surrogate for systemic inflamma-
tion. The differences were significant, (Wilcoxon test, p = 0.021; Sup-
plemental Figure 8; Supplemental Table 8) but the effect was small
(Wilcoxon effect size r = 0.2). CRP was, however, significantly differ-
ent between patients who were treated at the ICU and those who
were not (p < 10�5, r = 0.53), as well as between those who were
intubated and those who were not (p < 10�5; r = 0.6). TaggedEnd

TaggedH23.7. Exome sequencing data TaggedEnd

TaggedPSince polymorphisms in the KIR2DS4 gene in combination with
the HLA-C*04:01 allele have been reported to increase viral load and
lead to severe clinical course in patients with human immunodefi-
ciency virus (HIV) [33], we evaluated if presence of the KIR2DS4f vari-
ant was associated with our outcome variables (e.g. viral load,
intubation). However, no association was identified. A combination
of a KIR2DS4f variant with HLA-C*04:01 was identified in only four
patients, of which only one was homozygous at the KIR2DS4 locus.
This patient had a severe clinical course, was intubated, and had
highly elevated troponin T hs and maximum WHO ordinal scale for
clinical improvement score. TaggedEnd

TaggedH14. Discussion TaggedEnd

TaggedPIn the beginning of the outbreak of the COVID-19 pandemic in
Europe in spring 2020, an international collaboration of European
centers was established to address the question of whether there
were potential genetic host factors associated with severe clinical
course of SARS-CoV-2 infection. Samples were collected in Spain,
TaggedEndTaggedPSwitzerland, and Germany [19] and subsequently processed in Ger-
many for full-length sequencing of HLA genes. TaggedEnd

TaggedPWe identified HLA-C*04:01 as a potential risk allele, which was
associated with a two-fold increased risk of intubation when present
in the form of at least one allele. This is the first significant descrip-
tion of this HLA allele as a relevant allele for the clinical course. TaggedEnd

TaggedPImportantly these findings were reproduced in an independent
public data set obtained from patients with COVID-19 at Albany Med-
ical Center, in the United States using RNA sequencing [17,18] and a
data set from the University of California, San Francisco, United
States. Using this approach, we demonstrated broad applicability of
our findings and confirmed reproducibility in data gathered through
a distinct method � the analysis of the transcriptome [34]. This is
particularly relevant in the context of regional differences in allele
frequencies [35,36]. In that regard, HLA-B* 46:01 was shown to be
associated with severe clinical course in SARS-CoV in Asia [14]. How-
ever, this allele is very rare in Germany, Spain, Switzerland and the
United States [16]. In line with that, HLA-B* 46:01 was not repre-
sented in our European data set. In a correlation analysis we demon-
strated that the frequencies of most alleles of the German cohort
were similar to those in the cohorts from Switzerland, Spain, and the
United States. TaggedEnd

TaggedPHowever, an observation that warrants mention is that the
Spanish population in DS2 consisted of a larger percentage of
women (63% in Spain vs 33% in Germany). Importantly, DS2 was
a representative sample of patients in Sevilla, where our recruit-
ing center collected samples consecutively at the peak of the pan-
demic and by now has seen a similar proportion of women (60%)
in all patients, who have since been recruited (n = 842). While
our analysis did not reveal any association of specific HLA alleles
with sex (supplemental Table 8), it has been shown that female
sex is associated with better outcomes [37]. This effect of sex
may have masked the effect of HLA-C*04:01 validation in DS 2. A
higher percentage of women in this cohort may have contributed
to the low rate of patients who required treatment in the inten-
sive care unit. Future research is necessary to investigate this
possibility. TaggedEnd

TaggedPThe reported OR for HLA-C*04:01 were high with very broad CI
(OR in meta-analysis 3.5 [1.9�6.6]). The reason for this was inclusion
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TaggedEndTaggedPof several covariates (age, sex, ethnicity) in relation with a relatively
modest number of samples in each data set. TaggedEnd

TaggedPIn addition to the robust association between HLA-C*04:01 and
intubation, previous literature suggests a potential biological role of
HLA-C*04:01 in defending viral infections. Specifically, it has been
shown that in patients infected with the HIV, HLA-C*04:01 in combi-
nation with polymorphisms in the KIR2DS4 gene is associated with
high viral load and severe clinical course [33]. Moreover, HLA-
C*04:01 has been reported to occur at a higher frequency in COVID-
19 patients than in the healthy population [38]. TaggedEnd

TaggedPThe allele frequency of HLA-C*04:01 is approximately 13% in
Germany overall and 19% in German residents of Turkish origin
[16], suggesting that the presented findings may impact a relevant
fraction of the German population. Similar numbers are found in
Switzerland, where the allele frequency is about 16% and Spain,
where an allele frequency of 15% has been reported [16]. Notably,
the difference in HLA-C*04:01 frequency in populations with differ-
ent genetic background may suggest the presence of a potential
confounder such as that the observed effect may be due to a combi-
nation of differences in allele frequencies and socioeconomic factors
influencing the disease severity. However, despite testing this
hypothesis with multiple approaches, we were unable to find con-
firmation of this effect. Association between HLA-C*04:01 and dis-
ease severity did not change when genetic background or ethnicity
were used as covariates, or when the effect was calculated for a
genetically homogeneous population. TaggedEnd

TaggedPSince HLA-C*04:01 is associated with viral load in HIV, we sought
to evaluate if this was true for SARS-CoV-2. We did not find any asso-
ciation of HLA-C*04:01 with first-measured viral load of patients dur-
ing their hospitalization. In addition, the first-measured viral load in
intubated patients did not differ from patients with mild disease. We
support the common hypothesis that by the time the patients present
with severe respiratory failure, the virus may have been already par-
tially cleared from the body in some of them and the disease may be
maintained through inflammatory or autoimmune mechanisms simi-
lar to other viral respiratory illnesses [39]. The dynamics of viral load
in SARS-CoV 2 have been reported comprehensively in the literature
[40�42]. It may be beneficial to test for HLA-C*04:01 in clinical trials
to identify from which drug class this high-risk population benefits
most. TaggedEnd

TaggedPIt is also possible that viral load of patients with HLA-C*04:01 may
have been higher during the very first days of infection [43], but since
most patients only become symptomatic after approximately a week
[42,44,45], this time window may have been missed in some patients
of our cohort to see a potential relationship of HLA-C*04:01 and viral
loads measured during early infection. In general, there was no asso-
ciation of any specific HLA allele with first-measured viral load in our
cohort. TaggedEnd

TaggedPExome sequencing revealed a combination of a KIR2DS4f variant
with HLA-C*04:01 in only four patients. One of those patients was
homozygous at the KIR2DS4 locus and had a severe clinical course.
While these findings are interesting, the small number of cases pre-
clude drawing meaningful conclusions. TaggedEnd

TaggedPNotably, HLA affinity analysis revealed that HLA-C*04:01 binding
affinity with SARS-CoV-2 peptides was amongst the ten lowest HLA
alleles (supplemental Table 7). Delayed immune response due to low
HLA binding affinity may be one potential biological explanation for
the severe clinical course observed in patients with HLA-C*04:01. TaggedEnd

TaggedPAlternatively, HLA-C*04:01 may have led to worse outcomes by
predisposing patients to a more severe inflammatory state. To test
that, we evaluated for a potential association of HLA-C*04:01 with
CRP serum levels. Indeed, CRP levels were higher in carriers of HLA-
C*04:01 (p = 0.02, supplemental Figure 8). CRP correlated with the
risk of intubation, as shown in prior studies [46,47]. TaggedEnd

TaggedPThe number of samples in our study was relatively small. To avoid
the detrimental effects of small sample size on the statistical power,
TaggedEndTaggedPwe have limited our study only to alleles filtered by MAF, resulting in
35 alleles tested for 2 phenotypes (ICU and intubation status) in all
three data sets, and three additional phenotypes in DS1 only. Further-
more, we have included several different cohorts and compared our
results with publicly available data sets. Nonetheless, small sample
size might result in overestimated effect sizes. This could be clearly
seen when comparing models including covariates (such as sex, and
ethnicity) and models without such covariates.TaggedEnd

TaggedPWe found significant association of the HLA-C*04:01 allele with
COVID-19 susceptibility in the independent cohort. Moreover, we
conducted two meta-analyses to combine the association results of
HLA-C*04:01 or linked SNPs with COVID-19 severity and susceptibil-
ity. In these analyses, HLA-C*04:01 was significantly associated with
COVID-19 severity and susceptibility. It should be noted that some
studies included in the meta-analyses did not detect the association
between HLA-C*04:01 and COVID-19, which can be explained by sev-
eral factors. First, small sample size was a major limiting factor in
some studies, resulting in a design and test combination that was
underpowered for detecting hypothetical effect sizes of interest. Sec-
ond, there were inconsistent definitions of phenotypes between dif-
ferent studies. In many studies the control groups were defined as
“general population” with limited details. HLA alleles have different
frequencies in different populations, which could affect the power of
the studies with heterogeneous cohorts (e.g. COVID-19 Host Genetics
Initiative) and lead to false positive findings. Some studies did not
genotype or impute HLA alleles. Therefore, we had to use the tag
SNPs which are in strong linkage disequilibrium with the considered
HLA allele to include these studies in the meta-analysis. However, a
high variability of linkage disequilibrium between certain SNP and
HLA alleles for various populations in 1KG data can be observed. TaggedEnd

TaggedPThe study by Pairo-Castineira and colleagues included 2244 cases
from the GenOMICC data base who had a confirmed diagnosis of
COVID-19 based on clinical testing andwho required continuous cardio-
respiratory monitoring, and ancestry-matched (5 to 1) controls from the
UK Biobank in the discovery cohort. We found that the leading variant
rs143334143 (CCHCR1) was significantly associated with COVID-19
severity and that this variant is in linkage disequilibrium with HLA-
C*04:01 in the 1KG European cohort. However, in the meta-analysis
[48] this variant was removed from the final results due to high hetero-
geneity (mainly driven by the GenOMICC cohort). The possible reasons
of such heterogeneity include:TaggedEnd

TaggedP1) Different definitions of the controls (population control, PCR
negative controls etc.); 2) various ancestry of the cohorts; 3) small
sample sizes of certain studies. TaggedEnd

TaggedPSome other SNPs which are in the same linkage disequilibrium-
block with rs143334143 and HLA-C*04:01 did not demonstrate a
similar effect. The different analysis method of cases and controls in
this study might explain that mentioned difference and therefore we
opted for not including this study into the meta-analysis. TaggedEnd

TaggedPOur study is an important addition to prior HLA research in the field
of COVID-19 that provided cumulative evidence for a potential predis-
posing susceptibility of HLA alleles for infection with SARS-CoV-2. It has
been shown that specific HLA alleles were more common in patients
infected with SARS-CoV-2 as compared to healthy individuals (e.g. HLA-
DRB1* 15:01, HLA-DQB1*06:02, HLA-DRB1£08, HLA-C*04:01) and it
was extrapolated that these alleles may predispose to infection
[38,49�51]. It is not surprising that some of these alleles differed from
ours, as we identified a genetic factor specifically for severe clinical
course amongst patients with COVID-19, while other groups compared
healthy versus diseased. A recent GWAS study identified blood group A
as a major risk factor for COVID-19, but did not detect associations of
the classical HLA loci with either COVID-19 infection or disease severity
[8]. That study used target short-read sequencing of HLA regions for a
sub-cohort and investigated association with HLA-C:04 only on a 2-digit
rather than on the 4-digit level used in our study. Both factors may con-
tribute to a reduced power that made it impossible to detect the
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TaggedEndTaggedPassociation that our approach finds supported in three data sets from
different studies and in different populations.TaggedEnd

TaggedPIn addition to host factors, it has been shown that genetic factors
of the virus may affect affinity of host HLA to viral structures. In that
regard, de Sousa and colleagues have shown that a single mutation in
the wild type sequence of SARS-CoV-2 could affect peptide binding of
the virus to HLA Class II alleles [52].TaggedEnd

TaggedPIn summary, we applied full-length HLA sequencing to patients
with COVID-19 to enable identification of HLA alleles with high preci-
sion in a large international data set and validated our findings suc-
cessfully in an independent cohort. We used analysis of clinical and
laboratory parameters, viral load data, and whole exome sequencing
to evaluate biological plausibility. TaggedEnd

TaggedPA limitation of this study was that in order to promptly respond to
the COVID-19 pandemic with an international multi-center study,
even patients with limited metadata were enrolled in the study.
However, risk factors and clinical outcomes that we considered most
relevant based on prior literature were collected and analyzed for all
patients included in our cohorts. TaggedEnd

TaggedPReproducibility of our data in large GWAS analyses supports our
findings despite this limitation. TaggedEnd

TaggedPFurthermore, it warrants mention that any study recruiting patients
from a given clinical center (such as our center in Berlin) will be some-
what biased based on its patient selection � the Berlin population will
not be representative for all of Germany or Europe, and the DS3 popula-
tions are not likely to be representative for all of US. However, we evalu-
ated whether allele frequencies are similar to the allele frequencies
reported based on larger population studies. Furthermore, we tested
our findings in multiple international data sets and were able to repli-
cate our findings, suggesting broad applicability of our results.TaggedEnd

TaggedPLarger cohorts with consistent pheno typing are required to draw
more precise estimates about effect-sizes for accurate translation
into further research and clinical care. TaggedEnd
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