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Abstract 

Index systems are central to our everyday and intellectual lives.  
Their ubiquity and diversity make them an important class of 
cognitive artifacts, the study of which has implications for our 
understanding of representational systems in general.  This pa-
per builds schema-theoretic network models of the nature of 
the memory structures, that underpin the interpretation of in-
dexing systems. We identify four common classes of index 
systems.  Using Representation Interpretation Structure The-
ory, we explain how the four basic classes can be responsible 
for the substantial diversity among index systems.   

Keywords: representational systems; index systems; interpre-
tation; schema networks; numeration systems; cognitive arte-
facts 

Introduction 
We inhabit informational environments that are richly popu-
lated with diverse species of representational systems.  Re-
search investigating how representational systems support 
thinking and learning is well establish (e.g., Glasgow, Nara-
yanan & Chandrasekaran, 1995; the Diagrams Conference 
series, e.g., Giardino et al., 2022).  Work on reasoning with 
particular classes of representations (e.g., Cleveland, 1985; 
Shah, Mayer & Hegarty, 1999) and general properties of rep-
resentations (Kirsh, 2010; Shimojima, 2015) are common 
foci for such research. 

The focus here is a on a class of cognitive artifacts that have 
been rather neglected by studies of representational systems 
– indexing systems.  Just a little reflection reveals that they 
are ubiquitous and suffuse our daily and intellectual lives.  
Table 1 presents a small selection of index systems.  (The 
four-way classification is explained in Section 2.)  Innumer-
able others could have been included, not in the least because 
they are legion in specialist technical domains.  They are cer-
tainly diverse.  The general function of index systems is to 
support the processing of information about instances (indi-
viduals, cases, datapoints, etc.).  They are used to identify, 
characterize, arrange and retrieve instances.  Although the 
cognition of some index systems has been examined, includ-
ing numeration systems (Zhang & Norman, 1994b; 
Chrisomalis, 2020) and book subject indexes (Collison, 
1972; Farrow, 1991), it seems that a general systematic ac-
count of the cognitive nature of indexing systems in general 
is yet to be given.  So, there are two obvious questions that 
should be addressed in preliminary studies of the general na-
ture of index systems.   

(1) What are the common classes of index systems, in gen-
eral?  It appears likely that a small number of basic forms of 
indexing systems exist.  We likely acquire them early during 
education, because we (adults) are readily able to adopt index 
systems that are novel to us without substantial training, and 
often with no explicit explanation.  For instance, when we 
first use a new catalogue, website, appliance or other source 
of rich no-verbal information, we do not expect to find a spe-
cial explanatory page on the to-be-encountered index sys-
tems.  As anticipated by the organization of Table 1, our claim 
is that there are four such underlying classes: metric indexes, 
taxonomic codes, triangulational coordinate systems, and 
mereological coordinate systems.  These will be introduced 
in Section 2.  

(2) If there are just a few basic forms, how should we ex-
plain the substantial diversity of specific types of index sys-
tems?  This question will be addressed by building theoretical 
models to show how each of the basic forms provides a space 
of possible designs.   

Theoretical modelling building is an established approach 
to the study of the nature of representational systems in rea-
soning and problem solving in cognitive science.  Various 
methods are common, including: computational modelling 
(e.g., Larkin & Simon, 1978; Tabachneck-Schijf, Leonardo 
& Simon, 1997; Cheng, 1996; Peebles & Cheng, 2003; 
Kunda, McGreggor, & Goel, 2013); diagramming network 
models (e.g., Pinker, 1990); formulating dimensional frame-
works (e.g., Zhang & Norman,1994a, 1994b; Zhang, 1996); 
and, of course, expressing models verbally (e.g., Carpenter & 
Shah,1998).   

To examine the diversity of index systems we adopt Rep-
resentational Interpretive Structure Theory, RIST, (Cheng, 
2020; Cheng, Stockdill, Garcia Garcia, Raggi & Jamnik, 
2022; Stockdill, Garcia Garcia, Cheng, Raggi & Jamnik, 
2022; Cheng, Garcia Garcia, Raggi & Jamnik, 2024).  RIST 
is selected for three reasons.  First, it is a schema-based theory 
that allows models of memory structures to be specified ac-
cording to a set of theoretical assumptions tailored to repre-
sentational systems.  Second, it is accompanied by a graph-
ical notation (RIS-Notation, RISN) that provides a rigorous 
operationalization of the theory, so the models conform to the 
theoretical assumptions of RIST.  Third, the approach in-
cludes a method for building models of interpretations in a 
fully featured web-browser tool (RISE) for constructing and 
Editing RISN models.  Section 3 summarises RIST, RISN 
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and RISE.  Following it, Section 4 presents and examines the 
models for each of the four classes of indexing systems.   

Index systems 
The first question of this paper asks: what are the basic un-
derlying forms of index systems?  We propose four forms: (a) 
metric indexes, (b) taxonomic codes, (c) mereological coor-
dinate systems, and (d) triangulational coordinate systems.  
Examples of each of the systems a given in Table 1.   

Diagrams of the informational structure of the four types 
of indexing systems are shown in Figure 1.  The labels in the 
leaf node boxes are instances that are indexed.  The interme-
diate nodes are properties, classes or values that distinguish 
instances.  Paths from the domain to the leaves encode the 
structure of indexes. 

Metric indexes are the simplest.  They use a single property 
to differentiate a class of instances.  In Figure 1a, node N 
stands for the property. Examples are given in Table 1a. 

Instances in taxonomic codes are characterized by a suc-
cession of properties that are organized in levels within a tree-
like structure, as depicted in Figure 1b.  Importantly for this 
indexing system, the properties at the same level in the tree 
include distinct sub-properties for each superordinate ele-
ment (in Figure 1b, Arabic versus Roman numerals).  In other 
words, each level includes disjoint subclasses and the paths 

down the tree do not overlap.  A path from the root to a leaf 
gives the code for an instance corresponding to the leaf.  Ex-
amples are given in Table 1b. 

Triangulational coordinate systems are defined by at least 
two properties that all contribute values to instances by a pro-
cess of triangulation (Figure 1c).  This class of indexes is 
similar to the mereological system, but its properties do not 
have a consistent order conceptually. It was previously iden-
tified by Stockdill et al. (2022) and called coordinate systems, 
and they defined two types: explicit and implicit (triangula-
tional) coordinate systems.  In an explicit system one 

Table 1.  Four basic forms of index systems. 
 

(a) Metric indexes1 
N-N: Croquet set – colours of ball match to colour of mallets. 
N-O: Alphabetic lists; computer program line numbers; letters 

indexing this list (explained below); book subject indexes 
(Collison, 1972). 

N-I: Student registration numbers. 
O-O: Assignments grades (A+ to F); UK degree classes (1st, 

2.1, 2.2, 3rd, Pass); book content pages. 
O-N: Manual car gearstick/stick shift. 
O-I: Numbered sections of this paper. 
I-I: Student assignment % marks; thermometer scale. 
R-R: Pie chart; dial timers; tape measures and rulers; water 

faucet/tap (rotary); gas/accelerator pedal. 
I-I*2+: Ancient Greek numeration systems (e.g., 𝜎𝜅𝛽	= 222) 

(Zhang & Norman, 1994b); sum of two or more dice.2 
 

(b) Taxonomic codes 
• Zoological trinomial nomenclature: genus, species, 

subspecies; e.g., Eastern low land gorilla – Gorilla 
beringei graueri; Cross river gorilla – Gorilla gorilla 
diehli; Western lowland gorilla – Gorilla gorilla go-
rilla. 

• Academic subject codes, e.g.: Library of Congress and 
Dewey Decimal Classifications; APA PsycInfo Classi-
fication Categories and Codes (e.g., 2300 Human expt. 
psychology contains 2340 Cognitive processing).   

• Computer navigation: breadcrumb trails (e.g.; “Home> 
Contacts>Alex”); column format in macOS Finder.  

• Traditional Chinese names, comprising family, genera-
tion and given names (Kałużyńska, 2015). 

(c) Triangulational coordinate systems3 
• Line graphs (2+); bar charts (2+), tables (2+); maps globes, 

astronomical planispheres (2); traffic lights (3) 
• Chess, checkers/drafts and Go boards (2); crossword puzzle 

grid (2); playing cards (3). 
• Airplane cockpit joystick (2); WIMP-style interface window 

scrollbars (2); domestic mixer faucet/tap (2); foot pedals of 
a manual/stick shift car (3). 

• Car registration plates (UK: location, year, item) (3); ISBNs 
(4); the list of references below (4+). 
 

(d) Mereological coordinate systems3 
• Hindu-Arabic number place value (>1). 
• Hindu-Arabic numeration system overall structure 

(≥2) (Zhang & Norman, 1994b, Chrisomalis, 2020). 
• Multi-part alphanumeric lists (>1).  
• Clocks and dates (≥2). 
• Office room numbers (e.g., building, floor, room) (3). 

Street addresses (≥3), ZIP codes (3), UK Postal codes 
(4, typically). 

1 The letter pair codes are quantity scales of the concept and graphic object: Nominal, Ordinal, Interval, Ratio.  
2 I-I*2+ means the one interval scale for the concept is mapped to two or more interval scale graphic objects.   
3 The number in parentheses is the number of properties or R-dimensions.   

 
 

Figure 1.  Informational structure of the indexing systems. 
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property specifically identifies a set of instances to interpret 
as datapoints whose other property values are to be deter-
mined by the coordinate system.  Examples are given in Table 
1c. 

Mereological coordinate systems are defined by: (a) an or-
dering of properties across levels; (b) elements at one level 
are considered as parts of the element at its superordinate 
level; (c) at each level there is a single shared sub-property or 
class, as depicted by the shared (grey) paths in Figure 1d.  
They differ from taxonomic codes in that elements are con-
stituent parts, rather than being members of a class, and at 
each level they are a property of entities, rather than classes 
of disjoint entities.  Examples are given in Table 1d. 

The four classes of index systems are clearly distinct.  No 
claim is made that the four are exhaustive, but from the ex-
amples in Table 1, it is clear that the scope of the four is sub-
stantial.  The examples also emphasise the diversity of the 
different types of systems within each of the classes.  That 
leads us to the second question of how to explain the diver-
sity. But first, Representation Interpretive Structure Theory is 
summarised.   

Theory, Notation and Editor 
Representational Interpretive Structure Theory, RIST, was 
proposed by Cheng (2020) and colleagues (Cheng et al., 
2022, 2024; Stockdill et al., 2022; Cheng at al., 2024) as an 
approach to understanding the interpretation of representa-
tions and representational systems.  It comprises four core 
ideas.   

(1) There is a set of elementary (atomic) memory compo-
nents, schemas, that encode the information associated with 
an interpretation.  All the schemas (i) store information about 
the domain concept being represented and (ii) hold codes for 
the graphic object that represents the concept.  A graphic ob-
ject is any graphic entity (visuospatial properties and rela-
tions, icon, glyphs, etc.).  In contrast with other accounts of 
the nature of representations that focus upon internal mental 
components of representational systems (Palmer, 1978; 
Kosslyn, 1989; Pinker, 1990), RIST claims that the primary 
function of the schemas deployed for the mental process of 
interpreting a representation is to tie information about the 
concepts being represented to information about the graphic 
objects in the external representation that are doing the rep-
resenting (Cheng, 2002).  RIST gives equal status to mental 
concepts and graphical objects and so contrasts with Zhang 
& Norman’s (1994a, 1996) account of the distributed nature 
of representations, which conceptualizes the relation between 
concepts and graphic objects (symbols) hierarchically, with 
the external graphic objects as leaves.   

(2) There are four core types of schemas: Representation, 
R-scheme, R-dimension and R-symbol.  A graphical notation, 
RISNotation (RISN), for building models in RIST has been 
developed (Cheng, 2020).  To introduce the schemas and 
RISN, Figure 2 shows a RISN model for the naming conven-
tion of Airbus airplanes, which is a composite indexing sys-
tem.  Representation schemas – capsule shape – define a do-
main of interest (Airbus airplanes) and identify the display 

for the domain (airplane names).  R-symbols – rounded rec-
tangles – encode fixed value concepts and the graphic objects 
representing them.  RISN models have R-symbols as leaf 
nodes, in our example they are instances (airplane types; e.g., 
A380, A330-800).  The idea of the manufacturer, Airbus, is 
also an R-symbol with “A” as its graphic object.  There are 
also R-symbols for particular families of airplanes, which 
may or may not also be a type of an airplane.  Class R-sym-
bols – dashed rounded rectangles – are used to represent 
multiple R-symbols that are not explicitly enumerated in the 
model.   

R-dimensions – trapeziums – encode concepts that are var-
iables or classes and the graphic structures that allow values 
of the concept to be depicted.  The example in Figure 2 in-
cludes an R-dimension for families of airplanes and R-dimen-
sions for variants of specific families.  Each family has a 
three-digit code graphic object and variants have more ge-
neric alphanumeric strings.  R-dimensions capture the quan-
tity scales for both the concept and graphical object, which 
are recorded on the right of the R-dimension icons by letters 
for Nominal (N), Ordinal (O), Interval (I) and Ratio (R) 
scales. R-schemes – rectangles – encode structures that are 
built from other parts of the representation. Figure 2 uses an 
R-scheme to combine the constant symbol for Airbus, “A”, 
with the alphanumeric codes designating model families, and 
so captures the entire aircraft model number.  

(3) An interpretation of a representation is a network of 
these schemas, which are linked by two types of connectors: 
hierarchy and anchor.  Hierarchy connectors associate two 
schemas with a reification (parent–child) relation, where 
some aspect of the parent concept is inherited by the child; 
for instance, an R-symbol is a value of its parent R-dimen-
sion.  In general terms, the hierarchy links allow RISN net-
works to encode the associations as schemas on the same 
level in a network and to encode specialization or generaliza-
tion of concepts as paths down or up the network, respec-
tively.  Through its hierarchy connectors, the Aircraft fami-
lies R-scheme sets up a structure for all aircraft that prefixes 
“A” to the 3-digit number for the family. 

 
Figure 2.  RISN model components. 
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Anchor connectors are associations between schemas in 
which the child schema establishes a context for new con-
cepts that are not subsumed by the parent schema.  In the ex-
ample, the R-symbols for the A330 and for the A220 families 
spawn new R-dimensions for variants that are unique to each 
of those families.   

(4) The last idea is Idioms (Stockdill et al., 2022).  Idioms 
are certain substructures of RISN models that are common 
across different domains and representations.  The idioms 
serve specific representational functions, such as: filtering or 
specializing concepts through a sequence of R-dimensions; 
combining concepts in a combinatoric manner by selecting 
values from multiple R-dimensions.   

RISE is a web-based editing tool with rich functionality for 
building RISN models, including the automatic checking of 
the syntactic correctness of the network diagrams (Stockdill 
et al., 2022).  All the diagrams of the models in this paper 
were built in RISE.   

Modelling Indexing Systems 
To address the second question about index system diversity, 
RISN models of many indexing systems from each of the four 
classes were built using the RISE tool following the method 
of Stockdill et al. (2022).  Typical models for each class are 
presented and the diversity within a class explained in terms 
of possible variations to the typical model.   

Metric indexes 
Superficially, metric indexes are simple, consisting of a sin-
gle property against which an instance is classified or meas-
ured (Figure 1a).  However, RISN models of metric indexes 
reveals many potential sources for variations.   

To introduce RISN models for metric indexes Figures 3b 
and 3c show two alternative models for the list of people (in-
stances) in Figure 3a.  Both RISN models consist of an R-
dimension with associated R-symbols, including a class R-
symbols for names not explicitly shown by the models.  Fig-
ure 3b is an interpretation in terms of position in the list.  Fig-
ure 3c interprets the names alphabetically, ignoring the posi-
tional ordering. As required by RIST, the quantity scale of 
the concept and graphic objects of the R-dimensions is given.  
In both cases the concept is a sequence of people, so the scale 
is ordinal.  In Figure 3b the vertical position is considered in 
this interpretation to be an interval scale, whereas for the al-
phabetic interpretation the scale is just ordinal.   

As a metric index is basically an R-dimension, it is a trivial 
idiom. More interestingly, what varies across RISN models 

of metric indexes are the pairings of quantity scales across the 
concept and the graphic object.  This defines sixteen varieties 
of metric indexes from all the combinations of assignments 
of quantity scales to the concept and graphic objects. The ex-
amples listed in Table 1a are themselves indexed with pairs 
of letters, for the quantity scale of the concept and the graphic 
object, respectively. At one extreme, N-N metric indexes es-
tablish identities by the pairing of items on nominal scales 
(e.g., croquet set).  At the other extreme, measuring instru-
ments are often R-R metric indexes: an ammeter registers 
continuously varying amounts of current on a continuous dis-
play that begins from zero.  (Together N, O, I, and R consti-
tutes an ordinal metric index for quantity scales.) 

The combinatorics of pairs of quantities scales provides 
part of the explanation of the diversity of this class.  Even the 
simplest design of metric indexes can draw on sixteen possi-
ble ways to assign scales to the concept and graphic object, 
of which examples for eight are given in Table 1a.  In addi-
tion, the property of metric indexes may be encoded by mul-
tiple graphics each with a quantity.  The index I-I*2+ in the 
last entry in Table 1a indicates the case of the composition of 
multiple interval quantities scales, such as the different sets 
of letters for unit, 10 and 100 numerals in the Greek numera-
tion system.   

Taxonomic codes 
Figure 1b shows how instances in taxonomic codes are 
formed by a succession of properties organized in levels in a 
tree-like structure, with disjoint subclasses for each class 
within the tree: the paths down the tree to each instance is 
unique.   

Figure 4 is a RISN model for the interpretation of the zoo-
logical trinomial code for gorillas (Mittermeier, Rylands & 
Wilson, 2013), which exemplifies this class.  The overall di-
agram is the representational system for the whole taxonomy 
(a tree diagram of the gorilla genus).  Each leaf of the diagram 
is an instance (one trinomial name; e.g., G. g. gorilla).  The 
anchoring links from an R-symbol to its child R-dimensions 
encode the idea that a sub-class of a member of a class is 

 
 

Figure 3. (a) List of people; RISN models of (b) position or-
der list (O-I); (c) alphabetic ordering (O-O). 

(b)(a)

Jamie
Chris
Charlie
Alex
Pat
Eddie

(c)

 
 

Figure 4.  RISN model for gorilla trinomial name taxonomic 
codes. 
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unique to that member: the two subspecies of G. beringei are 
unique to it, and not found under G. gorilla.  The ordering of 
the labels for the taxonomic ranks is encoded by an R-dimen-
sion.   

Although the depth of the underlying tree of the trinomial 
codes is fixed, other taxonomic indexes relax the assumption 
that the branches in Figure 1b are the same depth.  For in-
stance the number of levels in breadcrumb navigation trails 
or sub-genres may vary from path to path.   

Triangulational Coordinate Systems 
As the name suggests, the class of index systems identifies an 
index using values from a selection of properties to identify 
an instance in the overall space defined by the properties 
(Figure 1c).  In Stockdill et al. (2022) these are coordinate 
systems idioms, which come in two subclasses: explicit and 
implicit.  In an explicit system one R-dimension specifically 
identifies a set of instances to interpret as datapoints whose 
values on the other R-dimensions are to be determined.  Fig-
ure 5 is an example for cities on the globe located by a geo-
graphic coordinate R-scheme that deploys latitude and longi-
tude R-dimensions.  The cities R-dimension is the nominal 
list of instances.  In an implicit coordinate system, all the 
property R-dimensions have the same status; any can be 
treated as providing instances whose values are to be found 
in the representation.  For example, consider a line graph.  
Cheng (2020) gives an example of a “monster” graph found 
in thermodynamics with four R-dimensions that define a co-
ordinate space that includes a subspace with three further R-
dimensions.  A value on any one of the R-dimensions may be 
treated as an instance and used to look up values of the other 
R-dimensions.   

Among information visualizations in Table 1c, the graphs 
and charts are readily interpreted under this idiom, but traffic 
lights may also be similarly interpreted.  They consist of three 
nominal R-dimensions that each has two values (on/off) and 
that are distinguished by two metric indexes for colour (nom-
inal) and by position (ordinal).  Of the eight possible combi-
nations of illuminations only three are meaningful instances 
(or four depending on country).  Among games, boards with 
grids are obviously this type of system, but playing cards are 
triangulational systems too.  Each card is an instance and the 
indexing system is interesting because it is typically 

interpreted as three coordinating R-dimensions, one for the 
suits of cards and two that run in parallel, partially: rank (ace 
to king) and value (e.g., 1 to 11, court cards=10).  This rich-
ness of indexing is exploited in many well-known card 
games.  This class also includes tools (4th list in Table 1c).  A 
user of a lever-handle mixer faucet/tap may predict or coor-
dinate the desired flow rate and temperature of the water (in-
stance) by separate altitude and rotation movements of the 
handle.  The foot pedals of a manual/stick shift car is a trian-
gulational coordinate system similar to traffic lights: the com-
bined values from three R-dimensions define a variety of op-
erating states (instances).  However, unlike traffic lights, all 
eight combinations of depressed/released values of the pedals 
are potentially meaningful interpretations, although not to all 
drivers.  For example, the heel-toe technique that involves 
depressing all three pedals simultaneously is an advanced 
gear change skill taught to racing drivers.  

Two major sources of variation in the class of index sys-
tems are the number of R-dimensions and differences in the 
concept and graphic object quantity scales.  The number of 
R-dimensions for each example in Table 1c are in the trailing 
parentheses.  Each R-dimension within a triangulational co-
ordinate system is essentially an embedded metric index, so 
provides one of 16 different pairings of quantity scales as 
noted above.   

Mereological coordinate systems 
This class of index systems is similar to the triangulation co-
ordinate systems as each index draws values from a set of 
properties.  However, mereological coordinate systems dif-
fers in that the properties are ordered.   

As an example, the RISN model for a digital clock is shown 
in Figure 6.  In the bottom row, the R-symbols are examples 
of instances.  All R-symbols coordinate one value drawn 
from each R-dimension in the layer above; a minute, an hour 
and an AM/PM value.  The levels of the component R-dimen-
sions in the mereological system are encoded by the time-
scale R-dimension.  Although the levels are ordered concep-
tually, this order is not preserved by the positions of their 
graphic objects.   

Like the triangulation coordinate systems, the major 
sources of variation are with respect to the number of R-

 
 

Figure 5.  RISN model for the globe triangulational coordi-
nate system applied to locations of cities. 

 
 

Figure 6. RISN model for a digital clock mereological coor-
dinate system. 
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dimensions and the possible pairings of quantity scale to con-
cepts and graphic objects.  A form of variation unique to this 
class is where the ordering of coordinate R-dimensions is re-
flected in the display.  For the clock display it is not: the order 
is hour-minute-AM/PM.  In contrast, the ordering of the mag-
nitude of each digit in Hindu-Arabic numbers is specifically 
encoded by their individual position: e.g., 100s-10s-units 
(Zhang & Norman, 1994b).   

Hybrid and composite index systems 
RISN models for the four classes for indexing systems have 
been introduced.  We do not claim that these indexing system 
idioms are exhaustive; other specialist systems are likely to 
exist.  

Further, variants of the proposed classes of indexing sys-
tems can occur.  For instance, the ancient Greek number sys-
tem (Table 1a) is a hybrid of metric indexes, with a number 
consisting of letters drawn from sets of letters for units, tens 
and hundreds that are disjoint, and when a particular order of 
magnitude is zero the expression omits a letter (e.g., 202=	
𝜎𝛽).  Changing the order of the letters does not change the 
value of the represented number.  The Airbus naming con-
vention (Figure 2) illustrates other form of hybridity, with the 
addition of a fixed prefix label on all instances (“A” for Air-
bus). 

Index systems may be composed.  The Airbus naming ex-
ample appends metric indexes to the overall taxonomic code.  
The N-N metric index for aircraft subtypes is anchored to the 
A330 R-dimension – compare the bottom left sub-tree in Fig-
ure 2 with Figure 3c.   

Discussion 
Index systems are an important class of cognitive artifacts 

because they are not only ubiquitous but are also diverse.  
Given this, two questions were posed: (1) What are the com-
mon underlying forms of index systems in general?  (2) How 
should we explain the substantial diversity of specific types 
of index systems?   

In response to the first question, we identify four common 
classes of index systems: (1) metric indexes; (2) taxonomic 
codes; (3) triangulational coordinate systems; (4) and mere-
ological coordinate systems.  Definitions of them were pro-
vided and illustrated in Figure 1.  RISN models of typical ex-
amples of the systems were built, respectively Figures 3, 4, 
5, and 6.  The models are RIST predictions of the possible 
schematic memory structures that the external representa-
tions of the index systems may invoke in users of the systems.  
Interestingly, the structure of each model exploits quite dis-
tinct RISN idioms, which are basic patterns of RISN network 
components.  For instance, taxonomic codes anchor R-di-
mensions under R-symbols to encode hierarchical levels.  In 
contrast, in both the triangulational and mereological sys-
tems, R-symbols coordinate values from R-dimensions, alt-
hough they differ in whether the R-dimensions are ordered or 
not.   

To answer the second question, we built RISN models for 
other examples of index systems in each class (but not 

presented here in detail) in order to examine how they differ.  
One major source of diversity for three of the index systems 
arises from the possible combinations of types of quantity 
scales.  The number of R-dimensions exhibited by the models 
is another source, which is applicable to the taxonomic, tri-
angulation and mereological systems, and also to hybrid met-
ric indexes.   

As with any form of cognitive modelling in cognitive sci-
ence, there is a possibility that theoretically unconstrained de-
grees of freedom, which are inevitably present in any model-
ling approach, may have been unwittingly exploited in the 
design of the models.  We do not consider that it to be a seri-
ous risk, for two reasons.  First, the RISN models are con-
sistent with the abstract informational structures proposed for 
each of the classes of index systems and differences among 
them are all permitted variants under RIST.  Second, a good 
number and range of examples of index systems are included 
in Table 1, which all neatly conform to the abstract infor-
mation structures.  Nevertheless, empirical studies on the 
contents of experienced users’ interpretations of the indexing 
will be required to fully evaluate the models.   

Diverse indexing systems, from many domains, have been 
modelled.  The functions they support span a broad range of 
complexity; from the simple pairing of objects (list of names, 
Figure 3a), through to taxonomic classification (Figure 4), 
numeration systems, control systems (pedals, taps), and on to 
complex multidimensional information visualizations.  For 
some systems their categorization was not immediately obvi-
ous, and their eventual idiomatic classification initially 
seemed counter intuitive, but their models revealed interest-
ing parallels to systems for quite different domains. In other 
words, through the construction of RISN models, common 
interpretative structures were discovered across representa-
tions that are graphically distinct but that might be cogni-
tively equivalent.  Further, the set of schemas and relations 
among schemas was sufficient to produce sensible models of 
interpretations of all the chosen examples and, importantly, 
permitted clear definition of the four types of index systems.  
Thus, in a reflexive fashion, all this appears to provide some 
further evidence for claims about the validity of RIST and the 
utility of RISN. 

To conclude, we note that the RISN models of the four 
classes of the index systems provide a foundation for further 
work that may address the efficacy of different designs of in-
dex systems.  Zhang & Norman (1994b) and Chrisomalis 
(2020) have examined the relative qualities of index systems 
from computational and expressiveness perspectives, respec-
tively.  Larkin & Simon (1987) demonstrate the benefits of 
locational indexing in diagrammatic formats over linear con-
catenation in sentential formats.  As RISN models examine 
the overall representational structure of index systems – the 
integration of conceptual and graphical structure – the ap-
proach may have some potential to provide general accounts 
of the efficacy of indexing systems, which are domain and 
format independent, using general metrics of the structure of 
RISN networks, such as those proposed by Cheng et al. 
(2024). 
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