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A recently-developed semianalytical solution for two-phase flow of water and heat in a 

porous medium has been extended to include an air component, and to incorporate a number of 

physical effects that broaden its range of applicability. The problem considered is a constant­

strength linear heat source emplaced in an infinite homogeneous medium with uniform initial 

conditions. Under these conditions the governing partial differential equations in radial dis­

tance r and time t reduce to ordinary differential equations through the introduction of a simi­

larity variable 11 = r ;{i. The resulting equations are coupled and nonlinear, necessitating a 

numerical integration. The similarity solution developed here is used to investigate various 

physical phenomena related to partially saturated flow in low permeability rock, such as vapor 

pressure lowering, pore-level phase change effects, and an effective-continuum representation 

of fractured/porous media. The solution is compared to a numerical finite-difference scheme, 

and several illustrative applications to problems arising in the context of high-level nuclear 

waste disposal are given. 
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Nomenclature 

b 

c 

Dw, Da 

D~a 

h 

K 

k 

f 

kr 

kr 

p 

Pc 

Qe 

Qw,Qa 

r 

s 

s 
Srr 

ScriJ 

s,h 

- v-

Klinkenberg factor (Pa) (Eq. 20) 

specific heat (J/kg K) 

vapor and air diffusion coefficients (m2/s) (Eqs. 18, 19) 

binary diffusion strength in free gas at reference conditions of P = 1 bar, T = 0°C 

(m2/s) (Eqs. 18, 19) 

enthalpy (J!kg) 

mobility (kg/s m Pa) (K1 = kkrJ p 1/J.J.J, j = l, g) 

intrinsic permeability (m2
) 

effective-continuum intrinsic permeability (m2) (Eq. 7) 

relative permeability 

effective-continuum relative permeability (Eq. 13) 

pressure (Pa) 

capillary pressure (Pa) (Pc = Fl - Pg) 

heat flow rate (W /m) 

mass flow rates (kg/s m) (Qm =Qf+Q;'. m =w,a) 

radial distance (m) 

saturation 

effective-continuum saturation (Eq. 12) 

residual liquid saturation 

critical liquid saturation (Eq. 14 and Table 3); in concurrent-saturation model, satura­

tion above which fracture capillary pressure is zero 

threshold liquid saturation (Eq. 15); in sequential-saturation model, saturation at which 

matrix is fully saturated and fractures are completely dry 

T temperature (0 C) 

t time (s) 

u internal ene~gy (J/kg) 

V m, v1 fractional volume of matrix and fracture (V m + v1 = 1) 

X mass fraction 

z integration variable (z = ln(ll)) 
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Greek Symbols 

~ constant of order one in vapor diffusion coefficient (Eq. 19) 

E relative error during numerical integration 

11 similarity variable (11 = r 1ft) 

a temperature exponent in vapor and air diffusion coefficients (Eqs. 18, 19) 

K thermal conductivity (W /m K) 

A. parameter in van Genuchten characteristic curves 

Jl. dynamic viscosity (Pa s) 

p density (kg!m3) 

<!> porosity 

$ effective-continuum porosity (Eq. 8) 

't tortuosity (Eqs. 18, 19) 

Subscripts 

a air (also used as a superscript) 

c capillary 

e energy 

f fracture 

g gas phase 

L lower limit of integration 

l liquid phase 

m matrix 

r relative 

sat at saturation (vapor-liquid equilibrium) 

s solid 

th threshold 

U upper limit of integration 

v vapor 

w water (also used as a superscript) 

0 boundary condition, reference value 

r.· 

~-. 
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1. Introduction 

We have developed a semianalytical solution for transient two-phase water, air, and heat 

flow !n a porous medium surrounding a constant-strength linear heat source, using a similarity 

variable Tl = r IW. While the similarity transformation approach requires a simplified geometry, 

all the complex physical mechanisms involved in coupled two-phase fluid and heat flow can be 

taken into account in a rigorous way, so the solution may be applied to a variety of problems 

of current interest. Application of the similarity variable approach to two-phase fluid and heat 

flow problems in radial geometry was pioneered in the geothermal well test studies of Grant 

[1979] and O'Sullivan [1981]. Grant developed a quasi-analytic approach for the analysis of 

geothermal wells producing from two-phase reservoirs, using an approximate linearization of 

the governing equations. O'Sullivan recognized that the similarity variable concept can be 

used to obtain solutions that include all nonlinearities of the governing equations in a rigorous 

way. Our work was motivated by a desire to predict the thermohydrological response to the 

proposed geologic repository for heat-generating high-level nuclear wastes at Yucca Mountain, 

Nevada, in a partially-saturated, highly-fractured volcanic formation. The geometric 

simplifications required by the similarity solution preclude rigorous predictions of the behavior 

of the repository as a whole, but the solution can be used to gain insight into the impact of 

various flow and heat transport parameters on physical conditions near the waste canisters. 

Other problems that can be studied involve heat sources such as buried power-transmission 

cables, volcanic dikes, agricultural root-zone heating operations, and underground thermal 

energy storage systems. Furthermore, the ability to rigorously solve a class of highly nonlinear 

two-phase fluid and heat flow problems has important applications in the verification of com­

plex numerical simulators. 

A previous paper [Doughty and Pruess, 1990] described the governing equations and 

methodology of our semianalytical similarity solution. Applications were demonstrated for 

simplified problems that did not include air, and had a constrained form for the characteristic 

curves (relative permeability and capillary pressure as a function of liquid saturation). The 

present work retains the basic conceptual model and methodology of the previous work, but 

presents a considerable enhancement of the flexibility and applicability of the similarity solu­

tion. One of the strengths of the similarity variable approach is the ability to study a variety of 

physical processes within a single framework. Among the improvements are incorporation of 

(i) an air component, (ii) more general characteristic curves, including an effective-continuum 

representation of fractured/porous media, (iii) vapor pressure lowering effects, (iv) enhanced 
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vapor diffusion arising from pore-level phase change effects, and (v) an approximate treatment 

of Knudsen diffusion using the Klinkenberg b factor. 

2. Thermal and Hydrologic Conditions near the Heat Source 

The fluid and heat flow problem is posed in the context of the proposed nuclear waste 

repository at Yucca Mountain, Nevada. The ambient temperature in the partially saturated for­

mation around the repository (T0 = 20° C) is well below the saturation temperature at ambient 

pressure <Tsa,=96°C at Po=0.89 bars) so water is primarily in the liquid phase, and the initial 

heat transfer in the host rock is mainly conductive. As the temperature around a waste pack­

age (the heat source) increases to the saturation temperature, evaporation increases and vapor 

partial pressure becomes appreciable. A convective heat-transfer mechanism with counter-flow 

of liquid and gas phases, known as a heat pipe, may contribute to or even dominate heat 

transfer in this regime. Near the heat source, liquid water vaporizes, causing pressurization 

and an out-flow of the gas phase .. The water vapor condenses in cooler more distant regions, 

depositing its latent heat of vaporization. This creates a nonuniform saturation profile, with 

liquid saturation increasing with distance from the heat source. The saturation gradient drives 
'\ 

the counter-flow of the liquid phase toward the heat source through capillary forces. The 

liquid then vaporizes again and repeats the cycle. With time the heat pipe moves away from 

the waste canister, leaving a gas-phase zone in which heat transfer is again conduction­

dominated. The convective heat transfer of the heat-pipe region is accompanied by small tem­

perature gradients, whereas in the conductive regions temperature gradients are large. Thus, 

conditions at the waste package may vary greatly depending on the relative importance of con­

ductive and convective heat transfer. If an extensive heat pipe develops, the temperature will 

remain near the saturation temperature (about 100°C) for long times. Under these conditions, 

air will be purged from the near-canister region, leaving a gas phase composed purely of water 

vapor (steam). If heat transfer is primarily conductive, a gas-phase zone, or two-phase zone 

with only a small amount of immobile liquid, will develop around the waste package. Tern-. 

peratures may be very high and air is more likely to be present. 

The basic requirements for heat-pipe development are (1) the presence of a volatile fluid 

and (2) a mechanism by which gas-phase fluid can flow away from the heat source and liquid­

phase fluid toward it. In the context of a geologic nuclear waste repository, (1) requires that 

the heat-generating capacity of the wastes. coupled with the low thermal conductivity of rock, 
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must raise the temperature near the canisters beyond the saturation temperature of water under 

prevailing pressure conditions. For gas-phase flow away from the heat source to occur, the 

far-field pressure must be lower than the pressure at the heat source. Both these conditions are 

readily met for a partially saturated repository environment (P = 1 bar), whereas for a deep 

water-saturated formation, in which fluid pressure at the waste packages is much greater than 1 

bar and the far-field pressure is greater still, heat-pipe development is unlikely. Liquid-phase 

flow requires a driving force toward the heat source, which could be gravity, capillary pressure, 

or a combination of both. Finally, there must be sufficient permeability to both phases to 

establish the counter-flow necessary for a heat pipe. A fractured/porous medium may provide 

a combination of high gas-phase permeability through the fractures and strong capillary pres­

sure in the rock matrix that facilitates heat pipe development. Theoretical and lab-scale experi­

mental studies [Jennings and Udell, 1985] have shown that heat-pipe effects are greatly 

enhanced in heterogeneous porous media with coarse-grained and fine-grained materials 

arranged in parallel. 

3. Methodology 

The governing equations for two-phase fluid and heat flow for water and air in a porous 

medium are summarized in Appendix A. The basic processes represented by the equations are 

outlined below; further details may be found in Doughty and Pruess [1990]. A conservation 

law balances accumulation and flux of each component (water, air, energy), assuming local 

thermodynamic equilibrium between water, air, and rock. The fluid flux terms include Darcy's 

law modified for two-phase flow using relative permeability and capillary pressure functions, 

and binary diffusion between water vapor and air in the gas phase. The inclusion of capillary 

pressure. (J:: =!1-Pg) allows the possibility of liquid and gas phase counter-flow. Both the 

relative permeability and capillary pressure functions are highly nonlinear functions of liquid 

saturation. The heat balance includes conductive and convective terms with phase-change 

effects and transport of latent heat. Realistic equations of state for water [International Formu-

' lation Committee, 1967] and air (ideal gas with Henry's law for dissolution in the liquid phase) 

are used. With these assumptions, the conservation laws form a set of three coupled nonlinear 

second-order partial differential equations, which are mathematically equivalent to a set of six 

nonlinear coupled first-order partial differential equations. For single-phase conditions, the six 

primary dependent variables (unknowns) are temperature T, pressure P, air partial pressure Pa, 

water flux Qw, air flux Qa, and heat flux Qe. Under two-phase conditions, gas saturation Sg 
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replaces T as a primary variable, as temperature can be determined directly from other primary 

variables through the saturation curve and a vapor pressure lowering correction. In some con­

texts it is more natural to consider liquid saturation as the primary variable, but this poses no 

problem as Sg and S1 are simply related by Sg + S1 = 1. Due to the inclusion of capillary pres­

sure, under two-phase conditions it is necessary to choose either Pg or f1 as the primary vari­

able; by convention we take Pg . Under single-phase conditions no such distinction is needed, 

and pressure is simply referred to asP. 

To achieve the geometric symmetry required for the similarity variable approach, the geo­

logic medium is assumed to be uniform and isotropic, the heat source is modeled as an 

infinitely long cylinder, and gravity is neglected. The geometry of the problem is then reduced 

to radial symmetry, with just two independent variables, radial distance r and time t. If the 

medium is of infinite extent with uniform initial conditions, and bour:tdary conditions are 

applied only at r = 0 (a line source) and r = oo, and are time-independent, the partial differential 

equations can be transformed into simpler ordinary differential equations (ODEs) through the 

use of a similarity variable, ll = r 1ft. This transformation is known as the Boltzmann transfor­

mation in the context of heat-conduction problems; and has been applied by Grant [1979] and 

0 'Sullivan [1981] to geothermal well test problems. 

The resulting ODEs are still coupled and nonlinear, so a-numerical integration from ll =0 

to ll = oo is required to solve them. It proves to be rconvenient to use z = ln(Tt) as the integra­

tion variable. For the linear heat source representing a backfilled or 'closed-hole' nuclear 

waste canister, the boundary conditions arc 

z = ln(Tt) = ln(r 1ft) = -co (r = 0 or t = oo) (1) 

P, Pa , T unknown 

and 

z = ln(Tt) = ln(r 1ft) = +oo (r =oo or t =.0) (2) 

Pg=Po 

Note that Equation (1) implies single-phase gas conditions exist at z =-oo, while Equation (2) 

implies two-phase conditions exist at z =+oo. Based on the discussion of Section 2, this is the 

.. , 
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most likely scenario, but other conditions can be treated as well, with a suitable choice of pri­

mary variables. The boundary conditions given by Equatio!ls (1) and (2) constitute a two-point 

boundary value problem in which three of the boundary conditions are specified at the z =-oo 
limit of integration, and three at the z =+oo limit. The ODEs in z set up a functional depen­

dence between the upper and lower boundary conditions, requiring an iterative process for 

solution. We use an iterative integration scheme, known as the shooting method [Press et al., 

1986], which consists of a Newton-Raphson iteration on the unknown boundary conditions 

(P, Pa, T) lz,....,.,. For the numerical integration, the limits z =±oo are replaced by finite values 

zL and zu (see below). At the lower limit of the integration, values are guessed for the miss­

ing boundary conditions, and the numerical integration of the coupled ODEs is carried out. At 

the upper limit of the integration, the values of the variables are compared to the specified 

boundary conditions, and refined estimates of the lower limit boundary conditions are made. 

This procedure continues until the value of each variable at z = zu matches the specified boun­

dary conditions Po. t:z0, and S 0. 

The numerical integration is done using a fourth order Runge-Kutta integration scheme. 

Integration step size is determined adaptively via Richardson extrapolation: step size is adjusted 

so that the results of two half steps agree with the results of one whole step, with a user­

specified error e. The value of e necessary to get accurate results at zu depends strongly on 

the nature of the problem. 

4. Incorporation of an Air Component 

The illustrative results of the similarity solution presented in Doughty and Pruess [1990] 

treated a one-component two-phase fluid (water, present as liquid or vapor) saturating the for- · 

mation surrounding the repository, and required solving a set of four coupled first-order 

differential equations. The incorporation of an air component increases the number of equa­

tions from four to six, and although this significantly increases the number of computations 

required, there is no essential conceptual difference between the similarity solution methodol­

ogy for problems with and without air. 

In practice, the coupling between the various equations becomes more complicated when 

air is included, requiring more careful use of the iterative procedure within the similarity solu­

tion. Additionally, at the lower limit of the integration the air partial pressure Pa (zL) is nearly 

zero for a fully-developed heat pipe. However, Pa is used as a shooting variable, requiring that 
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distinct, nonzero values be supplied to start the numerical integrations of the ODEs at z = zL. 

Due to binary diffusion, there is a nonzero air partial pressure everywhere (including zL ), but 

Pa (zL) can be extremely small for a long heat pipe. This leads to stringent numerical accuracy 

requirements (eS 10~). and correspondingly higher computing effort. Neither of these compli­

cations causes a failure of the similarity solution, but they do preclude its use as a 'black box'. 

Judicious choice of starting values for the ODE integrations and some trial and error is 

required to achieve convergence of the Newton-Raphson iteration. 

Figure 1 shows results for two problems· which are identical except for the presence or 

absence of air. For convenience, air mass fraction x; ·is plotted instead of Pa. Most of the 

parameters used to specify these problems, given in Table 1, are typical of conditions expected 

at the proposed nuclear waste repository at Yucca Mountain [Pruess et al., 1990a]. However, 

fracture effects are not included, and intrinsic permeability of the intact rock matrix is 

extremely low. Therefore, in order to illustrate a stronger heat pipe, intrinsic permeability has 

been arbitrarily increased by a factor of order 10,000, to 20x10-15 m2, and for consistency 

capillary pressure has been reduced by a factor v10,000= 100 in comparison to typical Yucca 

Mountain data. 

According to the definition of the similarity variable, z = ln(r /W ), Figure 1 represents 

both a spatial distribution at a given time, with distance from the heat source increasing from 

left to right, and a time sequence at a given point in space, with time increasing from right to 

left. Most of the discussion of figures that follow is done in terms of a spatial distribution. 

Overall the "with-air" and "no-air" problems show quite similar results. Of course, for the 

no-air problem, single-phase liquid conditions exist far from the heat source (S1 = 1 for z >-8), 

whereas the with-air problem is two-phase (S1 = 0.8), but the pressure and temperature profiles 

are not very different. The constant pressure and steep linear temperature profiles shown in 

Figure 1a for -lO<z <-8.5 and -8<z <'-6.5 indicate conductive regimes, and Figure lb 

verifies· that mass flow rates are small there. The more gradual temperature decline for 

-8.5 < z < -8 coupled with a large liquid-vapor counter-flow identifies the heat-pipe region. In 

Figure 1b, Q8 and Q1 are the sum of the air and water components for the gas and liquid 

phases, respectively. Throughout this paper, the scale on which the mass flows are shown 

makes air flow vanishingly small, so the mass flow for each phase is essentially water flow 

(e.g., Q8 = Qv ). Note that air mass fraction x; is essentially zero for z < -8, so the gas phase 

there is composed primarily of water vapor (at zL =-11, x;= 10-24
). The air is purged from 



_,;._ ,, 

,,.. 

- 7 -

the near heat source region by the vapor flow away from the heat source. This could have 

important ramifications for waste-package design with regard to the prevention of corrosion. 

Extending from the cool end of the heat pipe to the heat-flow front (-8.2<z <-6), there is a 

small liquid flow away from the heat source. This out-flow is necessary because the water 

vapor forming at the hot end of the heat pipe is much less dense than the liquid water it 

replaces. 

Generally, the presence of air shortens the heat pipe from the cold end, by hampering the 

liquid-vapor counter-flow there. When air is present at the cold end of the heat pipe, liquid 

flow is decreased there because liquid relative permeability is lower due to the smaller liquid 

saturation. Vapor flow is decreased because for a given pressure gradient and gas-phase 

saturation only some of the mass flow is vapor, the rest being air. The heat-pipe shortening 

with the presence of air is evident from Figure I, but it occurs at the hot end of the heat pipe. 

Because both the with-air and no-air solutions are constrained to match the same pressure and 

temperature boundary conditions at zu, any difference in heat-pipe length is shifted toward zL. 

The physical processes associated with the addition of air can be demonstrated more 

clearly by doing a series of integrations using the no-air boundary conditions for T(zL) and 

P (z£), and sequentially increasing Pa (z£) from 0 to 10-41 to 10-26 bars (Figure 2). The boun­

dary conditions at zu are not matched, but the effect of adding air to shorten the heat pipe is 

clearly illustrated. Although these values of Pa (z£) are much too small to be readily dis­

tinguished experimentally, with sufficient numerical accuracy (e= 10-6) they can be used suc­

cessfully in the similarity solution. This example demonstrates one of the attractive features of 

the similarity solution: its usual method of employment - taking initial guesses for missing 

boundary conditions from results of a similar problem - provides insight into the physical 

effects of various problem parameters. 

Two other differences that arise from the presence of air are also illustrated in Figure 1. 

The pressure decrease that occurs over the length of the heat pipe is larger for the no-air prob­

lem because the heat pipe is longer. The pure liquid zone that develops for the no-air problem 

for z >-8 has a much lower compressibility than does the low temperature two-phase zone of 

the with-air problem, hence the small liquid out-flow extends much further from the heat 

source. 
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5. Comparison with the Numerical Simulator TOUGH2 

Multiphase fluid and heat flow problems that lack some of the symmetries required for 

application of the similarity variable approach must be solved by numerical simulation, using 

discretization of the continuous space and time variables. The accuracy and credibility of 

numerical simulations is a matter of serious concern, because they are subject to space and 

time discretization errors which are often difficult to quantify. Furthermore, numerical simula­

tions are performed with complex computer programs, and no method is known to directly 

establish that such programs are free of errors. It is necessary, therefore, to· test numerical 

simulations against known solutions that entail as many complex features as possible. The 

similarity solution is an ideal tool for such testing, because it gives, within the approximations 

of the underlying mathematical model, a very accurate solution to a problem that involves the 

full nonlinear process complexity of transient two-phase fluid and heat flow. The idealizations 

made pertain only .to the flow geometry, and to initial and boundary conditions. 

We have used the similarity solution to test the numerical simulator TOUGH2 [Pruess, 

1987, 1990], which calculates the flow of air and water in gaseous and liquid phases together 

with heat flow, using the same governing equations and equation of state as does the similarity 

solution. TOUGH2 employs the integral-finite-difference method to discretize space for one-, 

two-, or · three-dimensional problems that may involve heterogeneous, anisotropic, or 

fractured/porous media [Narasimhan and Witherspoon, 1976]. Figure 3 shows results of 

TOUGH2 compared with those of the similarity solution for the problem specified in Table 1. 

The agreement is excellent A one-dimensional radial mesh with 108 elements was used for 

the TOUGH2 calculation. The mesh spacing is nonuniform, with finest spacing (0.03 m) used 

where the similarity solution predicts sharp gradients. A heat source is placed in the innermost 

element (0 < r < 0.3 m), and the outermost element (r = 10,000 m) is at sufficiently large dis­

tance to remain at constant temperature, pressure; and saturation for a simulation time of 6.3 

years. The TOUGH2 calculation required 800 time steps and 8.5 minutes of CPU time on the 

Cray X-MP at the National Energy Research Supercomputer Center at Lawrence Livermore 

National Laboratory. 

In contrast, one numerical integration of the similarity solution, using previously­

determined correct starting values at zL and specifying a relative error e= 10-4, required 228 

integration steps and took 2.6 CPU seconds. The shooting procedure requires four integrations 

per shot; and with reasonable initial guesses, usually converges within three to five shots. The 
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key to successful use of the similarity solution is finding reasonable initial guesses. This may 

require some preliminary trial integrations, the solution to a similar problem, physical intuition, 

or a combination of the three. Assuming five trial integrations to arrive at workable initial 

guesses, and four shots to find the solution, the whole procedure would require 21 shots, or an 

approximate CPU time of 55 seconds. This sample problem has a relatively short heat pipe, 

which makes accuracy requirements modest. A numerical integration specifying £= w-2 gave 

the same results, but took only 106 steps, requiring 1.4 CPU seconds. Conversely, for a long 

heat pipe, greater accuracy is needed, and computation effort increases correspondingly. 

6. Characteristic Curves with S1r > 0 

Our previous implementation of the similarity variable approach [Doughty and Pruess, 

1990] had been limited to relative permeability curves that have a residual liquid saturation of 

zero (Srr = 0). When S1r > 0, a two-phase region exists in which liquid is immobile, which 

complicates the solution of the coupled differential equations, as described below. The similar­

ity variable methodology involves expressing the governing equations in terms of derivatives of 

the primary variables, using the chain rule. The equations for heat and mass flux for two­

phase conditions (Equations (A8) and (A9) in Appendix A) are of the form 

for m = w, a, e (3) 

and the conservation equations (Equation (A 7) in Appendix A) are of the form 

dQm e2z [ dFg dSg df'a] --=-D -+E -+F-
dz 2 mdz mdz mdz 

for m = w, a, e (4) 

where Am, Bm, Cm, Dm, Em, and F m are functions of Pg, Sg, and Pa. We would like to solve 

the three equations given by Equation (3) for the unknowns dFg ldz, dSg /dz, and dPa /dz, then 

subsequently substitute these expressions into Equation (4) and thereby determine dQwldz. 

dQaldz, and dQeldz. When vapor pressure lowering is neglected, the coefficients Bm of 

dSg ldz in Equation (3) are all proportional to the liquid mobility K1• Then if S1 < Srr so that 

K1 = 0, it is not possible to solve these equations for dSg /dz. One solution to this problem is 

to include vapor pressure lowering, which makes Be nonzero for all values of S1• This 

approach is used in the following section. For the no-vapor-pressure-lowering case, a more 

complicated scheme was developed to solve the conservation and flux equations simultaneously 

for the hypothesized finite z domain in which 0 < S1 < Srr. Surprisingly, it indicated that 
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dSgldz should be positive, which does not make sense because Sg starts out at one, so cannot 

increase. Therefore an alternative, less formal approach was taken to the problem. 

Figure 4a shows some hypothetical liquid relative permeability curves kr1 (S1) for the case 

S1r = 0, calculated using the formula given in Table 1. Actual liquid relative permeability 

curves found in the soil science, petroleum, and hydrogeological literature [e.g. van Genuchten, 

1980; Corey, 1954; Verma et al., 1985] are usually strongly concave up, i.e., kr1(S1)«.S1, as 

shown in the A-=0.95 and A-=0.45 curves in Figure 4a. Figure 4b shows the similarity solu­

tion results obtained using these kr1 functions, for a no-air problem. Note that as A. decreases 

(i.e., the value of kr1 for a given value of S1 decreases) the initial slope of the saturation profile 

becomes steeper. This variation confirms an approximate result from Doughty and Pruess 

[1990, Section 6.1], which predicted that for small values of S1, 

dS, 1 
(5) 

If we extrapolate to kr1 = 0 (i.e., S1r > 0), the initial slope of the saturation profile becomes 

essentially infinite. Effectively, there will be a jump in the saturation profile between the S1 =0 

value for the single-phase gas region, and S1 = S1r in the two-phase region, occurring at a single 

value of z. The dependence of dS11dz on 1/kr1 reflects the need for sufficient liquid counter­

flow to maintain. a heat pipe, as a large value of dS1 /dz indicates a rapid transition from· a 

heat-pipe region to a conductive region. This argument· is based on no-air calculations, but 

Figure 1a has shown that the addition of air does not change the shape of the initial portion of 

the saturation profile. 

In terms of the numerical integration in z. the discontinuity in S1 amounts to skipping the 

region 0<S1 <S1ro and going directly from a single-phase gas region to a two-phase region 

where liquid is mobile, with a discontinuous jump from S1 =0 to S1 ?.S1r at a single value of z. 

This discontinuity in the saturation profile explains why our attempted special_ solution scheme 

for 0<S1 <S1r did not work: there is no finite z domain for which 0<S1 <Sir· 

The saturation-jump hypothesis has been substantiated by examining the saturation 

profiles calculated by the numerical model TOUGH2 for cases with S1r > 0, which show very 

nearly vertical saturation profiles for S1 < S1r. Of course, sharp profiles are difficult for numeri­

cal models to calculate accurately, as numerical dispersion widens fronts, so the TOUGH2 

results represent corroboration, not proof, of the hypothesis. 

, .. 
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7. Vapor Pressure Lowering 

Under two-phase conditions, the primary thermodynamic variables are gas-phase pressure 

Pg, gas saturation S8 , and air partial pressure Pa. When vapor pressure lowering effects are 

ignored, temperature is detetmined iteratively from the steam table saturation curve Py =Psat(T). 

Since Py = Pg - Pa , the functional dependence of temperature on the primary variables is 

T=T(Pg, Pa ). Vapor pressure lowering is modeled using the Kelvin equation, so the tempera­

ture becomes a function of saturation as well as vapor pressure, given implicitly by 

[ 
J::(St) l 

Py =Psat(T)·exp p
1
R(T+273.15) (6) 

Thus the functional dependence of temperature on the primary variables is T= T (Pg, Pa, S8 ). 

The presence of a nonzero i117i1S8 term in Equation (3) ensures that Be does not vanish (see 

Equation (A9) in Appendix A), so Equation (3) can be uniquely solved for d.Pg /dz, dS8 ldz, 

and cJPa!dz whether or not K1 =0. 

In the previous section it was determined that for the no-vapor-pressure-lowering case, 

the increase from S1 =0 to S1 =Str occurs as a discontinuous jump at a single value of z. In 

contrast, our calculations indicate that for strong vapor pressure lowering, the region where 

0<S1 <Str may be quite extensive (see below), but as vapor pressure lowering becomes 

weaker and weaker (results not shown), this part of the saturation profile becomes sharper and 

sharper, approaching the discontinuous jump hypothesized in the previous section. 

Figure 5 shows results for two problems which are identical except for the presence or 

absence of vapor pressure lowering. The parameters used to specify these problems, given in 

Table 2, are typical of the intact rock of the Yucca Mountain tuffs, with fracture effects not 

taken into account [Tsang and Pruess, 1990]. The primary differences from the problem 

described in Table 1 are a factor of order 104 decrease in intrinsic permeability and a factor of 

order 102 increase in capillary pressure strength. The weaker capillary pressure of the Table 1 

problem makes vapor pressure lowering effects negligible in that case. The capillary pressure 

function, slightly modified from the van Genuchten [ 1980] formulation (see Appendix B), has 

the feature that F:: becomes very large and negative as S1 ~ S1r. Then, from Equation (6), 

vapor pressure lowering effects become very strong for small S1, and the two-phase region 

extends all the way to zL, as is verified by Figure Sa. Except for this extension of the two­

phase zone to small values of z, the results of the two problems are quite similar. The slope 

of the conductive temperature profile for -11 < z < -10 decreases slightly for the vapor-
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pressure-lowering case, reflecting the increase in thennal conductivity with liquid saturation 

(K- {S;). For these problems, S, >Sir throughout, but the intrinsic permeability is too small to 

allow enough fluid flow for much of a heat pipe to develop (Figure 5b), thus heat transfer is 

primarily conductive and the air component of the gas phase is not completely purged from the 

near heat source region (Figure Sa). With no vapor pressure lowering, the air mass fraction x; 
is constant in the gas-phase region, whereas the additional coupling between T, Pg, and Pa that 

results from vapor pressure lowering causes x; to decrease slightly for -11 <z <-10. 

Usually when two-phase conditions prevail at zL, the initial values. for the numerical 

integration are specified in terms of Pg, Pa, and S8 • However, when conditions at zL are two­

phase due to strong vapor pressure lowering, the value of S8 (zL) can vary greatly, making it 

difficult to make good initial guesses. In fact, for a capillary pressure function that does not 

have the feature IPc I ~ oo as S1 ~ 0, one does not know a priori what phase conditions exist at 

zL. To deal with this problem, the similarity solution allows initial guesses to be made in 

terms of single-phase variables (Pg, Pa, T), which are internally converted to two-phase vari­

ables if vapor pressure lowering is strong enough to maintain two-phase conditions at zL. This 

conversion procedure also makes it convenient to solve a no-vapor-pressure-lowering version 

ofa problem first, then add vapor pressure lowering. 

8. Effective Continuum Representation of a Fractured/Porous Medium 

A variety of methods are currently being used to mathematically model fractured geologic 

media, including explicit discretization of the fractures, double or multiple porosity models, and 

effective-continuum representations. Of these three, only the last is useful within the similarity 

transformation context, because of the requirement of a single homogeneous, isotropic medium. 

In the effective-continuum approach, a single continuous medium incorporates features of both 

the fractures and the intact rock matrix, through the use of a particular set of characteristic 

curves. To motivate the form of these characteristic curves a brief discussion of the nature of 

two-phase fluid flow in fractured/porous media is presented below. A more detailed descrip­

tion may be found in Wang and Narasimhan [ 1985]. Conditions for the applicability of an 
' 

effective-continuum approximation have been derived by Pruess et al. [1990b]. 

Generally, in a partially saturated geologic medium, liquid water is the wetting phase and 

the vapor-air mixture making up the gas phase is the non-wetting phase, implying that the gas 

phase occupies the larger pores, while the liquid phase occupies the smaller pores as well as 
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forming a film on mineral surfaces. The capillary pressure is inversely proportional to the 

radius of curvature of the interface between the two phases, and the radius of curvature 

increases with liquid saturation S1 as the liquid occupies pores of larger radius. In a 

fractured/porous medium the pore spaces within the rock matrix are usually much smaller than 

the fracture apertures separating blocks of rock. Under conditions of capillary pressure equili­

brium between the rock matrix and fractures, liquid water then preferentially occupies the pore 

spaces of the rock matrix and the gas phase preferentially occupies the fractures. The actual 

values of the liquid saturations in the matrix and fractures are often poorly known as they 

depend not only on the mean pore and aperture sizes, but on such complicated factors as the 

distributions of pore and aperture sizes, adsorption properties which may differ for fractures 

and pore spaces, and whether wetting or drying is occurring. However, knowledge of liquid 

saturation is crucial to predicting fluid flow, because although the fractures have an intrinsic 

permeability orders of magnitude higher than that of the rock matrix, liquid relative permeabil­

ity may be orders of magnitude less than one for low values of liquid saturation, essentially 

precluding liquid flow within the fractures. 

To use the effective-continuum formulation in the similarity solution, suitable 'effective' 

values of material properties and primary variables need to be defined. The effective intrinsic 

permeability and porosity are given by 

(7) 

(8) 

where the subscripts m and f refer to matrix and fracture, respectively, and V is fractional 

volume (V m + v1 = 1). Equation (7) assumes that permeabilities of fractures and rock matrix 

act in parallel. 

The rock matrix and fractures are assumed to be in local thermodynamic equilibrium, so 

locally all thermodynamic variables take on the same value whether in rock matrix or fracture 

(e.g., Tm (r, t) = T1 (r, t )). For single-phase conditions, the primary variables P, T, and Pa are 

all thermodynamic variables, so may be used directly as effective primary variables. Under 

two-phase conditions, Sg replaces T as a primary variable. However, Sg is not a thermo­

dynamic variable, and it is not generally true that Sgm = Sg~. Thermodynamic equilibrium does 

hold for both liquid and gas phase pressures 

(9) 
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flm = flt (10) 

and with the usual relation between liquid and gas phase pressures, fl = Pg + Pc , Equations (9) 

and (10) may be combined to obtain Pcm =Pct. Recent experimental and theoretical studies 

have suggested that the capillary pressure behavior of fractures under desaturation may not be 

much different from that of porous media, except that fracture capillary pressures tend to be 

weaker [Firoozabadi and Hauge, 1990; Pruess and Tsang, 1990]. Thus in principle, one can " 

determine functional forms Pcm (S1m) and Pct (S11 ) to d_escribe capillary pressure variation with 

saturation in matrix and fractures, respectively. Then the thermodynamic equilibrium require­

ment 

(11) 

provides an implicit means of relating matrix and fracture liquid saturations S1m and S11 • An 

effective primary variable may then be defined as Sg = 1 - S1, where 

(12) 

The final material properties needed to complete the effective-continuum formulation are the 

effective-continuum relative permeabilities, given by [Pruess et al., 1990b] 

(13) 

where krlm and krlf are liquid relative permeabilities in the matrix and fractures, respectively. 

Thus, although the similarity variable approach uses Sg as a primary variable to integrate, 

S1m and S11 also must be known at each step in the integration, so that Pc, kr1, and krg can be 

determined. Two alternative approaches have been developed to determine S1m and S11 : 1) a 

direct· implementation of the assumption of capillary pressure equilibrium, known as the 

'concurrent-saturation model' and 2) a simpler approximate treatment, known as the 

'sequential-saturation model,' in which it is assumed that liquid can be present in the fractures 

only when the matrix is completely saturated. The basic features of each approach are 

described below, followed by a detailed description of its implementation in the similarity solu­

tion. 
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In the concurrent-saturation model, for each val~e of Sg = 1-sl encountered during the 

numerical integration, Equations (11) and (12) are solved iteratively to determine S1m and S11 • 

If the fracture and matrix capillary pressures are of similar magnitude, Equation (11) implies 

that liquid saturation in the fractures increases or decreases concurrently with the liquid satura­

tion in the matrix. On the other hand, if fracture capillary pressures are much weaker than 

those in the matrix, then Equation (11) implies that during wetting the matrix will become 

almost completely saturated before any liquid enters the fractures, and during drying the frac­

tures will almost completely desaturate before any liquid leaves the matrix. Under these condi­

tions, then, to a good approximation one may consider that water will be present in the frac­

tures only when the matrix is completely saturated. This is the approach of the sequential­

saturation model. It is easier to implement than the concurrent-saturation approach because S1m 

and S11 can be determined from S
8 

using simple closed-form expressions, rather than an itera­

tive procedure. 

Approximate Treatment of the Concurrent-Saturation Model 

In the concurrent-saturation approach, for a given value of S1, Equations (11) and (12) 

are solved iteratively to determine S1m and S1t, which in turn determine k,1 and k,8 through 

Equation (13). This procedure could be done within the similarity solution, but the require­

ment for such an iteration every time a new value of S1 is encountered (11 times per step of 

the ODE integration, using the Runge-Kutta scheme) would substantially increase computa­

tional effort. A more efficient approach is to use Equations (11), (12), and (13) in a separate 

iterative calculation to generate effective-continuum characteristic curves, then fit these curves 

with simple analytical forms to be used in the similarity solution. This technique, outlined 

below, is described in more detail in Doughty [ 1991 ] . 

Examples of F::m (S1m) and f'ct (S1t) curves are shown in Figure 6. The functional forms 

and parameter values used to calculate F::m and Pet are given in Table 3. Because very little is 

known at present about fracture capillary pressures, we consider two cases which are intended 

to illustrate alternative possible system behavior. Following Pruess et al. [1990a], fracture 

capillary pressure f'ct is parameterized by a simple linear relationship 

(14) 

which is constructed so that Pcm (0) =Pet (0) and Pet (1) = f'ct(l) = 0. Note the Pet = 0 for 
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S11 > Scril; however, the similarity solution algorithm requires non-zero values of dl'cldz for all 

values of S1• This is achieved by replacing Pet =0 for S11 >Scril in Equation (14) with an 

extremely small linearly-varying value, see Table 3. As Figure 6 illustrates, requiring 

Pcm (Stm) =Pet (Stf) implies 0 < S11 < Scril for most values of S1m. In the first case considered, 

Scril < Strf, so liquid will be immobile in the fractures unless S1m = 1. In the second case, 

Scril >Strf, so liquid can be mobile in the fractures for a wide range of S1m values. In compar­

ing these two limiting cases, it is apparent that the Scril < S1rt case is consistent with the 

assumptions-of the sequential-saturation model, whereas the Scril > S1rt case is not. 

Figure 7a shows the effective-continuum capillary pressure Pc (S1) calculated iteratively 

using the functions shown in Figure 6. Figure 7b shows the effective-continuum relative per­

meabilities kr1 (S1) and krg (S1) given by Equation ( 13), using the functional forms and parame­

ter values from Table 3 for krtm and krtt, and the iteratively-determined values of S1m and S1t. 

Figure 7 also shows approximate closed-form expressions (given in Table 4) for the charac­

teristic curves. From Figure 7b it is evident that whether or not Scril < Strf has a large effect 

on krt• which is not surprising considering the large contrast (107
) between matrix and fracture 

permeabilities and the form of Equation (13). In contrast, Figure 7a shows that this small vari'­

ation in Scril does not have a noticeable effect on Pc (S1 ). In the next section it is shown that 

when Scrit < Strf, the closed-form solutions shown in Figure 7 can in fact be produced by the 

sequential-saturation model, validating its use under these conditions. 

Sequential-Saturation Model 

Following Tsang and Pruess [1990], a threshold liquid saturation S1h can be defined as 

the saturation at which the matrix is fully saturated and the fractures completely dry. From 

Equation (12), S1h is given by 

(15) 

When 0 < S1 < S1h , the matrix is partially saturated and the fractures are fully desaturated 

0 < Stm < 1 (16) 

Stt = 0 

Pc = Pcm [o-os)St!S,h]. 
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When S1h < S1 < 1, the matrix is fully saturated and the fractures are partially saturated 

(17) 

0 < S11 < 1 

The parameter <>s is a small number (- 1 0-4) introduced to represent capillary pressure at thres­

hold saturation, S1 = S1h, where the matrix is fully saturated and the fractures are completely 

dry. The capillary pressure given by Equations (16) and (17) is illustrated in Figure 7a for the 

functional forms and parameter values from Table 4. With the proper choice of <>s , it agrees 

within line width to the capillary pressure determined iteratively from Equations (11) and (12). 

Figure 7b shows the relative permeability curves given by Equation (13) using the functional 

forms and parameter values from Table 4 for k,1m and k,11 , and Equations (16) and (17) for 

S1m and S11 • The sequential-saturation model yields nearly identical relative permeability 

curves to the concurrent-saturation model when Scrit <S1,1 . On the other hand, when 

Scrit >S1,1 , the fracture contributes significantly to liquid relative permeability when S1 <S1h 

(S1m < 1). That is, liquid is mobile in the fractures before the matrix is fully saturated, which 

cannot be approximated by the sequential-saturation model. 

Results for Effective Continuum 

Figure 8 shows results of the similarity solution for a problem identical to that shown in 

Figure 5, except that fractures are included using the sequential-saturation model, with 

v1 =0.0018, k1 = 10-11 m2
, and <l>t = 1 (problem parameters are summarized in Tables 2 and 4). 

Liquid saturation S1 remains below the threshold value S1h everywhere, so liquid relative per­

meability is not enhanced by the fractures. Non~theless, the fluid flow pattern changes 

markedly, with a short heat pipe now developing (compare Figures 5b and 8b). The enhanced 

gas-phase permeability not only allows increased gas-phase flow, but it substantially reduces 

the gas-phase pressure gradient, resulting in a large enough liquid-phase pressure gradient to 

drive a small liquid counter-flow (df3t/dz =dPgldz -dPcldz =-dPcldz). Although the heat pipe 

is too short to create a flattening in the temperature profile (compare Figures 1a and 8a), it 

does effectively purge the air component of the gas phase from the near heat source region. 

The much smaller gas-phase pressure greatly decreases Tsat compared to the no-fracture case 
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(180 ~ 100°C), so the location of the de"saturation front (which occurs at T= 'rsaJ changes sub­

stantially, from z =-10 to z =-8.2 (compare Figures 5a and 8a). Because the far-field satura­

tion is constrained by the boundary conditions to remain at S1 = 0.7, the larger dried region is 

balanced by a "condensation halo", or region of increased saturation coincident with the cold 

end of the heat pipe. 

It is of interest to note that for these matrix and fracture volumes and porosities the thres­

hold saturation (S1h = 0.982) is not much higher than the maximum liquid saturation in the con-

densation halo (S1 = 0.964). With slightly different material properties, S,h could easily be 

decreased by a few percent. Our calculations indicate (results not shown) that the condensation 

halo of increased liquid saturation adjusts to remain just below the new value of S1h, producing 

results that look very similar to Figure 8. This occurs because the sharp saturation gradients in 

the condensation halo region give rise to strong capillary forces that drive fluid away from the 

halo in both directions. If S1 > S1h, the strongly increased liquid relative permeability due to 

the fracture component of r,, greatly facilitates such flow, decreasing the saturation back below 

S,h. Only if the threshold saturation is less than the far- field saturation (S,h < S1c) does a sub­

stantially different picture emerge, with the saturation halo effectively dissipated and a much 

stronger counter-flow developing (Figure 9). This problem assumes the same parameters as the 

previous one, but a fracture volume of v1 = 0.05 (much larger than the usual value taken for 

the Yucca Mountain site, v1 =0.0018), resulting in a threshold saturation of S,h =0.65, which 

is less than the far-field value of S10 =0.1. 

In both .Figures 8 and 9 the no-vapor-pressure-lowering results are also shown. Just as in 

Figure 5, vapor pressure lowering causes an extension of two-phase conditions toward zL, and 

a corresponding slight decrease in the slope of the temperature profile for -11 < z < -8.5. With 

vapor pressure lowering, the onset of counter-flow at the hot end of the heat pipe is gradual 

instead of abrupt, identifying an extended zone of evaporation. 

The strong dependence of k,1 on Scrit shown in Figure 7b indicates that the similarity 

solution may be strongly affected by this parameter. Figure 10 shows results of the similarity 

solution for a problem identical to that shown in Figure 8, except that a value of Scrit > S1,1 is 

chosen to represent liquid that is just barely mobile in the fractures (characteristic curves are 

summarized in Table 4). The contrast between Figures 8 and 10 is great. When liquid can 

flow in both the fractures and the matrix an extended counter-flow region forms (Figure lOb) 

coincident with a marked flattening of the temperature profile (Figure lOa), resulting in 
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significantly lower temperature at the heat source. The condensation halo at the cold end of 

the heat pipe is much less pronounced, as liquid can flow away from the heat source more 

easily. The effect of vapor pressure lowering is also shown. In addition to extending the 

two-phase zone. to small values of z, slightly decreasing the slope of the temperature profile 

there, and causing a gradually increasing counter-flow, as in Figures 7 and 8, here vapor pres-

sure lowering actually extends the length of the heat pipe, by keeping S1 > S1rf for a larger 

range of z. 

9. Enhanced Vapor Diffusion due to Pore-Level Phase-Change Effects 

Diffusion between the water-vapor and air components of the gas phase is proportional to 

gradients in air mass fraction as shown in Equation (A8). The diffusion coefficients Da and 

Dw represent the coefficient for diffusion of air in water vapor and the coefficient for diffusion 

of water vapor in air, respectively, in a porous medium. The coefficient Da is given by [Var­

gaftik, 1975; Walker et al., 1981] 

D =tlhS Do Po [T+273.15]
9 

a 'I' g va P 273.15 (18) 

where t is the tortuosity of the porous medium, D~ is the diffusion coefficient of vapor and 

air in a free gas at reference conditions of Po= 1 bar, T0 =0°C, and a::: 2 parameterizes the tem­

perature dependence. Note that t, <j>, and Sg are all factors between 0 and 1; as air diffuses 

through vapor in a porous medium it is impeded by the presence of mineral grains (quantified 

by <1>), the lack of direct connection between pore spaces (t), and the presence of liquid water 

(S8 ). One approach to determining Dw is to preserve the symmetry between air and vapor 

found in free-gas binary diffusion, and define Dw = Da. However, it has been well docu­

mented in the soil physics literature that vapor and air do not behave symmetrically, because 

vapor is condensible, while air is not [e.g., Walker et al., 1981; Jury and Letey, 1979]. 

Diffusing water vapor will not necessarily be blocked by islands of liquid water held in small 

pores and throats; it may condense at the higher pressure end of a liquid island, evaporate at 

the lower pressure end, and continue diffusing. This enhanced diffusion due to pore-level 

phase-change effects has been modeled successfully by using 

D =ADO Po [T+273.15]
9 

w 1-' va P 273.15 (19) 
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with ~ a constant of order one [Jury and Letey, 1979]. A more detailed description of pore­

level phase-change effects is given in Tsang and Pruess [1990] and references therein. It is not 

known at present whether this enhancement of vapor diffusion occurs in deeper consolidated 

geologic media as well as in soils. 

Figure 11 shows the results for a problem that uses ~ = 1 in the vapor diffusion term, but 

is otherwise identical to the with-air problem of Figure 1, with parameters as given in Table 1. 

The Figure 1 problem uses t=0.5 and ')>=0.1. With Sg varying between 0.2 and 1, the t'I>Sg 

group ranges from 0;01 to 0.05. With vapor diffusion away from the heat source enhanced by 

a factor of up to 100, the counter-flow region is greatly extended (compare Figures lb and 

llb). The diffused vapor condenses over an extended range (-8.3<z <-6.8), causing a long, 

gradually weakening heat pipe, with smoother variations in fluid flow (Figures lb and lib), 

temperature, and saturation (Figures 1 a and 11 a) than with Dw = D a. Figure 12 shows the 

advective and diffusive contributions to gas-phase flows for the ~ = 1 case, clearly illustrating 

that the heat pipe extension is due to diffusion rather than advection. Without the enhanced 

vapor diffusion, Q;'-diff would be equal in magnitude and opposite in sign to Q;-diff• and 

would in fact coincide with the Q; -adv curve shown. Note that at this expanded scale, a 

diffusive/advective air counter-flow is visible; but· very small; the overall air flow, 

Q;-adv +Q;-diff' is even smaller. 

10. Knudsen Diffusion Using the Klinkenberg b Factor 

The use of Darcy's law for gas-phase flow implicitly assumes that there are many more 

collisions among gas molecules than between gas molecules and pore walls. For low pressures 

or very small pore spaces this may not be a good approximation, and gas flow actually may be 

greater than predicted by Darcy's law, a phenomenon known as Knudsen diffusion. Labora~ 

tory measurements· have shown that a simple modification to Darcy's law can predict gas-phase 

flow under a wide range of conditions. The intrinsic permeability k appearing in the gas-phase 

mobility Kg =kkrg pgiV.g in Equations (A8) and (A9) is replaced by 

(20) 

where b is a constant property of the medium [Klinkenberg, 1941]. Figure 13 shows the 

results for a problem which uses b =1.6 bars, a value determined in gas-flow experiments on a 

sample of Yucca Mountain tuff by Reda [1987]. Other parameters are identical to the with-air 
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problem of Figure 1 (Table 1). For ambient pressures on the order of 1 bar, this value of b 

causes an increase in effective gas-phase permeability of nearly an order of magnitude, so it is 

not surprising that the pressure decrease over the length of the heat pipe is much smaller with 

Knudsen diffusion than without it (compare Figures 1a and 13a). The fluid counter-flow rates 

are also larger, and more constant than before (Figures 1b and 13b), and the temperature is 

quite uniform over the length of the heat pipe (Figures 1a and 13a), indicating that nearly all 

the heat transfer is convective. 

The effect of Knudsen diffusion is qualitatively similar to the effect of fractures in which 

liquid is immobile (compare Figures 1b and 13b to Figures 4b and 7b). The decreased gas­

phase pressure for small z somewhat enhances liquid-vapor counter-flow, but the length of the 

heat pipe is still limited by the liquid-phase mobility. When both gas-phase and liquid-phase 

mobility are enhanced, as when intrinsic permeability is increased [Doughty and Pruess, 1990, 

Figures 9 and 10] or fractures in which liquid is mobile are present (Figure 10), the counter­

flow is greatly enhanced, generally leading to longer heat pipes and lower temperatures at the 

heat source. 

11. Summary and Conclusions 

The mass and energy transport equations for two-phase fluid and heat flow in one­

dimensional radial geometry in a homogeneous permeable medium depend on time t and dis­

tance r only through the similarity variable 11 = r ;..J(. If initial and boundary conditions can be 

written as functions of 11. then the problem is reduced from a set of partial differential equa­

tions to a set of ordinary differential equations. A practically important case for which this is 

possible is a constant-rate line source at r = 0 and uniform initial conditions. These boundary 

conditions give rise to a two-point boundary value problem which can be solved with an itera­

tive integration scheme. We have applied the similarity variable concept to a problem with a 

linear heat source emplaced in a partially saturated permeable medium, and have discussed the 

effect of various parameters in the context of the proposed nuclear waste repository at Yucca 

Mountain, Nevada, although the solution is certainly not limited to this particular application. 

The similarity solution has been successfully verified by comparison with numerical finite­

difference calculations. 

One of the strengths of the similarity variable approach is the ability to study the effect of 

various transport parameters individually, in a simple geometry. Through this exercise one 
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develops a knowledge of basic physical processes, which will be valuable when doing more 

complicated numerical calculations with realistic geometric detail. The examples in the present 

paper have illustrated the following effects. The presence of air shortens the convective heat­

pipe region, thus increasing the temperature at the heat source. A nonzero value for residual 

liquid saturation has little impact, due to the fonn of the relative permeability cuxves typically 

used to represent geological media. Vapor pressure lowering extends the two-phase region 

toward the heat source, and makes the onset of counter-flow gradual rather than abrupt. A 

fractured/porous medium facilitates heat-pipe development compared to a porous medium, but 

the counter-flow is likely to be small unless liquid is mobile in the fractures. Enhanced vapor 

diffusion due to pore-level phase-change effects alters the character of the counter-flow region, 

creating a gradually weakening heat pipe, with less sharp temperature and saturation profiles. 

Knudsen diffusion fosters heat-pipe development somewhat, but its effect is limited as it only 

enhances gas-phase flow. 

The development of the similarity solution has proceeded in stages. The original version 

considered only one mass component (water), neglected vapor pressure lowering, and required 

residual liquid saturation S1r to be zero [Doughty and Pruess, 1990]. It is interesting to note 

that as more physical realism has been incorporated, some conceptual and numerical problems 

have been eliminated. For example, for no-air problems, as temperature decreases below the 

saturation temperature, a purely liquid phase evolves which has an extremely small compressi­

bility. This requires that small integration steps be used, and since pressure signals propagate 

long distances, a longer integration interval is needed as well. Furthennore, the phase transi­

tion from two-phase to single phase requires some special considerations as the primary vari­

able switches from saturation to temperature. With air present, two-phase conditions persist as 

the temperature drops below the saturation temperature, eliminating these difficulties. When 

vapor pressure lowering is included, there is no need to distinguish between S1 < S1r and 

S1 > S1ro simplifying the conceptual development of the solution. Additionally, the sharp kink 

in the saturation profile at S1r for the no-vapor-pressure-lowering case (dS1 ldz = 0 for S1 < S1r; 

dS11dz =oo for S1 >S1r) becomes a smooth transition when vapor pressure lowering is included, 

greatly easing step-size requirements for the numerical integration. Fonnation of a single­

phase gas region near the heat source may be suppressed if vapor pressure lowering is strong 

enough, eliminating the need for any phase transitions or primary variable switching. 
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The similarity solution results presented here were all calculated using the computer pro­

gram SIMSOL, which has been fully documented in a laboratory report [Doughty, 1991]. 

Plans for future work include allowing the inner boundary condition to represent either a heat 

source or sink, and/or a mass source or sink. This will greatly enhance the applicability of the 

similarity solution to practical problems, and require only minimal changes to the code. An 

interesting possible enhancement would be the inclusion of yet another mass component. 

Components with practical applications include non-condensible gases, (e.g., CO:z), conserva­

tive tracers, or volatile organic solvents (such as TCE). Non-aqueous phase liquids (e.g., 

hydrocarbon compounds) could also be treated by generalyzing the two-phase equilibrium con­

ditions to _three phases. 

Acknowledgement 

The careful review of this work by R. Falta and M. O'Sullivan is greatly appreciated. 

This work was carried out under U.S. Department of Energy Contract No. DE-AC03-

76SF00098, through the Yucca Mountain Project, Sandia National Laboratories, under Docu­

ment No. SNL 54-1064; numerical computations were supported by the Director, Office of 

Energy Research, Office of Basic Energy Sciences, Engineering and Geosciences Division, 

U.S. Department of Energy. 



- 24-

References 

Corey, A. T., 1954. The interrelation between gas and oil relative permeabilities. Producers 
Monthly Nov., 38-41. 

Doughty, C., 1991. SIMSOL Users Guide. Report LBL-28384, Lawrence Berkeley Lab., 
Berkeley, Calif. 

Doughty, C. and Pruess, K., 1990. A similarity solution for two-phase fluid and heat flow near 
high-level nuclear waste packages emplaced in porous media. Int. J. Heat Mass Transfer 
33(6), 1205-1222. 

Firoozabadi, A. and Hauge, J., 1990. Capillary pressure in fractured porous media. J. 
Petroleum Technology June; 784-791. 

Grant, M. A., 1979. Quasi-analytic solutions for two-phase flow near a discharging well. 
Report 86, Applied Mathematics Division, Dept. of Scientific and Industrial Research, 
Wellington, New Zealand. 

Hirschfelder, J. 0., Curtiss, C. F., and Bird, R. B., 1954. Molecular Theory of Gases and 
Liquids. John Wiley and Sons, New York. 

International Formulation Committee, 1967. A formulation of the thermodynamic properties of 
ordinary water substance. IFC Secretariat, Dusseldorf; Germany. 

Jennings, J. D. and Udell, K. S., 1985. The heat pipe effect in heterogeneous parous media. 
In. Proc. 23rd ASME/A!Che National Heat Transfer Conf, HTD Vol. 46, Heat transfer in 
porous media and particulate flows, American Society of Mechanical Engineers. 

Jury, W. A. and Letey, J., Jr., 1979~ Water vapor movement in soil: reconciliation of theory 
and experiment. Soil Sci. Soc. Am. J. 43(5), 823-827. 

Klinkenberg, L. J., 1941. The permeability of porous media to liquids and gases. Drilling and 
Production Practice, American Petroleum Inst., 200-213. 

Loomis, A. G., 1928. Solubilities of gases in water. In International Critical Tables, E. W. 
Washburn, ed., McGraw Hill, New York, Vol. III, pp. 255-257. 

Narasimhan, T. N. and Witherspoon, P. A., 1976. An integrated finite~difference method for· 
analyzing fluid flow in- porous media. Water Reso_ur. Res. 12(1), 57-64. 

O'Sullivan, M., J., 1981. A similarity method for geothermal well test analysis. Water 
Resour. Res. 17(2), 390-398. 

Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T., 1986. Numerical 
Recipes: The art of scientific computing. Cambridge University Press, New Rochelle, 
New York, Ch. 16. 

Pruess, K., 1987. TOUGH user's guide. Report NUREG/CR-4645, Nuclear Regulatory Com­
mission, Washington, D.C. (Also avail. as Lawrence Berkeley Laboratory Report LBL-



- 25 -

20700.) 

Pruess, K., 1990. TOUGH2-A general-purpose numerical simulator for multiphase fluid and 
heat flow. Report LBL-29400, Lawrence Berkeley Lab., Berkeley, Calif. 

Pruess, K. and Tsang, Y. W., 1990. On two-phase relative permeability and capillary pressure 
of rough-walled fractures. Water Resour. Res. 26(9),1915-1926. 

Pruess, K, Tsang, Y. W., and Wang, J. S. Y., 1990a. On thermohydrological conditions near 
high-level nuclear wastes emplaced in partially saturated fractured tuff. Part 1. Simula­
tion studies with explicit consideration of fracture effects. Water Resour. Res. 26(6), 
1235-1248. 

Pruess, K., Wang, J. S. Y., and Tsang, Y. W., 1990b. On thermohydrological conditions near 
high-level nuclear wastes emplaced in partially saturated fractured tuff. Part 2 .. Effective 
continuum approximation. Water Resour. Res. 26(6), 1249-1261. 

Reda, D. C., 1987. Slip-flow experiments in welded tuff: the Knudsen diffusion problem. In 
Coupled processes associated with nuclear waste repositories, C.-F. Tsang, ed., Academic 
Press, Orlando, Florida, pp. 485-494. 

Rulon, J., Bodvarsson, G. S., Montazer, P., 1986. Preliminary numerical simulations of 
groundwater flow in the unsaturated zone, Yucca Mountain, Nevada. Report LBL-20553, 
Lawrence Berkeley Lab., Berkeley, Calif. 

Somerton, W. H., Keese, J. A., and Chu, S. L., 1973. Thermal behavior of unconsolidated oil 
sands. Paper SPE-4506, 48th Annual Fall Meeting of the Society of Petroleum Engineers, 
Las Vegas, Nevada. 

Somerton, W. H., El-Shaarani, A. H., and Mobarak, S. M., 1974. High temperature behavior 
of rocks associated with geothermal type reservoirs. Paper SPE-4897, 44th Annual Cali­
fornia Regional Meeting of the Society of Petroleum Engineers, San Francisco, Calif. 

Tsang, Y. W. and Pruess, K., 1990. Further modeling of gas movement and moisture migra­
tion at Yucca Mountain, Nevada. Report LBL-29127, Lawrence Berkeley Lab., Berkeley, 
Calif. 

van Genuchten, M. Th., 1980. A closed-form equation for predicting the hydraulic conduc­
tivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892-898. 

Vargaftik, N. B., 1975. Tables on the thermophysical properties of liquids and gases, 2nd edi­
tion. John Wiley and Sons, New York. 

Verma, A. K., Pruess, K., Tsang, C.-F., and Witherspoon, P. A., 1985. A study of two-phase 
concurrent flow of steam and water in an unconsolidated porous medium. In Proc. 23rd 
ASME/A!Che National Heat Transfer Conf, HTD Vol. 46, Heat transfer in porous media 
and particulate flows, pp. 135-143. American Society of Mechanical Engineers. 

Walker, W. R., Sabey, J. D., and Hampton, D. R., 1981. Studies of heat transfer and water 
migration in soils, Final Report. Department of Agricultural and Chemical Engineering, 



- 26-

Colorado State University, Fort Collins, CO. 

Wang, J. S. Y. and Narasimhan, T. N., 1985. Hydrologic mechanisms governing fluid flow in 
a partially saturated, fractured, porous medium. Water Resour. Res. 21(12), 1861-1874. 



- 27-

Appendix A: Governing Equations and Thermophysical Properties 

Conservation equations in radial geometry 

aMm 1 aQm 
--+---=0 

at 21tr ar 
for m = w, a, e (Al) 

Accumulation terms 

for m = w, a (A2) 

(A3) 

Flux terms 

Qm = Qt+ Q;' 

= _2xr([ kk,,::xr ~] + [ kk,,::x;- ~ + DmP, a:!]] for m = w, a (A4) 

Qe = L hjQj - K21tr aT, 
j=l ,g ar 

(A5) 

m=w,a 

Closure conditions 

Xt +X;'= 1 for m = w, a (A6) 

s1 + Sg = 1 

With the substitution z = ln(11) = ln(r ;..J( ), the partial differential equations become ordi­

nary differential equations. The chain rule is then used to express the governing equations in 

terms of derivatives of the primary variables. For example, for two-phase conditions the accu­

mulation terms become 

for m = w, a , e. (A7) 

The flux terms become 

21t [ m[ aPe] m ax;] df'g [ m aPe ] dSg - K1X1 1+- +K X +D p ----- K1X1--aP. g g m g aP dz as dz g g - g 
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[ 
aPc ax;] dPa 

- KIXIm_ + D p -- --aP. m g aP dz a a 
for m = w, a (A8) 

(A9) 

Equations (A8) and (A9) are solved for df>g /dz, dSg ldz, and cJPa ldz, which are then substituted 

into Equation (A 7) to detennine dQwldz, dQa /dz, and dQeldz. This produces a set of six 

coupled first-order ODEs in the fonn required for numerical integration. 

The constitutive relationships used to define the thennodynamic parameters in tenns of 

the primary variables are taken from the numerical simulator TOUGH [Pruess, 1987, 1990]. 

Steam tables, given by the International Fonnulation Committee [IFC, 1967] provide 

closed-fonn expressions for p, u, h, and jl, as functions of P and T for the water component, 

as well as the surface tension of water (used in Pc ), and vapor pressure Psat as functions ofT. 

Vapor pressure lowering is detennined using the Kelvin equation as described in Section 7. 

Air is treated as an ideal gas, with Henry's law to detennine the solubility of air in liquid 

water 

(A10) 

where KH is Henry's constant, and M H
2
o and M air are the molecular weights of water and air, 

respectively. Henry's constant is temperature-dependent; however, because air solubility in 

water is small we neglect this temperature dependence. The value KH = 1010 Pa used here is 

accurate to within 10% in the temperature range from 40°C to 100°C [Loomis, 1928]. Viscos­

ity of the vapor-air mixture making up the gas phase is computed from a fonnJ.!lation given by 

Hirschfelder et al. [1954], but using steam-table values for vapor viscosity instead of approxi­

mations from kinetic gas theory. 

Gas-phase penneability can depend on pressure through the Klinkenberg [ 1941] relation­

ship kg =kf"(1 +b!P). Relative penneabilities k,1 and k,g and capillary pressure Pc are func­

tions of liquid and gas saturation S1 and Sg; an example is shown in Table 1. "Double 
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hump" curves (Figure ?b) can be used for approximate representation of flow in fractured­

porous media. Vapor diffusivity Dw can be enhanced to represent pore-level phase change 

effects (Section 9). Thermal conductivity K may vary with liquid saturation, as determined by 

Somerton et al. [1973, 1974] from laboratory experiments 

(All) 

where K
8 

and K1 are the values of thermal conductivity for dry and liquid-saturated rock, 

respectively. 

Porosity may depend on pressure and temperature: 

(A12) 

where ~s and as are constant rock compressibility and rock expansivity, respectively, and <l>o is 

the value of porosity for Pg =Po and T = T0. 

Rock density Ps and rock specific heat cs are assumed to be constants. 
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Appendix B: Modification of the· van Genuchten Capillary Pressure Function for Small 

Values of Liquid Saturation 

The van Genuchten [1980] fonnulation for capillary pressure as a function of liquid 

saturation is given by 

(B1) 

where S • = (S1-81r )I(Sts -S1r ), S1r and Sts are the saturations at which liquid is fully immobile 

and fully mobile, respectively, and Po and A are· parameters used to fit the functional fonn to 

observed data. The parameter A takes a value between 0 and 1. Equation (B 1) has the proper­

ties that s• must be non-negative, and that as s• --+ 0, Pc --+ -oo. Infinite quantities are not 

well-suited to computer representation, and if S1 < S1ro S • will be negative, so Equation (B 1) 

has been modified for small values of liquid saturation. A parameter Pmax is defined as the 

maximum strength of capillary pressure to be calculated with Equation (B I); Equation (B 1) is 

then inverted to detennine SP, the value of S • that gives Pc = Pmax· The range of application of 

Equation (B 1) is thus restricted to s• > SP and new bounded functions are introduced for 

smaller values of S • . 

(B2) 

(B3) 

s* < o (B4) 

Together, Equations (B2), (B3)t, and (B4) provide a continuous, differentiable capillary pres­

sure function, which remains finite as S * --+ 0 and below. By choosing a large value· of Pmax• 

SP is small and the van Genuchten capillary pressure function is used for most of the range of 

S1• · For the similarity solution it is also necessary that the capillary pressure have a nonzero 

derivative throughout the two-phase zone; this requires that Sts =I in the definition of s*. 

tEquation (B3) was originally developed for numerical simulations of groundwater flow at Yucca Mouna­
tin [Rulon et al., 1986]. 
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Table I. Parameters for problems illustrated in Figures 1, 2, 3, 11, 12, and 13. Parameters are 

modified from typical Yucca Mountain values, see text. 

Boundary and Initial Conditions 

z = ln(ll) = ln(r J..fi) = _,., Qeo=667 W/m* 

Qwo=O 

Qao=Ot 

z = ln(ll) = ln(r J..fi) = +oo Po= 1 bar 

T0= 18°C 

slo=0.8t 

Material Properties 

k = 20><10-15 m2 
K = 2 W/m K 

$ = 0.10 't = 0.5 

Ps = 2550 kg/m3 D~ = 2.6x10-s m2/s 

C9 = 800 J/kg K 9=0 

Characteristic Cuntes:j: 

k,,(S,) = ~[1-(1-(S.) 11Ai'r S1, = 9.6x10-4 

k,8 (S1) = 1 -k,1 A.= 0.45 

[ r-A Pc(S,) =-Po (S•)-t!A_ 1 Po = 0.125 bars 

s• = (S1-S1,)1(1-S1,) Pmax = 5000 bars§ 

*This thermal power corresponds to high-level nuclear wastes approximately 10 years old. 

tin Figure 1, used for with-air problem only. 

:j:Functional forms of van Genuchten [1980]; Pc has been modified slightly, see Appendix B. 

§For S • ~ 0, Pc (S1) would go to _..., but is limited to the order of -Pmax (see Appendix B). 
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Table 2. Parameters for problems illustrated in Figures 5, 8, 9, and 10. Parameters are typical 

of Yucca Mountain values [Tsang and Pruess, 1990]. 

Boundary and Initial Conditions 

z =ln(ll)=ln(r/-Jl)=-oo Qeo=667 W/m* 

Qwo=O 

Qao=O 

z = ln(ll) = In(r 1-it) = +oo Po= 1 bar 

T0 =22°C. 

s,o=0.7 

Material Properties 

km = 1.9x10-18 m2 
't = 0.25 

<Pm = 0.10 D2z = 2.14x10-5 m2/s 

p s = 2480 kg/m3 a= 2.334 

Cs = 840 J/kg K kl = 10-11 m2 

1C = 1.9-2.34 W/m K <PI = 1.0 
VI = 0.0018t 

Characteristic Curves:j: 

krtm (Si) = ~[ 1- (1- (S* ) 1 /).)~ 
2 

Str = 8.0lx10_2. 

krgm (St) = 1-krt A.= 0.4438 [ rk Pcm (St) =-Po (S* )-IIA- 1 - Pa=l7.3 

s• = (St-Str)/(1-Str) Pmax = 5000 bars§ 

*This thermal power corresponds to high-level nuclear wastes approximately 10 years old. 

tV1 =0 for Figure 5; v1 =0.05 for Figure 9. 

:j:Functional forms of van Genuchten [1980]; Pcm has been modified slightly, see Appendix B. 

For Figure 5, which shows results for a no-fracture problem (V1 = 0), these characteristic 

curves are used directly. For Figures 8, 9, and 10, which show results for fracture/matrix 

problems, the characteristic curves given here refer to the matrix; Table 4 describes the com­

plete effective-cOntinuum characteristic curves. 

§For ·s • ~ 0, Pc (S1) would go to -oo, but is limited to the order of -Pmax (see Appendix B). 

.. 
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Table 3. Characteristic curves to use in iterative solution of Equations (11), (12), and (13). 

Pcm(S1m) and Pc1 (S11 ) are shown in Figure 6. Modified from Pruess et al. [1990a]. 

Pc!(Slf) 

from Table 2 

= Pcm (0) (1 - Sl- IScriJ) 

= Pcm (0)-c- -----'''-::--0 l-SI'' l 
ScriJ 1-ScriJ + Oc 

with Pcm from Table 2, Scrit = 0.0099 or 0.01002, oc = 10-9 

from Table 2 

= (Slf - Slrf )1(1 - Slrf) 

Slrf =0.01 
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Table 4. Approximate closed-fonn characteristic curves shown in Figure-7. 

Source Application Function 

Sequential Figs. 8, 9, 10 Pc =?em [o- Bs)S,ISth] S, <S1h 

Saturation 
1-s, 

·PcmO-Os) s, >Sth = 
1-Sth 

Model with Pcm from Table 2, Os = 10-4 

Sequential· Figs. 8, 9 Use k,1, k,g from Eq. (13), with 

Saturation krlm =k,1m(S,IS1h) from Table 2 s, <S1h 

Model krlf =0 

krlm = 1 S, >S1h 

krlf =(S1 -S1h)I(1-S1h) 

Alternate Fig. 10 f,, =k[(S1 -S,,)I(Sth -St,)J~ s, <Sth 

Curve Fit,. =k +(1-k)(S1 -S1h)l(l-Sth) s, >Sth 

Scril >Sirf 
• A . -4 • A . 

with k =0.55x10 , t=0.8, S1, =0.13 

k,g = 1-f,, 

"' 
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Figure 1. Results of the similarity solution for the with-air and no-air problems described in 
Table 1. 
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Figure 2. The effect oLincreasing the amount of air at zL on the no-air problem shown in Fig­
ure 1 and described in Table 1. The arrows show the direction of· change as Pa (zL) is 
increased from 0 to 10-41 to 10-26 bars. For comparison, for the with-air problem of Figure 1, 
Pa (zL) = 10-24 bars. 
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Figure 3. A comparison between results of the similarity solution and the numerical model 
TOUGH2 for the with-air problem described in Table 1. 
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Figure 5. Results of the similarity solution for problems with and without vapor pressure 
lowering, described in Table 2. Note the change of scale for mass flow rate! 
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Figure 6. Matrix capillary pressure as a function of matrix liquid saturation, for the functional 
forms and parameter values given in Table 2 (6a), and fracture capillary pressure as a function 
of fracture liquid saturation, for the functional forms and parameter values given in Table 3 
(6b). Note that the S1 scale is linear, with the saturation ranges 0-0.05 and 0.95-1 expanded 
to enable more detail to be shown. 
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Figure 7. Effective-continuum capillary pressure Pc (S1) (7a) and relative penneabilities k,1 and 

k,
8 

(7b) obtained with (i) an iterative solution using the functions shown in Figure 6 and given 
in Table 3, and (ii) the approximate closed-fonn solutions given in Table 4. Note that the S1 

scale is linear, with the saturation ranges ()...{).05 and 0.95-1 expanded to enable more detail to 
be shown. 
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Figure 8. Results of the similarity solution for an effective continuum using the sequential-
saturation model, with properties given in Tables 2 and 4. The peak liquid saturation in the 
halo (0.964) is less than the threshold saturation (S1h =0.982), which is greater than far-field 
liquid saturation (S10 = 0. 7). Results without vapor pressure lowering are also shown. 
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Figure 9. Results of the similarity solution for the same problem as shown in Figure 8, but 
with the fracture volume increased to v1 =0.05, so that S,h =0.65 is less than S10 =0.7. Results 

without vapor pressure lowering are also shown. 
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Figure 10. Results of the similarity solution for an effective continuum using the closed-form 
approximation to the concurrent-saturation relative permeability curves for Scril > Srrt, with pro-
perties given in Tables 2 and 4. Results without vapor pressure lowering are also shown. 
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Figure 11. Results of the similarity solution for a problem with enhanced vapor diffusion 
(~ = 1 ), with other properties given in Table 1. 



-46-

w 
.-. ~Og-adv .. 
E 2 
en --C> 
~ 
~ 

10 
w 

~ Q g- diff -
CD 1 
+-' 
ctS 
"-

~ 
0 a 

....... Og ~adv 
en 
CJ) 

ctS 0 
~ 

Q~- diff 

-11 -10 -9 -8 -7 -6 -5 
z 

XBL.9012-6006 

Figure 12 Diffusive (Qg-diff) and advective (Qg-adv) components of the gas-phase flows '-: 
shown in Figure 11. 
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Figure 13. Results of the similarity solution for a problem with Knudsen diffusion given by 
b = 7.6 bars, with other properties given in Table 1. 
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