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Abstract: The role of the gastric mucosal microbiome in Helicobacter pylori-negative gastric cancer (GC)
remains unclear. Therefore, we aimed to characterize the microbial alterations and host inflammatory
cytokine responses in H. pylori-negative GC. Gastric mucosal samples were obtained from 137 H.
pylori-negative patients with GC (n = 45) and controls (chronic gastritis or intestinal metaplasia, n = 92).
We performed 16S rRNA gene sequencing (n = 67), a quantitative reverse transcription-polymerase
chain reaction to determine the relative mRNA expression levels of TNF (tumor necrosis factor), IL1B
(interleukin 1 beta), IL6 (interleukin 6), CXCL8 (C-X-C motif chemokine ligand 8), IL10 (interleukin
10), IL17A (interleukin 17A), TGFB1 (transforming growth factor beta 1) (n = 113), and the correlation
analysis between sequencing and expression data (n = 47). Gastric mucosal microbiota in patients
with GC showed reduced diversity and a significantly different composition compared to that of
the controls. Lacticaseibacillus was significantly enriched, while Haemophilus and Campylobacter were
depleted in the cancer group compared to the control group. These taxa could distinguish the two
groups in a random forest algorithm. Moreover, the combined relative abundance of these taxa, a GC
microbiome index, significantly correlated with gastric mucosal IL1B expression, which was elevated
in the cancer group. Overall, altered gastric mucosal microbiota was found to be associated with
increased mucosal IL1B expression in H. pylori-negative GC.

Keywords: stomach neoplasms; gastric microbiota; 16S rRNA; cytokines; interleukin-1beta

1. Introduction

Gastric cancer (GC) remains a major disease burden that was responsible for more
than 1 million new patients and 769,000 deaths globally in 2020 [1]. GC is an inflammation-
associated cancer linked to a pathogenic bacterium [2]. Chronic Helicobacter pylori infection
induces chronic gastritis (CG), develops pre-malignant lesions including mucosal atrophy
and intestinal metaplasia (IM), and eventually causes GC [3]. H. pylori colonization is
sometimes lost during the later stages of this process, but the risk of developing GC persists
in these H. pylori-negative patients [4]. Although H. pylori eradication reduces the risk of
GC [5–7], some patients continue to develop GC. Hence, gastric microbiota other than H.
pylori may play an important role in GC occurrence.
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Recent studies have reported that altered gastric microbiota are associated with GC
using 16S rRNA gene sequencing [8–13]. Gastric microbial diversity is lower in patients
with GC than that in controls [8–10]. Several bacterial taxa are enriched or depleted in the
gastric microbiota [8–10]. However, because H. pylori has a significant impact on the gastric
microbiome composition, a separate analysis may be necessary to evaluate the gastric
microbiome alterations in H. pylori-negative GC.

Chronic H. pylori infection induces excessive and chronic production of pro-inflammatory
cytokines, such as IL1B (interleukin 1 beta), IL6 (interleukin 6), CXCL8 (C-X-C motif chemokine
ligand 8), which are thought to promote the development and progression of GC [14]. Similarly,
in H. pylori-negative patients, other microbiota may induce pro-inflammatory cytokines and
possibly promote GC development. However, our understanding of the interactions between
gastric microbiota and ongoing inflammation in H. pylori-negative patients is still limited.

Therefore, in this study, we aimed to characterize the microbial alterations in H. pylori-
negative patients with GC compared to those in patients with CG and IM. We also evaluated
the correlation between microbial alterations and the host inflammatory cytokine responses
in these patients.

2. Materials and Methods
2.1. Study Participants and Sample Collection

In this study, we included patients with CG, IM, or GC aged between 19 and 75 years
who underwent upper endoscopy between April, 2020–April, 2021 at Kangbuk Samsung
Hospital, Seoul, Korea. We excluded (1) patients who took proton-pump inhibitors, H2
receptor antagonists, mucoprotective agents, antacids, probiotics, or antibiotics within
1 month, (2) patients who underwent H. pylori eradication within 1 year to exclude the
residual effect of recent H. pylori infection, and (3) patients who underwent gastrectomy.

Demographic data, including age, sex, and body mass index (BMI), were collected
from the patients. During endoscopy, gastric mucosal tissues were taken from the greater
curvature side of the mid-antrum of the stomach for microbiome and RNA analyses,
immediately frozen at −20 ◦C, and stored at −70 ◦C for 6 h. To avoid contamination, a
disinfected endoscope was used according to the standard sterilization protocol [15,16].
Patients fasted overnight and rinsed their mouths before endoscopy. An experienced
gastrointestinal endoscopist performed the procedure using a single-channel endoscope
(GIF-H290; Olympus Optical, Tokyo, Japan). Endoscopic biopsy samples were obtained
before any fluid was suctioned through the scope. Endoscopic procedure included detailed
observation of esophageal, gastric, and duodenal lesions. Gastric mucosal atrophy was
evaluated endoscopically. Gastric IM was evaluated by histological evaluation using
endoscopic biopsy tissues taken from both the lesser curvature side of the mid-antrum
and the lesser curvature side of the mid-body of the stomach. H. pylori infection was
evaluated by histological evaluation with modified Giemsa staining and a rapid urease test,
and was considered negative when both tests were negative. This study was approved
by the Institutional Review Board of Kangbuk Samsung Hospital (KBSMC 2020-03-027).
Written informed consent was obtained from all the patients prior to their participation in
this study.

2.2. DNA Extraction from Gastric Biopsy Samples and 16S rRNA Gene Sequencing

Total DNA was extracted from gastric biopsy tissues using the DNeasy PowerSoil
Kit (Qiagen, Hilden, Germany), according to the manufacturer’s instructions. V3 and V4
regions of the bacterial 16S rRNA gene were amplified using the universal primers 337F to
805R to construct sequencing libraries that underwent 2 × 300 bp paired-end sequencing
on the Illumina 16S MiSeq platform (Illumina Inc., San Diego, CA, USA). A negative control
was used for DNA extraction and 16S rRNA gene amplification, and no band was observed
in 0.2% agarose gel after 30 cycles of amplification.
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2.3. Sequence Data Processing

Raw sequence data were processed using Quantitative Insights Into Microbial Ecology
2 (QIIME2) 2021.4. The DADA2 plugin was used to truncate and trim the low-quality base
calls of demultiplexed reads. After quality control, the reads were denoised and generated
as amplicon sequence variants (ASVs). After paired-end joining and chimera removal,
3,014,910 reads (mean per sample = 44,999 ± 21,104 SD) were found in 67 samples. Each
ASV was taxonomically assigned using the National Center for Biotechnology Information
(NCBI) nucleotide and taxonomy databases (NCBI-RefSeq; accessed on 9 June 2021) using
RESCRIPt within QIIME2.

Final sample meta-data, ASVs, and taxonomy tables were exported from QIIME2 and
further processed using MetagenomeAnalyst (accessed on 10 August 2022) [17]. Prior to
conducting downstream analysis, the sequences were filtered to remove the singleton reads
that were unassigned at the phylum level. Finally, 1014 ASVs remained in 67 samples.

2.4. Microbial Profiling

For the α-diversity analysis, we rarefied the sequence depth to 6814 read counts in all
samples. Sample completeness plateaued at approximately 1400 reads in the rarefaction
curves (Figure S1). Alpha diversity was analyzed using the phyloseq package in Microbiome-
Analyst. Alpha diversity included the total number of species (richness), abundance of the
species (evenness), or measures that consider both richness and evenness. We calculated
richness using the actual number of unique taxa observed in each sample (observed index)
and used the Shannon index to describe both richness and evenness.

For downstream analysis, we additionally filtered rare features so that the complexity
was reduced while the integrity was preserved [18]. In the MicrobiomeAnalyst data
filtering step, we used the settings of “Low count filter” with a minimum count of 4 and
10% prevalence in samples, and the “percentage to remove” option under “Low variance
filter” set to 10% based on the interquartile range. A total of 905 low-abundance ASVs and
11 low-variance ASVs were removed, leaving behind 98 ASVs.

The dissimilarity between the two groups was estimated using the phylogenetic and
non-phylogenetic β-diversity indices. UniFrac distance was used as the phylogenetic
index representing the absence or presence of ASVs for weighted UniFrac distance and
the abundance of ASVs for unweighted UniFrac distance. Jaccard distance and Bray–
Crutis dissimilarities were used as the non-phylogenetic indices, representing the absence
or presence and abundance of ASVs, respectively. Permutational multivariate analysis
of variance (PERMANOVA) was conducted with 999 random permutations to test the
significance of the differences between the groups.

We also conducted hierarchical cluster analysis. Each sample began as a separate
cluster, and the algorithm combined them until all samples belonged to one cluster. We
used the default parameters, “Euclidean” for distance measure and “Ward” for cluster-
ing algorithm, to perform hierarchical clustering. In MicrobiomeAnalyst, the results of
clustering analysis are shown as a heatmap using the hclust function in the package stat.

The differences between the two groups in the relative abundances of taxa ranging
from the phylum to species levels were evaluated using the analysis of comparison of
microbiomes (ANCOM) 2 (https://github.com/FrederickHuangLin/ANCOM; accessed
on 23 September 2022). The significant findings in this analysis were validated using
generalized linear models implemented in multivariate association with linear models
(MaAsLin2). Both analyses were conducted using R (version 4.0.2; R Foundation for
Statistical Computing, Vienna, Austria). The taxa-wise false discovery rate (FDR) adjusted
p value using Benjamini-Hochberg adjustment for the multiple testing correction method
was used for the ANCOM2. An ANCOM2 detection level ≥ 0.7 was considered significant
as it indicates that the ratios of the taxon to at least 70% of other taxa were detected to
be significantly different (FDR, q < 0.10) between the cancer and control groups. The
significance threshold of the detection level of 0.7 was recommended by the author of
ANCOM2 as a common choice [19]. For MaAsLin2 models, the control group was used as

https://github.com/FrederickHuangLin/ANCOM
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the reference group, and the FDR correction was not used because these models were used
only for the validation of the significant findings in the analysis using ANCOM2. Both
analyses using ANCOM2 and MaAsLin2 were adjusted for potential covariates of age, sex,
and BMI.

We used linear discriminant analysis effect size (LEfSe) to identify the potential bacte-
rial markers for GC. Only taxa with a linear discriminant analysis (LDA) score (log10) >
3 (p < 0.05) were considered to be significantly enriched. We ranked the bacteria related
to GC according to their importance in the prediction of GC using random forest (RF), a
machine learning method. The importance score was assigned by increased error when the
feature was removed from the prediction model. The data were further transformed to a
centered log ratio before applying the RF classification algorithm. We used a parameter of
2000 trees to predict from and seven predictors to try (mtry) with the randomness setting
left in the RF algorithm within MicrobiomeAnalyst. The overall error rate and error rate for
each group were calculated based on the results of each run.

2.5. RNA Extraction and Quantitative Reverse Transcription-Polymerase Chain Reaction
(RT-qPCR)

Total RNA samples were prepared using the RNeasy Plus Micro Kit (#74034; Qiagen,
Hilden, Germany). Briefly, gastric mucosa tissues were homogenized in Buffer RLT Plus
using the MagNA Lyser homogenizer (Roche, Mannheim, Germany). The lysates were
centrifuged at full speed for 3 min, the supernatant was carefully transferred to a gDNA
Eliminator spin column, and RNA was isolated according to the manufacturer’s protocol.
mRNA was reverse-transcribed using the High-Capacity RNA-to-cDNA Kit (Applied
Biosystems, San Diego, CA, USA), and qPCR was performed using a specific primer and
SensiFAST SYBR Lo-ROX Kit (Bioline, Taunton, MA, USA) on a LightCycler 480 System
(Roche, Mannheim, Germany). Primer sequences used in this study are listed in Table S1.
The relative mRNA expression of each gene was normalized to that of the housekeeping
gene (L32) and calculated using the 2−∆∆CT method.

2.6. Correlation between the Altered Gastric Microbiome and Cytokine Response

Correlations between the microbial profiles, including α-diversity indices and relative
abundances of individual taxa, and the relative mRNA expression levels of pro-inflammatory
cytokines, were evaluated using Pearson’s correlation test after log-transformation. To evaluate
the role of key taxa in the prediction of GC, we combined the three most important taxa in
the RF model into an index by adding the log-transformed relative abundance of taxa in a
positive correlation with GC and subtracting those in a negative correlation. We then evaluated
the correlation between this index and the relative cytokine expression. Statistical analyses of
cytokine expression and correlation analyses were performed using R. The FDR-corrected q
value was also used for the results of mRNA expression and correlation analyses.

3. Results
3.1. Study Demographics

This study included 137 H. pylori-negative patients, comprising 45 patients with GC
(cancer group) and 92 controls (49 patients with CG and 43 with IM) (Figure 1). Patients in
the cancer group were significantly older and more likely to be male and obese than those
in the control group (Table 1). This study was conducted in three steps: First, 16S rRNA
gene sequencing analysis was performed using 74 samples. After excluding seven samples
with a relative abundance of H. pylori > 0.01, which was considered a false-negative result
for H. pylori [20], 67 samples were subjected to microbial profiling. Second, 113 samples
were used for RT-qPCR analysis. Finally, 47 samples with both microbiome profiles and
inflammatory cytokine expression data were analyzed for their correlations.
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Table 1. Demographics of the patients included in this study.

Gastric Cancer (n = 45) Control (n = 92) p Value

Age, years, mean ± SD 62.9 ± 10.2 50.7 ± 13.6 <0.001
Sex, n (%) 0.048

Female 14 (31.1) 45 (48.9)
Male 31 (68.9) 47 (51.1)

Body mass index, n (%) 0.016
<25 kg/m2 24 (53.3) 67 (73.6)
≥25 kg/m2 21 (46.7) 24 (26.4)

Gastric mucosal atrophy, n (%) <0.001
Absent 2 (4.4) 44 (47.8)
Present 43 (95.6) 48 (52.2)

Intestinal metaplasia, n (%) <0.001
Absent 4 (8.9) 49 (53.3)
Present 41 (91.1) 43 (46.7)

Student’s t-test and chi-square test were used to compare the two groups. SD, standard deviation.

3.2. Microbial Diversity Associated with GC

First, we analyzed the α-diversity to examine the differences in gastric microbial
richness and evenness between the cancer and controls groups. Patients with GC had lower
microbial richness than the controls, as indicated by the observed ASVs (Mann–Whitney U
test, p = 0.011; Figure 2A). Considering both richness and evenness, there was no difference
in the Shannon index between the two groups (p = 0.090; Figure 2B). These results were
consistent after additional adjustments for age, sex, and BMI (analysis of covariance,
p = 0.047 and p = 0.898, respectively).

When the gastric mucosal microbial communities were compared (β-diversity) using
PERMANOVA, differences in the overall gastric microbiome composition between cancer
and control groups were observed in the phylogenetic indices: weighted UniFrac distance
(PERMANOVA, R2 = 0.047, p = 0.019) and unweighted UniFrac distance
(R2 = 0.028, p = 0.047) (Figure 3A,B). Principal coordinate analysis visually showed a
shift in the distribution of cancer compared to that in the control, which was consistent
with significant differences revealed by PERMANOVA. No statistically significant differ-
ences were observed between the two groups using non-phylogenetic β-diversity indices,
including Bray–Curtis (R2 = 0.025, p = 0.062) and Jaccard distance (R2 = 0.021, p = 0.082)
(Figure 3C,D).
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Figure 3. Different structures of the overall gastric microbiome composition (β-diversity) be-
tween cancer and control groups in principal coordinate analysis. (A) Weighted UniFrac distance,
(B) unweighted UniFrac distance, (C) Bray–Curtis dissimilarity, and (D) Jaccard distance. The effect
size and significance were assessed using permutation multivariate analysis of variance. Ellipses
were drawn based on the 95% confidence interval for each group. * p < 0.05.

3.3. Taxonomic Alterations in GC

Using the ANCOM2 method, we identified several highly abundant taxa from the
phylum to species level that differed between the control and cancer groups (Table 2).
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Proteobacteria and Firmicutes were the two most dominant phyla in the stomach of both
groups, with an average of 76.0% (Proteobacteria 52.8% and Firmicutes 23.2%) and 84.7%
(Proteobacteria 58.2% and Firmicutes 26.5%) gastric bacteria in the control and cancer
groups, respectively (Figure S2). However, the abundance of the most abundant phyla
was not significantly different between the cancer and control groups. We found that
Lacticaseibacillus casei was significantly enriched (detected >0.7; MaAsLin2, log2 fold change
[FC] = 1.017) in the cancer group, while Haemophilus parainfluenzae, including its higher
taxonomic level, and the genus Campylobacter were depleted in the cancer group compared
to that in the control group. Among the significant taxa, Haemophilus parainfluenzae was
the most significantly different taxon relative to at least 90% of the other taxa (ANCOM2,
detected >0.9; MaAsLin2, log2 FC = −1.488). The statistical significance of the taxa remained
after adjusting for age, sex, and BMI. All ANCOM2-detected differentially abundant
bacteria between the two groups were also confirmed to be significant using the MaAsLin2
method (p < 0.05) with or without adjusting for covariates, except Haemophilus parainfluenza,
which was marginally significant (p = 0.052) in MaAsLin2 after covariate adjustments.
Lacticaseibacillus and L. casei were more significant (ANCOM2, detected >0.7; MaAsLin2,
p = 0.006) and showed higher effect sizes (MaAsLin2, log2 FC = 1.405) after adjusting
for the covariates. We also observed a higher abundance of Lacticaseibacillus and a lower
abundance of Campylobacter and Haemophilus in samples with GC compared to the control
samples in the hierarchical clustering heatmap, although the heatmaps were not distinctly
clustered by the two groups (Figure 4).

Table 2. Differentially abundant taxa between the control and gastric cancer groups.

Taxonomic Assignment a
Relative Abundance

(Mean%)

ANCOM2 b

(Unad-
justed)

ANCOM2 b

(Adjusted for
Age, Sex, and

BMI)
MaAsLin2 (Unadjusted)

MaAsLin2 (Adjusted for
Age, Sex, and BMI)

Control Cancer Detection
level Detection level log2FC c p d log2FC c p d

p_Proteobacteria;
o_Gammaproteobacteria;

c_Pasteurellales; 6.29% 4.45% 0.8 0.8 −2.283 0.006 −1.862 0.052
f_Pasteurellaceae; 6.29% 4.45% 0.8 0.8 −2.283 0.006 −1.862 0.052

g_Haemophilus; 6.29% 4.45% 0.8 0.8 −2.283 0.006 −1.862 0.052
s_parainfluenzae; 4.99% 2.92% 0.9 0.9 −1.876 0.005 −1.488 0.052

p_Proteobacteria;
o_Epsilonproteobacteria;

c_Campylobacterales;
f_Campylobacteraceae;

g_Campylobacter 1.04% 0.38% 0.7 0.6 −2.457 0.002 −1.784 0.047
p_Firmicutes;

o_Bacilli;
c_Lactobacillales;

f_Lactobacillaceae;
g_Lacticaseibacillus; 0.29% 1.24% 0.6 0.7 1.017 0.021 1.405 0.006

s_casei 0.29% 1.24% 0.7 0.8 1.017 0.021 1.405 0.006

Taxa detected to be significantly different relative to more than 70% of other taxa at each taxon level (detected >0.7)
in the analysis of comparison of microbiomes. (ANCOM)-2 analysis are included in this table. a NCBI-RefSeq
database was used for taxonomic assignment. b Benjamini–Hochberg multiple comparison correction method
was applied (false discovery rate < 0.1). c Coefficients for log-transformed relative abundance of each taxon in
linear models using MaAsLin2. The control group was set as the reference group and compared to the cancer
group. d Unadjusted p values for the multiple comparison. The significance of the ANCOM2 model was validated
using the MaAsLin2 model. ANCOM, analysis of comparison of microbiomes; MsAsLin, multivariate association
with linear models; BMI, body mass index; FC, fold change.
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Figure 4. Hierarchical clustering heatmap for relative abundance of gastric microbiota between
cancer and control groups (Group 1) at the genus level. Two-colored bars on the top of the figure
show the grouping category. Every sample (control group = red, cancer group = green in Group 1) is
represented by its own column. Scaling is by relative abundances of each taxon from low (light blue)
to high (dark red) across all samples. Clustering was performed using Euclidean distance measure
and Ward’s linkage clustering algorithm at the genus level. Individual patient identifiers are listed
followed by CG, IM, or GC (Group 2), indicating chronic gastritis, intestinal metaplasia, or gastric
cancer, respectively.

3.4. Identification of Key Gastric Microbiota Associated with GC via LEfSe and RF Analyses

To assess the robustness of the taxonomic differences between the control and cancer
groups, we performed an LEfSe analysis. LEfSe combines statistical significance and effect
size, or LDA score, indicating how well the abundance of each bacteria distinguishes the
groups. This method confirmed the significance (|LDA score| > 4, p < 0.05) of the genera
Lacticaseibacillus, Haemophilus, and Campylobacter (Figure 5A), and the species Haemophilus
parainfluenzae and L. casei (Figure 5B). In addition, this analysis highlighted Brevundimonas
with Lacticaseibacillus in cancer and Porphyromonas and Schaalia with Haemophilus and
Campylobacter in controls as important taxa that distinguished the two groups (Figure 5A).
At the species level, Brevundimonas vesicularis in the cancer group and Porphyromonas pasteri,
Campylobacteraceae concisus, Haemophilus haemolyticus, and Schaalia odontolytica in the control
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group were found to be significant in the LEfSe analysis (|LDA score| > 3, p < 0.05)
(Figure 5B).
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Figure 5. Taxonomic differences between control and cancer groups in linear discriminant analysis
effect size (LEfSe) and random forest (RF) analyses. Linear discriminant analysis (LDA) score of
differentially expressed bacteria obtained from LEfSe analysis of gastric microbiota in the control and
cancer groups at the (A) genus and (B) species levels. Taxa with p < 0.05 from the Kruskal–Wallis
test and LDA score > 3 are shown. In RF analysis, (C) the top 15 genera and (D) species with the
highest discriminatory power between the control and cancer groups are listed. In both LEfSe and
RF analyses, red fields indicate higher abundance and blue fields indicate lower abundance in the
indicated group compared to the other group.

Although numerous bacteria were differentially abundant between the control and
cancer groups, we wanted to identify the key gastric microbiota that could best discriminate
between the cancer and control groups. To do this, we used an RF algorithm to classify
the samples into control or cancer groups using the genus abundance data. Important
bacteria were then identified based on the extent to which the RF classification accuracy
decreased when the bacteria were removed from the feature set. Haemophilus, Campylobacter,
and Lacticaseibacillus, and Haemophilus parainfluenzae, Veillonella atypica, and Bifidobacterium
animalis were identified as the top three important features at the genus (Figure 5C) and
species levels (Figure 5D), respectively, to distinguish the control and cancer groups. The
out-of-bag error was 0.254, 0.284 and the class error was 0.065, 0.065 for the control group
and 0.667, 0.762 for the cancer group at the genus and species levels, respectively (Figure
S3), indicating that bacterial features could distinguish the control group from the cancer
group, but not vice versa.

3.5. Altered Mucosal Inflammatory Cytokine Expression in GC

In RT-qPCR analysis, the relative mRNA expression level of IL1B in the gastric mucosa
was significantly higher in the cancer group than that in the control group (Mann–Whitney
test, p = 0.030) (Figure 6A). However, this was not significant after the correction for
multiple comparison (q = 0.210). Although the mean expression levels of IL6, CXCL8, IL10,
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and IL17A were higher in the cancer group than those in the control group, the difference
was not statistically significant. The mRNA expression of IL1B also showed a significantly
increasing trend in CG, IM, and GC in the three-group comparison even after the FDR
correction (linear regression analysis, p-for-trend = 0.009, q = 0.063) (Figure 6B).

Nutrients 2022, 14, x FOR PEER REVIEW 11 of 16 
 

 

Whitney test, p = 0.030) (Figure 6A). However, this was not significant after the correction 
for multiple comparison (q = 0.210). Although the mean expression levels of IL6, CXCL8, 
IL10, and IL17A were higher in the cancer group than those in the control group, the 
difference was not statistically significant. The mRNA expression of IL1B also showed a 
significantly increasing trend in CG, IM, and GC in the three-group comparison even after 
the FDR correction (linear regression analysis, p-for-trend = 0.009, q = 0.063) (Figure 6B). 

Figure 6. Increased relative expression levels of IL1B mRNA in the gastric mucosa of patients with 
cancer compared to those in the controls. Levels of relative mRNA expression of TNF, IL1B, IL6, 
CXCL8, IL10, IL17A, and TGFB1 were compared (A) between the control and cancer groups and (B) 
between patients with chronic gastritis (CG), intestinal metaplasia (IM), and gastric cancer (GC). 
Levels were presented as fold change compared to the reference group (control and CG, 
respectively) and standard errors. * p < 0.05. 

3.6. GC Microbiome Index Associated with the Inflammatory Cytokine Response 
We analyzed the correlation between the microbial profile associated with GC and 

pro-inflammatory cytokine expression. The patients included in this analysis showed 
similar baseline characteristics (Table S2), relative abundance of the differentially 
abundant taxa (Table S3), and cytokine expression profile (Figure S2) compared to the 
overall population. After excluding outliers with values outside the mean ± 2 standard 
deviations, the observed index that was reduced in GC was negatively correlated with the 
mRNA expression of IL1B (q = 0.033, r = −0.3260) (Figure 7A). However, when we further 
excluded two more highest value points of the observed index, the correlation became no 
longer significant (q = 0.214, r = −0.2267), suggesting that this correlation may have been 
driven by several high values of the α-diversity. Among the differentially associated taxa 
between GC and control groups, the relative abundance of Campylobacter was negatively 
correlated with IL1B (q = 0.008, r = −0.4328) (Figure S6). However, because Campylobacter 
was absent in many samples, this correlation might have driven by several samples with 
high abundance of this taxon. As the genera Campylobacter, Lacticaseibacillus, and 
Haemophilus were the three most important taxa in the RF model, we combined the relative 
abundance of these taxa to create a GC microbiome index. The GC microbiome index was 
significantly positively correlated with IL1B mRNA expression (q = 0.031, r = 0.3185). 

Figure 6. Increased relative expression levels of IL1B mRNA in the gastric mucosa of patients with
cancer compared to those in the controls. Levels of relative mRNA expression of TNF, IL1B, IL6,
CXCL8, IL10, IL17A, and TGFB1 were compared (A) between the control and cancer groups and
(B) between patients with chronic gastritis (CG), intestinal metaplasia (IM), and gastric cancer (GC).
Levels were presented as fold change compared to the reference group (control and CG, respectively)
and standard errors. * p < 0.05.

3.6. GC Microbiome Index Associated with the Inflammatory Cytokine Response

We analyzed the correlation between the microbial profile associated with GC and pro-
inflammatory cytokine expression. The patients included in this analysis showed similar
baseline characteristics (Table S2), relative abundance of the differentially abundant taxa
(Table S3), and cytokine expression profile (Figure S2) compared to the overall population.
After excluding outliers with values outside the mean ± 2 standard deviations, the observed
index that was reduced in GC was negatively correlated with the mRNA expression of
IL1B (q = 0.033, r = −0.3260) (Figure 7A). However, when we further excluded two more
highest value points of the observed index, the correlation became no longer significant
(q = 0.214, r = −0.2267), suggesting that this correlation may have been driven by several
high values of the α-diversity. Among the differentially associated taxa between GC and
control groups, the relative abundance of Campylobacter was negatively correlated with
IL1B (q = 0.008, r = −0.4328) (Figure S6). However, because Campylobacter was absent in
many samples, this correlation might have driven by several samples with high abundance
of this taxon. As the genera Campylobacter, Lacticaseibacillus, and Haemophilus were the three
most important taxa in the RF model, we combined the relative abundance of these taxa
to create a GC microbiome index. The GC microbiome index was significantly positively
correlated with IL1B mRNA expression (q = 0.031, r = 0.3185).
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index. Correlation of this index with the IL1B mRNA expression was assessed. * q < 0.1.

4. Discussion

Here, we evaluated the gastric microbiome associated with GC in H. pylori-negative
patients. The richness of the gastric microbiota was significantly lower in patients with GC
than those in the controls. The gastric microbiota in GC was significantly different from that
in CG and IM in terms of phylogenetic β-diversity. The gastric microbiome in cancer was
characterized by the enrichment of Lacticaseibacillus and the depletion of Campylobacter and
Haemophilus, from which we derived the GC microbiome index. Importantly, we showed
that gastric microbial diversity, specific taxon composition including Campylobacter, and
the GC microbiome index were significantly correlated with gastric mucosal IL1B mRNA
expression, which was elevated in patients with GC.

Previous studies on the gastric microbiota in patients with GC mostly reported signifi-
cantly different microbial compositions in these patients compared to the controls, including
patients with CG and IM [8,10,13,21–23]. However, mixed results were observed regarding
changes in bacterial α-diversity in GC. Many studies reported a decrease in the overall
diversity in GC [8,9,13,21,23], while some others reported increased diversity [10,22,24].
In addition to differences in ethnicity, diet, and technical factors, such as 16S rRNA gene
targets and sequencing platforms, these conflicting results may be attributable to the mixed
population of H. pylori-positive and -negative patients. Loss of H. pylori and impaired
acid secretion in the later stages of gastric carcinogenesis may lead to increased bacterial
colonization of the stomach [25]. H. pylori eradication also results in increased bacterial
diversity [26]. In our study, we strictly excluded H. pylori-positive patients and found that
the overall diversity decreased in H. pylori-negative GC than that in H. pylori-negative
CG and IM. These results suggest that gastric microbial diversity may decrease during
the development of GC, if changes following the loss or eradication of H. pylori are ex-
cluded. Taken together with increased mucosal IL1B mRNA expression in our study, these
changes can be explained by the ongoing inflammation, which produces an inhospitable
environment for most microbes [25].

Lactic acid bacteria (LAB) have been consistently reported to increase in relative
abundance in GC. Most studies have reported an increased relative abundance of Lacto-
bacillus in patients with GC [8,9,13,21–24]. Increased abundances of other LAB, including
Streptococcus [8,9,24], Bifidobacterium, and Lactococcus [22], have also been reported. In our
study, the relative abundance of L. casei, a LAB, was increased in GC. LAB also have anti-
inflammatory and anticancer effects [27]. L. casei, as a probiotic, exerts anticancer effects
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on GC cells [28]. However, LAB overgrowth can reduce nitrate to nitrite, leading to the
formation of N-nitroso compounds [29]. This is supported by a study by Ferreira et al. [21]
which reported an increased nitrosating function and increased abundance of Lactobacillus
in GC. LAB can also potently induce reactive oxygen species, which are involved in the
development of GC [30]. In a previous study, insulin-gastrin transgenic mice colonized
with Lactobacillus murinus ASF361, Clostridium sp. ASF356, and Bacteroides sp. ASF519, and
developed gastric intraepithelial neoplasia with strong upregulation of oncogenes and
pro-inflammatory genes [31]. These findings support the positive correlation between the
relative abundance of Lacticaseibacillus and mucosal IL1B mRNA expression observed in our
study. Therefore, overrepresentation of Lacticaseibacillus may contribute to the development
of GC by inducing chronic inflammation in H. pylori-negative patients.

In our study, the relative abundances of Haemophilus parainfluenzae and Campylobacter
were reduced in GC. They are members of the normal oral microflora [32,33]. In addition,
we found depletion of other oral bacteria, such as S. odontolytica and Prevotella salivae, in
GC via RF analysis. In a previous study, Haemophilus was found to be reduced in the
saliva microflora of patients with GC [32]. Haemophilus parainfluenzae was increased in the
gastric microbiome of patients with intraepithelial neoplasia but decreased in patients with
GC [9]. As Haemophilus is a nitrate-reducing bacterium, the decreased abundance of this
taxon may contribute to the chronic inflammatory process [34]. This is consistent with
our finding of a negative correlation between Haemophilus abundance and IL1B mRNA
levels. In contrast, Campylobacter, particularly C. concisus, has been reported to be associated
with inflammatory bowel disease [35]. Notably, C. concisus abundance was increased in
Barrett’s esophagus but not in esophageal cancer [36]. Because it induced the expression of
the inflammatory cytokine IL18 in that study, the reduced abundance of Campylobacter in
our study may be the result, rather than the cause, of increased IL1B mRNA expression.
This seems similar to the situation in which the relative abundance of H. pylori is reduced
or even lost during the final stage of gastric carcinogenesis [21,24]. One study reported
increased abundances of Haemophilus and Campylobacter in GC, but this may be due to
their comparison to functional dyspepsia as a control group rather than a group including
IM [22].

In our study, the most differentially abundant genera between cancer and control
groups were validated using various analysis methods, including ANCOM2, MaAsLin2,
and LEfSe analyses. In addition, the integration of these genera into an RF classifier allowed
us to discriminate GC from the controls. We derived a novel GC microbiome index that
significantly correlated with gastric mucosal IL1B expression. Our results suggest that
microbial changes at the community level, rather than individual taxa, may contribute to
the persistent chronic inflammation process, and through this process, may increase the
risk of GC development in H. pylori-negative patients. The roles of individual taxa can
vary. Increased Lacticaseibacillus and reduced Haemophilus abundances may induce ongoing
inflammation, while reduced Campylobacter abundance may be a result of this ongoing
inflammation.

The novelty of our study is that we identified gastric microbiota associated with
GC in H. pylori-negative patients, which has growing importance. Previous studies have
focused on the synergistic role of H. pylori and other gastric microbiota in GC [8–10,21].
Sung et al. reported gastric microbiota associated with the gastric premalignant lesion
after H. pylori eradication [26]. We adopted strict criteria for classifying H. pylori-negative
cases using 16S rRNA gene sequencing data, which allowed us to evaluate the gastric
microbial community, excluding H. pylori [20]. Another novelty is that we investigated the
gastric mucosal inflammatory cytokine response associated with differentially abundant
gastric microbiota in GC. Recently, several studies reported the inflammatory cytokine
response to the gastrointestinal microbiota in healthy control or patients with Parkinson’s
disease [37,38]. The role of IL1B, IL6, and CXCL8 has been noted in the association between
chronic H. pylori infection and the development of GC [14]. To our knowledge, this is the
first study that evaluated the gastric microbiota and inflammatory cytokine response in
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association with H. pylori-negative GC. However, this study has some limitations. First,
because of the strict criteria, the sample size was modest, which limited the statistical
power to identify differentially abundant taxa between the cancer and control groups.
Second, we did not measure cytokine levels from gastric juice or plasma. However, the
measurement of mRNA expression levels of cytokine genes from gastric mucosal samples
may also provide meaningful results [39,40]. Third, our findings were not validated in
different ethnic populations. Although we validated our findings with this cohort using
multiple analytical tools, further validation studies with replication cohorts are required.

In conclusion, this study revealed the presence of altered gastric mucosal microbiota in
H. pylori-negative GC. Increased Lacticaseibacillus and reduced Haemophilus and Campylobac-
ter abundances associated with increased mucosal IL1B expression levels may contribute to
the development of H. pylori-negative GC.
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Figure S2: Relative percentage abundance of gastric microbiota at the phylum level in the control
and cancer groups; Figure S3: Plot of the out-of-bag (OOB) errors in the random forest classification
of the control and cancer groups; Figure S4: Box plots showing the relative abundance of taxa that
differed significantly between the control and cancer groups in Table 2; Figure S5: Relative expression
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