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RESEARCH ARTICLE
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Abstract

The development of genome-informed methods for identifying quantitative trait loci (QTL)

and studying the genetic basis of quantitative variation in natural and experimental popula-

tions has been driven by advances in high-throughput genotyping. For many complex traits,

the underlying genetic variation is caused by the segregation of one or more ‘large-effect’

loci, in addition to an unknown number of loci with effects below the threshold of statistical

detection. The large-effect loci segregating in populations are often necessary but not suffi-

cient for predicting quantitative phenotypes. They are, nevertheless, important enough to

warrant deeper study and direct modelling in genomic prediction problems. We explored the

accuracy of statistical methods for estimating the fraction of marker-associated genetic vari-

ance (p) and heritability (H2
M) for large-effect loci underlying complex phenotypes. We found

that commonly used statistical methods overestimate p andH2
M. The source of the upward

bias was traced to inequalities between the expected values of variance components in the

numerators and denominators of these parameters. Algebraic solutions for bias-correcting

estimates of p and H2
M were found that only depend on the degrees of freedom and are con-

stant for a given study design. We discovered that average semivariance methods, which

have heretofore not been used in complex trait analyses, yielded unbiased estimates of p

andH2
M, in addition to best linear unbiased predictors of the additive and dominance effects

of the underlying loci. The cryptic bias problem described here is unrelated to selection bias,

although both cause the overestimation of p and H2
M. The solutions we described are pre-

dicted to more accurately describe the contributions of large-effect loci to the genetic varia-

tion underlying complex traits of medical, biological, and agricultural importance.

Author summary

The contributions of individual genes to the phenotypic variation observed for genetically

complex traits has been an ongoing and important challenge in biology, medicine, and
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agriculture. While many genes have statistically undetectable effects, those with large

effects often warrant in-depth study and can be important predictors of complex pheno-

types such as disease risk in humans or disease resistance in domesticated plants and ani-

mals. The genes identified through associations with genetic markers in complex trait

analyses typically account for a fraction of the heritable variation, a genetic parameter we

called ‘marker heritability’. We discovered that textbook statistical methods systematically

overestimate marker heritability and thus overestimate the contributions of specific genes

to the phenotypic variation observed for complex traits in natural and experimental popu-

lations. We describe the source of the upward bias, validate our findings through com-

puter simulation, describe methods for bias-correcting estimates of marker heritability,

and illustrate their application through empirical examples. The statistical methods we

describe supply investigators with more accurate estimates of the contributions of specific

genes or networks of interacting genes to the heritable variation observed in complex trait

studies.

Introduction

The genetic variation observed in nature is frequently caused by genes with quantitative

effects [1–7]. Their discovery and characterization has been a dominant feature of quantita-

tive genetic studies in biology, evolution, agriculture, and medicine since the introduction of

methods for genotyping DNA variants genome-wide [8–11], and the parallel development of

statistical methods for finding associations between DNA variants and the underlying genes

or quantitative trait loci (QTL) [2, 4, 5, 7, 12–16]. A significant breakthrough was achieved

when Lander and Botstein [12] introduced ‘interval mapping’ and showed that genomes

could be systematically searched to identify QTL in populations genotyped with a genome-

wide framework of genetically mapped DNA markers. As genotyping technologies advanced

and marker densities increased, genome-wide association study (GWAS) methods emerged

to search genomes for genotype-to-phenotype associations by exploiting the historical

recombination in populations [14, 15, 17–19]. The concept of genomic prediction emerged

as a counterpart to GWAS, initially for estimating genomic-estimated breeding values

(GEBVs) in domesticated plants and animals and later for estimating polygenic risk scores

(PRSs) in humans and model organisms [20–23]. These technical advances precipitated a

consequential shift in the study of quantitative traits from analyses of phenotypic variation

limited and informed by pedigree or family data to genome-wide analyses of genotype-to-

phenotype associations and genomic prediction informed by genotypic data [6, 7, 13, 16, 20,

24–31].

The phenotypic variation observed in a population is customarily partitioned into genetic

and non-genetic components to estimate heritability, repeatability, and reliability of the quan-

titative traits under study [24, 25, 30, 32]. The genetic component can be caused by any num-

ber of genes with quantitative effects, even a single gene, but more often by multiple genes

with a range of effects [31, 33–43]. For most quantitative traits, that number is unknown but

presumed to be large and undiscoverable [3, 6, 7, 22, 32, 34]. Because genes with small effects

are challenging to identify and validate, the ‘many genes with small effects’ hypothesis has

been difficult to conclusively falsify [21, 22, 32]. Despite the uncertainty surrounding the

identity, number, effects, and interactions of genes in the undiscovered fraction [6], three

decades of complex trait analyses in humans, domesticated plants and animals, Drosophila,
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Arabidopsis, yeast, mice, zebrafish, and other organisms have shown that the ‘discovered’

genes are typically small in number, large in effect, and collectively only explain a fraction of

the genetic variance (s2
G) [13, 16, 28, 32, 34–36, 44, 45]. The unexplained fraction has been

called ‘missing heritability’ [46–48].

The discovered genes in polygenic systems of genes are often necessary but not sufficient

for predicting quantitative phenotypes, e.g., disease risk in humans or yield in domesticated

plants and animals [3, 21, 34, 42, 44, 49]. There is a large body of evidence that the QTL

effects for many quantitative traits are gamma family distributed, where the discovered genes

are found in the upper or thin tail of the distribution above the threshold of statistical signifi-

cance [34]. The presumption is that the lower or heavy tail of the gamma family distribution

is caused by many genes with small effects, the chief tenet of the infinitesimal model of quan-

titative genetics [6, 26, 32, 50]. Genes with large effects often dominate the ‘non-missing heri-

tability’, mask or obscure the effects of other quantitatively acting genes, and pleiotropically

affect multiple quantitative phenotypes [16, 35, 39, 51], e.g., mutations in the BRCA2 gene

can have large effects, are incompletely penetrant, interact with other genes, and are neces-

sary but not sufficient for predicting breast, ovarian, and other cancer risks in women [52].

The large-effect QTL BTA19 pleiotropically affects milk yield, protein yield, and productive

life in Guernsey cattle (Bos taurus) [43], and branching and pigment genes (BR, PHY, and

HYP) have large effects, interact, and pleiotropically affect several genetically correlated seed

biomass traits in sunflower (Helianthus annuus) [53]. Despite decades of directional selec-

tion, loci with large effects often segregate (have not been fixed) in domesticated plant and

animal populations [33, 34, 37, 38, 40, 54, 55]. The fractions of the genetic variances

explained by BRCA2, BTA19, BR, PHY, and HYP were not reported in those studies. What

fraction of the heritability for breast cancer risk, for example, can be explained by the known

mutations in BRCA2? Our study explored the accuracy of methods for estimating that

parameter.

Our surveys and others substantiate that the missing and non-missing fractions of the

genetic variance are commonly either not estimated or inaccurately estimated in GWAS and

other gene finding studies, e.g., the statistical significance of individual marker loci from

sequential regression analyses are typically reported without correcting for the effects of other

discovered marker loci through multilocus partial regression analyses or Type III ANOVA

[17, 19, 22, 34, 56]. Such analyses are necessary for accurately assessing the statistical impor-

tance of the underlying gene and gene-gene interaction effects in a multilocus system, e.g.,

when multiple loci are identified by GWAS (sequential analyses of individual loci), their effects

are more accurately estimated by simultaneous analysis using partial regression analysis

approaches and even then can be upwardly biased [51]. The estimation problem we studied is

intertwined with the broader problem of accurately describing multilocus systems of genes

with large effects. We show that the discovered fraction of the genetic variance can be grossly

overestimated and that the cause of the problem is a mathematical artifact in the expected val-

ues of variance components and their ratios. We revisited the problem of estimating the non-

missing and missing fractions of heritability in candidate gene and other complex trait analy-

ses, in part because of the systematic upward bias we discovered, in addition to inconsistencies

in the methods commonly applied to the problem. The solutions to the problem presented

here are straightforward and primarily applicable to the study of genes with large effects, espe-

cially those affecting the accuracy of genomic predictions for disease risk or breeding value

[21, 43]. The optimum approaches for weighting or correcting for loci with large effects in

genomic prediction are not completely clear; however, in artificial selection settings where the

favorable alleles for discovered loci are unequivocally known, those alleles can be directly
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selected via marker-assisted selection (MAS) with genomic selection exerting pressure on

unknown loci underlying the additive genetic variance not explained by the segregation of

known large effect loci [54, 57–61].

Lande and Thompson [62] proposed the parameter p ¼ s2
M=s

2
G to estimate the discovered

or non-missing fraction of the genetic variance, where s2
M is the fraction of the genetic variance

associated with statistically significant markers in linkage disequilibrium (LD) with genes or

QTL affecting the trait under study (here QTL refers to a chromosome segment predicted to

harbor a gene or genes affecting a quantitative trait). Similarly, marker heritability

(H2
M ¼ s

2
M=s

2
P) estimates the non-missing fraction of the phenotypic variance (s2

P) associated

with statistically significant markers in LD with causal genes or QTL. Here a distinction needs

to be made between H2
M and genomic heritability, a parameter estimated by summing the

effects of a dense genome-wide sample of markers, only some of which are predicted to be in

LD with the underlying causal genes or QTL [27, 30, 63]. We are not proposing marker herita-

bility as a replacement or substitute for genomic heritability but as a parameter for parsing out

the non-missing fraction of heritability associated with discovered loci, especially loci like

BRCA2 and BTA19 [43, 52]. The genetic variance component (s2
G) in these ratios can be esti-

mated from pedigree or family information (as shown in our examples) or genomic informa-

tion (as reviewed by [30] and [63]). For either, s2
M is simply the variance explained by marker

loci with effects large enough to be statistically detected and important enough to be specifi-

cally studied and modeled, perhaps as fixed effects [22, 39, 40, 51, 61]. Despite a direct and log-

ical connection to heritability, estimates of p and H2
M are seldom reported in complex trait

studies, whereas genomic heritability estimates are commonly reported in genomic prediction

studies [30, 34, 62].

Here we show that p and H2
M are often overestimated in complex trait analyses. The prob-

lem we discovered is unrelated to selection bias, the phenomena where the effects of discov-

ered QTL are inflated by biased sampling from truncated distributions with small sample sizes

[64–69], and unrelated to the upward biases known to arise in GWAS [70]. While selection

bias is a well known and widely cited problem in complex trait analyses, we describe a previ-

ously unreported and cryptic source of bias in estimates of p and H2
M. To identify the source of

the bias and explore the problem in greater depth, we compared the accuracy of average mar-

ginal variance (AMV) [71, 72] and average semivariance (ASV) [73] methods for estimating p
and H2

M. AMV is the acronym applied throughout this paper for the ANOVA and REML vari-

ance component estimation methods commonly described in textbooks and implemented in

statistical software for the analysis of generalized linear mixed models (GLMMs), e.g., the

‘lme4’ R package and the SAS packages ‘GLM’ and ‘GLIMMIX’ [24, 25, 72, 74–79]. We intro-

duced the average marginal variance terminology here to facilitate comparisons of the differ-

ences between AMV and ASV methods for estimating variance component ratios. The ASV

methods we applied to the problem are extensions of those described by Piepho [73] for esti-

mating the total variance and coefficient of determination (R2) in GLMM analyses. For the

AMV and ASV analyses shown throughout this paper, REML was used to estimate the vari-

ance components [56, 72, 75, 79]. The source of the bias was discovered, however, through

algebraic analyses of the expected mean squares (EMSs) from ANOVA. We describe that

source and approaches for bias-correcting ANOVA or REML estimates of p and H2
M from the

commonly applied AMV methods. We show that ASV methods directly yield unbiased esti-

mates of p and H2
M that are identical to bias-corrected AMV estimates. Finally, we discuss the

connection of these random effects methods to the fixed effect methods commonly applied in

QTL mapping and genome-wide association studies [51, 80, 81].
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Results and discussion

Overestimation of the genetic variance explained by markers in linkage

disequilibrium with causative genes or QTL

The overestimation problem described here was originally discovered in a reanalysis of data

from genetic studies in plants where REML estimates of H2
M exceeded REML estimates of

broad-sense heritability (H2) and REML estimates of p and H2
M exceeded 1.0, the theoretical

upper limit for these parameters (Table 1). We initially suspected that selection bias might be

the culprit [68, 69, 82–84] but concluded that selection bias alone could not explain p̂ > 1:0 or

H2
M > 1:0. Although proof was lacking and the bias was non-obvious, we hypothesized that

many estimates in the theoretical range (0.0� p� 1.0) must also be upwardly biased. The

proof was found through algebraic analyses of the ANOVA estimators of s2
M, s2

G, and s2
P for

balanced and unbalanced data (S1, S2 and S4 Texts). Although variance components are com-

monly estimated using REML, as was done in the analyses shown throughout this paper, alge-

braic analyses of ANOVA expected mean squares (EMSs) identified the source of the bias and

yielded explicit algebraic solutions for bias correcting ANOVA and REML estimates of p and

H2
M.

The source of the bias was identified by expressing the estimator of p as a function of the

ANOVA estimators of s2
M and s2

G for balanced data and algebraically simplifying the equations.

The linear mixed models (LMMs) and ANOVA estimators of the variance components needed

to show this are described here. We start with the analysis of a single marker locus in an exper-

iment where entries (e.g., individuals, families, or strains) are replicated, s2
G can be estimated,

and the data for entries and markers are balanced. Extensions for one to three marker loci

with unbalanced data are shown in S1, S2 and S3 Texts. Two LMMs are needed for estimating

s2
M , s2

G, p, and H2
M. Consider a study where nG entries are phenotyped for a normally distrib-

uted quantitative trait using a balanced completely randomized study design with rG replica-

tions/entry, nM marker genotypes/locus, and rM replications/marker genotype. The LMM

needed for estimating s2
G (the between entry variance component) is:

yjk ¼ mþ Gj þ �jk ð1Þ

where yjk is the jkth phenotypic observation, μ is the population mean, Gj is the random effect

of the jth entry, �jk is the random effect of the jkth residual, Gj � Nð0; s2
GÞ, �jk � Nð0; s2

�
Þ, j = 1,

2, . . ., nG, and k = 1, 2, . . ., rG. Suppose entries are genotyped for a single marker locus (M) in

linkage disequilibrium with a gene or QTL affecting the quantitative phenotype (yjk). The

between entry source of variation from LMM (1) can be partitioned into marker (M) and entry

nested in marker (G : M) sources of variation (this is the residual genetic variation among

entries not explained by markers in the model). The LMM for estimating s2
M and s2

G:M is:

yijk ¼ mþMi þ G : MiðjÞ þ �ijk ð2Þ

where yijk is the ijkth phenotypic observation, Mi is the random effect of the ith marker genotype

at locus M, G : Mi(j) is the random effect of the jth entry nested in the ith marker genotype, �ijk is

the random effect of the ijkth residual, i = 1, 2, 3, Mi � Nð0; s2
MÞ, G : MiðjÞ � Nð0; s2

G:MÞ, and

�ijk � Nð0; s2
�
Þ.

The ANOVA estimator of the between-entry variance component (s2
G) from LMM (1) with

balanced data is:

ŝ2
G ¼

MSG � MS�
rG

¼
SSG=dfG � SS�=df�

rG
¼

1

dfGrG
SSG �

1

df�rG
SS� ð3Þ
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Table 1. REML estimates of marker-associated variance (s2
M), the fraction of the genetic variance explained by markers (p ¼ s2

M=s
2
G), and marker heritability

(H2
M ¼ s

2
M=s

2
P) from random marker effects analyses and coefficients of determination (R2) from Type II and Type III fixed marker effects analyses for large effect

loci identified in cattle, sunflower, and strawberry studies.

Study Source df kM Variance Component Uncorrected Bias Corrected Type II Type III

ŝ2 p̂ Ĥ 2 ŝ2
� p̂� Ĥ 2

�
R̂2d R̂2e

Cattle White Spottinga M 25 — s2
rs10
þ . . .þ s2

rs10�rs45�rs20
7.92 — 0.76 3.88 — 0.37 — —

rs10 2 0.35 s2
rs10

0.62 — 0.06 0.21 — 0.02 0.04 0.00

rs45 2 0.41 s2
rs45

2.91 — 0.28 1.20 — 0.11 0.21 0.08

rs20 2 0.54 s2
rs20

3.81 — 0.37 2.04 — 0.20 0.23 0.10

rs10 × rs45 4 0.58 s2
rs10�rs45

0.00 — 0.00 0.00 — 0.00 0.00 0.00

rs10×rs20 4 0.67 s2
rs10�rs20

0.00 — 0.00 0.00 — 0.00 0.01 0.01

rs45 × rs20 4 0.70 s2
rs45�rs20

0.37 — 0.04 0.26 — 0.02 0.01 0.01

rs10 × rs45 × rs20 7 0.77 s2
rs10�rs45�rs20

0.22 — 0.02 0.17 — 0.02 0.01 0.01

G : rs10 × rs45 × rs20 2,935 — s2
G:rs10�rs45�rs20

5.26 — — 5.26 — — — —

Sunflower Oil Contentb Entry (G) 145 — s2
G 21.61 — 0.95 21.61 — 0.95 — —

M + G : M 145 — s2
B þ . . .þ s2

G:M 30.76 1.42 1.35 22.15 1.02 0.98 — —

M 7 — s2
B þ . . .þ s2

B�P�HYP 17.85 0.83 0.79 9.24 0.43 0.41 — —

BR 1 0.48 s2
B 11.57 0.54 0.51 5.59 0.26 0.25 0.21 0.26

PHY 1 0.47 s2
PHY 1.26 0.06 0.06 0.60 0.03 0.03 0.02 0.04

HYP 1 0.49 s2
HYP 2.9 0.13 0.13 1.41 0.07 0.06 0.05 0.10

BR × PHY 1 0.77 s2
B�P 0.21 0.01 0.01 0.17 0.01 0.01 0.01 0.01

BR × HYP 1 0.78 s2
B�HYP 1.89 0.09 0.08 1.46 0.07 0.06 0.03 0.04

PHY × HYP 1 0.77 s2
PHY�HYP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

BR × PHY × HYP 1 0.88 s2
B�PHY�HYP 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01

G : BR × PHY × HYP 138 — s2
G:B�PHY�HYP 12.91 0.60 0.57 12.91 0.60 0.57 — —

Residual (�) 144 — s2
�

2.07 — — 2.07 — — — —

Strawberry Fusarium Wiltc Entry (G) 557 — s2
G 3.26 — 0.98 3.26 — 0.98 — —

M + G : M 557 — s2
AX396
þ s2

G:AX396
4.77 1.46 1.44 2.39 0.73 0.72 — —

AX396 (M) 2 0.47 s2
AX396

4.48 1.37 1.35 2.09 0.64 0.63 0.84 0.84

G : AX396 555 — s2
G:AX396

0.30 0.09 0.09 0.30 0.09 0.09 — —

Residual (�) 1,631 — s2
�

0.23 — — 0.23 — — — —

Strawberry Fusarium Wiltc Entry (G) 540 — s2
G 3.30 0.98 3.30 — 0.98 — —

M + G : M 540 — s2
AX493
þ s2

G:AX493
4.01 1.21 1.20 3.45 1.05 1.03 — —

AX493 (M) 2 0.62 s2
AX493

1.48 0.45 0.44 0.93 0.28 0.28 0.22 0.22

G : AX493 538 — s2
G:AX493

2.53 0.77 0.75 2.53 0.77 0.75 — —

Residual (�) 1,584 — s2
�

0.23 — — 0.23 — — — —

aStatistics are shown for three marker loci (rs10, rs45, and rs20) associated with genetic variation for white spotting (%) in a cattle population (nG = 2, 973) with a single

phenotypic observation per individual and highly unbalanced marker data [85]. The marker loci were identified by GWAS. The linear mixed model for the cattle

analysis was identical to that for the sunflower analysis without replications (rG = 1). kM coefficient equations for three loci with unbalanced data are shown in S3 Text.
bStatistics are shown for three marker loci (BR, PHY, and HYP) associated with genetic variation for seed oil content (%) in a sunflower recombinant inbred line (RIL)

population (nG = 146) with nearly balanced marker data and multiple phenotypic observations (replications) per RIL [53]. The marker loci were identified by QTL

mapping. Variance components were estimated from LMM (27) for the AMV method and LMM (S13) for the ASV method.
cStatistics are shown for two SNP markers (AX396 and AX493) associated with genetic variation for resistance to Fusarium wilt in a strawberry population (nG = 565)

with unbalanced SNP marker data and multiple phenotypic observations per individual [86]. AX396 and AX493 are tightly linked and both were in LD with a dominant

gene (FW1) conferring resistance to Fusarium wilt but had significantly different genotypic ratios among individuals in the population. Variance components were

estimated from LMM (2) for the AMV method and LMM (15) for the ASV method. The kM coefficient a single locus with unbalanced data are shown in S1 Text.
dType II R2 is the coefficient of partial determination estimated from a Type II ANOVA, where the main and interactions effects of markers are fixed. For the cattle

example, the reduction in sums of squares for main effects were estimated with the other main effects in the genetic model without interactions, e.g., the reduction in SS

for rs10 was R(rs10|rs45, rs20). Similarly, the reduction in SS for each two-locus interaction was estimated without main or three-way interaction effects in the genetic

model, e.g., the Type II reduction in sum of squares for the rs10 × rs45 interaction was R(rs10 × rs45|rs45, rs20, rs10 × rs20, rs45 × rs20) and so on for the other two-locus

interactions. Finally, the reduction in SS for the three-locus interaction was R(rs10 × rs45 × rs20|rs10, rs45, rs20, rs10 × rs45, rs10 × rs20, rs45 × rs20).
eType III R2 is the coefficient of partial determination estimated from a Type III ANOVA, where the main and interactions effects of markers are fixed, e.g., the

reduction in sums of squares for rs10 in the cattle example was estimated by fitting rs10 with all other factors in the model: R(rs10|rs45, rs20, rs10 × rs45, rs10 × rs20, rs45 ×
rs20, rs10 × rs45 × rs20).

https://doi.org/10.1371/journal.pgen.1009762.t001
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where MSG = SSG/dfG is the between entry mean square, SSG is the between entry sum of

squares, dfG = nG − 1 is the between entry degrees of freedom, MS� ¼ SS�=df� ¼ s2
�

is the resid-

ual mean square, SS� is the residual sum of squares, df� = nG(rG − 1) − 1 is the residual degrees

of freedom, s2
�

is the residual variance component, and rG is the number of replications per

entry [74]. The between-entry variance component has a theoretical genetic interpretation

when entries are progeny with genetic relationships known from pedigrees, e.g., monozygotic

twins, full-sib families, or recombinant inbred lines [24, 25, 30]. ANOVA estimators of the

marker locus M and entry nested in M variance components from LMM (2) with balanced

data are:

ŝ2
M ¼

MSM � MSG:M

rGnG:M
ð4Þ

and

ŝ2
G:M ¼

MSG:M � MS�
rG

ð5Þ

respectively, where nG:M is the number of entries nested in each marker genotype,

Eðŝ2
MÞ ¼ s

2
M, Eðŝ2

G:MÞ ¼ s
2
G:M , MSG:M is the entry nested in M mean square, and MSM is the

mean square for marker locus M. The residuals in LMMs (1) and (2) are identical when the

data are balanced (ŝ2
�
¼ MS�). Hence, for a single marker locus with balanced data, the

ANOVA estimator of p is:

p̂ ¼
ŝ2

M

ŝ2
G

ð6Þ

and the ANOVA estimator of broad-sense marker heritability on an entry-mean basis is:

Ĥ 2
M ¼

ŝ2
M

ŝ2
G þ ŝ

2
�
=rG

ð7Þ

where ŝ2
�P ¼ ŝ

2
G þ ŝ

2
�
=rG is the phenotypic variance on an entry-mean basis [25, 76].

The overestimation of p and H2
M was not obvious from inspection of ANOVA estimators

(6) and (7). The source of the bias was discovered by substituting SSM + SSG:M for SSG in the

ANOVA estimator of s2
G from (3) and simplifying:

ŝ2
G ¼

1

dfGrG
ðSSM þ SSG:MÞ �

1

df�rG
SS�

¼
1

dfGrG
½dfMðŝ

2

�
þ rG:Mŝ

2

G:M þ rMŝ
2

MÞ þ dfG:Mðŝ
2

�
þ rG:Mŝ

2

G:MÞ� �
1

df�rG
df�ŝ

2

�

¼
dfMrM
dfGrG

ŝ2

M þ ŝ
2

G:M ¼
dfMnG:M

dfG
ŝ2

M þ ŝ
2

G:M ¼ kMŝ
2

M þ ŝ
2

G:M

ð8Þ

where the fraction kM is source of the bias, 0< kM< 1, rM is the number of replications per

marker genotype, nG:M is the number of entries nested in marker loci, SSM is the marker sum

of squares, dfM is the marker degrees of freedom, rM is the number of replicates of each marker

genotype, SSG:M is the entry nested in marker sum of squares, and dfG:M is the entry nested in

marker degrees of freedom. The term kM in (8) depends on degrees of freedom and nG:M and

is hereafter referred to as the kM bias coefficient, where the subscript M indexes the intralocus

and interlocus effects of marker loci.
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Eq (8) shows that the sum of ANOVA estimates of s2
M and s2

G:M from LMM (1) are greater

than the ANOVA estimate of s2
G from LMM (2):

ŝ2
M þ ŝ

2
G:M > ŝ2

G ¼ kMŝ2
M þ ŝ

2
G:M ð9Þ

Although the SS for sources of variation in these LMMs are additive (SSM + SSG:M = SSG),

the mean squares are not (MSM + MSG:M 6¼MSG). Because ŝ2
G ¼ kMŝ2

M þ ŝ
2
G:M, the sum ŝ2

M þ

ŝ2
G:M from LMM (2) overestimates ŝ2

G by a factor of ð1 � kMÞŝ2
M. The ANOVA estimators of p

and H2
M from analyses of LMMs (1) and (2) are upwardly biased because ŝ2

M is multiplied by

the fraction kM in their denominators, and not the numerators:

p̂ ¼
ŝ2

M

ŝ2
G

¼
ŝ2

M

kMŝ2
M þ ŝ

2
G:M

ð10Þ

and

Ĥ2
M ¼

ŝ2
M

ŝ2
�P

¼
ŝ2

M

kMŝ2
M þ ŝ

2
G:M þ ŝ

2
�
=rG

ð11Þ

Substituting ŝ2
M þ ŝ

2
G:M for ŝ2

G in the denominators of p and H2
M decreases but does not

eliminate the bias because ŝ2
M is multiplied by kM in the denominator (S1 Fig). For a single

marker with balanced data, we found that:

kM ¼
dfMrM
dfGrG

¼
dfMnG:M

dfG
ð12Þ

and

ŝ2
M

ŝ2
G

¼
ŝ2

M

kMŝ2
M þ ŝ

2
G:M

� �

>
ŝ2

M

ŝ2
M þ ŝ

2
G:M

>
kMŝ2

M

kMŝ2
M þ ŝ

2
G:M

¼
kMŝ2

M

ŝ2
G

� �

ð13Þ

where 0< kM< 1. Hence, the bias is caused by the kM multiplier in the expected values of the

ANOVA estimators of p and H2
M . As shown later, simulation analyses confirmed that (9) and

(13) accurately predict the upward bias caused by kM. Moreover, we concluded that the bias

could be corrected by multiplying ANOVA or REML estimates of s2
M by kM in the numerators

of p and H2
M estimates.

Genetic models with unbalanced genotypic data

We started with the special case of balanced data, which seldom arises in practice, but develop

results here for the general case of unbalanced data. Following the same approach as that

shown above for a single locus with balanced data, we found kM coefficients for bias-correcting

ANOVA and REML estimates of p and H2
M for analyses of one to three marker loci with unbal-

anced genotypic data (S1, S2 and S3 Texts). For a single marker locus with unbalanced geno-

typic data, we found:

kM ¼
nG � n� 1

G

P
hn

2
G:Mh

dfG
ð14Þ

where nG is the number of entries, dfG are the degrees of freedom for entries, and nG:Mh
is the

number of entries nested in the hth marker genotype (S1 Text). This simplifies to (12) for a sin-

gle marker locus with balanced genotypic data.

The kM coefficients become slightly more complicated as the number of marker loci

increases but nevertheless follow a predictable algebraic pattern, e.g., for a two locus genetic
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model, see equations (S10)-(S12) in S2 Text. Similarly, for a three locus genetic model, see

equations (S19)-(S25) in S3 Text. kM is greater (kM bias is proportionally smaller) for interac-

tion than main effects, e.g., for two marker loci, kM1 < kM1×M2 < 1 and kM2 < kM1×M2 < 1,

where kM1 is the coefficient for M1, kM2 is the coefficient for M2, and kM1�M2
is the coefficient

for the M1 ×M2 epistatic interaction (S2 Text). kM for the two-locus interaction (kM1×M2) is

larger than kM for the individual marker loci (kM1 and kM2) because the denominator (dfG rG)

is constant, whereas the numerators increase and approach the denominator as the degrees of

freedom for marker effects increase. Therefore, the upward bias is proportionally smaller for

the M1 ×M2 variance component than the M1 or M2 variance components for a two locus

genetic model. Similarly, for a three locus genetic model, the upward bias is proportionally

smaller for the M1 ×M2 ×M3 interaction variance component than the two-way interaction

variance components (M1 ×M2, M1 ×M3, and M2 ×M3). These results naturally extend to

genetic models with more than three loci. Algebraic results are only shown for three marker

loci because we found that the the kM bias problem can be directly solved using average semi-

variance estimation methods when analyzing more complex genetic models (see below).

Although certainly not limited to three marker loci, the methods described herein are primar-

ily designed to study the effects of one to a few genes with large effects, e.g., BRCA2 [52],

BTA19 [43], and the examples shown in Tables 1 and 2, and not to replace GWAS or QTL

mapping.

Study designs without replications or repeated measures of individuals or

families

LMMs (1) and (2) arise in study designs where entries (individuals, families, or strains) are

replicated, e.g., in studies with domesticated plants, biological replicates of half-sib or full-sib

families, doubled haploid or recombinant inbred lines, or testcross hybrids are commonly phe-

notyped [24, 25, 31, 76, 87, 88] (see the sunflower example in Table 1). These same LMMs

apply to study designs for monozygotic twins in humans and other mammals and clonally rep-

licated individuals in asexually propagated plants, e.g., cassava (Manihot esculenta), strawberry

(Fragaria × ananassa), and apple (Malus × domestica) (see the strawberry examples in

Table 1). The extension of the proposed kM bias correction solutions to LMMs with repeated

measures is straightforward and should have applications in studies where large effect loci are

important determinants of the genetic variation underlying quantitative traits in both replica-

ble and unreplicable organisms or populations [88–94].

When entries are unreplicated, the random error or residual source of variation in LMM

(2) disappears (s2
G:M becomes the residual) and s2

G, s2
�
, and p cannot be estimated; however, the

marker heritability can be estimated using the phenotypic variance among unreplicated indi-

viduals (kMs2
M þ s

2
G:M). As before, this variance component ratio is upwardly biased by the fac-

tor kM (see the cattle example in Table 1). Without the insights gained from the algebra shown

in equations (10), (S3), (S9), and (S18), and S1, S2 and S3 Texts, the bias would not be obvious

unless one or more estimates of marker heritability exceeded 1, which only happens when the

loci under study have very large effects. That was exactly how we originally discovered the bias

problem in the first place (Table 1). The bias is systematic and ubiquitous but not immediately

obvious when estimates fall within the expected range (0 < Ĥ2
M < 1). The same bias correc-

tion solutions we proposed for study designs with replications of entries can be applied in

study designs where entries are unreplicated. When unreplicated entries are genotyped with a

dense genome-wide of markers, s2
G be estimated using a genomic or pedigree relationship

matrix [92, 95–97], which yields an estimate of p.
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Average semivariance estimation directly solves the bias problem

The AMV methods proposed above for bias correcting ANOVA or REML estimates of p and

H2
M are straightforward to apply in practice because they are the methods widely described in

textbooks and implemented in popular statistical software packages, e.g., the R package ‘lme4’

and SAS package ‘GLIMMIX’ [78, 98]. Here we show that the bias problem can be directly

solved by applying average semivariance (ASV) estimation methods [73]. As before, we start

by showing results for a single marker locus with balanced genotypic data. AMV notation and

estimators are reformulated in matrix notation here to build the foundation for describing

ASV notation and estimators. The input for both are the adjusted entry-level means (�yij�) from

LMM (1) stored in an nG-element vector. These are the best linear unbiased estimates (BLUEs)

for entries [73, 99]. The LMM equivalent to (2) for the entry-level means analysis of the effect

Table 2. Type I, II, and III sums of squares for fixed effect analyses of markers associated with QTL identified in GWAS and QTL mapping experiments in cattle

and sunflower.

Study Source Type I SS a Type II SS Type III SS

ABC ACB BAC BCA CAB CBA

Cattle White Spottingb rs10 3,552.3 3,552.3 1,707.2 591.4 1,208.7 591.4 542.5 22.1

rs45 6,539.7 4,259.6 8,384.8 8,384.8 4,259.6 4,876.8 4,282.7 1,394.9

rs20 4,880.5 7,160.7 4,880.5 5,996.4 9,504.4 9,504.4 4,834.3 1,788.4

rs10 × rs45 12.7 12.7 12.7 12.7 12.7 12.7 14.3 47.4

rs10 × rs20 132.7 132.7 132.7 132.7 132.7 132.7 107.4 234.0

rs45 × rs20 193.1 193.1 193.1 193.1 193.1 193.1 193.1 91.5

rs10 × rs45 × rs20 143.5 143.5 143.5 143.5 143.5 143.5 143.5 143.5

G : rs10 × rs45 × rs20 15,512.9 15,512.9 15,512.9 15,512.9 15,512.9 15,512.9 15,512.9 15,512.9

Sunflower Oil Contentc BR 1,624.0 1,624.0 1,708.8 1,904.0 1,829.7 1,904.0 1,881.4 1,711.2

PHY 298.2 254.2 213.4 213.4 254.3 180.0 220.2 208.3

HYP 537.1 581.0 537.1 342.0 375.4 375.4 507.0 511.6

BR × PHY 57.9 57.9 57.9 57.9 57.9 57.9 49.7 50.0

BR × HYP 168.0 168.0 168.0 168.0 168.0 168.0 172.1 195.5

PHY × HYP 11.1 11.1 11.1 11.1 11.1 11.1 11.1 7.6

BR × PHY × HYP 36.6 36.6 36.6 36.6 36.6 36.6 36.6 36.6

G : BR × PHY × HYP 4,113.4 4,113.4 4,113.4 4,113.4 4,113.4 4,113.4 4113.4 4,113.4

Residual 553.8 553.8 553.8 553.8 553.8 553.8 553.8 553.8

aFor each Type I ANOVA, the six possible orders of the three main effects (marker loci A, B, and C) were tested in the genetic model, where A = rs10, B = rs45, and C =

rs20 for the cattle example and A = BR, B = PHY, and C = HYP for the sunflower example. The interactions were added to the genetic model in a single sequence: A × B,

A × C, B × C, and A × B × C. The three letters indicate the sequence with which markers loci entered the genetic model, e.g., for the ABC order, the sums of squares for

the three main effects were SS(A|μ), SS(B|A, μ), and SS(C|A, B, μ), where μ is the population mean and factors to the right of the vertical bar were included in the model.

Similarly, for the CBA order, the sums of squares for the three main effects were SS(C|μ), SS(B|C, μ), and SS(A|B, C, μ). The sequences with which interactions were

added to the genetic model were identical in the six Type I analyses, e.g., the sums of squares for the A × B interaction was SS(A × B|A, B, C, μ) and for the three-way

interaction was SS(A × B × C|A, B, C, A × B, A × C, B × C, μ).
bStatistics are shown for three marker loci (rs10, rs45, and rs20) associated with genetic variation for white spotting (%) in a cattle population (nG = 2, 973) with a single

phenotypic observation per individual and highly unbalanced marker data [85]. The markers were identified by GWAS. The linear model for the cattle analysis was

identical to the linear model for the sunflower analysis without replications (rG = 1); hence, the residual in the cattle analysis was the entry nested in marker source of

variation. kM coefficients for three loci with unbalanced data are shown in S3 Text.
cStatistics are shown for three marker loci (BR, PHY, and HYP) associated with genetic variation for seed oil content (%) in a sunflower recombinant inbred line (RIL)

population (nG = 146) with nearly balanced marker data and multiple phenotypic observations (replications) per RIL [53]. kM coefficients for three loci with unbalanced

data are shown in S3 Text.

https://doi.org/10.1371/journal.pgen.1009762.t002
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of a single marker locus (M) is:

�yij� ¼ mþMi þ G : MiðjÞ þ �� ij� ð15Þ

where �yij� is the phenotypic mean for the ijth entry, μ is the population mean, Mi is the random

effect of the ith marker genotype, varðMiÞ ¼ s
2
M , G : Mi(j) is the random effect of entries nested

in M, varðG : MiðjÞÞ ¼ s
2
G:M, �� ij� is the residual error, and varð��ij�Þ ¼ r� 1

G s
2
�
. The residual vari-

ance-covariance matrix (R) is estimated in the first stage of a two-stage analysis [99–101]. The

between-entry variance can be partitioned into s2
M and s2

G:M with individual variance-covari-

ance matrices Gc defined by the genetic model, e.g., different main and interaction effects

among marker loci.

The AMV estimator of the phenotypic (total) variance among observations for LMM (15)

is:

ŷAMV
�P ¼ nG

� 1trðVÞ ¼
X

c

ŷAMV
gc
þ ŷAMV

�� ð16Þ

where V is the variance-covariance matrix of the phenotypic observations, nG is the number of

entries, tr(V) is the trace of V, y
AMV
gc
¼ nG

� 1trðZcGcZT
c Þ is the marginal variance explained by

the cth genetic factor in the model (e.g., M and G : M), Zc are design matrices for the c genetic

factors, y
AMV
��
¼ nG

� 1trðRÞ is the AMV estimator of the residual variance, and R is the residual

variance-covariance matrix. The AMV estimator of the genetic variance among entries (G) is:

ŷAMV
G ¼ ðnGÞ

� 1
ŝ2

GtrðZuG
ZT

uG
Þ ¼ ŝ2

G ð17Þ

where Z
uG

is a nG identity matrix. From LMM (15), the AMV estimator of the variance associ-

ated with a single marker locus with balanced data is:

ŷAMV
M ¼ ðnGÞ

� 1
ŝ2

MtrðZuM
ZT

uM
Þ ¼
ðnMÞnG:M

nG
ŝ2

M ¼ ŝ
2

M ð18Þ

where Eðŝ2
MÞ ¼ s

2
M ¼ y

AMV
M , Z

uM
¼ I

nM
� 1

nG:M
, I

nM
is a nM identity matrix, 1

nG:M
is an nG:M-ele-

ment unit vector, and uM is a vector of random effects for M. The AMV estimator of the vari-

ance associated with the residual genetic variation among entries nested in M is:

ŷAMV
G:M ¼ ðnGÞ

� 1
ŝ2

G:MtrðZuG:M
ZT

uG:M
Þ ¼

nG

nG
ŝ2

G:M ¼ ŝ
2

G:M ð19Þ

where uG:M is a vector of random entry nested in M effects and Z
uG:M

is a nG identity matrix.

Hence, the AMV estimators of s2
M and s2

G are identical to ANOVA estimators (4) and (5),

respectively, with entry means as input for the former and original observations as input for

the latter.

ASV, or the average variance of differences among observations, leads to a definition of the

total variance that provides a natural way to account for the heterogeneity of variance and

covariance among observations [73, 102]. ASV can be defined for any variance-covariance

structure in a generalized LMM and allows for missing and unbalanced data [73]. The ASV

estimator of total variance is half the average variance of pairwise differences among entries

and can be partitioned into independent sources of variance, e.g., genetic and non-genetic or

residual:

ŷASV
�P ¼ ðnG � 1Þ

� 1trðVDnG
Þ ¼

X

c

ŷASV
gc
þ ŷASV

�� ð20Þ
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where DnG
¼ InG � nG

� 1JnG is the idempotent matrix used for column-wise mean-centering,

InG is an nG × nG identity matrix, and JnG is an nG × nG unit matrix [73]. y
ASV
�P accounts for

the variance and covariance of the phenotypic observations. From (20), y
ASV
gc
¼ ðnG �

1Þ
� 1trðZcGcZT

c DnG
Þ is the variance explained by the cth genetic factor (uc), where c indexes

genetic factors, the genetic factors are marker locus effects and entries nested in marker locus

effects, and y
ASV
��
¼ ðnG � 1Þ

� 1trðRDnG
Þ is the residual variance. The variance explained by the

cth genetic factor is y
ASV
gc
¼ Eðs2

gc
Þ, e.g., for a single marker locus M, y

ASV
M ¼ Eðs2

MÞ. Eðs
2
gc
Þ, Eðs2

MÞ,

and the biases of these ASV estimators are defined in S4 Text.

The ASV estimator of the genetic variance among entries (G) is:

ŷASV
G ¼ ðnG � 1Þ

� 1
ŝ2

GtrðZuG
ZT

uG
DnG
Þ ¼ ŝ2

G ð21Þ

where Z
uG

is a nG identity matrix. Hence, from Eqs (8), (17) and (21), AMV and ASV estima-

tors of the between-entry variance component (s2
G) are equivalent (ŝ2

G ¼ ŷ
AMV
G ¼ ŷASV

G ). The

ASV estimator of the variance associated with M is:

ŷASV
M ¼ ðnG � 1Þ

� 1
ŝ2

MtrðZuM
ZT

uM
DnG
Þ ¼
ðnM � 1ÞnG:M

nG � 1
ŝ2

M ¼
dfMnG:M

dfG
ŝ2

M ¼ kMŝ
2

M ð22Þ

where kM = dfM nG:M/dfG is the bias correction coefficient, Z
uM
¼ I

nM
� 1

nG:M
, dfG = nG − 1, dfM

= nM − 1, and dfG:M = dfG − dfM. This definition of the kM-bias coefficient is identical to the ear-

lier definition with rG factored out (see Eq 12). Eq (22) shows that the ASV estimator of s2
M is

corrected by the fraction kM, which correctly scales the estimate of s2
M to the genetic variance

and yields unbiased estimates of p and H2
M . From Eqs (9) and (22), we found that ŷASV

M < ŷAMV
M

by the factor kM. The ASV estimator of the variance associated with G : M is:

ŷASV
G:M ¼ ðnG � 1Þ

� 1
ŝ2

G:MtrðZuG:M
ZT

uG:M
DnG
Þ ¼

nG � 1

nG � 1
ŝ2

G:M ¼ ŝ
2

G:M ð23Þ

The ASV estimator of p for a single marker locus (M) is:

p̂� ¼
ŷASV
M

ŷASV
G

¼
kMŝ2

M

ŝ2
G

¼
kMŝ2

M

kMŝ2
M þ ŝ

2
G:M

ð24Þ

Similarly, the ASV estimator of H2
M for a single marker locus is:

Ĥ2
M� ¼

ŷASV
M

ŷASV
�P

¼
kMŝ2

M

ŝ2
G þ r� 1

G ŝ
2
�

¼
kMŝ2

M

kMŝ2
M þ ŝ

2
G:M þ r� 1

G ŝ
2
�

ð25Þ

where ŝ2
G þ ŝ

2
�
=rG ¼ ŝ2

��P is the phenotypic variance on an entry-mean basis [25]. From these

results, we found that:

ŷASV
M þ ŷASV

G:M ¼ ŷ
ASV
G ¼ ŷAMV

G ¼ ŝ2
G < ŷAMV

M þ ŷAMV
G:M ð26Þ

and showed that ASV estimators of p and H2
M are unbiased (automatically corrected for kM).

Computer simulations confirmed that ASV-REML estimates of p and H2
M

are unbiased

Computer simulations confirmed that AMV-REML estimates of p (6) and H2
M (7) are upwardly

biased by the factor kM and that ASV-REML estimates of these parameters form (24) and (25)
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are unbiased (Figs 1 and 2). The mean of AMV-REML estimates of p and H2
M from 21 different

simulation study designs (S1 Table) were identical to those predicted by the kM coefficients

shown in S1, S2 and S3 Texts. Several insights arose from the simulation analyses. First, the

bias caused by kM increased as H2
M increased but was proportionally constant for different H2

M

(Fig 1). These results show that the overestimation of p and H2
M is greatest for genes and gene-

gene interactions with large effects (Fig 1). Their effects could be inflated by selection bias over

and above kM bias [67, 68, 82, 83, 103]; hence, we concluded that kM-bias and selection bias

could operate in combination to inflate estimates of the contribution of a locus to the heritable

variation in a population (S1, S2 and S3 Texts). Moreover, because the bias increases as the

effect of the locus increases, we concluded that the overestimation problem is worst for large-

effect QTL (Fig 1). Second, kM bias was greater for unbalanced than balanced data (Fig 1D and

1E). The effect of unbalanced data was more extreme for the F2 simulation (Fig 1D) where the

expected genotypic ratio was 1 AA: 2 Aa: 1 aa than for simulations where 10 or 33% of the

observations were randomly missing for markers with roughly equal numbers of replicates/

Fig 1. Accuracy of AMV and ASV estimators of marker heritability. AMV and ASV estimates of H2
M are shown for 1,000 segregating populations

simulated for different numbers of entries (nG individuals, families, or strains), five replications/entry (rG = 5), true marker heritability (H2
M) ranging

from 0 to 1, and one to three marker loci with three genotypes/marker locus (nM1 = 3). AMV estimates of marker heritability (Ĥ 2
M ; red highlighted

observations) and ASV estimates of marker heritability (Ĥ 2
M�; blue highlighted observations) are shown for: (A) one locus with balanced data for nG =

540 entries (study design 1); (B) two marker loci with interaction (M1, M2, and M1×M2) and balanced data for nG = 540 (study design 2); (C) three

marker loci with interactions (M1, M2, M3, M1×M2, M1×M3, M2×M3, and M1×M2×M3) and balanced data for nG = 540 (study design 3); (D) an

population segregating 1:2:1 for one marker locus with rG:M = 135 entries for both homozygotes and rG:M = 270 heterozygous entries, and nG = 540

(study design 4); (E) one locus with 10% randomly missing data among 540 entries (study design 5); and (F) one locus with 33% randomly missing data

among 540 entries (study design 6). Study design details are shown in S1 Table.

https://doi.org/10.1371/journal.pgen.1009762.g001
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marker genotype (Fig 1E and 1F). Third, the F2 and missing data simulations further showed

that the precision of estimates of these parameters decreased as the genotypic data imbalance

increased. Even though bias-corrected AMV and ASV estimates of these parameters are unbi-

ased, the sampling variances among the simulated F2 samples were larger than observed for

Fig 2. Effect of rG, nG, and H2
M on the relative bias of AMV and ASV estimators of s2

M. (A and B) Phenotypic observations were simulated for 1,000

populations segregating for a single marker locus with three genotypes (nM = 3), nG = 900 progeny, and rG = 1, 2, 5, 10, or 20 (study designs 7–11). The

marker locus was assumed to be in complete linkage disequilibrium with a single QTL that explains 50% of the phenotypic variance (H2
M ¼ 0:50). (A)

Distribution of the relative biases of AMV estimates of s2
M for different rG. The relative bias RB½yAMV

M � ¼ 0:498 was identical for different rG. (B)

Distribution of the relative biases of ASV estimates of s2
M for different rG. The relative bias RB½yASVM � ¼ 0:00 was identical for different rG. (C and D)

Phenotypic observations were simulated for 1,000 populations segregating for a single marker locus with three genotypes (nM = 3), five replications/

entry (rG = 5), and nG = 450, 900, 1,800, 3,600, or 7,200 entries/population (study designs 12–16). The marker locus was assumed to be in complete

linkage disequilibrium with a single QTL that explains 50% of the phenotypic variance (H2
M ¼ 0:50). (C) Distribution of the relative biases of AMV

estimates of s2
M for different nG. The relative bias RB½yAMV

M � ¼ 0:499 was identical across the variables tested. (D) Distribution of the relative biases of

ASV estimates of s2
M for different nG. The relative bias (RB½yASVM � ¼ 0:00) was identical across the variables tested. (E and F) Phenotypic observations

were simulated for 1,000 populations segregating for a single marker locus with three genotypes (nM = 3), five replications/entry (rG = 5), and nG = 450

entries/population. The marker locus was assumed to be in complete linkage disequilibrium with a single QTL that explains 5–95% of the phenotypic

variance (H2
M ¼ 0:05 to 0.95 (study designs 17–21). (E) Distribution of the relative biases of AMV estimates of s2

M for different H2
M . The relative bias

RB½yAMV
M � ¼ 0:496 was identical across the variables tested. (F) Distribution of the relative biases of ASV estimates of s2

M for different H2
M . The relative

bias RB½yASVM � ¼ 0:0 was identical across the variables tested.

https://doi.org/10.1371/journal.pgen.1009762.g002
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the 10 and 33% missing data samples and yielded a small percentage of H2
M estimates slightly

greater than 1.0 (Fig 1D). For the other simulation study designs (Fig 1), none of the ASV esti-

mates exceeded 1.0. The sample variances of p and H2
M can be estimated using data resampling

methods, e.g., bootstrapping [104], or the estimators we developed using the Delta method (S5

Text) [25, 105, 106]. Equations (S44) and (S45) in S5 Text show that ASV estimates are more

precise than AMV estimates by a factor of k2
M. These predictions perfectly aligned with the

empirical bootstrap estimates. Fourth, the relative biases were not affected by the number of

replications of entries or the number of entries, although the precision of s2
M estimates

increased as nG and H2
M increased (Fig 2). Predictably, the number of entries (nG) dramatically

affected the precision of estimates of H2
M (Fig 2C and 2D). The relative biases were not affected

by rG or H2
M; however, the sampling variances were strongly affected by H2

M and decreased as

H2
M increased (Fig 2E and 2F and S2 Fig).

GWAS example: A single marker locus with highly unbalanced genotypic

data

The bias-correction methods described above are illustrated here for highly unbalanced geno-

typic data from a GWAS experiment. Variance components were estimated for two SNP

markers (AX493 and AX396) in LD with a gene (FW1) conferring resistance to Fusarium wilt

in a strawberry (Fragaria × ananassa) GWAS population (nG = 564) genotyped with a

genome-wide framework of SNP markers [86]. Both SNP markers had highly significant

GWAS effects with −log10(p) = 6.61 × 10−31 for AX493 and 2.95 × 10−222 for AX396. Genotype

frequencies were highly unbalanced for both markers with a scarcity of AA homozygotes

(2.8%) for AX396 (16AA : 177Aa : 371aa) and a 1 : 2 : 1 ratio for AX493 (141AA : 282Aa :

141aa). For both loci, the minor allele frequency was >0.05. The kM for these data (kAX493 =

0.62 and kAX396 = 0.47) were calculated as shown in S1 Text. The AMV-REML estimate of H2
M

for AX396 exceeded 1.0, a telltale sign of kM-bias (Table 1). AMV-REML estimates of s2
M and

H2
M for both SNP markers were double or nearly double their bias-corrected ASV-REML esti-

mates (Table 1). The bias-corrected estimate of marker heritability for AX396 was 0.62, versus

1.33 for the uncorrected estimate. Even with bias-correction, the sum of ASV-REML estimates

of s2
M and s2

G:M for AX493 was slightly greater than the ASV-REML estimate of s2
G. This result

was consistent with findings for highly unbalanced marker genotypic data in our simulation

studies where a certain fraction of bias-corrected estimates exceeded the theoretical limit for

heritability because of decreased precision (Fig 1). The kM-bias problem would not necessarily

have been detected in the analysis of AX396 because the p and H2
M estimates fell within the

expected range, e.g., ŷASV
AX396
þ ŷASV

G:AX396
=ŷASV

�P ¼ 0:71 (Table 1). Although both SNP markers

were closely associated with FW1, they accounted for dramatically different fractions of genetic

variance because of historic recombination and because neither are causal DNA variants or in

complete LD with causal DNA variants [17, 19, 86, 107].

QTL mapping example: Three marker loci with slightly unbalanced

genotypic data

Statistics are shown here for an analysis of three marker loci (BR, PHY, and HYP) affecting

seed oil content in a sunflower (Helianthus annuus) RIL population using LMM (27) [53]. The

genotypic data were only slightly unbalanced and the three marker loci were identified by QTL

mapping. The kM needed for bias-correcting AMV-REML estimates of p and H2
M are shown in

S3 Text (Table 1). The AMV-REML estimates of p and H2
M were nearly double the bias-cor-

rected ASV-REML estimates, e.g., the AMV-REML estimate of H2
M for the three-locus genetic
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model (0.79) was nearly two-fold greater than the ASV-REML estimate (0.41) (Table 1). Simi-

larly, the AMV-REML estimate of p for the BR locus (0.54) was slightly more than double the

bias-corrected (ASV-REML) estimate (0.26). Hence, the uncorrected REML estimates of p and

H2
M grossly inflated the predicted contributions of the three marker loci to genetic variation for

seed oil content (Table 1).

GWAS example: Three marker loci with unbalanced genotypic data and

unreplicated entries

The application of bias-correction is illustrated here for a genetic model with three

marker loci, highly unbalanced genotypic data, and a single phenotypic observation per

individual—s2
G and p could not be estimated for this example because individuals were unre-

plicated. Variance components were estimated for three SNP markers (rs10, rs45, and rs20)

on chromosomes 2, 6, and 22, respectively, affecting white spotting (%) in a Holstein–Friesian

cattle (Bos taurus) population (nG = 2, 973) [85]. These SNP markers had the largest effects

among those predicted to be in LD with genes affecting white spotting. The genotypic

frequencies were 50AA : 586Aa : 2, 337aa for rs10, 78AA : 736Aa : 2, 159aa for rs45, and

237AA : 976Aa : 1, 760aa for rs20. The kM for these data (krs10 = 0.35, krs45 = 0.41, and k20 =

0.54) were calculated as shown in S3 Text. The uncorrected AMV-REML estimate of H2
M for

the three-locus genetic model (0.76) was substantially greater than the bias-corrected ASV-

REML estimate (0.37) (Table 1). Similar differences were observed for the three marker loci.

Candidate gene analysis: Fixed or random, BLUE or BLUP?

Our study was partly motivated by inconsistencies in the statistical approaches applied in can-

didate gene and other complex trait analyses when testing hypotheses and fitting genetic mod-

els for multiple large-effect loci. With the high densities of genome-wide markers commonly

assayed in gene finding studies, investigators often identify markers tightly linked to candidate

or known causal genes, as exemplified by diverse real world examples [17, 19, 33, 34, 37, 38,

40, 42, 43, 52, 54, 108]. The candidate marker loci are nearly always initially identified by

genome-wide searches using sequential (marker-by-marker) approaches [56, 72, 75, 79, 109,

110]. Complicated and often misunderstood problems arise in the estimation and interpreta-

tion of statistics from sequential fixed effect analyses when the data are unbalanced [79, 111,

112]. Most importantly, there are multiple model fitting and analysis options (Type I, II, and

III ANOVA) and the reduction in error sums of squares (SSE), test statistics, and parameter

estimates differ among them, a problem that disappears when the data are balanced or when

single large effect loci are discovered [79, 111–113]. Our review of the literature uncovered

substantial variation and inconsistencies in the statistical approaches applied to the problem of

fitting multilocus genetic models, testing multilocus genetic hypotheses, and calculating best

linear unbiased estimates (BLUEs) from a fixed effects analysis of marker loci.

The problems that arise in fixed effect analyses of unbalanced data profoundly affect param-

eter estimates and statistical inferences but have not been universally recognized or addressed

in complex trait analyses [79, 112]. We reanalyzed the cattle and sunflower examples with

markers as fixed effects (Table 2) to show this, illustrate the challenges and nuances of fixed

effects analyses of unbalanced data, and facilitate comparisons between random and fixed

effects analyses of marker loci [56, 56, 75, 79, 109–112]. Following the discovery of statistically

significant marker-trait associations from a marker-by-marker genome-wide scan, the natural

progression would be to analyze multilocus genetic models where the effects of the discovered

loci are simultaneously corrected for the effects of other discovered loci [79, 112], as shown in
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our multilocus analysis examples (Tables 1 and 2). This is straightforward when the genotypic

data are balanced or nearly balanced (as in the sunflower example) but more complicated and

convoluted when the genotypic data are unbalanced (as in the cattle example) [75, 79, 111,

112]. Although methods for fixed effect analyses of factorial treatment designs (multilocus

genetic models) with unbalanced data are well known [56, 79, 109, 110, 112], there are several

model fitting and parameter estimation variations that can lead to dramatically different

parameter estimates and statistical inferences. This is perfectly illustrated by the cattle example

where the coefficients of determination (analogous but not identical to H2
M) from Type I, II,

and III analyses were substantially different from each other and from H2
M estimates from the

random effects analysis (Tables 1 and 2). The differences and ambiguities among the different

fixed effects approaches disappear when the random effects approach is applied to the

problem.

The analysis of markers as random effects in multilocus analyses of known or candidate

genes with large effects with ASV, although historically uncommon, simultaneously yields

unbiased estimates of the variance component ratios investigated in the present study (p and

H2
M) and best linear unbiased predictors (BLUPs) of the additive and dominance effects of the

causative loci identified by marker associations, in addition to solving the often ambiguous

problems that arise in fixed effects analyses of unbalanced data [32, 75, 77, 79, 112, 113]. As

discussed in depth below and illustrated through a reanalysis of the cattle and sunflower exam-

ples (Table 2), the random effects approach we described (ASV with REML estimation of the

variance components) yields accurate estimates of the underlying genetic parameters (variance

component ratios and BLUPs of marker effects) from a single unambiguous generalized linear

mixed model analysis, whereas wildly different parameter estimates can arise among the multi-

tude of fixed effects analyses that investigators might elect to apply in practice when the under-

lying genotypic and phenotypic data are unbalanced (Tables 1 and 2).

As substantiated by our simulation analyses (Figs 1 and 2), ASV with REML estimation of

the underlying variance components yields accurate estimates of p and H2
M for marker loci and

interactions between marker loci, both individually and collectively, and BLUPs of the the

additive and dominance effects of marker loci [76, 113–115]. When the genotypic data are

unbalanced, the order with which marker and marker × marker effects enter the genetic

model profoundly affects parameter estimates and statistical inferences in fixed effect analyses

[56, 72, 74, 116]. To illustrate this, the main effects of marker loci A, B, and C were estimated

for the six possible Type I ANOVA orders of the three loci (ABC, ACB, BAC, BCA, CAB, and

CBA) (Table 2). Predictably, the reduction in the error sums of squares for a particular locus

differed for each Type I order in the cattle example: the Type I SS ranged from 591.4 to 3,552.3

for rs10, 4,880.5 to 9,504.4 for rs20, and 4,259.6 to 8,384.8 for rs45. The R2, or PVE, estimates

for marker loci were radically different among the six Type I ANOVA and Type II and III anal-

yses. The Type I SS were, in addition, significantly greater than the Type III SS for nearly every

factor. Although Type III statistics are commonly estimated and reported in analyses of facto-

rial treatment designs with unbalanced data, there are compelling arguments for estimating

Type II statistics [109, 110]; nevertheless, as we have argued, the fixed effects approach is

unnecessary.

Broadly speaking, the large effect loci segregating in a population are typically necessary but

not sufficient for predicting genetic merit or disease risks but are often important enough to

warrant deeper study and, in animal and plant breeding, direct selection via MAS or direct

modelling in genome selection applications [21, 32, 57]. The BLUP (random marker effects)

approach we applied was designed to align the study of loci with large and highly predictive

effects with the BLUP approaches commonly applied to genomic prediction problems that are
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agnostic or indifferent to the effects of individual loci, the so-called “black box” of genomic

prediction [6, 7, 20, 21, 88, 117–121]. The predictive markers associated with large effect

marker loci can be integrated into the genome-wide framework of marker loci applied in geno-

mic prediction or incorporated as fixed effects when estimating GEBVs or PRSs [21, 54, 57–

61]. One of the greatest strengths of the random effects (BLUP) approach is that the genetic

parameters can be estimated from a single REML analysis free of the challenges and uncer-

tainty associated with the fixed effects model building process [79, 109, 110, 112]. Finally, if

our conclusions are correct, the complex trait analysis literature is riddled with overestimates

of the genotypic and phenotypic variances explained by specific genes or QTL.

Materials and methods

Simulation studies

We used computer simulation to estimate the bias and assess the accuracy of uncorrected and

bias-corrected REML estimates of p and H2
M for 21 study designs (S1 Table and S4 Text). Phe-

notypic observations (yijk) for LMMs (1) and (2) were simulated for nM = 3 genotypes/marker

locus and 21 combinations of study design variables (nG, rG, rM, and H2) with balanced or

unbalanced data (S1 Table). Simulations were performed to assess the accuracy of REML esti-

mates of p and H2
M for 21 study designs with 1,000 replicates per study design (S1 Table). The

phenotypic observations for each sample were obtained by generating random normal vari-

ables for entries, markers, and residuals using the R function rnorm() with known means and

variances [122] as described by [123, 124]. The simulated random effects of entries, markers,

and replications in LMMs (1) and (2) were summed to obtain n = nG rG phenotypic observa-

tions for each study design. Variance components for the random effects in LMMs (1) and (2)

were estimated using the REML function implemented in and assess the accuracy of AMV and

ASV estimators of p and H2
M. For study designs 1–6, the true marker heritability randomly var-

ied from 0 to 1. Study designs 1–6 demonstrate how different numbers of marker loci (m) and

unbalanced data affect estimates of p and H2
M (Fig 1; S1 Table). For study designs 5 and 6, we

randomly deleted 10 and 33% of the phenotypic observations, respectively, to create unbal-

anced data. For study designs 7–21, the true variances of the independent variables were fixed

for all samples, which allowed us to estimate the bias and relative bias associated with the dif-

ferent estimators (the biases are shown in S4 Text). Study designs 7–21 illustrate how rG, nG,

and H2
M affected the biases and relative biases of p and H2

M (Fig 2; S1 Table). The variance com-

ponents were estimated using REML in the lme4::lmer() v1.1–21 [78] package in R v4.0.2

[122]. We estimated the sample variances of AMV and ASV estimates of p for each study

design (S1 Table). Finally, we developed estimators of the sampling variances of p and H2
M

using the delta method [25, 106], as shown in S5 Text.

Estimation examples

To illustrate the application of bias-correction methods and the differences between AMV and

bias-corrected AMV estimates of p and H2
M , we reanalyzed data from a GWAS study in cattle

(Bos taurus), a QTL mapping study in oilseed sunflower (Helianthus annuus L.) [53], and a

GWAS study of Fusarium wilt resistance in strawberry (Fragaria × ananassa Duchesne ex

Rozier) [86]. For the sunflower study, two replications (rG = 2) of nG = 146 recombinant inbred

lines (RILs) were phenotyped for seed oil concentration (g/kg) and genotyped for three marker

loci (BR, PHY, and HYP) with two homozygous marker genotypes/locus [53]. For the cattle

study, unreplicated entries (rG = 1; nG = 2, 973) were phenotyped for white spotting (%) and

genotyped for three marker loci (rs10, rs45, rs20) with three marker genotypes per locus [85].
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LMM (2) expanded to three marker loci with all possible interactions among marker loci is:

yhijkl ¼ mþ BRh þ PHYi þHYPj þ BR� PHYhi þ BR�HYPhj þ PHY �HYPij

þBR� PHY �HYPhij þ G : ðBR� PHY � HYPÞhijðkÞ þ �hijkl
ð27Þ

where BRh is the hth effect of the BR locus, PHYi is the ith effect of the PHY locus, HYPj is the jth

effect of the HYP locus, G : (BR × PHY ×HYP)hij(k) is the kth effect of entries nested in the hijth

BR × PHY ×HYP interaction, and �hijkl is the hijklth residual effect. The data for RILs were bal-

anced, whereas the data for marker genotypes were slightly unbalanced. Each of the eight BR ×
PHY ×HYP homozygotes were observed in the RIL population; however, the number of

entries nested in each marker genotype (nG:M) varied from nG:BR = 81 : 65, nG:PHY = 60 : 86,

and nG:HYP = 70 : 76. Variance components for LMMs (1) and (27) were estimated using the

REML method in lme4::lmer() [78]. The marker-associated genetic variances for individual

marker loci and two- and three-way interactions among marker loci were bias-corrected using

the formula described in S1, S2 and S3 Texts.

For the strawberry study, four replications (rG = 4) of 565 entries (nG = 565) from a

genome-wide association study (GWAS) were phenotyped for resistance to Fusarium wilt and

genotyped for single nucleotide polymorphism (SNP) markers in LD with FW1, a dominant

gene conferring resistance to Fusarium oxysporum f.sp. fragariae, the causal pathogen [86].

The replications were asexually propagated clones of individuals; hence, the expected causal

variance among individuals was equal to the total genetic variation in the population, analo-

gous to monozygotic twins [25]. Genetic parameters were estimated for two SNP markers

(AX493 and AX396) that were tightly linked to FW1 [86]. The genotypic data for both markers

were highly unbalanced. Genotype numbers were 141 AA : 282 Aa : 141 aa for AX493 and 16

AA : 177 Aa : 371 aa for AX396, where A and a are alternate SNP alleles. The variance compo-

nents were estimated for LMMs (1) and (2) using REML method implemented in the R pack-

age lme4::lmer() [78]. REML estimates of the marker-associated genetic variances for both

marker loci were bias-corrected using the approach described in S1 Text.

For the cattle study, we used a model similar to (27) for the analysis. However, because

entries are unreplicated in this experiment, we cannot include the entries nested in the three-

way marker interaction (G : M) term because it has the same levels as the residual. The LMM

for this case study is:

yhijk ¼ mþ rs10h þ rs45i þ rs20j þ rs10� rs45hi þ rs10� rs20hj þ rs45� rs20ij

þrs10� rs45� rs20hij þ G : ðrs10� rs45� rs20ÞhijðkÞ
ð28Þ

where rs10h is the hth effect of the peak SNP (rs109979909) on chromosome 2, rs45i is the ith

effect of the peak SNP on chromosome 6 (rs451683615), rs20j is the jth effect of the peak SNP

on chromosome 22 (rs209784468), and G : (rs10×rs45×rs20)hij(k) is the hij(k)th residual effect

comprising residual genetic effects G : M and residual error. In this experiment, there were k
entries and k observations, and because of this we cannot fit LMM (1) without incorporating

pedigree or genomic relatedness. In this single case, we estimate ŝ2
P ¼ 10:42 from the log trans-

formed data to use in the denominator of Ĥ2
M .

We used the SAS package PROC GLM [77] for Type I and III analyses of the sunflower and

cattle data with marker loci as fixed effects. Type I analyses were done for the six possible

orders of main effects (ABC, ACB, BAC, BCA, CAB, and CBA) and a single order for

marker × marker interactions (A × B, A × C, B × C, and A × B × C), where A, B, and C are

the three marker loci (factors). For the ABC order, the reduction SS for the main effects were

R(A | μ), R(B |μ, A), and R(C | μ, A, B), where μ is the population mean. Similarly, for the ACB
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order, the reduction SS for the main effects were R(A | μ), R(C |μ, A), and R(B | μ, A, C), and

so on for the other four orders (BAC, BCA, CAB, and CBA). C, A × B, A × C, B × C, A × B ×
C), the reduction SS for the main effect of B was R(B | B, C, A × B, A × C, B × C, A × B × C).

For comparison, the Type III reduction SS for the main effects were R(A | μ, B, C, A × B,

A × C, B × C, and A × B × C), R(B | μ, A, C, A × B, A × C, B × C, and A × B × C), and R(C | μ,

A, B, A × B, A × C, B × C, and A × B × C).

Supporting information

S1 Table. Simulation study designs and variables. Normally distributed phenotypic observa-

tions were simulated for 21 study designs and associated linear mixed models by varying the

number of observations (n = nG × rG), the number of entries (nG), the number of replications/

entry (rG), the number of marker loci (m), nM = 3 genotypes/marker locus, the number of

entries/marker genotype (nG:M), and marker heritability (H2
M). One thousand samples of size n

were simulated for each study design. The segregation of a single marker locus in an F2 popula-

tion was simulated in study design 4 The number of entries nested in marker genotypes for

study design 4 was equivalent to the expected number for the segregation of a co-dominant

DNA marker in a population segregating 1 AA : 2 Aa : 1 aa for a single marker locus. In this

example, there are 135 entries nested in AA, 270 entries nested in Aa, and 135 entries nested in

aa and each are replicated 5 times.simulates the segregation of a single locus in an F2 popula-

tion The number of entries/genotype for study design 4.

(PDF)

S1 Fig. Accuracy of AMV and ASV estimators of marker heritability when the phenotypic

variance is estimated by pooling marker and residual genetic sources of variation

(s2
M þ s

2
G:M). AMV and ASV estimates of H2

M when s2
G from LMM (1) is replaced with ŝ2

M þ

ŝ2
G:M for AMV from LMM (2) or kMŝ2

M þ ŝ
2
G:M for ASV. Estimates are shown for 1,000 segre-

gating populations simulated for different numbers of entries (nG individuals, families, or

strains), five replications/entry (rG = 5), true marker heritability (H2
M) ranging from 0 to 1, and

one to three marker loci with three genotypes/marker locus (nM1 = 3). The AMV estimates

(shown in red) equal ŝ2
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Þ, whereas the ASV estimates (shown in blue)

equal kMŝ2
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Þ. AMV estimates of marker heritability (Ĥ2

M ; red

highlighted observations) and ASV estimates of marker heritability (Ĥ 2
M�; blue highlighted

observations) are shown for: (A) one locus with balanced data for nG = 540 entries (study

design 1); (B) two marker loci with interaction (M1, M2, and M1 ×M2) and balanced data for

nG = 540 (study design 2); (C) three marker loci with interactions (M1, M2, M3, M1 ×M2,

M1 ×M3, M2 ×M3, and M1 ×M2 ×M3) and balanced data for nG = 540 (study design 3); (D)

a population segregating 1:2:1 for a single marker locus with rG:M = 135 entries for both homo-

zygotes and rG:M = 270 heterozygous entries, and nG = 540 (study design 4); (E) one locus with

10% randomly missing data among 540 entries (study design 5); and (F) one locus with 33%

randomly missing data among 540 entries (study design 6). Study design details are shown in

S1 Table.
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S2 Fig. Relative bias of AMV and ASV estimators of marker heritability. Relative biases of

AMV and ASV estimates of H2
M are shown for 1,000 segregating populations simulated for dif-

ferent numbers of entries (nG individuals, families, or strains), five replications/entry (rG = 5),

true marker heritability (H2
M) ranging from 0 to 1, and one to three marker loci with three

genotypes/marker locus (nM1 = 3). AMV estimates of marker heritability (Ĥ 2
M; red highlighted

observations) and ASV estimates of marker heritability (Ĥ 2
M�; blue highlighted observations)
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rG:M = 270 heterozygous entries, and nG = 540 (study design 4); (E) one locus with 10% ran-

domly missing data among 540 entries (study design 5); and (F) one locus with 33% randomly

missing data among 540 entries (study design 6). Study design details are shown in S1 Table.
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