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ABSTRACT OF THE DISSERTATION

Bayesian Assurance and Sample Size Determination for Experimental Studies

by

Jane Aibo Pan

Doctor of Philosophy in Biostatistics

University of California, Los Angeles, 2022

Professor Sudipto Banerjee, Chair

Determining the sample size to meet the inferential objectives of a study is of central im-

portance in experimental design. There is an extensive collection of methods addressing

this problem from diverse perspectives. The Bayesian paradigm, in particular, has attracted

noticeable attention and includes different perspectives for sample size determination. While

traditional Bayesian methods formulate sample size determination as a decision problem

that optimizes a given utility functions (Lindley, 1997), practical experimental settings may

require a more flexible approach based upon simulating analysis and design objectives (see,

e.g., O’Hagan and Stevens, 2001). Building upon the latter approach, we devise a general

Bayesian framework for simulation-based sample size determination using Bayesian assur-

ance that can be easily implemented on modest computing architectures. We qualify the

need for different priors for the design and analysis stage, working primarily in the con-

text of conjugate Bayesian linear regression models, where we consider known and unknown

variances. We also compare the assurance to a utility-based approach that involves the spec-

ification of objective functions to determine the rate of correct classification (Inoue, Berry,

and Parmigiani, 2005). Throughout, we draw parallels with frequentist solutions, which arise
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as special cases, and alternate Bayesian approaches with an emphasis on how the numerical

results from existing methods arise as special cases in our framework.

We further extend our conjugate linear model’s capabilities to encompass the multiple

testing framework, where the assurance is now characterized by conditions placed on the

Bayesian false discovery rate (FDR). Under this framework, we investigate the effects of

multiple comparison adjustments on assurance and sample size determination. Adjustments

include enforcing different assigned threshold values for the Bayesian FDR and conditions

related to the credible interval condition, and varying the number of pairwise hypothesis

tests being conducted. Of particular interest is observing how the number of pairwise tests

being conducted affects the assurance under fixed constraints placed on the Bayesian FDR as

defined in Müller et al., 2004. We assess how our proposed model performs in commonplace

large-scale problems, specifically microarray data. Our methodology is implemented in a

study of mammary cancer in the rat, where four distinct patterns of expression are provided.

Future tasks involve assessing how our method performs when comparing more than two

subgroups and enforcing objective ways of choosing optimal threshold values.

This dissertation captures the vast applicability of the two-stage framework, offering

a robust Bayesian approach for sample size determination equipped for addressing a wide

selection of problems taking place both within and outside clinical trial settings. There

is broad potential for growth and development in the methods introduced, with numerous

routes available for future exploration.
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CHAPTER 1

Introduction

1.1 Literature Review and Dissertation Aims

Sample size determination (SSD) comprises a crucial aspect of statistical study designs. This

dissertation considers a practical Bayesian approach and gleans insights from a flexible and

analytically tractable framework. There is, by now, a substantial literature in classical and

Bayesian settings. Classical sample size calculations have been treated in depth in texts

such as Kraemer and Thiemann, 1987, Cohen, 1988, and Desu and Raghavarao, 1990, while

extensions to linear and generalized linear models have been addressed in Self and Maurit-

sen, 1988, Self, Mauritsen, and O’Hara, 1992, Muller et al., 1992 and Liu and Liang, 1997.

Bayesian settings have also received substantial attention towards sample size determina-

tion, including the use of distinct prior distributions for conducting Bayesian analysis and

data generation (Brutti, Santis, and Gubbiotti, 2014; O’Hagan and Stevens, 2001; Sahu and

Smith, 2006), the derivation of asymptotic estimations that provide closed-form expressions

for Bayesian sample size (Clarke and Yuan, 2006), and specification of conditions that are

characterized by historical data (Santis, 2007) and posterior quantiles (Santis, 2006). The

Statistician (vol. 46, issue 2, 1997) includes a number of articles from different perspectives

regarding Bayesian SSD (see, e.g., the articles by Adcock, 1997; Joseph, Berger, and Belisle,

1997; Lindley, 1997; Pham-Gia, 1997; Weiss, 2002). Within the Bayesian setting itself, there

have been efforts to distinguish between a formal utility approach (Berger, 1985; Chaloner

and Verdinelli, 1995; Inoue, Berry, and Parmigiani, 2005; Lindley, 1997; Müller and Parmi-

giani, 1995; Parmigiani, 2002; Raiffa and Schlaifer, 1961) and approaches that attempt to
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determine sample size based upon some criterion of analysis or model performance (Gelfand

and Wang, 2002; O’Hagan and Stevens, 2001; Rahme, Joseph, and Gyorkos, 2000). Other

proposed solutions adopt a more tailored approach that are specific to given settings. For

example, Ibrahim et al., 2012 specifically targets Bayesian meta-experimental design using

survival regression models; Reyes and Ghosh, 2013 propose a framework based on Bayesian

average errors capable of simultaneously controlling for Type I and Type II errors, while

Joseph and Belisle, 1997a; Joseph, Berger, and Belisle, 1997; Joseph, Wolfson, and Berger,

1995b and Cao, Lee, and Alber, 2014 rely on lengths of posterior credible intervals to gauge

their sample size estimates. Bayesian treatments specific to clinical trials can be found in

Spiegelhalter, Freedman, and Parmar, 1993, Parmigiani, 2002, Berry, 2006, Berry et al.,

2010, Lee and Zelen, 2000, and Lee and Chu, 2012.

Regardless of approach, all of the cited articles above are based around some well-defined

objective that is desired in the analysis stage. The design of the study, therefore, should

assure us that the analysis objective is met with a certain probability. In the Bayesian setting,

we do not need to focus on specifying a null hypothesis. Instead, we assess the tenability of

a hypothesis based upon the data we observe. A joint probability model is constructed for

the parameters and the data using a prior distribution for the parameters and the likelihood

function of the data conditional on the parameters. Inference proceeds from the posterior

distribution of the parameters given the data. In the design stage we have not observed

the data. Therefore, we formulate a data generating mechanism and, subsequently, consider

the posterior distribution given the realized data to evaluate the tenability of a hypothesis.

We then use the probability law associated with the data generating mechanism to assign a

degree of assurance to our analysis objective.

This dissertation explores Bayesian assurance and subsequent SSD in the context of

conjugate Bayesian linear regression. Of particular emphasis will be the data generating

mechanism and motivation behind quantifying separate prior beliefs at the design and anal-

ysis stage of clinical trials (O’Hagan and Stevens, 2001). We will show how this framework
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also produces classical sample size determination as a special case in terms of the numer-

ical answers. The final stage of this dissertation further extends the model’s capabilities

to address multiple comparison problems, taking into account commonly cited multiplicity

adjustments, including the Bonferroni correction and a Bayesian-based definition of the false

discovery rate (Müller et al., 2004). The framework we develop here is built upon this simple

idea that embodies the main takeaway of this dissertation: A clear analysis objective and

proper sampling execution are all that is needed to provide us with the necessary sample

size and corresponding assurance.

1.2 Dissertation Structure

The structure of this dissertation is organized around a series of individual manuscripts

corresponding to projects that were worked on over the course of the graduate program.

Projects are closely related and all depend on the two-stage paradigm we present early on

in the dissertation.

In Chapter 2, we introduce the Bayesian assurance for SSD within a conjugate linear

model framework. Here, we establish the general setup of the study design that we center

our discussion around and specify the posterior distribution from which we draw inference

from. We also discuss the limitations that occur from assigning a single prior to our model,

motivating the need to assign two sets of priors to purposefully address two distinct study

objectives. The two-stage design is then used as a template to formulate steps for estimating

the assurance within cases of known and unknown variances.

In Chapter 3, we assess the performance of our two-stage model across different ap-

plications and hypothesis testing scenarios. We open the chapter with a cost-effectiveness

application referenced in O’Hagan and Stevens, 2001, where we specify a hypothesis test that

aligns with our linear model framework. We then conduct a simulation study to estimate the

assurance values for a select set of sample sizes. Results are subsequently compared to those
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reported by O’Hagan and Stevens, 2001 for evaluation. The remaining parts of this chapter

investigate assurance and sample size from a utility-based approach that defines appropriate

goal functions used to measure the rate of correct classification. In each case that is explored

in this chapter, we make sure to tie our Bayesian-based methods back to the frequentist

paradigm and identify scenarios where the two settings overlap in behaviors.

In Chapter 4, we present the bayesassurance R package, whose primary usage involves

calculating the Bayesian assurance and sample size under the different settings outlined

in Chapter 3. Building and launching the R package constitutes a large component of this

dissertation as a lot of consideration was placed onto the feasibility of executing the functions

and visual appeal of the outputs. We touch on key tools and functionalities of the package

as well as provide some detailed examples that users can easily follow and reproduce on

their own machines. The package is now available on CRAN and includes several detailed

vignettes that we hope users will find helpful for navigating their way around the toolkit.

In Chapter 5, we address the multiple testing problem in the context of our conjugate

linear model framework. We modify our model to account for multiple pairwise comparisons

and investigate the effects of multiplicity adjustments (e.g. Bonferroni correction and a

Bayesian-defined FDR) with respect to sample size and assurance. The Bayesian analogue

of the FDR as defined by Müller et al., 2004 is of key interest for this project as it helps frame

our updated study objectives and clarifies what the assurance is measuring in this particular

setting. Sticking to the two-stage framework proposed in earlier chapters, a large portion of

this chapter explains how the analysis and design stages are appropriately calibrated from

the single hypothesis testing setting. We conclude the chapter with an assessment on how

our proposed model performs in commonplace large-scale problems, particularly microarray

data.

We conclude this dissertation with some key takeaways and final points of discussion in

Chapter 6. Here, we view our work from a larger scale and elucidate on the universal im-

portance and application of the topics discussed. We also discuss future goals and directions
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that our project can move towards as Bayesian SSD is constantly evolving but will nonethe-

less continue playing an important role both within and beyond the scopes of clinical trial

applications. Chapter 6.2 is an Appendix section that showcases derivations and supporting

context for claims and statements included in the main text. A large part of the Appendix

contains pseudoscripts of the algorithms that are mentioned throughout the dissertation that

my projects heavily relied on. We encourage the reader to review these explanations in detail

in the hopes of grasping a clearer, more profound understanding of the impact and universal

applicability that our work portrays.
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CHAPTER 2

Background

This chapter provides the structure of the framework, outlining key concepts that will be

repeatedly used and referenced in later chapters. At its core, the model encompasses a

conjugate Bayesian linear model framework, which is discussed in greater detail in Section

2.1. Within the model, we motivate the use of two stages characterized by distinctly defined

priors that fulfill different study objectives. Advantages for the use of two priors are discussed

in Section 2.2. Our two-stage model was largely influenced by the work of O’Hagan and

Stevens, 2001, who showcases the two-stage design in the context of sample size determination

in clinical trials. Our proposed work casts this approach into a clean and comprehensible

linear model. We then elaborate upon two scenarios in Section 2.3: study designs with known

variances and study designs with unknown variances. Changes that occur in the linear model

and study objectives are communicated, and we explain how to address these two scenarios

specifically.

2.1 Conjugate Bayesian Linear Regression

Consider a proposed study where a sample of size n is to be collected in the presence of p

controlled explanatory variables, say x1, x2, . . . , xp, that will be known to the investigator for

any unit i at the design stage. Let yn denote the n × 1 random vector of realizable values

in the proposed sample. For analysis, the investigator will fit a hierarchical linear regression
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model specifying the joint distribution of the parameters {β, σ2} and the data as

IG(σ2 | aσ, bσ)×N(β |µβ, σ
2Vβ)×N(yn |Xnβ, σ

2Vn) , (2.1)

where Xn is n × p with i-th row corresponding to x⊤i , ϵn ∼ N(0, σ2Vn), and Vn is a known

n × n correlation matrix. We assume Xn and Vn are known for each sample size n from

design and modeling considerations. Inference proceeds from the posterior distribution,

p(β, σ2 | yn) = IG(σ2 | a∗σ, b∗σ)︸ ︷︷ ︸
p(σ2 | yn)

×N(β |Mnmn, σ
2Mn)︸ ︷︷ ︸

p(β |σ2,yn)

, (2.2)

derived from (2.1), where a∗σ = aσ+n/2, b
∗
σ = bσ+(1/2)

{
µ⊤
β V

−1
β µβ + y⊤n V

−1
n yn −m⊤

nMnmn

}
,

M−1
n = V −1

β + X⊤
n V

−1
n Xn and mn = V −1

β µβ + X⊤
n V

−1
n yn. Sampling from (2.2) is achieved

by first sampling σ2 ∼ IG(a∗σ, b
∗
σ) and then sampling β ∼ N(Mnmn, σ

2Mn) for each sampled

σ2. See Gelman, Carlin, and Stern, 2013 for further details on Bayesian linear regression.

The objective of the analysis is to ascertain if the data will favor H : u⊤β > 0, where u is

a fixed p× 1 vector. Decision on the tenability of H is often based on the 100(1− α)% pos-

terior credible interval,
(
u⊤Mnmn − Z1−α/2σ

√
u⊤Mnu, u

⊤Mnmn + Z1−α/2σ
√
u⊤Mnu

)
, ob-

tained from p(β |σ, yn). If yn belongs to the set
{
yn : u⊤Mmmn > Z1−α/2σ

√
u⊤Mnu

}
, which

we denote by Sα(n; yn, σ, µβ, Vβ, Vn), then the data favors H. This is equivalent to 0 being

below the two-sided 100(1 − α)% credible interval for u⊤β. Practical Bayesian designs will

seek to assure the investigator that the above criterion will be achieved with a sufficiently

high probability through the Bayesian assurance,

δ(n;σ, u, µβ, Vβ, Vn) = Pyn(Sα(n; yn, σ, µβ, Vβ, Vn)) . (2.3)

Given the fixed values {µβ, Vβ, σ, Vn} and the vector u, the Bayesian assurance function

evaluates the probability of rejecting the null hypothesis under the marginal probability

distribution of the realized data corresponding to any n. Choice of sample size will be
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determined by the smallest value of n that will ensure δ(n;σ, u, µβ, Vβ, Vn) > γ, where γ is

the specified assurance.

2.2 Limitations for a single prior

Let us consider the special case when Xn = 1n so that β is a scalar with prior distribution

β ∼ N(β1, σ
2/n0), where n0 > 0 is a fixed precision parameter (sometimes referred to as

“prior sample size”), Vn = In and H : β > β0. We decide in favor of H if the data lies in

Sα(n; y, σ, β0, β1, n0) =

{
ȳ : ȳ > β0 −

n0

n
(β1 − β0)−

√(
1 +

n0

n

) σ√
n
Zα

}
,

where the expression on the right reveals a convenient condition in terms of the sample mean.

As n0 → 0, i.e., the prior becomes vague, Sα(n; y, σ, β0, β1, n0) collapses to the critical region

in classical inference for testing H0 : β = β0 against Ha : β = β1. The Bayesian assurance

function is

δ(n;σ,∆, n0) = Φ

(
√
n0

[√
1 +

n0

n

(
∆

σ

)
+ Zα

√
1

n

])
, (2.4)

where ∆ = β1 − β0. Given n0, we will compute the sample size needed to detect a critical

difference of ∆ with probability 1 − β as n = argmin{n : δ(∆, n) ≥ 1 − β}. However, the

limiting properties of the function in (2.4) are not without problems. When the prior is

vague, i.e., n0 → 0, then limn0→0 δ(∆, n) = Φ (0) = 0.5, while in the case when the prior is

precise, i.e., n0 →∞ we obtain

lim
n0→∞

δ(∆, n) =

 1 if ∆ > 0

0 if ∆ ≤ 0
. (2.5)

This is undesirable. Vague priors are customary in Bayesian analysis, but they propagate

enough uncertainty that the marginal distribution of the data under the given model will

force the assurance to be lower than 0.5. Regardless of how large a sample size we have,
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we cannot assure the investigator with probability greater than 50% that H will be tenable.

At the other extreme, where the prior is fully precise, it fully dominates the data (or the

likelihood) and there is no information from the data that is used in the decision. Therefore,

the assurance is a function of the prior only and we will always or never reject the null

hypothesis depending upon whether ∆ > 0 or ∆ < 0. In order to resolve this issue, we

work with two different sets of priors, one at the design stage and another at the analysis

stage. Building upon O’Hagan and Stevens, 2001, we elucidate with the Bayesian linear

regression model in the next section and offer a simulation-based framework for computing

the Bayesian assurance curves.

2.3 Bayesian Assurance Using Design and Analysis Priors

We consider two scenarios based on the population variance σ2 being known or not.

Consider testing the tenability of H : u⊤β > C given realized data from a study, where C

is a known constant. Recall that u⊤ is a 1 × p vector and β is an unknown p × 1 vector of

coefficients characterized in the linear regression setting, yn = Xnβ + ϵn, ϵn ∼ N(0, σ2Vn).

2.3.1 Known Variance

If σ2 is known and fixed, then the posterior distribution of β is p(β |σ2, yn) = N(β |Mnmn, σ
2Mn)

as shown in (2.2). Hence,

u⊤β − u⊤Mnmn

σ
√
u⊤Mnu

∣∣∣∣σ2, yn ∼ N(0, 1) . (2.6)

To evaluate the credibility of H : u⊤β > C, where u denotes a known p× 1 vector and C is

a known constant, we decide in favor of H if the observed data belongs in the region:

Aα(u, β, C) =
{
yn : P

(
u⊤β ≤ C|yn

)
< α

}
=

{
yn : Φ

(
C − u⊤Mnmn

σ
√
u⊤Mnu

)
< α

}
.
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Given the data yn and the fixed parameters in the analysis priors, we can evaluate Mn and

mn and hence, for any given σ, C and α, ascertain if we have credibility for H or not.

In the design objective, we need to ask ourselves “What sample size is needed to assure

us that the analysis objective is met 100γ% of the time?” Therefore, we seek n so that

δ(n) = Pyn(Aα(u, β, C)) = Pyn

{
yn : Φ

(
C − u⊤Mnmn

σ
√
u⊤Mnu

)
< α

}
≥ γ , (2.7)

where δ(n) is the Bayesian assurance. In order to evaluate (2.7), we will need the marginal

distribution of yn. In light of the paradox in (2.5), our belief about the population from which

our sample will be taken is quantified using the design priors. Therefore, the “marginal”

distribution of yn under the design prior will be derived from

yn = Xnβ + en; en ∼ N(0, σ2Vn) ; β = µ
(d)
β + ω; ω ∼ N(0, σ2V

(d)
β ) , (2.8)

where β ∼ N(µ
(d)
β , σ2V

(d)
β ) is the design prior on β. Substituting the β expression into the

equation for yn in (2.8) gives yn = Xµ
(d)
β + (Xω + en) and, hence, yn ∼ N

(
Xµ

(d)
β , σ2V ∗

n

)
,

where V ∗
n =

(
XV

(d)
β X⊤ + Vn

)
. We now have a simulation strategy to estimate our Bayesian

assurance. We fix sample size n and generate a sequence of J data sets y
(1)
n , y

(2)
n , . . . , y

(J)
n ,

each of size n from N
(
Xµ

(d)
β , σ2V ∗

n

)
. A Monte Carlo estimate of the Bayesian assurance is

given as

δ̂(n) =
1

J

J∑
j=1

I

y(j)n : Φ

C − u⊤M (j)
n m

(j)
n

σ

√
u⊤M

(j)
n u

 < α


 , (2.9)

where I(·) is the indicator function of the event in its argument, M
(j)
n and m

(j)
n are the values

of Mn and mn computed from dataset y
(j)
n . We repeat the steps needed to compute (2.9)

for different values of n and obtain a plot of δ(n) against n. Our desired sample size is the

smallest n for which δ̂(n) ≥ γ, where we seek assurance of a 100γ% chance of deciding in

favor of H.
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Algorithm 1 in Appendix A includes the pseudocode for computing Bayesian assurance

in the known variance setting. A special case of the model can be considered where Xn = 1n

is an n × 1 vector of ones, β is a scalar, Vn = In and we wish to evaluate the credibility of

H : β > β0. An explanation on how these specifications bring us back to the frequentist

setting can be found in Section B.1 of Appendix B.

2.3.2 Unknown Variance

When σ2 is unknown, the posterior distribution of interest is p(β, σ2 | yn) as opposed to

the original p(β |σ2, yn) delineated in the known variance case. Since σ2 is no longer

fixed, it becomes challenging to define a closed form condition that is capable of evalu-

ating the credibility of H : u⊤β > C. Hence, we do not obtain a condition similar to

(2.6). However, our region of interest corresponding to our analysis objective still remains

as Aα(u, β, C) =
{
yn : P

(
u⊤β ≤ C | yn

)
< α

}
when deciding whether or not we are in favor

of H. To implement this in a simulation setting, we rely on iterative sampling for both β

and σ2 to estimate the assurance. We specify analysis priors β |σ2 ∼ N(µ
(a)
β , σ2V

(a)
β ) and

σ2 ∼ IG(a(a), b(a)), where the superscripts (a) indicate analysis stage priors.

We had previously derived the posterior distribution of β in Section 2.3.1 expressed

as p(β | yn, σ2) = N(β |Mnmn, σ
2Mn), where Mn = (V

−1(a)
β + X⊤V −1

n X)−1 and mn =

V
−1(a)
β µ

(a)
β + X⊤V −1

n yn. The posterior distribution of σ2 is obtained by integrating out β

from the joint posterior distribution of {β, σ2}, which yields

p(σ2 | yn) ∝ IG(σ2 | a(a), b(a))×
∫
N(β |µβ, σ

2Vβ)×N(yn |Xβ, σ2Vn)dβ

∝
(

1

σ2

)a(a)+n
2
+1

exp

{
− 1

σ2

(
b(a) +

c∗

2

)}
.

(2.10)

Therefore, p(σ2 | yn) = IG (σ2 | a∗, b∗), where a∗ = a(a) + n
2
and b∗ = b(a) + c∗

2
= b(a) +

1
2

{
µ
⊤(a)
β V

−1(a)
β µ

(a)
β + y⊤n V

−1
n yn −m⊤

nMnmn

}
.
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Recall that the design stage objective aims to identify minimum sample size n needed

to attain the assurance level specified by the investigator. Similar to Section 2.3.1 we will

need the marginal distribution of yn with priors placed on both β and σ2. Derivation steps

are almost identical to those outlined in (2.8) for the known σ2 case. With the variance

unknown, the marginal distribution of yn under the design prior is derived from yn = Xnβ+

en, en ∼ N(0, σ2Vn), β = µ
(d)
β + ω; ω ∼ N(0, σ2V

(d)
β ), where β ∼ N(µ

(d)
β , σ2V

(d)
β ) and

σ2 ∼ IG(a(d), b(d)). Substituting β into yn gives us yn = Xnµ
(d)
β + (Xnω + en) such that

Xnω + en ∼ N(0, σ2(Vn +XnV
(d)
β X⊤

n )). The marginal distribution of p(yn |σ2) is therefore

yn |σ2 ∼ N(Xnµ
(d)
β , σ2V ∗

n ); V ∗
n = XnV

(d)
β X⊤

n + Vn, (2.11)

which specifies our data generation model for ascertaining sample size.

Each iteration comprises the design stage, where the data is generated, and an analysis

stage where the data is analyzed to ascertain whether a decision favorable to the hypothesis

has been made. In the design stage, we draw σ2 from IG(aσ, b
(d)
σ ) and generate the data from

our sampling distribution given in (2.11), yn ∼ N(Xµ
(d)
β , σ2(XV

(d)
β X⊤ +Vn)). For each such

data set, {yn, Xn}, we perform Bayesian inference for β and σ2. Here, we draw J samples of

β and σ2 from their respective posterior distributions and compute the proportion of these

J samples that satisfy u⊤βj > C. If the proportion exceeds a certain threshold 1− α, then

the analysis objective is met for that dataset. The above steps for the design and analysis

stage are repeated for R datasets and the proportion of the R datasets that meet the analysis

objective, i.e., deciding in favor of H, correspond to the Bayesian assurance. Algorithm 2

in Appendix A includes the pseudocode for computing Bayesian assurance in the unknown

variance setting.
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CHAPTER 3

Two-Stage Paradigm Applications

This chapter utilizes our two-stage framework discussed in Chapter 2 for three existing

sample size determination approaches. We show how these approaches emerge as special cases

of our framework with an appropriate formulation of analysis and design stage objectives.

Assurance curves are produced via simulation and pseudocodes of the algorithms can be

found in Appendix A.

3.1 Sample Size Determination in Cost-Effectiveness Setting

The first application selects a sample size based on the cost-effectiveness of new treatments

undergoing Phase 3 clinical trials (O’Hagan and Stevens, 2001). As outlined in Section 2.1,

we construct the two-stage paradigm in the context of a conjugate linear model and generalize

it to the case where the population variance σ2 is unknown. We cast the example in O’Hagan

and Stevens, 2001 within our framework to assess overall performance and our framework’s

ability to emulate results of the analysis in O’Hagan and Stevens, 2001.

Consider designing a randomized clinical trial where n1 patients are administered Treat-

ment 1 and n2 patients are administered Treatment 2 under some suitable model and study

objectives. Let cij and eij respectively denote the observed cost and observed efficacy out-

comes corresponding to patient j = 1, 2, . . . , ni receiving treatment i for i = 1, 2 treatments,

where ni is the number of patients in the i-th treatment group. The expectation of eij under

treatment i is E(eij) = µi, and the population mean cost under treatment i is E(cij) = γi.
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The variances are taken as V ar(cij) = τ 2i and V ar(eij) = σ2
i . For simplicity, we assume

equal sample sizes within the treatment groups so that n = n1 = n2. We also assume equal

sample variances for the outcomes such that τ 2 = τ 21 = τ 22 and σ2 = σ2
1 = σ2

2.

O’Hagan and Stevens, 2001 utilize the net monetary benefit measure,

ξ = K(µ2 − µ1)− (γ2 − γ1), (3.1)

where γ2 − γ1 and µ2 − µ1 denote the true differences in costs and efficacy, respectively,

between Treatment 1 and Treatment 2, and K represents the maximum price that a health

care provider is willing to pay in order to obtain a unit increase in efficacy, also known as

the threshold unit cost. The quantity ξ acts as a measure of cost-effectiveness. Since the net

monetary benefit formula expressed in Equation (3.1) involves assessing the cost and efficacy

components conveyed within each of the two treatment groups, we set β = (µ1, γ1, µ2, γ2)
⊤,

where µi and γi denote the efficacy and cost for treatments i = 1, 2. Next, we specify yn as

a 4n× 1 vector consisting of 2× 1 vectors yij = (cij, eij)
⊤, i = 1, 2 and j = 1, 2, . . . , n. Each

individual observation is allotted one row in the linear model. The design matrix Xn is a

4n × 4 block diagonal with the n × 1 vector of ones, 1n, as the blocks. With n = n1 = n2,

σ2 = σ2
1 = σ2

2 and τ 2 = τ 21 = τ 22 , our variance matrix is σ2 Vn
4n×4n

= σ2


In O O O

O τ2

σ2 In O O

O O In O

O O O τ2

σ2 In

 ,

where σ2 is factored out to comply with our conjugate linear model formulation expressed

in (2.1).

In the analysis stage, we use the posterior distribution for β if σ2 is fixed or for {β, σ2}

if σ2 needs to be estimated; recall Sections 2.3.1 and 2.3.2. The posterior distribution is

needed only for the analysis stage, hence it is computed using the analysis priors. Since

there is no data in the design stage, there is no posterior distribution. We use the design

priors as specifications for the population from which the data are generated. That is, the
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design priors yield the sampling distribution yn |σ2(d).

Lastly, we use the design priors specified in O’Hagan and Stevens, 2001 (refer to Sec-

tion B.2 of Appendix B) and set the posterior probability of deciding in favor of H to at least

0.975, which is equivalent to a Type I error of α = 0.025 in frequentist two-sided hypothesis

tests.

3.2 Design for Cost-Effectiveness Analysis

Consider designing a trial to evaluate the cost effectiveness of a new treatment compared to

an original treatment. We seek the tenability of H : ξ > 0, where ξ is the net monetary

benefit defined in Equation (3.1). Using the specifications provided in Section 3.1 we conduct

simulations in the known and unknown σ2 cases to emulate the results reported in O’Hagan

and Stevens, 2001.

3.2.1 Simulation Results in the Known Variance Case

Table 3.1 presents estimated Bayesian assurance values corresponding to different values

of K and sample sizes n. Displayed (K,n) pairs correspond to the specifications reported

in O’Hagan and Stevens, 2001 that ensure a 0.70 assurance level. The “maxiter” variable

denotes the number of datasets being simulated. All of the resulting assurance values in

Table 3.1 for all combinations of K and n are close to 0.70. Looking by columns, we observe

that the assurance values exhibit some deviations for all cases as we increase the number

of datasets generated. No obvious trends of precision are observed in any of the four cases.

Looking across the table rows, we observe that larger sample sizes tend to yield assurance

values that are consistently closer to the 0.70 mark, which is to be expected. The first

column, corresponding to the case with the largest sample size of n = 1048, consistently

produced results that meet the assurance criteria of 0.70. These results show that sampling

from the posterior provides results very similar to those reported by O’Hagan and Stevens,
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Table 3.1: Recorded simulation results from Bayesian assurance algorithm with varying
number of iterations.

Outputs from Bayesian Assurance Algorithm

maxiter K = 5000 K = 7000 K = 10000 K = 20000
n = 1048 n = 541 n = 382 n = 285

250 0.708 0.676 0.688 0.716
500 0.701 0.714 0.676 0.698
1000 0.700 0.694 0.697 0.719

2001.

3.2.2 Simulation Results in Unknown Variance Case

We now consider the setting where σ2 is unknown. This extends the analysis in O’Hagan

and Stevens, 2001 who treated the cost-effectiveness problem with fixed variances. Table 3.2

presents the estimated Bayesian assurance values in this setting under the same (K,n) spec-

ifications used in Table 3.1. Table 3.2 does not align as closely as the assurance results we

had obtained from implementing the fixed σ2 simulation in Section 3.2.1.

Referring to Table 3.2, we let R denote the number of outer loop iterations. The pri-

mary purpose of the outer loop is to randomly draw design stage variances σ2(d) from the

IG(a(d), b(d)) distribution. Recall from Section 2.3.2 that σ2(d) is used for computing the

variance of the marginal distribution from which we are drawing our sampled observations,

y |σ2(d). The inner-loop iterations sample data using the marginal distribution of σ2 from

Equation (2.10). The number of iterations in the inner-loop is set to 750 for all cases. We

notice that a majority of our trials report assurance values close to the 0.70 mark, particu-

larly for the case in which we set the sample size to n = 1048. The trial that exhibited the

greatest deviation was for threshold cost K = 20000 with corresponding sample size n = 285,

which returned an assurance of 0.58. This is most likely attributed to using a smaller sample

size to gauge the effect size.
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Figure 3.1: Assurance curve based on results of algorithm corresponding to unknown vari-
ance.

A visual depiction for this case can be seen in Figure 3.1. The dashed line on the left

showcases the expected minimum sample size needed to achieve a 0.70 assurance whereas

the dashed line on the right marks the point at which our algorithm actually achieves this

desired threshold. The reality of the situation is that the problem setup gets changed quite a

bit once we remove the assumption that σ2 is known and fixed. If we look at the individual

points marked on the plot, assurance values of 0.61 and 0.71 don’t appear too different. If

we were to solely account for the fact that these Monte Carlo estimates are subject to error

given that the estimates are based on means and variances that were compositely sampled

rather than being taken in as fixed assignments, our algorithm performs remarkably well, but

there are still points to be wary about. The x-axis of the plot indicates that an assurance of

Table 3.2: Recorded results from the Bayesian assurance algorithm for unknown variance
with varying number of iterations.

Outputs from Bayesian Assurance Algorithm

R K = 5000 K = 7000 K = 10000 K = 20000
n = 1048 n = 541 n = 382 n = 285

100 0.698 0.718 0.72 0.601
150 0.702 0.713 0.72 0.579
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0.70 (red dotted line) can only be ensured once we recruit a sample size of at least n = 485

per treatment group. This is substantially larger compared to the known σ2 case, suggesting

a need to recruit nearly twice as many participants as what was needed in Table 3.1. These

results evince the pronounced impact of uncertainty in the design on the sample size needed

to achieve a fixed level of Bayesian assurance.

3.3 Assurance Computation in the Longitudinal Setting

We demonstrate an additional concept that computes the assurance using longitudinal data.

In this setting, n no longer refers to the number of subjects per study design group but

rather the number of repeated measures reported for each subject assuming a balanced study

design. Referring back to the linear regression model discussed in the general framework,

we can construct a longitudinal model that utilizes this same linear regression form, where

yn = Xnβ + ϵn.

Consider a group of subjects in a balanced longitudinal study with the same number of

repeated measures at equally-spaced time points. In the base case, where time is treated as

a linear term, subjects can be characterized by

yij = αi + βitij + ϵi,

Table 3.3: Recorded simulation results from Bayesian assurance algorithm with varying
number of iterations.

Outputs from Bayesian Assurance Algorithm

maxiter K = 5000 K = 7000 K = 10000 K = 20000
n = 1048 n = 541 n = 382 n = 285

250 0.708 0.676 0.688 0.716
500 0.701 0.714 0.676 0.698
1000 0.700 0.694 0.697 0.719
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where yij denotes the j
th observation of subject i at time tij, αi and βi respectively denote the

intercept and slope terms for subject i, and ϵi is an error term characterized by ϵi ∼ N(0, σ2
i ).

In a simple case with two subjects, we can individually express the observations as

y11 = α1 + β1t11 + ϵ1

...

y1n = α1 + β1t1n + ϵ1

y21 = α2 + β2t21 + ϵ2

...

y2n = α2 + β2t2n + ϵ2,

assuming that each subject contains n observations. The model can also be expressed cohe-

sively through matrices,



y11
...

y1n

y21
...

y2n


︸ ︷︷ ︸

yn

=



1 0 t11 0
...

...
...

...

1 0 t1n 0

0 1 0 t21
...

...
...

...

0 1 0 t2n


︸ ︷︷ ︸

Xn


α1

α2

β1

β2


︸ ︷︷ ︸

β

+



ϵ1
...

ϵ1

ϵ2
...

ϵ2


︸ ︷︷ ︸

ϵn

(3.2)

bringing us back to the linear model structure. If higher degrees are to be considered for

the time variable, such as the inclusion of a quadratic term, the model would be altered

to include additional covariate terms that can accommodate to these changes. In the two-

subject case, incorporating a quadratic term for the time variable in Equation (3.2) will
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result in the following modified model:



y11
...

y1n

y21
...

y2n


︸ ︷︷ ︸

yn

=



1 0 t11 0 t211 0
...

...
...

...
...

...

1 0 t1n 0 t21n 0

0 1 0 t21 0 t221
...

...
...

...
...

...

0 1 0 t2n 0 t22n


︸ ︷︷ ︸

Xn



α1

α2

β1

β2

ϕ1

ϕ2


︸ ︷︷ ︸

β

+



ϵ1
...

ϵ1

ϵ2
...

ϵ2


︸ ︷︷ ︸

ϵn

.

In general, for m subjects who each have n repeated measures, a one-unit increase in the

degree of the time-based covariate will result in m additional columns being added to the

design matrix Xn and m additional rows appended to the β vector.

3.3.1 Longitudinal Example

Assume there are two subjects and we want to test whether the growth rate of subject 1 is

different in comparison to subject 2. This could have either positive or negative implications

depending on the measurement scale. Figure 3.2 displays the estimated assurance points

given the specifications.

Assigning an appropriate linear contrast lets us evaluate the tenability of an outcome. Let

us consider the tenability of u⊤β ̸= C, where u = (1,−1, 1,−1)⊤ and C = 0. The timepoints

are arbitrarily chosen to be 0 through 120, which could be based on days, months, or years

depending on the context of the problem. The number of repeated measurements per subject

to be tested includes values 10 through 100 in increments of 5. This indicates that we are

evaluating the assurance for 19 study designs in total. n = 10 divides the specified time

interval into 10 evenly-spaced timepoints between 0 and 120.

For a more complicated study design comprised of more than two subjects that are divided

into two treatment groups, consider testing if the mean growth rate is higher in the first
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Figure 3.2: Estimated assurance points for longitudinal example.

treatment group than that of the second, e.g. if we have three subjects per treatment group,

the linear contrast would be set as u = (0, 0, 0, 0, 0, 0, 1/3, 1/3, 1/3,−1/3,−1/3,−1/3)⊤.

3.4 Sample Size Determination Using Precision-Based Conditions

We now consider a few alternate Bayesian approaches for sample size determination and

demonstrate how these methods can be embedded within the two-stage Bayesian framework.

We also identify special cases that overlap with the frequentist setting.

Adcock, 1997 constructs rules based on a fixed precision level d. In the frequentist setting,

if Xi ∼ N(θ, σ2) for i = 1, ..., n observations and variance σ2 is known, the precision can

be calculated using d = z1−α/2
σ√
n
, where z1−α/2 is the critical value for the 100(1 − α/2)%

quartile of the standard normal distribution. Simple rearranging leads to following expression

for sample size,

n = z21−α/2

σ2

d2
. (3.3)

Given a random sample with mean x̄, suppose the goal is to estimate population mean θ. The

analysis objective decides whether or not the absolute difference between x̄ and θ falls within

a margin of error no greater than d. Given sample mean x̄ and a pre-specified confidence
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level α, the assurance is given as

δ = Px̄{x̄ : P (|x̄− θ| ≤ d) ≥ 1− α} . (3.4)

To formulate the problem in the Bayesian setting, suppose x1, · · · , xn is a random sample

from N(θ, σ2) and the sample mean is distributed as x̄|θ, σ2 ∼ N(θ, σ2/n). We assign

θ ∼ N(θ
(a)
0 , σ2/na) as the analysis prior, where na quantifies the amount of prior information

we have for θ. Adhering to the notation in previous sections, subscript (a) denotes we are

working within the analysis stage. Referring to (3.4), the analysis stage objective involves

observing |x̄ − θ| ≤ d. If the analysis objective holds to a specified probability level, then

the corresponding sample size of the data being passed through the condition is sufficient in

fulfilling the desired precision level for the study. Additional steps can be taken to expand

out the analysis objective given in Equation (3.4). These steps are outlined in Section B.3

of Appendix B, where the analysis stage objective is

{
x̄ : Φ

[√
na + n

σ
(x̄+ d− λ)

]
− Φ

[√
na + n

σ
(x̄− d− λ)

]
≥ 1− α

}
. (3.5)

In the design stage, we need to construct a protocol for sampling data that will be

used to evaluate the analysis objective. This is achieved by setting a separate design stage

prior on θ such that θ ∼ N(θ
(d)
0 , σ2/nd), where nd quantifies our degree of belief towards

the population from which the sample will be drawn. Given that x̄|θ, σ2 ∼ N(θ, σ2/n),

the marginal distribution of x̄ can be computed using straightforward substitution based

on x̄ = θ + ϵ; ϵ ∼ N(0, σ2/n) and θ = θ
(d)
0 + ω; ω ∼ N(0, σ2/nd). Substituting θ into

the expression for x̄ gives us x̄ = θ
(d)
0 + (ω + ϵ); (ω + ϵ) ∼ N

(
0, σ

2(nd+n)
ndn

)
= N(0, σ2/p),

where 1/p = 1/nd + 1/n. The marginal of x̄ is therefore N(x̄|θ(d)0 , σ2/p), where we will

be iteratively drawing our samples from to check if the sample means satisfy the condition

derived in Equation (3.5). The Monte Carlo estimate of the assurance is therefore obtained
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by evaluating the proportion of J samples that meet the analysis stage criteria,

δ̂(n) =
1

J

J∑
j=1

I

({
x̄(j) : Φ

[√
na + n

σ
(x̄(j) + d− λ(j))

]
− Φ

[√
na + n

σ
(x̄(j) − d− λ(j))

]

≥ 1− α

})
,

where the j-th sample mean is given by x̄(j). Algorithm 3 in Appendix A provides the

pseudocode for the above procedure and simulation results can be found in Section B.4 of

Appendix B.

Notice the assurance in the precision-based setting is not linked to a hypothesis testing

framework. Hence, we can not translate the above scenario to a frequentist-based paradigm

that will enable direct comparisons between assurance and power. We can still demonstrate

the relationship held between the Bayesian and frequentist settings through proper specifica-

tions of analysis and design stage precision parameters, na and nd. Section B.5 in Appendix

B discusses this in detail.

3.5 Sample Size Determination in a Beta-Binomial Setting

We revisit the hypothesis testing framework with proportions. Pham-Gia, 1997 outlines steps

for determining exact sample sizes needed in estimating differences of two proportions in a

Bayesian context. Let pi, i = 1, 2 denote two independent proportions. In the frequentist

setting, suppose the hypothesis test to undergo evaluation is H0 : p1 − p2 = 0 vs. Ha :

p1−p2 ̸= 0. As described in Pham-Gia, 1997, one method of approach is to check whether or

not 0 is contained within the confidence interval bounds of the true difference in proportions

given by (p̂1 − p̂2)± z1−α/2(SE(p̂1)
2 + SE(p̂2)

2)1/2, where z1−α/2 denotes the critical region,

and SE(p̂i) denotes the standard error of pi obtained by SE(p̂i) =
√

p̂i(1−p̂i)
ni

. An interval

without 0 contained within the bounds suggests there exists a significant difference between
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the two proportions.

The Beta distribution is often used to represent outcomes tied to a family of probabil-

ities. The Bayesian setting uses posterior credible intervals as an analog to the frequentist

confidence interval approach. As outlined in Pham-Gia, 1997, two individual priors are as-

signed to p1 and p2 such that pi ∼ Beta(αi, βi) for i = 1, 2. In the case of binomial sampling,

X is treated as a random variable taking on values x = 0, 1, ..., n to denote the number

of favorable outcomes out of n trials. The proportion of favorable outcomes is therefore

p = x/n. Suppose a Beta prior is assigned to p such that p ∼ Beta(α, β). The prior mean

and variance are respectively µprior = α
α+β

and σ2
prior = αβ

(α+β)2(α+β+1)
. Conveniently, given

that p is assigned a Beta prior, the posterior of p also takes on a Beta distribution with mean

and variance

µposterior =
α + x

α + β + n

σ2
posterior =

(α + x)(β + n− x)
(α + β + n)2(α + β + n+ 1)

.

(3.6)

Within the analysis stage, we assign two beta priors for p1 and p2 such that pi ∼

Beta(αi, βi), i = 1, 2. If we let pd = p1−p2 and ppost and var(p)post respectively denote the pos-

terior mean and variance of pd, it is straightforward to deduce that ppost =
α1+x1

α1+β1+n1
− α2+x2

α2+β2+n2

and var(p)post =
(α1+x1)(β1+n1−x1)

(α1+β1+n1)2(α1+β1+n1+1)
+ (α2+x2)(β2+n2−x2)

(α2+β2+n2)2(α2+β2+n2+1)
from Equation (3.6). Hence

the resulting 100(1 − α)% posterior credible interval equates to ppost ± z1−α/2

√
var(p)post,

which, similar to the frequentist setting, would be used to check whether 0 is contained

within the credible interval bands as part of our inference procedure. This translates to

become our analysis objective, where we are interested in assessing if each iterated sample

outputs a credible interval that does not contain 0. We can denote this region of interest as

Aα (n1, n2;x1, x2, α1, α2, β1, β2) such that

Aα (n1, n2;x1, x2, α1, α2, β1, β2) =

{
x1, x2 : 0 ̸∈

(
ppost ± z1−α/2

√
var(p)post

)}
. (3.7)
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The assurance for assessing a significant difference in proportions is

δ = Px1,x2 (Aα (n1, n2;x1, x2, α1, α2, β1, β2)) .

For the design stage, note that the simulated data in Beta-Binomial setting pertains to

the frequency of positive outcomes, x1 and x2, observed among the two samples. These

frequency counts are observed from samples of size n1 and n2 based on given probabilities,

p1 and p2, that are passed in the analysis stage. Once p1 and p2 are assigned, x1 and

x2 values are randomly generated from their corresponding binomial distributions, where

xi ∼ Bin(ni, pi), i = 1, 2. The posterior credible intervals are subsequently computed to

undergo assessment in the analysis stage. These steps are repeated iteratively starting from

the generation of x1 and x2 values. The proportion of iterations with results that fall within

the region of interest expressed in Equation (3.7) equates to the assurance. Algorithm 4 in

Appendix A provides the pseudocode used to implement the simulation study. Section B.6 in

Appendix B discusses parallel behaviors exhibited between Bayesian and frequentist settings

using the above criteria.

3.6 A Utility-Based Approach in the Bayesian Setting

The utility based approach for Bayesian SSD (Lindley, 1997; Muller et al., 1992; Raiffa and

Schlaifer, 1961) maximizes the expected utility function E(y,θ)[U(n, y, θ, d)] as a function of

n, where n is sample size, yn is the realizable data, θ is an unknown parameter, and d is a

decision to be taken based upon our inference for θ. The desired sample size is

n∗ = argmax
n

Eyn |n
[
Eθ | yn [U(n, yn, θ, d)]

]
, (3.8)

where Eθ | yn [·] and Eyn |n[·] are the expectations with respect to p(θ | yn) and p(yn |n), respec-

tively. Practical implementation, then requires specifying the utility function and the joint
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model p(yn, θ |n) = p(yn |n)× p(θ | yn).

Following Inoue, Berry, and Parmigiani, 2005, who connected Bayesian decision-theoretic

SSD with classical SSD, we draw connections between Bayesian decision-theoretic SSD and

Bayesian assurance. We extend Inoue, Berry, and Parmigiani, 2005 to the hierarchical

linear model setting and, as before, consider the decision of favoring H : u⊤β > C. Let

d(yn) ∈ {0, 1} be a binary decision function according to whether we decide in favor of

H (d(yn) = 1) or not (d(yn) = 0). Inoue, Berry, and Parmigiani, 2005 considers the utility

function U(n, d(yn), β) allocatingK units for correctly deciding againstH, 1 unit for correctly

deciding in favor of H, and 0 for all other (incorrect) decisions. A general expression for

expected utility is

GB(n, v) = KP (H0)P (fail to reject H0| H0 is true)+P (Ha)P (reject H0| Ha is true), (3.9)

where v denotes a vector of user-specified inputs in addition to sample size n. The value of

GB(n, v) obtained once the inputs are processed is the overall r∗ value.

Consider the linear hypothesis test H0 : u⊤β = c0 vs. Ha : u⊤β = c1 under the linear

model y = Xβ+ϵ, where y is n×1,X is n×p, β is p×1, u is p×1, and ϵ ∼ N(0, σ2In), implying

that c0 and c1 are scalars. Under this hypothesis testing framework, we assign appropriate

cutoffs that enable the function to objectively determine the rate of correct classification in

the Bayesian setting. First, we assign a prior on u⊤β such that P (H0) = 1 − P (Ha) = π

and assume that the null hypothesis is not rejected if the posterior probability of H0 is at

least 1/(1+K), where K is the assigned utility associated with H0 being correctly accepted.

We also assume u⊤β is estimable, implying there is some z ∈ Rn such that u = X⊤z.

Section B.7 of Appendix B provides detailed derivation steps to arrive at the following

expression denoting the probability of correctly accepting H0:

P (fail to reject H0| H0 is true) = Φ

[
σ
√
z⊤z

δ
ln

(
Kπ

1− π

)
+

δ

2σ
√
z⊤z

]
,
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where Φ denotes the cumulative distribution function of the standard normal and δ = c1−c0.

Similar steps can be carried out to obtain the probability of correctly rejecting H0:

P (reject H0| Ha is true) = 1− Φ

[
σ
√
z⊤z

δ
ln

(
Kπ

1− π

)
− δ

2σ
√
z⊤z

]
.

We now have all necessary components to obtain a full expression of the utility function based

on the pre-specified cutoff, P (H0|y) ≥ 1
1+K

. Referring to Equation (3.9), we can substitute

all fixed assignments and cutoff criteria to obtain

GB(n, v) = KπΦ

[
σ
√
z⊤z

δ
ln

(
Kπ

1− π

)
+

δ

2σ
√
z⊤z

]
+

(1− π)

(
1− Φ

[
σ
√
z⊤z

δ
ln

(
Kπ

1− π

)
− δ

2σ
√
z⊤z

])
. (3.10)

3.6.1 Comparing the Rate of Correct Classification to Assurance

The assurance and the rate of correct classification each produce curves that are visually

similar when plotted against sample size. While the assurance reports the probability of

satisfying a desired study objective, the rate of correct classification measures the prob-

ability of reaching an accurate conclusion from a decision-theoretic perspective. In what

circumstances, then, do these two curves overlap and share the same probabilities?

Using the parameter assignments provided in Section B.8 of Appendix B, we study and

compare the behaviors of the two metrics by plotting them simultaneously on the same graph.

Figure 3.3 plots the rate of correct classification (x-axis) against the assurance (y-axis) in the

case when the analysis stage prior is weakly assigned and the design stage prior is strongly

assigned. Each point on the curve indicates a pair of matching assurance and rate of correct

classification values that yield the same sample size. Note that the assurance values under

these particular specifications also denote the approximate estimates of the frequentist power

values. Furthermore, the critical difference is set to δ = 0.10 and the variance is σ2 = 1.
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Figure 3.3: Assurance behavior in relation to rate of correct classification with a weakly
assigned analysis prior (na = 0), a strongly assigned design prior (nd → ∞), fixed critical
difference δ = 0.10, variance σ2 = 1, and utility K = 1.

A reference line with a slope of 1 is included to better visualize the convergence of the

two probabilities, which occurs at approximately 0.95. Overall, we observe large disparities

between the two probabilities, especially in the earlier parts of the graph as indicated by

the larger gap presented between the curve and reference line. The sample sizes are not

explicitly shown on the curve, though it can be inferred that larger sample sizes are tied to

larger assurance and rate of correct classification values. For example, a sample size of 285

yields an assurance of approximately 0.52 and a rate of correct classification of approximately

0.8. A sample size of 1085 is needed to ensure an equally large r∗ and assurance value of

0.95, as highlighted by the intersection of the red dashed lines.

Figure 3.4 treats the results displayed in Figure 3.3 as a default curve and compares it

to those produced under various specifications of the precision parameters, na and nd, where

only one parameter is adjusted for each case. Dashed curves signify adjusted na values while

dotted curves indicate modifications to nd. Different colors denote different specifications

of the precision parameters. The solid green curve in the center corresponds to the original
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Figure 3.4: Assurance behavior in relation to rate of correct classification for fixed critical
difference δ = 0.10, variance σ2 = 1, and various precision settings within the analysis and
design stages of the assurance framework.

curve displayed in Figure 3.3.

Among the set of curves displayed in Figure 3.4, intersections between the assurance and

rate of correct classification are observed in cases where modifications are made to the analysis

stage prior and the design stage prior is set to be precise (nd =∞). This is particularly true

when na is altered to become more precise, where, as the value of na increases, the points

of intersection between the assurance and rate of correct classification occur in earlier parts

of the graph where the minimum required sample sizes are smaller. More specifically, in the

case where nd =∞ and nd = 1e+5, a sample size of 285 is associated with an assurance and

rate of correct classification of 0.8. In the case where nd =∞ and na = 1e+4, a sample size

of 325 is required to achieve an assurance and rate of correct classification of approximately

0.82. Overall, there is consistent disparity presented between the two sets of probabilities.

As suggested in the reference curve, stronger convergence tends to occur when exact design

priors and weak analysis priors are assigned to the study.
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3.6.2 Relationship to Frequentist Setting

We can also construct an analogous utility function using a classical-based approach by

modifying the cutoff condition to one that adheres to measures pertaining to the frequentist

setting. We continue working in a hypothesis testing framework within a general linear

model setting outlined in Section 3.6, given as H0 : u⊤β = c0 vs. Ha : u⊤β = c1. As

previously discussed, the Bayesian method formulates its utility function using the posterior

probabilities of H0 and Ha to determine appropriate sample sizes nB. In the frequentist

setting, we rely on power to characterize the utility function. To achieve a power of 1 − β,

the frequentist determines sample size nF using

nF = (zα + zβ)
2
(σ
δ

)2
, (3.11)

where α and β are respectively Type I and Type II error rates and the critical difference is

δ = c1 − c0.

If we were working within the context of scalar sample means, we could directly showcase

overlapping behaviors exhibited between the Bayesian and frequentist settings simply by

substituting n = nF into the utility function, GB(n, v), given in Equation (3.9). The exact

cutoffs are provided in Inoue, Berry, and Parmigiani, 2005. However, because our derived

expression of the rate of correct classification in Equation (3.10) is not explicitly expressed

in terms of n, we illustrate this relationship computationally through graphs. Note that n is

included within the dimension of the design matrix X, where X is n× p.

We identify corresponding pairs of power and r∗ values that yield equal sample sizes in

the two settings. Fixing the critical difference as δ = 0.1, the significance level as α = 0.05,

and the variance as σ2 = 1, we pass in a sequence of values for Type II error, β, ranging

between 0 and 1 to obtain the corresponding set of sample sizes n such that n = nB = nF .

We can subsequently determine the corresponding set of r∗ values in the Bayesian setting

that are tied to the same set of sample sizes under the same fixed parameter assignments.
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Table 3.4: Select set of overlapping sample sizes within the Bayesian and frequentist settings
corresponding to varying values of r∗ and β.

Overlapping Sample Sizes

n = nF = nB r∗ β

1577 0.9765 0.01
1368 0.9677 0.02
1244 0.9610 0.03
1153 0.9552 0.04
1083 0.9500 0.05
1024 0.9451 0.06
974 0.9406 0.07
931 0.9363 0.08
892 0.9322 0.09
857 0.9282 0.10

Figure 3.5: Solid curve shows power and r∗ values that yield equal sample sizes in the
Bayesian and frequentist settings assuming the critical difference is δ = 0.1.

The results are plotted in Figure 3.5, with power on the x-axis and corresponding r∗ values

on the y-axis. Each point on the solid line indicates a (1−β, r∗) point that yield equal sample

sizes in the Bayesian and frequentist setting for the parameters specified above. We include

a reference line with slope = 1 and observe larger discrepancies between the two values when
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power is small. The gap becomes visually smaller as the power increases and the two lines

coincide when both the frequentist power and rate of correct classification reach a value of

0.95, which corresponds to a sample size of 1083. This point is marked and labeled in the

Figure 3.5. Table 3.4 reports a select set of r∗ and β values yielding equal sample sizes in

the two settings.

3.7 Discussion

This chapter presents a simulation-based Bayesian design framework for sample size cal-

culations using assurance for deciding in favor of a hypothesis (analysis objective). It is

convenient to describe this framework in two stages: (i) the design stage generates data from

a population modeled using design priors; and (ii) the analysis stage performs customary

Bayesian inference using analysis priors. The frequentist setting emerges as a a special case

of the Bayesian framework with highly informative design priors and completely uninfor-

mative analysis priors. Our framework can be adapted and applied to a variety of clinical

trial settings. Future directions of research and development can entail incorporating more

complex analysis objectives into our framework. For example, the investigation of design

and analysis priors in the use of Go/No Go settings (Pulkstenis, Patra, and Zhang, 2017),

which refers to the point in time at which enough evidence is present to justify advancement

to Phase 3 trials, will be relevant. Whether the method of choice involves looking at lengths

of posterior credible intervals (Joseph, Berger, and Belisle, 1997) or determining cutoffs that

minimize the weighted sum of Bayesian average errors (Reyes and Ghosh, 2013), such con-

ditions are all capable of being integrated as part of our analysis stage objective within the

generalized two-stage paradigm.
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CHAPTER 4

bayesassurance R Package

In this chapter, we present a bayesassurance R package that computes the Bayesian assurance

under various settings characterized by different assumptions and objectives. The package

offers a constructive set of simulation-based functions suitable for addressing a wide range

of clinical trial study design problems. We provide a detailed description of the underlying

framework embedded within each of the power and assurance functions and demonstrate

their usage through a series of worked-out examples. Through these examples, we hope to

corroborate the advantages that come with using a two-stage generalized structure. We also

illustrate scenarios where the Bayesian assurance and frequentist power overlap, allowing the

user to address both Bayesian and classical inference problems provided that the parameters

are properly defined. All assurance-related functions included in this R package rely on a

two-stage Bayesian method described in Chapters 2 and 3 that assigns two distinct priors

to evaluate the probability of observing a positive outcome, which in turn addresses subtle

limitations that take place when using the standard single-prior approach.

4.1 Introduction

To date, there are a several existing R packages pertaining to Bayesian sample size calcu-

lation, each adopting different study design approaches. The SampleSizeMeans package

produced by Lawrence Joseph and Patrick Belisle contains a series of functions used for de-

termining appropriate sample sizes based on various Bayesian criteria for estimating means

or differences between means within a normal setting (Joseph and Belisle, 2012). Criteria
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considered include the Average Length Criterion, the Average coverage criterion, and the

Modified Worst Outcome Criterion (Joseph and Belisle, 1997b; Joseph, Wolfson, and Berger,

1995a). A supplementary package, SampleSizeProportions, addresses study designs for es-

timation of binomial proportions using the same set of criteria listed (Joseph and Belisle,

2009). Our package, also addresses the application of criteria based within the normal and

binomial setting, places strong emphasis on a two-stage framework primarily within the con-

text of conjugate Bayesian linear regression models, where we consider the situation with

known and unknown variances. The toolkit also offers the flexibility of considering unequal

sample sizes for two samples as well as longitudinal study designs.

The bayesassurance package contains a collection of functions that can be divided into

three categories based on design and usage. These include closed-form solutions, simulation-

based solutions, and visualization and/or design purposes. All available functions are catego-

rized and briefly described in Table 4.1. To avoid repetitiveness, we only touch on functions

that fall under closed-form and simulation-based categories. The full manuscript that we

intend on publishing later this year includes descriptions for all functions embedded in the

package. This chapter is organized as follows. Section 4.2 introduces one of the more basic

features included in the package that is linked to the fundamental closed-form solution of as-

surance. This section also introduces the notion of overlapping behaviors exhibited between

the Bayesian and frequentist settings, a concept that is frequently brought up and discussed

throughout the chapter. Section 4.3 explore simulation-based assurance methods, outlining

the statistical framework associated with each method followed by examples worked out in

R that users could replicate. Section 4.4 offers some useful graphical features and design ma-

trix generators embedded within the assurance-based functions. In the following sections, we

provide a detailed overview for each of the functions available grouped by category followed

with worked out examples in R.
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Function Type Description
pwr_freq() closed-form solution Returns the statistical power of

the specified hypothesis test (ei-
ther one or two-sided).

assurance_nd_na() closed-form solution Returns the exact Bayesian assur-
ance for attaining a specified alter-
native.

bayes_sim() simulation Approximates the Bayesian assur-
ance of attaining a specified con-
dition for a balanced study design
through Monte Carlo sampling.

bayes_sim_unbalanced() simulation Approximates the Bayesian assur-
ance of attaining a specified condi-
tion for an unbalanced study de-
sign through Monte Carlo sam-
pling.

bayes_sim_unknownvar() simulation Same as bayes_sim but assumes
the variance is unknown.

bayes_adcock() simulation Determines the assurance of ob-
serving that the absolute difference
between the true underlying pop-
ulation parameter and the sample
estimate falls within a margin of
error no greater than a fixed preci-
sion level, d.

bayes_sim_betabin() simulation Returns the Bayesian assurance
corresponding to a hypothesis test
for difference in two independent
proportions.

pwr_curve() visual tool Constructs a plot with the power
and assurance curves overlayed on
top of each other for comparison.

gen_Xn() design tool Constructs design matrix using
given sample size(s). Used for
power and sample size analysis in
the Bayesian setting.

gen_Xn_longitudinal() design tool Constructs design matrix using in-
puts that correspond to a balanced
longitudinal study design.

Table 4.1: Overview of the functions available for use within the package.
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4.2 Closed-form Solution of Assurance

This section goes over functions associated with the fundamental computations of assurance

and power. As delineated in Chapter 2, the Bayesian assurance evaluates the tenability of

attaining a specified outcome through the implementation of prior and posterior distribu-

tions. The assurance_nd_na() function computes the exact assurance using a closed-form

solution. Suppose we seek to evaluate the tenability of θ > θ0 given data from a Gaussian

population with mean θ and known variance σ2. Recalling our framework setup in Chapter 2,

we assign two sets of priors for θ, one at the design stage and the other at the analysis stage.

These two stages are the primary components that make up the skeleton of our generalized

solution in the Bayesian setting and will be revisited in later sections. The analysis objective

specifies the condition that needs to be satisfied. It defines a positive outcome, which serves

as an overarching criteria that characterizes the study. In this setting, the analysis objective

is to observe P (θ > θ0|ȳ) > 1−α. The design objective seeks a sample size that is needed to

ensure that the analysis objective is met 100δ% of the time, where δ denotes the assurance.

To ensure the notation used in this section is clear, let θ ∼ N
(
θ1,

σ2

na

)
be our analysis stage

prior and θ ∼ N
(
θ1,

σ2

nd

)
be our design stage prior, where na and nd are precision parameters

that quantify the degree of belief towards parameter θ and the population from which we are

drawing samples from to evaluate θ. Then given the likelihood ȳ ∼ N
(
θ, σ

2

n

)
, we can obtain

the posterior distribution of θ by multiplying the analysis prior and likelihood:

N

(
θ

∣∣∣∣θ1, σ2

na

)
×N

(
ȳ

∣∣∣∣θ, σ2

n

)
∝ N

(
θ

∣∣∣∣ na

n+ na

θ1 +
n

n+ na

ȳ,
σ2

n+ na

)
.

This posterior distribution gives us P (θ > θ0|ȳ) and the assurance is then defined as

δ = Pȳ {ȳ : P (θ > θ0|ȳ) > 1− α} .

The assurance expression can be expanded out further by using the marginal distribution of
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ȳ, which is obtained by

∫
N

(
θ

∣∣∣∣θ1, σ2

nd

)
×N

(
ȳ

∣∣∣∣θ, σ2

n

)
dθ = N

(
ȳ

∣∣∣∣θ1,( 1n +
1

nd

)
σ2

)
.

Since the assurance definition is conditioned on ȳ, we use this to standardize the assurance

expression to obtain the following closed-form solution:

δ(∆, n) = Φ

(√
nnd

n+ nd

[
n+ na

n

∆

σ
+ Zα

n+ na

n

])
. (4.1)

The assurance_nd_na() function requires the following specified parameters:

1. n: sample size (either scalar or vector)

2. n_a: precision parameter within the analysis stage that quantifies the degree of belief

carried towards parameter θ

3. n_d: precision parameter within the design stage that quantifies the degree of belief of

the population from which we are generating samples from

4. theta_0: initial parameter value provided by the client

5. theta_1: prior mean of θ assigned in the analysis and design stage

6. sigsq: known variance

7. alt: specifies alternative test case, where alt = "greater" tests if θ1 > θ0,alt =

"less" tests if θ1 < θ0, and alt = "two.sided" performs a two-sided test for θ1 ̸= θ0.

By default, alt = "greater".

8. alpha: significance level

Consider the following code that loads in the bayesassurance package and assigns arbitrary

parameters to assurance_nd_na() prior to executing the function.
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R> library(bayesassurance)

R> n <- seq(100, 250, 10)

R> n_a <- 10

R> n_d <- 10

R> theta_0 <- 0.15

R> theta_1 <- 0.25

R> sigsq <- 0.30

R> out <- assurance_nd_na(n = n, n_a = n_a, n_d = n_d, theta_0 = theta_0,

theta_1 = theta_1, sigsq = sigsq, alt = "greater", alpha = 0.05)

R> head(out$assurance_table)

R> out$assurance_plot

n Assurance

1 100 0.5228078

2 110 0.5324414

3 120 0.5408288

4 130 0.5482139

5 140 0.5547789

6 150 0.5606632

Running this block of code will return a table of assurance values and a graphical display

of the assurance curve, shown in Figure 4.1. The first six rows of the table are reported in

the outputs.
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Figure 4.1: Resulting assurance plot with specific points passed in marked in red.

There are a few points worth noting from the above code block as they are pertinent

to the vast majority of functions contained within bayesassurance. First, we are passing a

vector of sample sizes for n and saving the results as an arbitrary variable out. The list of

objects returned by the function is contingent on whether the user passes in a scalar or vector

for n. If n is a scalar, this notifies the program that we only want to determine the assurance

for one particular sample size. When this is the case, out will only report a single assurance

value with no plot. On the other hand, if a vector of sample sizes is passed in to n, as is the

case for the code sample above, this suggests the user wants to determine the assurance for

an array of sample sizes, and the function will produce both a table and an assurance curve

showcasing the results. As long as n holds a length of at least two, assurance_nd_na will

create a graphical display of the assurance values for an array of sample sizes surrounding

those values of n that were passed in, with specific points of interest labeled in red. Figure 4.1

shows the resulting assurance curve corresponding to the code segment above. The graph

is created using ggplot2, an imported package that bayesassurance relies on. Simply typing

out$assurance_table and out$assurance_plot will display the table and plot respectively

in this particular set of examples.
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4.2.1 Special Case: Convergence with the Frequentist Setting

Depending on how we define the parameters in assurance_nd_na(), we could demonstrate

the direct relationship held between the Bayesian and classical settings, in which the fre-

quentist power is no more than a special case of the generalized Bayesian solution. This can

easily be seen when letting nd → ∞ and setting na = 0 in Equation (4.1), i.e. defining a

weak analysis stage prior and a strong design stage prior, resulting in

Φ
(√

n
∆

σ
+ Zα

)
, (4.2)

which is equivalent to the frequentist power expression that takes the form

1− β = P
(
ȳ > θ0 +

σ√
n
Z1−α

)
= Φ

(√
n
∆

σ
+ Zα

)
,

The following code chunk demonstrates this special case in R using the assurance_nd_na()

function:

R> library(bayesassurance)

R> n <- seq(10, 250, 5)

R> n_a <- 1e-8

R> n_d <- 1e+8

R> theta_0 <- 0.15

R> theta_1 <- 0.25

R> sigsq <- 0.104

R> out <- assurance_nd_na(n = n, n_a = n_a, n_d = n_d,

theta_0 = theta_0, theta_1 = theta_1, sigsq = sigsq,
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alt = "greater", alpha = 0.05)

R> head(out$assurance_table)

R> out$assurance_plot

n Assurance

1 10 0.2532578

2 15 0.3285602

3 20 0.3981637

4 25 0.4623880

5 30 0.5213579

6 35 0.5752063

The bayesassurance package includes a pwr_freq() function that determines the sta-

tistical power of a study design given a set of fixed parameter values that adhere to the

closed-form solution of power and sample size. Continuing with the one-sided case, the

solution is given by

1− β = P
(
ȳ > θ0 +

σ√
n
Z1−α

)
= Φ

(√
n
∆

σ
+ Zα

)
, (4.3)

where ∆ = θ1 − θ0 denotes the critical difference and Φ denotes the cumulative distribution

function of the standard normal. Note this formula is equivalent to the special case of the

assurance definition expressed in Equation (4.2).

To execute pwr_freq(), the following set of parameters need to be specified:

1. n: sample size (either scalar or vector)

2. theta_0: initial value specified in the null hypothesis; typically provided by the client
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3. theta_1: alternative value to test against the initial value; serves as a threshold in

determining whether the null is to be rejected or not

4. alt: specifies alternative test case, where alt = "greater" tests if θ1 > θ0; alt =

"less" tests if θ1 < θ0; alt = "two.sided" performs a two-sided test for θ1 ̸= θ0. By

default, alt = "greater".

5. sigsq: known variance

6. alpha: significance level of test

As a simple example, consider the following code chunk that directly runs pwr_freq()

through specifying the above parameters and loading in bayesassurance:

R> library(bayesassurance)

R> pwr_freq(n = 20, theta_0 = 0.15, theta_1 = 0.35, sigsq = 0.30,

alt = "greater", alpha = 0.05)

"Power: 0.495"

Running this simply returns the assurance printed as a statement since we are only evaluating

one sample size, n = 20. Now consider the next segment of code.

R> library(bayesassurance)

R> n <- seq(10, 250, 5)

R> out <- pwr_freq(n = n, theta_0 = 0.15, theta_1 = 0.25, sigsq = 0.104,

alt = "greater", alpha = 0.05)
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(a) Power curve (b) Assurance curve

Figure 4.2: Resulting power and assurance curve when weak analysis priors and strong design
priors and enforced.

R> head(out$pwr_table)

R> out$pwr_plot

n Power

1 10 0.2532578

2 15 0.3285602

3 20 0.3981637

4 25 0.4623880

5 30 0.5213579

6 35 0.5752063

This above code produces the exact same results as the previous assurance_nd_na() ex-

ample where we assign a weak analysis prior and a strong design prior to demonstrate the

overlapping behaviors that occur between the two frameworks.
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4.3 Simulation-Based Functions Using Conjugate Linear Models

Each simulation-based function is characterized by a well-defined objective that we seek

to evaluate the tenability of. This takes place in the analysis stage. The functions take

an iterative approach that alternates between generating a dataset in the design stage and

evaluating whether or not the dataset satisfies the analysis stage criteria. The assurance

equates to the proportion of datasets that meet the objective.

4.3.1 Assurance Computation with Known Variance

The simulation-based function, bayes_sim(), determines the assurance within the context

of conjugate Bayesian linear regression models assuming known variance, σ2. The execution

of bayes_sim() is straightforward. An important attribute is that users are not required

to provide their own design matrix, Xn, when executing bayes_sim(). The algorithm au-

tomatically accommodates for the case, Xn = NULL, using the built-in function, gen_Xn(),

which constructs appropriate design matrices based on entered sample size(s). Section 4.4

discusses design matrix generators in greater detail.

Setting Xn = NULL facilitates calculation of assurances across a vector of sample sizes,

where the function sequentially updates the design matrix for each unique sample size un-

dergoing evaluation.

Implementing bayes_sim() requires defining the following set of parameters:

1. n: Sample size (either vector or scalar). If vector, each value corresponds to a separate

study design.

2. p: Number of explanatory variables being considered. Also denotes the column dimen-

sion of design matrix Xn. If Xn = NULL, p must be specified for the function to assign

a default design matrix for Xn.

3. u: a scalar or vector included in the expression to be evaluated, e.g. u⊤β > C, where
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β is an unknown parameter that is to be estimated.

4. C: constant to be compared to

5. Xn: design matrix characterizing the observations given by the normal linear regression

model yn = Xnβ+ϵn, where ϵn ∼ N(0, σ2Vn). See above description for details. Default

Xn is an np× p matrix comprised of n× 1 ones vectors that run across the diagonal of

the matrix.

6. Vbeta_d: correlation matrix that characterizes prior information on β in the design

stage, i.e. β ∼ N(µ
(d)
β , σ2V

(d)
β ).

7. Vbeta_a_inv: inverse-correlation matrix that characterizes prior information on β in

the analysis stage, i.e. β ∼ N(µ
(a)
β , σ2V

(a)
β ). The inverse is passed in for computation

efficiency, i.e. V
−1(a)
β .

8. Vn: an n × n correlation matrix for the marginal distribution of the sample data yn.

Takes on an identity matrix when set to NULL.

9. sigsq: a known and fixed constant preceding all correlation matrices Vn, Vbeta_d and

Vbeta_a_inv.

10. mu_beta_d: design stage mean, µ
(d)
β

11. mu_beta_a: analysis stage mean, µ
(a)
β

12. alpha: specifies alternative test case, where alt = "greater" tests if u⊤β > C, alt

= "less" tests if u⊤β < C, and alt = "two.sided" performs a two-sided test for

u⊤β ̸= C. By default, alt = "greater".

13. alpha: significance level

14. mc_iter: number of MC samples evaluated under the analysis objective
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4.3.1.1 Example 1: Scalar Parameter

The first example evaluates the tenability of H : u⊤β > C in the case when β is a scalar. The

following code segment assigns a set of arbitrary values for the parameters of bayes_sim()

and saves the outputs as assur_vals. The first ten rows of the table is shown.

R> n <- seq(100, 300, 10)

R> assur_vals <- bayesassurance::bayes_sim(n, p = 1, u = 1,

C = 0.15, Xn = NULL, Vbeta_d = 0, Vbeta_a_inv = 0,

Vn = NULL, sigsq = 0.265, mu_beta_d = 0.25, mu_beta_a = 0,

alt = "greater", alpha = 0.05, mc_iter = 5000)

R> head(assur_vals$assurance_table)

R> assur_vals$assurance_plot

Observations per Group (n) Assurance

1 100 0.6162

2 110 0.6612

3 120 0.6886

4 130 0.7148

5 140 0.7390

6 150 0.7746

We emphasize a few important points in this rudimentary example. Assigning a vector

of values for n indicates we are interested in assessing the assurance for multiple study

designs. Each unique value passed into n corresponds to a separate balanced study design
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containing that particular sample size for each of the p groups undergoing assessment. In

this example, setting p = 1, u = 1 and C = 0.15 implies we are evaluating the tenability

of H : β > 0.15, where β is a scalar.Furthermore, Vbeta_d and Vbeta_a_inv are scalars

to align with the dimension of β. A weak analysis prior (Vbeta_a_inv = 0) and a strong

design prior (Vbeta_d = 0) are assigned to demonstrate the overlapping scenario taking

place between the Bayesian and frequentist settings. Section 4.4 revisits this example when

reviewing features that allow users to simultaneously visualize the Bayesian and frequentist

settings in a single window. Finally, Xn and Vn are set to NULL, indicating they will each take

on the default settings specified in the parameter descriptions above.

4.3.1.2 Example 2: Linear Contrasts

In this example, we revisit the cost-effectiveness application discussed in O’Hagan and

Stevens, 2001 to demonstrate a real-world setting. The application considers a randomized

clinical trial that compares the cost-effectiveness of two treatments. The cost-effectiveness

is evaluated using a net monetary benefit measure expressed as

ξ = K(µ2 − µ1)− (γ2 − γ1),

where µ1 and µ2 respectively denote the efficacy of treatments 1 and 2, and γ1 and γ2 denote

the costs. Hence, µ2−µ1 and γ2−γ1 correspond to the true differences in treatment efficacy

and costs, respectively, between Treatments 1 and 2. The threshold unit cost, K, represents

the maximum price that a health care provider is willing to pay for a unit increase in efficacy.

In this setting,we seek the tenability ofH : ξ > 0, which if true, indicates that Treatment 2

is more cost-effective than Treatment 1.To comply with the conjugate linear model framework

outlined in Equation (5.3), we set u = (−K, 1, K,−1)⊤, β = (µ1, γ1, µ2, γ2)
⊤, and C = 0,

giving us an equivalent form of ξ > 0 expressed as u⊤β > 0. All other inputs of this

application were directly pulled from the paper. The following code sets up the inputs to be
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passed into bayes_sim().

R> n <- 285

R> p <- 4

R> K <- 20000 # threshold unit cost

R> C <- 0

R> u <- as.matrix(c(-K, 1, K, -1))

R> sigsq <- 4.04^2

## Assign mean parameters to analysis and design stage priors

R> mu_beta_d <- as.matrix(c(5, 6000, 6.5, 7200))

R> mu_beta_a <- as.matrix(rep(0, p))

## Assign correlation matrices (specified in paper)

## to analysis and design stage priors

R> Vbeta_a_inv <- matrix(rep(0, p^2), nrow = p, ncol = p)

R> Vbeta_d <- (1 / sigsq) * matrix(c(4, 0, 3, 0, 0, 10^7, 0,

0, 3, 0, 4, 0, 0, 0, 0, 10^7), nrow = 4, ncol = 4)

R> tau1 <- tau2 <- 8700

R> sig <- sqrt(sigsq)

R> Vn <- matrix(0, nrow = n*p, ncol = n*p)

R> Vn[1:n, 1:n] <- diag(n)

R> Vn[(2*n - (n-1)):(2*n), (2*n - (n-1)):(2*n)] <- (tau1 / sig)^2 * diag(n)

R> Vn[(3*n - (n-1)):(3*n), (3*n - (n-1)):(3*n)] <- diag(n)

R> Vn[(4*n - (n-1)):(4*n), (4*n - (n-1)):(4*n)] <- (tau2 / sig)^2 * diag(n)
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The inputs specified above should result in an assurance of approximately 0.70 according

to O’Hagan and Stevens, 2001. The bayes_sim() returns a similar value, demonstrating

that sampling from the posterior yields results similar to those reported in the paper.

R> library(bayesassurance)

R> assur_vals <- bayes_sim(n = 285, p = 4,

u = as.matrix(c(-K, 1, K, -1)), C = 0,

Xn = NULL, Vbeta_d = Vbeta_d,

Vbeta_a_inv = Vbeta_a_inv,

Vn = Vn, sigsq = 4.04^2,

mu_beta_d = as.matrix(c(5, 6000, 6.5, 7200)),

mu_beta_a = as.matrix(rep(0, p)),

alt = "greater", alpha = 0.05, mc_iter = 10000)

R> assur_vals

## [1] "Assurance: 0.722"

4.3.2 Assurance Computation with Unknown Variance

The bayes_sim_unknownvar() function operates similarly to bayes_sim() but is used when

the variance, σ2, is unknown, as previously described in Section 2.3.2. In the unknown

variance setting, priors are assigned to both β and σ2 in the analysis stage such that

β|σ2 ∼ N(µ
(a)
β , σ2V

(a)
β ) and σ2 ∼ IG(a(a), b(a)), where superscripts (a) indicate analysis

priors. Determining the posterior distribution of σ2 requires integrating out β from the joint
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posterior distribution of {β, σ2}, yielding

p(σ2|yn) ∝ IG(σ2|a(a), b(a))×
∫
N(β|µβ, σ

2Vβ)×N(yn|Xβ, σ2Vn)dβ

∝
(

1

σ2

)a(a)+n
2
+1

exp

{
− 1

σ2

(
b(a) +

c∗

2

)}
.

(4.4)

Hence, p(σ2|yn) = IG (σ2|a∗, b∗), where a∗ = a(a) + n
2
and b∗ = b(a) + c∗

2
, where c∗ =

b(a) + 1
2

(
µ
⊤(a)
β V

−1(a)
β µ

(a)
β + y⊤n V

−1
n yn −m⊤

nMnmn

)
.

Recall the design stage aims to identify a minimum sample size that is needed to attain

the assurance level specified by the investigator. We will need the marginal distribution of yn

with priors placed on both β and σ2. We denote these design priors as β(d) and σ2(d). With

σ2(d) now treated as an unknown parameter, the marginal distribution of yn, given σ
2(d), under

the design prior is derived from yn = Xnβ
(d) + en, en ∼ N(0, σ2(d)Vn), β

(d) = µ
(d)
β + ω; ω ∼

N(0, σ2(d)V
(d)
β ), where β(d) ∼ N(µ

(d)
β , σ2(d)V

(d)
β ) and σ2(d) ∼ IG(a(d), b(d)). Substituting β(d)

into yn gives us yn = Xnµ
(d)
β +(Xnω+en) such that Xnω+en ∼ N(0, σ2(d)(Vn+XnV

(d)
β X⊤

n )).

The marginal distribution of p(yn|σ2(d)) is

yn|σ2(d) ∼ N(Xnµ
(d)
β , σ2(d)V ∗

n ); V ∗
n = XnV

(d)
β X⊤

n + Vn. (4.5)

Equation (4.5) specifies our data generation model for ascertaining sample size.

4.3.3 Assurance Computation in the Longitudinal Setting

We demonstrate an additional feature embedded in the function tailored to longitudinal data,

previously discussed in Section 3.3. In this setting, the variable n no longer refers to the

number of subjects but rather the number of repeated measures reported for each subject

assuming a balanced study design.

Consider a group of subjects in a balanced longitudinal study with the same number of

repeated measures at equally-spaced time points. In the base case, in which time is treated
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as a linear term, subjects can be characterized by

yij = αi + βitij + ϵi,

where yij denotes the j
th observation of subject i at time tij, αi and βi respectively denote the

intercept and slope terms for subject i, and ϵi is an error term characterized by ϵi ∼ N(0, σ2
i ).

In a simple case with two subjects, we can individually express the observations as

y11 = α1 + β1t11 + ϵ1

...

y1n = α1 + β1t1n + ϵ1

y21 = α2 + β2t21 + ϵ2

...

y2n = α2 + β2t2n + ϵ2,

assuming that each subject contains n observations. The model can also be expressed cohe-

sively using matrices,



y11
...

y1n

y21
...

y2n


︸ ︷︷ ︸

yn

=



1 0 t11 0
...

...
...

...

1 0 t1n 0

0 1 0 t21
...

...
...

...

0 1 0 t2n


︸ ︷︷ ︸

Xn


α1

α2

β1

β2


︸ ︷︷ ︸

β

+



ϵ1
...

ϵ1

ϵ2
...

ϵ2


︸ ︷︷ ︸

ϵn

(4.6)

bringing us back to the linear model structure. If higher degrees are to be considered for

the time variable, such as the inclusion of a quadratic term, the model would be altered
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to include additional covariate terms that can accommodate for these changes. In the two-

subject case, incorporating a quadratic term for the time variable in Equation (4.6) will

result in the model being modified as follows:



y11
...

y1n

y21
...

y2n


︸ ︷︷ ︸

yn

=



1 0 t11 0 t211 0
...

...
...

...
...

...

1 0 t1n 0 t21n 0

0 1 0 t21 0 t221
...

...
...

...
...

...

0 1 0 t2n 0 t22n


︸ ︷︷ ︸

Xn



α1

α2

β1

β2

ϕ1

ϕ2


︸ ︷︷ ︸

β

+



ϵ1
...

ϵ1

ϵ2
...

ϵ2


︸ ︷︷ ︸

ϵn

In general, for m subjects who each have n repeated measures, a one-unit increase in the

degree of the time-based covariate will result in m additional columns being added to the

design matrix Xn and m additional rows added to the β vector.

When working in the longitudinal setting, additional parameters need to be specified in

the bayes_sim() function. These include

1. longitudinal: logical that indicates the simulation will be based in a longitudinal

setting. If Xn = NULL, the function will construct a design matrix using inputs that

correspond to a balanced longitudinal study design.

2. ids: vector of unique subject ids

3. from: start time of repeated measures for each subject

4. to: end time of repeated measures for each subject

5. num_repeated_measures: desired length of the repeated measures sequence.This should

be a non-negative number, will be rounded up otherwise if fractional.

6. poly_degree: degree of polynomial in longitudinal model, set to 1 by default.
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By default, longitudinal = FALSE and ids, from, and to are set to NULL when working

within the standard conjugate linear model. When longitudinal = TRUE, n takes on a dif-

ferent meaning as its value(s) correspond to the number of repeated measures for each subject

rather than the total number of subjects in each group. When longitudinal = TRUE and Xn

= NULL, bayes_sim() implicitly relies on a design matrix generator, gen_Xn_longitudinal(),

that is specific to the longitudinal setting to construct appropriate design matrices. Sec-

tion 4.4 discusses this in greater detail.

4.3.3.1 Example 3: Longitudinal Example

The following example uses similar parameter settings as the cost-effectiveness example we

had previously discussed in Section 4.3.1.2, now with longitudinal specifications. We assume

two subjects and want to test whether the growth rate of subject 1 is different in comparison

to subject 2. This could have either positive or negative implications depending on the mea-

surement scale. Figure 4.3 displays the estimated assurance points given the specifications.

Assigning an appropriate linear contrast lets us evaluate the tenability of an outcome.

Let us consider the tenability of u⊤β ̸= C in this next example, where u = (1,−1, 1,−1)⊤

and C = 0. The timepoints are arbitrarily chosen to be 0 through 120- this could be

days, months, or years depending on the context of the problem. The number of repeated

measurements per subject to be tested includes values 10 through 100 in increments of 5.

This indicates that we are evaluating the assurance for 19 study designs in total. n = 10

divides the specified time interval into 10 evenly-spaced timepoints between 0 and 120.

For a more complicated study design comprised of more than two subjects that are divided

into two treatment groups, consider testing if the mean growth rate is higher in the first

treatment group than that of the second, e.g. if we have three subjects per treatment group,

the linear contrast would be set as u = (0, 0, 0, 0, 0, 0, 1/3, 1/3, 1/3,−1/3,−1/3,−1/3)⊤.

R> n <- seq(10, 100, 5)
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Figure 4.3: Estimated assurance points for longitudinal example.

R> ids <- c(1,2)

R> Vbeta_a_inv <- matrix(rep(0, 16), nrow = 4, ncol = 4)

R> sigsq = 100

R> Vbeta_d <- (1 / sigsq) * matrix(c(4, 0, 3, 0, 0, 6, 0, 0, 3,

0, 4, 0, 0, 0, 0, 6), nrow = 4, ncol = 4)

R> assur_out <- bayes_sim(n = n, p = NULL, u = c(1, -1, 1, -1),

C = 0, Xn = NULL, Vbeta_d = Vbeta_d,

Vbeta_a_inv = Vbeta_a_inv, Vn = NULL,

sigsq = 100, mu_beta_d = as.matrix(c(5, 6.5, 62, 84)),

mu_beta_a = as.matrix(rep(0, 4)),

mc_iter = 5000, alt = "two.sided", alpha = 0.05,

longitudinal = TRUE, ids = ids, from = 10, to = 120)

R> head(assur_out$assurance_table)

R> assur_out$assurance_plot

Observations per Group (n) Assurance
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1 10 0.6922

2 15 0.8056

3 20 0.8810

4 25 0.9244

5 30 0.9478

6 35 0.9626

4.3.4 Assurance Computation for Unbalanced Study Designs

The bayes_sim_unbalanced() function operates similarly to bayes_sim() in Section 4.3.1

but estimates the assurance of attaining u⊤β > C specifically in an unbalanced design set-

ting. Users provide two sets of sample sizes of equal length, whose corresponding pairs are

considered for each study design case. The sample sizes need not be equal to one another,

allowing for unbalanced designs. This is unlike bayes_sim() that strictly determines assur-

ance for balanced cases, where users specify a single set of sample sizes whose individual

entries correspond to a distinct trial comprised of an equal number of observations across all

explanatory variables. The bayes_sim_unbalanced() function provides a higher degree of

flexibility for designing unbalanced studies and offers a more advanced visualization feature.

Users have the option of viewing assurance as a 3-D contour plot and assess how the assur-

ance behaves across varying combinations of the two sets of sample sizes that run along the

x and y axes.

The bayes_sim_unbalanced() function is similar to bayes_sim() in terms of parameter

specifications with a few exceptions. Parameters unique to bayes_sim_unbalanced() are

summarized below:

1. n1: first sample size (either vector or scalar).

2. n2: second sample size (either vector or scalar).

3. repeats: an integer value denoting the number of times c(n1, n2) is accounted for;
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applicable for study designs that consider an even number of explanatory variables

greater than two and whose sample sizes correspond to those specified in n1 and n2.

By default, repeats = 1. See Example 6 below.

4. surface_plot: logical parameter that indicates whether a contour plot is to be con-

structed. When set to TRUE, and n1 and n2 are vectors, a contour plot (i.e. heat map)

showcasing assurances obtained for unique combinations of n1 and n2 is produced.

As in bayes_sim, it is recommended that users set Xn = NULL to facilitate the automatic

construction of appropriate design matrices that best aligns with the conjugate linear model

described in beginning of Chapter 2. Recall that every unique sample size (or sample size

pair) passed in corresponds to a separate study that requires a separate design matrix.

Should users choose to provide their own design matrix, it is advised that they evaluate the

assurance for one study design at a time, in which a single design matrix is passed into Xn

along with scalar values assigned for the sample size parameter(s). Saved outputs of the

function include

1. assurance_table: table of sample size and corresponding assurance values

2. contourplot: contour map of assurance values if surface.plot = TRUE

3. mc_samples: number of Monte Carlo samples that were generated for evaluation

4.3.4.1 Example 4: Unbalanced Assurance Computation with Surface Plot

The following code provides a basic example of how bayes_sim_unbalanced() is executed.

It is important to check that the parameters passed in are appropriate in dimensions, e.g.

mu_beta_a and mu_beta_d should each contain the same length as that of u, and the length

of u should be equal to the row and column dimensions of Vbeta_d and Vbeta_a_inv.

A table of assurance values is printed simply by calling assur_out$assurance_table,

which contains the exact assurance values corresponding to each sample size pair. The
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contour plot, shown in Figure 4.4, is displayed using assur_out$contourplot, and offers a

visual depiction of how the assurance varies across unique combinations of n1 and n2. Areas

with lighter shades denote higher assurance levels. No discernible patterns or trends are

observed based on the random behavior of the plot and the proximity of values reported in

the table as the inputs were arbitrarily chosen with no context. The next example implements

the function in a real-world setting that offers more sensible results.

R> library(bayesassurance)

R> n1 <- seq(20, 75, 5)

R> n2 <- seq(50, 160, 10)

R> assur_out <- bayes_sim_unbalanced(n1 = n1, n2 = n2,

repeats = 1, u = c(1, -1), C = 0, Xn = NULL,

Vbeta_d = matrix(c(50, 0, 0, 10),nrow = 2, ncol = 2),

Vbeta_a_inv = matrix(rep(0, 4), nrow = 2, ncol = 2),

Vn = NULL, sigsq = 100, mu_beta_d = c(1.17, 1.25),

mu_beta_a = c(0, 0), alt = "two.sided", alpha = 0.05,

mc_iter = 5000, surface_plot = TRUE)

R> head(assur_out$assurance_table)

R> assur_out$contourplot

n1 n2 Assurance

1 20 50 0.9504

2 25 60 0.9584
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Figure 4.4: Contour map of assurance values with varying sample sizes n1 and n2.

3 30 70 0.9508

4 35 80 0.9616

5 40 90 0.9624

6 45 100 0.9634

4.3.4.2 Example 5: Cost-effectiveness Application

We revisit the cost-effectiveness problem described in O’Hagan and Stevens, 2001. In ad-

dition to providing a 3-D graphical display of the assurance, this example also serves to

demonstrate a setting where the repeats parameter becomes relevant.

Recall from Example 2 that two distinct sets of efficacy and cost measures are used to

compare the cost-effectiveness of treatments 1 and 2. The efficacy and costs are denoted by

µi and γi for i = 1, 2 treatments. Hence, the parameter we want to estimate contains four ele-

ments tied to the unknown efficacy and costs of treatments 1 and 2, i.e. β = (µ1, γ1, µ2, γ2)
⊤.
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It was previously assumed that the treatments contain an equal number of observations,

suggesting that the sample sizes across each of the four explanatory variables are also equal.

Using bayes_sim_unbalanced() offers the added flexibility of constructing an unbalanced

study design between treatments 1 and 2. Since the two treatments each contain two com-

ponents to be measured, we use the repeats parameter to indicate that we want two sets

of sample sizes, c(n1, n2), passed in, i.e. c(n1, n2, n1, n2). It then becomes clear that

our study design consists of n1 observations for the efficacy and cost of treatment 1, and n2

observations for those of treatment 2. Figure 4.5 displays a contour plot with a noticeable

increasing trend of assurance values across larger sets of sample sizes.

R> library(bayesassurance)

R> n1 <- c(4, 5, 15, 25, 30, 100, 200)

R> n2 <- c(8, 10, 20, 40, 50, 200, 250)

R> mu_beta_d <- as.matrix(c(5, 6000, 6.5, 7200))

R> mu_beta_a <- as.matrix(rep(0, 4))

R> K = 20000 # threshold unit cost

R> C <- 0

R> u <- as.matrix(c(-K, 1, K, -1))

R> sigsq <- 4.04^2

R> Vbeta_a_inv <- matrix(rep(0, 16), nrow = 4, ncol = 4)

R> Vbeta_d <- (1 / sigsq) * matrix(c(4, 0, 3, 0, 0, 10^7, 0, 0,

3, 0, 4, 0, 0, 0, 0, 10^7),nrow = 4, ncol = 4)

R> assur_out <- bayes_sim_unbalanced(n1 = n1, n2 = n2, repeats = 2,

u = as.matrix(c(-K, 1, K, -1)), C = 0, Xn = NULL,

Vbeta_d = Vbeta_d, Vbeta_a_inv = Vbeta_a_inv,

Vn = NULL, sigsq = 4.04^2,
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mu_beta_d = as.matrix(c(5, 6000, 6.5, 7200)),

mu_beta_a = as.matrix(rep(0, 4)),

alt = "greater", alpha = 0.05, mc_iter = 5000,

surface_plot = TRUE)

R> assur_out$assurance_table

R> assur_out$contourplot

n1 n2 Assurance

1 4 8 0.1614

2 5 10 0.1724

3 15 20 0.3162

4 25 40 0.3942

5 30 50 0.4440

6 100 200 0.6184

7 200 250 0.7022

4.4 Visualization Features and Useful Tools

4.4.1 Overlapping Power and Assurance Plots

To facilitate the understanding of the relationship held between Bayesian and frequentist

settings, the pwr_curves() function produces a single plot with the power curve and as-

surance points overlayed on top of one another. Recall the primary difference held between

pwr_freq() and assurance_nd_na() is the need to specify additional precision parame-

ters, na and nd, in assurance_nd_na(). Knowing that power and sample size analysis in

the frequentist setting is essentially a special case to the Bayesian assurance with preci-

sion parameters tailored to weak analysis priors and strong design priors, the pwr_curves()
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Figure 4.5: Contour map of assurance values in cost-effectiveness application.

function serves as a visualization tool in seeing how varying precision levels’ affect assurance

values and how these assurance values compare to those of strictly weak analysis and strong

design priors, i.e. power values.

The pwr_curves() function takes the combined set of parameters presented in pwr_freq()

and assurance_nd_na(), which includes n, n_a, n_d, theta_0, theta_1, sigsq, and

alpha. For further customization, users have the option to include a third set of points in

their plot along with the power and assurance curves. These additional points would corre-

spond to the simulated assurance results obtained using bayes_sim(). Optional parameters

to implement this include

1. bayes_sim: logical that indicates whether the user wishes to include simulated assur-

ance results obtained from bayes_sim(). Default setting is FALSE.

2. mc_iter: specifies the number of MC samples to evaluate given bayes_sim = TRUE.

The following code segment runs the pwr_curves() function using a weak analysis stage prior

(n_a is set to be small) and a strong design stage prior (n_d is set to be large). Implementing
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Figure 4.6: Power curve with exact and simulated assurance points for weak analysis prior
and strong design prior.

this produces a plot where the assurance points lay perfectly on top of the power curve as

shown in Figure 4.6. The simulated assurance points obtained from bayes_sim() are also

plotted as we set bayes_sim = TRUE. These points are highlighted in blue, which lie very

close in proximity to those of the exact assurance points highlighted in red. We can also view

individual tables of the three sets of points by directly calling them from the saved outputs,

e.g. out$power_table shows the individual frequentist power values for each sample size.

The output we provide shows the first ten rows.

R> library(bayesassurance)

R> out <- pwr_curve(n = seq(10, 200, 10), n_a = 1e-8, n_d = 1e+8,

sigsq = 0.104, theta_0 = 0.15,theta_1 = 0.25, alt = "greater", alpha = 0.05,

bayes_sim = TRUE, mc_iter = 5000)

R> head(out$power_table)

R> head(out$assurance_table)
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R> out\$plot

n Power

1 10 0.2532578

2 20 0.3981637

3 30 0.5213579

4 40 0.6241155

5 50 0.7080824

6 60 0.7754956

n Assurance

1 10 0.2532578

2 20 0.3981637

3 30 0.5213579

4 40 0.6241155

5 50 0.7080824

6 60 0.7754956

The next code segment considers the scenario in which both analysis and design stage

priors are weak (n_a and n_d are set to be small). This special case shows how the as-

surance behaves when vague priors are assigned. Substituting 0 in for both na and nd in

Equation (4.1) results in a constant assurance of Φ(0) = 0.5 regardless of the sample size

and critical difference. Figure 4.7 illustrates these results, where we have the regular power

curve and the flat set of assurance points at 0.5 for both exact and simulated cases. Note

that some of these points appear purple due to the overlaps that occur between the exact

and simulated assurance values.

R> library(bayesassurance)
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Figure 4.7: Power curve with exact and simulated assurance points for weak analysis and
design priors.

R> pwr_curve(n = seq(10, 200, 10), n_a = 1e-8, n_d = 1e-8,

sigsq = 0.104, theta_0 = 0.15,theta_1 = 0.25, alt = "greater", alpha = 0.05,

bayes_sim = TRUE, mc_iter = 5000)

4.4.2 Design Matrix Generators

The next sections go over design matrix generators that run in the background of selected

functions within the bayesassurance package when the Xn parameter is set to NULL. We

include these functions in case users wish to see how design matrices are constructed under

this particular setting.

4.4.2.1 Standard Design Matrix Generator

The standard design matrix generator, gen_Xn(), is relevant to a majority of the simulation-

based assurance functions discussed throughout the paper. It is mentioned in Section 4.3
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that the assurance function under known variance,bayes_sim(), does not require users to

specify their own design matrix Xn. Users have the option of setting Xn = NULL, which

prompts the function to construct a default design matrix using gen_Xn() that complies

with the general linear model yn = Xnβ + ϵ, ϵ ∼ N(0, σ2Vn). The function is automatically

administered in the background while bayes_sim() is actively in use.

When directly executed in an R script or console, the gen_Xn() function takes in a single

parameter, n, which can either be a scalar or vector. The length of n corresponds to the

number of groups being assessed in the study design as well as the column dimension of

the design matrix, denoted as p. Therefore, in general, the resulting design matrix is of

dimension n × p. If a scalar value is specified for n, the resulting design matrix carries a

dimension of n× 1.

In the following example, we pass in a vector of length p = 4, which outputs a design

matrix of column dimension 4. Each column is comprised of ones vectors with lengths that

align with the sample sizes passed in for n. The row dimension is therefore the sum of all

the entries in n. In this case, since the values 1, 3, 5, and 8 are being passed in to n, the

design matrix to be constructed carries a row dimension of 1 + 3+ 5+ 8 = 17 and a column

dimension of 4.

R> n <- c(1,3,5,8)

R> gen_Xn(n = n)

[,1] [,2] [,3] [,4]

[1,] 1 0 0 0

[2,] 0 1 0 0

[3,] 0 1 0 0

[4,] 0 1 0 0

[5,] 0 0 1 0

[6,] 0 0 1 0
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[7,] 0 0 1 0

[8,] 0 0 1 0

[9,] 0 0 1 0

[10,] 0 0 0 1

[11,] 0 0 0 1

[12,] 0 0 0 1

[13,] 0 0 0 1

[14,] 0 0 0 1

[15,] 0 0 0 1

[16,] 0 0 0 1

[17,] 0 0 0 1

The bayes_sim() function and its related family of functions generate design matrices

using gen_Xn() in a very particular way. Each unique value contained in n that is passed

into bayes_sim() corresponds to a distinct study design and thus requires a distinct design

matrix. The gen_Xn() function interprets each ith component of n as a separate balanced

study design comprised of ni participants within each of the p groups, where p is a parameter

specified in bayes_sim(). For example, if we let Xn = NULL and pass in n <- 2, p <- 4

for bayes_sim(), gen_Xn() will process the vector n <- c(2, 2, 2, 2) in the background.
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Hence, we’d obtain an 8× 4 matrix of the form

Xn =



1 0 0 0

1 0 0 0

0 1 0 0

0 1 0 0

0 0 1 0

0 0 1 0

0 0 0 1

0 0 0 1



.

4.4.2.2 Design Matrix Generator in Longitudinal Setting

Section 3.3 describes how the linear model is extended to incorporate time-based covariates

within the context of a longitudinal setting. For this special case, a separate function is used

to generate design matrices that are appropriate for this setting. The genXn_longitudinal()

constructs its design matrices differently than gen_Xn() and therefore requires a differ-

ent set of parameter specifications. When the longitudinal parameter is set to TRUE in

bayes_sim(), the user is required to specify the following set of parameters, which are

directly passed into genXn_longitudinal():

1. ids: vector of unique subject ids, usually of length 2 for study design purposes

2. from: start time of repeated measures for each subject

3. to: end time of repeated measures for each subject

4. num_repeated_measures: desired length of the repeated measures sequence. Should

be a non-negative number, will be rounded up if fractional.

5. poly_degree: degree of polynomial in longitudinal model, set to 1 by default.
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Referring back to the model that was constructed for the case involving two subjects,

we observe in Equation (4.6) that the design matrix contains vectors of ones within the first

half of its column dimension and lists the timepoints for each subject in the second half.

Constructing this design matrix requires several components. The user needs to specify

subject IDs that are capable of uniquely identifying each individual in the study. Next, the

user needs to specify the start and end time as well as the number of repeated measures

reported for each subject. The number of repeated measures denotes the number of evenly-

spaced timepoints that take place in between the start and end time. Since we are assuming

a balanced longitudinal study design, each subject considers the same set of timepoints.

Finally, if the user wishes to consider time covariates of higher degrees, such as a quadratic

or cubic function, this can be altered using the poly_degree parameter, which takes on a

default assignment of 1.

In the following code, we pass in a vector of subject IDs and specify the start and

end timepoints along with the desired length of the sequence. The resulting design matrix

contains vectors of ones with lengths that correspond to the number of repeated measures

for each unique subject.

R> ids <- c(1,2,3,4)

R> gen_Xn_longitudinal(ids, from = 1, to = 10, num_repeated_measures = 4)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] 1 0 0 0 1 0 0 0

[2,] 1 0 0 0 4 0 0 0

[3,] 1 0 0 0 7 0 0 0

[4,] 1 0 0 0 10 0 0 0

[5,] 0 1 0 0 0 1 0 0

[6,] 0 1 0 0 0 4 0 0

[7,] 0 1 0 0 0 7 0 0
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[8,] 0 1 0 0 0 10 0 0

[9,] 0 0 1 0 0 0 1 0

[10,] 0 0 1 0 0 0 4 0

[11,] 0 0 1 0 0 0 7 0

[12,] 0 0 1 0 0 0 10 0

[13,] 0 0 0 1 0 0 0 1

[14,] 0 0 0 1 0 0 0 4

[15,] 0 0 0 1 0 0 0 7

[16,] 0 0 0 1 0 0 0 10

The next code block modifies the previous example to incorporate a quadratic term.

Notice there are four additional columns being aggregated to the design matrix. These four

columns are obtained from squaring the four columns that precede this set of columns.

R> ids <- c(1,2,3,4)

R> gen_Xn_longitudinal(ids, from = 1, to = 10, num_repeated_measures = 4,

poly_degree = 2)

1 2 3 4 1 2 3 4 1 2 3 4

[1,] 1 0 0 0 1 0 0 0 1 0 0 0

[2,] 1 0 0 0 4 0 0 0 16 0 0 0

[3,] 1 0 0 0 7 0 0 0 49 0 0 0

[4,] 1 0 0 0 10 0 0 0 100 0 0 0

[5,] 0 1 0 0 0 1 0 0 0 1 0 0

[6,] 0 1 0 0 0 4 0 0 0 16 0 0

[7,] 0 1 0 0 0 7 0 0 0 49 0 0

[8,] 0 1 0 0 0 10 0 0 0 100 0 0

[9,] 0 0 1 0 0 0 1 0 0 0 1 0

[10,] 0 0 1 0 0 0 4 0 0 0 16 0
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[11,] 0 0 1 0 0 0 7 0 0 0 49 0

[12,] 0 0 1 0 0 0 10 0 0 0 100 0

[13,] 0 0 0 1 0 0 0 1 0 0 0 1

[14,] 0 0 0 1 0 0 0 4 0 0 0 16

[15,] 0 0 0 1 0 0 0 7 0 0 0 49

[16,] 0 0 0 1 0 0 0 10 0 0 0 100

4.5 Discussion

This article introduced bayesassurance, a new R package that determines the Bayesian as-

surance for various conditions using a two-stage framework. The goal of this package is to

provide a convenient and user-friendly implementation accessible to a wide range of data

analysts, and showcase the generalized aspect of the Bayesian assurance in relation to clas-

sical approaches to power and sample size analysis. We hope we have provided organized,

well-documented open-source code that can be used to address a wide selection of clinical

trial study designs and demonstrate the feasibility of applying Bayesian methods to such

problems.
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CHAPTER 5

Multiple Comparison Problems using Bayesian FDR

Conditions

In this chapter, we investigate the effects of multiple comparison adjustments relative to

sample size and assurance. Of particular interest is observing how the number of pairwise

tests being conducted affects the assurance under fixed constraints placed on the Bayesian

FDR as defined in Müller et al., 2004. For analysis, we study the influences on assurance

exhibited by factors such as the number of pairwise comparisons, sample size, and pre-select

Bayes FDR threshold values. We assess how our proposed model performs in commonplace

large-scale problems, specifically microarray data. Our methodology is hence applied in a

study of mammary cancer in the rat, where four distinct patterns of expression are provided

(Shepel et al., 1998).

5.1 Introduction

The false discovery rate (FDR) is a powerful metric used to control for false positives that

arise in the multiple testing setting. First introduced by Benjamani and Hochberg, 1995 and

thus colloquially referred to as the Benjamini-Hochberg procedure, the method has since

gained widespread attention and has experienced major developments to address a wider

selection of problems.

Modifications extending upon the fundamental concepts of the FDR have been proposed

within the last several decades, with substantial contributions made in the Bayesian setting.
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Wacholder et al., 2004 demonstrates how the FDR is controlled using a p-value based statistic

known as the false positive report probability (FPRP), an approach further investigated by

Whittemore, 2007. Storey, 2003 introduces a modified version of the FDR known as the

positive false discovery rate (pFDR) and presents a Bayesian analogue to the p-value dubbed

as the q-value. A counterpart of the FDR, the false nondiscovery rate (FNR), was introduced

by Genovese and Wasserman, 2002 and also includes a method capable of minimizing both

the FDR and FNR through proper specification of threshold values. Efron, 2008 and Wen,

2018 draw connections between the Bayesian and frequentist approaches to the FDR. Other

related and noteworthy contributions include Efron et al., 2001, Genovese and Wasserman,

2002, Storey and Tibshirani, 2003, Genovese and Wasserman, 2004, Scott and Berger, 2006,

among many others.

Multiple comparison problems are commonly applied in genomics when learning about

differential gene expression for an immense selection of genes in microarray studies. The

FDR is regarded as a practical tool for managing such large-scale data, exhibiting substantial

gains in power compared to methods that control for family-wise error rates (Benjamani and

Hochberg, 1995) and possessing a higher tendency to identify more true positive associations

(Xu, Ciampi, and Greenwood, 2014). There is by now, an ample collection of multiple testing

methods specific to microarray analysis, many of which rely on the construction of Bayesian

hierarchical models, discussed by Lee et al., 2000, Newton et al., 2001, Kendziorski et al.,

2003, Gottardo et al., 2005, and Gelman, Hill, and Yajima, 2012, just to name a few.

Falling in a similar bracket, our proposed method takes on a decision-theoretic approach

that casts the multiple testing structure into a conjugate Bayesian linear model framework.

The method is characterized by a two-stage method that specifies distinct priors within

the design and analysis stages of the study. Details of this method can be found in Pan

and Banerjee, 2021a. We adopt a Bayesian interpretation of the FDR from Müller et al.,

2004 and establish distinct cases to explore the effects of multiple comparison adjustments on

sample size and assurance, the Bayesian-equivalent of statistical power. This is achieved both
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through simulation and a real-world application involving microarray data provided by Shepel

et al., 1998. Common microarray software uses the FDR to guide gene selection. Sample size

determination, in particular, the number of arrays needed to satisfy pre-specified conditions,

is a key element to consider in genomics. Several papers explore sample size determination

in the context of microarray applications (Pan, Lin, and Le, 2002; Lee and Whitmore,

2002; Zien et al., 2002; Bickel, 2003; Vickerstaff et al., 2019; Tseng and Shao, 2012; Efron,

2007). Müller et al., 2004 chooses the optimal number of microarray replications through

loss functions that control for false-positive and false-negative decisions, and Mukherjee et

al., 2004 estimates dataset size requirements using empirical learning curves. Our primary

objective lies in investigating behaviors exhibited by the assurance and sample size through

adjusting criteria constructed under FDR-based constraints using the conjugate linear model.

In Section 5.2, we frame the multiple hypothesis testing problem in the conjugate linear

model setting and describe how the Bayesian FDR is incorporated into the estimation of

sample size and assurance. Section 5.3 outlines the simulation study with emphasis on

defining the design and analysis stage objectives formulated specifically in the context of

multiple testing. This is followed by results reported in Section 5.3.1. Section 5.4 applies

our method on a real-world application using microarray data that assess differential gene

expression for rats with varying susceptibilities to breast cancer. We conclude with a few

takeaways and points of discussion in Section 5.5.

5.2 Methodology

This section describes an adjusted linear model that enables conducting multiple compar-

isons. We tie this back to the two-stage framework and define appropriate design and analysis

stage objectives and priors, setting the foundation for estimating the assurance.
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5.2.1 Pairwise Hypothesis Testing in Conjugate Linear Model Setting Using Design and

Analysis Priors

We construct a linear model taking the form of a one-way ANOVA that includes a collection

of distinct groups relative to a single factor. Consider a study design with i = 1, · · · , n

observations in each of the j = 1, · · · , J groups. Each observation can be characterized by a

statistical model expressed as

yij = µj + ϵij; ϵij
iid∼ N(0, σ2), (5.1)

where yij denotes the i
th observation in the jth group, µj denotes the mean in group j, and

ϵij denotes the error term of the ith observation in the jth group, which are independent

and identically normally distributed with mean 0 and known variance σ2. We can explicitly

express (5.1) in matrix form for the full set of observations such that



y11
...

yn1

y12
...

yn2
...

y1J
...

ynJ


︸ ︷︷ ︸

y

=



1 0 · · · · · · 0
...

...
...

. . .
...

1 0 · · · · · · ...

0 1 · · · · · · ...
...

...
...

. . . 0

0 1 · · · · · · 0
...

...
. . . . . .

...
...

...
. . . . . . 1

...
...

. . . . . .
...

0 · · · · · · · · · 1


︸ ︷︷ ︸

X


µ1

...

µJ


︸ ︷︷ ︸

β

+



ϵ11
...

ϵn1

ϵ12
...

ϵn2
...

ϵ1J
...

ϵnJ


︸ ︷︷ ︸

ϵ

,

where the vector of observations Y is of nJ × 1 dimension, design matrix X is of dimension

nJ ×J , the vector of parameters β is J ×1, and the vector of error terms ϵ is nJ ×1. Hence,
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we have the following model:

y = Xβ + ϵ; ϵ ∼ N(0, σ2Vy), (5.2)

where Vy is a known nJ × nJ correlation matrix.

We want to conduct multiple independent hypothesis tests that compare unique com-

binations of mean pairs across J subgroups. The linear model structure in (5.1) suggests

there are
(
J
2

)
= J !

2!(J−2)!
unique pairwise comparisons to be made. In this section, we focus

on evaluating a single comparison before shifting into the multiple testing framework. In

essence, each hypothesis test can be assessed using a two-stage method based within the

conjugate Bayesian linear regression framework (Pan and Banerjee, 2021a). Adhering to the

same two-stage structure used in previous chapters, we assign separate priors in the design

and analysis stages of the study to fulfill different purposes as well as address limitations

that can result from assigning a single prior as described in Chapter 2. The analysis stage

aims to construct critical regions for assessing the hypothesis tests while the design stage

targets sample size determination.

Consider evaluating the tenability of H : u⊤jj′β > 0 for all j ̸= j′, where ujj′ =

(0 · · · 0, 1︸︷︷︸
j

, · · · , −1︸︷︷︸
j′

· · · 0)⊤ and β = (µ1, · · · , µj, · · · , µj′ , · · · , µJ)
⊤. Referring to the lin-

ear regression model expressed in (5.2), we specify an analysis prior on β such that β ∼

N
(
µ
(a)
β , τ 2V

(a)
β

)
, where τ 2 is a known scalar, Vβ is a known correlation matrix, and super-

scripts (a) denote analysis stage parameters. The analysis stage prior quantifies uncertainty

of the parameter estimate, β. Inference is drawn from the posterior distribution of β such

that p(β|y) ∝ N(β|µ(a)
β , τ 2V

(a)
β )×N(y|Xβ, σ2Vy), which simplifies to

p(β|y) ∝ N(β|Mm,M), (5.3)

where M−1 = σ2V
−1(a)
β + τ 2X⊤V −1

y X and m = σ2V
−1(a)
β µ

(a)
β + τ 2X⊤V −1

y y. We evaluate the
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tenability of H using the 100(1− α)% posterior credible interval,

postCI =
(
u⊤jj′Mm− Z1−α/2

√
u⊤jj′Mujj′ , u⊤jj′Mm+ Z1−α/2

√
u⊤jj′Mujj′

)
, (5.4)

in which the realized data y will favor H if y belongs to the set

Sα(n; y, σ
2, τ 2, µ

(a)
β , V

(a)
β , Vy) =

{
y : u⊤jj′Mm > Z1−α/2

√
u⊤jj′Mujj′

}
. (5.5)

This is equivalent to 0 falling below the 100(1− α)% posterior credible interval for u⊤jj′β in

(5.4).

In the design stage, we formulate a data generating mechanism to sample data and

evaluate the tenability of H : u⊤jj′β > 0 given realized data y. Evaluating the credibility

of H requires specifying the marginal distribution of y. This can be derived by placing a

design prior on β such that β ∼ N(µ
(d)
β , σ2V

(d)
β ), where superscripts (d) denote design stage

parameters. The design stage prior reflects our belief about the population from which our

realized data is taken. It follows that the marginal distribution of y under the design prior

can be derived from

y = Xβ + ϵ; ϵ ∼ N
(
0, σ2Vy

)
; β = µ

(d)
β + ω; ω ∼ N

(
0, σ2V

(d)
β

)
.

Substituting the equation for β into the equation for y equates to y = Xµ
(d)
β + (Xω + ϵ),

leading to y ∼ N(Xµ
(d)
β , σ2(XV

(d)
β X⊤ + Vy)). In the single testing case, practical Bayesian

designs will seek to assure the investigator that the condition in (5.5) will be achieved with

a sufficiently high probability such that

Py

(
Sα(n; y, σ

2, τ 2, µ
(a)
β , V

(a)
β , Vy)

)
> γ, (5.6)

where n denotes the sample size and γ is a pre-specified threshold value. For assessing a single

pairwise comparison, the expression in (5.6) evaluates the probability of meeting our specified
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objective under the marginal probability distribution of the realized data y corresponding to

any sample size n. Choice of sample size will be determined by the smallest value of n that

will ensure (5.6) is achieved. We will later understand the importance of this condition and

see how the design and analysis objectives are modified to align with the goals of multiple

testing.

5.2.2 Bayesian False Discovery Rate for Multiple Testing

Conducting multiple comparisons naturally leads to an increase in the likelihood of making

false inferences and wrong conclusions. To motivate the problem in the context of linear

regression models as expressed in (5.2), consider a study with J = 5 subgroups, indicating

there are k = 5!
2!(5−2)!

= 10 statistical tests to be performed. If each two-sided test is

independently evaluated at a significance level of α = 0.05, the chance of identifying at least

one false positive across k = 10 tests increases to 1− (1− 0.05)10 ≈ 0.40. This prompts the

need to formulate statistical procedures that not only fulfill specified study objectives but also

account for the increased potential of error as more tests are being conducted. Addressing

the multiplicity issue has been a widely discussed topic in classical statistical inference, with

commonly cited approaches that include adjusting for familywise error rates (FWER) using

methods such as the Bonferroni correction (whose conservative properties are explored and

tested in various applications described in Bland and Altman, 1995, Armstrong, 2014, and

VanderWheele and Mathur, 2019) and Tukey’s test (Tukey, 1949), or controlling for Type I

error rates under the False Discovery Rate (FDR) metric and its variations (e.g. Wacholder

et al., 2004, Storey, 2003, Whittemore, 2007), in which the expected proportion of discoveries

that are false is controlled at a fixed threshold. Similar to multiple testing in the classical

framework, we consider the multiplicity issue in the Bayesian setting as well. As such, we

construct a modified version of the multiple testing approach in the context of conjugate

linear regression models that enables us to effectively control for the FDR in the Bayesian

setting.
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Recall our desire to seek the tenability of H : u⊤jj′β > 0 in Section 5.2.1. For evaluating

multiple pairwise tests, our approach is to formulate the multiple comparison problem within

the linear model framework that controls for the Bayesian FDR. Let djj′ denote an indicator

for the ascertainment of H based on pre-defined decision rules, where djj′ = 1 characterizes

a “discovery”. Let rjj′ denote an indicator that represents the true result, where rjj′ = 1

indicates that H is really true. The FDR is therefore

FDR =

∑
(j,j′)(1− rjj′)djj′∑

(j,j′) djj′
, (5.7)

interpreted as the proportion of false discoveries. Noting that rjj′ is the only unknown

quantity, let vjj′ = P (rjj′ = 1|y) = P
(
u⊤jj′β > 0|y

)
, the posterior probability of H. We use

this definition to construct cutoff-based decision rules that will be used for evaluating each

comparison. For a pre-specified threshold value 1− α, we let

djj′ =


1, if vjj′ > 1− α

0, otherwise.

(5.8)

This indicates we will ultimately decide in favor of H if vjj′ exceeds the probability threshold

1− α, where α is typically set to a small value, e.g. 0.05. We can then re-express Equation

(5.7) with respect to this newly defined decision rule,

FDR =

∑
(j,j′) I(u⊤jj′β ≤ 0)I(vjj′ > 1− α)∑

(j,j′) I(vjj′ > 1− α)
(5.9)

where I(·) is an indicator function. Adopting the Bayesian analogue of FDR from Müller

et al., 2004, the estimated FDR is given as the posterior expectation of the FDR,

FDR = E (FDR|y) =
∑

(j,j′) (1− vjj′) I (vjj′ > 1− α)∑
(j,j′) I (vjj′ > 1− α)

. (5.10)

The Bayesian FDR will serve a major role for sample size determination within the multiple
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testing framework.

5.2.3 Bayesian Assurance and Sample Size Determination for Multiple Testing

Recall the assurance is a Bayesian counterpart of statistical power that evaluates the proba-

bility of attaining a specified study objective given the observed data. For standalone linear

hypothesis tests described in Section 5.2.1, the objective is observing that 0 falls below the

posterior credible interval expressed in Equation (5.4). In this context, the assurance aims

to measure the probability of fulfilling this credible interval-based criterion, which we de-

noted as region Sα(n; y, σ
2, τ 2, µ

(a)
β , V

(a)
β , Vy) in (5.5). Following this notation, the Bayesian

assurance for a single hypothesis test is therefore

δS = Py

(
Sα(n; y, σ

2, τ 2, µ
(a)
β , V

(a)
β , Vy)

)
. (5.11)

In the multiple testing setting, the objective for constructing the assurance needs to

be framed with respect to the Bayesian FDR. We develop an analysis plan that evaluates

the tenability of the FDR-based objective, which involves implementing a data generating

mechanism that samples realized data to estimate the assurance. We adopt the two-stage

framework discussed in Section 5.2.1, where separate priors are assigned to address each

component of the analysis.

Suppose we conduct pairwise tests for J distinct subgroups. This suggests that we need

to individually assess k = J !
2!(J−2)!

comparisons, each being pulled from the model in (5.1)

through proper specification of vectors u and β. In the analysis stage, the multiple testing

framework follows the same procedure as the single hypothesis test case outlined in Section

5.2.1. We assign an analysis prior on β such that β ∼ N
(
µ
(a)
β , τ 2V

(a)
β

)
and conclude thatH is

attained if the posterior probability of H is met at a sufficiently high probability, specifically,

vjj′ > 1 − α, as outlined in our decision rule in Equation (5.8). Once a conclusion is

reached for each of the k comparisons, the Bayesian FDR is subsequently determined using
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Equation (5.10). Recall that for the multiple testing framework, we are ultimately interested

in controlling for the FDR. It becomes clear then, that our analysis objective in the multiple

testing setting is to observe that the Bayesian FDR falls below a pre-specified threshold

value, in which

FDR =

∑
(j,j′) (1− vjj′) I (vjj′ > 1− α)∑

(j,j′) I (vjj′ > 1− α)
< ξ, (5.12)

where ξ is a threshold Bayesian FDR value.

The design stage in the multiple testing framework starts with the same design strategy

applied in the single hypothesis testing case. We assign a design prior for β such that β ∼

N
(
µ
(d)
β , σ2V

(d)
β

)
, and, as previously derived in Section 5.2.1, generate data from the marginal

distribution of y given as y ∼ N
(
Xµ

(d)
β , σ2

(
XV

(d)
β X⊤ + Vy

))
. The sampled datasets assess

the credible interval condition in (5.5) for each individual hypothesis test before evaluating

the overall multiple testing analysis objective in (5.12). At this stage, the above steps only

account for evaluating the tenability of (5.12) for a single set of hypothesis tests. To estimate

the assurance in the multiple testing setting, the above protocol needs to be executed multiple

times for different design stage priors, where each design stage prior produces distinct sets

of iterative-drawn data to assess the hypothesis tests. By doing so, we can determine the

probability of attaining the analysis objective expressed in (5.12). Hence, the Bayesian

assurance in the context of multiple testing is

δM = Py

(
y : FDR < ξ

)
= Py

{
y :

∑
((j,j′) (1− vjj′) I (vjj′ > 1− α)∑

(j,j′) I (vjj′ > 1− α)
< ξ

}
. (5.13)

The Bayesian assurance function evaluates the probability of attaining the analysis objective

under the marginal probability distribution of the realized data corresponding to any sample

size n. Choice of sample size will be determined by the smallest value of n that will ensure

δM > γ, where γ is the specified assurance.

80



5.3 Simulation

We develop a simulation using design and analysis stage priors discussed in Section 5.2. The

simulation study consists of two components. The first component involves a function that

conducts the primary simulation steps, including evaluating all pairwise hypothesis tests and

estimating the Bayesian FDR. Algorithm 5 provides a pseudo-script of the credible interval-

based assessments, in which R sets of data are successively drawn to undergo inference.

Monte Carlo estimates of vjj′ ’s are determined as the proportion of R datasets that satisfy

the credible interval condition derived in (5.5):

vjj′ =
1

R

R∑
r=1

I
(
{yr : u⊤jj′M (r)m(r) > Z1−α/2

√
u⊤jj′M

(r)ujj′
)
,

where I(·) is an indicator function, M (r) and m(r) are the values of M and m computed

from dataset yr. This is repeated for k pairwise comparisons, resulting in k distinct vjj′ ’s

characterizing the posterior probabilities of satisfying Equation (5.5). Each vjj′ is compared

to a pre-specified parameter value to dictate the test result. The result of each comparison

is saved as a binary variable, reject.ind, with 1 denoting that we decide in favor of H :

u⊤jj′β > 0 and 0 suggesting otherwise. Once this is done for all pairwise tests, the expected

Bayesian FDR is subsequently determined using Equation (5.10). A pseudo-script of this

procedure is provided in Algorithm 6, where u.dat is a dataframe containing rows of linear

contrasts, ujj′ , corresponding to each hypothesis test that is to be passed through Algorithm

5 for assessment.

The second component estimates the Bayesian assurance, measuring the probability that

the analysis objective is met as expressed in (5.12). Multiple design stage prior means, µ
(d)
β ,

are passed through Algorithms 5 and 6, where realized data are sampled and evaluated under

the analysis objective. That is to say, if we assign q individually assigned µ
(d)
β ’s, we end up

with q distinct Monte Carlo estimates of the Bayesian FDR corresponding to each design
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Table 5.1: Estimated assurance values under different probability thresholds (t) denoting
the posterior probability of 0 not falling within the respective credible intervals, and fixed
Bayesian FDR thresholds. Assurances increase with larger assigned thresholds.

Assurance Estimates

t = 0.6 t = 0.7 t = 0.8

n FDR < 0.05 FDR < 0.10 FDR < 0.05 FDR < 0.10 FDR < 0.05 FDR < 0.10

10 0.26 0.59 0.45 0.75 0.61 0.90
12 0.32 0.54 0.45 0.87 0.77 0.95
14 0.35 0.76 0.49 0.87 0.85 0.97
16 0.47 0.83 0.69 0.93 0.79 0.97
18 0.59 0.84 0.69 0.96 0.91 1.00
20 0.58 0.93 0.76 0.93 0.92 0.98
22 0.70 0.94 0.82 0.97 0.90 0.98
24 0.70 0.95 0.87 0.98 0.94 0.99
26 0.78 0.93 0.90 0.98 0.98 1.00
28 0.77 0.97 0.88 0.97 0.97 1.00
30 0.78 0.95 0.88 0.97 0.98 0.99
32 0.76 0.96 0.92 0.98 0.96 0.99
34 0.75 0.97 0.89 0.99 0.97 1.00
36 0.82 0.97 0.92 0.99 0.97 1.00
38 0.83 0.97 0.95 0.98 0.98 1.00
40 0.83 0.98 0.92 1.00 0.99 1.00

stage prior. The assurance can then be estimated as the proportion of q sets of design stage

priors that meet the FDR-based analysis objective,

δM =
1

q

q∑
i=1

I
{
µ
(d)
β i

: FDRi < ξ
}
. (5.14)

Algorithm 7 provides a pseudo-script of the assurance estimation component, where mu.dat

is a dataframe containing different design stage prior means in each row.

5.3.1 Simulation Results

We produce assurance curves for different criteria settings characterized by different spec-

ifications for the posterior probability cutoff in Equation (5.8) and for the Bayesian FDR
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Figure 5.1: Assurance curves for various posterior credible interval thresholds, t =
0.6, 0.7, 0.8, and Bayesian FDR thresholds ξ = 0.05, 0.10.

condition in Equation (5.12). For conciseness, let t denote the 1− α threshold value we had

originally specified as the posterior probability cutoff in Equation (5.8) and let ξ continue

denoting the Bayesian FDR threshold value. These specifications are used for ascertaining

H for distinct comparisons and for estimating the overall assurance.

We assume J = 5 groups and specify Vy as a 5n × 5n identity matrix, µ
(a)
β as a 5 × 1

zero vector, V
−1(a)
β as a 5 × 5 zero matrix, V

(d)
β as a 5 × 5 identity matrix, and X as a

5n × 5 design matrix adhering to the structure referenced in Equation (5.1). To estimate

the assurance, we generate q = 100 design stage prior means from the normal distribution

such that µ
(d)
β i
∼ N

(
(0, 0, 0, 0, 0)⊤ , I5

)
for i = 1, · · · , 100, where I5 denotes a 5× 5 identity

matrix. Each µ
(d)
β i

is used to sample realized data over R = 500 iterations, as outlined in

Algorithm 5. We also assign variances σ2 = τ 2 = 10 and set α = 0.05.
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Figure 5.2: Assurance curves for fixed FDR criteria that considers different posterior credible
interval criteria and Bonferroni adjustments.

Figure 5.1 displays assurance curves created under different cutoffs assigned for threshold

t and ξ. Specifically, t takes one of three values, 0.6, 0.7, or 0.8, and ξ is set to either 0.05

or 0.1, for a total of six cases. Different colors signify different cutoffs for t and different line

types correspond to different cutoffs for ξ. Table 5.1 contains specific estimates obtained

from separate simulations with corresponding specifications for the distinct cases.

Larger sets of assurance values are observed for higher cutoffs. Higher cutoffs specified

for t are associated with stricter minimum posterior probability requirements that verify

the tenability of H, resulting in a higher degree of assurance. Additionally, higher cutoffs

specified for ξ apply more lenient restrictions on the maximum permitted error rate. For

these reasons, it should come as no surprise that the case with the highest cutoffs (t = 0.8

and ξ = 0.1) outputs the largest assurance values. The Bayesian FDR condition appears to

play a larger role in the overall assurance estimations as suggested by the disparity between
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Figure 5.3: Assurance curves for fixed FDR criteria that considers different posterior credible
interval criteria and Bonferroni adjustments.

the two sets of curves. Higher assurance curves are associated with a cutoff of ξ = 0.10

while lower assurance curves are for ξ = 0.05. We also observe an overlap between assurance

curves for cases involving t = 0.6; ξ = 0.1 and t = 0.8; ξ = 0.05.

Figures 5.2 and 5.3 provide visual insight on how the assurance behaves when estimated

using Bonferroni corrections for fixed Bayesian FDR cutoffs, i.e. ξ. Solid lines indicate use of

the Bonferroni correction and dotted lines denote the non-adjusted cases. Figures 5.2 and 5.3

display look at fixed cutoffs of ξ = 0.05 and ξ = 0.1 respectively, and Tables 5.2 and 5.3 report

the specific estimated values. Both figures show minimal difference in behavior between

Bonferroni-adjusted assurance curves and regular assurance curves. Slightly larger assurance

values tend to result from applying Bonferroni adjustments in comparison to respective

assurance curves that are produced using the same cutoff for t.

85



Table 5.2: Estimated assurance values under different probability thresholds (t)corresponding
to the posterior probability of 0 not falling within the respective credible intervals, and
whether or not the Bonferroni adjustment was enforced. The following assurance estimates
are based on the analysis objective that the estimated Bayesian FDR falls below 0.05. Over-
all, the original results are not too different in comparison to Bonferroni-corrected estimates,
but it is interesting to note that the original assurance estimates tend to be larger than the
Bonferroni-corrected estimates when n < 30 and converge in behavior after, as can visually
be seen in Figure 5.2.

Assurance Estimates for FDR < 0.05

t = 0.6 t = 0.7 t = 0.8

n Original Bonferroni-
Corrected

Original Bonferroni-
Corrected

Original Bonferroni-
Corrected

10 0.26 0.31 0.45 0.41 0.61 0.62
12 0.32 0.38 0.45 0.50 0.77 0.71
14 0.35 0.37 0.49 0.56 0.85 0.81
16 0.47 0.42 0.69 0.57 0.79 0.82
18 0.59 0.42 0.69 0.65 0.91 0.91
20 0.58 0.56 0.76 0.70 0.92 0.83
22 0.70 0.59 0.82 0.82 0.90 0.91
24 0.70 0.66 0.87 0.80 0.94 0.94
26 0.78 0.73 0.90 0.83 0.98 0.95
28 0.77 0.73 0.88 0.85 0.97 0.92
30 0.78 0.78 0.88 0.92 0.98 0.94
32 0.76 0.81 0.92 0.93 0.96 0.99
34 0.75 0.85 0.89 0.95 0.97 0.99
36 0.82 0.84 0.92 0.94 0.97 0.98
38 0.83 0.87 0.95 0.91 0.98 0.98
40 0.83 0.83 0.92 0.93 0.99 0.97
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Table 5.3: Estimated assurance values under different probability thresholds (t) correspond-
ing to the posterior probability of 0 not falling within the respective credible intervals, and
whether or not the Bonferroni adjustment was enforced. The following assurance estimates
are based on the analysis objective that the estimated Bayesian FDR falls below 0.10. Similar
to the case when a restriction of FDR < 0.05 was implemented, the original assurance esti-
mates tend to be larger than the Bonferroni-corrected estimates when n < 30 and converge
in behavior after, as can visually be seen in Figure 5.3.

Assurance Estimates for FDR < 0.10

t = 0.6 t = 0.7 t = 0.8

n Original Bonferroni-
Corrected

Original Bonferroni-
Corrected

Original Bonferroni-
Corrected

10 0.59 0.49 0.75 0.66 0.9 0.88
12 0.54 0.61 0.87 0.75 0.95 0.88
14 0.76 0.65 0.87 0.83 0.97 0.94
16 0.83 0.75 0.93 0.92 0.97 0.95
18 0.84 0.78 0.96 0.91 1.00 0.97
20 0.93 0.9 0.93 0.93 0.98 0.98
22 0.94 0.88 0.97 0.94 0.98 0.99
24 0.95 0.86 0.98 0.97 0.99 1.00
26 0.93 0.93 0.98 0.97 1.00 0.98
28 0.97 0.97 0.97 0.97 1.00 0.98
30 0.95 0.96 0.97 0.99 0.99 0.99
32 0.96 0.98 0.98 1.00 0.99 1.00
34 0.97 0.96 0.99 0.98 1.00 1.00
36 0.97 0.96 0.99 0.98 1.00 0.99
38 0.97 0.97 0.98 0.98 1.00 0.99
40 0.98 0.97 1.00 0.98 1.00 0.99
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5.4 Case Application: Microarray Gene Expression

We implement our methodology in a real-world application using microarray data reported

by Shepel et al., 1998, who studied different genetic crosses of rats in an effort to identify

potential breast cancer susceptibility genes. The study considers crosses between four distinct

inbred lines, including two parental strains with differing susceptibility levels to breast cancer

(carcinoma-resistant Copenhagen (COP) rats and carcinoma-sensitive Wistar-Furth (WF)

rats) and two offspring congenial lines derived from the parental rat strains. For the purpose

of enforcing pairwise comparisons through our linear model, we focus solely on the two

offspring congenial lines, denoted as CI and CII. Intensity measurements are obtained for

26,379 genes recorded on 5 CI chips and 2 CII chips. A portion of the data containing 5000

genes can be accessed directly in R by calling data(gould) in the EBarrays package. For

each gene, we are interested in making inference about whether there is differential expression

between the two offspring congenial lines.

5.4.1 Case Application Methodology

The overarching goal is to observe how the Bayesian FDR and assurance behave individ-

ually and simultaneously as we vary the number of hypothesis tests being assessed. Let

g = 1, · · · , G denote index values for the individual cases, where case g is characterized by

comparing g unique gene pairs between congenial lines CI and CII. For clarity, we are com-

paring intensity measurements of the same respective gene reported in each of the CI and

CII chips. A set of G data subsets containing appropriate numbers of unique gene types are

pulled from the original dataset. Hence, the gth data subset contains intensity measurements

for g specific gene types from the two congenial lines, for a total of 2g data entries.

For our analysis, we consider distinct cases involving g gene pairs such that g = 1, · · · , 20.

We start by randomly selecting 20 unique gene IDs from the pool of 5000 available gene

types in the EBarrays R package. Next, we randomly select once more from the set of 20
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gene types to construct our first data subset containing two gene expressions corresponding

to that particular gene, one for each congenial line. We denote this data subset as d1.

Treating d1 as our starting point, the remaining data subsets, d2, · · · , d20, are constructed

by cumulatively adding on one gene selected at random without replacement from the set of

remaining genes. Hence, each of the smaller datasets are subsets of the larger ones in order

to preserve previous results, allowing us to analyze the effects of a cumulatively increasing

set of pairwise comparisons.

We refer to the linear model structure in (5.1) to specify our model parameters. Since

the microarray application contains subgroups characterized by both the congenial line and

gene type, we explicitly define our vector of parameters as β = (µ11, · · · , µ1g, µ21, · · · , µ2g)
⊤

to clearly indicate the mean intensities of each gene within the two subgroups. Hence, our

case application contains J = 2g subgroups, and we specify Vy as a nJ ×nJ identity matrix,

µ
(a)
β as a J × 1 zero vector, V

−1(a)
β as a J × J zero matrix, and X as a nJ × J design matrix

adhering to the structure referenced in Equation (5.1). The design stage prior parameters

are directly determined from the dataset. Specifically, µ
(d)
β contains elements corresponding

to the mean intensity measurements of each gene, where the mean is taken across 5 CI chips

and 2 CII chips. Assuming independence among the set of genes, the diagonal elements of

V
(d)
β correspond to the variances of the intensity measurements of each gene. To estimate the

assurance, we generate q = 100 design stage prior means from the normal distribution such

that µ
(d)
β i
∼ N

(
µβ(d) , Vβ(d)

)
for i = 1, · · · , 100. Each µ(d)

β i
is used to sample realized data over

R = 500 iterations, similar to our simulation design in Section 5.3. We also assign variances

σ2 = τ 2 = 1 and set α = 0.05. With the parameters fully specified, we then proceed to

compare the intensity measurements for each gene type between the two congenial lines, e.g.

we want to assess the tenability of H : µ11 ̸= µ21, · · · , H : µ1g ̸= µ2g.
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Figure 5.4: Individual behavioral trends exhibited by estimated assurance (left) and Bayesian
FDR (right) as the number of comparisons increases and the sample size per subgroup is
varied. A 0.01 Bayesian FDR threshold is used for estimating the assurance values displayed
on the left. Different colors signify different subgroup sample sizes, n.

5.4.2 Case Application Results

We start by examining how the Bayesian FDR and assurance behave separately in relation

to sample size (per subgroup) and number of comparisons. Figure 5.4 provides a side-by-

side panel of the estimated assurance and estimated Bayesian FDR as we vary the number

of hypothesis tests for a select set of sample sizes. As expected, the assurance showcases

a decreasing behavior as the number of conducted hypothesis tests increases, with higher

overall assurances exhibited for larger sample sizes. The Bayesian FDR plot is harder to

gain insight from as there is no apparent relationship drawn between the Bayesian FDR and

the number of comparisons as well as no clear distinction between the different sample sizes

enforced. To gain a different perspective, we create Figure 5.5, which displays the estimated

Bayesian FDR relative to sample size n for cases that are characterized by the number of

pairwise comparisons k, specifically k = 5, 10, and 20. We are essentially switching what is

originally reported on the x-axis and legend in Figure 5.4. In this modified figure, we observe

a generally decreasing trend in Bayesian FDR estimates for all three cases as the sample size

n increases, with sharp drops occurring for n < 10. For k = 5 comparisons, we observe

a smooth, downward-sloping curve. This is in contrast to the minor fluctuations seen for
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Figure 5.5: Estimated Bayesian FDR as a function of sample size. Different colors signify
different numbers of comparisons being conducted.

larger values of k before steadily leveling off, with k = 20 leveling off at a later point for

larger values of n. This observation could attribute to a larger number of comparisons being

assessed, which may result in a slower rate of adjustment prior to experiencing converging

behavior. As n becomes larger, providing us with more consistent estimates, we notice a

switch in direction in the estimated Bayesian FDR’s for cases with k = 10 and k = 20

comparisons. The case containing k = 20 comparisons eventually returns consistently larger

estimates of the Bayesian FDR in comparison to the k = 10 case, which is to be expected

for a higher number of hypothesis tests.

We next examine how the assurance and estimated Bayesian FDR behave simultaneously

in relation to one another. Referring to Figure 5.6, the results exhibit monotonically increas-

ing curves that resemble closely to those of regular assurance curves taken across sample sizes

n. In general, it makes intuitive sense that the assurance increases as we loosen the restriction

91



Figure 5.6: Assurance as a function of estimated Bayesian FDR. Different colors signify
different numbers of comparisons being conducted.

of the fixed Bayes FDR threshold that needs to be fulfilled. A higher Bayes FDR threshold

suggests a higher tolerance for false discovery rates. Table 5.4 reports the estimated Bayesian

assurance corresponding to the sequence of Bayes FDR threshold specifications under three

cases characterized by number of comparisons. The relationship held between the assurance

and Bayes FDR threshold does not appear to have any heavy influences from increasing the

number of pairwise comparisons being conducted. The three curves approximately converge

in behavior past the 0.05 FDR threshold mark.

5.5 Discussion

This chapter constructs an extended version of the two-stage conjugate Bayesian linear model

proposed by Pan and Banerjee, 2021a that provides the added capability of addressing mul-

tiple comparison problems using an ANOVA-based approach. By formulating the problem in

this way, we gain more control over managing multiplicity concerns through the application
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Table 5.4: Estimated assurance values corresponding to different fixed Bayesian FDR thresh-
old values and number of pairwise hypothesis tests.

Assurance Estimates for Various Bayesian FDR Threshold Values

Number of Pairwise Comparisons

Bayesian FDR Threshold k = 5 k = 10 k = 20

0.01 0.54 0.34 0.13
0.02 0.63 0.47 0.24
0.03 0.67 0.61 0.48
0.04 0.72 0.73 0.71
0.05 0.76 0.83 0.83
0.06 0.79 0.90 0.89
0.07 0.83 0.93 0.94
0.08 0.89 0.97 0.99
0.09 0.95 0.98 1.00
0.10 0.97 0.99 1.00
0.11 0.99 1.00 1.00
0.12 0.99 0.98 1.00
0.13 1.00 1.00 1.00
0.14 0.99 1.00 1.00
0.15 1.00 1.00 1.00
0.16 1.00 1.00 1.00
0.17 1.00 1.00 1.00
0.18 1.00 1.00 1.00
0.19 1.00 1.00 1.00
0.20 1.00 1.00 1.00
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of our two-stage design. In the analysis stage, we can set restrictions on metrics such as

the FDR to directly incorporate the possibility of detecting false discoveries into our model.

Under this specified analysis objective, we can then design a data generating mechanism

that lets us evaluate this tenability of the specified condition. This in turn, provides us with

an estimated assurance value, providing the probability of ensuring that the FDR does not

exceed a pre-specified threshold. Hence, our model framework offers the added advantage

of producing a study design that simultaneously takes in account both multiplicity control

and the Bayesian assurance, providing useful guidance measures to facilitate the process of

designing a study involving multiple comparisons.

Our model has demonstrated high feasibility and performance both in simulation studies

and real-world data. These example applications provided realistic insights on how the

Bayesian FDR and assurance are affected individually as well as to one another in the

context of sample size determination. Our model has already demonstrated high favorability

in fulfilling a wide selection of research objectives due to its generalized structure. The

added capability of addressing multiple comparison problems further enhances its flexibility

and universal appeal in the realm of assurance and sample size determination. We eventually

want to extend our conjugate linear model’s capability to conduct tests that considers more

than two subgroups, taking inspiration from Kendziorski et al., 2003, who utilizes Empirical

Bayes calculations to make inference about the pattern of differential expression among all

four inbred lines reported by Shepel et al., 1998.
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CHAPTER 6

Discussion

6.1 Summary and Takeaways

This dissertation addresses the power and sample size analysis problem within a Bayesian set-

ting. Our work revolves around a two-stage framework that distributes the uncertainty scale

onto two distinct components, providing the researcher with greater control over precision-

based specifications as well as the population from which the data is bring drawn from. We

identify several major takeaways to be gained from this dissertation, which entails offering

a universal framework that lets users determine an optimal sample size ideal for their own

set of conditions, loosening the restrictions of needing to know the population variance in

advance, formulating a generalized approach that avoids relying on closed-form solutions,

constructing an R package with functions that are in direct alignment to the applications

mentioned in this thesis, and introducing extensions to our model that account for multiple

testing.

Sample size determination constitutes a major component of study design as the overar-

ching objective of nearly all empirical studies is to make inference about a population from

a sample with the intention of saving on cost and time. The question researchers seek to

answer is how that optimal sample size is obtained, and under what measures (e.g. tar-

get variances, minimum statistical power, credible/confidence interval based specifications)

should be considered to determine that optimal sample size, as different studies and experi-

ments contain different set study objectives. There are countless methods and perspectives
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on which set of conditions should be given the greatest amount of weight for identifying a

minimum sample size that is deemed as optimal, many of which were previously cited in

Chapter 1. Throughout this thesis, we refer to various criteria presented in select literature

and cast these applications into our two-stage methodology, most of which, primarily took

place in the conjugate linear model setting. We use the assurance as a guiding point to

aid in determining the sample size, specifying threshold-based criteria that are tied to the

positive outcome we wish to assess. From these worked out applications, we find that our

method performs very well provided that we establish a well-defined study objective and

construct an appropriate data generating mechanism that samples data to evaluate this ob-

jective. This is one of the key advantages that our work offers. Rather than identifying an

optimal route towards determining the sample size, the two-stage Bayesian method acknowl-

edges that each study carries its own set of associated objectives and should therefore have

a tailored approach towards sample size determination.

Apart from its feasibility for user-specified criteria, the two-stage Bayesian approach

poses many other advantages. The two-stage methodology addresses convergence-based lim-

itations discussed in Chapter 2, allowing for more coherent interpretations for vague and

precise prior specifications. By specifying a model that compensates for error taking place

in both parameter estimation and data generation, we can avoid giving vague responses to

the investigator in terms of the maximum assurance that is to be expected, e.g. 50% assur-

ance for vague prior specification and 0% or 100% assurance for precise prior specification.

Additionally, the two-stage Bayesian framework encompasses a generalized solution nested

within the conjugate linear model setting that treats the frequentist setting as a special case

under weak analysis stage priors and strong design stage priors. We illustrate these special

cases in Chapters 3 and 4, typically demonstrated by overlaying simulated Bayesian points

on top of exact frequentust power curves.

Finally, we were able to successfully compile these applications into an R package that

is now available on CRAN. The R contains functions that are directly tied to the applica-
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tions discussed in this thesis, including hypothesis testing under Normal and Beta-Binomial

based conditions, precision-based conditions, and goal functions. The package also contains

vignettes with detailed examples that users can follow on their own machine. We make use

of helpful visualization tools through the implementation of ggplot2 that we hope will aid

researchers during the planning phase of their study. We discuss some areas of improvement

to be made on our package in the next iteration.

6.2 Limitations and Future Direction

Our R package, though thorough, is still in its beginning stages of development. Most of

the functions defined in the package follow a similar format, in which users have the option

of either specifying their own design and correlation matrices or setting these parameters

to NULL and have the function automatically generate compatible matrices based on other

parameter specifications. Most of our example R code rely on the latter option for the

sake of convenience. Otherwise, users would have to manually define their own design and

correlation matrices, which can easily translate to a tedious and time-consuming task. A

potential solution worth trying involves constructing an interface with prompts the user with

a series of questions and formatting tools that aid in specifying their desired matrices. This

could entail requesting the dimensions of the matrix followed by an interface that enables

the user to directly enter in the specific entries. The R Shiny app is a feasible option to

execute this.

To date, we have managed to extend our model to account for conducting multiple pair-

wise hypothesis tests and formulating the assurance with respect to Bayesian FDR restric-

tions. So far, we were able to investigate how the assurance and Bayesian FDR are affected

for select fixed threshold values pertaining to the credible interval condition and permitted

Bayesian FDR (denoted respectively as γ and ξ in Chapter 5) . Currently, these threshold

values are chosen arbitrarily and treated as distinct cases for exploratory purposes. Our
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next task is to incorporate an additional step that automatically identifies threshold values

subject to its relationship with the assurance, taking inspiration from Müller et al., 2004.

Of course, there are many more sample size determination criteria that are yet to be

tested and explored using our Bayesian paradigm, posing challenges that we have not been

able to acknowledge up until this point. We wish to test our model’s capabilities on other

applications apart from the linear hypothesis testing setting and offers more relevance to

the clinical trial setting. The Go/No-Go Paradigm to proceed into Phase 3 clinical trials is

of particular interest (Pulkstenis, Patra, and Zhang, 2017). Modern day machine learning

and classification approaches such as Bayesian Additive Regression Trees (Chipman, George,

and McCulloch, 2010) is another area worth exploring. Advancing these areas will greatly

contribute to the universal applicability and value of our work.
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APPENDIX A

Appendix A: Algorithms

A.1 Algorithm 1

Algorithm 1 Bayesian assurance algorithm for known variance

1: procedure bayes sim(n, u, C, X, Vn, V
(d)
β , V

−1(a)
β , µ

(d)
β , µ

(a)
β , σ2, α)

2: count = 0 ▷ keeps track of iterations satisfying the analysis objective
3:

4: for i in range 1 : max number of iterations do
5: Design Stage Starts
6: y ← Vector of n values each generated from N(Xµ

(d)
β , σ2(XV

(d)
β X⊤ + Vn))

7: Design Stage Ends
8:

9: Analysis Stage Starts ▷ Computes parameters of the β posterior:
10: M ← (V

−1(a)
β +X⊤V −1

n X)−1

11: m← V
−1(a)
β µ

(a)
β +X⊤V −1

n y

12: if C−u⊤Mm

σ
√
u⊤Mu

< Zα then
13: Zi ← 1
14: else
15: if C−u⊤Mm

σ
√
u⊤Mu

≥ Zα then
16: Zi ← 0
17: end if
18: end if
19:
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20: count ← count + Zi

21: Analysis Stage Ends
22: end for
23:

24: assurance ← count / max number of iterations
25: return assurance
26:

27: end procedure
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A.2 Algorithm 2

Algorithm 2 Bayesian assurance algorithm for unknown variance

1: procedure bayes sim2(n, u, C, R, X, Vn, V
(d)
β , V

−1(a)
β , µ

(d)
β , µ

(a)
β , σ2, a(d), a(a), b(a), b(d),

α)
2: count1 = 0 ▷ counts iterations that meet analysis objective
3:

4: for i in range 1 : R do ▷ R denotes number of generated datasets
5: Design Stage Starts
6: γ2 ← IG(a(d), b(d))
7: count2 = 0 ▷ tracks meeting analysis objective for generated data
8: y ← n× 1 vector sampled from MVN(Xµ

(d)
β , γ2(XV

(d)
β X⊤ + Vn))

9: Design Stage Ends
10:

11: Analysis Stage Starts
12: Compute the components that make up the posterior distributions of β and σ2:
13: M ← (V

−1(a)
β +X⊤V −1

n X)−1

14: m← V
−1(a)
β µ

(a)
β +X⊤V −1

n y

15: a∗ = a(a) + n
2

16: b∗ = b(a) + 1
2
{µ⊤(a)

β V
−1(a)
β µ

(a)
β + y⊤V −1

n y −m⊤Mm}
17:

18: for j in range 1:J do ▷ J denotes number of MCMC posterior samples
19: σ2 ← IG(a∗, b∗)
20: β ← p× 1 vector sampled from MVN(Mm,σ2M)
21: if u⊤β ≤ C then
22: count2 ← count2 + 1
23: else
24: if u⊤β > K then
25: count2 ← count2
26: end if
27: end if
28: end for
29:

30: if count2 / J ≤ α then
31: count1 = count1 + 1
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32: else
33: if count2 / J > α then
34: count1 = count1
35: end if
36: end if
37: Analysis Stage Ends
38:

39: end for
40: assurance ← count1 / R
41: return assurance
42:

43: end procedure
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A.3 Algorithm 3

Algorithm 3 Bayesian assurance algorithm using Adcock’s condition for known variance in
the univariate case

1: procedure bayes adcock(n, d, θ
(a)
0 , θ

(d)
0 , na, nd, σ

2, α)
2: count = 0 ▷ keeps track of the iterations that satisfy the analysis obj
3:

4: maxiter = 1000 ▷ arbitrary number of iterations to loop thru
5: for i in range 1 : maxiter do
6: Design Stage Starts
7: σ2

d ← σ2 nd+n
nnd

8: x̄← single value generated from N(θ
(d)
0 , σ2

d)
9: Design Stage Ends
10:

11: Analysis Stage Starts ▷ Computes components of the posterior distribution

12: λ← naθ
(a)
0 +nx̄

na+n

13: σ2
a ← σ2

na+n

14: θ ← single value generated from N(λ, σ2
a)

15:

16: ϕ1 ←
√
na+n
σ

(θ + d− λ)
17: ϕ2 ←

√
na+n
σ

(θ − d− λ)
18:

19: if Φ(ϕ1)− Φ(ϕ2) ≥ 1− α then
20: Zi ← 1
21: else
22: if Φ(ϕ1)− Φ(ϕ2) < 1− α then
23: Zi ← 0
24: end if
25: end if
26:

27: count ← count + Zi

28: Analysis Stage Ends
29: end for
30:

31: assurance ← count / maxiter
32: return assurance
33:

34: end procedure
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A.4 Algorithm 4

Algorithm 4 Bayesian assurance algorithm for difference in two independent proportions
under Pham-Gia’s credible interval condition

1: procedure bayes pham-gia(n1, n2, p1 = NULL, p2 = NULL, α1, α2, β1, β2, α)
2: if ψ = 1 then
3: p1 ← single value generated from Unif[p1, p1]
4: p2 ← single value generated from Unif[p2, p2]
5: else if ψ = 0 then
6: p1 ← Beta(α1, β1)
7: p2 ← Beta(α2, β2)
8: end if
9:

10: count = 0 ▷ keeps track of the iterations that satisfy the analysis obj
11: maxiter = 1000 ▷ arbitrary number of iterations to loop thru
12:

13: for i in range 1 : maxiter do
14: Design Stage Starts
15: x1 ← single value generated from Bin(n1, p1)
16: x2 ← single value generated from Bin(n2, p2)
17: Design Stage Ends
18:

19: Analysis Stage Starts
20: ppost =

α1+x1

α1+β1+n1
− α2+x2

α2+β2+n2
▷ Computes posterior parameters of p = p1 − p2

21: var(p)post =
(α1+x1)(β1+n1−x1)

(α1+β1+n1)2(α1+β1+n1+1)
+ (α2+x2)(β2+n2−x2)

(α2+β2+n2)2(α2+β2+n2+1)

22:

23: lb = ppost − z1−α/2

√
var(p)post ▷ Computes upper and lower bounds

24: ub = ppost + z1−α/2

√
var(p)post

25:

26: if 0 < lb or 0 > ub then
27: count ← count + 1
28: end if
29: Analysis Stage Ends
30: end for
31:

32: assurance ← count / maxiter
33: return assurance
34:

35: end procedure
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A.5 Algorithm 5

Algorithm 5 Returns the posterior probability of 0 not being contained within the credible
interval bands

1: procedure post.prob.func(n, u, X, µ
(a)
β , µ

(d)
β , σ2, τ 2, Vy, V

−1(a)
β , V

(d)
β , alt, α, R)

2: count = 0 ▷ counts datasets that meet condition
3: for r in range 1 : R do

4: yr ← data generated from N
(
Xnµ

(d)
β , τ

2

n
XnV

(d)
β X⊤

n + σ2

n
Vy

)
5:

6: M (r) ←
(

σ2

n
V

−1(a)
β + τ2

n
X⊤

n V
−1
y Xn

)−1

▷ solve by Cholesky decomposition

7: m(r) ← σ2

n
V

−1(a)
β µ

(a)
β + τ2

n
X⊤

n V
−1
y yr

8:

9: Determine upper and lower credible interval bounds for each alternative case
10: if alt = “two.sided” then ▷ tests if u⊤β ̸= 0
11: lb ← u⊤M (r)m(r) − Z1−α/2

√
u⊤M (r)u

12: ub ← u⊤M (r)m(r) + Z1−α/2

√
u⊤M (r)u

13:

14: if 0 < lb | 0 > ub then
15: Zi ← 1
16: else
17: Zi ← 0
18: end if
19:

20: else if alt = “lower” then ▷ tests if u⊤β < 0
21: ub ← u⊤M (r)m(r) + Z1−α

√
u⊤M (r)u

22: if 0 > ub then
23: Zi ← 1
24: else
25: Zi ← 0
26: end if
27:

28: else if alt = “greater” then ▷ tests if u⊤β > 0
29: lb ← u⊤M (r)m(r) − Z1−α

√
u⊤M (r)u

30: if 0 < lb then
31: Zi ← 1
32: else
33: Zi ← 0
34: end if
35: end if
36:
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37: count ← count + Zi

38: end for
39:

40: v ← count / R
41: return v
42:

43: end procedure

A.6 Algorithm 6

Algorithm 6 Returns the Bayesian FDR using Algorithm 5

1: procedure bayes.fdr(u.dat, γ, · · · )
2: count ← 0 ▷ number of comparisons surpassing γ
3: numerator ← 0 ▷ initializes numerator based on Eq. (5.10)
4: k ← row dimension of u.dat ▷ number of comparisons
5:

6: for i in range 1 : k do
7: v[i] ← post.prob.func(u = u.dat[i, ], · · · ) ▷ u.dat rows passed into Alg. 5
8: ▷ other fixed parameters also passed into function
9:

10: if v[i] > γ then
11: reject.ind[i] ← 1 ▷ indicates rejecting H0

12: numerator ← numerator + [reject.ind[i] * (1 - v[i])] ▷ numerator updated
13: count ← count + 1
14: end if
15: end for
16:

17: if count > 0 then
18: bayes.fdr ← numerator / count
19:

20: else
21: bayes.fdr ← 0
22: end if
23:end procedure
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A.7 Algorithm 7

Algorithm 7 Determines assurance using Algorithms 5 and 6

1: procedure bayes.assurance(mu.dat, u.dat, ξ, γ, · · · )
2: count ← 0 ▷ number of trials that fall below FDR threshold ξ
3: q ← row dimension of mu.dat ▷ number of trials used to estimate assurance
4:

5: for i in range 1 : q do
6: fdr[i] ← bayes.fdr(u = u.dat[i, ], µ

(d)
β = mu.dat[i, ], γ = γ, · · · )

7:

8: if fdr[i] < ξ then
9: count ← count + 1
10: end if
11: end for
12:

13: assurance ← count / q
14:

15: end procedure
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APPENDIX B

Appendix B: Derivations and Specifications

B.1 Special Case Explanation in Section 2.3.1

We assume β ∼ N(β1, σ
2/na) in the analysis stage and β ∼ N(β1, σ

2/nd) in the design stage,

where β1 > β0. The data will favor H if the sample mean lies in Aα(β0, β1), where

Aα(β0, β1) =

{
ȳ : ȳ > β0 −

na

n
(β1 − β0)−

√(
1 +

na

n

) σ√
n
Zα

}
.

Using the design prior, we obtain the marginal distribution ȳ ∼ N

(
β1,

(
1

n
+

1

nd

)
σ2

)
.

We use this distribution to calculate δ(n) = Pȳ{ȳ : P (θ < θ0 | ȳ) < α}, which produces a

closed-form expression for Bayesian assurance:

δ(∆, n, na, nd) = Φ

(√
nnd

n+ nd

[
n+ na

n

∆

σ
+ Zα

√
n+ na

n

])
, (B.1)

where ∆ = β1 − β0. As nd →∞ and na → 0, we obtain that

lim
na→0,nd→∞

= Φ

(√
n
∆

σ
+ Zα

)
,

which is precisely the frequentist power curve. Therefore, the frequentist sample size emerges

as a special case of the Bayesian sample size when the design prior becomes perfectly precise

and the analysis prior becomes perfectly uninformative.
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B.2 Design Prior Specifications in O’Hagan and Stevens (2001) in Section

3.1

O’Hagan and Stevens (2001) assign mean and variance design priors µ
(d)
β = (5, 6000, 6.5, 7200)⊤

and V
(d)
β =


4 0 3 0

0 107 0 0

3 0 4 0

0 0 0 107.

. We factor out σ2 in the simulation study to adhere to the

conjugate Bayesian formulation such that σ2V
(d)
β = σ2


4/σ2 0 3 0

0 107/σ2 0 0

3 0 4/σ2 0

0 0 0 107/σ2

.
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B.3 Precision-Based Analysis Stage Objective in Section 3.4

The following expression denotes the assurance under precision-based conditions:

δ = Px̄{x̄ : P (|x̄− θ| ≤ d) ≥ 1− α} . (B.2)

We focus from the analysis objective given in the expression P (|x̄ − θ| ≤ d). The posterior

of θ can be obtained by taking the product of the prior and likelihood, giving us

N

(
x̄

∣∣∣∣θ, σ2

n

)
×N

(
θ

∣∣∣∣θ(a)0 ,
σ2

na

)
= N

(
θ

∣∣∣∣λ, σ2

na + n

)
, (B.3)

where λ =
nx̄+naθ

(a)
0

na+n
. From here we can further evaluate the condition using parameters from

the posterior of θ to obtain a more explicit version of the analysis stage objective. Starting

from P (|x̄ − θ| ≤ d) = P (x̄ − d ≤ θ ≤ x̄ + d), we can standardize all components of the

inequality using the posterior parameter values of θ, leading us to

P (|x̄− θ| ≤ d) = P

(
x̄− d− λ
σ/
√
na + n

≤ θ − λ
σ/
√
na + n

≤ x̄+ d− λ
σ/
√
na + n

)
= P

(
x̄− d− λ
σ/
√
na + n

≤ Z ≤ x̄+ d− λ
σ/
√
na + n

)
.

Simplifying the result gives us our analysis stage objective:

{
x̄ : Φ

[√
na + n

σ
(x̄+ d− λ)

]
− Φ

[√
na + n

σ
(x̄− d− λ)

]
≥ 1− α

}
. (B.4)
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B.4 Simulation Results under Precision-Based Conditions in Section 3.4

We test our algorithm using different fixed precision parameters d with varying sample sizes

n. The remaining fixed parameters, including σ2, θ
(a)
0 , and θ

(d)
0 , are randomly drawn from the

uniform distribution Unif(0, 1) for simplicity. Figure B.1 displays the results of the Bayesian-

simulated points (marked in blue) in the case where weak analysis stage priors were assigned

overlayed on top of the frequentist results (marked in red). Note that the Bayesian-simulated

points denote the probability of observing that the posterior of θ differing from the sample

mean x̄ within a range of x̄±d exceeds 1−α. In general, these probabilities are obtained by

Figure B.1: Overlay of simulated results and frequentist results given a weak analysis prior
such that na → 0.

iterating through multiple samples of size n and observing the proportion of these samples

that meet the analysis stage objective from Equation (B.4). As we have shown in the previous

section, this becomes trivial in the case where weak analysis priors are assigned as we are

left with a condition that is independent of x̄. Hence, we are able to obtain the exact same

probability values as those obtained from the frequentist formula.
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B.5 Convergence to Frequentist Setting in Section 3.4

Recall the following expression for assurance in (B.4), as well as the expression for sample

size,

n = z21−α/2

σ2

d2
. (B.5)

In Equation (B.4), notice that we are ultimately assessing whether the expression on the

left hand side exceeds 1 − α. Hence, we can isolate 1 − α in Equation (B.5) to facilitate

comparisons of the Bayesian and frequentist settings in relation to the probability of meeting

the pre-specified condition. Starting from Equation (B.5), simple rearrangement reveals

n ≥ z21−α/2

σ2

d2
=⇒

√
n

σ
d ≥ z1−α/2 =⇒ Φ

[√
n

σ
d

]
≥ 1− α/2 =⇒ 2Φ

[√
n

σ
d

]
− 1 ≥ 1− α.

If we refer back to Equation (B.4), it becomes clear that setting na = 0 will simplify the

expression down to the same expression we had previously obtained for the above frequentist

scenario. Hence,

δ =

{
x̄ : Φ

[√
na + n

σ
(x̄+ d− λ)

]
− Φ

[√
na + n

σ
(x̄− d− λ)

]
≥ 1− α

}
na=0
===⇒

{
x̄ : Φ

[√
n

σ
d

]
− Φ

[
−
√
n

σ
d

]
≥ 1− α

}
=

{
x̄ : 2Φ

[√
n

σ
d

]
− 1 ≥ 1− α

}
.

In other words, if we let θ take on a weak analysis prior, we revert back to the frequentist

setting in the analysis stage.
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B.6 Relation to Frequentist Setting in Beta-Binomial Setting in Section

3.5

It is worth pointing out that there are no precision parameters to quantify the amount of

information we have on the priors being assigned. Directly showcasing parallel behaviors

between Bayesian and frequentist settings involve knowing the probabilities beforehand and

passing them in as arguments into the simulation. Specifically, if p1 and p2 are known

beforehand, we can express these “exact” priors as Uniform distributions such that pi ∼

U[pi, pi]. We can then express the overall analysis stage prior as a probability mass function:

pi = ψUnif[pi, pi] + (1− ψ)Beta(αi, βi), i = 1, 2,

where ψ denotes the binary indicator variable for knowing exact values of pi beforehand. If

ψ = 1, we are drawing from the uniform distribution under the assumption of exact priors.

Otherwise, ψ = 0 and we draw from the beta distribution to evaluate the analysis stage

objective.

There is also an additional route we can use to showcase overlapping behaviors between

the Bayesian and frequentist paradigms. Recall the sample size formula for assessing differ-

ences in proportions in the frequentist setting,

n =
(z1−α/2 + zβ)

2(p1(1− p1) + p2(1− p2))
(p1 − p2)2

,

where n = n1 = n2. Simple rearragements and noting that −(z1−α/2 + zβ) = z1−β − z1−α/2

lead us to obtain

√
n(p1 − p2)√

p1(1− p1) + p2(1− p2)
+ z1−α/2 = z1−β

=⇒ Power = 1− β = Φ

( √
n(p1 − p2)√

p1(1− p1) + p2(1− p2)
+ z1−α/2

)
.
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Figure B.2: Overlay of simulated assurance results using posterior credible intervals and
frequentist power results based on regular confidence intervals.

In an ideal situation, we could determine suitable parameters for αi, βi, i = 1, 2 to use as our

Beta priors that would enable demonstration of convergence towards the frequentist setting.

However, a key relationship to recognize is that the Beta distribution is a conjugate prior

of the Binomial distribution. There is a subtle advantage offered given that the Bayesian

credible interval bands are based upon posterior parameters of the Beta distribution and the

frequentist confidence interval bounds are based upon the Binomial distribution. Because of

the conjugate relationship held by the Beta and Binomial distributions, we are essentially

assigning priors to parameters in the Bayesian setting that the Binomial density in the

frequentist setting is conditioned upon.It is helpful to note that the Beta distribution is

approximately normal when its parameters α and β are set to be equal and large. Hence,

the normal distribution can be used to approximate binomial distributions for large sample

sizes. Knowing this, we can manually assign such values in our simulation study to utilize

this relationship.

Figure B.2 displays the assurance curves overlayed on top of the frequentist power curves.

As mentioned in the previous section, we manually set the parameters of the beta priors to
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be equal as doing so results in approximately normal behavior. The horizontal line at the

top of the graph corresponds to flat priors for the beta distribution known as Haldane’s

priors, in which the α and β parameters are all set to 0.5. Although the points do not align

perfectly with the frequentist curves as we rely on an approximate relationship rather than

identifying prior assignments that allow direct ties to the frequentist case, our model still

performs fairly well as the points and curves are still relatively close to one another.
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B.7 Deriving Goal Function Threshold in Section 3.6

Consider the linear hypothesis test H0 : u
⊤β = c0 vs. Ha : u

⊤β = c1 under the general linear

model y = Xβ + ϵ, where y is n× 1, X is n× p, β is p× 1, u is p× 1, and ϵ ∼ N(0, σ2In),

implying that c0 and c1 are scalars.

Let us assume that u⊤β is estimable. Then, by the fundamental principle of estimable

functions, there exists a linear unbiased estimate b⊤y such that E(b⊤y) = u⊤β. This suggests

that u belongs in the column space of X⊤ since

E(b⊤y) = b⊤Xβ = u⊤β =⇒ b⊤X = u⊤ =⇒ u = X⊤b =⇒ u ∈ C(X⊤).

Hence, u can be expressed as u = X⊤z for some z ∈ Rn. Letting ỹ = z⊤y, simple linear

transformation leads to ỹ|H0 ∼ N(c0, σ
2z⊤z) and ỹ|Ha ∼ N(c1, σ

2z⊤z).

First, we assign a prior on u⊤β such that P (H0) = 1− P (Ha) = π and assume that the

null hypothesis is not rejected if the posterior probability of H0 is at least 1/(1 +K), where

K is the amount of utility associated with H0 being correctly accepted. Starting from the

expression P (H0|ỹ) ≥ 1
1+K

, we apply fundamental Bayesian principles on the left hand side

of the inequality to obtain
P (ỹ|H0)P (H0)

P (ỹ)
≥ 1

1 +K
.

Substituting appropriate densities and assigned values results in

N(ỹ|c0, σ2z⊤z)(π)

N(ỹ|c0, σ2z⊤z)(π) +N(ỹ|c1, σ2z⊤z)(1− π)
≥ 1

1 +K
.

Fundamental algebra leads to the following criteria, in which H0 is not rejected if

ỹ ≤ σ2z⊤z

δ
ln

(
Kπ

1− π

)
+
c1 + c0

2
,

where δ = c1 − c0. This condition can be expressed in a more cohesive way through stan-
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dardization. Given that ỹ ∼ N(u⊤β, σ2z⊤z), it follows that

ỹ − u⊤β
σ
√
z⊤z

∼ N(0, 1).

Hence, the probability of correctly accepting H0 is given by

P (fail to reject H0| H0 is true) = Φ

[
σ
√
z⊤z

δ
ln

(
Kπ

1− π

)
+

δ

2σ
√
z⊤z

]
,

where Φ denotes the cumulative distribution function of the standard normal.
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B.8 Utility Function Example from Reference Paper in Section 3.6

We construct the utility curve using the set of fixed values specified in Section 2.1 of Inoue,

Berry, and Parmigiani, 2005, where π = 0.5, K = 1, σ2 = 1 and the critical difference, δ,

is taken to be 0.1. Referring to our linear hypothesis testing framework, H0 : u⊤β = c0 vs.

Ha : u⊤β = c1, we let u = 1, c0 = 0.5 and c1 = 0.6 to adhere to the critical difference

condition of δ = 0.1. Under these specifications, the paper reports a minimum sample

size of n = 857 to ensure a rate of correct classification of r∗ = 0.9283. Using our linear

model framework outlined in the previous section, our resulting utility curve displayed in

Figure B.3a supports this claim, as indicated by the intersection of the dashed lines that

highlights this exact point on the curve. We repeat the same steps for two additional critical

differences, displayed in Figure B.3b. The intersections marked in the plot each correspond

to the same r∗ value of 0.9283, indicated by the horizontal dashed line. The figure suggests

that smaller critical differences require larger sample sizes to meet the same rate of correct

classification criteria. More specifically, when designing studies that require detecting critical

differences of δ = 0.10, δ = 0.05, and δ = 0.03, minimum sample sizes of 857, 3426, and 9512

are respectively needed to ensure a rate of correct classification of r∗ = 0.9283.
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(a) Rate of classification curve. Red dashed lines
indicate a sample size of n=857 is needed to en-
sure r∗ = 0.9283.

(b) Utility curves resulting from the same set of
fixed parameters and different critical differences,
δ.

Figure B.3: Utility curves using specifications provided by Inoue, Berry, and Parmigiani,
2005.
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