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ABSTRACT OF THE DISSERTATION

Accurate and Efficient SBOM Generation for Software Supply Chain Security

by

Sheng Yu

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, September 2024

Dr. Heng Yin, Chairperson

Modern software development increasingly relies on software supply chains, with third-party

libraries constituting a significant portion of many projects. However, the complexity of

dependency relationships and the lack of transparency in software make identifying and

fixing vulnerabilities challenging and costly. For example, the average cost of a Log4j

incident response has reached $90,000, and nearly 40% of applications still use vulnerable

Lo4j two years after the vulnerability was disclosed. A Software Bill of Materials (SBOM),

which lists the dependencies used to build software, has been proposed to enhance software

visibility and aid in vulnerability detection. Despite this, there is not yet an accurate SBOM

generation solution for both source code and binary. Current SBOM generators focus solely

on metadata and produce inconsistent SBOM files, while the existing SBOM generators for

binary files are either too slow or inaccurate.

In this thesis, we propose an accurate and fast SBOM generation approach for both

source code and binary. First, to improve SBOM generation for source code, we conducted

a differential analysis to compare and understand how the existing SBOM generators work

v



and why they behave so differently. We found that these generators support only a subset of

common metadata, and their self-implemented parsers for metadata have incomplete syntax

supports, leading to erroneous SBOM results. We propose using package managers to sim-

ulate dependency installation for metadata-based SBOM generation. Second, we introduce

DeepDi, a novel graph neural network-based disassembler that is both accurate and effi-

cient for better SBOM generation for binaries. Our study showed that disassembly is often

the bottleneck of binary analysis tasks, consuming up to 90% of processing time. DeepDi

improves efficiency by hundreds of times compared to commercial disassemblers and is as

accurate or better than them. Third, to further improve the accuracy of SBOM generation

from binaries, we propose GrassDiff, a novel learning-free graph-matching algorithm that

effectively and efficiently identifies static-linked libraries in large binaries.
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Chapter 1

Introduction

The software supply chain plays a pivotal role in the seamless functioning of soft-

ware development and deployment. While the software supply chain has long been integral

to the software development process, its security implications have only recently come under

scrutiny. In recent years, attackers have shifted their attention to the software supply chain

and have caused tremendous damage. The software supply chain attacks have increased

by 742% between 2019 and 20221, and the global annual cost of cybercrime has topped $6

trillion in 20212. The main security issue for the software supply chain is visibility: nearly

88% of software supply chain dependencies are unknown to developers and users. As a

result, vulnerabilities in these dependencies often stay unnoticed for several months. Even

two years after the Log4j vulnerability disclosure, 40% of applications are still using vul-

nerable Log4j libraries. In response to the growing concerns surrounding software supply

chain security and the lack of transparency in software, the concept of the Software Bill of

1https://t.ly/ni24T
2https://t.ly/w6KPG
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Materials (SBOM) has gained more and more attention. An SBOM is similar to a manifest

that provides a detailed inventory of the components and dependencies within a software

product. Recognizing the urgency of enhancing software supply chain security, several reg-

ulatory bodies, notably the United States government, have issued regulations mandating

the adoption of SBOMs to bolster transparency and accountability in the software supply

chain.

Despite the regulatory push towards SBOM adoption, a fundamental obstacle

impedes its widespread implementation: the accuracy and efficiency of SBOM generation.

SBOM generation can be divided into two categories: when the source code is available and

when the source code is not available, and there is no practical solution for either.

Correctness of Source SBOM Generation. Current open-source SBOM generation

tools [50, 49, 32] extract SBOM information from source code, or more specifically, metadata

files. Despite their industrial importance and widespread deployment, their correctness

has never been thoroughly studied. Moreover, the reliance on source code limits their

applicability since the source code they need is often unobtainable, especially for legacy

systems and proprietary products.

Efficiency of Binary SBOM Generation. When the source code is not available,

SBOM information has to be extracted from binary code. The extraction often involves

disassembling binary code into assembly code, extracting high-level features such as call

graphs and control flow graphs, and matching components based on these features. These

high-level features all rely on disassembly, but our experiment shows that disassembly is
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often the bottleneck in binary analysis tasks and can take as much as 90% of the total

processing time [282]. The low efficiency hampers the adoption of SBOMs when they need

to be created from binary files.

Accuracy of Binary SBOM Generation. Matching components based on high-level

features is the key to accurate Binary SBOM generation. Although academic research [282,

192, 227, 225, 113, 271] has contributed to this field, these approaches are generally slow

and work well only on small-scale datasets. For instance, jTrans [271] reports a significant

drop in matching accuracy when the number of candidate functions exceeds 10,000. Given

that an OpenSSL library contains over 8,000 functions, most academic approaches will not

perform well in real-world scenarios. The gap between academic research and practical

needs not only hampers the adoption of SBOMs but also poses a significant challenge to

enhancing software supply chain security.

1.1 Thesis Statement

This work focuses on efficient and effective SBOM generation from both source

code and binary code.

Metadata-based SBOM Generation. To understand how the existing open-source

SBOM generators work and what their limitations are, we evaluated the existing popular

SBOM tools: Trivy [50], Syft [49], Microsoft SBOM Tool [32], and GitHub Dependency

Graph [23]. We collected 7,876 open-source projects written in Python, Ruby, PHP, Java,

Swift, C#, Rust, Golang, and JavaScript, and evaluated the correctness of the SBOMs

3



by conducting a differential analysis on the outputs from these four tools. Our evaluation

revealed that all four SBOM generators exhibit inconsistent SBOMs, and dependency omis-

sions, leading to incomplete and potentially inaccurate SBOMs. Moreover,we introduced a

parser confusion attack against these tools, revealing a new attack vector that can conceal

malicious, vulnerable, or illegal packages within the software supply chain. To assist in cre-

ating more effective SBOM generators, we developed best practices for SBOM generation

and a benchmark to facilitate their development, based on our evaluation findings.

Fast and Accurate Disassembly. In order to improve disassembly efficiency, we de-

signed a fast and accurate disassembler called DeepDi based on a graph neural network.

DeepDi achieves high efficiency by leveraging the parallelism of GPU, enabling thousands

of instruction decodings and inferences in parallel. For accuracy, DeepDi builds a graph

representing instruction flow and leverages a relational graph neural network to identify

instruction execution paths that most closely resemble normal program behavior. DeepDi

not only brings hundreds of times speedup but also makes time-critical tasks such as SBOM

generation and malware detection practical in real-world scenarios.

Learning-free Function Matching. Binary function matching is essential for extracting

SBOM information from binary code. Existing approaches suffer from either accuracy issues

(e.g. learning-based), especially on unseen binaries and large candidates, or scalability

issues (e.g. dynamic analysis, graph matching) when processing large binaries. We propose

GrassDiff, a novel function matching framework that addresses both accuracy and scalability

concerns. The key idea is to leverage our improved Graduated Assignment algorithm (GA+)

4



to match functions on call graphs. Experimental results show that GrassDiff improves

accuracy by 5% to 20% compared to the pure embedding-based approach. Furthermore, it

shows good scalability with large binaries, and can pinpoint vulnerable functions with high

precision.

5



Chapter 2

Background

2.1 Software Bill of Materials

An SBOM [44] is a formal, machine-readable inventory of software components

and dependencies that includes information about those components and their hierarchical

relationships. It can be shared and exchanged automatically among stakeholders (e.g.,

software vendors and consumers) to enhance software development, software supply chain

management, vulnerability management, asset management, and procurement. This results

in reduced costs, security risks, license risks, and compliance risks.

SBOM Types: Based on the stages of the software lifecycle at which SBOMs are generated,

they can be categorized into six types [51]: Design, Source, Build, Analyzed, Deployed,

and Runtime. Depending on what information is available in each stage, these types of

SBOMs focus on different aspects. In this chapter, we evaluate Source SBOM, a type

of SBOM derived from the development environment. It mainly contains dependencies

used for development and compilation, and is widely supported by SBOM tools. Also,

6



our survey suggests that, owing to its simplicity and precision, metadata parsing is the

industry’s leading SBOM generation technique. Thus, this chapter focuses on the Source

SBOM generated using the metadata-based approach.

SBOM Applications: The increasing complexity and interdependence in software de-

velopment have amplified the importance of SBOMs. These provide clarity by clearly

listing software components, facilitating swift vulnerability tracking and identification for

developers and security professionals. Their compatibility with Vulnerability Exploitability

eXchange (VEX) [53], a structured database detailing product vulnerabilities, is notewor-

thy. Additionally, the comprehensive dependency information aids in license assessment,

ensuring compliance and mitigating legal exposures. SBOMs enable quality assessment of

closed-source software through component reputation checks, and their transparency for-

tifies the software supply chain by thwarting the introduction of potential backdoors and

vulnerabilities via third-party components.

2.2 Metadata

At the heart of Source SBOM generation lies the metadata - an important element

in modern software development. These files encapsulate parameters, settings, dependen-

cies, and version constraints, all of which are indispensable for reproducibility and consistent

and reliable deployment, and offer support for package management, version control, and

even automated build processes. Nowadays, almost every programming language comes

with at least one package manager, and each package manager defines its own metadata.

7



At high level, there are two kinds of metadata. One is “raw” metadata where

only direct dependencies are specified and their versions are often given as a range or a

constraint instead of a specific (pinned) one. Raw metadata, such as requirements.txt

for Python and package.json for Node.js, are mainly for dependency declaration while

ensuring a degree of flexibility and future compatibility. The other type is lockfile such as

package-lock.json for Node.js. Lockfiles focus on providing a precise and deterministic

snapshot of the exact dependency tree including transitive dependencies. Locking prevents

unexpected updates or changes in the dependencies when installing the project across dif-

ferent environments, ensuring reproducibility and avoiding compatibility issues. Despite

that lockfiles contain the richest information for SBOM generation, they are not always

available. Library developers are not encouraged to share lockfiles which could otherwise

lead to version conflicts. Some package managers lack a native locking mechanism. Without

lockfiles, the missing transitive dependencies and pinned versions pose a great challenge to

SBOM tools to generate accurate and complete SBOM files.

2.3 Disassembly Methods

Linear Sweep Disassembly. Linear sweep disassembly is the most straightforward yet

fast disassembly method. It disassembles from the beginning of the buffer and assumes

there is no data in the buffer, meaning the starting point of an instruction is the ending

point of the previous instruction. However, this assumption may not hold as compilers

may insert jump tables or strings [68], so the false positive rate and false negative rate

can be high, especially for obfuscated binaries. Modern compilers do not place strings in

8



the code section, but it happens a lot in shellcode. Besides that, the Microsoft Visual

C++ Compiler and Intel C++ Compiler will place jump tables in the code section, adding

errors to linear disassembly results.

Recursive Traversal Disassembly. Recursive traversal disassembly can greatly eliminate

false positives. It starts from the entry point of a binary file and follows control flow edges.

However, it cannot follow indirect jumps or calls, so it may miss quite a number of code

blocks. This method is usually combined with some heuristics to detect missing code blocks.

Indirect control transfers are very common in complex programs. These programs have

switch-case statements, virtual functions, function pointers, etc. Jump tables, such as jmp

dword ptr [addr+reg*4], are relatively easy to resolve. However, there exist different

variants of jump tables, and some can be difficult to resolve.

These two methods are straightforward and simple, but neither is perfect. IDA

Pro has a signature-based approach to scan common patterns of code, others may have

dedicated data flow analysis to resolve indirect jumps. Neither is cheap. Code patterns can

be affected by compilers, optimization levels, architectures, etc. Therefore, searching in such

a large knowledge base is time-consuming. Data flow analysis generally uses an iterative

algorithm and requires a lot of computational time. Since the manually-defined heuristics

are not complete and slow, we build a machine learning model to automatically capture

relations among instructions and use GPU and SIMD instructions in CPU to accelerate the

computation.

Superset Disassembly. Superset Disassembly [77] was proposed for binary rewriting.

It disassembles every executable byte offset. Figure 4.1 (a) and (b) show an example of

9



superset disassembly. Although most of the instructions are false positives, all true positives

are included in the result so that every possible transfer target can be instrumented during

binary rewriting.

Probabilisitc Disassembly. Shingled Graph Disassembly [277] and Probabilistic Dis-

assembly [210] are both probability-based approaches, and they both start from superset

disassembly. Shingled Disassembly maintains an opcode state machine that gives a prob-

ability of transition from one opcode to another. It removes execution paths with low

probabilities (according to the opcode state machine) to find an optimal execution path

with a maximum likelihood. Their algorithm runs in O(n) and according to the paper,

their approach is two to three times faster than IDA Pro v6.3. Shingled Disassembly also

has a similar accuracy compared to IDA Pro and has fewer missing instructions. Probabilis-

tic Disassembly is a recently proposed binary rewriting approach that uses probabilities to

model uncertainties (interleaved code and data, indirect transfer targets, etc.). It considers

register define-use relations, control flow convergence, control flow crossing, and computes

a probability for each address based on these features. Its experiment shows that it has no

false negative, and the false positive rate is only 3.7% on average, making it particularly

suited for binary rewriting.

Datalog Disassembly. Datalog Disassembly [131] is also a recently proposed binary

rewriting approach. Similar to Probabilistic Disassembly, Datalog is based on Superset

Disassembly, and it defines a series of rules to remove invalid instructions. For instance, if

an instruction falls-through, or jumps, or calls an invalid instruction, this instruction is also

invalid. Combined with some heuristics and potential references in data sections, it resolves

10



overlaps and achieves very high accuracy. The downside though, is that such analyses are

expensive and can take a lot of time.

XDA. XDA [226] is a deep learning-based disassembly approach. It takes raw bytes as

input, and then randomly masks some of these bytes to learn a language model for in-

structions. For example, XDA learns sub rsp and add rsp, a typical function prologue

and epilogue, is a pair, which can be used to indicate function boundaries. With this

pre-trained language model, one can fine-tune it for various tasks (instruction boundary,

function boundary, etc.) with very little training data. XDA also has good accuracy on

unseen real-world projects and is robust to different optimizations. However, it has 12

multi-head attention layers and a large hidden size, or 86,838,795 trainable parameters in

total, which makes this model very complex and hinders the efficiency benefits brought by

GPUs.

2.4 Graph Matching Problem Formulation

Graph matching (GM) seeks to resolve the task of discovering node correspon-

dences among two or multiple graphs. Contemporary GM methods typically incorporate

assessments of both node and edge similarities concurrently, thereby striving to optimize the

overall similarity between the matched graphs. In contrast, transformer-based approaches,

as mentioned earlier, lack second-order edge information. As a result, their matching pro-

cess relies solely on either the function’s intrinsic characteristics or limited local information.

Leveraging its expressiveness, GM has found extensive application in computer vision for

pattern recognition.
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The graph matching problem is commonly reformulated as a Quadratic Assign-

ment Problem (QAP). Initially, an affinity matrix [190] is defined, capturing the similarity

between each pair of nodes and edges. Correspondence mappings between two sets of nodes

N and N ′ are represented by a set C consisting of pairs (i, i′), where i ∈ N and i′ ∈ N ′.

Each potential assignment1 a = (i, i′) is associated with a similarity score or affinity, re-

flecting the degree of match between node i ∈ N and i′ ∈ N ′. Additionally, for every pair

of assignments (a, b), where a = (i, i′) and b = (j, j′), an affinity is computed to assess

the compatibility of the edges between nodes (i, j) and (i′, j′). To facilitate the storage of

these affinities, leveraging a list L of n candidate assignments, we employ an n× n matrix

M . This matrix encompasses the affinities for each assignment a ∈ L and every pair of

assignments a, b ∈ L as outlined below:

1. M [a, a] is the affinity at the level of individual node assignment a = (i, i′) from L. It

measures how well the node feature i matches the node feature i′.

2. M [a, b] describes the affinity at the level of edges between the edge (i, j) and edge

(i′, j′). Here a = (i, i′) and b = (j, j′).

The objective is to identify a valid set of candidate assignments x∗ that maximizes

the cumulative affinities resulting from these assignments. To achieve this, a binary vector

x of size n × 1, corresponding to L, is employed. Specifically, assignment a is selected

if x[a] = 1, otherwise it is not chosen. Consequently, our problem can be formulated as

follows: given an n× n affinity matrix, the task is to find a binary vector x that represents

1In this thesis, “assignment” and “matching” carry the same meaning.
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the selection of candidates, maximizing the objective function:

S = xTMx (2.1)

The optimal solution x∗ is the binary vector that maximizes the affinity score:

x∗ = argmax(xTMx) (2.2)

This is commonly known as Lawler’s QAP, recognized as a formidable NP-hard

problem [200]. Presently, numerous studies employ various relaxation techniques to tackle

this challenge, either through learning-free or learning-based methods [147]. Depending

on their approaches to relaxation, these methods entail trade-offs between accuracy and

efficiency. Consider the significant constraint known as the two-way constraint applied

to the matching matrix or the selector vector x, which essentially represents a vectorized

form of the matching matrix. This constraint stipulates that each row and column of

the matching matrix should only contain a single 1, indicating a one-to-one mapping in

the result. However, many existing works [139, 190, 97, 316] tend to relax this stringent,

discrete constraint to a continuous one, potentially leading to inaccuracies in the results.
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Chapter 3

Metadata-based SBOM Generation

Software Supply Chain Attacks (e.g., SolarWinds [63], PyTorch dependency confu-

sion attack [41]) have increased by 742% between 2019 and 2022 [54]. In 2022 alone, 185,572

software packages were affected by these attacks [4]. The lack of visibility and transparency

in the software supply chain makes defending against such attacks challenging. Recently,

the Software Bill of Materials (SBOM) [44], a list of ”ingredients” used to build software,

has demonstrated its efficacy in protecting the software supply chain by enhancing visibility

from software development to consumption. Driven by regulations, such as Biden’s exec-

utive order [18] and the National Cybersecurity Implementation Plan [34], the industry is

adopting SBOM-based solutions to safeguard the software supply chain.

An essential step in adopting SBOM is to generate accurate SBOMs. While

SBOMs have the potential to enhance vulnerability detection and facilitate license compli-

ance, these benefits can only be realized if the SBOMs themselves are precise and correct.

Discrepancies or omissions in the SBOM can lead to false assurances of security or compli-
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ance, exposing systems to potential risks. Many SBOM generation tools [50, 49, 32, 23] are

extensively used in both commercial and open-source realms. However, the correctness of

these tools remains largely unscrutinized. To date, there has not been a systematic study

addressing the correctness of contemporary SBOM generation solutions.

Given the diversity of programming languages, build tools, and development prac-

tices, constructing a ground truth for SBOM generation evaluation is inherently challenging.

In this chapter, we adopt a differential analysis approach: we analyze the discrepancies in

SBOMs produced by different tools for the same software to assess both their correct-

ness and weaknesses in SBOM generation. More specifically, we 1) select four popular

SBOM generators: Trivy [50], Syft [49], Microsoft SBOM Tool [32], and GitHub Depen-

dency Graph [23]; 2) collect 7,876 open-source projects written in Python, Ruby, PHP,

Java, Swift, C#, Rust, Golang and JavaScript; 3) evaluate the correctness of the SBOMs

by conducting a differential analysis on the outputs from these four tools.

Surprisingly, our evaluation reveals all four SBOM generators exhibit inconsis-

tent SBOMs and dependency omissions, leading to incomplete and potentially inaccurate

SBOMs. Moreover, we construct a parser confusion attack against these tools, introducing

a new attack vector to conceal malicious, vulnerable, or illegal packages within the software

supply chain. To assist in creating more effective SBOM generators, we have developed

best practices for SBOM generation and a benchmark to facilitate their development based

on our evaluation findings.

In summary, we make the following contributions:
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• We are the first to conduct a large-scale differential analysis to examine the correctness

of SBOM generation solutions.

• Our evaluation reveals significant deficiencies in current SBOM generators. We also

conduct a comprehensive case study to uncover how each SBOM tool detects depen-

dencies during the generation process.

• We construct a parser confusion attack against SBOM generators, introducing a new

attack vector to inject malicious, vulnerable, or illegal software packages into the

software supply chain.

• We develop best practices for developing SBOM generators and a benchmark to fa-

cilitate their development.

3.1 Methodology

Despite the growing significance and adoption of SBOMs, a notable gap exists in

systematically assessing the quality of the SBOM files generated. The reliability of security-

centric applications, including vulnerability detection and license compliance, highly de-

pends on the correctness of SBOM data, which raises concerns regarding the trustworthiness

of such information.

This work aims to investigate the correctness and completeness of the dependency

information present in generated SBOMs. The objective is to not only measure the correct-

ness but also to unravel the underlying factors contributing to high-quality SBOMs. Due
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to the lack of ground truth, we adopt a differential analysis approach to obtain insights into

the performance of SBOM generators.

3.1.1 SBOM Generators

In this work, we evaluate four SBOM tools: Trivy 0.43.0, Syft 0.84.1, Microsoft

SBOM Tool (sbom-tool) 1.1.6, and GitHub Dependency Graph (GitHub DG). Notably, the

first three are popular open-source projects and offer cross-platform support for Linux,

Windows, and Mac operating systems. Conversely, the GitHub Dependency Graph is in-

tricately integrated with GitHub repositories. We choose Trivy and Syft because they are

the de facto SBOM generators used by industries and open-source communities. We pick

the Microsoft SBOM Tool because it is developed by the esteemed Microsoft. Similarly, the

GitHub Dependency Graph is chosen because it is provided by the most widely used Git

platform. All the evaluated SBOM tools implement metadata-based approaches, meaning

they read metadata files and extract dependency information declared in the metadata files.

3.1.2 Setup

The evaluation was conducted by downloading popular GitHub repositories associ-

ated with each programming language onto the local file system and subsequently scanning

the repository directories using the SBOM tools. Each tool will generate an SBOM report

in either CycloneDX [36] or SPDX [27] format depending on which format is supported

by the tools. Dependencies in these reports are then extracted and compared against each

other.
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Dataset: GitHub repositories were sourced from the well-regarded awesome-LANGUAGE

repositories, which are uniquely tailored to the respective programming languages. Our

dataset contains 535 Python, 819 Ruby, 384 PHP, 398 Java, 1,019 Swift, 700 C#, 994 Rust,

2,367 Golang, and 660 JavaScript repositories. We do not evaluate C/C++ projects due

to the absence of an “official” build toolset and extremely limited support provided by the

SBOM tools. C/C++ projects can be configured and built via various tools such as Bazel,

Makefile, CMake, Visual Studio project files, and more. Consequently, Trivy and Syft only

analyze conan.lock, while GitHub Dependency Graph exclusively focuses on *.vcxproj

files.

Metrics: For our large-scale evaluation, given the absence of ground truth, we adopt a dif-

ferential analysis approach. First, we compare the number of dependencies reported by each

SBOM tool. We then use Jaccard similarity to measure the reported dependency names.

This tells us the degree of overlap and commonality among the dependencies reported by

different tools. In addition, we identify duplicate packages reported by the SBOM tools.

While these metrics may not provide a direct ranking, they do shed light on the performance

of these tools.

3.2 Large-scale SBOM Comparison

After analyzing 7,876 high-quality repositories, we made the following major find-

ings. The reasons behind such discrepancies will be discussed in Section 3.3.
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3.2.1 Discrepancies in Package Counts within SBOM Reports Generated

by Different Tools

The SBOM tools exhibited notable differences in the number of packages they

identified. Figure 3.1 clearly depicts this variation. The x-axis is the repository ID sorted

by the number of dependencies detected by the GitHub Dependency Graph. For Python,

PHP, Ruby, and Rust programming languages, GitHub Dependency Graph discovers the

most packages for these languages. For .Net repositories, Microsoft SBOM Tool excelled

in identifying the most packages, which is unsurprising as it is tailored to Microsoft’s own

projects. For the Go and Swift languages, Trivy and Microsoft SBOM Tool proved to be the

frontrunners, consistently identifying the most packages in the majority of cases. Syft excels

in detecting the highest number of packages when it comes to JavaScript repositories. The

disparities presented in this figure underscore that different tools possess varying capabilities

and strategies in identifying dependency packages across different programming languages.

It is important to note, however, that identifying more packages does not mean better

because false positives may also be included.

3.2.2 Low Package Jaccard Similarities

To measure whether the SBOM tools detect similar dependencies for each repos-

itory, we compute a Jaccard similarity for each SBOM tool pair for each repository as

Equation 3.1 shows. A and B are two sets of dependencies generated by two different
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Figure 3.1: Comparison of Package Counts Across Languages Using Various SBOM Gener-

ators
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Figure 3.2: Distribution of Jaccard Similarity among Various Tools

SBOM tools. Each set contains dependency (name, version) pairs.

J(A,B) =
|A ∩B|
|A ∪B|

(3.1)

Our evaluation result is illustrated in Figure 3.2. The majority of these pairs show significant

dissimilarity, with only a very small portion being similar. As shown in (a), the GitHub

Dependency Graph and Syft have the most similarities among them, although the majority

of SBOM reports still exhibit substantial differences.

3.2.3 Duplicate Packages in SBOMs

During our analysis of the generated SBOMs, we identified instances of duplicate

packages: the same package appearing in different entries with varying or the same version
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requirements. To ensure accurate calculations, we excluded repositories in which tools could

not find any packages.

In Table 3.1, we have presented the rate of duplicate packages for various SBOM

tools. This problem was found to be widespread across all four tools, suggesting a common

occurrence. However, it is important to note that having duplicate packages is expected in

some cases. For example, a repository may contain multiple independent projects and they

happen to have a common subset of dependencies.

Table 3.1: Rate of Duplicate Packages in SBOMs

Syft Trivy GitHub DG sbom-tool

Python 14.05% 12.56% 13.54% 13.71%

Java 12.76% 15.01% 19.93% 18.89%

JavaScript 17.46% 17.34% 18.89% 19.42%

Go 9.97% 6.69% 11.03% 6.58%

.NET 17.38% 12.43% 18.01% 20.94%

PHP 13.76% 11.77% 14.53% 23.76%

Ruby 13.56% 9.1% 15.84% 12.39%

Rust 13.19% 11.37% 19.18% 13.83%

Swift 1.37% 2.28% 6.98% 3.39%
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3.3 SBOM Generation Analysis

To uncover the root causes behind the large disparities in SBOM outputs, we

conducted an in-depth analysis of the source code of the SBOM tools. Our examination

revealed several critical issues in SBOM generation, which are summarized below.

3.3.1 Limited Support for Metadata

All the evaluated tools employ a metadata-based approach where they analyze

metadata to identify the components used in the project. The supported metadata file

types for each tool are detailed in Table 3.2. It is important to note that the table indicates

the tools’ actual capability to extract dependencies from metadata, which may differ from

their claims.

The table illustrates that each tool supports only a subset of commonly used

metadata files. Overall, the SBOM tools have good support for lockfiles in which transitive

dependencies and pinned versions are available, but they struggle with raw metadata. The

GitHub Dependency Graph has the best support for raw metadata such as Gemfile and

Cargo.toml, while other tools show limited or no support for raw metadata. Despite claims

by Trivy and Syft to support package.json, they do not extract dependencies from the

JSON file. In our evaluation, we found that 93% of Python repositories, 47% of JavaScript

repositories, and 56% of Rust repositories contain raw metadata only.
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3.3.2 Incomplete Metadata Parsing

Our evaluation shows that all the evaluated SBOM tools implement custom parsers

for metadata. However, certain metadata, like requirements.txt defined in PEP 508,

poses challenges due to its complex syntax. The self-implemented parsers only support

common syntaxes, leading to false negatives. For instance, the lack of support for the

backslash “\” as a line continuation in all the SBOM tools causes parsing errors, resulting

in incorrect versions or missed dependencies. About 1.8% of Python repositories are affected

by this.

3.3.3 Transitive Dependency

The offline nature of SBOM tools (except Microsoft SBOM Tool) implies a lack

of attempts to resolve transitive dependencies. In the case where lockfiles are not present,

the absence of transitive dependencies will adversely affect SBOM applications. Microsoft

SBOM Tool attempts to resolve transitive dependencies by querying package managers

for each detected dependency, but this functionality is not well-implemented and often

fails to retrieve dependency information from package managers. About 74% of Python

dependencies are transitive dependencies.

3.3.4 Limited Support for Version Constraints

Raw metadata often contains version ranges or constraints instead of pinned ver-

sions; for example, developers use >=1.2.3 <2.0.0 to get the latest version while ensuring

backward compatibility. Trivy and Syft handle version constraints by silently discarding
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dependencies without pinned versions, resulting in false negatives. The GitHub Depen-

dency Graph reports version ranges as they appear in the metadata, introducing additional

parsing challenges for SBOM management. In our evaluation, only 46% of dependencies de-

clared in requirements.txt have pinned versions, indicating that Trivy and Syft may miss

more than half of the dependencies even when transitive dependencies are not considered.

Microsoft SBOM Tool addresses this by pinning a version after querying the corresponding

package manager for the latest version within the specified range.

3.3.5 Inconsistent Package Naming Convention

When dealing with packages having compound names, SBOM tools name them

differently. For Java, a package is located using the group ID and artifact ID. Syft uses the

artifact ID as the package name, Microsoft SBOM Tool concatenates the group and artifact

ID with a dot “.” as the package name, while Trivy and the GitHub Dependency Graph use

a colon sign “:” for this purpose. Similarly, Swift package manager CocoaPods supports

subpecs when declaring a dependency. Subspecs are a way of chopping up the functionality

of a library, allowing people to install a subset of the library. Syft and Trivy report the

subspecs, while Microsoft SBOM Tool reports their main dependency names. Additionally,

Golang uses a leading letter “v” when specifying versions (e.g., v1.0.0). Syft and Microsoft

SBOM Tool adhere to this convention, while Trivy and the GitHub Dependency Graph

omit this leading letter. Such inconsistencies can potentially compromise the accuracy of

vulnerability detection.

25



3.3.6 Different Dependency Definition

SBOM tools employ different strategies regarding whether to include development

dependencies (e.g., test suites, linters, etc.) in SBOM files. Trivy focuses solely on pro-

duction dependencies and ignores development dependencies, whereas Syft and GitHub

Dependency Graph include both types. Our evaluation reveals that in JavaScript, 76% of

dependencies declared in package.json are development dependencies. It is crucial to note

that there is no definitive answer regarding which approach is better. Including development

dependencies in the SBOM report offers several advantages, such as more comprehensive

vulnerability assessments and license violation checks, but it may also introduce false alarms

as the code of development dependencies rarely goes into the final product. The root prob-

lem lies in the absence of an existing field in SBOM formats representing the dependency

scope. While most metadata have distinct fields for this purpose, such as the scope field in

pom.xml and the devDependencies in package.json, the current SBOM formats lack this

support and may cause confusion in downstream applications.

3.3.7 Multiple Projects and Metadata

Our evaluation indicates that, on average, over 10% of the detected dependencies

appear more than once in a repository, causing duplicate entries in SBOM files. This is

primarily due to multiple metadata files present in a repository, either because of having

multiple subprojects or submodules or having both raw metadata and lockfiles present.

The SBOM tools analyze metadata individually without merging dependencies in the same

project. Duplicate entries in SBOMs can lead to confusion and potentially inflate the
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apparent package count. Our evaluation shows that there are 5.7 metadata files in a Python

repository and 12.8 metadata files in a JavaScript repository on average.

3.3.8 Accuracy on Ground Truth

Our large-scale evaluation employed a differential analysis due to the lack of ground

truth. In this section, we quantify the accuracy of each SBOM tool on requirements.txt

using our manually crafted ground truth. The ground truth is obtained by dry-running pip

install (Python 3.11, pip 23.1.2), and we consider a correct dependency (name, version)

pair as a correct match. Dry run simulates the installation process and the dependencies

reported by pip install are those that will be installed in our environment. This evalua-

tion aims to highlight the differences between the reported libraries and the ones actually

installed.

The evaluation result is presented in Table 3.3. Most SBOM tools fail to detect

over 90% of the dependencies in requirements.txt due to incomplete syntax support and

the lack of transitive dependency resolution. The Microsoft SBOM Tool excels in this test

because it attempts to resolve transitive dependencies, but it ignores the extras field, and

OS and Python requirements. The low recall suggests that relying solely on these SBOM

tools in practice may have serious negative impacts on downstream applications, such as

vulnerability detection and license violation checks.
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3.4 Parser Confusion Attack

Motivated by the findings in Section 3.3.8, we present a parser confusion attack [91]

to illustrate how adversaries can obscure malicious dependencies. A parser confusion attack

exploits inconsistencies among different parsers processing the same input, enabling mali-

cious actors to craft input that is benign for one parser but harmful for another. Our case

study shows that SBOM tools, employing custom metadata parsers, introduce a new attack

vector for constructing parser confusion attacks within the SBOM ecosystem. In this study,

we use Python’s requirements.txt as an illustrative example.

Constructing the attack: Given that requirements.txt lacks a locking mechanism

and exhibits a rich syntax, it becomes a suitable candidate for this type of attack. For

instance, none of the SBOM tools support the backslash as a line continuation; Trivy and

Syft rely on the double-equal sign to separate package names and versions; installations

from wheel packages are not universally supported; and many more. Table 3.4 provides

some input patterns that can be used to bypass detections based on our manual analysis

and benchmark (discussed in Section 3.5). It shows how attackers can leverage different

syntax elements to either conceal specific dependencies or confuse SBOM tools, leading to

inaccurate results. In the table, a dash (“-”) signifies that the corresponding SBOM tool

cannot detect anything from the given dependency declaration.

Achieving Damage: When the SBOM tools encounter unsupported syntax, the default

behavior is to silently ignore the associated dependency. Adversaries can exploit this and

inject malicious or vulnerable dependencies in metadata using unsupported syntax, effec-
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tively evading the tools’ detection entirely. In our dataset, the two most common patterns

are installing from other requirement files (-r) and installing from version control systems,

each appearing in over 50 requirements.txt files.

3.5 Best Practice and Benchmark

Drawing from our evaluation, we present what we believe are the most optimal

solutions to address identified issues and minimize the attack surface. We propose the

following best practices for metadata-based approaches:

Package Manager Dry Run for Lockfile Generation: The root cause of the large

discrepancies lies in the limitations of self-implemented parsers, particularly in their sup-

port for metadata and metadata syntax. Instead of relying on these parsers, we recommend

employing a package manager dry run to generate lockfiles. This simulates the dependency

installation process, providing both transitive dependencies and accurate version informa-

tion for each package. Adopting this approach ensures the creation of a precise and reliable

SBOM file, thereby enhancing resilience against confusion attacks.

PURL and CPE Support: Each dependency should include a PURL (Package URL)

entry and a CPE (Common Product Enumerator) entry for consistent package naming

convention, maximum compatibility with vulnerability databases, and facilitate software

identification.

Our evaluation benchmark is available on GitHub. This benchmark includes man-

ually crafted metadata files and ground truth datasets for common languages. These meta-

data files try to cover all supported syntaxes for each language, and can be used to evaluate
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of the SBOM tools’ capability to handle corner cases. This initiative aims to guide the

development of SBOM tools, emphasizing completeness and accuracy. We are working on

adding support for more programming languages.

3.6 Conclusion

In this chapter, we conducted the first large-scale differential analysis to examine

the correctness of SBOM generation solutions. We generated SBOMs using four popular

SBOM generators for 7,876 open-source projects and systematically studied the correctness

of these SBOMs. Our evaluation uncovered significant deficiencies in current SBOM gen-

erators. Additionally, we identified the design flaws in each SBOM generator, and devised

a parser confusion attack against these generators, introducing a new path for injecting

malicious, vulnerable, or illegal packages. Finally, based on our findings, we established

best practices for creating SBOM generators and introduced a benchmark to aid their de-

velopment.

30



Table 3.2: Supported File Types

Trivy Syft
sbom-

tool

GitHub

DG

Go
go.mod ✓ ✓ ✓ ✓

Go executable ✓ ✓ ✗ ✗

Java

pom.xml ✓ ✓ ✓ ✓

gradle.lockfile ✓ ✓ ✓ ✓

MANIFEST.MF ✓ ✓ ✗ ✗

pom.properties ✓ ✓ ✗ ✗

JS

package.json ✗ ✗ ✗ ✓

package-lock.json ✓ ✓ ✓ ✓

yarn.lock ✗ ✓ ✓ ✓

pnpm-lock.yaml ✗ ✓ ✓ ✗

PHP
composer.json ✗ ✗ ✗ ✓

composer.lock ✓ ✓ ✗ ✓

Python

requirements.txt ✓ ✓ ✓ ✓

poetry.lock ✓ ✓ ✓ ✓

pipfile.lock ✓ ✓ ✓ ✓

setup.py ✗ ✗ ✗ ✓

Ruby

Gemfile ✗ ✗ ✗ ✓

Gemfile.lock ✓ ✓ ✓ ✓

.gemspec ✓ ✓ ✓ ✓

Rust

Cargo.toml ✗ ✗ ✗ ✓

Cargo.lock ✓ ✓ ✓ ✓

Rust executable ✓ ✓ ✗ ✗
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Table 3.3: SBOM Accuracy on requirements.txt

Trivy Syft sbom-tool GitHub DG

Precision 0.25 0.25 0.74 0.13

Recall 0.10 0.10 0.73 0.08

Table 3.4: requirements.txt Attack Samples

Trivy Syft sbom-tool
GitHub

DG

requests [security]>=2.8.1 - - - -

numpy \

==\

1.19.2

- -
numpy

1.25.2

-

-r SOME REQS.txt - - - -

./path/to/local pkg.whl - - - -

https://remote pkg.whl - - - -

urlib3 @ git link@hash - - - -

32



Chapter 4

DeepDi: Fast and Accurate Binary

Disassembly and Function

Identification

A disassembler takes a binary program as input and produces disassembly code

and some higher-level information, such as function boundaries and control flow graphs.

Most binary analysis tasks [176, 112, 251, 237] take disassembly code as input to recover

syntactic and semantic level information of a given binary program. As a result, disassembly

is one of the most critical building blocks for binary analysis problems, such as vulnerability

search [127, 283], malware classification [157], and reverse engineering [253].

Disassembly is surprisingly hard, especially for the x86 architecture due to variable-

length instructions and interleaved code and data. As a result, a simple linear sweep
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approach like objdump1 or Capstone2, despite high efficiency, suffers from low disassembly

correctness on Windows binaries and binaries compiled by the Intel C++ Compiler (where

jump tables are placed in the code section), and can be easily confused by obfuscators.

There has been a long history of research on improving disassembly accuracy. For instance,

the recursive disassembly identifies true instructions by following control transfer targets. It

largely eliminates false instructions but may miss true instructions that are not reached by

other code blocks, leading to a low true positive rate. Commercial disassemblers like IDA

Pro and Binary Ninja employ linear sweep and recursive traversal along with undocumented

heuristics to achieve high disassembly accuracy, at the price of low runtime efficiency. Our

experiments show that IDA Pro can only process approximately 72 KB/s, and Binary Ninja

11 KB/s.

Recently, researchers have explored various novel approaches to further improve

the disassembly accuracy, such as probabilistic inference [210, 277], static program analy-

sis [239], logic inference [131], and deep learning [226]. However, the improved accuracy

often comes at the price of even lower runtime efficiency. For instance, Probabilistic Disas-

sembly [210] can only process about 4 KB/s, Datalog Disassembly [131] 4 – 50 KB/s. Even

worse, XDA [226], based on an expensive BERT [111] model, when running on CPU, can

only process 140 B/s according to our evaluation.

Despite the importance of disassembly, we still do not have a disassembler that is

both accurate and fast to support downstream binary analysis tasks. This is especially true

when dealing with malware, which is often obfuscated to thwart disassemblers for evasion.

1https://www.gnu.org/software/binutils/manual/
2http://www.capstone-engine.org/
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In this chapter, we present a novel deep learning-based disassembler called DeepDi,

which can achieve high accuracy and efficiency simultaneously. It can be further accelerated

on GPU to gain hundreds of times speedup. In order to achieve high efficiency, DeepDi takes

a very different approach than XDA [226] to leverage deep learning. Instead of feeding raw

bytes as input to an expensive deep learning model as done in XDA, DeepDi first decodes all

possible instructions and converts them into high-level feature vectors, and then identifies

true instructions from all instruction candidates by constructing logical relations (e.g., one

instruction followed by another, one instruction overlapped with another, etc.) between

these instruction candidates and performing graph inference on them. In particular, we use

a Relational Graph Convolutional Network (Relational-GCN) [248], because it can capture

different kinds of relations between nodes and it is small and efficient. After supervised

training, our model is able to identify true instructions. From these identified true instruc-

tions, DeepDi then recovers function entrypoints from the true instructions using heuristics

and a simple classifier.

We have conducted extensive experiments to evaluate DeepDi with respect to

accuracy, efficiency, generalizability, and robustness. To evaluate the accuracy, we use

four datasets (i.e., BAP corpora [86], LLVM 11 on Windows3, SPEC CPU2006 [47], and

SPEC CPU2017 [48]), and compare with five disassemblers (i.e., IDA Pro [25], Binary

Ninja [8], Ghidra [22], Datalog Disassembly [131] and XDA [226]). Experimental results

show that DeepDi is comparable or superior to these disassemblers in terms of accuracy

on regular binaries. For efficiency, the single-core CPU version of DeepDi can achieve

a throughput of 146 KB/s, which is two times faster than commercial disassemblers. A

3https://github.com/llvm/llvm-project
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CUDA implementation of DeepDi can further improve the throughput by 170 times on a

modest GPU, reaching 24.5 MB/s, which is 350 times faster than IDA Pro. To evaluate

its generalizability, we first train our model with BAP corpora on each optimization, and

evaluate on LLVM 11 to show the performance on unseen binaries compiled with different

compilers and on a different platform. The result shows that our instruction precision

and recall are at least 97.1%. We use the model for the accuracy test and test it on ten

unseen real-world software to show the performance on real-world binaries, and the result is

comparable with XDA. For robustness, we evaluate the performance on obfuscated binaries

provided by Linn and Debray [197] and some real-world binaries obfuscated by Hikari [314].

Our model achieves 84.1% precision and 95.2% recall within 1.2 seconds in the first test,

whereas XDA and IDA Pro take over 200 seconds and are less accurate. In the second test,

our model has very consistent performance on five different obfuscation techniques, and is

several orders of magnitude faster than the other disassemblers.

We further demonstrate how DeepDi is used in malware classification. We use

the malware dataset from Microsoft Malware Classification Challenge [244], and extend

Gemini [283] and EMBER [67] to use high-level features for malware classification. Our

evaluation shows our Gemini model can achieve 98.2% training accuracy and beat Mal-

Conv [240] in testing loss value. The extended EMBER model achieves 99.5% training

accuracy and beats the original EMBER. While the traditional feature extractions take

hours and even days on this dataset, ours only takes 9 minutes in Gemini and 3 minutes

in EMBER, showing the capability of classifying malware accurately and efficiently. We

provide a binary release of DeepDi at https://github.com/DeepBitsTechnology/DeepDi.
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Contributions. In summary, we make the following contributions:

• We design a novel deep learning-based disassembler that can achieve accuracy and

efficiency simultaneously. It exemplifies how a deep learning-based system can sub-

stantially improve the efficiency and accuracy over the existing approaches.

• We propose a novel graph representation called “Instruction Flow Graph” to model

different relations between instructions. We then use a Relational-GCN to perform

inference and classification on an Instruction Flow Graph to classify instructions ac-

curately.

• We conduct extensive experiments to show the practical application value of DeepDi.

Experimental results show that DeepDi is comparable or superior to the state-of-the-

art disassemblers in terms of accuracy. DeepDi is also robust against unseen compilers

and platforms, obfuscated binaries, and adversarial attacks. Its efficiency is several

orders of magnitude higher than the baseline approaches.

• We showcase malware classification as a downstream application for DeepDi. We

show that DeepDi can enable fast and accurate malware classification by providing

high-level features efficiently.

4.1 Design

We envision a good disassembler should achieve the following design goals:

• High Accuracy. It should correctly identify instructions and functions with very

high recall and precision.
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0: 83
1: FA
2: 5C
3: 75
4: 02
5: FF
6: 03
7: 8B
8: 0B

0: cmp edx, 0x5C
1: cli
2: pop esp
3: jnz 0x07
4: add bh, bh
5: inc dword [ebx]
6: add ecx, dword [ebx+0x9090900B]
7: mov ecx, dword [ebx]
8: or edx, dword [eax+0x90909090]

Line Opcode ModRM SIB REX Len 

0 83 FA 00 00 3 

1 FA 00 00 00 1 

2 5C 00 00 00 1 

3 75 00 00 00 2 

4 02 FF 00 00 2 

5 FF 03 00 00 2 

6 03 8B 00 00 6 

7 8B 0B 00 00 2 

8 0B 90 00 00 6 
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Figure 4.1: Overview of DeepDi with a Concrete Example

• High Efficiency. It should disassemble a binary program at a very high speed,

without compromising accuracy.

• Reasonable Robustness. While it is impossible to achieve complete robustness

against strong adversaries that can be explicitly designed against a disassembler, a

good disassembler should be resilient to common obfuscations such as junk code and

computed jumps.

• Support for Downstream Tasks. In addition to identifying instructions and func-

tions, a good disassembler should provide auxiliary information like call graph, control

follow graph, etc., which is useful for downstream analysis tasks.

Figure 4.1 serves as an overview and a running example of DeepDi. Our approach

first uses superset disassembly to disassemble raw bytes. According to the disassembled

instructions, we build an instruction flow graph (IFG) representing all possible execution

paths. Each instruction is also converted to a feature vector via instruction embedding while
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Table 4.1: Comparison of Disassembly Approaches

Method Pros Cons
Efficiency1

CPU GPU

Traditional Approaches Close to 100% accuracy on regular files Slow and vulnerable to obfuscation 10 – 200 KB/s N/A

Superset Disassembly [77] Very fast and no false negative 85% false positive [210] 4 – 5 MB/s 1+ GB/s

Shingled Graph Disassembly [277] Similar accuracy to IDA Pro and 2x faster Small dataset and not open source 70+ – 200 KB/s N/A

Probabilistic Disassembly [210] No false negative 3% false positive and slow 4 KB/s N/A

Datalog Disassembly [131] Nearly 100% accuracy Slow and limited file format support 4 – 50 KB/s N/A

XDA [226] Close to 100% accuracy Slow 140 B/s 47 KB/s

DeepDi (this work) Close to 100% accuracy – 146 KB/s 24.5 MB/s

1 Measured on our server, please refer to Section 4.2.1 for more details.

maintaining its semantic meaning. The feature vectors are propagated on the IFG using

an R-GCN model to obtain neighboring information, and then are fed into a classification

layer to predict whether the corresponding instructions are valid. All the aforementioned

layers are connected and are trained in an end-to-end supervised fashion.

Moreover, we further leverage the prediction results to recover function entrypoints

(not shown in Figure 4.1). We treat instructions that are not reachable by non control

transfer instructions as function candidates. We then train a classifier to identify true

function entrypoints from the candidates.

4.1.1 Superset Disassembly

We use Superset Disassembly [77] to ensure our input to the model is a superset

of true instructions. Given N raw bytes b0,1,...,N−1, the output of superset disassembly is as

follows:

ti = D(bi,...,i+14),∀i ∈ {0, . . . , N−1} (4.1)
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where D(·) disassembles the given bytes and each ti is an (Opcode,ModRM,SIB,REX)

tuple. We call this tuple instruction metadata. We feed 15 consecutive bytes (as shown

in Equation 4.1) because an instruction is composed of up to 15 bytes. If the rest of the

bytes are less than 15, we will pad them with 0x90 (nop). A decoded instruction may have

prefixes, Opcode, ModRM, SIB, Displacement, and Immediate [26], but we only use REX

prefix, Opcode, ModRM, and SIB as its semantic representation, because displacement and

immediate contain arbitrary values and do not affect the semantic meaning.

Figure 4.1 (c) shows an example of tk and how the tuple is represented. Note

that although an instruction often takes more than one byte, superset disassembly will still

disassemble from its next byte to obtain all possible instructions, which forms a superset of

instructions.

Since disassembling any instruction is independent, this process can be easily par-

allelized on GPU: given n raw bytes, we simply create n GPU threads, and thread i disas-

sembles from bi [186]. A modern GPU can schedule over one billion threads, so doing so

will not cause performance issues.

Thread 0 1 ... 30 31

Memory 0 1 ... 30 31 32 ...

(a) Time 0

Thread 0 1 ... 30 31

Memory 0 1 ... 30 31 32 ...

(b) Time 1

Figure 4.2: GPU Disassembly State at Different Time
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Figure 4.2 illustrates an example of data parallelism on GPU. Assuming the ad-

dress of the first instruction byte is 0, we assign thread 0 to 31 (a warp) to disassemble

instructions starting at memory location 0 to 31. At time 0, all threads consume one byte

at location 0 to 31 accordingly at the same time. At time 1, some threads may turn inac-

tive because they encounter 1-byte instructions and remain inactive until all threads in this

warp finish disassembling their instructions. Other threads consume the next bytes, which

are memory location 1 for thread 0, 2 for thread 1, and so on. The number of threads we

create is the same as the number of bytes in the code section, and each thread will output

one instruction.

We make each thread in a warp disassemble a consecutive memory location be-

cause of GPU global memory coalescing. When threads in a warp access an aligned and

consecutive memory location, this is a coalesced access and GPU can fetch up to 32 words

in one memory transaction. If the memory accesses were strided (for example, greater than

31 words), each memory transaction would fetch only one word, wasting almost 97% of

memory bandwidth.

When GPU is not available, we can perform this task on CPU, which is very

straightforward. We just need to go over one byte at a time and disassemble one instruction

starting from it. We can exploit multi-threading on CPU by creating multiple threads, each

of which sweeps through one chunk of the input binary.

4.1.2 Instruction Embedding

After we get the superset of instructions, we would like to use the R-GCN model

to infer the true instructions. First, we need to decide what kind of representation of each
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instruction should be fed into the R-GCN model (the representations are used as the node

features in the R-GCN model). In this section, we introduce how we construct instruction

representations from their metadata ti, as shown in Figure 4.1 (d).

The metadata ti, i.e., the (Opcode,ModRM,SIB,REX) tuple, is integer-encoded,

so we first convert it to a fixed-dimensional embedding via a learnable embedding layer,

then incorporate the embeddings of an instruction and its following instructions into the

instruction representation (feature vector) via a recurrent neural network (RNN). Note that

Figure 4.1 (c) shows the original values of Opcode, ModRM, SIB, and REX extracted from

instructions. However, their value ranges may overlap (e.g., the range of ModRM and SIB

is {0, . . . , 255}) and it will confuse the embedding layer. So we add a constant value to

Opcode, ModRM, SIB, and REX to make their ranges non-overlapping. In total we have

1,025 distinct opcodes, 257 ModRM, 257 SIB, and 17 REX. Each field has a reserved value

which is used when the corresponding field is not presented. This makes the overall input size

of the embedding layer 1,556. We use an instruction sequence instead of a single instruction

because one instruction carries too little information to tell if it is valid. Take Figure 4.1

(b) for example, instruction 4 alone looks valid. However, if we also consider its following

instruction, instruction 6 where ebx is used as a base register, the modification of bh in

instruction 4 becomes suspicious. In this way, the same instruction in different execution

paths can have different semantic representations, and the context-aware representations

can help improve the classification accuracy. In our experiment, two following instructions

can give enough information and will not cause much runtime penalty.
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Formally, we define the instruction i’s feature vector as follows:

x
(n)
i = f(x

(n−1)
i , ui⊕(n−1)), n = 1, . . . ,M (4.2)

where f is the vanilla RNN’s recurrent function [245], x
(n)
i ∈ Rd2 is the hidden

state of the RNN network (x
(0)
i is an all-zero vector, which is the initial hidden state of the

RNN). M is the sequence length, which is three in this chapter. ui ∈ R4·d1 is the embedding

of ti generated by a learnable embedding layer. Each item in the tuple is treated as a word

index and the embedding layer converts it to a d1-dimensional vector. ui is the concatenation

of the embeddings of the four items (Opcode, ModRM, SIB, REX). For an instruction i

in the superset of instructions, we define that the operation i ⊕ j represents finding j-th

non-overlap following instruction of i. Take Figure 4.1 (d) for example, for instruction 0,

0 ⊕ 1 = 3, 0 ⊕ 2 = 5, etc. If i ⊕ (k + 1) does not exist (out of bound or instruction i ⊕ k

being invalid), we define i⊕ (k + 1) = i⊕ k.

Since we define M = 3 in this chapter, a simpler unrolled RNN equation of length

three can be defined as follows:

x
(3)
i = funrolled(ui, ui⊕1, ui⊕2) (4.3)

Since only the RNN steps cannot be parallelized, a small sequence length means it would not

be particularly more expensive. That is why our approach can still achieve high efficiency

even though an RNN is used.

After the RNN module, we can use x
(M)
i (in this chapter, M = 3) as the represen-

tation of instruction i and then feed this representation as the node feature into the R-GCN

model for graph inference (see Section 4.1.4 for more details). We chose the vanilla RNN

over GRU or LSTM for better efficiency.
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4.1.3 Instruction Flow Graph

Since we are exhaustively disassembling binaries, there exist many false instruc-

tions. Even worse, instructions are variable-length, thus the model cannot easily determine

where the true instructions are. To help the model better understand the contexts, we

propose to model different relations between instructions using a graph called Instruction

Flow Graph (IFG), which is used with the Graph Inference phase to propagate information

of each instruction to its neighbors and to classify true instructions.

Formally, we define an instruction flow graph as a directed graph G = (V,E,R).

For each node vi ∈ V , there is a feature vector xi, a semantic representation of the in-

struction obtained from Section 4.1.2. Each edge (vi, r, vj) ∈ E is labeled with a relation

r ∈ R denoting the edge type. R = {f, b, o} represents three types: forward, backward,

and overlap, respectively. If the label r in (vi, r, vj) is a forward relation, it means the next

instruction of i can be j, either i falls through to j, i calls j, or i jumps to j. For example,

if the instruction i is a conditional jump that may fall through to j or jump to k, there

is a forward edge from i to j and a forward edge from i to k. If instruction i is a return

instruction or an indirect jump/call, no forward edge from i is created since the transfer

target is unknown. A forward edge from i to j is the same as a backward edge from j to

i. If r is an overlap relation, it means instruction i and j overlap with each other. That

is, the starting point of instruction j is inside instruction i, or vice versa. These different

relations can help the model propagate different kinds of information.

Figure 4.1 (e) shows an example of an Instruction Flow Graph. For instance, Node

3 has two forward relations because Instruction 3 is a conditional jump and thus has two
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potential targets. Likewise, Node 0 has two overlap relations with Node 1 and 2 because

the length of Instruction 0 is three.

4.1.4 Graph Inference

For our graph inference, we use a Relational-GCN (R-GCN) [248] to propagate

information of each instruction to its neighbors. In this network, nodes can have different

kinds of relations so that we can pass different messages along different relations. Recall

that a valid instruction makes its successors valid, but not vice versa because it can have

multiple predecessors, and only one of them or even none of them is valid. R-GCN is

capable of modeling this and increases the likelihood of valid instructions while decreases

the likelihood of invalid instructions.

As defined in Section 4.1.3, an instruction flow graph is denoted as (V,E,R). We

use the following propagation model to update the hidden state of each node vi in each

layer:

h
(l+1)
i = ReLU

∑
r∈R

∑
j∈Nr

i

1

|N r
i |
W (l)

r h
(l)
j + W

(l)
0 h

(l)
i

 (4.4)

where h
(l)
i ∈ Rd2 is the d2-dimensional hidden state of the node vi in the l-th layer. N r

i

denotes the set of neighboring indices of node vi under relation r ∈ R. |N r
i | denotes the

number of nodes in N r
i . W

(l)
r ∈ Rd2×d2 is the weight matrix for relation r ∈ R in the l-th

layer. W
(l)
0 ∈ Rd2×d2 is the weight matrix for the node itself in layer l (self-connection).

Initially, h
(0)
i = xi, the feature vector associated with node vi (see Section 4.1.2). The

final output of R-GCN with L layers is the hidden state of the last layer h
(L)
i . Figure 4.3

illustrates the propagation process at layer l.
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input vector
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Figure 4.3: Embedding propagation at layer l of R-GCN

During training, each instruction embedding is propagated and updated L times

via different relations: forward, backward, and overlap to capture information from neigh-

boring nodes. The final output h
(L)
i is fed into a classifier: a fully-connected layer to reduce

the dimension to one, and then activated by sigmoid to generate a probability p. We try

to minimize the Binary Cross Entropy loss function:

J(Θ, p, y) =
∑

(−(y · log(p) + (1−y) · log(1−p))) (4.5)

where Θ denotes the model parameters and y is the true label. As shown in Figure 4.1, all

the trainable modules of DeepDi are linked together and trained in an end-to-end fashion.

46



4.1.5 Function Entrypoint Recovery

To recover function entrypoints, we first identify a set of function entrypoint can-

didates, and then feed each candidate and its surrounding instructions into a classifier.

To identify the candidates, we first obtain the metadata of valid instructions, and exclude

instructions that are int3, jmp, ret, nop, or are reachable via instruction fallthrough or

conditional jump because these instructions will not be function entrypoints. We also as-

sume the targets of call instructions are function entrypoints. This not only reduces false

positives, but also greatly reduces the number of candidates to evaluate.

We then stack each candidate instruction with three preceding instructions and

three following instructions into our function entrypoint recovery model. The model has a

learnable embedding layer followed by a GRU layer and a two-layer perceptron classifier.

This will determine if this candidate instruction is indeed a function entrypoint. Let the

valid instruction metadata be {t0, t1, . . . , tk}, we define the function entrypoint recovery

model as follows:

gi = f(ui−3, ui−2, ui−1, ui, ui+1, ui+2, ui+3) (4.6)

where f is the GRU’s recurrent function, and ui ∈ R4·d1 is the embedding of ti generated

by a learnable embedding layer (not the same embedding layer in Section 4.1.2). gi is the

hidden state of the GRU layer and is then fed into a classification layer.

During the evaluation, we only feed function entrypoint candidates into our model.

Since the number of function candidates is very limited compared to the number of superset

instructions (about 1:30), this model has almost no impact on runtime performance. Our

experiment shows that it helps achieve the average F1 score of function recovery of 98.6%.
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Guo et al. [146] show that RNN-based function identification tends to learn specific

bit patterns, such as push ebp. However, we identify function entrypoints based on high-

level features learned by the neural network model and accurate instructions, which can

likely lead to higher robustness. The drawback of this approach is that we will miss tail

jumps and functions with unseen prologues. To identify tail jumps, we can use the same

heuristics in other works [239, 238]. If the jump target address is larger than the next

function start or smaller than the current function start, it is considered as a tail jump. For

unseen prologues, we are able to find many of them via call targets.

4.2 Evaluation

In this section, we evaluate DeepDi’s performance. Our experiments aim to answer

the following Research Questions (RQs).

RQ1 How does it perform on regular binaries?

RQ2 How does it perform on unseen binaries?

RQ3 How does it perform on obfuscated binaries?

RQ4 How resilient is it against adversarial attacks?

4.2.1 Implementation and Setup

We use PyTorch [221] to implement our model and write a plug-in to disassemble

raw bytes and return instruction metadata and an IFG as PyTorch Tensors. To disassemble

instructions on GPU, we used a header-only library LDasm4 and modified the code so that

it can run on GPU, and its look-up tables are properly cached and shared among GPU

4https://github.com/Rprop/LDasm
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threads. The IFG is represented as a set of sparse adjacency matrices, and we used the

PyTorch Sparse5 library to avoid expensive memory coalescing operations. We ran all the

experiments on a dedicated server with a Ryzen 3900X CPU @ 3.80 GHz×12, one GTX

2080Ti GPU, 16 GB memory, and 500 GB SSD.

Baseline. We select the following disassemblers for baseline comparison: Binary Ninja

2.2 [8], IDA Pro 7.2 [25], Ghidra 9.1.2 [22], Datalog Disassembly [131], and XDA [226]. IDA

Pro, Ghidra, and Binary Ninja are widely used in reverse engineering and binary analysis

practices, and their results are considered high-quality. Datalog is a recently proposed

binary rewriting approach. XDA is the state-of-the-art machine learning-based approach.

This selection covers state-of-the-art commercial disassembler tools and the most recent

research prototypes.

We used the default settings when evaluating IDA Pro and Binary Ninja. For

Ghidra, we disabled its decompiler, ASCII string analyzer, x86 exception handling, and

constant reference analyzer to boost its efficiency. We finetuned two XDA models, one

for instruction and one for function entrypoints, both based on the pre-trained model that

XDA provided. We kept the same hyperparameters as in their paper and finetuned each

model for five epochs.

Dataset. We conducted experiments on BAP corpora [86], LLVM 11 for Windows6, SPEC

CPU2006 [47], and SPEC CPU2017 [48]. The BAP corpora contain 1,032 x86 and x64

ELF binaries compiled by GCC with optimization levels O0 to O3. Though these corpora

also come with ELF binaries compiled by Intel C++ Compiler (ICC) and PE files, these

5https://github.com/rusty1s/pytorch sparse
6https://github.com/llvm/llvm-project
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binaries are not used in experiments due to the existence of jump tables in the code section.

LLVM 11 is compiled by Microsoft Visual Studio 2019 with optimization levels Od, O1,

O2, and Ox for both x86 and x64 architectures. SPEC CPU2006 is compiled by GCC-4.8.4

and MSVC 2008 for x86 and x64 architectures and with four optimization levels. SPEC

CPU2017 is also compiled on the two ISAs with four optimization levels by using GCC-7.5

and MSVC 2019. To reduce the training time for XDA, we excluded files larger than 5MB.

In total, we have 1,032 ELF files (268 MB) from BAP, 266 PE files (322 MB) from

LLVM, 152 PE files (152 MB) and 190 ELF files (79 MB) from SPEC CPU2006, and 270

PE files (287 MB) and 218 ELF files (120 MB) from SPEC CPU2017. Note that we only

count code section size.

It is straightforward to extract the ground truth from ELF files, since there is no

data in the code section according to Andriesse et al. [68]. We get instruction boundaries

by linearly disassembling the code section. We use pyelftools7 to get function entrypoints

come from the symbol table where the symbol type is “STT FUNC” and the symbol index

is not “SHN UNDEF” (to exclude external functions). To obtain the ground truth for PE

files, we modified DIA2Dump, an example that comes with Visual Studio, to dump all

functions, data, and label addresses from pdb files. We can only find data addresses but

no data lengths in pdb files, so to estimate data ranges, we first find the label where the

data belongs, then treat the data address to the end of that label as data. When creating

the labels, we set the label to one if the corresponding byte is the starting point of an

instruction or a function.

7https://github.com/eliben/pyelftools
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Evaluation Metrics. For the accuracy evaluation, we use F1 scores to measure the

performance because both precision and recall are pretty high for almost all disassemblers.

For generalizability and obfuscation evaluation, we use Precision (P) and Recall (R) to

measure the performance.

Deep Learning Model Settings. We use the Adam optimization algorithm [177] and a

default learning rate 10−3. As introduced in Section 4.1.4, we use the Binary Cross-Entropy

Loss to calculate the loss. We choose the following hyper-parameters through an informal

parameter sweep process: d1 = 8, d2 = 16, L = 2, M = 3, and the batch size is 1,048,576.

If a code section is larger than the batch size, we obtain an Instruction Flow Graph for each

batch, and edges outside of this graph are dropped. We apply the same strategy to keep the

graph small and fit in the GPU memory during the inference. In each batch, the average

valid-to-invalid instruction ratio is about 1:1 because compilers tend to insert sufficient

padding instructions to align instructions. If we count the paddings as invalid, the ratio

becomes 1:4. The graph size is roughly five times the batch size: almost all instructions

have only one forward and one backward relation (fallthrough), each of which overlaps with

three instructions on average. We also apply a row normalization to make each node in a

similar range [248]. As for the function model, the output length of the embedding layer is

8, the hidden size of GRU is 64, and the hidden layer size of the two-layer perceptron is 64,

1, respectively. In total, our model only has 49,889 trainable parameters.
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Table 4.2: Instruction and Function Level Accuracy

Dataset Opt.
Instruction F1 (%) Function Entrypoint F1 (%)

DeepDi XDA Datalog IDA Pro Binary Ninja Ghidra DeepDi XDA Datalog IDA Pro Binary Ninja Ghidra

BAP

O0 99.9 99.9 100 99.9 99.9 100 99.9 99.9 100 100 99.9 100

O1 99.8 99.9 100 99.9 99.8 99.9 99.3 99.5 100 99.9 99.8 99.9

O2 99.7 99.9 99.9 99.9 99.8 99.9 98.6 99.4 100 99.9 99.8 99.9

O3 99.7 99.9 100 99.9 99.7 99.9 99.0 99.5 100 99.9 99.7 99.9

LLVM

Od 99.8 99.9 N/A 99.9 99.8 99.9 99.8 99.9 N/A 99.9 97.1 99.9

O1 99.8 99.9 N/A 99.9 99.7 99.9 99.8 99.9 N/A 99.8 96.8 99.9

O2 99.8 99.9 N/A 99.9 99.6 99.9 99.8 99.9 N/A 99.8 89.7 99.7

Ox 99.7 99.9 N/A 99.9 99.7 99.9 99.8 99.9 N/A 99.8 84.9 99.7

SPEC 2006

O0 99.9 99.9 100 99.9 99.6 98.9 98.4 99.9 99.9 88.8 88.7 97.3

O1 99.7 99.8 100 99.8 99.3 97.2 97.0 99.3 100 86.3 88.7 93.4

O2 99.9 99.9 100 99.9 99.2 97.6 96.4 99.5 100 85.2 91.5 92.7

O3 99.9 99.9 100 99.9 98.9 98.0 98.6 99.5 100 93.3 96.0 99.9

Os/Ox 99.8 99.9 100 99.9 99.4 97.5 95.3 98.3 100 85.6 87.1 91.6

SPEC 2017

O0 99.9 99.9 99.9 99.9 99.7 94.2 99.0 99.8 100 89.4 93.6 86.7

O1 99.9 99.9 100 99.9 99.5 95.9 99.7 99.8 100 80.8 95.6 76.8

O2 99.8 99.9 100 99.9 99.4 95.1 99.5 99.9 100 79.4 96.7 75.5

O3 99.6 99.9 100 99.9 98.9 90.1 98.9 99.4 100 88.4 93.5 85.0

Os/Ox 99.7 99.8 100 99.9 99.6 96.5 96.3 99.5 100 72.5 92.1 68.7

4.2.2 Accuracy and Efficiency

In this section, we evaluate the accuracy and efficiency of DeepDi and other base-

line tools. First, we introduce some details and settings of the experiments, then report and

discuss experimental results.

Training and Testing Details. We randomly shuffled the dataset and did a 90-10% split

(90% of binaries are used for training, 10% for testing). Both XDA and DeepDi are trained

for five epochs because XDA converges after five epochs according to their paper. We feed

code sections (raw bytes) to XDA and binary files to DeepDi.
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Accuracy

To answer RQ 1, we measure F1 scores of DeepDi and baseline models at instruc-

tion and function levels, as shown in Table 4.2.

When evaluating instruction level results, we treat nop, int3, hlt and jmp instruc-

tions, and lea instructions whose source and destination registers are the same as padding

instructions, thus they do not count towards positive or negative instructions. Similarly, for

the function entrypoint evaluation, if the first instruction of a function is jmp, this function

does not count towards positive or negative functions.

Datalog only supports x64 ELF files, so its evaluation on LLVM binaries is not

available, and the corresponding cells show “N/As” in Table 4.2. From the table, we observe

that most disassemblers struggle to identify function entrypoints on SPEC datasets. By

looking into the datasets, we find that functions from the BAP and the LLVM datasets

are mostly aligned, meaning padding instructions can be found between functions. These

padding instructions are a strong indicator of function boundaries. However, functions

from SPEC datasets are not aligned. To make it worse, many functions end with non-

return calls, and frame pointers are often omitted on high optimization levels. With frame

pointers omitted, the first instruction of a function is not push ebp/rbp, but xor, cmp, mov,

etc. These are normal instructions after a call instruction, and this explains why many

disassemblers struggle to recover function entrypoints. IDA Pro treats many small functions

as error handling code, or “ unwind”. That is why IDA Pro misses many functions in the

LLVM dataset. Note that DeepDi is not the best performer, but is comparable with the

other disassemblers. We are unable to evaluate Shingled Graph Disassembly [277] on our
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dataset because it is not open source. Still, according to their paper, the accuracy of

Shingled Disassembly is comparable to IDA Pro, meaning its instruction-level accuracy is

similar to DeepDi.

Efficiency

Figure 5.4 shows the correlations between code section size and disassembly time

for our approach, IDA Pro, Binary Ninja, Ghidra, Datalog, and XDA. The y-axis of this

figure is log-scaled. For IDA Pro, Binary Ninja, and Ghidra, we run them in console/head-

less mode to avoid unnecessary GUI costs. For Datalog Disassembly, we take the numbers

reported from the tool directly. When disassemblers are tested on CPU, only one CPU core

is used to ensure fairness.

DeepDi on GPU clearly stands out in this experiment. Its throughput is about

24.5 MB/s, about 170 times faster than DeepDi on CPU, 146 KB/s. The latter still is

noticeably faster than the remaining disassemblers: IDA Pro 72 KB/s, XDA (GPU) 47

KB/s, Binary Ninja 11 KB/s, Ghidra 10 KB/s, Datalog 5 KB/s (for files around 1 MB),

and XDA (CPU) 140 B/s. Shingled Graph Disassembly, according to their paper, is two to

three times faster than IDA Pro, making it comparable to our CPU approach.

In contrast, XDA is several orders of magnitude slower than the other disassem-

blers when running on CPU, and its GPU version is merely comparable to the other CPU

disassemblers. It is worth noting that we obtained XDA source code from their GitHub

repository, but we could not reproduce their reported efficiency. One possible reason is that

they used three GPUs [226] whereas we only used one.
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Figure 4.4: Efficiency Evaluation

The answer to RQ 1: DeepDi is very accurate on regular binaries. Its

accuracy is comparable to all the commercial tools and recent research

prototypes. Moreover, DeepDi is significantly more efficient.

4.2.3 Generalizability

To answer RQ 2, we conduct two experiments. First, we train our model on the

BAP corpora and test it on the LLVM dataset, and then compare it with another machine
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Table 4.3: Precision and Recall on Unseen Binaries from an Unseen Compiler

Model
Train

Test
Instruction Function

Od O1 O2 Ox Od O1 O2 Ox

P R P R P R P R P R P R P R P R

DeepDi

O0 98.6 99.1 98.1 97.6 98.0 97.6 98.2 97.7 94.5 42.3 95.9 38.4 74.8 26.2 73.1 26.0

O1 98.6 98.9 97.2 96.6 97.9 97.1 98.0 97.1 94.9 60.5 93.3 76.8 72.2 72.1 69.5 71.9

O2 98.9 99.7 98.3 98.6 98.3 98.5 98.2 98.6 89.4 47.3 86.7 61.6 82.6 55.0 83.1 53.7

O3 98.2 99.0 97.7 96.9 98.1 97.3 98.1 97.4 80.4 21.0 78.7 39.5 72.9 30.9 74.3 32.5

XDA

O0 98.7 38.9 96.1 43.9 97.1 42.1 97.5 42.6 56.9 0.1 77.6 0.7 5.3 0.03 45.5 0.6

O1 99.0 37.5 97.2 44.2 98.1 42.5 98.4 43.0 2.6 0.4 8.9 1.2 2.3 0.9 3.6 1.4

O2 99.1 38.7 97.2 46.5 98.2 44.2 98.5 44.6 16.8 0.5 57.6 3.8 29.5 2.9 34.1 3.9

O3 98.9 39.8 97.3 47.6 98.1 44.8 98.4 45.1 8.7 0.2 40.4 1.4 7.6 0.4 20.5 1.4

Table 4.4: Precision and Recall of Function Entrypoint Recovery on Real-world Software

Model Opt.
curl diffutils GMP ImageMagick libmicrohttpd libtomcrypt OpenSSL PuTTy SQLite zlib

P R P R P R P R P R P R P R P R P R P R

DeepDi

O0 99.9 99.9 99.4 99.2 97.7 97.2 99.6 99.9 99.5 99.5 97.7 94.2 99.7 100 99.9 99.8 99.8 99.9 100 99.3

O1 98.5 99.4 94.6 94.8 96.9 85.6 98.2 94.9 93.6 89.5 97.9 77.1 97.3 93.5 99.4 91.6 97.7 96.9 98.3 85.6

O2 96.2 96.6 94.4 96.5 95.7 90.7 94.1 95.3 91.7 92.7 97.8 95.6 92.6 95.5 98.5 95.6 94.9 95.5 99.1 84.3

O3 96.7 97.4 88.9 97.9 96.0 91.3 94.1 95.1 88.7 93.4 97.9 95.1 92.8 96.0 99.0 96.2 94.7 95.9 98.0 84.2

XDA

O0 100 100 100 100 99.2 96.7 99.9 100 99.5 100 99.6 95.6 100 100 100 99.9 100 100 100 100

O1 91.6 96.0 96.1 96.6 94.1 94.2 98.9 98.7 89.8 92.8 91.4 95.8 93.0 96.1 95.4 97.3 92.9 97.0 94.8 92.7

O2 88.9 95.6 95.9 95.4 95.9 91.9 97.9 98.4 93.9 95.5 98.0 96.0 89.6 95.1 96.1 95.9 95.9 94.0 99.1 90.9

O3 88.9 96.1 94.1 95.7 96.3 94.7 97.1 97.8 96.6 95.8 97.0 96.6 83.8 97.3 96.2 94.3 95.3 94.9 98.2 93.3

learning-based model – XDA [226]. We did not do it in the opposite way (i.e., training

on the LLVM and testing on the BAP corpora) because XDA is pre-trained on the BAP

corpora [226] and this dataset should not be considered unseen for XDA. DeepDi and XDA

are trained on each optimization level of BAP corpora for five epochs and tested on the

LLVM binaries. This experiment shows disassemblers’ performance on unseen binaries of

different compilers (GCC vs MSVC), platforms (Linux vs Windows), and optimization levels.
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Second, we evaluate our model and XDA’s model from Section 4.2.2 on the same unseen

real-world software used by XDA. This experiment uses unseen real-world software to show

the performance in real-world scenarios.

Table 4.3 lists the evaluation results on instruction and function recoveries. Even

though DeepDi has not seen LLVM binaries before, it still reaches 97.1%+ precision and

recall on recovering instruction boundaries. However, XDA only obtains a high precision

while recall is constantly below 50%. One possible explanation is that XDA’s attention

header is too conservative, and does not perform well when instruction patterns are unseen.

The function entrypoint recovery evaluation shows a greater degradation when analyzing

unseen binaries of unseen compilers. As the optimization level increases, function pro-

logues become less obvious and differ a lot from compilers to compilers, making function

identification much harder. Despite that, DeepDi outperforms XDA by a large margin.

Table 4.4 shows the precision and recall of function entrypoint recovery on each

software and optimization. We find that DeepDi is on par with XDA. The F1 scores of both

XDA and DeepDi are close to 100 on instruction recovery, and their performance is almost

identical, so we omit the table for instruction recovery.

The first experiment shows that DeepDi can generalize function entrypoint re-

covery to some extend when analyzing binaries from unseen compilers and optimization

levels. The second experiment shows DeepDi can generalize pretty well when compilers and

optimization levels are already known. This indicates that each compiler has its function

patterns on each optimization level, so for DeepDi, training the model on binaries com-
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piled by gcc and MSVC with different optimization levels is good enough for most general

software.

The answer to RQ 2: For unseen binaries, DeepDi is still able to

achieve high precision and recall. It outperforms another machine

learning-based model, XDA, by a large margin for unseen compilers

and optimization levels, and is on par with XDA for unseen real-world

binaries. These results suggest that DeepDi has good generalizability.

4.2.4 Obfuscation Evaluation

To answer RQ 3, we used two different obfuscators to evaluate whether our ap-

proach is resilient to obfuscations, and how it compares with the disassemblers with so-

phisticated heuristics. The first obfuscator was developed by Linn and Debray [197]. In

that paper, the authors proposed to insert junk code to confuse both linear and recursive

disassembly. Moreover, unconditional jumps are redirected to a universal function that

modifies its return address based on callers. This nonstandard behavior hides jump targets

and breaks common heuristics. We used the models trained in Section 4.2.2 and the ground

truth provided by Linn and Debray [197]. They provided 11 obfuscated x86 ELF binaries

of the SPECint 2000 benchmark suite that have been obfuscated by their tool. Evaluation

results of these binaries are shown in Table 4.5.

We excluded Datalog Disassembly and Binary Ninja because Datalog Disassembly

does not support x86 ELF files, and Binary Ninja consumed all memory resources and was

killed by the OS. We can observe from Table 4.5 that DeepDi is the best performer with
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respect to precision, recall, and runtime efficiency. In contrast, Ghidra took almost three

hours to analyze these binaries and achieved low precision and recall. XDA is slightly worse

than DeepDi in terms of precision and recall, but 235 times slower than DeepDi on GPU.

Table 4.5: Obfuscation Test Results

Disassembler Precision Recall Time

DeepDi (GPU) 84.1 95.2 1.2s

XDA (GPU) 80.2 95.1 282s

IDA Pro 75.8 44.8 262s

Ghidra 69.1 47.0 10,240s

Table 4.6: Function Entrypoint Recovery on Obfuscated Unseen Binaries, P: Precision, R:

Recall, T: Time

Obfuscation
DeepDi XDA IDA Pro Binary Ninja Ghidra Datalog

P R T P R T P R T P R T P R T P R T

bcfobf 98.9 98.9 1.6s 99.6 99.4 396s 99.5 100 129s 86.1 100 621s 35.9 33.1 208s 99.7 100 783s

cffobf 99.4 97.9 0.7s 99.6 99.1 342s 99.9 100 112s 98.6 100 593s 39.8 33.0 920s 99.7 100 1,231s

indibran 99.8 98.0 0.5s 99.8 99.0 229s 20.5 100 842s 75.5 99.9 248s 39.7 33.3 230s 98.8 100 905s

splitobf 99.7 98.6 0.6s 99.8 99.3 312s 100 100 117s 98.5 100 539s 42.4 33.2 198s 99.7 100 480s

subobf 99.7 97.9 0.5s 99.8 98.8 187s 100 100 63s 98.6 100 409s 50.6 33.3 105s 99.7 100 284s

We also evaluated another obfuscator called Hikari [314]. It is an improvement

over Obfuscator-LLVM [169], and it can generate hard-to-read code to provide tamper-

proofing and increase software security. We used five obfuscation strategies, namely bogus

control flow (bcf), control flow flattening (cff), basic block splitting (splitobf), instruc-
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tion substitution (subobf), and register-based indirect branching (indibran) to obfuscate

seven popular open-source projects, including curl-7.74.0, diffutils-3.7, gmp-6.2.1,

ImageMagick-7.0.10, libmicrohttpd-0.9.72, SQLite -3.34.0, and zlib-1.2.11. We

also turned off optimizations as instructed by Hikari [314]. The function entrypoint evalu-

ation results are shown in Table 4.6. In this experiment, IDA Pro has low precision when

files are obfuscated by Indirect Branching. It fails to resolve some indirect jump instruc-

tions and treats these jump targets as function entrypoints. Ghidra misidentifies many

function entrypoints, indicating that signature-based function identification is not very re-

silient to unseen patterns. IDA Pro, Binary Ninja, Ghidra, and Datalog Disassembly show

increased analysis time due to the increased control flow complexity. In contrast, machine

learning-based approaches like DeepDi and XDA are not affected by this.

Based on the results in Table 4.5 and Table 4.6, we can see that the two machine

learning-based approaches, DeepDi, and XDA, are superior in accuracy when dealing with

obfuscated binaries, but DeepDi is hundreds of times faster than XDA on GPU.

The answer to RQ 3: For obfuscated binaries, DeepDi is superior in

accuracy and its efficiency is not affected by the increased code com-

plexity.

4.2.5 Adversarial Evaluation

An extensive answer to RQ 4 would deserve a separate investigation. In this

section, we conduct a preliminary evaluation. Since our model relies on jump relations

to recognize true instructions, one possible adversarial attack would be replacing some of
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these jumps with computed jumps. In this experiment, we trained our model on O3 BAP

corpora. In evaluation, we use O0 BAP corpora and randomly drop 50% and 90% of jump

edges.

The evaluation results show that if 50% of the jumps are removed, the false positive

rate (FPR) increases slightly from 0.0473% to 0.0524%, and the false negative rate (FNR)

from 0.24% to 0.51%. If 90% are removed, the FPR is 0.0575%, and the FNR is 0.81%.

By analyzing false-negative cases, we find most false negatives are the first instruction of a

short basic block, or nop instructions at the beginning of a basic block. This makes sense

because the first instruction of a basic block, especially a short one, has the least context

information if it is not a jump target.

We also evaluate the function entrypoint accuracy. When all jump edges are

removed, precision drops to 93.8% and recall to 98%. Precision drops a lot because GCC

may align basic blocks and insert nops between them. If a function has multiple exits, we

can find code patterns like return - nop - mov reg, [reg]. The third instruction looks

like a function entrypoint even to humans, and thus confuses the model.

We speculate that the high resiliency of DeepDi against this jump-obfuscation at-

tack is attributed to graph inference, which takes into account several kinds of relations

between instructions. Context information still exists in adjacent instructions and overlap-

ping instructions. Destroying only a part of these relations (in this case, jump relations)

does not cause a drastic impact on the overall graph inference task.

The answer to RQ 4: Through a preliminary evaluation on jump-

obfuscation attacks, we show that DeepDi has good resilience.
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4.3 Downstream Application

In this section, we showcase how DeepDi can support downstream applications.

Particularly, we choose malware classification in this demonstration. We leave more exten-

sive evaluations on downstream applications as future work.

We use the malware dataset from Microsoft Malware Classification Challenge [244].

This dataset contains nine malware families, and is split into 10, 868 malware training

samples and 10, 873 testing samples. Each malware sample comes with IDA Pro disassembly

results and raw bytes (represented as hexadecimal values) of the code sections. Some raw

bytes are represented as “??”, so we removed such bytes and converted other hex strings

back to bytes. For all the following experiments, we use 10-fold cross-validation on the

training data and report mean accuracy as well as standard deviation. The ground truth

of the test dataset is not released to the public, and the only evaluation metric returned

from the online judge system is logloss, so we report logloss instead of accuracy on the test

dataset. As a reference, the logloss of random guessing on the test dataset is 2.19722.

The top models in this challenge used both disassembly and raw bytes to extract

high-level features such as N-gram and strings [244]. These features are expensive and

can take hours or even days to extract [60, 315]. Although they could achieve over 99.7%

training accuracy and 0.0063 in loss, those models are impractical for real-time analysis.

To demonstrate how the high-level features benefit malware classifiers, we conduct

two experiments. First, we compare MalConv [240] with Gemini [283] to compare the

performance of classifiers that take raw bytes and high-level features. Second, we compare
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the original EMBER [67] with a modified version where high-level disassembly features are

added.

For the first experiment, we extend Gemini [283] which takes attributed control-

flow graph (ACFG) as input, generates embeddings for all basic blocks, and finally outputs

an embedding for each function by summing up all basic-block embeddings. To build

a malware classifier, instead of generating function embeddings, we concatenate min- and

max-pooling of all basic-block embeddings of the program, and then feed them into a 2-layer

perceptron followed by a tanh activation function. It finally outputs 9-dimensional vectors

for classification. We can then use softmax to get a probability for each class. We expect

that a classifier based on high-level features can achieve good accuracy and generalizability.

We use Adam optimizer with the default learning rate 10−3 and Cross Entropy

Loss to train the model. At the input layer, we added a fully connected layer to increase the

vector size to 32 to allow more information to pass through ACFGs. We also set the output

embedding size 32, and information propagates five hops. In this simple case study, we did

not attempt to find the optimal hyperparameters or explore different network architectures,

so there is certainly room for improvement.

We also evaluated MalConv [240], a convolutional neural network model that takes

raw bytes as input for malware classification. We used the same training strategy described

above to train a MalConv model.

Table 4.7 lists the results of this experiment. We can see that although MalConv

has better training accuracy, Gemini can better generalize with a 0.13 logloss. This result

substantiates that a malware classifier based on high-level features tends to be more accurate
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Table 4.7: Malware Classification Results

Model Training Accuracy Testing Loss Time (GPU)

Gemini 96.52%± 0.595 0.134974± 0.036 7m

MalConv 97.81%± 0.659 0.159165± 0.048 48.6s

on unseen samples. In terms of efficiency, MalConv only takes 48.6 seconds to process all

testing samples (5.2 GB in total) on GPU, because it takes raw bytes as input. Gemini

takes 7 minutes to process the same amount of samples on GPU. This is still a notable

achievement, given that DeepDi has to disassemble the malware samples and extract ACFG

as high-level features, and then hand them over to Gemini to perform classification.

For the second experiment, we evaluate EMBER which uses static features such

as byte code histogram and imported functions to train a gradient-boosted decision tree

(GBDT) model. We first train the original EMBER model with the default parameters ex-

cept for changing the objective from binary to multiclass. Later, we add high-level features:

code histogram and code entropy histogram, to the static features to show how they benefit

classification. Code histogram and entropy histogram are extracted from instruction meta-

data mentioned in Section 4.1.2, similar to how byte histogram and byte entropy histogram

are extracted.

Table 4.8: EMBER Classification Results

Model Training Accuracy Testing Loss Time

EMBER 99.13%± 0.1747 0.041541± 0.0022 21m

EMBER w/ code 99.40%± 0.2465 0.024391± 0.0018 24m
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Table 4.8 shows that we can lift the training accuracy from 99.1% to 99.4%, and

almost halve the testing loss while adding minor overhead (3 minutes).

This case study shows that DeepDi opens up a lot of opportunities for fast and

accurate binary analysis. It will be interesting to explore other machine-learning and deep-

learning models that take disassembly results and high-level features as input to produce

even more accurate classification results and conduct other binary analysis tasks.

4.4 Discussion

In this section, we have more discussions about our evaluation results.

Learning-based vs. Rule-based Approaches. In this work, we demonstrate that a

learning-based approach outperforms rule-based approaches used in commercial disassem-

blers with respect to accuracy (especially on obfuscated binaries) and efficiency. This result

might be surprising to many people, as binaries are generated by the compilers following a

well-understood compilation process. So experts should be able to develop good rules and

heuristics to correctly disassemble the binaries. However, much higher-level information

is lost during the compilation process, and ambiguities start to emerge. The situation is

further exacerbated by deliberate obfuscations that aim to break these rules and heuristics,

as demonstrated by our obfuscation evaluation in Section 4.2.4. A learning-based approach,

if done right, can automatically learn from a large number of real data on how to resolve the

ambiguities and tolerate certain obfuscation attempts. We also demonstrate that a learning-

based approach (particularly, a neural network-based approach) can be more efficient than

rule-based approaches. A deep neural network model can better leverage parallelism in
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modern processors to perform vector and matrix computation very efficiently. In contrast,

a rule-based approach may not be easily parallelized.

Generalizability. A common problem for a machine learning model is overfitting, meaning

that the model only learns superficial features existing in the training dataset and cannot

generalize on unseen datasets. Our evaluation in Section 4.2.3 shows that our model is

able to learn intrinsic features from the training set, and perform well on a completely

different dataset containing a different set of programs generated by a different compiler for

a different operating system. We speculate that this excellent generalizability mainly comes

from how we make use of Relational-GCN, as it captures a number of important relations

between instructions. These relations generally hold true across programs, compilers, and

OS.

Adversarial Attacks. A machine-learning system is known to be vulnerable to adver-

sarial attacks. DeepDi is no exception. However, the disassemblers we evaluated face the

same problem, and perform even worse than DeepDi on obfuscated binaries. Section 4.2.5

shows that DeepDi at least is able to counter attacks that simply hide direct jumps. A

strong adversary may be able to perform an in-depth analysis on our model (e.g., based

on the gradients), to construct adversarial examples. This problem deserves a separate

investigation, and we leave it as future work. Nevertheless, our evaluation in Section 4.2.4

and Section 4.2.5 shows that DeepDi is already more robust than the existing commercial

disassemblers.
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4.5 Conclusion

In this chapter, we have proposed DeepDi, a novel deep learning based technique

for disassembly that achieves both accuracy and efficiency. Our experimental results have

shown that DeepDi’s accuracy is comparable to the state-of-the-art commercial tools and

research prototypes, and it is two times faster than IDA Pro, and its GPU version is 350

times faster. DeepDi is able to generalize to unseen binaries, and counter obfuscations

and certain adversarial attacks. When used with EMBER [67] for malware classification

involving 5.2 GB testing samples, we are able to increase training accuracy to 99.4% and

only add 3 minutes to feature extraction time, showing its capacity of classifying malware

accurately and efficiently.
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Chapter 5

GrassDiff: Learning-Free Callgraph

Matching for Precise Function

Identification

Precise identification and matching of functions in binaries is a fundamental task

in binary analysis and reverse engineering. It aims to identify and correlate identical or

similar functions in different binaries in order to understand program behaviors, detect

vulnerabilities, understand malware evolution, etc.

However, obstacles like compiler optimizations, compilation configurations, ar-

chitectures, and code obfuscation make function matching surprisingly hard. Traditional

function matching approaches [122, 72, 166, 108, 203] typically rely on manually defined

features, such as strings, constants, opcode sequences, and formulas, in the assembly that

are relatively resilient to the changes introduced by these obstacles. Metrics like Jaccord
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similarity [161], longest common subsequence [203], and MinHash [228, 166] are often used

to compute similarity scores between two sets of features. Some approaches leverage topol-

ogy information from binaries and use techniques such as graph matching [162], graph edit

distance [65, 229], or graph isomorphism [134, 211, 168] on control flow graphs (CFGs), call

graphs, or interprocedural program dependency graphs (IPDGs).

Another line of research utilizes dynamic analysis approaches like taint analy-

sis [211], symbolic or concolic execution [307, 161, 134, 228], or blanket execution [119]

to obtain basic block or function input-output pairs and formulas. While offering better

accuracy and resilience, these approaches often take much longer to extract the features.

Recently, researchers have leveraged machine learning to tackle function matching

problems. Various approaches [282, 198] encode CFG information into function embeddings,

while others [113, 208, 318] draw inspiration from natural language processing (NLP) to

automatically extract features and learn representations. More recently, transformer-based

approaches [192, 225, 227, 271] become mainstream, significantly advancing function match-

ing accuracy.

Challenges. Despite the promise of learning-based approaches, several challenges remain

in the field of function matching:

One major challenge lies in the balance between effectiveness and efficiency. Transformer-

based approaches demonstrate superior performance under various conditions, but only

when the data distribution has been seen by the models. Section 5.1.1 shows a motivat-

ing example of how transformer-based approaches fail to understand and extract semantic

features from binaries compiled by an unseen compiler. Conversely, traditional approaches
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reliant on graph matching or dynamic analysis show better resilience to the differences

caused by compilers and architectures. However, their computational inefficiencies limit

their real-world adoptions, especially in large binary analyses.

Moreover, most learning-based approaches require training, and some [136] even

require online training. Not only training is costly in time and resources, but the models

also tend to overfit, depending on model architectures and training data qualities. As

Section 5.1.1 shows, even the transformer model cannot generalize well on function matching

problems. Additionally, online training is much more costly, for example, SigmaDiff [136]

spends 203 seconds in finetuning on GPU, and would be much worse on large graphs.

Our Approach. To tackle the aforementioned challenges, we present a novel function

matching framework called GrassDiff1 that is efficient, resilient to code optimization, and

architecture agnostic. Specifically, when provided with two binaries, GrassDiff extracts se-

mantic information from decompiled functions and establishes an initial function matching

matrix. This matrix is generated by computing cosine similarities between the embeddings

of corresponding functions from the two binaries. GrassDiff then leverages a graph match-

ing algorithm to find an optimal one-to-one function matching, maximizing both first-order

function-level similarities and second-order call edge similarities [196]. Specifically, we fine-

tune the state-of-the-art CodeBERT model [129] on decompiled code for function similarity

detection. We also enhance Graduated Assignment (GA) [139], a classic graph matching

algorithm, to leverage our initial function matching result while incorporating first-order

and second-order information. Our improved GA (GA+) converges much faster, is more

accurate, and can leverage the parallelism of GPU.

1GrassDiff stands for Graduated ASSignment for binary Diff ing

70



We have conducted an extensive evaluation on GrassDiff and measured its ac-

curacy, robustness, and efficiency on datasets containing different versions of common pro-

grams compiled by various compilers, optimizations, and on various architectures. The eval-

uation shows that GrassDiff improves the accuracy of pure embedding-based approaches by

5% to 20% when the embedding quality is good. Furthermore, our case study on real-world

vulnerabilities showcases GrassDiff’s ability to accurately identify vulnerable functions even

when the embedding quality is poor. Additionally, GA+ is over 10x to 20x faster than GA,

is more accurate, and scales better with large binaries.

Contributions. The contributions are as follows:

• We propose GrassDiff, a novel function matching framework that leverages program-

wide topology information, is resilient to code optimization, and is architecture agnos-

tic. It exemplifies how fast and accurate graph matching is made possible in binary

analysis and how substantially it can improve over the existing approaches.

• We modify and improve the GA algorithm to run in GPU, leverage function similar-

ities, and handle large graphs efficiently.

• We conduct an extensive evaluation to show our superior robustness and accuracy

under various conditions, as well as good scalability even on large binaries.

• We showcase GrassDiff in real-world vulnerability detection, and we show that Grass-

Diff can pinpoint vulnerable functions even when the embedding quality is poor.
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5.1 Motivation

Binary function matching is the foundation of many security applications, in-

cluding but not limited to vulnerability detection, malware evolution analysis, and code

plagiarism detection. While traditional graph-based approaches such as BinDiff [57], Di-

aphora [55], BinHunt [134], iBinHunt [211] offer precise one-to-one function matching, the

NP-hard nature of (sub)graph matching or isomorphism render them impractical on large

binaries. Recent advancements in natural language processing (NLP) and the transformer

model have significantly improved function matching accuracy, and have become the new

state-of-the-art approaches, at the cost of dropping one-to-one mapping constraints. These

approaches take assembly code as input, and have shown superiority in various settings

such as cross-optimization function similarity search.

However, we find that the generalizability of these approaches is poor, render-

ing them unusable when facing unseen code sequences, and thus insufficient as a function

matching solution. In this section, we first discuss a real-world function matching result

via jTrans [271], then discuss the possible reasons behind this, and finally explain how we

tackle this problem.
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Listing 1 GCC 13

endbr64

push r15

push r14

push r13

push r12

push rbp

push rbx

sub rsp, 38h

mov r14, [rdx+20h]

mov [rsp+08h], rsi

mov rax, fs:28h

mov [rsp+28h], rax

xor eax, eax

test r14, r14

jz loc_A1800

Listing 2 MSVC 2022

mov [rsp+10h], rdx

push rbp

push rsi

push r14

mov eax, 50h

call j__alloca_probe

sub rsp, rax

mov rsi, [r8+18h]

mov rbp, r8

mov r14, rcx

test rsi, rsi

jz loc_1800BB3B4

5.1.1 A Motivating Example

Different compilers have different dialects and preferences for register allocations,

stack usage, optimization strategies, etc. To illustrate, we use a real-world vulnerable func-

tion, BIO new NDEF, from CVE-2023-0215. Listing 1 and 2 depict the first basic block of

this function compiled by GCC-13 and Microsoft Visual C++ (MSVC) 2022 respectively.

Despite seemingly being completely different, the two code snippets are doing the same ini-

tialization and condition check. Surprisingly, jTrans, a SOTA function similarity detection

model, finds these two functions very dissimilar with a similarity score of less than 0.4 and
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a rank of 891 due to the binary compiled by MSVC having a different dialect and not being

trained.

Listing 3 GCC 13 Decompiled Code

undefined8 BIO_new_NDEF(undefined8 param_1,

undefined8 param_2,long param_3)

{

long lVar1 = *(long *)(param_3 + 0x20);

if ((lVar1 == 0) || (*(long *)(lVar1 + 0x18) == 0))

Listing 4 MSVC 2022 Decompiled Code

undefined8 BIO_new_NDEF(undefined8 param_1,

undefined8 param_2,longlong param_3)

{

longlong lVar1 = *(longlong *)(param_3 + 0x18);

if ((lVar1 != 0) && (*(longlong *)(lVar1 + 0x18) != 0))

This result shows that even with the transformer model and carefully curated

pretraining tasks, the model is still unable to generalize and capture assembly code semantic

meanings. This is not surprising, as each instruction carries much less information and is

much more difficult to comprehend compared to source code. Conversely, the decompiled

code shown in Listing 3 and 4 underscores the decompiler’s efficacy in recovering high-level

semantics. Additionally, the call graph as shown in Figure 5.1 stays relatively unchanged.

These observations motivate us to design a function matching framework that leverages
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both the topology information and decompilation techniques to help and improve the pure

embedding-based approaches.

B64_write_ASN1B64_write_ASN1 BIO_new_PKCS7BIO_new_PKCS7BIO_new_CMSBIO_new_CMSi2d_ASN1_bio_streami2d_ASN1_bio_stream

BIO_new_NDEFBIO_new_NDEF

BIO_pushBIO_pushBIO_freeBIO_freeBIO_newBIO_newBIO_ctrlBIO_ctrl

BIO_new_NDEFBIO_new_NDEF

i2d_ASN1_bio_streami2d_ASN1_bio_stream BIO_new_CMSBIO_new_CMS BIO_new_PKCS7BIO_new_PKCS7

BIO_ctrlBIO_ctrl BIO_newBIO_new BIO_freeBIO_free BIO_pushBIO_push

Figure 5.1: BIO new NDEF call graph. Left: compiled by MSVC-2022. Right: compiled

by GCC-13.

5.1.2 Design Goals

We envision a good function matching solution should achieve the following design

goals:

• High Accuracy. It should correctly identify matched functions with high precision

and recall. The correct pairs should be ranked at the top.

• Cross-Architecture. It should support cross-architecture function matching.

• Scalable and Efficient. It should be able to process large binaries within a rea-

sonable amount of time and resources. Ideally, it should be able to be accelerated by

vector processors such as GPU.

• Learning-Free. It should not require any online training. Online training, especially

on large binaries, can take a significant amount of time and resources.
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5.1.3 Challenges and Opportunities

Despite the advantages of transformer models in function matching, they still

struggle to understand high-level semantic meanings of assembly code, and supporting mul-

tiple architectures is both time- and resource-intensive. On the other hand, although graph

matching or graph isomorphism can alleviate the problems caused by transformer models to

some extent, its NP-hard nature makes it unscalable and thus unsuitable for practical ap-

plications, especially with large binaries. Notably, most computer vision datasets for graph

matching contain fewer than 600 nodes in a graph [147], whereas a typical 2MB binary

may contain around 6,000 functions. Moreover, graph deformation caused by inlining and

partial build poses a greater challenge.

Nevertheless, there are some unique opportunities that can make transformer mod-

els work better and make graph matching feasible in function matching.

First, assembly code is difficult to parse and extract high-level information because

registers are volatile, memory regions can be overwritten, and each instruction carries very

little information. One has to follow the control and data flow closely and put a bunch of

instructions, often nonconsecutive, together to better understand what the instructions do.

Luckily, a decompiler does the exact same thing. It lifts assembly code to pseudocode and

recovers control flow structures, variables, conditions, etc. This saves transformer models

from the heavy-lifting analysis work and the semantic features are more readily available.

Moreover, decompiled code is by nature platform- and architecture-agnostic. Given the

aforementioned benefits, we propose to generate function embeddings from decompiled code.
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Second, the initial similarity matrix given by the embeddings is very close to the

final assignment matrix, provided the embedding quality is not too bad. Graph matching

algorithms, especially the ones in an iterative fashion, can potentially leverage that initial

result and converge faster.

Third, call graphs are sparse. In our preliminary evaluation, each function has

one to three edges on average. This means the memory pressure for adjacency matrices can

drop from O(N2), where N denotes the number of functions, to O(N), making it possible to

run graph matching algorithms on large graphs, if the graph matching algorithms support

sparse matrices.

These opportunities make fast and accurate function matching possible. In the

next sections, we will discuss what graph matching algorithms are suitable for the function

matching problem and how we design our function matching framework.

5.2 Graph Matching Algorithms

There exist too many graph matching algorithms and approximations [273, 147],

each of which has its unique relaxation or simplification. In this section, we try to survey

and summarize some popular graph matching algorithms, and explain why we end up with

graduated assignment for the function matching task. Table 5.1 summarizes these graph

matching algorithms and we categorize them as follows:

• LAP solvers: These algorithms are tailored for addressing simplified Graph Matching

(GM) problems, often characterized as Linear Assignment Problems (LAP).
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Table 5.1: Summary of Graph Matching Algorithms. GA: Graduated Assignment, SM:

Spectral Matching, RRWM: Reweighted Random Walks Matching, FGM: Factorized Graph

Matching, DGMC: Deep Graph Matching Consensus, GMN: Graph Matching Network.

Features include: Relaxation Method, Directed: support for directed graphs, Start Point:

ability to utilize starting points for accelerated convergence, GPU: support for GPU ac-

celeration. Relaxation methods include: DS: Doubly-Stochastic Relaxation, SP: Spectral

Relaxation, CC: Concave-Convex Relaxation.

Category Relaxation Directed Start Point GPU Time Complexity Space Complexity

B&F Other N/A N/A N/A No O(N2) O(N2)

Hungarian LAP Solver N/A N/A N/A Yes O(N3) O(N2)

Hopcroft–Karp LAP Solver N/A N/A N/A No O(M
√
N) O(N + M)

GA Classic GM DS No Yes Yes O(I0(N
3 + I1N

2)) O(N2)

SM Classic GM SP No Yes Yes O(IN4) O(N4)

RRWM Classic GM DS Yes Yes No O(IM2) O(N4)

FGM Classic GM SP + CC Yes Yes No O(I(N3 + (N + M)2) + (N + M)3) O(M2)

DGMC Neural GM DS Yes Yes Yes O(I(N2 + M)) N/A

GMN Neural GM N/A Yes No Yes O(M2 + I(M + N)) N/A

• Classic GM: These algorithms are designed for GM problem-solving without utilizing

neural networks.

• Neural GM: These algorithms are employed to tackle graph matching tasks by lever-

aging neural networks and machine learning techniques.

• Others: Algorithms do not belong to the categories above.

The term “Relaxation method” refers to the specific relaxation techniques em-

ployed by graph matching algorithms to address the NP-Hard Quadratic Assignment Prob-
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lem (QAP). “Support directed graph” indicates whether these algorithms are applicable

to directed graphs. “Utilize start point” refers to the capability of leveraging the function

similarity matrix as the initial matrix in function matching, thereby potentially accelerating

convergence.

we also utilize several symbols in Big-O notation:

• Ix or I: Represents iteration control variables. For instance, in GA, I0 and I1 govern

the iteration numbers for the softassign loop and Sinkhorn loop, respectively.

• N : Denotes the number of nodes in the graphs.

• M : In the LAP solver, it denotes the number of possible assignment candidates. In

classic Graph Matching, it represents the number of edges in two graphs.

Subsequently, we aim to demonstrate, through experimentation and analysis, the

efficacy of certain algorithms in solving our specific problem. Factors such as time com-

plexity, space complexity, etc., will be considered to ascertain their suitability. From this

assessment, we will select practical and representative algorithms for our evaluation.

Back and Forth Game. The Back & Forth Game (B&F) [120], as employed by David

et al. [107], represents a method utilized for solving matching problems. In their study, the

authors leverage this approach, encoding function context into the similarity computation,

and employing these similarities for matching purposes.

During the game, a “player” proposes a potential matching (qv, ti), and a “rival”

responds with a superior matching for ti, thus improving the overall matching (qi, ti) and

releasing qv. Consequently, the player advances to the next round, suggesting a new match-
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ing (qv, ti+1) for qv. This iterative process results in a series of matchings generated by the

algorithm.

It is evident that B&F essentially tackles the Linear Assignment Problem (LAP).

However, it lacks the ability to converge when the order of candidate matchings changes

in the input. In contrast, both the Hungarian Algorithm [212] and the Hopcroft-Karp

Algorithm [172], which we will discuss later, efficiently solve the LAP in polynomial time,

providing the optimal converged solution.

Hungarian Algorithm. The Hungarian algorithm [212] stands as a venerable and potent

tool for solving LAP in O(N3) time and O(N2) space. Given two sets A and B, and a cost

function C : A×B ∈ R, LAP aims to find a bijection between the two sets so that the sum

of the cost is minimized or maximized. We formulate the function matching problem as

LAP where C refers to function similarities and the objective is to find a bijection between

two binaries where the sum of the function similarities is maximized. Given our dataset’s

scale, both the time and space complexities are acceptable, ensuring that we can consistently

unearth the optimal linear assignment solution within polynomial time. This algorithm also

has extensive research on parallelization. Studies conducted by Wang et al. and Date et

al. [273, 106] indicate the existence of parallel versions of the Hungarian algorithm designed

for both CPU and GPU computing architectures.

Nevertheless, the simplification of the QAP to LAP leads to a loss of second-order

information (edge affinity), resulting in suboptimal function matching.

Hopcroft-Karp Algorithm. The Hopcroft-Karp algorithm [172] is another approach to

solving LAP. It demonstrates superior time and space complexity, particularly in scenarios
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of sparse-constrained matching. Here, we define a LAP as sparse-constrained when, for

an element a in set A, the number of elements b in set B to which it can be matched

is significantly smaller than the size of B. In this case, the worst-case time complexity is

O(|E|
√
|A + B|) and space complexity is O(|A+B|) where E denotes matching candidates.

In our problem, since we already have an initial similarity score between the functions,

we can disregard matching candidates with very low similarity scores, thereby creating a

sparse-constrained matching scenario.

As both the Hungarian and Hopcroft-Karp algorithms can provide optimal so-

lutions for LAP within polynomial time, the output of these two algorithms would be

equivalent. Given that Hungarian is the more commonly used algorithm for solving LAP

and it naturally supports GPU paralleling, we focus our evaluation solely on Hungarian

while providing theoretical analysis for the Hopcroft-Karp algorithm here.

Spectral Matching. Spectral matching, as described by Leordeanu et al. [190], leverages

the eigenvalues, also known as the spectrum of a matrix, to seek the solution. This method

relaxes the matching matrix M to a real unit norm matrix, enabling the utilization of

Rayleigh’s quotient theorem for solving the objective function outlined in Equation 2.1.

This method lacks theoretical support for directed graphs because it relies on a

power iteration algorithm to compute the leading eigenvector of a matrix. This algorithm

necessitates the matrix to be diagonalizable, a condition typically guaranteed by symmetry.

As directed graphs may not exhibit this symmetric characteristic, the method’s applicability

to such graphs is limited.
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This method theoretically enables GPU parallelization by relying solely on ma-

trix multiplication to compute the leading eigenvector of the affinity matrix. However, a

challenge arises regarding memory utilization when parallelizing it. Given the potentially

large size of the affinity matrix, sparse matrix storage is typically employed. Neverthe-

less, existing sparse matrix multiplication algorithms in PyTorch may consume significant

memory [56], posing a potential bottleneck when executed on the GPU.

Reweighted Random Walks. Reweighted Random Walks for Graph Matching (RRWM) [97]

was introduced in 2010, built upon the concept of associated graphs outlined in spectral

matching [190]. The associated graph is derived from the affinity matrix, encapsulating

both node and edge affinities. Leordeanu et al. [190] proposed that matching two graphs

is analogous to identifying a cluster within the associated graph formed by their affinity

matrices. Consequently, a random walk approach can be employed on this associated graph

to discover such clusters.

This paper introduces the affinity-preserving random walks method, which main-

tains affinity consistency within the Markov chain during random walks by incorporating

a new absorbing node. Affinity-preserving random walks are shown to be equivalent to

spectral relaxation in spectral matching [190]. To address the absence of a one-to-one map-

ping constraint in spectral relaxation, the authors propose the reweighting random walks

method. This method entails moving directly to the next node rather than traversing along

edges, a concept termed personalized jump, as introduced by Haveliwala [149]. During this

step, a PageRank calculation algorithm determines the most influential node. Additionally,

a double stochastic process is applied to fulfill the two-way constraint.
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While the paper’s evaluations solely utilize undirected graphs, there is no explicit

indication that the method does not support directed graphs. However, it is essential to note

that its current implementation is entirely CPU-based. As evident from its requirements,

the algorithm necessitates affinity and the construction of associated graphs, potentially

leading to significant memory usage. Hence, this approach might not be suitable for our

problem, especially considering the memory-intensive nature of constructing the associated

graph.

Factorized Graph Matching. Zhou et al. [316] pioneered factorized graph matching

(FGM) in 2012, revealing that the majority of affinity matrices in graph matching problems

can be decomposed into Kronecker products of smaller matrices. This methodology presents

several advantages:

• It bypasses the computationally intensive O(n4) calculation typically required for the

affinity matrix.

• The factorization introduces a novel approximation to the graph matching problem,

augmenting existing graph matching algorithms.

However, this algorithm’s implementation relies on CPU processing. In our tests conducted

on graphs containing approximately 200 nodes and 400 edges, FGM took over 1000 sec-

onds to complete, significantly slower compared to other algorithms. Despite its extended

runtime, it yielded only marginal improvements in recall while slightly sacrificing accuracy.

Graduated Assignment. The graduated assignment (GA) by Gold and Rangarajan [139]

can work with only adjacency matrices without the need to build the large affinity matrix
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required in the Lawler’s form. It leverages Taylor expansion and transforms the QAP into

a series of LAPs.

The relaxation method employed in GA is known as doubly stochastic relaxation.

It transforms the assignment matrix M where Mai is either 0 or 1 and satisfies the constraint∑A
a=1Mai = 1 for all i and

∑I
i=1Mai = 1 for all a, to a doubly stochastic matrix by dropping

the binary constraint (0 or 1) while still satisfying the rest constraints. This relaxation

essentially sidesteps the strict one-to-one mapping constraint, allowing for a solution in a

continuous space through continuous methods.

GA aims to minimize the following objective function:

Eawg(M) =− 1

2

A∑
a=1

I∑
i=1

A∑
b=1

I∑
j=1

MaiMbjC
(2)
aibj

+ α
A∑

a=1

I∑
i=1

MaiC
(1)
ai

(5.1)

where M is the assignment matrix, and Gab and gij are the adjacency matrices of the

graphs. C
(2)
aibj denotes the compatibility between the edge (a, b) and (i, j), and C

(1)
ai denotes

the compatibility between the node a and node i. α is a tunable parameter. In the work

of Gold et al. [139], an example is provided where C
(2)
aibj = 1 − 3|Gab − gij | for randomly

generated graphs. It is explained that this definition is equivalent to C
(2)
aibj = Gab×gij when

G, g ∈ {0, 1}. In the algorithm, it is stipulated that adjacency matrices for graphs must

be symmetric, implying an undirected graph in the problem definition. We further explain

why GA does not support directed graphs. In Equation 5.1, the adjacency matrices G and

g are used to calculate the assignment reward. Consider a directed edge from node a to

node b in graph G and another directed edge from node i to node j in graph g. Hence,
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Gab = gij = 1 and Gba = gji = 0. By examining the derivative function from GA [139]2:

Qai =
∂Ewg

∂Mai

∣∣∣∣
M=M0

=

A∑
b=1

I∑
j=1

MbjCaibj (5.2)

it becomes evident that

Qbj =

A∑
a=1

I∑
i=1

MaiCbjai = 0 (5.3)

Hence, we can only establish the correspondence between nodes a and i, disre-

garding the matching between nodes b and j.

We present the graduated assignment algorithm in Algorithm 13:

β serves as the control parameter for the continuation method, with β0 denoting

its initial value, βf indicating the maximum value, and βr representing the rate at which

β is increased. I0 and I1 signify the maximum number of iterations permitted for the two

while-loops. G and g denote the adjacency matrices of the two graphs.

GA has several unique properties that make it a good candidate for the function

matching problem. First, GA relaxes the NP-hard QAP into a series of LAPs and iter-

atively refines the assignment matrix. This allows us to resume GA from a middle point

of the refinement process if we can provide a good initial assignment matrix. Second, its

space complexity is only O(N2) and supports sparse matrices by nature, further reducing

the memory pressure when processing large graphs. Third, it is a classic graph matching

algorithm meaning it does not require training and can be applied to different types of

graphs.

2We opt for the original derivative function instead of one incorporating nodes’ features. This choice
facilitates a more convenient demonstration of the asymmetry in gradient transfer.

3In the original paper [139], there are slack rows and slack columns to accommodate unmatched elements.
Consequently, it defines a M̂ matrix containing the two slacks, and the iteration variables i and a in the
while loop of Sinkhorn will end at I + 1 and A+ 1.
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Algorithm 1 Graduated Assignment

Require: β0, βf , βr, I0, I1, G, g

β ← β0

Mai ← 1 + ϵ

while β < βf do

while M does not converges and # of iterations ≤ I0 do

Qai ←
∑A

b=1

∑I
j=1M

0
bjCaibj

M0
ai ← exp(βQai)

while M does not converges and # of iterations ≤ I1 do

M1
ai ←

M0
ai∑I

i=1 M
0
ai

M0
ai ←

M1
ai∑A

a=1 M
1
ai

▷ This while-loop is Sinkhorn

end while

end while

β ← βrβ

end while

Neural GM Algorithms. Neural-based graph matching algorithms trace their origins

back to Caetano et al.’s work [88]. The fundamental premise underlying these approaches

is to adaptively learn the weights of edges and nodes in a graph to facilitate effective

matching.

In the original problem formulation, each edge and node possesses a unique affin-

ity. However, the importance of these edges and nodes may vary across different graph

structures. Consequently, by learning the weights associated with edges and nodes, these

algorithms discern which elements are crucial for matching and which are less significant.
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This adaptive weight learning mechanism enables the algorithm to effectively discriminate

between important and less important edges and nodes, thereby enhancing the quality of

graph matching results.

In recent research [301, 274, 276, 275, 193], more advanced convolutional layers

are employed to extract intricate features from graphs. Subsequently, these features are

utilized for matching refinement through embedding layers or conventional techniques such

as Sinkhorn normalization [256].

We chose to initiate our approach with a classic graph matching algorithm instead

of a neural one. This decision was influenced by our examination of existing neural network

graph matching methods [301, 274, 276, 275, 193], many of which rely on the affinity matrix

as their primary input, as detailed in Section 3.1. However, the affinity matrix scales at

O(N4), where N denotes the size of the node set for two graphs. Given that our scenarios

often involve graphs with thousands of nodes, storing such a large affinity matrix becomes

impractical, especially considering the challenge of implementing these algorithms using

sparse matrices.

Moreover, these neural algorithms typically require extensive datasets for train-

ing, posing another challenge. Real-world call graphs exhibit substantial variability due

to architectural disparities, compiler optimizations, and other factors. Consequently, neu-

ral networks trained offline might struggle to address our problem effectively, lacking the

adaptability needed to handle such diverse graph structures.
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Additionally, some neural algorithms [301, 274, 130] are essentially adaptations

of classic algorithms. Therefore, we reasoned that starting with a classic algorithm would

provide a solid foundation for our approach.

The Deep Graph Matching Consensus (DGMC) [130] algorithm, introduced by Fey

et al. in 2020, is chosen for our special inspection as its unique advantages. Unlike other GM

algorithms employing neural networks, which primarily target solving Lawler’s Quadratic

Assignment Problem (QAP), requiring large affinity matrices as input—prohibitive at our

scale—DGMC takes a different approach. By leveraging gradients and local information

akin to graduated assignment, it refines the correspondence matrix, rendering it more scal-

able.

DGMC operates through two principal stages: a Graph Neural Network (GNN) [247]

local feature matching phase and a global correspondence refinement phase. Initially, a

set of ground truth correspondences guides the training of the GNN, yielding localized,

permutation-equivariant node representations. Subsequently, another GNN identifies vi-

olations within the neighborhood consensus and iteratively enhances the correspondence

matrix.

However, we ultimately ruled out the adoption of this algorithm after conducting

several experiments. A key challenge arose from its reliance on ground truth matching as

input for training the Graph Neural Network (GNN). Acquiring such ground truth is often

problematic in real-world programs, given the variability in function embeddings across

different architectures or compiler configurations. Moreover, our experimentation revealed
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Figure 5.2: Overview of GrassDiff

another significant drawback: the algorithm’s online training phase proved to be excessively

time-consuming, prompting us to abandon its further pursuit.

5.3 Design of GrassDiff

The system overview is shown in Figure 5.2. It consists of two stages. The first

stage, preprocessing, disassembles and decompiles the functions into pseudo-C code, as well

as extracts function call graphs. These decompiled functions are then fed into a transformer

model for embedding generation. The transformer model is the public-available CodeBERT

model [129] finetuned on the StateFormer [225] ARM64 and x64 dataset. The second

stage, graduated assignment, leverages the pairwise function similarities according to the

embeddings and finds optimal function assignments.
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5.3.1 Preprocessing

During the preprocessing stage, binary files are decompiled into pseudo-C code,

and call graphs are extracted. The rule-based decompiler is suitable for complex data flow

and control flow analysis, and recovers high-level semantics. We use Ghidra for decompila-

tion and call graph extraction.

5.3.2 Embedding Generation

Given decompiled functions, we use the finetuned CodeBERT model to generate

function embeddings. We also compute a similarity matrix between every function pair

from the two binaries.

5.3.3 GA+: Improved Graduated Assignment

The original GA algorithm suffers from the following problems that hinder it from

being applied to the function matching problem. First, it initializes the assignment matrix

M0 to all ones, so it has to start from a small β0 to gradually refine the assignment matrix,

taking a lot more iterations to converge. Second, the original edge affinity function of GA

considers only binary compatibility between two edges, i.e., compatible or incompatible.

In the function matching problem, how well two call edges match depends on the simi-

larities between the two corresponding function pairs. Third, the original GA exhibits a

time complexity of O(N4), primarily attributes to the four-dimensional computation of the

affinity function C
(2)
aibj . Here, N denotes the number of nodes in the graphs. Consequently,

convergence time increases significantly for larger graphs, potentially spanning orders of
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magnitude. To tackle these problems, we have introduced improvements to GA to make it

more suitable for the function matching problem:

First, we pass the initial similarity matrix as M0 rather than an all-ones matrix,

and increase β0 from 0.5 to 50, βf from 10 to 1,000, and βr to 2. As we discussed before,

the initial similarity matrix is close to the final assignment matrix. Given the iterative

refinement nature of GA, a good starting point allows us to skip quite some iterations. For

the same reason, we give β0, βf , βr a large value so that GA resumes from some point close

to the convergence and we ensure a faster convergence and that the softassign converges to

a fixed point.

Second, we improve the objective function of GA to incorporate function similar-

ities and call edge similarities. Recall the objective function in Equation 5.1, we further

define the objective function as following:

E(M) =− 1

2

A∑
a=1

I∑
i=1

A∑
b=1

I∑
j=1

MaiMbjGabgijC
(1)
ai C

(1)
bj

+ α
A∑

a=1

I∑
i=1

MaiC
(1)
ai

(5.4)

where Cai denotes the function similarity between function a and i. In our objective func-

tion, the edge similarity C
(2)
aibj is defined as C

(2)
aibj = Gab × gij ×C

(1)
ai ×C

(1)
bj so that the edge

similarity equals the product of the corresponding node similarities iff there is a call edge

between function a and b, and a call edge between i and j. In this way, this objective

function considers both first-order and second-order similarities.
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Third, we vectorize the derivative calculation, which reduces the time complexity

from O(N4) to O(N3), and can be easily parallelized on GPU4.

Qai =
∂E

∂Mai

∣∣∣∣
M=M0

=
A∑

b=1

I∑
j=1

M0
bjC

(2)
aibj + αC

(1)
ai

=

A∑
b=1

I∑
j=1

M0
bj ×Gab × gij × C

(1)
ai × C

(1)
bj + αC

(1)
ai

=
A∑

b=1

I∑
j=1

C
(1)
ai × [Gab × (M0

bj × C
(1)
bj )× gTji + α]

=⇒ Q = C(1) ⊙ [G(M0 ⊙ C(1))gT + α] (5.5)

where ⊙ represents the Hadamard product of matrices. We also employ sparse matrix

multiplication to reduce memory usage for adjacency matrices down to approximately O(N).

This is critical when comparing a large binary with a relatively small library. A large binary

can have more than 200,000 functions whose dense adjacency matrix requires approximately

160 GB of memory.

5.4 Evaluation

In this section, we evaluate the efficiency and effectiveness of different matching

algorithms in cross-version, cross-compiler, cross-architecture, and cross-optimization-level

scenarios, and how they perform on C++ programs where indirect calls are common. Fur-

thermore, we conduct an ablation study to showcase the improvement of GA+ compared

to the original GA, and a case study to evaluate GA+ in real-world security applications.

4via matrix multiplication. The upper bound is O(N3) but the best algorithm can achieve
O(N2.37286) [64].
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5.4.1 Experimental Setup

Our experiments are conducted on AMD Ryzen 5900X, RTX 3080 Ti, and 128 GB

memory. The decompiled code is generated by Ghidra v11.0.

Datasets. We use the dataset released by SigmaDiff [136]. Specifically, it contains coreutils,

findutils, diffutils, GMP, and PuTTY, each of which contains different versions, and is

compiled with different compilers, configurations, and on different architectures. All the

binaries are stripped in the evaluation.

Implementation. For the function embedding model, we use the same pretrained weights

and tokenizer provided by CodeBERT and thus skip the model pretraining. Java is one

of the pretrained languages by CodeBERT, and it shares similar syntaxes and tokens with

pseudo-C code. The CodeBERT model is then finetuned on the StateFormer ARM64 and

x64 dataset with contrastive learning for function similarity detection. The ARM64 dataset

contains binutils, coreutils, diffutils, and findutils with optimization levels O0 to O3. The

x64 dataset contains binutils, coreutils, diffutils, findutils, and several real-world programs

with different optimizations and obfuscations. All the baselines are implemented in PyTorch

2.1.

During the finetuning, we replace function names in decompiled code with a

¡FUNC¿ token so that the model will not give too much attention to function names and

learn superficial features. We use NT-Xent loss [258] to pull similar function pairs closer

and push dissimilar pairs farther away. The NT-Xent loss for a positive pair (i, j) is defined

as:

LE = − log
exp(sim(zi, zj)/τ)∑2N

k=1 1[k ̸=i] exp(sim(zi, zk)/τ)
(5.6)
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where N is the number of positive pairs in a minibatch, sim(·, ·) denotes the cosine similarity,

τ denotes a temperature parameter, and 1[k ̸=i] ∈ {0, 1} is an indicator function equalling

to one iff k ̸= i. That is, given a positive pair (i, j), all the other 2(N − 1) functions in a

minibatch are treated as negative samples.

Baselines. We compare our approach with different matching strategies: pure embedding-

based, Back-and-forth (B&F), Linear Assignment (Hungarian), Spectral Matching, and

BinDiff [57]. Note that DGMC is not included in our evaluation because it takes too long

for semisupervised training and the performance is poor due to the lack of good training

nodes.

Evaluation Metrics. We rely on debug symbols to recover function names, and use

precision and recall to measure the effectiveness of function matching. We consider only

the functions whose names appear in both binary files and appear only once in each binary

file. For the pure embedding-based approach, for each function in one binary file, we take

the most similar function in the other binary file as a match regardless of the similarity

score. For the rest of the approaches that give one-to-one mapping, we take the matching

results as they are. Note that the Back and Forth Game does not guarantee convergence,

and we stop the matching when we can not find any pair that mutually agrees with each

other. Spectral Matching runs on an affinity matrix, and we only consider the edges whose

node similarity exceeds 0.7 and build a sparse affinity matrix. Otherwise, it would take too

long to process a binary. However, this will also affect the recall of Spectral Matching.
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Table 5.2: Cross-version function matching results.

GA+ (26s) Embed (0.14s) Hungarian (1.7s) B&F (11.6s) Spectral (218s) BinDiff (11.4s)

P R P R P R P R P R P R

Coreutils
v5.93 - v8.1 0.930 0.930 0.855 0.855 0.865 0.865 0.910 0.826 0.940 0.580 0.742 0.716

v6.4 - v8.1 0.932 0.932 0.863 0.863 0.874 0.874 0.918 0.835 0.944 0.615 0.764 0.738

Diffutils
v2.8 - v3.6 0.915 0.915 0.767 0.767 0.805 0.805 0.858 0.732 0.896 0.487 0.811 0.811

v3.4 - v3.6 0.997 0.997 0.936 0.936 0.967 0.967 0.971 0.910 0.701 0.382 0.992 0.989

Findutils
v4.233 - v4.6 0.839 0.838 0.739 0.739 0.756 0.756 0.903 0.704 0.932 0.496 0.704 0.672

v4.41 - v4.6 0.930 0.928 0.829 0.829 0.850 0.850 0.929 0.798 0.956 0.463 0.802 0.783

GMP
v6.0.0 - v6.2.1 0.932 0.932 0.858 0.858 0.906 0.906 0.971 0.822 0.974 0.642 0.985 0.932

v6.1.1 - v6.2.1 0.943 0.943 0.895 0.895 0.930 0.930 0.979 0.863 0.990 0.366 0.990 0.938

PuTTY
v0.75 - v0.77 0.921 0.919 0.823 0.823 0.855 0.855 0.938 0.776 0.695 0.018 0.881 0.871

v0.76 - v0.77 0.784 0.764 0.658 0.658 0.681 0.681 0.815 0.611 0.536 0.013 N/A N/A

5.4.2 Accuracy

Cross-version. In this experiment, we evaluate how different approaches perform in match-

ing binaries of two different versions. The binary pairs in this evaluation are built by GCC-

5.4 on x64 with the default optimization level. The performance and efficiency are reported

in Table 5.2. As shown, GA+ outperforms all the baselines in terms of recall, and Spectral

Matching is slightly better in terms of precision in some cases. The “N/A” in the table

means BinDiff crashed and no matching results were obtained. Overall, the function em-

beddings are able to find the matched functions pretty accurately. Hungarian is about 3%

to 13% better than the pure embedding-based approach, and GA+ is 2% to 15% better

than Hungarian. Spectral Matching has very good precision but it fails to match many

functions.
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The reported efficiency represents the time each approach takes for function match-

ing of the whole cross-version dataset (over 500 MB) based on the similarity matrix. GA+

and embedding-based are measured on GPU while the rest are measured on CPU with

multi-core support. Note that each binary is rather small (a few megabytes at most) and

thus does not contain a lot of functions, so all these approaches can finish in a reasonable

amount of time. BinDiff is evaluated on CPU. Spectral Matching is also evaluated on CPU

because of its large memory requirement for the affinity matrix. Although using a sparse

matrix alleviates the memory pressure for the affinity matrix, the implementation of sparse

matrix multiplication in PyTorch still requires a significant amount of memory and thus

evaluating its efficiency in GPU is nontrivial and we will leave it as future work.

Cross-optimization. We then evaluate the performance on binaries compiled by GCC-5.4

on x64 with different optimization levels. Everything else including version and architecture

is kept the same. Figure 5.3 presents the Cumulative Distribution Function (CDF) figures

of the F1-scores. Again GA+ outperforms all the baselines in terms of F1-score.

Table 5.3: Cross-compiler function matching results.

GA+ (2.8s) Embed (0.02s) Hungarian (0.23s) B&F (1.6s) Specrtral (11s) BinDiff (5.07s)

P R P R P R P R P R P R

Coreutils 0.884 0.884 0.793 0.793 0.826 0.826 0.927 0.726 0.886 0.251 0.363 0.245

Diffutils 0.962 0.962 0.868 0.868 0.912 0.912 0.947 0.827 0.881 0.198 0.421 0.362

Findutils 0.895 0.895 0.792 0.792 0.844 0.844 0.922 0.718 0.931 0.178 0.337 0.247

GMP 0.843 0.837 0.687 0.687 0.820 0.820 0.901 0.621 0.907 0.221 0.935 0.822

PuTTY 0.910 0.876 0.674 0.674 0.759 0.759 0.925 0.617 0.960 0.100 0.404 0.328
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Figure 5.3: Cross-optimization-level Function Matching F1-score CDF

Cross-compiler. We also conduct experiments between binaries compiled by GCC-5.4 and

Clang-3.8 with the default optimization level on x64. Table 5.3 shows the performance of

different matching approaches. GA+ in this task still outperforms all the baselines except

that the precision is slightly behind Spectral Matching.

Cross-architecture. Likewise, the cross-architecture performance shown in Table 5.4

again shows the superiority of GA+ approach. Note that although the pure embedding-
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based approach performs poorly on PuTTY software, GA+ is still able to match between

the two binaries rather accurately, yielding a 45% improvement in terms of precision.

Table 5.4: Cross-architecture function matching results.

GA+ (2.4s) Embed (0.03s) Hungarian (0.35s) B&F (2.4s) Specrtral (11s) BinDiff (8.6s)

P R P R P R P R P R P R

Coreutils 0.889 0.889 0.759 0.759 0.796 0.796 0.917 0.686 0.934 0.191 0.326 0.213

Diffutils 0.951 0.951 0.814 0.814 0.874 0.874 0.961 0.742 0.955 0.360 0.437 0.357

Findutils 0.920 0.911 0.709 0.709 0.814 0.814 0.920 0.646 0.965 0.243 0.336 0.242

GMP 0.496 0.469 0.306 0.306 0.455 0.455 0.673 0.155 0.250 0.002 0.952 0.804

PuTTY 0.963 0.876 0.516 0.516 0.602 0.602 0.894 0.395 0.910 0.062 0.712 0.483

C++ Programs. To assess the impact of indirect calls on various methodologies, we

conducted additional evaluations on five C++ programs sourced from SigmaDiff [136]. It is

worth noting that while SigmaDiff conducts differential analysis at the token level, our study

focuses on the function level. The findings of our investigation are detailed in Table 5.5.

Even without specific optimization for indirect calls in the C++ program, GA+ exhibits

impressive performance in both precision and recall for this task.

Table 5.5: C++ program evaluation

Name Size #Indirect Calls #Nodes in Binaries #Edges in Binaries R P F1

Stockfish 14 vs. 15 stockfish 21.5M 88 454 458 227 229 0.998 0.993 0.996

Xerces-c 3.0.0 vs. 3.2.4 libxerces-c.so 3.6M 3733 6414 6645 3208 3323 0.974 0.942 0.958

Thrift 0.13.0 vs. 0.17.0

libthrift.so 797K 1435 1232 1304 616 652 0.978 0.959 0.968

libthriftz.so 166K 152 277 321 139 161 0.996 0.993 0.995

libthriftqt5.so 64K 124 77 88 39 50 1.0 1.0 1.0
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5.4.3 Efficiency and Scalability

We evaluate the efficiency and scalability of in this section. Specifically, we measure

the time GA+ takes to process a binary pair with the geometric mean of the number of

functions in each binary pair. We also report peak CUDA memory usage. As Figure 5.4

shows, the time and memory usage scale well with the geometric mean of the number of

functions. For small binaries with less than 3,000 functions, each match takes less than

one second in most cases. Even for large binaries with an average of 30,000 functions

(matching one small library with 1,700 functions with a large 200 MB binary with 550,000

functions), GA+ takes only 10 minutes. This evaluation shows that GA+ has good efficiency

and scalability. Note that although PyTorch reported using 40 GB of GPU memory, the

experiment was still run on a single GTX 3080 Ti (with 11 GB of available GPU memory).

The shared memory between the GPU and the host makes large-scale graph matching

possible, significantly enhancing our practical capabilities.

5.4.4 Ablation Study

We conduct an ablation study to evaluate the improvements brought by our mod-

ifications compared to the vanilla graduated assignment algorithm. The vanilla GA still

adopts our vectorization and runs on CUDA because otherwise, the four nested for-loop

take days to finish even when numba [188] is applied. It uses Equation 5.1 as the objective

function, i.e., it considers first-order function similarities and topology, but no call edge

similarities. Table 5.6 shows the averaged precision and recall of the four experiments. The

time represents how long each approach takes to process the whole test set. This experiment
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Figure 5.4: Correlation between the number of functions and time and CUDA memory

usage. The X-axis represents the number of functions divided by 1,000. GM: geometric

mean.

shows that GA+ achieved a 10x to 20x speedup compared to the original GA just owing to

faster convergence. The vectorization speedup was immeasurable because it took too long

for the original GA to process the dataset.
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Table 5.6: Average Precision and Recall of GA+ vs Original GA

GA+ Original GA

P R Time P R Time

X Version 0.912 0.910 26.0s 0.905 0.902 385s

X OPT 0.907 0.867 52.0s 0.887 0.839 931s

X Compiler 0.844 0.819 2.4s 0.867 0.855 37s

X Arch 0.899 0.891 2.8s 0.888 0.881 44s

5.4.5 Case Study

We further evaluate our approach in a real-world security application: vulnerabil-

ity detection. In this study, we re-evaluate the motivating example with GA+ and extend

the experiment to more libraries and binaries. Specifically, We compiled libexpat-2.3.0,

SQLite-3.30.1, and OpenSSL-1.1.1a with GCC-13 and MSVC-2022 on x64 with the default

optimization. We collected 5, 22, and 21 CVEs and their corresponding vulnerable func-

tion names respectively from these libraries. We also compiled nginx with static-linked

OpenSSL-1.1.1a with GCC-13. Nginx has over 6,600 functions and libcrypto.dll has over

7,000 functions. Binaries and Libraries are disassembled by IDA Pro and function embed-

dings are generated by jTrans. This experiment aims to evaluate a) the performance of

GA+ on suboptimal embeddings, and b) how well GA+ can identify vulnerable functions

between two libraries and when libraries are static-linked.
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For the evaluation, we compare libraries and binaries compiled by GCC-13 with

libraries compiled by MSVC-2022, and evaluate if jTrans and GA+ can find the vulnera-

ble functions in top K best-matching results. Figure 5.5 shows that jTrans has difficulty

understanding assembly code generated by unseen compilers, and even the top 100 results

are not very satisfactory. On the other hand, GA+ is still able to identify correct matches

almost always accurately. Moreover, GA+ can correctly identify vulnerable functions even

when they are static-linked in a large binary.
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Figure 5.5: CVE Function Detection Recall
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5.5 Discussion

In this section, we discuss the following limitations of GA+.

Scalability. Due to the graph matching nature, even though we try to improve the

efficiency and reduce memory usage, directly matching two large binaries is still challenging.

There is a line of work [263, 79, 191] that sparsifies the softassign operation, but is not

enough for the indefinite-growing file size.

Large scale search. Vector search has become so efficient that finding similar

functions in a vector database containing hundreds of millions of functions takes less than a

second. With graph matching, however, one has to perform a pairwise comparison so that

large-scale efficiency is far behind embedding-based approaches. However, we argue that it

is a price we have to pay to achieve precise one-to-one mapping. Moreover, we can use the

vector search result as a filter to find library or binary candidates, and then perform GA+

on candidates to achieve both efficiency and accuracy.

Graph deformation. Different compilers, compilation options, function inlining,

C++ templates, and indirect calls can potentially change call graphs and reduce the per-

formance of GA+. However, even when we cannot recover any call edge between functions,

GA+ degrades to linear assignment and still performs relatively well. Additionally, data

nodes such as string references, constants and virtual tables can be added to the graph to

aid the matching. Matching can happen at a finer granularity, e.g., at basic block-level, to

meet different needs and mitigate the graph deformation issue.
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5.6 Conclusion

In this chapter, we have proposed GrassDiff, a novel function matching framework

that leverages binary topology and significantly increases accuracy without too much com-

promise in efficiency. Our evaluation results show 5% to 20% improvements compared to

the pure embedding-based approach. When used for CVE detection, GrassDiff significantly

improves Recall@1 even when the embedding quality is suboptimal. Additionally, matching

a library in a large 200 MB binary only takes 10 minutes. These results show that GrassDiff

is both accurate and scalable.
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Chapter 6

Conclusions

Software supply chain security is vital in modern software lifecycle management,

but a critical missing piece, accurate and efficient SBOM generation, hinders the wide

adoption of SBOMs. In this thesis, we address the SBOM generation problem for both

source code and binary code. We first identified the flaws in the existing open-source

SBOM tools and proposed best practices for metadata-based SBOM generation. For Binary

SBOM, we proposed DeepDi to address the efficiency issue by bringing hundreds of times

speedup to disassemblers, and we proposed GrassDiff to improve function matching in terms

of accuracy and scalability.

For the metadata-based SBOM generation, we conducted the first large-scale dif-

ferential analysis to examine the correctness of SBOM generation solutions. We generated

SBOMs using four popular SBOM generators for 7,876 open-source projects and system-

atically studied the correctness of these SBOMs. Our evaluation uncovered significant

deficiencies in current SBOM generators. Additionally, we identified the design flaws in
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each SBOM generator, and devised a parser confusion attack against these generators, in-

troducing a new path for injecting malicious, vulnerable, or illegal packages. Finally, based

on our findings, we established best practices for creating SBOM generators and introduced

a benchmark to aid their development.

DeepDi, a novel deep learning based technique for disassembly that achieves both

accuracy and efficiency, is proposed to improve SBOM generation efficiency. Our exper-

imental results have shown that DeepDi’s accuracy is comparable to the state-of-the-art

commercial tools and research prototypes, and it is two times faster than IDA Pro, and

its GPU version is 350 times faster. DeepDi is able to generalize to unseen binaries, and

counter obfuscations and certain adversarial attacks.

GrassDiff leverages binary topology and significantly increases binary function

matching accuracy without too much compromise in efficiency. Our evaluation results show

5% to 20% improvements compared to the pure embedding-based approach. When used

for CVE detection, GrassDiff significantly improves Recall@1 even when the embedding

quality is suboptimal. Additionally, matching a library in a large 200 MB binary only takes

10 minutes. These results show that GrassDiff is both accurate and scalable.

6.1 Final Thoughts and Future Works

As software developments rely more and more on the software supply chain, we

are facing more challenges in its security. SBOM is one way of enhancing the software

supply chain security, provided that SBOMs can be accurately and efficiently generated.

There are still many potential directions for better SBOM generation. For example, we
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could incorporate advanced source code, binary code, and reach-to analyses to determine

if a vulnerable function is reachable during runtime to reduce false alarms. Moreover, we

could also incorporate patch presence tests to evaluate if a fix has been backported into the

project without bumping the dependency versions. Downstream applications of SBOM can

also be improved, for example, CPE and PURL are two popular ways to locate packages,

but vulnerability databases do not cooperate well with them.

My future work will focus on incorporating source code analysis and reachability

tests. I will try more techniques to evaluate reachability in both source code and binary,

and reduce false alarms of vulnerabilities.
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