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Abstract

First-Principles Modeling of Diffusion in Complex Materials

by

Hong Ding

Doctor of Philosophy in Engineering - Materials Science and Engineering

University of California, Berkeley

Professor Mark Asta, Chair

The goal of this dissertation is to explore the capability of first-principles modeling
of diffusion in complex materials. Atom diffusion in ferritic alloys and electronic diffusion
in α-MoO3 are chosen as examples to demonstrate the computational study of diffusion
properties in solid-state materials using first-principles modeling frameworks.

We first study the atomic diffusion problems for the development of high-temperature
creep-resistant Fe-based multicomponent alloys. The temperature dependent self and so-
lute diffusion coefficients in bcc Fe are calculated using density-functional theory, including
the computation of diffusion prefactors and activation energies. For the self diffusivity, a
spin-wave methodology is used for modeling the paramagnetic state to account for the effect
of magnetic disorder on diffusion activation energy. Calculated self diffusion coefficients are
shown to accurately reproduce the experimental measurements, including the anomaly in
the Arrhenius plot near the Curie temperature. The solute impurity diffusion coefficients of
the transition metal solutes (Ti-Zn, Nb-Cd and Ta-Au) are further calculated and shown to
be comparable to available experimental measurements for most solutes. Our calculations
show a general solute impurity diffusivity trend with minimum values for a given transition-
metal row corresponding to solutes in the middle of series. Further we find a trend that
diffusion of 5d solutes are slower than 3d which are slower than 4d. The results suggest
that Co, Re, Os and Ir are the slowest diffusing solute species in bcc Fe, and these elements
may be effective additions for slowing coarsening rates in precipitation-strengthened ferritic
alloys. Additionally, some initial work for developing an automated computational tool for
calculating equilibrium point defects in intermetallic compounds is established, to assist
future first-principles calculations of diffusion coefficients in these ordered alloy phases.

First-principles modeling is further employed to study adiabatic diffusion of elec-
tron small polarons in α-MoO3, a material that has received significant attention for elec-
trode applications in batteries and electrochemical supercapacitors. Density functional
theory based calculations with van der Waals corrections (empirical dispersion corrections
and van der Waals functionals) and self-interaction error corrections (Hubbard-U correc-
tion and hybrid functionals) are used to obtain accurate atomic and electronic structures
of α-MoO3, respectively. After obtaining the atomic structure of an isolated electron small
polaron structure, we present a computational scheme for calculating polaron adiabatic
hopping barriers in the nearest-neighbor directions. Results suggest strong polaron diffu-
sion anisotropies in crystalline α-MoO3. The effects of lithium-polaron binding and lattice
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relaxation are further studied in order to understand their effects on electron mobilities
during Li intercalation.

Overall, the results presented in this dissertation demonstrate the predictive ca-
pabilities of first-principles modeling for studying diffusion problems in complex materials.
The computational framework presented here can be extended to other advanced materials
of interest.
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Chapter 1

Introduction and Background

Diffusion has been a theoretical research topic since the early nineteenth century.
The current theoretical studies of the diffusion process can be classified into different length-
scales: (1) The continuum theory of diffusion was founded by German physician Adolf Fick
in 1855 [20, 21], with his famous mathematic description of diffusion, known as Fick’s laws
of diffusion; (2) The microscopic picture of diffusion was motivated by the observations of
Scotish botanist Robert Brown in 1827 [22], which led to further theoretical work by Albert
Einsten in 1905 [23] that provided the statistical cornerstone for bridging stochastic mi-
croscopic process and macroscopic diffusion; (3) The atomistic theory of diffusion was not
heralded until early 20th century when German, Soviet and American physicists Max von
Laue, Walter Schottky, Yakov Frenkel and Ernest Kirkendall demonstrated the important
roles of point defects in controlling diffusion in crystalline materials [24, 25, 26, 27] . The
time scales of diffusion problems also correspond to the diffusion rates in different material
phases: the continuum and microscopic diffusion theories are inspired by the fast diffusion
rates in gas and liquid, while diffusion at the atomic scale in solids occurs at a slower rate.
Because diffusion processes are an integral part of microelectronics and energy applications,
including ionic and electronic diffusion in batteries, and doping of semiconductors, it follows
that diffusion properties in solid-state materials significantly affect material performance.

In the context of understanding diffusion phenomena in solids, extensive exper-
imental studies have been undertaken in order to unravel the diffusion mechanisms and
derive the kinetic parameters. These experiments have given some insight and basic rules
for the theoretical predictions of diffusion properties in solid-state materials. However,
direct observation of the diffusion processes still requires state-of-the-art characterization
technologies, which results in the widespread uses of phenomenological explanations to pre-
dict diffusion mechanisms. In general, experimental measurements often provide values for
diffusion coefficients that reflect an average over a specific diffusion zone and over multiple
diffusion mechanisms contributing to the total diffusion flux. For example, self diffusion in
closed-packed bulk crystalline materials at room temperature is mainly a vacancy-mediated
process. However, the presence of other defects, such as impurities, dislocations, grain
boundaries and surfaces, can significantly affect the diffusion processes and rates. Thus, it
turns out to be very difficult for experiments to provide quantitive results, such as activa-
tion barriers, for individual diffusion mechanisms. Also, it is still challenging for the current
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characterization techniques to detect the detailed structural information related to diffu-
sion process , such as correlation factors and local structural distortions. The complexity of
experimental studies of diffusion in solid-state materials make them both time-consuming
and labor-intensive, requiring persistent and concerted efforts to produce reliable diffusion
data for solids.

Considering the difficulty involved in the experimental studies, there has been
a tremendous growth of interest in applying theoretical and computational modeling for
studying diffusion phenomena and properties. Several computer simulation methods for
modeling diffusion properties in solid-state materials have been developed. These meth-
ods cover the length scale from the atomic to continuum level, and the timescale from
picosecond up to days. Figure 1.1 shows a schematic representation of these computational
modeling methods over different time and length scales. The use of atomistic computational
modeling for diffusion properties in solid-state materials is essential for reducing traditional
experimental efforts and providing atomic parameters for mesoscale and continuum level
diffusion property simulations.
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Figure 1.1: Schematic representation of the different computational modeling techniques
by time and length scales: First-principles (FP), Molecular Dynamics (MD), Monte Carlo
(MC), Phase Field (PF), ThermoChemical (TC) / ThermoPhysical(TP) model and Finite
Element Method (FEM).

Several atomistic modeling and simulation approaches based on first-principles
calculation, molecular dynamics and Monte Carlo methods have been widely developed for
studying diffusion properties. A standard molecular dynamics simulation would track the
motions of each atom in the simulation box within the framework of classical mechanics.
Through the atomic trajectories we can derive the diffusion properties based on statis-
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tical mechanics. Typically, a molecular dynamics simulation involving about millions of
atoms will operate up to nanoseconds. With the improved conformational space sampling
method, the accelerated molecular dynamic methods can extend the timescale further up
to microseconds. Further, Monte Carlo and generalized kinetic Monte Carlo methods are
other simulation approaches, which track direct exchange dynamics during the atomistic
diffusion processes. Collected exchange information can be useful to analyze the spatial
and temporal evolution of systems, which yield the basic diffusion properties of materials
under study. Nevertheless, for the above-mentioned molecular dynamics and Monte Carlo
method based studies, one of the most challenging problems is a realistic description of
the interatomic interactions during the diffusion process. In particular, solid-state diffusion
involves significant local crystal distortions and activation-state properties, and the relevant
energy changes are hard to be accurately described based on the potentials usually used in
these simulations. In this context, it is desirable to have a computational approach bridging
atomic and electronic level modeling, which would give a more reliable description of energy
changes during the diffusion process.

With the exponential growth of computation power in the past decades, first-
principles modeling, based on density functional theory, has become a powerful alternative
tool for studying the interatomic interactions at electronic and atomic level. In the frame-
work of density functional theory, the energy of a system could be described as a functional
of the atomic positions and electronic density. Previously, material thermodynamic proper-
ties have been actively studied based on first-principles modeling. The recent integration of
transition-state theory and other diffusion theories leads to further extension of the model-
ing technique to the area of kinetic properties in materials, especially for studying diffusion
properties. The application of first-principles techniques is not only capable of providing
the correct interatomic interactions and energies for various diffusion processes, but also
shedding light into the electronic structure effects on diffusion properties.

In what follows, we first introduce the basic theory and methodology for first-
principles modeling, in particular density functional theory in Chapter 2. Several practical
implementations are discussed, such as exchange-correlation functionals, weakly bonding
and strong correlation interaction correction, and pseudopotential methods. Also other
theories and approximations used to study diffusion properties, such as free-energy approx-
imation and transition state theory, are discussed.

In Chapter 3, we present first-principles calculations aimed at atomic diffusivity in
Fe-based alloys. This work was motivated by an experimental/computational collaborative
effort of designing creep-resistant Fe-based multicomponent alloys for high-temperature
applications [28, 29, 30]. The alloys under current experimental investigations contain fine
dispersions of coherent, nanoscale (B2-NiAl based) intermetallic precipitates in a bcc Fe
matrix. Using the calculation of alloy phase diagrams (CALPHAD) formalism [31, 32,
33] to model microstructure dynamics in such complex multicomponent phase equilibria
requires various mobility data. Current first-principles calculations of self and impurity
solute diffusion coefficient calculations in bcc Fe are expected to augment the solute mobility
databases [34], and to give guidance for the search of slow diffusing solutes in the Fe matrix,
for slowing the coarsening rate of precipitates [35]. To further help the design of intermetallic
precipitate strengthened ferritic alloys, we also present the point defect studies in ordered
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intermetallic compounds for future modeling of the kinetics in intermetallic precipitates.
In Chapter 4, we show first-principles calculations of small electron polaron forma-

tion and adiabatic diffusion in α-MoO3 for electrode material applications in energy-storage
devices (batteries and pseudocapacitors) [36, 37, 38, 39, 40]. The electrochemical reactions
involved in energy storage applications require the conduction of charged particles (electrons
and ions) across solid electrodes and liquid or solid electrolytes. Usually, the limiting factor
is the ionic conductivity [41, 42, 43], whereas the unique layered structures of α-MoO3 leads
to significant interests in the electronic conductivity through polaron diffusion [44, 36, 45].
A first-principles computational scheme for evaluating the diffusion of the electron small
polarons and the lithium-polaron interactions in the system is developed in the present
work, in order to help understand the electron mobilities in bulk α-MoO3.

Chapter 5 provides concluding remarks of all the work, including suggestions for
future research directions.
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Chapter 2

Basic Theory and Methodology

In this chapter, the basic theory and methodology for first-principles modeling
of diffusion is reviewed, as background for the results presented below. The chapter is
divided into three sections: Section 2.1 gives an general overview of first-principles density
functional theory, Section 2.2 reviews the methods for calculating vibrational free energy to
model the finite temperature effects on diffusivities, and Section 2.3 discusses the transition
state theory which is used in this work for studying the temperature dependence of the rate
for diffusion.

2.1 First-principles Density Functional Theory

2.1.1 Define the problem

A system with N nuclei at coordinates (R1, R2, ..., RN−1, RN ) and n electrons at
coordinates (r1, r2, ..., rn−1, rn), is governed by the Schrödinger equation [46]:

HΨ = EΨ (2.1)

where Ψ is the wave function, E is the total energy of the system, and H is the full Hamil-
tonian given by

H = − h̄2

2me

∑
i

∇2
i︸ ︷︷ ︸

Te

− h̄2

2Mα

∑
α

∇2
α︸ ︷︷ ︸

Tn︸ ︷︷ ︸
T

+
1

2

∑
i 6=j

e2

|ri − rj |︸ ︷︷ ︸
Vee

−
∑
α,i

e2Zα
|ri −Rα|︸ ︷︷ ︸
Ven

+
1

2

∑
α 6=β

e2ZαZβ
|Rα −Rβ|︸ ︷︷ ︸
Vnn︸ ︷︷ ︸

V

(2.2)
where the sum are over all the particles for kinetic energy T (including both electron Te and
nuclei Tn parts) and potential energy V (including electron-electron Vee, electron-nuclei Ven
and nuclei-nuclei Vnn parts). Here, e and Zi denote the electron and nuclei charges, me and
Mα denote the mass of electron and nuclei α, respectively.

The significant mass difference between electrons and nuclei (on the order of 103)
suggests that the electron can nearly instantaneously adapt to the motion of nuclei, which
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makes the Born-Oppenheimer approximation [47] accurate. The Hamiltonian for the elec-
trons is then reduced to:

H = Te + Ten + Vee + Ven (2.3)

However, this many-body problem for electrons in a Hamiltonian with nuclei coordinates is
still extremely hard to solve, and further simplifications for an accurate solution is needed.

2.1.2 The Hohenberg-Kohn theorems

The most successful approximation was given in the 1960s by the Hohenberg-Kohn
theorem [48], which later yielded the basic principles of density functional theory. The first
theorem states that for a system consisting of n interacting electrons, the external potential
Vext(~r) and the corresponding total energy is a unique functional of the electron density
n(~r):

E[n(~r)] = F [n(~r)] +

∫
n(~r)Vext(~r) (2.4)

where F [n(~r)] is a universal functional of n(~r). This theorem is more or less like a math-
ematical existence theorem, which alone proposed the existence of the universal function,
but it does not present how to explicitly calculate this unknown functional.

The second Hohenberg-Kohn theorem states that for any particular Vext(~r), the
exact ground-state electronic density n0(~r) and energy E0 corresponds to the minimum
value of the functional E:

E0 = E[n0(~r)] = min{E[n(~r)]} (2.5)

The proofs of the theorems can be found in Ref. [49]. The theorems could also be extended
to more realistic situations, which include electrons having spin, finite temperature and
electric field effects.

2.1.3 Kohn-Sham Equations

In 1965, Kohn and Sham [50] proposed that the extremely complicated many-body
system can be replaced with a fictitious picture for non-interacting electrons moving within
an effective external potential Veff. Starting from the Hohenberg-Kohn theorems, the energy
can be obtain from a functional F [n(~r)] of the electron density n(~r), and in the framework
of Kohn and Sham, the F [n(~r)] consists of three different parts, and the functional E is
given by

E[n(~r)] = Ts[n(~r)] + EH [n(~r)] + Exc[n(~r)] +

∫
n(~r)Vext(~r) (2.6)

where first term is the kinetic energy of the non-interacting electrons Ts[n(~r)] within the
non-interacting electron picture, and can be constructed by the Kohn-Sham orbitals φi(~r):

Ts[n(~r)] = −1

2

N∑
i

φ∗i (~r)∇2φi(~r)d~r (2.7)
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and

n(~r) = −e
N∑
i

|φi(~r)|2 (2.8)

The second term EH [n(~r)] denotes the classical static Coulomb interactions in the Hartree
approximaiton:

EH [n(~r)] =
1

2

∫
n(~r)n(~r′)

|~r − ~r′|
(2.9)

and the last term is exchange-correlation energy Exc[n(~r)], defined as

Exc[n(~r)] = (〈T 〉 − Ts[n(~r)]) + (〈EH〉 − EH [n(~r)]) (2.10)

which contains the kinetic and potential energy differences between the exact (〈T 〉 and
〈EH〉) and non-interacting (Ts[n(~r)] and EH [n(~r)]) electrons, respectively. Hereafter, an
effective potential Veff(~r) is constructed as Veff(~r) = VH(~r) + Vxc(~r) + Vext(~r) which leads to
the well-known Kohn-Sham equations:

[−1

2
∇2 + Veff(~r)]φi(~r) = εiφi(~r) (2.11)

The exchange-correlation functional and the related energy expression in the Kohn-
Sham approach are in general unknown and commonly approximated. The accuracy of
this approach is primarily dependent on the quality of approximations for the exchange-
correlation functional. Usually, the exchange-correlation functional is split into the exchange
(Ex[n]) and correlation (Ec[n]) terms, i.e. Exc[n] = Ex[n] + Ec[n] (in Section 2.1.5, we
will discuss different approximations for the exchange-correlation interactions). With these
approximated exchange-correlation functionals, the Kohn-Sham equation can be solved self-
consistently. The iterative process of self-consistently solving the Kohn-Sham equations is
illustrated in Figure 2.1.

2.1.4 Spin-Polarized System

Electrons can be charactered with spin-up and spin-down fermions, therefore, to
treat any spin-polarized system, we need an extension of the Kohn-Sham approach for
calculating the ground-state charge density . Within the spin-polarized density functional
theory [51], the total electron density is rigorously decomposed to two types of densities:
i) Particle density: n(~r) = n(~r, ↑) + n(~r, ↓)
and
ii) Spin density: s(~r) = n(~r, ↑)− n(~r, ↓)
where n(~r, ↑) and n(~r, ↓) denote the partial densities for spin-up (↑) and spin-down (↓),
respectively. Following the notation of Pant and Rajagopal [52], the variational principle
for obtaining the ground state partial charge density (n0(~r) and s0(~r)) can be expressed as

E[n(~r), s(~r)] ≥ E[n0(~r), s0(~r)] = E0 (2.12)

By analogy to the derivation of the Kohn-Sham Equation 2.11, the effective single-
particle equation for spin-polarized systems can be expressed as

[−1

2
∇2 + V δ

eff(~r)]φi(~r)
δ = εδiφ

δ
i (~r) (2.13)
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Figure 2.1: A flow chart of the iteration scheme for self-consistently solving the ground state
electronic density. The calculation will converge when input and output electron density or
total energy agree to within a prescribed precision.

where the two parts δ =↑ and δ =↓ are coupled and subject to an external magnetic field
which is part of the effective external potential Veff. For some systems, such as itinerant
magnets, the lowest energy solution may be spin polarized. The spin functional accounts
for magnetic effects and leads to the spin splitting in the system.
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2.1.5 Exchange-Correlation Functional

In this section, we will review different approximations for defining the exchange-
correlation energy as the functional of electron charge density. The most basic approach
is called local density approximation (LDA), where the total exchange-correlation energy
is obtained from an integration over all space for exchange-correlation energy potential
εxc[n(~r)], which is approximated with a local homogeneous electron gas density n(~r):

ELDAxc [n(~r)] =

∫
n(~r)εxc[n(~r)]d~r (2.14)

The exchange-energy density in LDA can be analytically determined by the Hartree-Fock ap-
proach (neglecting the correlation interactions) and it can be analytically expressed as [53]:

εx[n(~r)] = −3

4
[
3

π
n(~r)]1/3 (2.15)

However, an analytic expression for the correlation energy of the homogenous electron
gas is still unknown except in the limits of infinitely-weak or infinitely-strong correlation
systems. Ceperley and Alder [54] first performed quantum Monte-Carlo calculations for
the homogeneous electron gas, yielding relatively accurate values of the correlation energy
density for several intermediate values of the charge density, and they were later further
interpolated to all densities [55].

For the system where the local charge density varies significantly, the LDA can
be inaccurate. Therefore, the generalized gradient approximation (GGA) scheme was later
introduced to account for the effect of the charge density gradient on exchange-correlation
energy, which can be implicitly given as:

EGGAxc [n(~r)] =

∫
n(~r)εxc[n(~r)]Fxc[n(~r),∇n(~r)]d~r (2.16)

where Fxc[n(~r),∇n(~r)] is an enhancement factor chosen with different schemes. The forms
of Fxc[n(~r),∇n(~r)] are usually carefully constructed and written as a function of Seitz radius
rs and the reduced density gradient s(~r). The s(~r) is a dimensionless parameter defined as:

s(~r) =
|∇n(~r)|

2kF (~r)n(~r)
(2.17)

where kF (~r) is the local Fermi momentum. Several formulations of the exchange-energy
enhancement factor have been suggested, such as Becke 88 [56], PW91 [57], PBE [58]
and optB88 [59] exchange functionals. The relations between enhancement factor and the
magnitude of reduced density gradient for these functionals are plotted in Figure 2.2. It is
known that a smaller exchange enhancement factor corresponds to less repulsive exchange
functionals, which gives rise to higher energy for non-homogeneously charged systems [60].

In general, the LDA functionals tend to overbind, leading to smaller lattice con-
stant predictions, whereas GGA functionals tend to underbind, leading to overestimation
of lattice constants.



11

Figure 2.2: A comparison between exchange functions (FX) and reduced charge density s
for different GGA functionals.

2.1.6 Weakly-bonded interactions

The weak van der Waals (vdW) interactions are ubiquitous in nature. In particu-
lar, these vdW forces plays an important role in structural stability in materials. However,
an accurate description of the vdW force is very challenging for density functional theory.
The nonlocal features of interaction is beyond the reach of simple approximations (LDA
and GGA) of conventional density functional theory. Currently, two types of computational
efficient vdW interaction corrections in density functional theory have been developed to ac-
count for the dispersion forces: (1) adding semi-empirical vdW interactions or (2) employing
a nonlocal exchange-correlation functional.

The former form of vdW force correction is an inexpensive approach but not really
“first-principles”. The most well-developed approach was proposed by Grimme [61], and
in what follows it will be referred as the DFT-D method. In this approach, a force-field
like dispersion potential E(D) in asymptotic form is added between each pair of close-shell
atoms located at ~ri and ~rj :

E(D) = s6
Cij

|~ri − ~rj |6
fD(|~ri − ~rj |) (2.18)

where Cij is the pairwise semi-empirical dispersion coefficients, s6 is a parameter that de-
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pends on the choice of exchange-correlation functional, and fD(|~ri−~rj |) is a function used to
damp the singularity for |~ri−~rj |−6. For the coefficient Cij , in the first implementation (DFT-
D1) [61], they were empirical parameters. For describing the interactions between different
atoms, a mixed value in the form of a harmonic mean, i.e. Cij = 2CiCj/(Ci+Cj), was used.
In the subsequent implementation (DFT-D2) [62], it instead employed the geometric mean,
i.e. Cij =

√
CiCj , with each atomic parameter obtained from the first-principles calculated

atomic ionization potentials and dipole polarizabilities. The newer version (DFT-D3) [63]
derived these values through time-dependent density functional theory calculations for dif-
ferent geometries, which considers more of atomic local environment. For a summary and
review of this approach and implementation see Ref. [64].

The latter type of vdW force corrections expresses the vdW interactions within
the non − local correction terms as derived by Dion et al. [65] using adiabatic-connection
fluctuation-dissipation theorem. The correlation functional is separated into local and non-
local parts:

Ec = E0
c + Enlc (2.19)

where the local part (E0
c ) still makes use of LDA functional while several other approxima-

tions are employed for the nonlocal part (Enlc ) which accounts for vdW interactions. The
particular form of the nonlocal correlation functional (Enlc ) has been a subject of intensive
studies, and it is usually expressed as:

Enlc =
1

2

∫
i

∫
j
n(~ri)φ(~ri, ~rj)n(~rj)d~rid~rj (2.20)

which involves a double integration of the response functional (kernel) φ, which is a function
of charge spatial coordinates. The magnitude of the non-local term is much smaller than
the local correlation term E0

c , which makes it easy for approximating it through a simple
dielectric function [65]. Several schemes have been developed to improve the efficiency of
evaluating the non-local correlation energy through a double spatial integral [66].

Several schemes of exchange-correlation functional have been proposed, like origi-
nal revPBE functional [67] and its alternatives optPBE, optB88 [59] and optB86b [60]. The
performance of these functionals was first evaluated through a set of twenty-two dispersion-
bound molecular complexes and later applied for studying other systems. Other functional
forms have also been suggested in the literature, such as the VV09 [68] and VV10 [69]
schemes. A modified version of van der Waals density functional (vdW-DF2) was proposed
by Lee et al. [70] which makes uses of semi-local exchange functional (PW86) with refit-
ted parameters (rPW86) and a non-local correlation energy kernel. Most recently, Berland
and Hyldgaard further modified the exchange-correlation functional based on the plasmon
description and analysis of exchange interactions in the large enhancement factor regime
(vdW-DF-cx) [71], which yields more accurate predictions of lattice constant and bulk mod-
uli for layered materials.

2.1.7 Strongly Correlated Systems

Simple density functional theory approximations also fail in some strongly-correlated
systems, typically for localized states with open d and f shells, where the conventional LDA
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and GGA methods yield incorrect predictions of the occupancy of the localized states. For
example, LDA or GGA give partially filled d-band with metallic behavior and itinerant
d-electrons for the case of one electron within an orbital-independent potential. Several
attempts have been made in order to overcome this problem by taking into account the
strong correlation interactions.

One approach proposed by Perdew and Zunger [55] was called self-interaction
correction (SIC) method, which produces the localized nature of the electrons for transi-
tion metal compounds, while the calculated SIC one-electron energy deviates significantly
from experimental measurements [72]. The Hartree-Fock (HF) method uses the term for
canceling the self-interaction [73], which gives the correct discription of the Mott insula-
tor problem. However, in the pure Hartree-Fock approximation, it neglects the screening
of Coulomb interactions, which results in band gap predictions much higher than exper-
imental measurements. In contrast, another approach called GW approximation [74, 75]
treats the electron self-energy as expansion of single particle Green’s function (G) and the
screened Coulomb interaction (W), which can be regarded as a Hartree-Fock treatment with
frequency- and orbital-dependent screened Coulomb interactions. However, the implemen-
tations of GW calculations in solids become extremely computationally expensive.

In the present study, two other approaches are employed: (1) DFT+U and (2) hy-
brid functional methods. The former approach introduces an orbital-dependent interaction
term with an energy scale parameter U . In general, the total energy of a system in the
DFT+U formalism is given as follows:

EDFT+U[n(~r)] = EDFT[n(~r)] + EHub[{nIσ
mm′
}]− Edc[{nIσ}] (2.21)

where EDFT represents the total energy functional obtained from conventional density func-
tional theory and EHub is the term with the Hubbard Hamiltonian to correct the correlated
states. The term Edc is used to eliminate the ”double counting” (dc) due to the presence of
EHub for the correlated electrons from the conventional EDFT. Here, we adopt the notation
nIσm which denotes the occupation numbers of the localized orbitals with atomic site index
I, state index m and spin index σ, nIσ

mm
′ is the occupation numbers product of states m and

m
′
, and nIσ =

∑
m n

Iσ
m . Within the fully localized limit implementations, Equation 2.21

can be further simplified as [76]:

EDFT+U[n(~r)] = EDFT[n(~r)] +
∑
I

U I

2
[

∑
m,σ 6=m′ ,σ′

nIσm n
′Iσ′
m −

∑
σ

nIσ(nIσ − 1)] (2.22)

where the orbital-dependent parameter U I corresponds to the Hubbard U correction in
DFT+U framework. The DFT+U method is one of the simplest approaches to improve the
description of the strongly-correlated systems, which shows good performance of ground
state energy, atomic force and stress calculations.

In the hybrid functional methods, the exchange-correlation functional is approx-
imated by mixing the “exact” exchange energy from the Hartree-Fock approximation and
exchange-correlation energy from conventional functionals like LDA or GGA. The Hartree-
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Fock exchange functional is given as [76]:

EHFx [n] = −1

2

occ∑
i,j

∫
d~rid~rj

φ∗i (~ri)φ
∗
j (~rj)φj(~ri)φi(~rj)

|~ri − ~rj |
(2.23)

where the sum runs over all the occupied orbitals φi with the same spins. The first hy-
brid functional was introduced by Becke [77] by including half of Hartree-Fock exchange
functional and half of conventional exchange-correlation functionals, i.e. Exc = 1

2(EHFx +

E
LDA/GGA
xc ). Several other schemes were later proposed with various modifications, like,

B3LYP [78], PBE0 [79, 80] and HSE [81], which have been widely applied for studying
various systems and presented good performance on addressing strong correlation issues
within reasonable computational complexities.

2.1.8 Pseudopotential

A density functional theory calculation with all electrons in a solid is still cumber-
some and computationally expensive. Electrons near the atomic nucleus (core electrons)
are hardly affected by the dynamics of the valence electrons and external potentials. The
valence electrons participate mostly for forming binding under ambient conditions, while
the contribution from core electrons are rare. Therefore, the electronic properties of ma-
terials are dominated by the valence electron interactions. In this case, if we separate the
dynamics of the core and valence electrons, the interaction between the core electrons and
valence electrons can be approximated using an effective potential. This leaves only the
valence electrons of interest for the electronic structure calculations. In particular, given
that the valence (ψvi (~r)) and core (ψcj(~r)) electron wavefunctions all satisfy Kohn-Sham
Equation 2.11 with eigenvalues of εvi and εcj , respectively, valence electron wavefunctions
can be rewritten as [82]:

ψvi (~r) = ψ̃vi (~r)−
∑
j

< ψcj |ψ̃vi (~r) > ψcj(~r) (2.24)

and the pseudo external field V ps
ext for the valence electron wavefunction is given by

V ps
extψ̃

v
i (~r) = Vextψ̃

v
i (~r) +

∑
j

(εvi − εcj) < ψcj |ψ̃vi (~r) > ψcj(~r)ψ̃
v
i (~r) (2.25)

The new pseudo wavefunctions for the valence electron still satisfy the Kohn-Sham equa-
tions:

[−1

2
∇2 + V ps

ext]ψ̃
v
i (~r) = εiψ̃

v
i (~r) (2.26)

Here, an effective pseudopotential (V ps
extψ̃

v
i (~r)) is introduced to reproduce the valence elec-

tron density outside the core region.
Several different pseudopotential schemes have been suggested. In this work, the

projected-augmented-wave (PAW) pseudopotentials [83] are used in most cases. In the PAW
method, the electronic wavefunction is expressed as a valence part expanded in the plan-
wave basis and a contribution from the core radius of each nucleus. The contribution from
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the core region can be further written as the difference between the atomic orbitals and that
wavefunction within the core region to adjust for different environments. The valence term
is smooth and easy for calculation within a Cartesian grid, while the contribution from the
core radius requires evaluation with radial grids. Overall, the PAW method is a convenient
approach to address the feature of rapid oscillations of the valence electron wavefunction
close to the ion core. Details about the implementation is available in Ref. [84].

2.1.9 Ionic force and relaxation

The ionic forces in density functional theory calculations are evaluated by applying
the Hellmann-Feynman theorem [85, 86] to the variations of ionic positions:

~F = −∂E
∂ ~R

= − < φ|∂H
∂ ~R
|φ > (2.27)

where φ denotes the ground-state wavefunction. The force on ion α at position Rα inter-
acting with surrounding ions positioned at {R} can be further rewritten as [82]:

~F = −
∫
r
n(r)

Ven(r −Rα)

∂Rα
dr − ∂Vnn({R})

∂Rα
(2.28)

where n(r) is the corresponding electron charge density.
For the system searching for the lowest-energy configuration, the atomic positions

can be relaxed according to the ionic forces calculated with Equation 2.27 until they vanish
at the equilibrium states. This kind of searching can be in general performed with different
optimization methods like quasi-Newton or conjugate gradient algorithm, in order to obtain
the lowest-energy equilibrium states.

2.2 Vibrational Free Energy

2.2.1 Harmonic Approximation

For systems at elevated temperature, the lattice vibrations (phonons) contribute
to the total energy in the system. The harmonic approximation suggests that each atom
deviates only slightly from the equilibrium position and the vibrational energy (Hvib) of the
system is evaluated with a sum of the quadratic terms based on atomic displacements:

Hvib =
1

2

∑
lsα,l′ tβ

φlsα,l′ tβµlsαµl′ tβ (2.29)

where µls indicates the displacement of atom s located in unit cell l, and α and β indicate
the Cartesian components. The φlsα,l′ tβ is the force-constant matrix defined as:

φlsα,l′ tβ =
∂2U

∂µlsα∂µl′ tβ
(2.30)
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with all atoms at equilibrium positions with potential energy U . The force-constant matrix
connects the ion forces Fls and the corresponding displacement of µl′ t through the relation:

Flsα = −
∑
l′ tβ

φlsα,l′ tβµl′ tβ (2.31)

The corresponding vibration energy is determined by the number of thermally activated
vibration modes at a given temperature T . Based on the harmonic approximation partition
function of the lattice vibration, the Helmholtz free energy takes the form [87]:

Fvib(T ) = kBT
∑
q

∑
s

ln {2 sinh [
h̄ωqs
2kBT

]} (2.32)

where kB is the Boltzmann constant and ωqs denotes the frequency of the s-th vibration
mode with wave-vector q. The vibrational frequency ωqs is the eigenvalue of the dynamical
matrix (Dsα,tβ(q)) which can be calculated through Fourier transformation of the force
constant matrix as:

Dsα,tβ(q) =
1√

MsMt

∑
l

φlsα,0tβ exp [−iq(Rls −R0t)] (2.33)

where the sum is over the infinite number of cells in the crystal and Rls denotes the position
of atom s in equilibrium state with atom mass Ms in primitive cell l. Within the high-
temperature limit where h̄ωqs � kBT and sinh (x) ≈ x (for x → 0), Equation 2.32 can be
approximated as

Fvib(T ) ≈ kBT
∑
q

∑
s

ln (h̄ωqs/kBT ) (2.34)

and the vibration entropy could be obtained as

Svib = −(
∂F

∂T
)V = kB[

∑
q

∑
s

ln (kBT/h̄ωqs) + 1] (2.35)

In this work, the vibrational free energy of interest is related with the defect formation and
migration free energy, which requires supercell calculations. In performing the sums over
states in Equations 2.34 and 2.35 we use only the q = 0 modes for the supercell. For a
n1 × n2 × n3 supercell this corresponds to a n1 × n2 × n3 sampling of the Brillouin zone of
the primitive unit cell.

2.2.2 Phonon Calculations

Several schemes have been proposed to calculate the phonon vibrational frequen-
cies ωqs in Equation 2.32. To obtain the full dispersion relation, the finite displacement
method [88] or the linear response method [89] based on the density functional perturbation
theory can be applied. The finite displacement method involves constructing the dynami-
cal matrix from the forces that result from displacements of atoms from their equilibrium
positions, while the linear response method calculates the dynamical matrix directly from
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a set of wave-vector q through evaluating the second-order change in the potential energy
induced by atomic displacements.

In this work, the most direct frozen-phonon approach is employed to evaluate the
vibrational frequencies at q = 0 mode in the supercell. In this approach all symmetry-
distinct displacements in the unit cell are made and the resulting forces on all of the atoms
calculated. From this information the q = 0 dynamical matrix can be constructed and its
eigenvalues can be determined to give the required vibrational frequencies. A drawback
of the frozen-phonon approach is that the chosen wave-vector q should be commensurate
within the cell, and for general q 6= 0, the translation symmetry is lost and cannot be
calculated with this approach.

2.3 Transition State Theory

The electronic and atomic diffusion calculations in the work presented below re-
quires a description of the activated process to change from the initial to final stable states.
Transition state theory has been a useful guide for understanding the basic physics of the
infrequent events, and it is employed here to calculate activation energies and hopping
frequencies of atoms and electrons. Herein, this process can be considered as a dynamic
trajectory of the system in its configuration space. These two initial and final states cor-
respond to two local minima on the potential energy surface, respectively, and there is a
dividing surface between these two energy basins. At temperature T , the system within
the initial state accumulates enough activation energy to overcome the energy barriers to
reach the dividing surface. Once the dynamic trajectory for the system crosses the dividing
surface, it transits to the final state basin (assuming zero recrossing) and thermalizes again
before make the next transition. The residence time in a given basin is much longer than
the timescale for making a transition, which makes the next transition independent with
respect to previous transition.

In general, the transition state rate constant k can be written as [90]:

k = (kBT/h) exp[−∆G/kBT ] (2.36)

where ∆G is the difference in free energy between the activated and equilibrium states.
Substituting the definition of the Gibbs free energy ∆G = ∆H − T∆S, where ∆H and ∆S
correspond to the enthalpy and entropy changes, respectively, we obtain

k = (kBT/h) exp[∆S/kB] exp[−∆H/kBT ] (2.37)

which follows the form of an Arrhenius rate constant:

k = A exp(−Ea/kBT ) (2.38)

with A = (kBT/h) exp[∆S/kB], a pre-exponential frequency factor which determines the
activation entropy and Ea = ∆H, an exponential factor that depends on the activation
enthalpy.

To apply transition state theory to the study of diffusion properties, it is also im-
portant to identify the minimum energy path and saddle configuration. The configurations
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on the minimum energy path has the energy minimum in all other directions except along
the pathway. The maximal energy barriers along the minimum energy path are reached on
the saddle configuration, with one particular negative eigenvalue of the dynamical matrix
corresponding to the eigenvector parallel to the path. In principle, the saddle configuration
is the bottleneck of the whole transition path.

The harmonic transition state theory is a simple approximation often used for
reaction rate calculations. The ideal and analytical expression of the harmonic transition
state theory approximation was proposed by Vineyard in Ref. [91], which has been widely
applied for studying rate constants in solids. This approach is based on the normal approx-
imation that the potential energy surfaces around the initial state and saddle configuration
are smooth for harmonic expansions of the potential energy.

Using the harmonic theory to compute the migration free energy leads to an ex-
pression for the hopping frequency involving the zero-temperature energy barrier and the
vibrational frequencies in the equilibrium and saddle point states. These approximations
and the high-temperature limit give rate constants under the harmonic transition state
theory:

k = ν̃ exp[−Ea/kBT ] (2.39)

where the pre-exponent factor can be written as

ν̃ =

∏N
j=1 ν

ini
j∏N−1

j=1 νsadj

(2.40)

where νini and νsad denote the vibrational frequencies in the initial and saddle-point con-
figurations, respectively. One imaginary frequency corresponding to the motion along the
reaction path at the saddle-point configuration is excluded from νsadi in the denominator.
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Part II

Results and Discussion
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Chapter 3

First-principles Modeling of Self
Diffusion and Solute Impurity
Diffusion in Ferritic Alloys

3.1 Forward

In this chapter, we focus on atomic diffusion in ferritic alloys. This study, which
includes modeling of both self- and solute diffusion, was motivated by our involvement in
a multi-institutional effort focused on the development of creep-resistant Fe-based multi-
component alloys for high-temperature applications. The high creep resistance of Fe-Ni-
Al-Cr-based two-phase alloys under consideration in this work is understood to originate
from a threshold stress controlled by a precipitation strengthening mechanism in the bcc
Fe matrix [28, 29, 30]. Since the mechanical properties originate from the precipitate mi-
crostructure, there is considerable interest, for the purpose of optimizing these alloys, in
understanding the precipitation kinetics, and in particular the coarsening at the service tem-
perature [92], as the coarsening of these precipitations can lead degradation of strength [29].
The development of predictive computational approaches for modeling the precipitation ki-
netics are thus of interest to assist in the alloy design process.

In recent years, there has been significant progress in the modeling of precipita-
tion kinetics in multicomponent alloys, within the framework of the so-called CALPHAD
approach [31, 32, 33]. In this approach, diffusion-limited precipitation kinetics are mod-
eled employing thermodynamic databases of free-energy functions and kinetic databases of
atomic mobilities. These databases are used in software programs such as DICTRA [32, 93]
to solve one-dimensional diffusion problems with boundary conditions relevant to alloy pro-
cessing, and PRISMA [94] to perform mean-field kinetic modeling of precipitate nucleation,
growth and coarsening. The thermodynamic databases for iron-based alloys [95] have been
actively developed over the past several decades, while the kinetic databases for the alloys
of interest in our work remain less advanced. For the development of mobility databases,
an important quantities are the self- and solute tracer diffusion coefficients, which set the
dilute-limit values for the diffusion coefficients for the matrix and solute species. Therefore,
as an initial focus, the work presented in this chapter is concentrated on the development and
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application of first-principles based methods to calculate self- and solute impurity-diffusion
coefficients in bcc Fe, as a first step towards building a more comprehensive framework
for using density functional approaches to aid in the development of more comprehensive
mobility databases for ferritic alloys.

A framework using density functional theory methods for the modeling of self diffu-
sion and solute impurity-diffusion in bcc Fe was presented in Ref. [35]. This computational
approach extended previous studies of Cu, P, Ni and Cr diffusion in bcc Fe [96, 97, 98]
by including vibrational frequency calculations, hopping frequency calculations within har-
monic transition-state theory and solute diffusion correlation factors calculated within Le
Claire’s nine-frequency model for a direct computation of diffusion pre-factor. The work also
combined density-functional-theory calculated vacancy formation and migration energies,
solute-vacancy binding energies and solute migration energies in the ordered ferromagnetic
state with a semi-empirical treatment of the effects of magnetic disorder. The approach
has been applied for other bcc metals, including W [99], and solute impurity diffusion
calculations for W and Mo [35], and Cr, Mn, V and Ta [100] in bcc Fe.

The present work employs the computational framework outlined above to evaluate
the transition metal solute (3d Ti-Zn, 4d Nb-Cd and 5d Ta-Au) impurity diffusivity in bcc
Fe, in order to find the general diffusivity trends among these solutes. Calculated solute
diffusion coefficients for Ti, Cr, Co, Ni, Cu, Zn, Nb and Ag have been further compared
with experimental measurements to assess the accuracy of the model. We further developed
a spin-wave based method for direct calculations of the self-diffusion activation energy in
the paramagnetic state, for modeling the effect of the magnetic phase transition on the self
diffusion coefficient in bcc Fe.

For future efforts aimed at modeling precipitation kinetics in ferritic alloys, it would
be desirable to develop a framework for modeling diffusion coefficients in the ordered inter-
metallic phases that serve as the strengthening precipitates in these materials [28, 29, 30].
As an initial step, we present work aimed at the development of automated computational
tools for high-throughput calculations of intrinsic point defect concentrations in intermetal-
lic compounds, and demonstrate initial applications for the B2 and L21 phases relevant to
the alloy design effort that supported this work.

The remainder of this chapter is organized as follows. In Section 3.2 we review the
basic formalism for modeling self- and solute diffusion in bcc Fe, followed by a discussion of
the approach to incorporate the effect of magnetic disorder in Section 3.2.3. The approach is
used to model the change in the activation energy for self diffusion due to magnetic disorder
in Section 3.3. Calculated solute diffusion coefficient results are presented and compared
with experimental data in Section 3.4. The intermetallic defect studies are presented in
Section 3.5.

Part of the results presented in Section 3.3, including the figures and tables, were
published by Hong Ding, Vsevolod I. Razumovskiy and Mark Asta, in Acta Mater., 70,
130136 (2014) [101]. The material is reproduced here with permission of the co-authors and
publishers. c©2014 Elsevier.

Part of the results presented in Section 3.4, including the figures and tables, were
published by Hong Ding, Shenyan Huang, Gautam Ghosh, Peter K. Liaw and Mark Asta,
in Scripta Mater., 67, 732735 (2012) [102]. The material is reproduced here with permission
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of the co-authors and publishers. c©2014 Elsevier.

3.2 Review of Atomic Diffusion Calculations

The formalism for calculating self and solute diffusion coefficients is based on
classical harmonic transition-state theory, assuming a mono-vacancy mediated mechanism.
The computational approach will be described in Sections 3.2.1 and 3.2.2, for self diffusion
and solute diffusion in bcc Fe, respectively. A model for the effects of magnetic disorder on
the calculated diffusion coefficients is summarized in Section 3.2.3.

3.2.1 Self Diffusion

For self diffusion in a cubic fcc or bcc structure, mediated by a mono-vacancy
mechanism, and assuming that atomic jumps are dominated by nearest-neighbor hops, the
self diffusion coefficient can be writtten as follows [103]:

D = a2f0CvΓ, (3.1)

where a is the lattice constant of the structure, f0 denotes the correlation factor of the
lattice (f0 = 0.727 for the bcc lattice [104]), Cv is equilibrium vacancy concentration and Γ
is the vacancy hopping frequency.

Under conditions of hydrostatic stress, the equilibrium vacancy concentration can
be written as:

Cv = exp (
−∆Gfv
kBT

) = exp (
−∆Hf

v

kBT
) exp (

∆Sfv
kB

), (3.2)

where kB is the Boltzmanns constant, T is the temperature, ∆Gfv is the Gibbs free energy
for vacancy formation, given in terms of the vacancy formation enthalpy (∆Hf

v ) and entropy

(∆Sfv ) as ∆Gfv = ∆Hf
v −T∆Sfv . The high-temperature limit of the harmonic approximation

for the lattice dynamics yields a constant value of ∆Sfv [105]. Further, under ambient pres-

sure conditions, the vacancy formation enthalpy, i.e. ∆HF
v = ∆Efv +P∆V f

v ≈ ∆Efv can be
equated with the vacancy formation energy ( ∆Efv ), since the pressure-volume contribution

(P∆V f
v ) is negligible.

To compute ∆Hf
v , we can consider a supercell containing N lattice sites, and

consider the total energy difference between the non-defected supercell containing N atoms
(E(N)) and the defected supercell with N −1 atoms and one vacancy (E(N −1)), yielding:

∆Hf
v = E(N − 1)− N − 1

N
E(N). (3.3)

where E(I) denotes the total energy of the supercell calculated by density functional theory.

If we assume that the vacancy formation entropy (∆Sfv ) is dominated by vibrational con-

tributions, the value of ∆Sfv in the high-temperature limit of the harmonic approximation
can be written as follows:

∆Sfv = kB[

3(N−1)∑
i=1

ln (kBT/hν
vac
i )− N − 1

N

3N∑
i=1

ln (kBT/hν
bulk
i )] (3.4)
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where νvaci denotes a phonon frequency in the defected supercell with one vacancy and νbulki

corresponds to the phonon frequencies in the non-defected bulk structure.
The vacancy hopping frequency (Γ) is related to the migration free energy (∆Gmv ),

i.e. ∆Gmv = ∆Hm
v − T∆Smv , where ∆Hm

v and ∆Smv correspond to vacancy migration en-
thalpy and entropy, respectively. The vacancy migration enthalpy can be accurately approx-
imated as the vacancy migration energy. The quantity could be calculated through the total
energy difference between the supercell with vacancy migration saddle-point configuration
(Esad(N − 1)) and supercell with vacancy at equilibrium configuration ((E(N − 1))):

∆Hm
v = Esad(N − 1)− E(N − 1) (3.5)

According to the harmonic transition-state theory (c.f. Equation 2.37), the vacancy hooping
frequency could be written as

Γ =

∏3(N−1)
i=1 νvaci∏3(N−1)−1
i=1 νsadi

exp (
−∆Hm

v

kBT
) (3.6)

where νvaci and νsadi denote the vibration frequencies in the vacancy and saddle-point con-
figuration, respectively. One imaginary frequency corresponding to the motion along the
diffusion path at the saddle-point configuration is excluded from νsadi in the denominator.

In what follows we will refer to the product ν∗ =
∏3(N−1)

i=1 νvaci∏3(N−1)−1
i=1 νsadi

, as the “attempt frequency”.

Substituting Equations 3.2, 3.3, 3.4 and 3.6 into Equation 3.1 gives the Arrhenius
form of diffusion equation

D = D0 exp (− Q

kBT
) (3.7)

where the diffusion activation energy Q is given as

Q = ∆Hf
v + ∆Hm

v (3.8)

and the diffusion prefactor D0 is given as

D0 = a2f0ν
∗ exp (

∆Sfv
kB

) (3.9)

3.2.2 Solute Diffusion

For solute diffusion via a monovacancy mechanism, similarly, the solute diffusion
coefficient (Ds) in the limit of very dilute solute concentrations can be written as [103]:

Ds = a2f2Cv exp (−∆Gb
kBT

)Γ2 (3.10)

where ∆Gb denotes the nearest-neighbor solute-vacancy binding free energy, Γ2 is frequency
for the exchange of a solute atom with nearest-neighbor vacancy and f2 is the solute diffusion
correlation factor.

To compute f2, we employed Le Claire’s nine frequency formalism [18], which
takes into account of all of the symmetrically distinct atom-vacancy exchange rates when
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the vacancy and solute atom are within the first and second neighbor shells, as illustrated
in Figure 3.1. Each distinct exchange between surrounding atoms and vacancy would lead
to a different local configuration of matrix atoms, solute and vacancy.

Figure 3.1: An illustration of the different vacancy hops involved in the Le Claire nine-
frequency model for the correlation factor for impurity diffusion in a bcc crystal. The red
circle, green square and grey circles denote the impurity solute, the vacancy and the matrix
(Fe) atoms, respectively. The numbers in the circles and squares indicate the neighboring
site of the solute atom. Adapted from Huang et al. [1].

In the formalism of Le Claire, the correlation factor is written as follows:

f =
1 + t1
1− t1

(3.11)

where t1 can be expressed in terms of the nine jump frequencies shown in Fig. 3.1:

t1 = − Γ2

Γ2 + 3Γ3 + 3Γ
′
3 + Γ

′′
3 −

Γ3Γ4
Γ4+FΓ5

− 2Γ
′
3Γ
′
4

Γ
′
4+3FΓ0

− Γ
′′
3 Γ
′′
4

Γ
′′
4 +7FΓ0

. (3.12)

where F = 0.512 and the jump frequencies can be written as

Γi = ν∗i exp (−∆Hm/kBT ) (3.13)

where ν∗i and ∆Hm are the attempt frequency and migration energy corresponding to
hopping process i, respectively. In the present work, the migration energy of each individual
jump is derived from first-principles supercell calculations. The attempt frequencies (ν∗i ) in
Equation 3.12 are assumed constant for all of the jump frequencies, as it was found that
that f2 is relatively insensitive to small variations in these values [1].

Regarding the solute-vacancy binding free energy ∆Gb in Equation 3.10, it can be
expressed as ∆Gb = ∆Hb−T∆Sb, where ∆Hb and ∆Sb are the corresponding enthalpy and
entropy change, respectively. In the high-temperature limit of the harmonic lattice dynamic
approximation, both quantities would be constant [105]. As with the vacancy formation
end migration quantities, the binding enthalpy and entropy can be derived from density
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functional theory calculation, employing the N -site supercells. Specifically, the binding
enthalpy can be written as

∆Hb = E(N − 2, 1, 1)− E(N − 1, 1, 0)− E(N − 1, 0, 1) + E(N, 0, 0) (3.14)

where E(N − 1, j, k) represents the total energy of a structure with N − (j + k) host (Fe)
atoms, j (= 0 or 1) solute atom and k (= 0 or 1) vacancy ( being nearest neighbour to
solute for E(N-2,1,1)). By analogy to Equation 3.4, the solute-vacancy binding entropy can
be written as:

∆Sb = kB[

3(N−1)∑
i=1

ln (νvaci /νvac,soli ) +
3N∑
i=1

ln (νsoli /νbulki )] (3.15)

where νvac,soli , νsoli correspond to the phonon frequencies for the supercell with a nearest-
neighbor solute-vacancy pair, and one isolated solute (with no vacancies), respectively. Γ2

is defined analogously to Equation 3.6 with the saddle-point configuration corresponding to
the solute atom hopping to the nearest-neighboring vacancy. Therefore, the solute diffusion
coefficient could be expressed in the form of Equation 3.7, where

Q = ∆Hf
v + ∆Hb + ∆Hm (3.16)

and
D0 = a2f2 exp [(∆Sfv + ∆Sb)/kB]ν∗ (3.17)

where ∆Hm is the migration energy for the solute to hop to the nearest-neighboring vacancy
and ν∗ is the corresponding attempt frequency which can be calculated from harmonic
transition-state theory.

3.2.3 Modeling the Effect of Magnetic Disorder on Diffusion

In 1961, Buffington et al. discovered an anomaly near Tc in the Arrhenius plot for
the self diffusion coefficient (D) of bcc Fe [4], that was confirmed in a series of subsequent
experimental studies [5, 6, 7]. The anomaly involves a deviation in the temperature (T )
dependence of D from normal Arrhenius behavior as T is increased through Tc. Initial
theoretical explanations for this behavior were based on the decrease in the shear modulus
that occurs over the same temperature range [106, 107]. Based on Girifalco’s work related
to the magnetic-energy contribution to the activation energy for self-diffusion (Q) [108],
Ruch et al. [109] proposed a model for D(T ) in which the temperature dependence is
described assuming a constant value for the prefactor (D0) and a temperature dependence
of Q originating from the effect of magnetic disorder. The resulting model for Q(T ) is given
as follows:

Q(T ) = QP [1 + αS(T )2]. (3.18)

In Eq. 3.18, QP is the activation energy in the disordered paramagnetic state (assumed
constant), S(T ) = M(T )/M(T = 0K) is the reduced magnetization at any finite temper-
ature T (measured values for S(T ) are reported in [110, 111]), and α is a parameter that
quantifies the dependence of Q on the state of magnetic order. Unlike the constant activa-
tion energy Q in the conventional Arrhenius expression for the diffusion coefficient as shown
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in 3.7, a temperature dependence of the diffusion activation energy Q(T ) is introduced here.
Equation (3.18) can be rewritten alternatively as:

Q(T ) = QF [(1 + αS(T )2)/(1 + α)] (3.19)

where QF = QP (1 + α) is the activation energy in the fully ordered ferromagnetic state at
zero temperature, which can be computed from density functional theory calculations.

The expression for Q(T ) given in Eq. 3.18 has been widely used to model both
self diffusion and solute diffusion data in bcc Fe, with D0, QP and α treated as fitting
parameters [6, 112, 113]. Values for α derived from such analyses have been reported to
range between 0.061 and 0.23 [19], suggesting that the activation energies for self and solute
diffusion in ferromagnetically ordered and paramagnetically disordered bcc Fe can differ by
as much as 23%. In the case of solute diffusion, semi-empirical models have been proposed
that correlate the magnitude of α with the changes in local magnetic moments induced
by substitutional solute species [114]. In Section 3.3, we introduce the recently developed
“spin-wave” metrology for describing the energetics of paramagnetic disordered phases of
magnetic materials in the framework of density functional theory, in order to model the
parameter α in bcc Fe.

3.2.4 Summary

In general, the temperature dependence of self- and solute diffusion coefficients in
bcc Fe are modeled in the form of:

D = D0 exp [−Q(T )

kBT
] (3.20)

Here, Q(T ) is the temperature-dependent diffusion activation energy, accounting for the
effect of magnetic disorder as given in Equation 3.19. For self diffusion, the activation
energy in the fully ordered ferromagnetic state (QF ) is calculated with Equation 3.8, with
the parameter α obtained from experiments or calculations as shown in the following. For
solute diffusion, we compute QF with Equation 3.16, with the parameter α obtained from
the corresponding experiments. The values of S(T ) in Equation 3.18 are obtained from
Refs. [110, 111].

Further, diffusion prefactors D0 are also computed in the fully ordered ferromag-
netic state, ignoring the effect of magnetic disorder. The computations follow Equation 3.9
for self diffusion and Equation 3.17 for solute impurity diffusions, respectively. The present
approaches ignore the effect of magnetic disorder on diffusion prefactor, while the recent
work of Wen and Woo [115] also employed molecular dynamics and spinlattice dynamics
for considering the magnetic entropy contribution to vacancy diffusion. The present work
makes use of the semi-empirical formalism outlined above for treating magnetic disorder
effects, following most of the experimental literature on this topic (see Ref. [114] and refer-
ences therein).

Regarding the entropic contribution to the diffusion prefactor, the present compu-
tational framework only considers the vibrational free energy contributions. Other contri-
butions (like electronic excitations) to the vacancy formation, binding and migration free
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energies, are found to be relatively small and negligible [35]. For the vibrational free energy
calculations, the harmonic approximation is employed, not including the anharmonic effects
on vacancy formation energies discussed as being important recently in calculations for Al
and Cu [116]. Considering that extensive self diffusion studies in the paramagnetic state of
bcc Fe have not led to significant changes of activation energies [4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16], such anharmonic effects are not considered in the present work.

The solute diffusion correlation factor f2 in Equation 3.17 is calculated using Le
Claire’s nine-frequency model as illustrated in Figure 3.1 and Equations 3.11 and 3.12.
Within the Le Claire’s model, we only consider the atom-vacancy exchange rates when the
vacancy and solute atom are within the first and second neighbor shells. We notice that
some recent work from Garnier et al. [117] and Bocquet [118] reports methods for accounting
for the solute-vacancy interactions up to the third nearest shells for the bcc structure. Our
calculated Fe-vacancy exchange activation energies at the third neighbor shell of a solute
species are comparable with the vacancy migration energy in pure bcc Fe, indicating that
Le Claire’s model with neglect of vacancy-solute interactions beyond the second neighbor
is reasonable.

3.3 Self Diffusion Calculations in bcc Fe

3.3.1 Introduction

In the most general case, accurate modeling of the finite-temperature properties
of magnetic materials requires going beyond the framework of standard density functional
theory, e.g., through the use of dynamical mean-field theory [119] that includes all possible
magnetic excitations The magnetic excitations result into both transverse and longitudinal
fluctuations in the system. The transverse fluctuations can be characterized by the contin-
uous rotation of the electron spin moments, while the longitudinal fluctuations affect the
magnitudes of electron spin moments. For systems where the transverse magnetic fluctua-
tions are dominant, the paramagnetic state can be modeled within the framework of density
functional theory through a variety of methods.

One such approach is the disordered local moment (DLM) method [120, 121,
122, 123, 124], which describes the paramagnetic state in a manner that is equivalent to
a collinear system with randomly distributed spin-up and spin-down local magnetic mo-
ments [124]. This representation of the magnetically disordered system allows one to use a
very efficient coherent potential approximation (CPA) [125, 126] to calculate the electronic
structure of a system in a disordered magnetic state.

As computer power has grown over the past years, another approach based on
the use of supercells to model systems with random arrangements of positive and nega-
tive magnetic moments has gained popularity [127, 128, 129, 130, 131] . In such super-
cell approaches, the disordered magnetic state is usually modeled using either a special
quasirandom structure[132], designed to mimic a perfectly random structure by reproduc-
ing its correlation functions for a certain number of the nearest neighbors around each
site [127, 128, 129], or averaging over a large enough set of randomly-generated collinear
magnetic structures [129, 130, 131].
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The methods summarized above have different relative strengths. The CPA method
is extremely computationally efficient, though current implementations of the method do
not allow one to obtain accurate forces on atoms, and therefore are not practical for cal-
culating such properties as diffusion constants or vibrational frequencies where knowledge
of interatomic forces is required for atomic relaxations or for generation of the dynamical
matrix. The supercell approach represents one of the most accurate ways to determine the
total energy of a magnetically disordered system, which allows one to obtain, for example, a
rather accurate description of a phonon spectrum of a magnetically disordered system [130].
However, in spite of the advances in computational power and algorithm development, the
supercell approach remains cumbersome for calculating such properties as vacancy forma-
tion or migration energies, which require additional averaging over a set of local magnetic
configurations around the defect.

q	


Figure 3.2: Illustration of the magnetic moments for the planar spin spiral configurations
with spin wave vector q. The blue arrows denote the local magnetic moments.

In the current work we employ an alternative approach for description of the
disordered magnetic state which combines attractive features of both the DLM-CPA and
supercell methods. The approach is based on the density functional theory formalism for
calculating the energetics of materials with planar spin-spiral magnetic configurations [133].
The planar spin-spiral magnetic configuration with spin-wave vector q is illustrated in Fig-
ure 3.2, the magnetic moment orientation at a position R relative to the reference site r
can be written as:

m(r + R) =

mx(r) cos (q ·R)−my(r) sin (q ·R)
mx(r) sin (q ·R)−my(r) cos (q ·R)

0

 (3.21)

where mx(r) and my(r) are magnetic moments at the reference position r projected to x
and y directions, respectively.

The main advantage the spin-spiral representation of a magnetic system is that for
a given spin-spiral vector the system is magnetically homogenous, in the sense that all sites



29

in the lattice are equivalent, similar to DLM-CPA approach, but with the additional advan-
tage that non-collinear magnetic effects are taken into account. Moreover, the spin-spiral
magnetic structures can be calculated in any code supporting this type of calculation, which
make it feasible to combine the spin wave methodology with the the most efficient modern
first-principles methods and techniques, to obtain as accurate results in the determination
of total energies as in the supercell approaches summarized above.

In what follows we first describe the spin-wave method, and then apply it to the
calculation of the vacancy formation and migration energies in the paramagnetic state of bcc
Fe. Combining these results with similar calculations for the ferromagnetic state allows us
to compare the parameter α as defined in Equations 3.18 and 3.19 above from first-principles
modeling. Using this value of α, experimentally measured values of S(T ) [110, 134], and
diffusion prefactor calculated in the ferromagnetic state, the temperature dependence of
the self-diffusion coefficient in bcc Fe can be calculated. The results are given below and
compared to available experimental data.

3.3.2 Spin-Wave Method

The spin-wave method was introduced recently by Ruban and Razumovskiy [133]
and it has been shown to give good predictions of the vacancy formation energy, elastic
constants, and phonon spectra for bcc paramagnetic Fe. This method is based on the idea
that the total energy of the ideal paramagnetic state state (i.e., a state with randomly
arranged magnetic moments, neglecting short-range order) can be calculated as a sum of
the energy of a set of systems with planar spin spiral configurations as [133]:

EIPM =
∑
i

wiE(qi), (3.22)

where EIPM is the total energy of the ideal paramagnetic state (IPM), E(qi) is the total
energy of the system with a planar spin spiral with a wavevector qi, and wi are the corre-
sponding weights (representing the degeneracy of the given qi point in the Brillouin zone).
In other words, the energy of the ideal paramagnetic state is represented by averaging over
the magnon spectrum, as schematically illustrated in Figure 3.3.

Similar to the sampling of electronic states in regular total-energy calculations,
the Brillouin-zone (BZ) integral is approximated by a sum over a set of spin-spiral configu-
rations characterized by a finite set of special wavevectors ({qi}) within the first Brillouin
zone. In previous calculations, it has been found that an accurate description of the IPM
state can be obtained using relatively few q-points generated according to the well-known
special-point schemes for sampling the BZ [135, 136, 137]. For the current study, we make
use of 8 Monkhorst-Pack q-points [137] to model the ideal paramagnetic state; this level
of approximation has been shown to provide an accurate representation of the energy in
previous studies of the paramagnetic state in both bcc and fcc structures of Fe [133]. The
8 spin-wave vectors used in the present work are listed in Table 3.1.

The magnetic configuration can be characterized using lattice spin-spin correlation
functions ξ̃p:

ξ̃p =
1

N

∑
i,j∈p

eiej (3.23)
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Figure 3.3: Illustration of the spin-wave based method for total energy calculations in the
ideal paramagnetic state, based on the average over a set of planar spin spiral states with
the weights, wN , determined by the multiplicity of the corresponding q point in the Brillouin
zone. The top right figure presents the magnon dispersion relations of bcc Fe in comparison
with experimental measurements from Ref. [2] and Ref. [3].

where N is the atom number in the system for a given coordinate shell p, and ei is the
direction of spin at site i. It is clear all lattice spin-spin correlation functions in the IPM
state with randomly arranged magnetic moments would vanish, i.e. ξ̃p = 0. Here, the values
of ξ̃ for the first 24 coordination shells obtained using 8 Monkhorst-Pack q-points are listed
in Table 3.2. As we can see the spin-spin correlation functions ξ̃ have all vanished up to
the 19th coordination shells, which could be regarded as an excellent approximation for the
ideal paramagnetic state, a state with zero magnetic short range order.

Table 3.1: The spin-wave vectors of the 8 Monkhorst-Pack q-points for the bcc structure
used in the present work. The weights wi are those given in Equation 3.22.

Num. q (2π/a) wi
1 [0.00 0.00 0.00] 1/64
2 [0.25 0.00 0.25] 12/64
3 [0.50 0.00 0.50] 6/64
4 [0.50 0.25 0.25] 24/64
5 [0.50 0.50 0.50] 2/64
6 [0.00 0.50 0.00] 6/64
7 [1.00 0.75 0.75] 12/64
8 [1.00 1.00 1.00] 1/64

It should be noted that in the calculations for the paramagnetic state, the weights
wi in Eq. (3) were chosen to correspond to the ideal paramagnetic state, a state with
zero magnetic short range order (MSRO). To check if this approximation was valid for
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Table 3.2: Spin-spin correlation functions for the first 24 coordination shells of the bcc
structure using the 8 Monkhorst-Pack q-points and weights as shown in Table 3.1

Num. 1 2 3 4 5 6 7 8 9 10 11 12

lmn 111 200 220 311 222 400 331 420 422 511 333 440

ξ̃lmn 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Num. 13 14 15 16 17 18 19 20 21 22 23 24

lmn 531 442 600 620 533 622 444 711 551 640 642 731

ξ̃lmn 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0

calculations of Q in the paramagnetic state of Fe, we performed additional calculations
using the formalism described in Ref. [133], adjusting the weights to correspond to the state
of MSRO calculated for Fe at T = 1200 K. The value of QP derived from these calculations
accounting for MSRO was approximately 2 % higher than that obtained neglecting MSRO
(i.e., in the ideal paramagnetic state). The results thus suggest that MSRO has a relatively
small effect on the calculated activation energies for diffusion in bcc Fe, at least in this
temperature range. Thus the contribution of MSRO is neglected in the remainder of this
study.

3.3.3 Computational Details

All density functional theory calculations undertaken in this work have been per-
formed within the framework of the PW91 generalized gradient approximation (GGA) [57],
using the projector-augmented-wave (PAW) method [83, 84], as implemented in the Vienna
ab-initio Simulation Package (VASP) [138]. A supercell with N = 64 sites (4 × 4 × 4
primitive cells) with experimentally measured lattice constants at Tc [139] has been used

in calculations of vacancy formation and migration enegies (Hf
v and Hm

v , respectively) in
Fe. The energy cutoff has been set to 450 eV and a k-point density equivalent to a 12
× 12 × 12 mesh for a primitive unit cell has been employed. The convergence criteria
have been chosen to be 10−5 eV for the total energy and 0.01 eV·Å−1 for the forces, in
the self-consistency and atomic relaxation iterations, respectively. In the present work, this
spin-wave approach is applied for calculations of the energy of supercells corresponding
to the perfect crystal lattice, to a system with a single vacancy, and to a system in the
saddle-point site for vacancy-mediated diffusion along the nearest-neighbor directions. The
saddle-point geometries were obtained from force-based relaxation with the hopping atom
initially put at the position halfway between neighboring vacancy sites.

In the latter calculations we average the results over all nearest-neighbor directions
for a given spin-spiral state to restore the symmetry of the underlying crystal structure. . In
all supercell calculations we used atomic positions obtained from relaxations in the ordered
ferromagnetic state, neglecting the effect of spin disorder on the atomic relaxations.

In calculations of D(T ) = D0 exp (−Q/kBT ), the diffusion prefactor D0 is calcu-
lated using conventional expressions from classical harmonic transition-state theory [140],
with the required phonon frequencies in the binding and saddle-point configurations de-
rived from a finite-displacement method in the magnetically-ordered ferromagnetic state



32

using 64-atom supercells. In these calculations, we assumed that D0 is constant, indepen-
dent of temperature, neglect ing the small (10-20%) shifts in phonon frequencies between
ferromagnetic and paramagnetic states in bcc Fe [141].

3.3.4 Calculation Results of Self Diffusivity of bcc Fe

The total energies of structures with the magnetic spin configurations correspond-
ing to the 8 Monkhorst-Pack q-points are plotted in Figure 3.4. In comparison with the
state q = (000)2π/a corresponding to the ferromagnetic state, other states with different
magnetic spin configurations all have higher energies, ranging from 0.08 to 0.45 eV per
atom.

1 2 3 4 5 6 7 8- 8 . 2

- 8 . 0

- 7 . 8

- 7 . 6

 

 

To
tal 

En
erg

y (
eV

/ato
m)

Q - V e c t o r s

Figure 3.4: Total Energies of the structures with the magnetic spin configurations corre-
sponding to the 8 Monkhorst-Pack q-points listed in Table 3.1

.

Neglecting spin-orbital coupling effects, for any structure with an given spin-wave
vector, the system would be magnetically homogeneous and all the atomic sites of the
lattice are symmetrically equivalent. However, the presence of a vacancy would destroy
this equivalence, while the local spin-spin correlation functions around the vacancy site
should still vanish. Therefore, after obtaining the total energies of the structures with
different q vectors, we can calculate the corresponding vacancy formation energies (∆Hf

v ) by
calculating the relative energy difference between the structure with and without a vacancy.
The obtained vacancy formation energies of the these structures with the magnetic spin
configurations corresponding to the 8 Monkhorst-Pack q-vectors are plotted in Figure 3.5.
It can be seen that vacancy formation energy ranges from 1.08 to 2.24 eV over the given 8
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q-vectors, and the minimal value of vacancy formation energy is obtained for the structure
with q = (111)2π/a. Similarly, the vacancy migration energy could be calculated for the
states with given q-vectors as shown in Figure 3.6. The migration energies (∆Hm

v ) ranges
from 0.25 to 0.84 eV over 8 states with different q-vectors.
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Figure 3.5: Vacancy formation energies of the structures with the magnetic spin configura-
tions corresponding to the 8 Monkhorst-Pack q-points listed in Table 3.1

Averaging over the weights wi determined by the multiplicity of the corresponding
q point in the Brillouin zone as listed in Table 3.1 yields the vacancy formation and migration
energies in the IPM state. In Table 3.3 we summarize our calculated results for the vacancy
formation and migration energies, and the activation energy for self diffusion of bcc Fe
in both paramagnetic and ferromagnetic states. The results are compared to available
experimental data in Table 3.4. The present results for vacancy formation and migration
energies in the ferromagnetic state (∆Hf−F

v and ∆Hm−F
v , respectively) for bcc Fe are

consistent with previous GGA-DFT calculations which have reported results ranging from
1.95 to 2.23 eV for ∆Hf−F

v and from 0.64 to 0.67 eV for ∆Hm−F
v (see [96, 35, 142] and

references therein).
For the paramagnetic state, our results for the vacancy formation energy in Fe can

be compared to the calculated relaxed and unrelaxed values reported in Ref. [133], obtained
from both the DLM and spin-wave methods. For the unrelaxed vacancy formation energy
at the same lattice constant used in the present calculations, the DLM and spin-wave results
reported in Ref. [133] are 2.24 eV and 2.0 eV, respectively; the current calculations yield
a value of 2.10 eV that is intermediate between the two values. For the relaxed vacancy
formation energy the current value of 1.98 eV is considerably larger than the value of 1.77 eV
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Figure 3.6: Vacancy migration energies of the structures with the magnetic spin configura-
tions corresponding to the 8 Monkhorst-Pack q-points listed in Table 3.1

Table 3.3: Diffusion activation energy (Q), vacancy formation energy (∆Hf
v ) and migration

energy (∆Hm
v ) of bcc Fe calculated in the ferromagnetic and paramagnetic states using

the high-temperature lattice constants a (Å) close to the Curie temperature. The effect
of magnetic disorder on diffusion activation energy is quantified by the energy difference
(∆QF−P ), as well as the parameter α = QF /QP − 1.

a
Ferromagnetic Paramagnetic

∆QF−P α
∆Hf−F

v ∆Hm−F
v QF ∆Hf−P

v ∆Hm−P
v QP

Fe 2.90 2.13 0.64 2.77 1.98 0.43 2.41 0.36 0.149

reported in Ref. [133] from the spin-wave method. The origin of the discrepancies between
the current results and the spin-wave-method values reported in Ref. [133], which were
obtained from nominally the same approach, were considered in some detail in the course of
this work. It was found that this discrepancy originated from two sources. The first was the
use of a smaller supercell (3 × 3 × 3) in Ref. [133], and the second was related to the choice
of the energy cutoff parameter for the initial phase of the electronic minimization algorithm
as described further in [143]. We note that the 0.15 eV difference in the vacancy formation
energy calculated here for ferromagnetic versus paramagnetic bcc Fe is 0.06 eV smaller and
0.08 eV larger than the values reported from positron measurements in Refs. [144] and [145],
respectively.

The total Q for Fe is calculated to decrease by 0.36 eV in going from the ferro-
magnetic to the paramagnetic state. Magnetic disordering has a comparable effect on both
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Table 3.4: Experimental and calculated diffusion activation energies in the fully ordered
ferromagnetic state (QF ) and paramagnetic state (QP ) in Fe (in units of eV), along with
corresponding values of α = QF /QP − 1.

Ref. QF QP α

Present Work 2.77 2.41 0.149
Iijima [19] 3.01(5) 2.61(4) 0.156
Hettichet al. [5] 2.94 2.53 0.162
Lübbehusen and Mehrer [7] 2.95-3.10 2.57-2.68 0.147-0.156
James and Leak [8] 2.64 2.50 0.056
Wen et al. [115] 2.15(7) 1.91(5) 0.125

the vacancy formation and migration energies, with the difference between the ferromag-
netic and paramagnetic states being approximately 0.2 eV for both vacancy formation and
migration energies.

In Table 3.4 we list values of α = QF /QP−1 obtained from the present calculations
and previously reported fits to experimental data for D(T ). The experimental values of α
reported in Table 2 come from fits of the slope of the relationship between ln [D(T )] versus
1/T from measured self-diffusion coefficients. It can be seen that the experimental reports
are somewhat scattered, with values of α for Fe ranging between 0.056 and 0.162 [5, 7, 19,
8, 115]. The current calculations result in a value of α = 0.149 which is much closer to the
upper limit of the reported values from experimental measurements (0.162). In recent work
by Iijima [19], the author assessed the available experimental diffusion data and suggested
the value of 0.156 for α, which agrees very well with the present calculated results.

The spin-wave DFT approach for calculating Q and α can be combined with cal-
culations of the diffusion prefactor D0 [146, 35] as discussed in Section 3.3.3, in order to
compute the full temperature dependence of D for temperatures spanning Tc. The diffusiv-
ities are calculated for temperatures up to 1184 K for Fe (the γ → α transition tempera-
ture). Our calculated results are compared with available experimental data in Figure 3.7.
At the highest measured temperature of 1148 K from Ref. [6], the reported experimental
measurement of bcc Fe self diffusivity from ref is 1.06×10−15 m2s−1, which is very good
agreement with our predicted value of 8.66×10−15 m2s−1. In addition, a value of D =
5.41×10−23 m2s−1 is reported from the same work at the lowest measured temperature of
766 K, which is also in consistent with our calculated value of 4.62×10−23 m2s−1. Overall,
it can be seen that the calculated D(T ) of Fe agrees very well with the experimental mea-
surements in the high-temperature region (>950 K), while showing slight deviations from
the measurements in the lower temperature region.

Overall, the agreement between calculations and measurements is seen to be very
good, with calculated values of D differing from the most recently reported measurements
by no more than a factor of two over the temperature range from 0.7 to 1.1 T/Tc. Given
that the current calculated results for D(T ) are derived directly from DFT calculations
and measured values for S(T ), without any adjustable parameters, the level of agreement
between computational and experimental results is highly encouraging.

It is noteworthy that the magnetic effect in bcc Fe, i.e. the pronounced difference
of diffusion activation energies in ferromagnetic and paramagnetic states, results in more
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Figure 3.7: Calculated temperature dependence of self diffusion coefficients of bcc Fe in
comparison with experimental data [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16].

than an order of magnitude lowering of D(T ) below 900 K in the ferromagnetic state,
relative to what would be predicted from an extrapolation of the Arrhenius behavior in
the paramagnetic state. Further, the results highlight that computational predictions for
Fe made by extrapolating from the zero-temperature ordered ferromagnetic state, without
accounting for the effect of magnetic disorder, would lead to a large overestimation of D(T )
in the paramagnetic state.

3.3.5 Role of Electronic Structure

The discovery of the anomaly in the diffusion coefficient in Fe for temperatures
near Tc inspired similar studies in other ferromagnetic systems like Co, in search of similar
effects [106]. However, no significant change in Q(T ) was observed through Tc for Co
within experimental accuracy [14, 15]. This result implies that α is vanishingly small for
Co, and consequently the diffusion activation energy in paramagnetic and ferromagnetic
states is essentially the same. To date it remains incompletely understood why Co displays
an apparent absence of the anomaly in self diffusivity observed for Fe, its neighbor in the
periodic table. To understand the dramatically different effect of magnetic disordering on
the self diffusivity for Fe and Co, we also have employed the spin-wave method to examine
activation energies in these two materials.

Calculated results for the activation energies of Co in both paramagnetic and ferro-
magnetic states are summarized in Table 3.5. For the ferromagnetic state, our calculations
predict somewhat lower values than those reported by LaBrosse et al. [147] (∆Hf−F

v = 2.34
eV and ∆Hm−F

v = 1.19 eV). One possible reason for this difference between our results
and previously published calculations is that we have used a larger lattice parameter in our
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Table 3.5: Diffusion activation energy (Q), vacancy formation energy (Hf
v ) and migration

energy (Hm
v ) of fcc Co calculated in the ferromagnetic and paramagnetic states using the

high-temperature lattice constants a (Å) close to the Curie temperature.

a
Ferromagnetic Paramagnetic

∆QF−P
∆Hf−F

v ∆Hm−F
v QF ∆Hf−P

v ∆Hf−P
v QP

Co 3.60 1.99 0.77 2.76 1.97 0.76 2.73 0.03

calculations (corresponding to measurements at Tc), since we are interested in modeling
diffusion near Tc. It can be seen that the calculated results show relatively small differences
(a few hundredths of an eV) between the vacancy formation and migration energies in the
ferromagnetic versus the paramagnetic states of Co, which lead to an almost negligible
change in the diffusion activation energy Q between the two states. These results are in
sharp contrast to those for Fe, where Q is calculated to decrease by 0.36 eV in going from
the ferromagnetic to the paramagnetic state.

Table 3.6: Experimental and calculated diffusion activation energies in the fully ordered
ferromagnetic state (QF ) and paramagnetic state (QP ) in fcc Co (in units of eV) [14, 15].

Spe. Ref. QF QP

Co
Present Work 2.76 2.73
Hirano et al. [14] 2.83 2.70
Bussmann et al. [15] 2.99 2.99

For fcc Co, we list values of diffusion activation energies obtained from the present
calculations and previously reported fits to experimental data for D(T ) in Table 3.6. In
contrast to Fe, the magnetic phase transition is found to have a negligible effect on Q for
Co, which is similar to the results obtained by Hirano et al. [14] based on experimental
measurements.

The self diffusivities are calculated for temperatures up to 1786 K for fcc Co (the
melting temperature) and compared with available experimental data [14, 15, 16, 16] in
Figure 3.8. In comparison with Figure 3.8, the experimental diffusivity measurements of
fcc Co are lower in magnitude than those for bcc Fe, consistent with experimental measure-
ments, and our calculated results are found to agree best with the most recent data from
Bussmann et al. [15]. In Figure 3.9, a comparison is made between the behavior of the dif-
fusion coefficients in bcc Fe and fcc Co, by plotting the normalized diffusivity D(T )/D(Tc)
versus the inverse of the normalized temperature T/Tc near the Curie temperature, which
highlights the dramatically different effect of magnetic disordering on D(T ) for bcc Fe and
fcc Co.

In considering the origin of the differences between these two elements, we can
naturally identify two main factors: (i) crystal structure (i.e., bcc versus fcc for Fe and
Co, respectively) and (ii) electronic structure (e.g., band filling). Considering the first,
it is typically expected that diffusion in closed packed structures (fcc) is slower than in
more open structures (bcc) [148]. Consequently, the relative magnitudes of the effects of
magnetic disorder on D(T ) in Fe and Co might be influenced by a dominant structural factor
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Figure 3.8: Calculated temperature dependence of self diffusion coefficients of fcc Co in
comparison with experimental data [14, 15, 16].
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Figure 3.9: Comparison of the behavior of D(T ) near Tc is compared for Fe and Co.
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associated with the different atomic coordinations in the fcc and bcc crystal structures. On
the other hand, there is a fundamental difference between the two metals which originates
from their electronic structure: for Co the spin-up d-band is completely filled, which makes
it a “strong” ferromagnet following the classification of the Slater and Pauling curve [149],
while in the case of Fe it is partially filled, i.e. the Fermi level crosses the majority (spin-up)
band, which makes Fe a “weak” ferromagnet.

To unravel the relative importance of these two effects, we have performed addi-
tional first-principles calculations focused on the vacancy formation energy in both ferro-
magnetic and paramagnetic states for a series of elements with different d-band filling: Mn,
Fe and Co. We perform calculations for each element in two different structures: bcc and
fcc. All calculations have been performed with the intent of investigating overall trends
with structure and band filling, and thus we consider ideal crystal structures without local
lattice relaxations, using the same atomic volumes for bcc and fcc states. Additionally, in
the application of the spin-wave method for modeling the paramagnetic state we make use
of one single q point [135, 136], which is shown in Ref. [133] to lead to accuracy in the
calculations of total energies for paramagnetic Fe to within 0.03 eV.

Table 3.7: Vacancy formation energy difference between ferromagnetic and paramagnetic
states for Mn, Fe and Co (in units of eV) in bcc and fcc structures.

Structure Mn Fe Co

bcc -0.50 -0.44 -0.05
fcc -0.43 -0.15 -0.04

Using the approach outlined in the previous paragraph, we compute vacancy for-
mation energy differences between ferromagnetic and paramagnetic states in the series Mn,
Fe and Co as shown in Table 3.7. These results show that there is a certain “dampening”
effect related to the crystal structure: the energy differences between ferromagnetic and
paramagnetic states are less pronounced in the fcc structure relative to the bcc structure.
Additionally, these results suggest that the band-filling effect appears to be dominant, i.e.,
the change of the vacancy formation energy due to magnetic disorder is most pronounced for
both “weak” ferromagnets Fe and Mn and it is almost absent for the “strong” ferromagnet
Co. These results suggest that the origin of the anomalous behavior of D near TC is mainly
related to the electronic structure of Fe, i.e. the incomplete spin-up d-band filling. The
results further suggest that the effect of magnetic disorder on D(T ) may vary significantly
with alloying of Fe by elements that tend to increase the overall d-band filling.

3.3.6 Summary

In this section, we have demonstrated a first-principles approach for calculating
self-diffusion activation energies of bcc Fe in both ferromagnetic and paramagnetic states.
The calculated self-diffusion activation energy, combined with the self-diffusion prefactor
calculated with the approach described in Ref. [35], we can obtain the temperature depen-
dence of self diffusion coefficient spanning over the Curie temperature. Results obtained
with this method are found to agree with the most recent experimental data to within a
factor of two over the temperature range of 0.7 to 1.1 T/Tc for Fe.
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The approach proposed in this work was also used to investigate the origin of the
pronounced differences between Fe and Co, in terms of the effects that magnetic disorder has
on the diffusion activation energies in these metals. From an analysis of vacancy formation
energies in both ferromagnetic and paramagnetic states, the calculations suggest that the
magnitude of the effect of the magnetic phase transition on D(T ) is correlated with d-
band filling, and is more pronounced for “weak” magnetic elements with incompletely filled
majority bands like Fe.

3.4 Solute Diffusion Coefficient Calculations in bcc Fe

In Section 3.3, we have presented a method to predict the self diffusion coefficients
in bcc Fe. For the Fe-based multicomponent alloys under development in the project that
supported this work, it is of more direct interest to calculate solute diffusion properties.
In what follows we consider calculations of solute diffusion coefficients in the dilute limit,
i.e., we consider the calculation of solute impurity-diffusion coefficients. In the context of
modeling diffusion in multicomponent systems, solute impurity-diffusivities are of interest
because they dictate the limiting behavior of solute mobilities in the dilute condition.

In addition to providing values that are useful in generating mobility databases,
computational studies also provide insights into the mechanisms underlying variations in
solute diffusion coefficients with chemistry. For example it has long been assumed that the
lowest values of solute diffusion coefficients correspond to solutes that are most oversized
relative to the host atoms, as these species are expected to have the largest activation
energies. However, first-principles calculations (e.g., [150, 151, 152]) have shown that this
“rule-of-thumb” is not generally reliable, and have pointed to the importance of more subtle
electronic-structure effects. In this work we show that both the activation energies and
diffusion prefactors for transition-metal solutes in bcc Fe show systematic trends versus
bandfilling that cannot be easily understood based on size effects alone.

In the current work, we employ the approach described in Ref. [1] for comput-
ing solute impurity-diffusion coefficients in α-Fe within the framework of Le Claire’s nine-
frequency model [18], employing density-functional-theory calculations of the relevant hop-
ping frequencies for the zero-temperature ferromagnetic state, and experimentally derived
parameters to account for the effects of magnetic disorder, which have been briefly reviewed
in Section 3.2.2 and Section 3.2.3. We employ this methodology in the study of 3d (Ti-Zn),
4d (Nb-Cd) and 5d (Ta-Au) transition metal solutes in bcc Fe, expecting the results would
be useful in the context of developing mobility databases. Several solute species, e.g. Sc,
Zr, Y and rare-earth solutes are not included considering the significant atomic mismatch
would lead to different diffusion mechanisms as addressed later in the chapter.

In the remainder of this chapter, the trends in calculated activation energies and
diffusion prefactors across these series are presented in Section 3.4.2 and Section 3.4.3, re-
spectively. The results are obtained using computational methods described in Section 3.4.1.
We then estimate the solute diffusivities neglecting magnetic disorder effects in Section 3.4.4.
The comparisons between our calculations and experimentally measured solute diffusion co-
efficients for the species with measured values for the parameter α (see Section 3.2.3) are
presented in Section 3.4.5, followed by discussion and summary.
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3.4.1 Computational Details

Spin-polarized DFT calculations were performed within the generalized gradient
approximation of Perdew, Burke and Ernzerhof (PBE) [58]and the projector augmented
wave (PAW) method [83, 84], as implemented in the Vienna ab initio simulation pack-
age (VASP) [153, 154, 155, 156]. The plane-wave cutoff is set as 300 eV[84] and we em-
ployed Monkhorst-Pack sampling [157] of reciprocal space, with k-point grids equivalent to
12×12×12 for a conventional bcc unit cell. The saddle-point geometries were identified in a
4×4×4 bcc supercell from force-based energy minimizations where the hopping atoms were
initially put at the position halfway between neighboring vacant sites. For calculations of
vibrational frequencies, we computed all of the q = 0 normal-mode frequencies in a 3×3×3
bcc supercell using the frozen-phonon algorithm available in the VASP code.

3.4.2 Calculations of Diffusion Activation Energy

Assuming a monovacancy mechanism, the activation energy for solute diffusion
in the dilute limit is given by Equation 3.16 in Section 3.2.2, as the sum of the vacancy
formation energy (∆Hf ), the solute-vacancy binding energy (∆Hb) and the solute migration
energy (∆Hm). For the 3d (Ti-Zn), 4d (Nb-Cd) and 5d (Ta-Au) transition metal solute
species considered in the present work, the values of ∆Hb and ∆Hm calculated using density
functional theory in ferromagnetic bcc Fe are listed in Table 3.8. In the convention adopted
here, negative (positive) values of ∆Hb correspond to an attractive (repulsive) interaction
between vacancy and solute.

Table 3.8: Solute-vacancy binding enthalpy ∆Hb for transition metal solute species (in
unites of eV) in ferromagnetic bcc Fe

Group IV V VI VII VIII IX X XI XII

Ti V Cr Mn Fe Co Ni Cu Zn
∆Hb -0.27 -0.08 -0.08 -0.06 - -0.01 -0.12 -0.28 -0.40

Nb Mo Tc Ru Rh Pd Ag Cd
∆Hb -0.37 -0.19 -0.15 -0.12 -0.18 -0.30 -0.55 -0.69

Ta W Re Os Ir Pt Au
∆Hb -0.33 -0.17 -0.13 -0.13 -0.16 -0.28 -0.32

It can be seen that the ∆Hb are all negative, indicating the attractive interactions
between the transition metal solutes and a vacancy in ferromagnetic bcc Fe. Among the
solutes considered in this work, the weakest attractive interaction corresponds to the solute
Co, while the strongest interaction is for Cd. Here we note our results are comparable
with previously published solute-vacancy binding energies for Ti (-0.22 eV), V (-0.04 eV),
Cr (-0.05 - -0.06 eV), Mn (-0.1 eV), Ni (-0.07 - -0.19 eV), Cu (-0.16 - 0.24 eV), Zn (-
0.33 eV) [158, 142, 98, 159, 160]. The calculated values of the binding energies for Co (-
0.1 eV) and Mo (-0.33 eV) reported in Ref. [158] are somewhat higher than the magnitudes
obtained in the present work. The difference between calculations may be associated with
the choice of pseudopotentials, supercell size, plane-wave cutoffs, etc.

The quantities of ∆Hb for the solute species considered in this work are also plotted
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in Figure 3.10. It can be seen that in each period, the strongest solute-vacancy binding is
found for solute species at the beginning or end of the transition metal series. On the other
hand, group VIII solutes, i.e. Ru and Os, which are in the middle of the series, show the
weakest attractive interactions with solutes. This trend among 3d, 4d and 5d transition
metal solute series is consistent with recent computational results published for ∆Hb vs.
atomic number for 4d solute elements in bcc Fe [161]. In each group, most 4d transition
metal solutes present the strongest solute-vacancy binding energies whereas the weakest
interactions are presented by 3d transition metal solute species, yielding a basic trend of
∆Hb(3d) < ∆Hb(5d) < ∆Hb(4d). Such a trend of the solute-vacancy binding energies are
generally correlated with the solute size as shown in Figure 3.11. A comparison of the
values of Goldschmidt atomic radius with ∆Hb in Figure 3.12 shows a general trend that
the largest magnitudes for the solute-vacancy binding energies are obtained for the largest
atomic-size solute species. Similar trends were also observed for transition metal solute
elements in Ni [150]and the trends were rationalized by a simple picture that large solute
atoms prefer to be near vacancies in order to minimize elastic energy due to the atomic size
mismatch. However, such a correlation between size and ∆Hb in Figure 3.10 and Figure 3.11
is not perfect. For example, Ta is predicted to have the largest binding energy among 5d
transition metal solutes despite the fact that its atomic radius is slightly smaller than that
of Au. Besides, both Os and Re have very similar values of ∆Hb despite the smaller size of
the former. Also we can see that despite the 0.2 Å atomic-size difference between solute V
and Mn, they present similar values of ∆Hb.
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Figure 3.10: Calculated solute-vacancy binding energies ∆Hb for 3d (black triangle), 4d
(red square) and 5d (blue pentagon) transition metal solutes in ferromagnetic bcc Fe.

Next, the solute migration energies ∆Hm for the solute species considered in the
present work are given in Table 3.9. The values range from 0.35 to 0.90 eV. The lowest
solute migration energy corresponds to Nb, while the solute Os shows the highest value. The
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Figure 3.11: Goldschmidt atomic radius for 3d (black triangle), 4d (red square) and 5d (blue
pentagon) transition metal series [17].

Figure 3.12: Relation between calculated solute-vacancy binding energies ∆Hb and Gold-
schmidt atomic radius [17] for 3d (black triangle), 4d (red square) and 5d (blue pentagon)
transition metal series.

trend of solute migration energies ∆Hm in each transition metal solute series are plotted in
Figure 3.13, featuring the maximal values corresponding to the solutes at the center of the
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transition metal series.
Traditionally, it is assumed that a larger atomic-size solute species would give

rise to larger lattice strain during the atomic migration process, resulting in an increase
of migration energies. Comparing the trends presented in Figure 3.11 and Figure 3.13, we
argue that such a “rule-of-thumb” is not reliable, as we can see that our results yield an
inverse trend, namely, large atom-size solute species correspond to smaller solute migration
energies. Also, it is noteworthy that the atomic size of 4d transition metal solutes are
generally larger than that of the 5d solutes (from group VI to XIII). However these solutes
have somewhat smaller values of solute migration energy. These trends are somewhat
counterintuitive. However, similar trends have been obtained in previous calculations, e.g.
for Al-based [162] and Ni-based alloys [150].

Janotti et al. proposed that the main reasons behind such trends were not simple
strain energy due to the atomic size misfit, rather the increase of the d-state electronic
bonding between the solute and the host. Due to the symmetry, the saddle point con-
figuration has closer solute-host interatomic distances in comparison with that of binding
configurations. Therefore, the solute with lower compressibility would have larger strain
energy which corresponds to higher solute migration energies. In this context, a plot of
the pure elementary compressibility K for the transition metal solute series are shown in
Figure 3.14, which shows that the trends of K are in general consistent with the change
of ∆Hm across the series. Hereby, we argue that the trend of ∆Hm are more correlated
with solute compressibility as shown in Figure 3.15, instead of simply solute size, which is
consistent with the explanation from Janotti et al. in Ref. [150].

Table 3.9: Calculated solute migration enthalpies ∆Hm (in units of eV) for solute-vacancy
exchange in ferromagnetic bcc Fe for transition metal solutes.

Group IV V VI VII VIII IX X XI XII

Ti V Cr Mn Fe Co Ni Cu Zn
∆Hm 0.37 0.46 0.55 0.69 - 0.72 0.62 0.50 0.43

Nb Mo Tc Ru Rh Pd Ag Cd
∆Hm 0.35 0.52 0.68 0.73 0.73 0.62 0.43 0.34

Ta W Re Os Ir Pt Au
∆Hm 0.43 0.71 0.86 0.90 0.88 0.85 0.76

From Equation 3.16, the solute diffusion activation Q can be expressed as a sum
of pure Fe vacancy formation energy ∆Hf

v , solute-vacancy binding energy ∆Hb and so-
lute migration energy ∆Hm. In the present work, all these terms were calculated in the
fully ordered ferromagnetic state and used to compute the corresponding value of the dif-
fusion activation energy (QF ). The calculated values of QF for the solutes are illustrated
in Table 3.10 and Figure 3.16. The values of diffusion activation energy from the present
calculations range from 1.85 to 2.97 eV. It is worth noticing that Co (2.92 eV), Re (2.93 eV),
Os (2.97 eV) and Ir (2.92 eV) are the four solutes that have larger diffusion activation ener-
gies than the calculated self-diffusion activation energy for ferromagnetic bcc Fe (2.84 eV)
using the same computational framework. These species are potential candidates for slow
diffusers in bcc Fe.
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Figure 3.13: Calculated solute migration energies ∆Hm for solute-vacancy exchange in fer-
romagnetic bcc Fe for 3d (black triangle), 4d (red square) and 5d (blue pentagon) transition
metal series.
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Figure 3.14: Compressibility K for 3d (black triangle), 4d (red square) and 5d (blue pen-
tagon) transition metal series [17].

From the present calculations, some interesting trends for QF among the 3d, 4d,
and 5d transition metal solute species can be observed. First, in the same period, these
three series all show the maximal values of QF in the center, indicating the potential slow
diffusivities of those solute species in the system. Next, in the same group, a general
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Figure 3.15: Relation between calculated solute migration energies ∆Hm and Compressibil-
ity K [17] for 3d (black triangle), 4d (red square) and 5d (blue pentagon) transition metal
series.

trend of the ordering of the magnitudes for Q, namely, Q5d > Q3d > Q4d, except group
V solutes (V, Nb and Ta), is presented. This indicates that the 5d solutes are expected
to be the slowest diffusers within each group. It can be seen that the large atomic size
and small atomic compressibility of the 5d solute species are the main reasons for the
large values of QF , while the differences between 4d and 3d transition metal solute species
would be mainly attributed to the change of the solute-vacancy interactions ∆Hb due to the
atomic size difference. We found these trends of QF are also in consistent with the recent
computational results from the work of Zacherl et al. [163] in Ni alloys.

Table 3.10: Calculated solute diffusion activation energies in the fully ordered ferromagnetic
state QF of the transition metal species considered in the present work (in units of eV).

Group IV V VI VII VIII IX X XI XII

Ti V Cr Mn Fe Co Ni Cu Zn
QF 2.30 2.58 2.66 2.83 - 2.92 2.70 2.42 2.23

Nb Mo Tc Ru Rh Pd Ag Cd
QF 2.17 2.57 2.73 2.81 2.75 2.52 2.08 1.85

Ta W Re Os Ir Pt Au
QF 2.30 2.74 2.93 2.97 2.92 2.77 2.64
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Figure 3.16: Calculated solute diffusion activation energy in the fully ordered ferromagnetic
state of bcc Fe (QF ) for 3d (black triangle), 4d (red square) and 5d (blue pentagon) transition
metal series.

3.4.3 Calculations of Diffusion Prefactor

As shown in Equation 3.7, the diffusion prefactor can be expressed in terms of
the lattice constant (a), the correlation factor (f2), the attempt frequency for the hop of a
solute atom to a nearest-neighbor vacancy (ν∗), the entropy of vacancy formation in bcc Fe

(∆Sfv ), and the entropy of vacancy binding to a nearest-neighbor solute (∆Sb).

Diffusion Correlation Factor

We first focus on the solute diffusion correlation factor f2. The presence of the
solute next to the vacancy would also affect the surrounding matrix atom hopping rates.
The atom exchange rate between the vacancy and matrix atom next to the solute would
be different from those in the pure matrix, which affects the correlation factor. Unlike the
self diffusion in bcc Fe with a fixed value of f0 = 0.727 in Equation 3.1, the solute diffusion
correlation factors (f2) are different depending on solute species, which is related with the
vacancy-solute interactions, solute and matrix atom migrations. In the present work, the
value of f2 for each solute species is derived from Le Claire’s nine-frequency model [18]
as discussed in Section 3.2.2. For simplicity, the attempt frequencies (ν∗) are assumed
constant for all of the jump frequencies, while each migration energy was derived from the
corresponding density functional theory calculations. Although the jump frequencies are a
function of temperature, the temperature dependencies of the calculated values of f2 are
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relatively weak in comparison with the Arrhenius dependence of the diffusion coefficients,
because they mostly depend on the ratios among the relevant vacancy migration jump
frequencies rather than their exact values.
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Figure 3.17: Calculated solute diffusion correlation functions f2 within in the Le Claire’s
nine-frequency model [18] for 3d (black triangle), 4d (red square) and 5d (blue pentagon)
transition metal series.

Figure 3.17 shows the calculated solute diffusion correlation factors f2 in bcc Fe
for the solute species considered in the present work at the temperature of 800 K. The
calculated solute correlation factors span a range of values from 10−3 to 1. For the solutes
at either the beginning or end of each transition metal series, anomalously small values of
f2 are obtained. For example among the 5d transition metal solutes, our calculations give
a value of f2 = 0.02 for Ta, while a value of f2 = 0.98 is derived for Os. To understand
the origin of these large variations between solute atoms, it is of interest to analyze the
denominator of t1 defined in Equation 3.12, which contains four contributions:

(1) Ω2 = Γ2,
(2) Ω3 = 3Γ3 − Γ3Γ4

Γ4+FΓ5
,

(3) Ω
′
3 = 3Γ

′
3 −

2Γ
′
3Γ
′
4

Γ
′
4+3FΓ0

(4) Ω
′′
3 = Γ

′′
3 −

Γ
′′
3 Γ
′′
4

Γ
′′
4 +7FΓ0

.

These four terms corresponds to the four different jump directions for the vacancies
after exchanging the position with the solute atom. We compare the different contribution
terms for Ta and Os in Table 3.11. The values of Ω3, Ω

′
3 and Ω

′′
3 are at least 52 times
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smaller than the value of Ω2 for Ta. This situation is in contrast to the results for Os,
where Ω2 is smaller than the other three terms. For Ta, t1 can be written to first order
in the small parameter ε = (Ω3 + Ω

′
3 + Ω

′′
3)/Ω2 as t1 ≈ −(1 − ε), leading to f2 ≈ ε. This

expression illustrates that the small value of f2 for Ta is related physically to the much
higher jump frequencies for exchange of a vacancy with Ta (Ω2) compared to the relevant
rates of exchange with neighboring Fe atoms.

Table 3.11: Contributing terms of Ω2, Ω3, Ω
′
3 and Ω

′′
3 (in units of THz) to the correlation

factors for Ta and Os at T = 800 K.

Ω2 Ω3 Ω
′
3 Ω

′′
3

Ta 1.9× 10−3 7.8× 10−8 3.6× 10−5 8.8× 10−6

Os 2.1× 10−6 7.1× 10−5 1.9× 10−4 4.6× 10−5

This reflects the strong solute-vacancy binding for Ta as shown in Figure 3.10,
which gives rise to a large fraction of solute-vacancy hops which are followed by hops back
to the original solute position. Similarly low values of f2 have also been reported for Y in
Fe [164] and Mg in Al [152].

Solute-Vacancy Binding Entropy

The solute-vacancy binding entropy ∆Sb is one term in the diffusion prefactor
factor representing the vibrational contribution to the temperature dependent part of solute-
vacancy binding free energy. It is determined from the vibrational entropy change, namely,
the change of the vibrational frequency spectrum observed when the vacancy is bound to
the solute atom, relative to when it is far from the solute. Herein, the entropy term is
calculated within the high-temperature limit of the harmonic approximation as shown in
Equation 3.15. Calculated values of solute-vacancy binding entropy for each solute species
of interest are plotted in Figure 3.18. Within each transition metal row, a general maximal
value of ∆Sb is presented in the middle of series. Also within the same column, a clear
order of ∆Sb(3d) > ∆Sb(4d) > ∆Sb(5d) is observed. In particular, the values of ∆Sb for
the 3d solute species are about two to three orders of magnitude higher than that for 5d
solute species. One would speculate that the values of ∆Sb are correlated with that of ∆Hb

as shown in Frigure 3.10. We found even though smaller values of ∆Sb correspond to the
larger values of ∆Hb for the 3d solute species, similar trends are not found for the 4d and
5d transition metal species.

We also note the small cusps of ∆Sb for the group IX solutes, namely, Co, Rh
and Ir. For the case of Rh, a linear interpolation from the values of ∆Sb between the
neighbouring solutes (Ru and Pd) would suggest a value of ∆Sb which is 30% higher than
the calculated value presented here.

Solute jump attempt frequency

We turn next to an analysis of the jump frequency for the exchange of a solute atom
and a nearest-neighboring vacancy. The solute jump attempt frequency ν∗ can be described
within harmonic transition-state theory [140] as the quotient of product of the vibrational
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Figure 3.18: Calculated solute-vacancy binding entropy ∆Sb in ferromagnetic bcc Fe for 3d
(black triangle), 4d (red square) and 5d (blue pentagon) transition metal series.

frequencies corresponding to a configuration with a nearest-neighbor solute-vacancy pair
and the product of frequencies for a saddle-point configuration for the exchange of a solute
and vacancy, excluding one imaginary frequency corresponding to the motion along the
diffusion path: ν∗ =

∏
νvac,sol
i /

∏
νsad
i .

Figure 3.19 illustrates the magnitudes and trends of the calculated ν∗ for the
solutes considered in the present work. Here, similar magnitudes of ν∗ could be found
within the same transition metal row, with the maximum difference being a factor of five.
However, the values of ν∗ for 5d transition metal solutes are uniformly almost one order
of magnitude higher than the corresponding 3d and 4d solutes within the same column.
This trend is consistent with what has been observed for the calculated diffusion activation
energies ∆Hm as presented in Figure 3.13, where the 5d solute species in general have larger
migration energies than the other solute species.

Furthermore, we note that Mantina et al. suggested a double-well approach for
computing vibrational modes of transition states in solid-state diffusion [165]. This model
employed a statistical mechanics approach to study the characteristic vibrational frequencies
of hopping atom along the migration pathway. However, to obtain the migration pathway
usually requires careful minimum energy path searching algorithm, for example the nudged
elastic band [166, 167], which is too expensive for the high-throughput computation in the
present work.
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Figure 3.19: Calculated solute jump attempt frequency ν∗ in ferromagnetic bcc Fe for 3d
(black triangle), 4d (red square) and 5d (blue pentagon) transition metal series.

Solute Diffusion Prefactor

From the lattice constant a, solute diffusion correlation factor f2, solute-vacancy
binding entropy contribution exp (∆Sb/kB) and solute jump attempt frequency ν∗, we can
compute the prefactors for solute impurity diffusion. Here, all the calculations were done in
the fully ordered ferromagnetic state of bcc Fe, and the calculated solute diffusion prefactors
are plotted in Figuref 3.20 at representative temperatures of 800 K. Also for easy reference
in the future, we summarize the values of QF and D0 in Figure 3.21.

From Figure 3.20 we can see that the magnitudes of the prefactors for transition
metal solute diffusion obtained from the present calculations are on the order of 10−1-10+1

cm2s−1, except for an extremely small value of D0 = 0.02 cm2s−1 obtained for solute Cd.
Solutes from group VII to group X generally show relatively similar values of D0 on the
order of 10−1 cm2s−1, while much smaller values of D0 are obtained at the beginning or
end of the transition metal series. These relatively small values mainly are attributed to
the low values for correlation factors f2 as shown in Figure 3.17.

It is also important to address here that many previous estimations of solute dif-
fusivities assume similar values of D0 for different solutes, while the present calculations
suggest that such an assumption would not be true for all solutes, especially for the solutes
at the beginning or end of the transition-metal series which show anomalously low corre-
lation factors. New empirical methods would thus be useful for a quick estimation of the
magnitudes of D0 for solute diffusivity in bcc Fe, given that the computations of D0 from
first-principles requires phonon calculations that are much more computationally expensive



52

So
lu

te
 D

iff
us

io
n 

Pr
ef

ac
to

r D
0 
(c

m
2 /s

)	
 10+2	


	

10+1	


	

10 0	


	

10-1	


	

10-2	


T = 800K	


     Ti      V     Cr    Mn    Fe   Co    Ni    Cu    Zn	

 Nb      Mo    Tc      Ru    Rh     Pd   Ag      Cd	

Ta     W      Re      Os     Ir      Pt    Au     	


Figure 3.20: Calculated solute diffusion prefactor D0 (at T = 800 K) for 3d (black triangle),
4d (red square) and 5d (blue pentagon) transition metal series.

than for diffusion activation enthalpy Q.
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Figure 3.21: Summary of calculated values of QF (in unites of eV) and D0 (at T = 800 K,
in unites of cm2s−1) for solute impurity diffusion in the ferromagnetic state of bcc Fe

Early experimental work of Oono et al. [168] suggested a linear dependence of the
logarithm of the diffusion prefactor D0 with the diffusion activation energy in the paramag-
netic state QP . By analogy, we plot the calculated D0 (T = 800 K) vs. QF in Figure 3.22
and an interesting nearly-linear correlation is observed. Such a linear relationship could be
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represented by the equation: ln (D0)(cm2s−1) = 3.10 ·QF (eV )− 7.49. It is found that the
linear relation established here slightly overestimates the value of D0 for the 5d transition
metal solutes, while slightly underestimating the values for the 4d solutes. However, a good
Pearson correlation coefficient R2 = 0.92 has been achieved, indicating a very reasonable
agreement could be derived between this linear relation predictions and calculated values.
This relation could be used for a quick estimation of the solute diffusion prefactor from the
diffusion activation energy calculations.
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Figure 3.22: A semi-log plot of calculated values of D0(T=800 K) versus QF . The dashed
line represents a least-squares fit.

3.4.4 Solute Diffusivity Estimation Neglecting the Effect of Magnetic Dis-
order

Using the calculated QF and D0, we can estimate the solute diffusivities neglecting
the magnetic correction with the simple relation, i.e. D = D0 · exp (−QF /kBT ), where kB
is Boltzmanns constant and T is the temperature. We plot the calculated values of D at
800 K in Figure 3.23. Since the effect of magnetic disorder is neglected, instead of the
absolute values, we will focus mainly on the trends in the calculated results.

It can be seen that the calculated values of D show non-monotonic dependence on
the atomic number and d-band filling. The diffusion prefactor D0 and diffusion activation
energies QF show competing effects: solutes with higher QF also have higher D0. The
dominant contributions from the Arrhenius factor exp (−QF /kBT ) leads to the minimum
values at the center of each transition metal series. In each group, we found that Q5d >
Q3d > Q4d shown in Figure 3.16 results in the highest diffusivities for the 4d solutes among
the transition metals in bcc Fe. The exception is for solute Au which is shown to have
have a lower diffusion coefficient than the neighboring atom Pt. The anomaly found for Au
may be due to larger errors inherent in the approximations underlying the calculations for
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Figure 3.23: Solute diffusivities in bcc Fe calculated at T = 800 K, neglecting corrections
for magnetic disorder.

this species. The work of Zhang et al. [169] has shown that conventional density functional
theory calculations with semi-local approximations to the exchange-correlation energy are
less accurate in describing Au, and a nonlocal term within the exchange correlation function
is required to obtain accurate energetics. From Figure 3.21, we would expect the “slow
diffusers” to be the 3d solute Co, and 5d solutes Re, Os and Ir, which in general have the
diffusion coefficient lower than other solutes by at least a factor of five.

3.4.5 Comparison with Experimental Measurements

Though Figure 3.23 presents the basic trends of the solute diffusion coefficients
in each transition metal series, to compare the absolute values of calculated diffusion co-
efficients with experimental measurements, it is necessary to know the value of α for each
solute as shown in Equation 3.19. The value of α is a species-dependent parameter which
quantifies the dependence of Q on magnetization. For several solutes, the values of α have
been derived through fitting of the relationship between T ln [D/DP

0 ] and S2(T ) from the
diffusion data over temperature ranges spanning the paramagnetic and ferromagnetic states.
Given the value of α, along with computed DF and D0 and experimentally measured values
of s2(T ) [134, 170], the temperature dependence of the corresponding solute diffusion coef-
ficients can be directly obtained, which allows a direct comparison between the calculated
and measured diffusion coefficients.

We notice most experimental diffusion coefficient measurements for the transition
metal solutes in bcc Fe focused on 3d transition metal series, while only for six solutes (Ti,
Cr, Co, Ni, Cu and Zn), experiments have performed detailed study on the magnetic effects
on solute diffusivity and reported the value of α. In addition, there are another three 4d
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transition metal solutes (Nb, Mo and Ag) with one more 5d transition metal solute W where
experimentally fitted values of α have been reported. In Ref. [1] a comparison between the
calculated diffusion coefficients obtained with nominally the same computational framework
and experimental measurements for Mo and W is presented. Therefore, in what follows, we
will focus on comparisons for the other solutes.

3d Transition Metal Solutes

For Ti-solute diffusion in bcc Fe, to our best knowledge, there is only one set of
experimental data available for comparison. The measurement in Ref. [171] made use of
high-purity Fe with large grain sizes and isotope concentration analysis is used to measure
diffusion depth profiles as a function of time over the temperature range of 948 to 1174 K.
Fitting of the experimentally measured values for the Ti-solute diffusion coefficient yields
QP = 3.03 eV, D0 = 2100 cm2s−1 and α = 0.078, as summarized in Table 3.12 along
with the present calculation results. Our calculated values (QF = 2.13 eV and D0 = 0.20
cm2s−1) are somewhat smaller than those obtained from the fits to experimental data, while
other calculations reported by Murali et al. [172] also gave relatively smaller values as QP

= 2.31 eV and D0 = 0.01 cm2s−1. However, we notice that the work of Murali et al. did
not consider the effect of magnetic disorder on diffusion activation energy which leads to a
significant underestimation of Ti diffusivities in the high-temperature region.

Table 3.12: Calculated activation energies in the fully ordered ferromagnetic state (QF ) and
paramagnetic state (QP ), along with solute diffusion pre-factors (D0) for solute diffusion of
Ti in bcc Fe in comparison with available published experimental measurements.

Solute Reference QF (eV) QP (eV) D0 (cm2s−1)

Ti Present work 2.30 2.13 0.20
Klugkist and Herzig [171] 3.03 2.91 2100

Using the experimentally obtained value of α = 0.079, the calculated temperature
dependence of Ti-solute diffusion coefficients is plotted in Figure 3.24, in comparison with
the experimental measurements. At 1042 K, the reported experimental value of the Ti
solute diffusivity is 2.94×10−16 m2s−1, which is in very good agreement with our calculated
value of 2.13×10−16 m2s−1 at the same temperature. Coincidently, a good agreement is
also reached between our calculated diffusivities and the measurements in the temperature
region of 948-1042 K within a factor of two. Nevertheless, our predictions underestimate
the Ti-solute diffusion coefficients at higher temperature within a factor of four close to the
highest temperature corresponding to the α (bcc) to γ (fcc) transition temperature Tα−γ .
Considering that smaller magnitudes of Q and D have been obtained from previous calcula-
tions [172] and the present work, as well as limited experimental data, further experimental
investigations of Ti solute impurity diffusivities in bcc Fe would seem warranted.

Next, regarding Cr-solute diffusion measurements, three different deposition meth-
ods, namely, dried salt solution, vapour deposition and electroplating method, were used by
Bowen and Leak [173], Braun and Feller-Kniepmeter [174] and Lee et al. [175], respectively,
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Figure 3.24: Diffusion coefficients of Ti calculated in the present work in comparison with
available experimental data. In this plot and those that follow, the Curie temperature for
bcc Fe (TC = 1043 K) is indicated.

to prepare the isotope layers. For radioisotope diffusion depth profiles, early work done
by Bowen and Leak [173] and Braun and Feller-Kniepmeter [174] made use of a residual
activity method, while later work from Lee et al. [175] employed a radio-frequency sputter-
microsectioning method. Their measured diffusion activation energies in the paramagnetic
state QP range between 2.60 and 3.83 eV, as listed in Table 3.13. However, the large value
of QP = 3.83 reported from Braun and Feller-Kniepmeter [174] coupled with a value of D0

= 1690 cm2s−1, which is significantly larger than the normal values of D0 ranging between
10−1 and 10+2 cm2s−1. A recent fit of the experimentally measured diffusion coefficients
done by Lee et al. [175] suggested the value of α = 0.133. This value yields an estimation
of QP = 2.35 eV from the present calculations of QF for Cr solute diffusion in bcc Fe,
which is relatively smaller than experimental measurements. In terms of the value of D0,
our calculations yield values similar to those reported by Bowen and Leak [173], which are
much smaller than other two values reported from experimental measurements. Consid-
ering the scatter between experimentally measured D0 and QP , it is more meaningful to
compare the overall diffusion coefficients, instead of simply the parameters derived from fits
to experimental data.

Figure 3.25 compares the experimentally measured Cr solute diffusivities in bcc Fe
with the present calculated results. We notice that all these available experiment measure-
ments yield similar values for Cr-solute diffusion coefficients in the high temperature region,
while the value reported by Lee et al. [175] is somewhat smaller than that from Braun and
Feller-Kniepmeter [174] by a factor by up to five at the lowest temperature of 915 K. Though
a generally smaller value of diffusion activation energy is estimated from our calculations,
we found our calculated diffusion coefficients are still in good agreement with measurements
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Table 3.13: Calculated activation energies in the fully ordered ferromagnetic state (QF ) and
paramagnetic state (QP ), along with solute diffusion pre-factors (D0) for solute diffusion of
Cr in bcc Fe in comparison with available published experimental measurements.

Solute Reference QF (eV) QP (eV) D0 (cm2s−1)

Cr Present work 2.66 2.35 8.55
Bowen and Leak [173] 2.60 8.52
Braun and Feller-Kniepmeter [174] 3.83 1690
Lee [175] 3.14 2.77 37.3
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Figure 3.25: Diffusion coefficients of Cr calculated in the present work in comparison with
available experimental data.

of Lee et al. [175] and Braun and Feller-Kniepmeter [174] in the high-temperature region.
In the lower temperature region (below TC), our calculated diffusion coefficients of Cr in
bcc Fe are in somewhat better agreement with the values measured by Braun and Feller-
Kniepmeter [174] with the maximal deviation corresponding to a factor of three at around
1020 K, which is slightly higher than the values reported from Lee et al. [175]. As we can
see here, though there are some discrepancies of the Arrhenius parameters of D0 and Q
between our calculated and experimentally reported values, our predictions of Cr diffusion
coefficients are in very reasonable agreement with the experimental measurements.

Further, computed Co solute diffusion coefficients in bcc Fe are compared with
four sets of experimental measurements done by Borg and Lai [176], James and Leak [8],
Hirano and Cohen [177] and Iijima et al. [178], as illustrated in Table 3.14 and Figure 3.26.
Regarding the experimental measurement details, layers of radioactive Co were deposited
onto coarse-grained Fe samples by vapor depositions [176] or by electroplating [8, 177, 178].
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Residual activity measurements were employed for concentration measurement along the
diffusion depth by Borg and Lai [176], James and Leak [8] and Hirano and Cohen [177], while
the most recent report from Iijima et al. [178] made used of a radio-frequency sputtering
method. A systematic analysis of the relation between T ln [D/DP

0 ] and s2(T ) was also done
by Iijima et al., leading to a value of α = 0.230 for characterizing the effect of magnetic
disorder on Co solute diffusion in bcc Fe [178], which is relatively higher than a direct
estimation of α = 0.179 based on the measured diffusion activation energy in paramagnetic
QP and ferromagnetic QF states from the work of Hirano and Cohen [177]. Using the
parameter of α = 0.230, we obtain a value of QP = 2.37 eV from our calculated value of
QF = 2.92 eV, which is much lower than the experimentally reported values in the range
of 2.60-2.96 eV. It is noteworthy that our calculated value of D0 is about one order of
magnitude larger than the most recently published results from James and Leak [8], Hirano
and Cohen [177] and Iijima et al. [178], while it is smaller than that from much earlier
measurements done by Borg and Lai [176].

Table 3.14: Calculated activation energies in the fully ordered ferromagnetic state (QF ) and
paramagnetic state (QP ), along with solute diffusion pre-factors (D0) for solute diffusion of
Co in bcc Fe in comparison available with published experimental measurements.

Solute Reference QF (eV) QP (eV) D0 (cm2s−1)

Co Present work 2.92 2.37 25.10
Borg and Lai [176] 2.96 118
James and Leak [8] 2.70 2.66 6.38
Hirano and Cohen [177] 2.42 1.83
Iijima et al. [178] 3.20 2.60 2.76

From Figure 3.26 we can see that the experimental measurements of Co diffusion
coefficients in the paramagnetic state of bcc Fe at high temperature are comparable to
each other, while the measurements from Hirano and Cohen [177] gave relatively smaller
values. In the ferromagnetic state of bcc Fe in the temperature region, the experimental
results show much more scatter. Specifically, experimental measurements from Hirano and
Cohen [177] at a temperature around 900 K are almost one order of magnitude higher than
that measured by Iijima et al. [178]. Due to the large value of α = 0.230, our calculated
diffusion activation energy in the paramagnetic state is much smaller than those derived
from experiments, which leads to the general overestimation of our calculated Co-solute
diffusion coefficients in bcc Fe over the whole temperature range in comparison with most
experimental measurements. In particular, at the highest temperature, close to Tα−γ , our
predicted diffusion coefficient of Co is higher than experimental measures by a factor of four
while the maximal deviation occurs around the TC where the calculated diffusion coefficient
is almost an order of magnitude higher than the recent report from Iijima et al. [178]. In the
ferromagnetic state, our calculated diffusion coefficients are closer to the values reported
from Hirano and Cohen [177], but higher than other reported values.

Regarding Ni solute diffusion in bcc Fe , the impurity diffusion coefficients were first
evaluated by Hirano et al. [179] using a residual activity method for measuring the isotope
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Figure 3.26: Diffusion coefficients of Co calculated in the present work in comparison with
available experimental data.

concentration of the annealed sample with electroplated Ni radioisotope layers. Later work
done by Borg and Lai [180] and C̆ermák [181] instead made use of a vapor deposition
method for preparing the original samples. A summary of the temperature dependence of
Ni solute diffusion coefficients in bcc Fe yields a fitted value of α = 0.120 to best describe
the effect of magnetic disorder. As shown in Table 3.15, this value of α yields the values of
QP = 2.41 eV and D0 = 1.21 cm2s−1 from our calculations, which are close to the results
derived from measurements of Hirano et al.: QP = 2.43 eV and D0= 1.3 cm2s−1. However,
these values are relatively smaller than those from Borga and Lai [180] and C̆ermák [181],
respectively.

Table 3.15: Calculated activation energies in the fully ordered ferromagnetic state (QF ) and
paramagnetic state (QP ), along with solute diffusion pre-factors (D0) for solute diffusion of
Ni in bcc Fe in comparison available published experimental measurements.

Solute Reference QF (eV) QP (eV) D0 (cm2s−1)

Ni Present work 2.70 2.41 19.72
Hirano et al. [179] 2.55 2.43 1.3
Borg and Lai [180] 2.68 9.9

C̆ermák et al. [181] 2.60 2.3

A comparison between the present calculations of Ni solute diffusion coefficients
with experimental measurements is shown in Figure 3.27. A good agreement between our
predictions and experimentally measured values of diffusivities can be seen in the para-
magnetic state, with our calculations being between the experimental measurements with
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Figure 3.27: Diffusion coefficients of Ni calculated in the present work in comparison with
available experimental data.

the upper bound from Hirano et al. [179] and lower bound from Borg and Lai [180]. In
the lower temperature region, our predicted diffusivities are closer to the earlier measure-
ment in Ref. [179], which are in general higher than those from Borga and Lai [180] and
C̆ermák [181] by a factor of five. The discrepancies could originate from the difference of
grain sizes in the Fe samples, the accuracy of the instruments as well as surface stress effects
as discussed in Ref. [181].

We next focus on the Cu-solute diffusion. Our calculated results and four sets of
solute diffusion Arrhenius parameters are presented in Table 3.16 and Figure 3.28. All of the
measurements made use of vapor deposition methods to prepare the sample for the radioac-
tive Cu radioisotope layers, while for the diffusion depth measurement, different techniques
have been used, such as a weigh difference method [182], residual activity method [183] and
electron probe microanalysis [184, 185]. With a relatively short penetration plot, the Cu
solute diffusion coefficients earlier obtained by Anand and Agarwala [182] are smaller than
other measurements at high temperature region above TC by a factor up to five. A present
fitting over all experimental measurements gives the value of α = 0.09. Using this value, we
can estimate the value of QP = 2.22 eV from our calculations, which is generally smaller
than the reported values in the range of 2.52-2.94 eV from experimental measurements. Our
calculated value of D0 = 1.21 cm2s−1 for Cu diffusion is of the same order of magnitude
as the results derived from Ref. [182, 184, 183], whereas it is significantly smaller than the
value reported by Sajie and Feller-Kniepmeter [185].

The comparison between our calculated Cu diffusion coefficients in bcc Fe shows
excellent agreement with the most recently published experimental results in the param-
agnetic phase, whereas an overestimation in comparison with the measured values in the
ferromagnetic state by no more than a factor of five is obtained. The overestimation may
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Table 3.16: Calculated activation energies in the fully ordered ferromagnetic state (QF ) and
paramagnetic state (QP ), along with solute diffusion pre-factors (D0) for solute diffusion of
Cu in bcc Fe in comparison with available published experimental measurements.

Solute Reference QF (eV) QP (eV) D0 (cm2s−1)

Cu Present work 2.42 2.22 1.21
Anand and Agarwala [182] 2.57 2.51 0.57
Speich et al. [184] 2.59 8.6
Rothman et al. [183] 2.52 3.35
Sajie and Feller-Kniepmeter [185] 2.94 300

 This work
 Anand and Agarwala (1966)
 Speich et al.               (1966)
 Rothman et al.           (1968)
 Sajie and Feller-K.     (1977)
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Figure 3.28: Diffusion coefficients of Cu calculated in the present work in comparison with
available experimental data.

be due to he smaller diffusion activation energy we obtained from calculations.
The last 3d transition metal solute considered here is Zn. For Zn-solute diffusion

in bcc Fe, the measurements in Ref. [186] made use of single crystalline Fe and solute
diffusivities were measured by tracer analysis over the temperature range of 848-1169K,
employing electron probe microanalyis techniques. The corresponding diffusion activation
energies in the ferromagnetic and paramagnetic states, along with the diffusion prefactor
derived from the work are listed in Table 3.17. Also a fit of the temperature dependence
of diffusion coefficients spanning over the ferromagnetic and paramagnetic states suggests
a value of α = 0.120 [187] to account for the effect of magnetic disorder on Zn-solute
diffusivities in bcc Fe. We found the calculated quantities display values much smaller than
those obtained from experiments, in particular, the calculated D0 for Zn in the present work
is two orders of magnitude smaller than the reported values.



62

Table 3.17: Calculated activation energies in the fully ordered ferromagnetic state (QF ) and
paramagnetic state (QP ), along with solute diffusion pre-factors (D0) for solute diffusion of
Zn in bcc Fe in comparison available published experimental measurements.

Solute Reference QF (eV) QP (eV) D0 (cm2s−1)

Zn Present work 2.23 2.01 0.13
Richter and Feller-Kniepmeter [186] 3.01 2.72 60

 This work
 Richter and Feller-K. (1981)
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Figure 3.29: Diffusion coefficients of Zn calculated in the present work in comparison with
available experimental data.

The calculated temperature dependence of the solute-diffusion coefficients for Zn is
plotted in Figure 3.29, in comparison with the experimental results from Richter and Feller-
Kniepmeter [186]. At 1043 K, the reported experimental value of the Zn solute diffusivity is
3.45×10−16 m2s−1, which is in excellent agreement with our calculated value of 2.35×10−16

m2s−1 at the same temperature. The calculated diffusion coefficients of Zn in bcc Fe show
overall good agreement with the experimentally measured values in the ferromagnetic phase,
while they are relatively smaller than the measurements in the paramagnetic phase, with
at most a factor of four at the highest temperature.

4d Transition Metal Solutes

Eight 4d transition metal solute (Nb-Cd) diffusion coefficients in bcc Fe have been
examined in this work. The solute impurity-diffusion coefficients were experimentally mea-
sured for Nb, Mo and Ag. Previous calculations in Ref. [1] using nominally the same
computational framework have been shown to be in a good agreement with experimental
measurements for Mo. Hence, we will focus here on the other two solutes, namely, Nb and
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Ag.
For solute species Nb, the solute impurity diffusion coefficient measurements of

Geise and Herzig [188] made use of a microtome to obtain the concentration profile along
the diffusion depth covering the temperature range of 993-1162 K, and subsequent exper-
iments done by Herzig et al. [189] presented the results in the lower temperature range
of 833-1000 K. The diffusion coefficients they reported are relatively higher than the val-
ues given by Oono et al. [190], which made use of an electroplating method for preparing
samples for annealing and ion-beam sputter-microsectioning method for measuring isotope
concentration. Also, an in-depth analysis on the magnetic disorder effect of Nb-solute dif-
fusion was done by Oono et al. [190], giving a value of α = 0.061 from a fit to the diffusivity
data. Based on this value of α, we obtain the value of QP = 2.05 eV from the calculated QF

in the present work. It is shown in Table 3.18 that this calculated value of QP is somewhat
smaller than the values obtained by Geise and Herzig [188] and Oono et al. [190]. It is worth
noticing that the most recent results from Oono et al. yielded an anomalously large value
of D0 = 1400 cm2s−1 [190], which would require further detailed investigation. The D0

obtained in the present calculation is also smaller than the experimentally reported value
by Geise and Herzig [188].

Table 3.18: Calculated activation energies in the fully ordered ferromagnetic state (QF ) and
paramagnetic state (QP ), along with solute diffusion pre-factors (D0) for solute diffusion of
Nb in bcc Fe in comparison with available published experimental measurements.

Solute Reference QF (eV) QP (eV) D0 (cm2s−1)

Nb Present work 2.17 2.05 0.16
Geise and Herzig [188] 2.61 50.2
Heizig [189] 2.87
Oono et al. [190] 3.29 3.10 1400

The experimental measurements of Nb-solute diffusion coefficients show significant
scatter, where almost an order of magnitude difference exists between the measurements
from Heizig et al. [189] and Oono et al. [190]. It is of interest that though our Arrhenius
parameters show poorer agreement with experiments, the predicted diffusion coefficients
still are in good agreement with the values measured by Oono et al. in the paramagnetic
state. Also the calculations in the ferromagnetic state yield the diffusion coefficients between
the values obtained by Heizig et al. and Oono et al.. Such a significant discrepancy between
experiments for the Nb diffusivity in bcc Fe warrants further investigation and study.

The diffusivity measurements for Ag have been undertaken by Bondy et al. [191]
and Eguchi et al. [192] in the temperature range of 973-1173 K. Bondy et al. [191] made
use of vapor deposition and radioactive isotope tracers with serial sectioning method, while
Eguchi et al. [192] made use of electroplated samples with the diffusion depth measured by
residual activity methods. Based on the diffusion activation energies in the paramagnetic
(QP = 2.68 eV) and ferromagnetic state (QF = 2.88 eV) from the work of Eguchi et al.,
we can estimated a value of α = 0.072. Our calculated values of QP = 1.94 eV and D0

= 0.17 cm2s−1 are relatively smaller than the values obtained from experiments, as shown
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Figure 3.30: Diffusion coefficients of Nb calculated in the present work in comparison with
available experimental data.

in Table 3.19. Collectively, our predicted diffusion coefficients over the temperature range
are comparable with the experimental measurements. The values of Ag-solute diffusion
coefficient we predicted in the paramagnetic state are between the measurements done by
Bondy et al. and Eguchi et al.. In the ferromagnetic state, the calculated values are slightly
higher than the results from Eguchi et al. by a factor of up to three.

Table 3.19: Calculated activation energies in the fully ordered ferromagnetic state (QF ) and
paramagnetic state (QP ), along with solute diffusion pre-factors (D0) for solute diffusion of
Ag in bcc Fe in comparison with available published experimental measurements.

Solute Reference QF (eV) QP (eV) D0 (cm2s−1)

Ag Present work 2.08 1.94 0.17
Bondy et al. [191] 2.99 1950
Eguchi et al. [192] 2.88 2.68 38

3.4.6 Discussion and Summary

With aid of the solute-dependent parameter α to account for the effect of mag-
netic disorder on solute diffusion activation energy obtained from experiments, we have
computed the transition metal solute diffusion coefficients within a framework combining
density-functional-theory calculations, harmonic transition-state theory, and the Le Claire
nine-frequency model. Combining the reported work in Ref. [1] using nominally the same
computational approach, the agreement between the predicted and experimentally measured
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Figure 3.31: Diffusion coefficients of Ag calculated in the present work in comparison with
available experimental data.

results over the relevant temperature range is highly encouraging, where our predicted and
measured solute diffusion coefficients, for most solutes, are found to agree within a factor of
five in the temperature range 800-1184 K, spanning a temperature range through the Curie
temperature Tc = 1043 K.

For solute species Cr, Ni and Ag, very good agreement between our calculated
diffusion coefficients and values reported from experimental measurements are observed
over the whole temperature range of interest. For Ti and Zn, our prediction is close to
the experimental measurements in the low-temperature ferromagnetic state. However, for
both solutes, there is only one set of data reported by experiments and more experimental
measurements would be desirable. For Cu, Mo and W-solutes, better agreement between
calculated and measured temperature-dependent diffusion coefficients are presented in the
high-temperature paramagnetic state, while our predictions overestimate the measured val-
ues by no more than a factor of five in the ferromagnetic state. The largest deviations from
our predictions in comparison with experimental measurements occur for the solute Co.
Our calculations yield an overestimation by almost one order of magnitude at Tc for Co-
solute diffusion coefficients, and the calculated results are generally higher in comparison
with experimental measures in the high temperature region. Also we found significant dif-
ferences between experimental measurements for the Nb-solute diffusion coefficient results,
while our calculated results are between them. A summary of the calculated results, as the
ratios of the solute diffusivities to the self-diffusivity of Fe at a representative temperature
of 1000 K, are plotted in Figure 3.32

For the solutes considered here, the value of α employed is based on the fit of
experimental data over temperature ranges spanning the paramagnetic and ferromagnetic
states. Given these values, it has been suggested [19] that there is a linear correlation
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transition metal solutes, respectively.

between the magnitudes of α and ∆M12, the sum of the change in the local magnetic
moments induced on the Fe atoms in the first- and second-neighbor shells of a solute atom:

∆M12 =
8∑
i=1

∆M1st
i +

6∑
i=1

∆M2nd
i (3.24)

In Figure 3.33 the results for measured values of α for self- and solute (Ti, W,
Nb, Mo, Cr and Co) diffusion are plotted with green circle symbols, versus the calculated
values of the quantity ∆M12 defined in Equation 3.24. The dashed line represents the linear
relationship suggested by Iijima [19] as: α = 0.057∆M12 + 0.159. Nevertheless, we found
that the reported values of α for Zn, Cu and Ni, which are plotted with red triangle symbols
in Figure 3.33, do not match well such an empirical relation. We conclude that this linear
relation cannot be generalized for obtaining the values of α for solutes with filled d shells,
to predict the temperature dependence of solute diffusion coefficients.

The “spin-wave” approach was presented in Section 3.3, and shown to yield good
predictions for the effect of magnetic disorder on self diffusion in bcc Fe. Some preliminary
investigations have been performed by the authors and collaborators to further study the
effect of magnetic disorder on solute impurity diffusion. It is noteworthy that the “spin-
wave” approach is designed to account for the so-called transverse fluctuations for the
magnetic systems, in which the Heisenberg model would be a good approximation for the
spin-spin interactions. However, the approach is not designed to account for longitudinal
fluctuations, where the magnitude of the local spin moment of each atom changes in the
magnetically disordered system. We have found that in most cases the presence of a solute
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Figure 3.33: The linear relationship between α and ∆M12 suggested in Ref. [19]. The green
circle symbols represent solute follow the linear relation, while the red triangle symbols
represent solute do not satisfy the relation.

atom gives rise to a significant coupling between longitudinal and transverse fluctuations,
which would significantly affect the magnetic interactions in these systems. Figure 3.33
demonstrates that the presence of solute and vacancy disturbs the local magnetic structure
of the systems, and our preliminary calculations using the spin-wave approach suggest that
longitudinal fluctuations contribute strongly to the changes in energy arising from magnetic
disorder in the presence of solutes. The situation is found to be further complicated by the
large coupling between local magnetic moments and structural relaxations in many cases.
To progress further in the first-principles description of the effects of magnetic disorder
on solute diffusion would thus require a methodology for treating transverse and local
longitudinal fluctuations on an equal footing.

Although such a first-principles method has not yet been developed, Figure 3.21
shows the general trends of solute diffusivities in bcc Fe based on calculated diffusion ac-
tivation energy Q and D0 in the fully ordered ferromagnetic state, which could be used
to estimate the solute diffusivities in the low temperature region. The calculated diffusion
coefficients show clear trends versus atomic number featuring minimum values at the center
of the transition metal series. In particular, the solute species Co, Re, Os and Ir appear to
be potential candidates as “slow diffusers” in bcc Fe. Therefore, these solute species may
be of interest as potential additions to precipitation-strengthened ferritic alloys for slowing
high-temperature coarsening rates.

Furthermore, it is noteworthy that the present diffusivity calculations have not
considered the solutes with significant size mismatch with Fe. Preliminary calculations
for both La and Y solutes have led to interesting qualitative differences, relative to the
transition-metal solutes considered before, in the nature of the vacancy-solute interactions.
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We focus here on Y, which has been studied previously in both Fe and Ni-Al alloys due to its
role in oxide-dispersion strengthening in the former, and its effects on corrosion resistance
in the latter [193, 194].

Figure 3.34: Comparison of the stable geometries for solute-vacancy nearest-neighbor pairs
in the case of W and Y solute in bcc Fe.

.

Figure 3.35: Ring-like diffusion mechanism for Y in bcc Fe. The parentheses are used to
distinguish the location of the different species before and after Y diffusion.

Figure 3.34 contrasts the results obtained for Y-vacancy interactions in bcc Fe with
the more typical case of a W solute. In the case of W, the solute is stable at a position very
near the ideal bcc Fe-substitutional site, and a solute-vacancy hop involves overcoming a
saddle-point barrier located half-way between the solute and vacancy sites. In contrast, an
Y solute placed next to a vacancy is strongly bound in the interstitial position, as illustrated
in Figure 3.34. Thus, the position that is a saddle point for the vacancy-solute exchange in
the case of W becomes a deep energy minimum in the case of Y. This trend implies a much
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more complex solute diffusion mechanism for Y solute.
To further investigate the mechanism for diffusion of an Y solute in bcc Fe, we

performed a set of calculations investigating plausible pathways. The hopping of an Y solute
to a neighboring position requires the motion of both the solute and a neighboring Fe atom.
The motion of an Fe atom is required in order for one of the two vacancies, illustrated
by boxes in Figure 3.34, to jump to a second neighbor position and remain a nearest-
neighbor to the hopping Y atom. Two such mechanisms have been considered and are
illustrated in Figure 3.35. In both diffusion pathways, the Y diffuses between two nearest-
neighbor interstitial sites, but Figure 3.35 (a) involves only nearest-neighbor hops of the
Fe atoms, while Figure 3.35 (b) describes a jump of the Fe atom between second-neighbor
sites. The migration energies of the two possible diffusion pathways using nudged elastic
band calculations are approximately 3.43 and 3.59 eV, respectively. The complex ring-like
diffusion mechanisms and high migration energy imply potentially very low diffusivity of Y
atoms in the bcc Fe.

These initial computational results strongly suggest that it would be worthwhile
to produce some initial Fe-based alloys with Y solute added, to investigate experimentally
where the Y ions are located in the microstructure and whether they do indeed slow down the
coarsening rate of the precipitates. Due to their high energy in the Fe matrix, these atoms
may segregate to the precipitate core, the precipitate/matrix interface, or other extended
defects such as dislocations or grain boundaries. In the first case, the dissolution of a small
precipitate to enable the growth of a larger one in coarsening would involve the transport of
the Y through the matrix. In this case, the slow diffusion of Y is expected to dramatically
reduce the coarsening rate. In the second case, the Y impurities may provide strong pinning
of the interfaces, such that coarsening becomes limited by the interface mobility, rather than
the solute diffusion through the matrix. Initial exploratory experimental investigations of
precipitation-strengthened ferritic alloys with Y additions would help identify which of these
different possibilities may occur, and would help guide further computational work related
to the use of Y or related rare-earth atoms as a potential means for improving the high-
temperature stability of the alloys considered in our work.

3.4.7 Summary

A computational framework has been described for modeling self and impurity
solute diffusion in bcc Fe. The effect of magnetic disorder on bcc Fe self diffusion was
studied using a density functional theory based approach coupled with the “spin-wave”
formalism. The results showed excellent agreement between calculations and experimen-
tal measurements. Transition metal solute impurity diffusivities in bcc Fe also have been
studied in detail. Competing effects of diffusion activation energies and prefactors have
been demonstrated. For transition metal solutes, both quantities exhibit maximum val-
ues in the center of the transition metal series. Calculations suggested solutes Co, Re, Os
and Ir as slow-diffusing solutes in bcc Fe which is desirable for optimization of coarsening
rates for precipitation-strengthened ferritic alloys operating at high temperatures. Also
the calculated diffusion coefficients for most solutes are shown to be comparable to experi-
mental measurements, such that the computational approach outlined above may be useful
for helping to guide further development of kinetic databases for Fe-based multicomponent
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alloys.

3.5 Point Defects in Intermetallic Phases

One issue that arises in the use of precipitation-strengthened ferritic alloys for
high-temperature applications is the creep resistance of the ordered intermetallic phases
that form the precipitates in the bcc Fe matrix. If these materials themselves have low
creep resistance, they may not be effective in pinning dislocations at high temperatures.

The topic of creep resistance of ordered intermetallic phases is one that has been
actively investigated for several decades. First-principles computational methods are of
interest in this context, as they provide a framework for computing the density of point
defects and other properties that relate to creep strength. To help further the design of
intermetallic-strengthened ferritic alloys, we have initiated the work to develop automated
tools for computing equilibrium point defects in intermetallic compounds. The tools will
be described in detail in Appendix A. In this section we present results representing appli-
cations of these tools in the study of intermetallic phases relevant to the ferritic alloys that
motivated an effort covered in this chapter.

3.5.1 Computational Details

In what follows we will compute equilibrium point-defect concentrations within the
dilute-solution thermodynamic formalism. Since the details of the thermodynamic formal-
ism are presented in Appendix A, here we give only the computational details surrounding
the calculations of defect formation energies based on density-functional theory.

The required point-defect calculations were performed within the generalized gra-
dient approximation of Perdew, Burke and Ernzerhof (PBE) [58] using the Projector Aug-
mented Wave (PAW) method [83, 84] as implemented in the Vienna ab initio simulation
package (VASP) [153, 154, 155, 156]. A value of 400 eV is used for plane-wave cutoff [84]
and a Monkhorst-Pack sampling [157] of reciprocal space, with k-point grids equivalent
to 12×12×12 for a conventional B2 unit cell were employed. The non-defect (pristine)
structures were fully relaxed with conjugate gradient method. The point-defect structures
were obtained by relaxing atomic positions of structure with lattice constants derived from
the pristine structure optimizations. The convergence criteria for energy and forces in the
self-consistent iterations and structure optimizations, respectively, were set to 10−5 eV and
10−2 eV/Å.

3.5.2 Intermetallic Equilibrium Defect Concentration

The B2-NiAl crystal structure is isomorphic to CsCl with Ni and Al each occupying
one sub-lattice as shown in Figure 3.36 (a). Adopting conventional notation for point
defects, there are two vacancy defects, i.e. VNi and VAl, and two antisite vacancy defects,
i.e. NiAl and AlNi, respectively, where the subscript denotes sublattice site. Calculated
equilibrium concentrations of these point defects at the temperature of T = 1000 K are
shown in Figure 3.37. As the composition changes from Ni to Al rich, the dominant defect
changes from NiAl antisite to VNi constitutional vacancies. The concentrations of these two
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Figure 3.36: Crystal structures of (a) B2-NiAl and (b) L21-Ni2AlTi.

defects are at least one order of magnitude larger than the other two defects. Our calculated
results agree well with experimental observations from Bradley and Taylor [195] where it was
reported that excess Ni would form NiAl while excess Al is achieved through the creation of
VNi. The relative order of the magnitude for the four defect concentrations as found in with
previous calculations from Korzhavyi et al. [196] and Mishin [197], while the reported values
of defect concentrations as a function of stoichiometry are qualitatively consistent with
previous calculations to within an order of magnitude. The difference between calculations
may be associated with the choice of pseudopotentials, supercell size and relaxation schemes.

In the alloy design effort that motivated this work, Ti additions to the ferritic
alloys have been found to lead to changes in microstructure and properties. Specifically,
such additions have been shown to give rise to the formation of precipitates with the ordered
L21 Heusler phase based on composition Ni2AlTi [198, 199].

The L21 structure for Ni2AlTi has three sets of sublattices, as shown in Figure 3.36
(b). It has cubic space group Fm3̄m (space group No. 225) where the Ni atoms occupy
the Wyckoff positions A (0, 0, 0) and C (1/2, 1/2, 1/2), and the Al and Ti atoms occupy
B (1/4, 1/4, 1/4) and D (3/4, 3/4, 3/4), respectively. Calculated equilibrium point defect
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Figure 3.37: Equilibrium constitutional and thermal defect concentrations in B2-NiAl at T
= 1000 K.
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Figure 3.38: Equilibrium constitutional and thermal defect concentrations in L21 (a)
Ni2AlZr and (b) Ni2AlHf at T = 1000 K.
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concentrations at the temperature of T = 1000 K as a function of composition are plotted
in Figure 3.38. It is known experimentally [198, 199] that this L21 phase can accommodate
significant deviations in Al and Ti concentrations, while the Ni mole fraction is fixed at 50
at.%. We thus consider point-defect concentrations for compositions Ni2Al1+yTi1−y. For
both Ti- and Al-rich compositions the majority defects are found to be antisites, rather
than vacancies.
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Figure 3.39: Equilibrium constitutional and thermal defect concentrations in L21-Ni2AlTi
at T = 1000 K.

We also performed similar calculations for the L21 (Ni2AlTM) structures with
other group III elements (TM = Zr or Hf), in order to find the basic trends of defect
properties for alloy design. The defect concentrations as a function of composition at the
temperature of T = 1000 K are shown in Figure 3.39. We find both elements give rise to a
significant increase of VNi defect concentrations (by at least an order of magnitude), which
could potentially lead to increased diffusion kinetics in the precipitates relative to Ni2AlTi.
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Chapter 4

First-pinciples Modeling of
Electron Diffusion: Polaron
diffusion in α-MoO3

4.1 Forward

In this chapter, we focus on the electronic diffusion in α-MoO3. This study was
motivated by the current development of α-MoO3 for energy storage and transport appli-
cations [200, 36, 201, 202, 203], such as Li-ion battery and electrochemical supercapactiors.

α-MoO3 possesses a layered crystal structure, in which the MoO3 two-dimensional
bilayer sheets are bonded by electrostatic and van der Waals interactions. The latter are
known to be a challenge to accurately describe by conventional density functional theory
methods that are based on local or semi-local exchange-correlation potentials [204, 205].
Furthermore, like other transition metal oxide semiconductor, the kinetics of Faradaic charge
transfer and the electron transport in α-MoO3 is known to be slow [206, 44, 36]. In this case,
modeling of bulk crystalline α-MoO3 system, in order to unravel the underlying electronic
structure and transport properties, would be of importance for optimizing material design
and improving device performances.

It is the purpose of the present work to understand these material properties of
interest using computational approaches. Density functional theory based first-principles
methods are employed to study bulk α-MoO3. The remainder of this chapter is organized
as follows. In Section 4.2, we employ different first-principles methods to study the atomic
and electronic structures of α-MoO3. Section 4.3 focuses on the electronic diffusion through
a small-polaron mechanism in α-MoO3, followed by studying the effect of polaron-lithium
binding in Section 4.4, in order to understand the electronic conductivity of the material.
Conclusions of the present study are presented in Section 4.5

Content in Section 4.2, including the figures and tables, were partially published
by Hong Ding, Keith Ray, Vidvuds Ozolins and Mark Asta in Phys. Rev. B, 85 (2012),
012104 [207], and is reproduced here with permission of the co-authors and publishers.
c©2012 American Physical Society.

Content in Sections 4.3.2 and 4.4, including the figures and tables, were partially
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published by Hong Ding, Hao Lin, Babak , Fei Zhou, Vidvuds Ozolins and Mark Asta [208],
and is reproduced here with permission of the co-authors and publishers. c©2014 American
Chemical Society.

4.2 Atomic and Electronic Structure

4.2.1 Introduction

To study the electronic diffusion in any semiconductor, first and foremost, it is im-
portant to understand its atomic structure. As shown in Figure 4.2.1, the crystal structure
of α-MoO3 has a unique layered structure. It is composed of sheets of distorted, edge-shared
MoO6 octahedra. Each octahedron contains three symmetry-distinct oxygen ions, which
occupy 4c Wyckoff positions in the Pbnm orthorhombic space group [209]. The MoO3

sheets are stacked along the b lattice direction of the orthorhombic unit cell, and are weakly
bonded across a region commonly referred to as the “van-der-Waals gap”.

Due to the technological interest in α-MoO3, it has been the topic of several
previous theoretical studies, based on electronic density-functional theory (DFT) within
the local-density (LDA) [210] and generalized-gradient (GGA) approximations [211], GGA
plus Hubbard-U corrections for onsite Coulomb interactions [212], and Hartree-Fock (HF)
with a DFT-based correction for electron correlation [213]. Theoretical calculations and X-
Ray photoemission experiments [214], establish a mixed ionic and covalent character for the
Mo-O bonding within the sheets, characterized by a strong degree of hybridization between
Mo 4d and O 2p electrons [215]. The interactions between the MoO3 sheets are governed
by both electrostatic and van der Waals (vdW) contributions as discussed in Ref. [216].

Due to the fact that vdW interactions are not accurately described by traditional
GGA and LDA calculations, the equilibrium spacing between the MoO3 sheets is not ac-
curately predicted by these methods (see below). For studies of the electronic-structure
and bonding properties of α-MoO3, a practical solution to this problem has been to fix the
b lattice constant at the experimentally measured value [214, 217]. This approach is not
feasible, however, for computational studies of defects and processes where large variations
in the interlayer spacing may arise. An example is lithium-ion intercalation, where varia-
tions in Li content are coupled with large expansions in the interlayer spacing [218, 200].
For applications of this type, a method with computational efficiency comparable to DFT
is required, which accurately characterizes both the equilibrium bond lengths and bond
stiffnesses of the host α-MoO3 compound. In the present work we assess the accuracy of
recently proposed vdW corrected DFT-based methods for this purpose, through a com-
parison between theoretical results and experimental measurements for equilibrium lattice
constants, bond lengths.

4.2.2 Computational Details

Several approaches have been developed for describing van der Waals interac-
tions within the framework of DFT [219]. In the present work we focus on two classes of
approaches that feature computational requirements comparable to traditional DFT meth-
ods. The first is the DFT-D approach [61], in which the contribution to the totally energy
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Figure 4.1: Structure of the orthorhombic α-MoO3 compound. (a) Mo (white) and O (red)
octahedra are illustrated, as well as the vdW gap (green layer).

associated with dispersion interactions is described by a classical pair potential with the
Cij/R

6
ij form. Three generations of the method have been developed [63], using different

approaches for calculating the Cij coefficients. The first uses an average of empirical coeffi-
cients from different hybridization states for each atom, while in the second (DFT-D2), the
PBE0 hybrid method [220] is used to obtain atomic ionization energies and polarizabilities
in the determination of Cij . In both methods these coefficients are obtained from mixing
rules, using values tabulated in terms of the chemical identity of the atoms i and j alone.
The DFT-D3 method makes use of time-dependent DFT [63] to calculate the Cij coeffi-
cients through the averaged dipole polarizability as a function of frequency. Furthermore,
it interpolates between results for different local environments to capture differences due
to bonding geometry. In this method the Cij coefficients are derived taking into account
structural information as well as the chemical identity of the atoms.

The second class of approaches considered in this work is the so-called van der
Waals density functionals (vdW-DF) [65], in which the vdW contribution to the total en-
ergy is described through modifications to the correlation energy functional within DFT.
Specifically, the DFT exchange-correlation functional is divided into three parts: Exc =
Elc + Enl + Ex, where Elc is a local correlation energy described within the local density
approximation, Enl is the nonlocal correlation energy, and Ex is a semi-local exchange func-
tional. The Enl contribution is given by the integral: Enl = 1

2

∫
drdr’n(r)φ(r, r’)n(r’), over

electron densities, n at r and r’ , multiplied by an integration kernel, φ, which is derived
from the adiabatic-connection theorem through a series of approximations [65]. We consider
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three different exchange functionals for use with the vdW-DF approach, as reported in the
literature. These are revPBE as in the original vdW-DF [65], PW86 as in vdW-DF2 [70],
and optB88 [221], a new exchange functional based on the B88 exchange functional [222].
RevPBE and optB88 are both paired with the same Enl, while the Enl used with PW86
has a changed parameter which relates how the length scale in Enl is set by a corresponding
GGA calculation. In vdW-DF2 and vdW-DF this parameter comes from energy expansions
appropriate for molecules or a slowly varying electron gas, respectively.

All the calculations performed in this work made use of the projector-augmented-
wave (PAW) method[223, 224], as implemented in the Vienna ab initio simulation package
(VASP)[153, 154, 155, 156]. The wavefunctions were expanded in a plane wave basis with an
energy cutoff of 600 eV. For calculations of the structure of the MoO3 compound we sampled
the Brillouin zone employing a 7×5×7 mesh, using the Methfessel-Paxton scheme[225] with
a smearing width of 0.1 eV. The PAW potentials employed in this work are those labeled
“Mo” and “O” in the VASP PAW-PBE library. Internal coordinates were relaxed until en-
ergy and atomic forces converged to within 0.01 meV/atom and 0.005 eV Å−1, respectively.
The equilibrium lattice parameters were computed using conjugate-gradient minimization
with the calculated stress tensors. Based on several numerical tests the convergence of the
results presented below is estimated to be 0.02Å for a and c, 0.05Å for b. For the DFT-D
calculations we employed the D2 method, with values of the dispersion coefficients (Cij)
given in Ref. [226], and a value of s6 = 0.75. In the vdW-DF calculations we employed the
VASP implementation developed by Klimes̆ et al. [227], which makes use of an algorithm
for efficiently evaluating the integral for Enl due to Pérez and Soler [66].

To better describe the electronic properties, DFT+U and hybrid-functional meth-
ods have been used previously to study α-MoO3 [212, 228]. Herein, these two approaches
are also employed to study the electronic properties with the lattice parameters fixed at
experimentally measured values for pure α-MoO3. The DFT+U calculations are based on
the formalism of Dudarev et al.[229], in which the total energy of the system is expressed
as:

EDFT+U = EDFT +
Ueff

2

∑
σ

Tr[ρσ − ρσρσ], (4.1)

where EDFT corresponds in this work to the DFT energy in the Perdew-Burke-Ernzerhof
(PBE) generalized gradient approximation [138, 230], ρσ denotes the spin (σ) dependent
on-site density matrix, and the parameter multiplying the last term on the right-hand
side of Equation 4.1 is defined as Ueff ≡ U − J in terms of the Hubbard-model U and
J parameters. In the DFT+U calculations undertaken in this work, use was made of a
value of Ueff = 6 eV. This value is similar to that derived by Coquet and Willock (Ueff =
6.3 eV) [212] by comparing the results of periodic plane-wave DFT+U and wavefunction-
based cluster calculations of oxygen defect formation on the (010) surface of α-MoO3. The
value of Ueff used here is, however, considerably smaller than that suggested by Lutfalla et
al. [231] (8.6 eV) by fitting the experimental enthalpy for the hydrogen reduction reaction
of MoO3 to MoO2: MoO3+H2 → MoO2+H2O.

In the hybrid-functional calculations we employ the formalism developed by Heyd,
Scuseria and Ernzerhof (HSE)[81, 232, 233], where the exchange-correlation energy (EHSE06

xc )
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is formulated as:

EHSE06
xc = EDFT

x (µ) + EDFT
c − 1

4
EDFT,SR
x (µ) +

1

4
EHF,SR
x (µ). (4.2)

with EDFT
x and EDFT

c denote the exchange and correlation energies in DFT under the
PBE-GGA. In this formalism 25% of the short-range part of the DFT exchange energy
(EDFT,SR

x (µ)) is replaced by the exact nonlocal Hartree-Fock exchange (EHF,SR
x (µ)) eval-

uated with a short-range screened Coulomb kernel, where µ is an adjustable screening
parameter determining the distance 2/µ at which EHF,SR

x becomes negligible. In this work,
µ is set as 0.2 Å, which is the shortest screening distance recommended by Krukau et al.[234]
for the HSE06 scheme.

4.2.3 Results

Atomic Structure

Table 4.1: A comparison of lattice constants (in the unit of Å) of α-MoO3 calculated in the
current and previous calculations, and measured experimentally. The asterisk superscript
denotes calculated results where the b lattice parameter was fixed at the experimentally
measured value.

Method a b c

DFT

LDA[210] 3.73 13.04 3.48
PW91[211] 3.97 14.67 3.72
HF[213] 3.91 14.27 3.68
PBE∗[214] 4.02 13.86 3.76

DFT-D
DFT-D2 3.93 13.88 3.71
DFT-D2+U 3.91 13.90 3.73

vdW-DF
vdW-DF 4.05 14.86 3.73
vdW-DF2 4.04 14.69 3.75
optB88 3.94 14.08 3.73
optB88+U 3.91 13.96 3.77

Exp.
Ref. [235] (T=300 K) 3.962 13.860 3.697
Ref. [236] (T=300 K) 3.963 13.865 3.693
Ref. [236] (T → 0 K) 3.958 13.750 3.700

Table 4.1 compares the current results for the equilibrium lattice constants with
those obtained by DFT-based approaches in previous calculations and experimental mea-
surements. The temperature-dependent experimental data reported in Ref. [236] shows an
anomalously large thermal expansion coefficient for the b lattice parameter. In what fol-
lows, we will therefore assess the level of agreement between experiment and theory using
the extrapolations of the measured lattice constant values to zero temperature presenting in
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Ref. [236]. The LDA results, taken from Ref. [210], feature theoretical lattice constants that
are smaller than these measured values by 6 percent for a and c, and about 5 percent for b,
respectively. For calculations where the value of the b lattice constant is unconstrained, it
is seen that GGA (PW91) predicts values for a and c that agree to within 1 percent of the
measured values, while the calculated b lattice constant is roughly 7 percent larger. The
Hartree-Fock based results from Ref. [213] give values that are 1 and 0.5 percent smaller
than measured values for a and c, and 4 percent larger for b, respectively. Thus, the previ-
ous LDA, GGA and HF calculations give rise to predictions for the interlayer spacing that
are accurate to no better than 4 percent in comparison with experimental measurements.

Table 4.2: Calculated Mo-O bond lengths (in units of Å) obtained by the DFT-D2 and
optB88 based methods are compared with previous calculations and experimental results.
The labeling of the bonds in the first column corresponds to the notation introduced in
Figure 4.2.1.

Calculation Experiment
DFT-D2 DFT-D2+U optB88 optB88+U PBE+U Ref. [235] Ref. [236]

dMo-O1 1.70 1.69 1.70 1.70 1.69 1.68 1.63
dMo-O2 1.77 1.79 1.78 1.80 1.78 1.74 1.74
d∗Mo-O2 2.19 2.18 2.19 2.17 2.21 2.25 2.24
dMo-O3 1.95 1.96 1.96 1.97 1.96 1.95 1.96
d∗Mo-O3 2.40 2.39 2.39 2.39 2.38 2.31 2.30

We consider next the vdW-corrected DFT results obtained here. The PBE-based
DFT-D2 method is seen to provide an excellent level of agreement with experiment for each
of the three lattice constants, with the calculated values being 0.5 percent larger for a, 0.3
percent larger for c, and 1 percent larger for b. The vdW-DF results are found to vary
significantly between the original vdW-DF implementation, and the vdW-DF2 and optB88
parametrizations.

The original vdW-DF functional gives lattice constants that are uniformly larger
than the measured values, by 1, 4 and 0.7 percent for a, b and c, respectively. The vdW-
DF2 approach leads to a slightly worse prediction for each of the lattice constants relative
to the original vdW-DF. Of the three vdW-DFs considered in this work, the best level of
agreement between experiment and calculations is obtained with the optB88 functional.
This approach gives rise to predictions for a and c within 0.8 percent of measurements,
and the b lattice constant is 2 percent larger than the experimental value. The improved
accuracy of the optB88 functional obtained here for α-MoO3 is similar to that found for
metallic, covalent and ionically bonded solids in Ref. [227], where the improvements of the
optB88 functional for solids relative to the original vdW-DF and vdW-DF2 methods is
attributed to a smaller exchange enchancement factor for small reduced gradients.

Table 4.2 lists the bond lengths (bonding notations corresponding to Figure 4.2)
obtained from the present calculations, previous calculations [214], and experimental mea-
surements. The results obtained by the DFT-D2 and vdW-DF methods show excellent
agreement with available experimental data, as well as previous PBE calculations, with the
exception of d∗Mo−O2

and d∗Mo−O3
where the vdW-corrected calculations are smaller and
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Figure 4.2: The geometry of a MoO6 octahedron with symmetrically-distinct bond lengths
labeled.

larger than measurements by approximately 0.06 and 0.09 Å, respectively.
The effects of parameters U in DFT+U calculations on lattice parameter and bond

lengths are also shown in Table 4.1 and Table 4.2 for DFT-D2+U and optB88+U methods.
These predicted quantities are in qualitative agreement with other calculations, showing
that the Hubbard-U parameter mostly affects electronic structure of α-MoO3, while having
relatively small effects on the atomic structure. These two functionals will be used below to
discuss the effects of cell-volume and cell-shape relaxations on the polaron-Li-ion bonding
energies as presented in Section 4.4.2

Electronic Structure

The effects of U on atomic and electronic structure of α-MoO3 have been evaluated
here. Figure 4.3 shows calculated electronic density of states (DOS) for MoO3 obtained in
the present work using DFT+U and HSE06 methods. The results are qualitatively similar
to each other and to previously published calculations [237, 238, 239, 217]. The results
feature a conduction band with predominantly Mo 4d character and a valence band with
states having primarily O 2p character near the Fermi level, and states with significant
hybridization between O p and Mo d states at higher binding energies. Consistent with
previous calculations, the value of the bandgap (Eg) of 2.09 eV computed by DFT+U is
approximately ten percent larger than that derived by GGA-PBE calculations. The DFT+U
calculations underestimate the experimentally measured band gap, which has been reported
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to be in the range of band gaps (Eg) as listed in Table 4.3. Previously reported DFT-D2
and optB88 also yield nominally the same features of the electronic structure and band gap
predictions.

Figure 4.3: Comparison of projected density of states (per formula unit) of α-MoO3 calcu-
lated by the DFT+U and HSE06 methods.

Table 4.3: Band gaps (Eg) of α-MoO3 measured by experiments.

Reference Method Eg (eV)

Deb [240]
Electrical Conductivity 3.66

Photoconductivity 3.56
Pandit et al. [241] Electrical Conductivity 3.5
Kröger et al. [242] Inverse Photoemission Spectroscopy 3.0
Juryska [243] Optical Absorption 2.8
Itoh et al. [244] Optical Absorption 3.87
Sabhapathi et al. [245] Optical Absorption 3.25
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While the shape and character of the states for the HSE06-computed DOS are
very similar to those obtained with the DFT+U method, the band gap has a significantly
larger value of 2.84 eV, which is closer to experimental measurements. In addition, the
HSE06 functional predicts a larger valence-band width than DFT+U: 6.5 eV versus 6.3 eV,
respectively; the HSE06 value is in better agreement with but still smaller than the value
of 6.98 eV derived from the X-ray photoemission data of Itoh et al. [244].

4.3 Diffussion of Isolated Polarons

Due to its attractive electrochemical properties and layered crystal structure, α-
MoO3 has been investigated extensively as a Li-ion intercalation compound for energy stor-
age applications. Recently, the interest in this compound for such applications has expanded
due to the development of synthesis techniques for producing nanoscale and mesoporous
forms of the material [246, 247, 36, 201, 248]. The high specific area achievable through
such synthesis routes has led to enhanced performance in battery applications, as well
as recent demonstrations of the successful use of this compound as an electrode material
for electrochemical pseudocapacitors [37, 39]. For such applications, the performance of
α-MoO3 is limited by its intrinsically low electronic conductivity (σe), and a number of
different strategies have been developed for improving this property, e.g., through oxygen
reduction [249, 250], extrinsic doping [251, 252], and the development of composite ma-
terial architectures [253, 254]. To guide such efforts, an expanded understanding of the
intrinsic mechanisms underlying electronic transport in α-MoO3, and the ways they can be
influenced by variations in composition and structure, is desirable.

Depending on the synthesis procedure, intrinsic room-temperature electronic con-
ductivities in α-MoO3 have been reported to vary over several orders of magnitude, from
values of σe ≈ 10−10 to σe ≈ 10−4 S·cm−1 [206, 44, 36]. Similarly large variations in
σe can be effected through extrinsic doping. For example, in a recent investigation by
Berthumeyrie et al. [45], dielectric spectroscopy techniques were used to study variations in
the mechanisms underlying electronic transport in LixMoO3 as a function of the Li content
x. At room-temperature the measured values of σe were reported to vary from 10−10 to
0.46 S·cm−1 as x ranged from 0 to 0.45 in “classical powder” (CP) samples consisting of
micron-scale particles, and from 3 × 10−6 S·cm−1 for x = 0 to 9 × 10−3 or 0.2 S· cm−1

(depending on crystallographic direction) for x = 0.28 in “nanobelt” (NB) samples. At the
smallest lithium intercalation levels, electron diffusion were concluded to be governed by an
adiabatic small polaron hopping mechanism in both samples, consistent with conclusions
drawn from earlier studies of electron conductivity in pristine MoO3[255]. With increas-
ing values of x, the spectroscopy results of Berthumeyrie et al. suggest a transition from
a dominant polaron mechanism to a bipolaron mechanism in the CP samples, which was
not observed in the NB samples. The differences found between NB and CP samples were
suggested to be due to an enhanced role of surface-related effects in the former.

To provide expanded insights into the electronic diffusion mechanisms in lithium
ion intercalated α-MoO3, we present the results of a computational study of the electronic
mobilities of electron small polarons in this Section and their interaction with Li interstitial
ions in Section 4.4. We employ both density-functional theory with Hubbard-U corrections
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(DFT+U) [229, 256] and hybrid functional [81, 232, 233] methods to compute the orbital
occupancies and atomic structural changes associated with small polaron formation, the
activation energies for adiabatic polaron transfer, and the binding energies of electron small
polarons to Li ions.

4.3.1 Computational Details

Calculations including polarons made use of a 3 × 1 × 3 supercell containing 36
formula units (108 ions). In the DFT+U supercell calculations, the Brillouin-zone sampling
was performed using a 3 × 3 × 3 k-point grid in combination with the Methfessel-Paxton
scheme [225] and a smearing of 0.1 eV.

Sym. Off	


Relaxation	


Figure 4.4: Illustration of the computational approach for obtaining an electron small po-
laron in the α-MoO3 structure. The yellow isosurface corresponds to induced charged
density due to the excessive electron in the system. Initially the excessive electron evenly
delocalised on each Mo ions, while the relaxation without symmetry constraints leads to
the localization of the electron to form a small polaron.

For hybrid-functional calculations the same size supercells were employed, but
with a single k-point (Γ) used to sample the Brillouin zone. Several tests were performed to
estimate the convergence of the DFT+U results with respect to supercell size, plane-wave
cutoff and k-point density; these tests indicate that the polaron migration energies and the
changes in bond length associated with polaron defect formation are converged with respect
to these parameters to within a precision of approximately 0.02 eV and 0.03 Å, respectively.

The present computational study focuses on electron small polarons that result
from the occupation of one of the unoccupied 4d orbitals in the Mo6+ ion, to form a Mo5+

ion. In the calculations, small polarons are formed through the introduction of an extra
electron in the computational cell (with charge-compensating positive background charge).
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Since it is possible for the electron forming the polaron defect to occupy different 4d orbital
states, we undertook a detailed investigation of the preferred occupancy using an occupation
matrix control (OMC) approach [257].

The formation of a polaron couples with the local structure distortion as illustrated
in Figure 4.4, therefore, the symmetry of pristine α-MoO3 is turned off during the relaxation
procedures. For the DFT+U calculations, all atomic coordinates were relaxed until the
forces on the ions were converged to within 0.01 eV/Å, holding the lattice parameters fixed
at the experimentally-measured values, while for the hybrid calculations all atomic positions
were fixed at the values obtained from the DFT+U relaxations.

For calculations of the adiabatic polaron migration energies, we employed the
approach proposed by Maxisch et al. [258] and Ong et al. [259]. In this approach, energies
are computed on the Born-Oppenheimer surface, for a set of configurations with atomic
coordinates ({q}) linearly interpolated between those corresponding to the initial and final
states, {qi} and {qf}, respectively:

{qx} = (1− x){qi}+ (x){qf}, (4.3)

with x varying in the range from 0 to 1. For calculations of polaron migration energies
away from intercalated Li ions, the initial and final states are equivalent by symmetry, such
that the energy calculated for x = 0.5 in Figure 4.3 provides the estimate of the migration
energy barrier. A schematic illustration of the approach is given in Figure 4.5.

Figure 4.5: An illustration of the approach used to compute adiabatic polaron migrations
energies from calculations on the Born-Oppenheimer surface for atomic coordinates linearly
interpolated between those corresponding to polaron occupation on the left-most Mo ion
and on the right-most Mo-ion.

4.3.2 Isolated Polaron

We consider the electronic and atomic structure associated with the formation of
the electron small polaron defect, which will be referred to as a Mo5+ ion in what follows.
Figure 4.6 shows the change in charge density associated with the formation of Mo5+ from
the Mo6+ ion in bulk MoO3. The shape of the added electron charge density is consistent
with occupation in a state that has predominantly 4dxz character, as confirmed from an
analysis of projected densities of states.
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From extensive tests performed with the occupation-matrix-control method refer-
enced in the previous section, it was verified that occupancy of the 4dxz orbital leads to
the lowest energy for the Mo5+ ion in this structure. The defect state associated with this
polaron defect is found to be highly localized; in the DFT+U calculations with Ueff = 6
eV this state sits at an energy approximately 1.5 eV below the conduction-band edge. The
location of this defect state in the bandgap depends on the value of Ueff employed in the
DFT+U calculations; the defect band moves approximately 0.2 eV lower (higher) in energy
when Ueff increases (decreases) from 6 eV to 7 eV (5 eV).
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Figure 4.6: The geometry of a (a) pristine MoO6 octahedron and (b) that with a localized
electron small polaron on the Mo ion is illustrated; the yellow isosurface corresponds to
induced charge density due to the electron small polaron, plotted at a value of the electron
density equal to 0.025 eÅ−3.

Table 4.4: DFT+U calculated Mo-O bond lengths (in units of Å) for Mo5+ and Mo6+ sites
in α-MoO3 are listed and compared with values reported in previous publications.

Polaron site (Mo5+) Nonpolaron site (Mo6+)

dMoO1 1.67 1.69
dMoO2 1.97 1.78
d∗MoO2 2.20 2.21
dMoO3 2.01 1.96
d∗MoO3 2.40 2.38

Previous DFT and crystal field theory calculations have demonstrated that the
ordering of the d-orbital energy levels for Mo5+ in the α-MoO3 structure is highly sensitive
to the nature of the structural distortions associated with the octahedral arrangement of
the oxygen ions around the cation [260]. It is thus of interest to analyze the nature of the
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bonding environment before and after the introduction of the polaron defect, as summarized
in Table 4.4. In bulk α-MoO3, there exist three symmetry-distinct oxygen-ion positions,
labeled as O1, O2 and O3 in Figure 4.6, following the notation introduced by Corà et
al. [237]. As a consequence, there are five different types of bonds in a given MoO6 octa-
hedron, labeled as: dMoO1, dMoO2, d∗MoO2, dMoO3 and d∗MoO3, respectively (see Figures 4.6
and 4.4). As shown in Table 4.5, the bonding for a bulk Mo6+ ion in MoO3 is characterized
by the formation of a relatively short bond with the terminal oxygen (O1), and relatively
long bonds to two of the O2 and O3 ions.

Table 4.5 lists the bond lengths surrounding the polaron on the Mo5+ ion. The
formation of this polaron defect leads to distortions of the bond lengths with neighboring
oxygen ions. A comparison with the results for Mo6+ shows that the most pronounced
bondlength distortion occurs for the corner-shared O2 ion. The main effect of polaron
formation is to extend the length of the Mo-O2 (dMoO2) bond, by approximately 0.2 Å,
presumably due to the electrostatic repulsion between the charge in the dxz orbital and the
nearest-neighbor O2 ion in the a-c plane.

4.3.3 Diffusion Barriers of Isolated Polarons

vdW Gap	


vdW Gap	


Bilayers	


Path D 

b	


c	
 a	


O1	  

O2	  O3	  

Figure 4.7: The structure of α-MoO3 and the local geometry of the MoO6 octahedra within
the bilayer sheets. Also shown are three polaron hopping directions within the bilayer sheets
for paths A (black), B (blue) and C (orange) and one path normal to the van der Waals
gaps for path D (magenta).
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Based on the stacking bilayer structure of α-MoO3 through “van der Waals” gaps,
we label four distinct paths for polaron diffusion to neighboring Mo sites in Figure 4.7.
Path A involves a hop along the a crystallographic direction, to the nearest-neighbor Mo
site within the same a-c plane in the bilayer sheet; the Mo ions on each side of this path are
linked by a corner-shared oxygen ion, and are separated by a jump distance of 3.96 Å. Path
C also connects two Mo ions within the same a-c plane that are linked by corner-shared
oxygen ions, and involves a hop along the c direction by a shorter distance of 3.70 Å. Path B
connects two Mo ions in different a-c planes within the bilayer sheets that are linked across
the shared edge of neighboring octahedra; this path involves the shortest hop distance of
3.39 Å. We note that path B has been referred to in the literature as a “zig-zag” path [45]
as it involves motion along the direction c and up and down along b direction within the
bilayer sheet. Finally, path D involves polaron migration across the van der Waals gap
along the b direction, with the largest hop distance of 4.96 Å.

Table 4.5: Polaron diffusion distances d (in units of Å) and the corresponding barriers ∆E
(in units of eV) along different directions as labeled in Figure 4.7.

Path d
∆E

DFT+U HSE06

A 3.96 0.17 0.11
B 3.39 0.42 0.21
C 3.70 0.23 0.35
D 4.96 0.51 0.48

Figure 4.8 shows the calculated energies along the migration paths defined by
Equation 4.3 for each of the four jumps described above. The energy versus the reaction
coordinate x obtained from the DFT+U calculations is plotted with solid symbols connected
by lines. For comparison, the activation energy at the estimated saddle point sites computed
by hybrid functionals are shown by open symbols. Comparing first the different calculated
results, it can be seen that the HSE06 activation energies are consistently lower than those
obtained by DFT+U, by up to 15 % in magnitude. A fraction of this difference originates
from the different k-point sampling used in the DFT+U and HSE06 calculations. When
the k-point grid for the DFT+U method is changed from 3 × 1 × 3 to 1 × 1 × 1 (as used
in the HSE06 calculations), the calculated activation energy along path A is calculated to
decrease by 0.02 eV; the remainder of the 0.06 eV difference between HSE06 and DFT+U
results shown in 4.8 can thus be attributed to the different functionals. While the activation
energies calculated by HSE06 are uniformly lower than those computed by DFT+U, the
differences in calculated energies for other points along the reaction coordinate show no
systematic trend. Specifically, the HSE06 values for the energies (relative to the binding
state) at reaction coordinates of x = 0.25 and 0.75 for paths A and B are approximately
0.01 eV lower than the values from DFT+U, while for paths C and D they are up to 0.02
eV higher.

A major feature of the results shown in 4.8 is the high anisotropy in the activation
energies along the different crystallographic directions, and it is important to note that
the relative ordering of the activation energies for these different paths is predicted to be
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the same by both DFT+U and HSE06 methods. The calculated results give the lowest
energy barrier for hopping along path A, in the a crystallographic direction. The next
lowest-energy hop is along path C, along the crystallographic c direction. Thus, polaron
migration is predicted to be fastest between Mo ions that lie within the same plane of the
bilayer sheet, which are all linked by corner-shared oxygen ions. Importantly, the path
involving the shortest jump distance, namely the zig-zag path B, involves a significantly
higher activation energy (by 0.1 to 0.2 eV) than migration along either paths A or C. The
results thus suggest that the presence of a corner-shared oxygen ion significantly facilitates
polaron migration, despite the larger jump distances for paths A and C relative to B.

Figure 4.8: Polaron migration energies calculated with DFT+U (filled) and HSE06 (unfilled)
methods along the different migration paths in α-MoO3 illustrated in Figure 4.7.

The highest anisotropy is found between the low-energy jumps along the a and c
crystallographic directions within the bilayer sheets, and hopping along path D, across the
van der Waals gaps. With the calculated polaron hopping barriers labeled in Figure 4.8,
we can roughly estimate the anisotropy of polaron mobilities within and across the bilayer
sheets using the expression for the hop frequency ν = ν∗ exp(−∆E/kBT ), assuming that
the attempt frequency ν∗ varies relatively weakly amongst the different paths. With this
assumption, the room temperature mobility parallel to the bilayer sheets is predicted to
be approximately five orders of magnitude faster than that normal, due to the high activa-
tion energy for hopping across the van der Waals gaps. These estimates are in reasonable
agreement with experimental measurements that report room-temperature electron conduc-
tivities of 10−10 and 10−4 S· cm−1 perpendicular to and within the MoO3 bilayer sheets,
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respectively [261, 36]. It is also worth noting that Berthumeyrie et al. [45] report a measured
polaron hopping activation energy of 0.43 eV in “classical particle” samples. Considering
that the measurements on these samples are likely to represent an average over crystallo-
graphic orientations, and that the nature of the averaging will depend on the texture of
the grains in the sample, a direct comparison with the present results is difficult. However,
the value of 0.43 eV does lie within the range of computed values for the polaron hopping
barriers reported in Figure 4.8.

4.4 Diffusion of a Polaron Bound to Lithium

4.4.1 Computational Details and Results

Calculations including polarons and intercalated Li ions made use of the similar
computational settings of the isolated polaron as described in Section 4.3.1. The PAW
potentials for lithium employed in this work is that labeled “Li sv” in the VASP PAW-PBE
library. To investigate the interaction energies between intercalated Li ions and electron
small polarons, we extended the DFT+U calculations, through the incorporation of single
Li atoms directly in the 3× 1× 3 supercells, giving an overall composition of Li0.028MoO3.
Two intercalation sites were considered for the Li ions in these calculations, as illustrated
in Figure 4.9. One site is located within the two-dimensional van der Waals gaps within the
α-MoO3 structure, and will be referred to in what follows as an interlayer position. The
second is located within one-dimensional channels and will be referred to as the intralayer
position. When Li atoms are positioned in either site, and a neighboring MoO6 octahedron
is distorted to facilitate polaron formation, the calculations converge to a state in which the
valence electron from Li is transferred to the targeted Mo6+ site, leading to the formation
of Li+ and Mo5+ ions. Based on the bonding distortion configurations of isolated polaron,
in studies of polaron-Li-ion binding, we were able to control the position of the polaron
relative to the Li ion by selectively perturbing the Mo-O bond lengths in the desired MoO6

octahedron as discussed in Table 4.5.
When the Mo5+ polaron is located as a nearest neighbor to the intercalated Li+

ion, the DFT+U calculations predict that the intralayer site is slightly lower in energy, by
approximately 0.05 eV. However, this result is influenced by the relative magnitudes of the
binding energy between Li+ and Mo5+ ions in the two sites. Specifically, by comparing the
energy differences between states in which the polaron is nearest and furthest from a Li+

ion in each site, we derive estimates of the binding energy Eb given in Table 4.6. It can be
seen that the binding between the polaron and Li+ ion is stronger for the intralayer site by
approximately 0.08 eV. The larger binding energy in the intralayer site correlates with the
shorter distance between Li+ and Mo5+ ions in this site (2.79 Å) versus the interlayer site
(4.69 Å). As a consequence of the different values for the binding energies, if the polaron
is completely dissociated from the intercalated Li+ ion, the site stability reverses, with the
interlayer site being weakly favored. It is worth noting that despite the slightly higher Li-ion
concentration used in our supercell calculations (0.028 Li to Mo fraction), the magnitude
of the Li-polaron binding energies computed by DFT+U are in reasonable agreement with
the estimate of 0.22 eV derived from dielectric spectroscopy measurements on Li0.01MoO3

samples by Berthumeyrie et al. [45].
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Figure 4.9: Lithium intercalation sites in a α-MoO3 supercell. The yellow sphere denotes
the interlayer site within the interlayer van der Waals gap, and the green sphere denotes
the intralayer site within the one-dimensional channels formed between MoO6 octahedron
within the bilayer sheets.

Table 4.6: Calculated migration barriers (Em) for electron small polarons bound to neigh-
boring Li+ ions, and binding energies (Eb) between polarons and Li+ ions, as obtained by
the DFT+U method in 3× 1× 3 supercells with composition Li0.028MoO3. Calculated re-
sults are compared with experimental measurements reported for Li0.01MoO3. All energies
are reported in units of eV.

Intercalation Site
Em Eb

Path A Path C Cal. Exp. [45]

Interlayer 0.23 0.29 0.26
0.22

Intralayer 0.27 0.34 0.34

Also listed in Table 4.6 are results obtained by DFT+U for the activation energies
for hopping of a polaron away from the nearest neighbor of a Li+ ion along the low-energy
paths A and C. From a comparison of the results in Figure 4.6 with those plotted in
Table 4.8, it can be seen that the migration energy of polarons bound to Li ions in the
iterlayer site increases by approximately 0.06 eV. A slightly larger increase is found for
polarons bound to Li ions in interlayer sites, where migration energies along both paths A
and C are raised by approximately 0.1 eV.
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4.4.2 Lattice Relaxation Effect

The computational results presented above were obtained from DFT+U calcula-
tions in which the lattice parameters of the supercell were fixed at experimentally measured
values for pure the bulk α-MoO3. However, previous experimental observations suggest that
the lithium intercalation into α-MoO3 give rise to lattice expansions [36, 201]. The cur-
rent calculations also have shown that the magnitude of the lattice expansions for lithium
intercalation in interlayer sites is relatively larger than that in interlayer sites as shown in
Figure 4.9.

To investigate the effect of cell-volume and cell-shape relaxations we have per-
formed calculations with the optB88 [59] and DFT(PBE)+D2 [62] functionals, which ex-
plicitly account for vdW contributions to the energy. In these calculations we also include
Hubbard-U corrections with Ueff = 6 eV. For calculations with fixed lattice constants, the
optB88+U and DFT+U+D2 results are in qualitative agreement with the DFT+U results
for Li-polaron binding energies described above.

Specifically, both of the vdW-corrected functionals predict a stronger binding en-
ergy between Li and electron small polarons in the intralayer relative to the interlayer site
(by 0.06 eV for optB88+U and 0.11 eV for DFT+U+D2). Further, both of these function-
als predict that the difference in binding energy is sufficient to reverse the site preference
for intercalated Li ions, with interlayer (intralayer) sites being energetically favorable when
the polaron is far from (near to) Li in calculations with fixed lattice parameters. When
the lattice parameters of the supercell are allowed to relax, the calculated magnitudes and
differences in binding energy between polarons and Li ions in interlayer and intralayer
sites are relatively similar to those listed in Table 4.6, with Eb values of 0.20 (interlayer)
and 0.30 (intralyer) eV from optB88+U, and 0.17 (interlayer) and 0.30 (intralayer) eV
from DFT+U+D2. However, the two different vdW-corrected functionals differ in their
predictions of the site preferences for the intercalated Li ions when the supercell lattice
parameters are relaxed: optB88+U predicts that the interlayer position is favored both
when polarons are near and far from the intercalated Li (by 0.03 and 0.13 eV, respectively),
while DFT+U+D2 (like DFT+U) predicts that the interlayer site is preferred (by 0.06 eV)
when the polaron is far from Li and that the intralayer site is preferred (by 0.07 eV) when
it is near. While the details of the calculations differ depending on the functional used,
collectively the computational results suggest that site selection of Li+ ions is likely to be
governed by a balance of competing thermodynamic effects, including configurational en-
tropy (enhanced by dissociation of Li+ ions from polarons [262]), binding energies (favoring
association of Li ions and polarons), and coherency and particle-size effects that impose
boundary conditions on the elastic relaxations.

4.5 Summary

Different density functional theory-based methods have been applied to the calcu-
lation of the atomic structure of the bulk α-MoO3 compound. We found the DFT-D2 and
optB88 methods yield calculated lattice parameters and bond lengths that agree well with
experimental measurements. The present results show an encouraging level of accuracy
in the application of these van der Waals corrected density functional theory methods for
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characterizing both bonded and non-bonded interatomic interactions in α-MoO3.
A better description of the electronic structure for α-MoO3 could be achieved

through employing methods for correcting self-interaction errors in density functional the-
ory, including DFT+U and hybrid-functional methods. These methods also have been used
to study the properties of electron small polarons in α-MoO3.The calculations establish
that the small polaron forms in an electronic state that has predominantly Mo 4dxz char-
acter. Polaron formation gives rise to a pronounced elongation in the bond length with
the nearest-neighbor corner-shared oxygen ion within the a-c plane. The adiabatic barri-
ers for polaron hopping in α-MoO3 are calculated by DFT+U to be 0.17 eV and 0.23 eV
for hopping within the same a-c plane within the bilayer sheets along the a and c crystal-
lographic directions, respectively. Hopping between the nearest-neighbor Mo ions, along
the zig-zag chains within the bilayers is calculated to involve a significantly larger hopping
barrier of 0.42 eV. The largest barrier for polaron transport is calculated to be 0.51 eV,
for hopping across the van der Waals gap, along the b direction. HSE06 calculations yield
slightly smaller activation energies relative to DFT+U, but with very similar anisotropies.

The binding energy of polarons to intercalated Li ions is calculated by DFT+U
to be approximately 0.3 eV in Li0.028MoO3 supercells, when Li resides within the one-
dimension interlayer channel positions. The energy differences between Li in interlayer and
intralayer positions is thus influenced by binding with polarons. This energy difference is
also found to depend on the nature of the elastic relaxations, as well as the functionals
used in the calculations. Overall the computed results suggest that the site preference for
intercalated Li ions in α-MoO3 is likely to be governed by a balance of thermodynamic
factors including temperature and particle size.
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Part III

Concluding Remarks
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Chapter 5

Summary, Conclusions and Future
Work

5.1 Summary and Conclusions

In this dissertation, we have explored the capability of first-principles modeling of
the diffusion properties in complex materials. The basic theory and methodology was dis-
cussed in Chapter 2, and applied for modeling two different diffusion processes in emerging
advanced materials: (i) atomic diffusion in ferritic alloys presented in Chapter 3, and (ii)
electronic diffusion in α-MoO3 for electrochemical applications presented in Chapter 4.

For ferritic alloys, first-principles methods are employed to investigate (1) Fe self
diffusivity modeling and the associated effect of magnetic disorder, (2) transition metal
solute diffusivity in bcc Fe, and (3) point defects in Ni-Al based intermetallic precipitates.
We found that:

(1) Self-diffusion activation energies in both ferromagnetic and paramagnetic bcc
Fe can be calculated with the spin-wave approach. Combined with the diffusion prefac-
tor calculated within the framework of harmonic transition-state theory, the present first-
principles computational framework yields results for the self-diffusion coefficient in good
agreement with experimental measurements spanning over the Curie temperature. The
comparison between Fe and Co for the vacancy formation energies in both ferromagnetic
and paramagnetic states suggests that the magnitude of the effect of the magnetic phase
transition on self diffusivity is correlated with d-band filling.

(2) The transition metal solute diffusion coefficients in bcc Fe are calculated in
the present work, showing an overall good agreement with available experimental results.
Our calculations demonstrate the competing effect between diffusion activation energies and
prefactors, with both quantities exhibiting maximum values in the center of the transition
metal series. Solute species Co, Re, Os, Ir and Y are suggested as potential candidates for
slow diffusers in bcc Fe.

(3) The intrinsic point defects in the off-stoichiometry region of B2-NiAl and L21-
Ni2AlTM (TM= Ti, Zr or Hf) have been investigated. Results for B2-NiAl show a lower
concentration of vacancies in the Ni-rich region compared to that in the Al-rich region.
Comparisons among three L21 intermetallic alloys Ni2AlTM (TM= Ti, Zr and Hf) show
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that the magnitude of vacancy concentration in off-stoichiometry regions is associated with
transition metal species, where Ni2AlTi gives the lowest vacancy concentration. It would
be more desirable to have B2-NiAl precipitates in the Ni-rich region and L21-Ni2AlTi for
the hierarchical structure in the creep-resistant alloy design.

For α-MoO3, a material of interest as an electrode in batteries and pseudoca-
pacitors, first-principles methods are employed to study (1) The atomic and electronic
structure, (2) Isolated electron polaron formation and diffusion, and (3) Lithium-induced
polaron binding and lattice expansion. We found that:

(1) Accurate predictions of the first-principles modeling for the atomic structure of
α-MoO3 require corrections for the van der Waals force. The calculated lattice parameters
and bond lengths resulting from DFT-D2 and optB88 methods agree well with experimental
measurements. Calculations also suggest that a Hubbard-U correction (DFT+U) or hybrid
functionals (HSE06) yield a better description of the electronic structure for α-MoO3.

(2) The formation of an isolated electron small polaron in α-MoO3 is confirmed in
the first-principles modeling by DFT+U and HSE06 methods. Calculations establish that
the small polaron occupies the Mo 4dxz orbital, coupled with elongation of the nearest-
neighbor corner-shared O-Mo bond. The adiabatic barrier calculations for polaron hopping
show that electronic hopping within the a-c plane has smaller activation energy barriers
than the other nearest-neighbor directions, suggesting a high degree of anisotropy in the
polaron mobilities in the crystal.

(3) The binding energy between an electron small polaron and intercalated Li ions
is calculated using DFT+U, which affects the corresponding polaron hopping activation
energies. Calculations show that Li ions that reside within the one-dimensional interlayer
channel positions have lower energy compared to Li ions that reside in the two-dimensional
interlayer sites within the van der Waals gaps, although the energy differences depend on
the nature of lattice relaxations and functionals used in the calculations.

5.2 Directions for future work

Based on the work presented in this dissertation, several research areas which are
of interest for continuing work are listed below:

(1) The present work has developed a computational framework to account for
the effect of magnetic disorder on self-diffusivity of bcc Fe. The effect of magnetic disorder
is also observed in solute impurity diffusion, thus, it would be of interest to extend the
present framework to study the corresponding effects of magnetic disorder in ferritic alloys.
However, one of the challenges is that the “spin-wave” method employed here is mostly
designed to account for the transverse magnetic fluctuations, while the presence of solute
atoms in the system may result in the longitudinal magnetic fluctuations. In this context,
developing a methodology that considers both transverse and local longitudinal fluctuations
would be interesting for future studies

(2) The work presented in Section 3.4 focuses on the solute impurity diffusion
coefficient calculations in dilute limit. An extension of the current work to the non-dilute
systems would be highly interesting. We noticed some pioneering work focusing on develop-
ing several time coarse-graining methods for studying the concentration dependent diffusion
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coefficients [263, 264], which would be worthwhile to be employed for future diffusivity cal-
culations for multicomponent alloys.

(3) The work in Chapter 4 presents the electronic diffusion properties through
“small polaron hopping” mechanisms in α-MoO3. Since the intercalated lithium ion would
also donate the extra electron, forming the lithium-polaron binding, it would be reasonable
to speculate that the Li ion diffusion may couple with the polaron motion. A computational
investigation of the lithium ion and polaron coupled diffusion would give special insight into
the ionic and electronic conduction for electrode material applications.
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[70] K. Lee, É. Murray, L. Kong, B. Lundqvist, D. Langreth, Physical Review B 82, 081101
(2010).

[71] K. Berland, P. Hyldgaard, Physical Review B 89, 035412 (2014).

[72] O. A. Vydrov, G. E. Scuseria, The Journal of Chemical Physics 121, 8187 (2004).

[73] C. Froese Fischer, Computer Physics Communications 43, 355 (1987).

[74] L. Hedin, Physical Review 139, A796 (1965).

[75] L. Hedin, S. Lundqvist, Solid State Physics 23, 1 (1970).

[76] B. Himmetoglu, A. Floris, S. Gironcoli, M. Cococcioni, International Journal of Quan-
tum Chemistry 114, 14 (2014).

[77] A. D. Becke, The Journal of Chemical Physics 98, 1372 (1993).

[78] K. Kim, K. Jordan, The Journal of Physical Chemistry 98, 10089 (1994).

[79] J. P. Perdew, M. Ernzerhof, K. Burke, The Journal of Chemical Physics 105, 9982
(1996).

[80] C. Adamo, V. Barone, The Journal of Chemical Physics 110, 6158 (1999).

[81] J. Heyd, G. E. Scuseria, M. Ernzerhof, The Journal of Chemical Physics 118, 8207
(2003).

[82] R. M. Martin, Electronic Structure: Basic Theory and Practical Methods (Cambridge
university press, 2004).

[83] P. E. Blchl, Physical Review B 50, 17953 (1994).

[84] G. Kresse, D. Joubert, Physical Review B 59, 1758 (1999).

[85] H. Hellmann, Deuticke, Leipzig and Wien, 350s (1937).

[86] R. P. Feynman, Physical Review 56, 340 (1939).

[87] A. A. Maradudin, E. W. Montroll, G. H. Weiss, I. Ipatova, Theory of Lattice Dynamics
in the Harmonic Approximation, vol. 12 (Academic press New York, 1963).



101

[88] G. Leibfried, W. Ludwig, Solid State Physics 12, 275 (1961).

[89] S. Baroni, P. Giannozzi, A. Testa, Physical Review Letters 58, 1861 (1987).

[90] D. G. Truhlar, B. C. Garrett, S. J. Klippenstein, The Journal of Physical Chemistry
100, 12771 (1996).

[91] G. H. Vineyard, Journal of Physics and Chemistry of Solids 3, 121 (1957).

[92] T. Pollock, A. Argon, Acta Metallurgica et Materialia 40, 1 (1992).
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Appendix A

Appendix

A.1 Introduction

Intermetallic compounds are a class of ordered alloy phases, consisting of two or
more metallic elements, where each metal species occupies specific crystal lattice sites. The
mechanical properties and phase stability of these materials have been actively investigated
in a variety of contexts, including the design of materials for high-temperature structural ap-
plications. In this context, equilibrium point-defect concentrations, and site preferences for
solute additions are important considerations for modeling phase stability and mechanical
properties such as creep strength [265, 266, 267].

In intermetalic compounds that have relatively close-packed crystal structures, the
dominant intrinsic point defects are expected to be substitutional antisites and vacancies.
The concentration of these intrinsic defects is generally a strong function of the temperature
and overall alloy composition. Additionally, solute impurities with sizes similar to those of
the constituent atomic species are expected to form as substitutional defects, but which
sublattice is preferred and whether such substitution triggers formation of additional in-
trinsic defects are important issues related to phase stability and mechanical behavior. Due
to the importance of point-defect properties for the stability and mechanical behavior of
intermetallic compounds, the inherent difficulty in their direct experimental measurement
presents a significant challenge in the context of alloy design. This section describes the
development of a computational tool that is intended to automate the process of performing
first-principles predictions of point defect concentrations as a function of temperature and
composition.

The present work is based on dilute-solution formalisms that have been well de-
scribed in the literature for predicting intrinsic point defect equilibria and solute site pref-
erence. The purpose of developing an automated computational tool, here referred to as
PyDII, is to build a user-friendly toolkit for predicting these properties based on density
functional theory (DFT) calculations. The statistical model used in PyDII to compute de-
fect concentrations is based on the method developed in Ref. [268], through minimization
of a grand potential for intermetallic systems. The scripts used to generate the inputs and
parse the outputs from DFT computational work is based on the open Python Materials
Genomics (pymatgen) library [269]. The PyDII tool is developed as part of pymatgen and
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is intended to be useful for the research community interested in studying the intrinsic in-
termetallic defects and conducting high-throughput screening of solute additions to produce
desired changes in intrinsic properties. The following serves as a concise overview of the
method and a “user-guide” for the use of this computational tool.

The rest of this section is organized as follows. Section A.2 describes the com-
putational algorithm and workflows of PyDII. The implementation details are described in
Section A.3 where technical requirements, input and output of PyDII are discussed. Several
examples are illustrated in Section A.4. The discussion on future developments is presented
in Section A.5.

The work presented in this appendix is prepared by H. Ding, B. Medasani, W.
Chen, A. Canning, K. Persson, M. Haranczyk and M. Asta for a manuscript submitting to
Comput. Phys. Commun..

A.2 Methodology

A.2.1 Constitutional and thermal defect

A low-temperature expansion based formalism described in Ref. [268] is imple-
mented here in a high-throughput framework. Below, we present a short review of the
methodology.

For an intermetallic crystal structure with N lattice sites, the site occupation,
ci(p), with p ∈ [1, N ], is defined as 1 if lattice site p is occupied by element i, or 0 otherwise.
The total number of sites occupied by the ith element, Ni, in the system is given by the
sum over all lattice occupation values, i.e. Ni =

∑
p(ci(p)).

To predict the equilibrium concentration of point defects we employ a dilute-
solution thermodynamic formalism. Such formalisms have been described by several dif-
ferent authors in the literature and in what follows we will make use of the development
described in Ref. [268], where a first-order low-temperature expansion yields the configura-
tional grand potential Ω due to the constitutional and thermal defeats as

Ω = E0 −
∑
i

µi
∑
p

c0
i (p)− kBT

∑
p

∑
ε

exp {−[δEε(p)−
∑
i

µiδc
ε
i(p)]/kBT}. (A.1)

Here, µi is the chemical potential of element i, kB is Boltzmann’s constant and T is tem-
perature. E0 and c0

i denote the ground-state energy and composition of element i on lattice
site p for a perfectly ordered, stoichiometric alloy, respectively. For each possible defect ε
at lattice site p, the corresponding changes in energy and site-composition are represented
by δEε(p) and δcεi(p), respectively. Using the same notation as in Ref. [268], hereafter,
δEε(p) and δEε(p)−

∑
i µiδc

ε
i(p) will be referred as the defect “excitation energy” and de-

fect formation energy, respectively. Using the thermodynamic relationship 〈ci〉 = −∂Ω/∂µi,
Equation A.1 further yields

〈ci(p)〉 = c0
i (p) +

∑
ε

δcεi(p) · exp{−[δEε(p)−
∑
j

µjδc
ε
j(p)]/kBT}, (A.2)

where 〈ci(p)〉 denotes the average concentration of element i at site p. At a given tem-
perature, we can derive the defect concentrations of interest after substituting element
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chemical potentials, µi. More commonly, we are interested in knowing the equilibrium
point-defect concentrations as a function of the overall alloy concentration. Specifically, let
Xi = Ni/

∑
iNi be the mole fraction of species i, where Ni =

∑
p〈ci(p)〉 is the number

of atoms of species i on the lattice. In general, specifying the M − 1 independent mole
fractions, where M is the number of atom species, provides from Equation A.2 a total of
M − 1 equations for the M values of µi. In this formalism, the vacancy is treated as an
additional species, for which equilibrium is dictated by setting the grand-potential Ω in
Equation A.1 equal to zero (corresponding to thermodynamic equilibrium relative to the
number of lattice sites under zero stress conditions). There results then M equations to de-
termine the M values of µi, from which the equilibrium point defect concentrations 〈ci(p)〉
can be determined from Equation A.2.

The left panel of Figure A.1 is the flow chart describing the calculations of consti-
tutional and thermal defect concentrations. The intermetallic compound information like
crystal structure, symmetrically distinct sites, and stoichiometric concentration are derived
from either experimental or computational entries in a database. The defect module of Py-
matgen is used to generate the proper-size supercell and defect structures and corresponding
DFT setting. After finishing the DFT calculations, the post processing codes are first used
for obtaining the defect “excitation energy” and solving for the chemical potential of each
species at a given temperature and composition. The resulting values of the chemical po-
tentials can be further substituted into Equation A.2 to compute the corresponding defect
concentrations.

 Defect Structure Generation	


Alloy Information	


DFT Calculation	
 DFT Setting	


 Solute Substitution Defect 
Structure Generation	


   Parse                                  	
δEε p( )

DFT Calculation	


   Parse                                  	
δEN+1 p( )

Defect Profile Computation	
 Solute Site Preference Computation	


Constitutional and Thermal Defects	

Solute Site Preference	


Figure A.1: Flow chart describing the workflow for the constitutional/thermal defect and
solute site preference computation

A.2.2 Solute Site Preference

The solute site preference is a simple extension of the above mentioned constitu-
tional and thermal defect computation. Given an external element (M + 1) in the dilute
limit is introduced into the compound, the site preference of the solute over the N different
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lattice sites can be considered within the current computational framework. In addition to
the vacancy and antisite defect computations that have been done before, another set of N
defect structures representing the substitutional defects of external element on each lattice
site could be established and calculated, by regarding the external element as the element
M + 1 in the compound. The external element introduces one extra chemical potential into
Equation A.2, requiring an additional equation to compute the chemical potentials. The
extra constraint could be introduced by imposing a small but fixed amount of the mole frac-
tion (like 0.5% or 1%) for the external element in the alloy. Herein, the introduction of this
(M + 1)th constraint into the system would yield another set of chemical potentials for the
alloy at a given temperature and composition. Similar to the previous defect concentration
computation, by substituting the chemical potentials back to Equation A.2, the corre-
sponding defect concentration could be derived, and the site preference could be presented
by comparing the solute occupation over each lattice sites, i.e. 〈cM+1(p)〉/〈cM+1(p

′
)〉. The

work flow for the calculations of solute site preference computation is presented in the right
panel of Figure A.1, while additional N external element substitution structure calculations
would be set for the defect structure computations.

A.3 Running the code

In this section, we will describe one basic approach to do the required calculations.
The software developed for this purpose is in Python, so the user proficient in python
can modify the codes according to their situations. The software is developed as part of
pymatgen and has a dependency on sympy [270] and numpy [271] python packages. The
software was developed and tested for Linux and Mac OS X, however it is expected to work
on Windows also.

To determine the intermetallic defect property, the most important input is the
crystal structure, which gives basic information about symmetry, lattice site, stoichiomet-
ric concentration etc. Materials Project [272] has provided free access to crystal structure
information of many intermetallics through its Materials Application Programming Inter-
face (MAPI) [269]. In the Materials Project database, each structure is assigned a unique
id called mpid (Materials Project Id). The mpid is of the format ”mp-1234” with ”mp-”
prefixed to a positive integer. In what follows, the B2-NiAl (mp-1487) would be taken as
an example for running these defect property calculations.

A.3.1 Equilibrium Constitutional and Thermal Dects

First, we generate the defect supercells and the bulk supercell using the defect
structure generator within pymatgen. Then the input files for the Vienna Ab-initio Simu-
lation Package (VASP) [273, 274], a first-principles DFT package are generated using the
VASP IO module of pymatgen [275]. The two steps are combined into a single command:

. gen def structure --mpid 〈mpid〉
[ --mapi key 〈mapi key〉 ]
[ --cellmax 〈max no atoms in supercell〉 ]
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This command will create the corresponding “mp-id” folder which contains one
bulk and several defect structure computation folders. The cellmax parameter is the max-
imal number of atoms in the defect supercell. If not given, a default value of 128 is used
according to our convergence tests convergence tests for metal systems. Among those com-
putation folders in the “mp-id” folder, one “bulk” folder would contain the files for the
supercell calculations of pristine crystal structure, and the other folders can be classified
into two categories according to the type of defects: vacancy and antisite. To distinguish
the lattice sites, we enumerate the lattices site from 1 to n, where n is the total number
of symmetrically distinct lattice sites in the perfect crystal structure. Each defect supercell
calculation is put in one folder; for the case of NiAl (mp-1487) where there are two distinct
lattice sites, there would be four defect folders, corresponding to one antisite and one va-
cancy defect on each sublattice: besides the structure file (POSCAR) in each folder, other

Defect Type Folder Name

V acAl vacancy 1 sitespecie-Al,
V acNi vacancy 2 sitespecie-Ni,
NiAl antisite 1-sitespecie-Al subspecie-Ni
AlNi antisite 2 sitespecie-Ni subspecie-Al

files (e.g. INCAR, KPOINTS, POTCAR) with computation details could be automatically
generated according to user’s settings in pymatgen. The default settings chosen for each of
the files should be based on convergence tests.

Provided that all the DFT calculations including defect and bulk structures are
successfully completed, the next step is to parse the results to obtain the defect “excitation
energies”, δEε(p), which are simply the energy differences between the pristine and defect
structures. To accomplish this task, a typical command-line would be

. gen def energy --mpid 〈mpid〉
[ --mapi key 〈mapi key〉 ]

Once the command has successfully parsed the energies for all the defects, it replies
with:

DFT calculations successful for 〈mp-id〉

The output file “ext ene mp-id.json” contains the defect “excitation energies”, as well as
other structure information for the next step to calculate defect concentration. The data
in the json file is used to derive the constitutional and thermal defect concentrations at a
given temperature around the stoichiometric concentration region (defaulted for ± 0.5%),
type:

. gen def profile --mpid 〈mpid〉
[ --temp 〈T〉 ]
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Here, temperature parameter 〈T〉 indicates the temperature of interest (in units
of K), with a default value of 1000 K. This will create the output file “def con mp-id.json”,
which stores the defect concentrations, defect formation energies, and elemental chemical
potentials as a function of composition.

A.3.2 Solute Site Preference

As an extension of constitutional and thermal defect concentration calculation,
external solute site preference calculation could be started by the following command :

. gen sol pref structure --mpid 〈mpid〉
--solute 〈solute element〉

[ --mapi key 〈mapi key〉 ]

This will help create additional N computation folders inside the “mp-id” direc-
tory, corresponding to the configurations where the external solute occupies each of original
n sublattice sites. The external specie of interest could be specified by the chemical symbol
of the element from the input of 〈solute element〉.

For example, for the NiAl example the command “gen sit prefence --mpid 1487
--solute Mo’ would generate the following two additional folders in “mp-1487” directory for
next-step DFT calculations:

Defect Type Folder Name

MoAl sitepre 1 sitespecie-Al subspecie-Mo
MoNi sitepre 2 sitespecie-Ni subspecie-Mo

After finishing the additional N DFT calculations in the folders, similarly, the so-
lute defect “excitation energies” on each lattice site could be obtained using the command:

. gen sol def energy --mpid 〈mpid〉
--solute 〈solute element〉

[ --mapi key 〈mapi key〉 ]

A set of solute “excitation energies” for the n + 1 solute occupying the site p,
δEn+1(p), would be be stored in “ext energy 〈mpid〉 solute-〈solute name〉.json” file, with
the reply:

DFT calculations for solute 〈solute element〉 on 〈mp-id〉 are successful

Along with the previous output file “ext energy 〈mpid〉 .json”, the site preference
of the external solute could be analyzed by typing:
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. gen sol site pref --mpid 〈mpid〉
--solute 〈solute element〉

[ --temp 〈T〉 ]

Here, the temperature parameter also has a default value of 1000 K. The command
outputs the percentage of external solute occupying one specific lattice site as a function of
stoichiometry ratio at the given temperature.

A.4 Example

Three examples are presented here; the first two show the equilibrium intrin-
sic defect computations for NiAl (mp-1487) and Al3V (mp-2554) and the third example
demonstrates the site preference calculations of Ti, Mo and Fe solutes in NiAl (mp-1487)
crystal structure.

A.4.1 Equilibrium Constitutional and Thermal Defects

a	

b	


c	


V Site	


Al1 Site	


Al2 Site	
a	

b	


c	


Al Site	


 Ni Site	


(a) NiAl                                              (b) Al3V	


Figure A.2: Crystal structure of (a) NiAl with one Ni and one Al site (b) Al3V with two
symmetrically distinct Al and one V site.

NiAl (mp-1487)

The well-studied B2-NiAl (mp-1487) crystal structure, as shown in Figure A.2 (a),
is used to verify that our codes produce output consistent with previously published calcu-
lations [196, 276]. In the B2-NiAl structure, Ni and Al atoms occupy the corner and center
lattice sites of a cubic cell in the Pm3̄m (221) space group. Four different defect calcula-
tions are considered here, as VacAl, VacNi, AlNi and NiAl, along with the bulk structure.
Equilibrium concentrations of these defects at the temperature of T = 1000 K are plotted
in Figure A.3 (a). The relative order of the magnitude for the four defect concentrations
as found in with previous calculations from Korzhavyi et al. [196] and Mishin [197], while
the reported values of defect concentrations as a function of stoichiometry are qualitatively
consistent with previous calculations to within an order of magnitude. The difference be-
tween calculations may be associated with the choice of pseudopotentials, supercell size and
relaxation schemes.
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Figure A.3: Equilibrium constitutional and thermal defect concentrations in (a) NiAl and
(b) Al3V at T = 1000 K as a function of the mole fraction of Al.

Al3V (mp-2554)

The current code also enables distinguishing symmetrically inequivalent sites and
this is demonstrated with Al3V (mp-2554). The Al3V crystal structure has I4/mmm (139)
space group with two symmetrically distinct Al lattice sites and one V site in a primitive
cell, as shown in Figure A.2 (b). The symmetrically inquivalent Al sites warrant additional
calculations leading to three vacancy and three antisite calculations. The constitutional and
thermal defect concentration profiles for Al3V around the ideal stoichiometry are plotted
in Figure A.3 (b). Our calculations indicate that for Al-poor concentrations, the majority
defects in the structure are V antisites on the Al sublattices, while for Al-rich concentrations,
the dominant defects are vacancies on the V sublattices.

A comparison between Al1 and Al2 sites shows that the excessive V preferentially
occupies Al1 site, and the antisite defection concentration VAl1 is about one order of mag-
nitude higher than that of VAl2. These calculations demonstrate the significant antisite
defect property differences between the two Al lattice sites in Al3V crystal structure.

A.4.2 Solute Site Preference

Solute Ti, Mo and Fe in NiAl (mp-1487)

As an extension of equilibrium constitutional and thermal defect concentration
calculations, the solute site preference calculation examples are presented for solutes Ti,
Mo and Fe in NiAl (mp-1487). Figure A.4 shows the calculated fraction of solute on Al
sublattice as a function of Al concentration. Within the composition region considered here,
the present examples feature three type of elements (i) strong site preference of Ti to Al
sublattice, (ii) composition-dependent site preference of Mo and (iii) strong site preference
of Fe to Ni sublattice. The behaviors of these three solute species in NiAl is consistent with
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the previous calculations by Jiang [277].
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Figure A.4: Calculated fraction of solute X (X = Ti, Mo or Fe) occupying the Al sublattice
in NixAl0.99−xX0.01 alloys at T = 1000 K as a function of the mole fraction of Al.

A.5 Future developments

At the current state of development, PyDII is only handling binary intermetallic
systems. For multicomponent systems, different concentration constraints could be pro-
vided. A more general code for inputing specific constraints would be written in the future
to satisfy this kind of needs.

Based on the current equilibrium defect concentration with different composition,
users could further derive other information of interest, like separating constitutional defects
and thermal defects. Other post processing functions are under development to further
interpret the output of current work and to derive other defect properties that may be
relevant in the context of alloy design. As an open-source project, we welcome users to
join the development of the PyDII. Any questions, suggestions or code contributions can
be submitted to the pymatgen repository on Github.




