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RESEARCH ARTICLE
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EXT Display Impaired Pancreatic Beta-Cell
Reserve Due to Smaller Pancreas Volume
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Janine K. Kruit2, Julia J. Witjes1, Michiel A. J. van de Sande3, Aart J. Nederveen4,
Ding Xu5, Geesje M. Dallinga-Thie1,6, Jeffrey D. Esko5, Erik S. G. Stroes1,
Max Nieuwdorp1,5,6*

1. Department of Vascular Medicine, Academic Medical Center, Amsterdam, the Netherlands, 2. Department
of Paediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands, 3.
Department of Orthopaedics, LUMC, Leiden, the Netherlands, 4. Department of Radiology, Academic Medical
Center, Amsterdam, the Netherlands, 5. Department of Cellular and Molecular Medicine, UC San Diego, San
Diego, California, United States of America, 6. Department of Experimental Vascular Medicine, Academic
Medical Center, Amsterdam, the Netherlands

*m.nieuwdorp@amc.uva.nl

. These authors contributed equally to this work.

Abstract

Exotosin (EXT) proteins are involved in the chain elongation step of heparan sulfate

(HS) biosynthesis, which is intricately involved in organ development. Loss of

function mutations (LOF) in EXT1 and EXT2 result in hereditary exostoses (HME).

Interestingly, HS plays a role in pancreas development and beta-cell function, and

genetic variations in EXT2 are associated with an increased risk for type 2 diabetes

mellitus. We hypothesized that loss of function of EXT1 or EXT2 in subjects with

hereditary multiple exostoses (HME) affects pancreatic insulin secretion capacity

and development. We performed an oral glucose tolerance test (OGTT) followed by

hyperglycemic clamps to investigate first-phase glucose-stimulated insulin

secretion (GSIS) in HME patients and age and gender matched non-affected

relatives. Pancreas volume was assessed with magnetic resonance imaging (MRI).

OGTT did not reveal significant differences in glucose disposal, but there was a

markedly lower GSIS in HME subjects during hyperglycemic clamp (iAUC HME:

0.72 [0.46–1.16] vs. controls 1.53 [0.69–3.36] nmol?l21?min21, p,0.05). Maximal

insulin response following arginine challenge was also significantly attenuated

(iAUC HME: 7.14 [4.22–10.5] vs. controls 10.2 [7.91–12.70] nmol?l21?min21

p,0.05), indicative of an impaired beta-cell reserve. MRI revealed a significantly

smaller pancreatic volume in HME subjects (HME: 72.0¡15.8 vs. controls

96.5¡26.0 cm3 p50.04). In conclusion, loss of function of EXT proteins may affect

beta-cell mass and insulin secretion capacity in humans, and render subjects at a
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higher risk of developing type 2 diabetes when exposed to environmental risk

factors.

Introduction

Heparan sulfate proteoglycans (HSPGs) play a role in many biological processes

including fine-tuning most of the physiological and pathological processes related

to fetal organ development, lipid metabolism and inflammation [1]. EXT1 and

EXT2 genes encode for an endoplasmic reticulum-resident glycosyltransferase

complex involved in chain elongation and possibly chain initiation of heparan

sulfate biosynthesis [2, 3]. The EXT gene family consists of 5 genes, including

EXTL1 (EXT-like 1), EXTL2 and EXTL3, which encode proteins that catalyze

GlcNac transferase reactions. Whereas the function of EXT1 and EXT2 has been

widely recognized, the precise role of EXTL3 and a related protein EXTL2 in

heparan sulfate (HS) biosynthesis remains unclear [4–6]. Of note, Extl3 was

reported to be involved in murine pancreatic beta-cell development [7–9].

Heterozygous loss of function (LOF) mutations in EXT1 and EXT2 are known

to be involved in the development of hereditary multiple exostoses (HME)

syndrome [10], a disorder with a reported prevalence of 1/50.000 individuals [11],

and have been shown to lead to both locally (exostosis plate) [12] and systemically

[13] altered heparan sulfate composition. Consequently, growth of multiple bony

tumors (i.e. exostoses or osteochondromas) after birth and throughout childhood,

lasting until closure of the growth plates, were observed, which can result in

skeletal deformities and malignancies [14]. Main complications are a direct result

of compression of neighbouring tissue or structures and involve pain, disturbance

of blood circulation, and in rare cases spinal/cervical cord compression [15].

Interestingly, common single nucleotide polymorphisms (SNPs) in EXT2 were

associated with increased risk for the development of type 2 diabetes mellitus

(DM2) [16]. Despite conflicting results [17–21], a recent meta-analysis of Liu et al

replicated the original observed significant association between common genetic

variants in EXT2 and the risk of developing DM2 [22]. In line, SNPs in EXT2 have

also been associated with impaired glucose clearance in DM2 as assessed by an

oral glucose tolerance test [23]. Of note, both EXT1 and EXT2 genes are expressed

in human pancreas (https://www.lsbm.org) pathophysiological role of EXT in

pancreas function (insulin secretion) remains to be elucidated.

In the present study we designed a dedicated series of investigations to unravel

the effect of disrupted heparan sulfate synthesis on beta-cell function and mass, as

well as insulin secretion, in humans with heterozygous loss of function mutations

in EXT1 or EXT2.

Impaired Pancreas Volume and Beta-Cell Reserve in HME Subjects

PLOS ONE | DOI:10.1371/journal.pone.0115662 December 26, 2014 2 / 14

https://www.lsbm.org


Methods

We enrolled Dutch HME subjects, based on established heterozygous mutations

in either EXT1 or EXT2, and non-carrier relatives over 18 years of age, without

pre-existent type 1 or 2 diabetes. We tested for alterations in glucose metabolism

and beta-cell reserve. Written informed consent was obtained after explanation of

the study. The study was approved by the institutional review board of the

Academic Medical Center of the University of Amsterdam and carried out

according to the Declaration of Helsinki.

Oral Glucose Tolerance Test (OGTT) and hyperglycemic clamp

After an overnight fast, a standardized OGTT was performed. After baseline

venous sampling subjects were asked to ingest 75 g glucose. At t530, 60, 90 and

120 minutes a 4.5 ml blood sample was obtained for assessment of blood glucose,

insulin and C-peptide.

On a separate study day, a hyperglycemic clamp was performed after an

overnight fast. On the day of study antecubital veins of both arms were cannulated

for blood sampling and infusion of fluids. All bedside glucose measurements were

performed using a calibrated glucose sensor (YSI 2300 STAT S; YSI, Yellow

Springs, OH). Based on the fasting plasma glucose level and the subject’s

bodyweight first phase insulin secretion was determined using a 20% glucose

bolus (weight/70610 – plasma glucose 5 ml required) given over 1 min, aiming

to achieve a plasma glucose level of 14 mmol/l. Subsequently, blood glucose levels

were maintained at 14 mmol/l by continuous glucose infusion. Pump settings

(glucose infusion rate) were adapted based on blood glucose levels at t50, 2.5, 5,

7.5, 10 and 20 minutes. Simultaneously, blood samples were collected for insulin

and C-peptide determination. After 120 minutes an arginine bolus (5 gram) was

given, followed by measurement of plasma insulin levels at t5125, 130,140 and

150 minutes. Basal fasting glucose, HbA1c, total cholesterol, HDL and LDL

cholesterol, triglycerides and free fatty acids (FFAs) were assessed in fasting

plasma using standard laboratory procedures. GLP-1 levels were determined using

al RIALINCO assay [24]. Osteocalcin was measured using an immunoradiometric

assay (Biosource/Medgenix Diagnostics, Fleuris, Belgium) as previously published

[25]. Fecal elastase levels were assessed using a commercially available ELISA kit

for Elastase 1 (ScheBo).

Glucose was determined by the hexokinase method (Hitachi), Insulin was

determined on an Immulite 2000 system (Diagnostic Products, Los Angeles, CA).

C-peptide was measured by RIA (RIA-coat C-peptide; Byk-Sangtec Diagnostica,

Dietzenbach, Germany).

Using data from the OGTT and clamp, homeostasis model assessment

(HOMA) indexes were calculated for insulin sensitivity (HOMA-ir 5 insulin

(picomoles)/6.945*glucose (millimoles)/22.5) and insulin secretion (HOMA-b

520* fasting insulin (picomoles)/6.954/glucose (millimoles-3.5). Under stable

conditions of constant hyperglycemiathe amount of glucose infused (milligrams

Impaired Pancreas Volume and Beta-Cell Reserve in HME Subjects
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per kilogram) equals the amount of metabolized glucose (M). M was calculated as

the average glucose infusion rate during the last 30 min of the clamp (t590

through t5120). The M value divided by the average plasma insulin concentration

(I) during the same interval, the M/I ratio, provides a measurement of tissue

sensitivity to insulin (micrograms per kilogram per minute per picomole per liter)

[26]. The disposition index is calculated as the product of the M/I ratio. Insulin

sensitivity was estimated, using the metabolic clearance rate (MCR) of glucose and

the insulin sensitivity index (ISI), as described previously [27]. Overall glucose-

stimulated insulin secretion was calculated as AUCinsulin/AUCglucose ratio.

Magnetic resonance imaging

In a subset of previous participants (both HME-subjects and healthy controls) we

performed abdominal imaging preceding the OGTT, using a 3-T MR scanner

(Intera, Philips Healthcare, Best, The Netherlands). A T2-weighted two-

dimensional transversal half-Fourier single-shot turbo spin-echo (HASTE)

sequence was obtained in a breath hold to determine the volume of the pancreas.

Scan parameters were: TR/TE 600/70 ms; FA 90 degrees; number of slices: 20,

FOV450 mm6315 mm, voxel sizes: 1.4 mm61.4 mm64.00 mm; slice gap

1 mm. Images were analyzed by 2 independent, blinded investigators (ICC50.85,

95% CI 0.61–0.94) using ITK Snap software version 2.4 (University of

Pennsylvania). Pancreatic area was delineated in each imaging slice and the

number of voxels in this area was determined, subsequently this number was

transcribed to volume in cubic millimetres. The mean area of separate

measurements was used.

Power calculation and statistical analysis

Based on our previous findings in a oral glucose tolerance tests in carriers with a

rare loss-of function mutation (ABCA1) [28], the difference between the mean

incremental area under the curve (IAUC) for the carriers (245 [153–353]) and the

controls (155 [84–198]), was 90 mmol l21 min21. Assuming a two group t-test

with a 0,050 two-sided significance level and a power of 80%, we need to include

14 subjects in each group.

Data are presented as mean ¡ SD or medians with interquartile range [IQR]

unless stated otherwise. Normally distributed baseline characteristics were

compared using a student’s t test (all but triglycerides). Differences in triglyceride

and free fatty acid levels (FFA), known not to be normally distributed, and

continues outcome variables were assessed using the nonparametric Mann-

Whitney U test. All repeated measurements are reported by incremental AUC

(area above baseline), computed by the trapezoidal rule. A p-value of less than

0.05 was used to indicate significant differences. All analyses were performed with

SPSS software version 19.0.0.1.

Impaired Pancreas Volume and Beta-Cell Reserve in HME Subjects
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Results

Beta-cell function and glucose metabolism in human EXT carriers

versus controls

We included 16 EXT1 carriers and 6 EXT2 carriers (for a list of identified

mutations see S1 and S2 Table) as well as 26 age and gender matched non carrier

controls, whom participated in the OGTT, clamp or both (for baseline

characteristics per study see S3 and S4 Tables). Age, BMI, fasting glucose, HbA1C

and insulin levels, as well as basal lipid levels (including FFAs – only in OGTT

group, see S3 Table), were all comparable between carriers and control subjects

(Table 1). HME subjects are characterized by elevated osteocalcin levels (S3

Table), a protein recognized as a marker of bone formation [29]. Assessing

exocrine pancreas function by fecal elastase [30], no differences were found (S3

Table). No difference was reported in family history for diabetes (Table 1). EXT

carriers and controls displayed a similar response during OGTT with respect to

plasma glucose (iAUC: carriers: 233 [157–286] vs controls: 160 [100–281]

nmol?l21?min21 n.s.) and plasma insulin levels (iAUC: carriers; 17.4 [6.5–24.1] vs

controls; 18.3 [12.6–23.0] nmol?l21?min21) (Figs. 1A and 1B). Markers of insulin

resistance and beta-cell function were not significantly different between the HME

subjects and controls (Table 2).

We noted a trend towards lower plasma insulin levels in HME subjects, thus we

subsequently performed a hyperglycemic normoinsulinemic clamp followed by

arginine infusion. During the hyperglycemic clamp, first phase insulin response to

an intravenous glucose bolus (as determined by incremental AUC) was lower in

carriers than control subjects (0.72 [0.46–1.16] vs. 1.53 [0.69–3.36] nmol?l21?-

min21, p50.017) (Fig. 2A). In addition, C-peptide responses were also

significantly lower in carriers (3.57 [2.26–5.00] vs. 6.62 [4.48–9.84] nmol?l21?-

min21 p,0.008) (Fig. 2B). In line with the HOMA data, glucose infusion rates

were comparable between groups (iAUC carriers vs. controls 11.1 [8.88–19.00] vs.

14.5 [11.98–23.98] mg?kg21?min21 n.s.) (Fig. 2C), as well as disposition indices

(Table 2), suggesting that differences observed in insulin and C-peptide secretion

cannot be attributed to differences in insulin tolerance. Following an intravenous

arginine bolus to assess maximal insulin reserve, the peak response was

significantly impaired in EXT carriers compared to controls (iAUC from t5120:

7.14 [4.22–10.95] vs. 10.32 [7.91–12.70] nmol?l21?min21 p,0.028) (Figs. 2D and

E).

To further investigate the decreased beta-cell insulin secretory capacity we set

out to detect potential differences in anatomical pancreatic volume in n58 EXT

carriers and n58 non-carrier controls (Table 3). Abdominal MRI imaging

revealed a significantly smaller pancreatic volume in EXT carriers compared to

control subjects (72.0¡15.8 vs. 96.5¡26.0 cm3 p50.04) (Fig 3).
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Discussion

Here we provide the first evidence that carriers of loss-of-function mutations in

EXT have a distinct perturbation in glucose-insulin homeostasis characterized by

an impaired glucose stimulated insulin secretion response as well as a decreased

peak-insulin secretory capacity. The latter is accompanied by a significant

reduction in total pancreas volume, implying a structural beta-cell defect in

carriers of loss-of-function mutations in EXT.

EXT mutation carriers displayed normal insulin sensitivity during OGTT.

However, a trend towards reduction in plasma insulin response during OGTT was

observed in these subjects. Using hyperglycemic clamps, we observed that EXT

carriers were characterized by a reduced first-phase insulin response to

hyperglycemia (GSIS) compared to noncarriers matched for age, sex, and BMI.

Interestingly, in a cohort of Pima Indians, who are marked by high levels of

insulin resistance and obesity, an association between SNPs in EXT2 and

incidence of DM2 was found [23]. Together these findings suggest that HME

subjects, being carriers of heterozygous EXT mutations might be at increased risk

of developing DM2 when becoming obese, due to their underlying beta-cell

defect.

Table 1. Baseline characteristics of all study subjects.

Noncarriers Carriers P-value

(N525) (N522)

Age (years) 45¡14 38¡10 0.064

Men 11 (42) 7 (31)

BMI 25.0¡3.30 25.5¡4.3 0.591

BSA 1.9¡0.21 1.9¡0.19 0.505

Cholesterol (mmol/l)

Total 5.26¡1.25 4.87¡1.16 0.295

LDL 3.23¡1.14 3.03¡1.06 0.537

HDL 1.51¡0.41 1.34¡0.41 0.153

Triglycerides (mmol/l) 0.90[0.67–1.19] 0.87[0.55–1.34] 1.00

Fasting glucose (mmol/l) 5.0¡0.66 4.8¡0.48 0.251

Hba1c

mmol/mol 36¡3.9 34¡3.6 0.403

% 5.4¡0.34 5.3¡0.32 0.391

Fasting insulin (pmol/l) 49¡34 39¡28 0.291

Family history

Diabetes 4 (15 3 (14)

CVD 3 (12) 4 (29)

Data are means ¡ SD, n (%), or median [IQR]. Abbreviations: BMI 5 Body Mass Index; BSA 5 Body Surface Area; LDL 5 Low Density Lipoprotein. HDL 5

High Density Lipoprotein. CVD 5 Cardiovascular Disease.

doi:10.1371/journal.pone.0115662.t001
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Functional beta-cell defects in heterozygous carriers of EXT

mutations

Our findings elute to either a functional, signalling defect of the beta-cell or a

structural diminished b-cell mass. It has been recognized that GSIS reflects the

available previously synthesized and stored insulin that can be secreted upon

glucose stimulation [31]. After entering the b-cell via GLUT transporters, glucose

is modified by glucokinase, the rate-limiting step in glucose sensing. Glycolysis

results in ATP production and subsequently the ATP-sensitive potassium channel

is closed, followed by membrane depolarization, increased calcium influx via the

L-type calcium channel and finally, exocytosis of insulin-containing granules. This

Fig. 1. Plasma glucose (A) and insulin curves (B) after OGTT in HME subjects (closed squares) and
controls (circles).

doi:10.1371/journal.pone.0115662.g001
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Table 2. Beta-cell function and insulin sensitivity parameters.

Noncarriers Carriers P-value

Baseline HOMA index (all)

HOMA-ir 1.23[0.80–1.80] 0.95[0.56–1.47] 0.16

HOMA-b 79[48–128] 78[49–147] 0.89

Insulinogenic index (ogtt) 50.7[37.8–176.5] 60.3[31.1–71.4] 1.00

(pmol/mmol)

AUCinsulin/AUCglucose ratio 87.8[73.6–261.4] 79.8[50.6–105.2] 1.00

(ogtt) (pmol/mmol)

ISIcomp (ogtt) 23.9[20.9–41.5] 33.5[18.5–46.9] 0.07

(mmol/(kg min pmol L))

Disposition index (clamp) 22.1[15.2–41.9] 25.6[10.0–33.1] 1.00

MCR (ogtt) (ml/(min kg)) 9.8[9.1–10.4] 10.1[9.2–10.6] 0.37

Values are presented as median [interquartile range]. Abbreviations: HOMA 5 homeostatis model assessment; AUC 5 area under the curve; ISIcomp 5

index of composite whole-body insulin sensitivity; MCR 5 metabolic clearance rate.

doi:10.1371/journal.pone.0115662.t002

Fig. 2. Functional (GSIS) pancreas reserve in HME subjects (closed sq) versus controls (circles). A and B: The first-phase insulin and C-peptide
response to a hyperglycaemic clamp was lower in HME subjects compared to controls. C: The glucose infusion rate (GIR), an estimation of the amount of
glucose being metabolized, was not different between groups. D and E: Insulin secretion after an intravenous bolus of arginine was lower in carriers vs
controls. * p50.028.

doi:10.1371/journal.pone.0115662.g002

Impaired Pancreas Volume and Beta-Cell Reserve in HME Subjects
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first-phase secretory response is augmented by a potassium channel-independent

pathway, which is largely responsible for the second-phase insulin response [32].

It has been previously shown that specific inhibition of heparan sulfate

synthesis in a mouse model by Extl3 knock-down results in impaired GSIS [7].

Inline, Takahashi et all showed that treatment of isolated islets with heparinase

resulted in decreased insulin secretion upon glucose stimulation, together with

decreased expression of Glut2, Sur1 and Stx1A. These data underline the

important role for intact heparan sulfate in GIIS [7]. However, the expression of

GLUT2 in human beta-cells is very low compared to that in mice pancreas [33].

Therefore, the proposed explanation for the reduction in insulin secretory

capacity in these models through reduced GLUT2 expression with subsequent

attenuated FGF signaling [34] can’t be translated 1:1 to the human situation.

Beta-cell function may also be affected by impaired Hedgehog (Hh) signalling,

which has been proposed to play a role in insulin production [35, 36] and beta-

cell function [37] throughout life. It was shown that tout-velu (ttv), an EXT1

Table 3. Baseline characteristics of participants in MRI.

Noncarriers Carriers P-value

(N58) (N58)

Age (years) 40¡13 39¡9 0.85

Men 3 (37) 3 (37)

Length (m) 1.72¡0.10 1.72¡0.10 0.89

Weight 74¡9 78¡13 0.60

BMI 24.6¡1.4 25.6¡4.4 0.54

BSA 1.8¡0.15 1.9¡0.18 0.38

Data are means ¡ SD, n (%), or median [IQR]. Abbreviations: BMI 5 body mass index; BSA 5 body surface area.

doi:10.1371/journal.pone.0115662.t003

Fig. 3. Pancreas volume, assessed with 3T MRI, was smaller in HME subjects than controls (A)
Example of axial (top left), sagital (top right) and coronal (bottom left) view and 3D visualization
(bottom right) of delineated pancreas. (B) Pancreatic volumes (cm3) in HME subjects and controls. #
p50.04.

doi:10.1371/journal.pone.0115662.g003
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analog in Drosophilia, is required for Hh diffusion [38], thus linking disturbances

in heparan sulfate to beta-cell function. In this regard, it has also been reported

that Wnt proteins are involved in GSIS in adult mouse islets [39].

Structural beta-cell defects in heterozygous carriers of EXT

mutations

Both the first-phase insulin responses as well as the secretory responses to arginine

were significantly impaired in EXT carriers. These findings contrast our previous

results in subjects carrying a heterozygous mutation in ABCA1, showing decreased

GSIS with an intact maximal insulin release capacity following arginine [28].

Arginine stimulates insulin secretion by directly inducing membrane depolariza-

tion independent of potassium channels and thus largely independent of glucose

sensing and glucose metabolism pathways [40, 41]. Our findings suggest that in

HME a structural, rather than a functional defect, may lead to decreased GSIS and

arginine-insulin responses. MRI based pancreatic volume measurements in our

HME subjects indeed lend further support to a structural defect in EXT carriers.

Beta-cell survival

In a recent study it was implicated that HSPG was involved in beta-cell survival,

providing a buffer mechanism against reactive oxygen species (ROS) in the

murine pancreas [42]. Indeed, it has been previously noted that beta-cell failure

precedes the development of impaired glucose tolerance (IGT) in insulin resistant

subjects [43] due to ROS induced exhaustion of the normal beta-cell capacity to

adjust for increased insulin demand [44]. Thus HSPGs may have several roles in

beta-cell homeostasis via either regulation of postnatal islet and pancreas

development [7] or protection of the beta-cell against destruction later in life [45].

The inadvertent depletion of pancreas heparan sulfates in EXT carriers might

render (the already decreased amount of) beta-cells vulnerable for exogenous

pathogenic stimuli including obesity and older age. Unfortunately however, at this

moment data on development of DM2 in HME patients cohorts of older age are

not available, as increased morbidity and mortality due to malignant bone

tumours resulted in loss of follow up.

Insulin signalling in HME carriers

The development of type 2 diabetes is a complex interplay of declining beta-cell

function and subsequent development of insulin resistance, influenced by both

genetic and environmental factors. In this respect, the elevated levels of

osteocalcin found in our patients may play an interesting role. The elevated levels

of osteocalcin might reflect altered bone formation in HME subjects, whom are

characterized by the development of bony tumors [29]. Although in mouse

models, osteocalcin improves insulin sensitivity [46] and beta-cell proliferation

[47], translation of these data to our subjects with HME should be done with

Impaired Pancreas Volume and Beta-Cell Reserve in HME Subjects
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caution. For example, most epidemiological studies (reviewed in ref [29]) show an

inverse correlation between plasma osteocalcin levels and the presence of insulin

resistance. Murine studies have suggested that one of the mechanisms by which

osteocalcin improves beta-cell function is through increased GLP-1 secretion

[48, 49]. As we did not find differences in fasting GLP-1 levels in our subjects, this

mechanism does not seem to be responsible for the found increase in beta cell

function in our study. Nevertheless, further study on the relation between altered

bone metabolism and glucose metabolism in HME subjects is warranted.

Study limitations

Several issues in our study deserve closer attention. First, based on the small

number of available mutation carriers in The Netherlands this precludes analysis

regarding individual effects of EXT1 or EXT2 on beta-cell function and size.

However, although mutations in either EXT1 or EXT2 can result in development

of Hereditary Multiple Exostoses, mutations in EXT1 are associated with a higher

disease burden [50, 51]. This is most likely due to an more pronounced biological

function for EXT1 albeit that EXT2 is required to allow the proper function of

EXT1 [52].

Second, a reduced pancreas volume could be accompanied by an initial

protective increase in islet proliferation. In the present study, we cannot rule out

this possibility, however, our functional data regarding the impaired maximum

insulin release upon the arginine bolus in HME subjects do not support this

hypothesis.

Finally, as large clinical cohorts of well genotyped HME subjects are currently

not available, further studies are needed to address the question whether a similar

mechanism of decreased pancreas volume might partially underly the genetic

association between EXT and defective insulin secretion in HME subjects with

differences in BMI.

Nevertheless, we now provide the first evidence on the relation between genetic

defects in heparan sulfate synthesis and decreased pancreas anatomic volume with

ensuing impaired beta-cell reserve capacity in carriers of loss-of-function

mutations in EXT.

Supporting Information
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