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ABSTRACT OF THE DISSERTATION

Security, Robustness and Cooperation in Wireless Networks:
Asymptotic and Extremal Analysis

By

Yao-Chia Chan

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Irvine, 2022

Chancellor’s Professor Syed Ali Jafar, Chair

The emergence of ‘Aligned Images Sum-set (AIS) Inequalities’ has spurred much progress

in Generalized Degrees of Freedom (GDoF) characterizations of wireless networks under

robust assumptions that limit the channel state information at transmitters (CSIT). Much

of this progress is limited to small networks, and to larger networks under highly symmetric

parameter values. Extending these results to larger networks with asymmetric parameters

is challenging because of the inherent curse of dimensionality, and also because the scope of

AIS bounds is far from well understood. Making progress in this direction is the main goal

of this dissertation.

We first explore the feasibility of an extremal network theory, i.e., a study of extremal

networks within particular parameter regimes of interest. In particular, we quantify the

extremal gain in sum GDoF brought about by transmitter cooperation in K user interference

channels in various parameter regimes that correspond to weak interference. Specifically,

with the robust scheme of ‘Treating Interference as Noise (TIN)’ as the baseline, we find the

extremal gain in a large parameter regime (known as the Simple Layered Superposition, or

SLS, regime) to be Θ(log2K), which scales logarithmically with the number of users.

As our next contribution we explore robust GDoF characterizations for large networks in

x



the presence of security constraints. We identify surprisingly broad new regimes for both

interference and broadcast networks, where robust secure GDoF are fully characterized for

arbitrary number of users. The unifying feature of these regimes is the optimality of TIN

along with wiretap coding, power control and jamming.

Continuing with the security constraint, in the final part of this dissertation we study the

robustness of structured codes for secure GDoF characterizations under limited CSIT. In

particular, structured jamming based on lattice codes is known to offer significant advantages

by allowing receivers to decode and remove the sum of jamming and message signals in

aggregate. However, we show that such advantages are completely lost in GDoF under the

robust assumption of limited CSIT. The complete robust GDoF characterization of 2 user

secure Z channels comes as a byproduct of the analysis. Limitations of existing AIS bounds

are identified that stand in the way of generalizations to larger networks in this case.

xi



Chapter 1

Introduction

1.1 Background

Understanding the fundamental limits of wireless networks has been a long-standing holy

grail for communications and information theory. It is one of the grand challenges in network

information theory, given that only few types of networks are completely characterized in

their capacity [1, 2], after Shannon’s groundbreaking work on the capacity of point-to-point

channels [3]. While the ultimate prize – the exact capacity characterizations – remains elu-

sive, there is a rich history of recent progress, especially during the last two decades, through

a number of breakthroughs that identify critical obstacles and find ways to circumvent them.

It starts around two decades ago [4–8] with the realization that in spite of the intractability

of exact capacity characterizations, progress can be made by shifting the focus to capacity

approximations. From this comes insightful deterministic models that are essential for such

approximations [7, 8], as well as high Signal-to-Noise Ratio (SNR) asymptotic analysis of

network Degrees of Freedom (DoF) [5, 6] that broadens the scope of approximations and

leads to new ideas like interference alignment [9–12]. A limitation of the DoF metric is that

1



it implicitly treats all channels as equally strong – every non-zero link carries exactly one

DoF. This limitation is overcome by the Generalized Degrees of Freedom (GDoF) [7] metric,

which is essential for capacity approximations of networks with different power in the links.

While GDoF characterizations provide important conceptual benchmarks, the optimal so-

lutions are often too fragile to be implementable in practice [10, 11]. The main obstacle is

the assumption of perfect channel state information at the transmitters (CSIT). Evidently,

CSIT needs to be limited to finite precision. If the benefit of these optimal solutions is lost

under finite precision, then this removes some of the obstacles that have made progress diffi-

cult in network information theory, and thus opens the door to a comprehensive and robust

network information theory of wireless networks, based on optimality of random codes that

are much better understood. Even if we set this theoretical concern aside, the emphasis on

finite precision CSIT brings theory closer to practice, which is a worthy goal in itself.

Early attempts at high SNR analysis under finite precision CSIT run into formidable chal-

lenges, with a few notable exceptions [13–16]. The difficulty in studying finite precision CSIT

is that bounds produced by various classical techniques (Csiszar-sum lemma [17], extremal

inequalities [18], compound channel bounds [19]) fall short even in very simple settings, e.g.,

the two-user multiple-input single-output (MISO) broadcast channel (BC) as exemplified

by the Lapidoth-Shamai-Wigger conjecture on the collapse of DoF [17]. This leads to the

emergence of Aligned Images sum-set inequalities [20] which allow comparisons of entropies

of received signals under finite precision CSIT.

Aligned Images sum-set inequalities make DoF characterizations possible for canonical in-

terference and broadcast networks under finite precision CSIT, and help settle various con-

jectures along the way [17, 20–23]. Going beyond DoF to GDoF characterizations requires

stronger generalizations of Aligned Images sum-set inequalities , that can compare entropies

of subsections of signals. This leads to a new class of sumset inequalities in [24], which

enable successful robust GDoF characterizations in many cases [18, 25–29]. Limitations of

2



these sumset inequalities are also noted [30].

With the tools of Aligned Images sum-set inequalities, this dissertation explores different

approaches to characterize the robust GDoF of large wireless networks with no symmetry in

topologies assumed. The first approach is to apply an extremal network theory to analyze the

benefit brought by transmitter cooperation to interference networks. The extremal network

theory studies the extremal value of a metric of interest within some channel regimes, and

offers analyses from a broad and approximate view. For exact analysis, in the next approach,

we explore sharp characterizations for GDoF of large networks under secrecy. Broad new

regimes are identified respectively for interference and broadcast networks, whose secure

GDoF are characterized for an arbitrary number of users. Finding optimality beyond these

regimes may require schemes such as structured codes, which appear as a key ingredient of

optimal secure schemes under perfect CSIT. In the last part, we show that the benefit of

the key features offered by structured jamming is completely lost with two user secure Z

channels, and structured jamming is thus not robust.

1.2 Overview of the Dissertation

We describe the problems associated each of the approaches and outline the accompanying

contributions in each chapter as follows.

In Chapter 2, we apply an extremal network theory to characterize the robust GDoF of large-

scale networks with asymmetric settings. As one way to avoid the curse of dimensionality,

the extremal network theory characterizes large wireless networks with the extremal value of

a metric of interest within a channel regime. To test its feasibility, we study the extremal gain

in sum GDoF that transmitter cooperation can bring to K user interference networks, with

treating interference as noise as the baseline for comparison. The extremality is taken over

3



all topologies within some weak-interference channel regimes. Treating Interference as Noise

(TIN) is taken as the baseline, as we expect it would be powerful in weak interference regimes.

We consider three weak interference regimes: the TIN, Convex TIN (CTIN), and Simple

Layered Superposition (SLS) regimes. The extremal sum-GDoF gain found for the TIN and

CTIN regimes are respectively 1.5 and 2 − 1
K
. With the small extremal gains, one may

conclude that it is not worthwhile for further study in the TIN and CTIN regimes. On the

other hand, the extremal gain for the SLS regime is Θ(log2K), which grows logarithmically

with the number of users. Such a large extremal gain suggests important ideas in the SLS

regime are yet to be discovered.

In Chapter 3, we fix a scheme of interest and discover larger parameter regimes where the

scheme remains optimal by adding constraints to the networks. The scheme we consider is

a secure version of TIN, which contains jamming to ensure message secrecy. For K user

interference networks, we identify the Secure TIN (STIN) regime, where the secure version

of TIN remains GDoF optimal under finite precision CSIT. The STIN regime is the largest

of all such parameter regimes previously identified for GDoF optimality in some network

settings, including the SLS, CTIN, and the TIN regime. Next, we apply extremal analysis

to the benefit of transmitter cooperation by comparing the secure robust GDoF of K user

interference network and the MISO broadcast counterpart. We show that the extremal gain

of transmitter cooperation is unbounded in the STIN regime, while it is equal to one when

restricted in the SLS regime. The SLS regime thus becomes the largest regime for the secure

broadcast setting where the precise GDoF characterization is available. Finally, we extend

the study of the optimality of secure TIN to explore the impact of helpers and eavesdroppers

in various parameter regimes.

In Chapter 4, we study the robustness of structured codes under finite precision CSIT and

secrecy. Structured codes are key ingredients of optimal schemes as they can align or cancel

at unintended receivers when perfect CSIT is available. They also appear in secure com-

4



munications as structured jamming, where lattices of jamming signal and messages can be

aligned, decoded in aggregate, and removed at the unintended receivers, with no messages

explicitly decoded. However, structured jamming may not be robust to channel uncertainty.

In fact, we show such a benefit of aggregate decoding and cancellation is lost with a Z

interference channel with secrecy constraints. Such a setting is arguably a minimal one,

because relaxing one of the settings (robustness, GDoF, secrecy) leads to questions which

were studied in the literature. As byproducts, we characterize the secure GDoF regions for

both Z interference and broadcast channel. The challenge in proving optimality lies in the

converse, which involves a non-trivial combination of the secrecy constraints and the use of

Aligned Images sum-set inequalities.

1.3 Notations and Abbreviations

We use the following notations in this dissertation. For integers x and y satisfying 1 ≤ x ≤ y,

define [x : y] = {x, x + 1, · · · , y}, and [x] = {1, 2, · · · , x}. The notation (x)+ and {x}+

represent max{x, 0}. The notation [α]K×K represents aK×K matrix whose (i, j)–th element

is αi,j (or αij if no ambiguity arises). The cardinality of a set S is denoted as |S|. For real

functions f(x) and g(x), denote f(x) = O(g(x)) if lim supx→∞
f(x)
g(x)

= c for some constant

c > 0, f(x) = o(g(x)) if lim supx→∞
f(x)
g(x)

= 0, and f(x) = Θ(g(x)) if f(x) = O(g(x)) and

g(x) = O(f(x)). For random variables X, Y , Z and a set of random variables G, define

HG(X|Y ) = H(X|Y,G) and IG(X;Y |Z) = I(X;Y |Z,G). R is all real numbers. R+ is all

non-negative real numbers. Fq is the finite field of order q. All logarithms are to the base 2

unless otherwise specified. Table 1.1 lists the abbreviations used in this dissertation.
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Table 1.1: Abbreviations used in this dissertation.

DoF Degrees of Freedom
GDoF Generalized Degrees of Freedom
SNR Signal-to-Noise Ratio
SINR Signal-to-Interference-and-Noise Ratio
CSIT Channel State Information at Transmitters
MISO Multiple-Input Single-Output
IC Interference Channel
BC Broadcast Channel
MAC Multiple Access Channel
AI Aligned Image
TIN Treating Interference as Noise
CTIN Convex Treating Interference as Noise
STIN Secure Treating Interference as Noise
SLS Simple Layered Superposition
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Chapter 2

Extremal Gain of Transmitter

Cooperation Over TIN

2.1 Capacity Characterization with Practical Concerns

New tools are inspired along with the recent progress in characterizing network capacity

under the Degrees of Freedom (DoF) or the Generalized Degress of Freedom (GDoF) frame-

work. New schemes, such as those inspired by the idea of interference alignment, are brought

forward to achieve optimality under the idealized assumption of perfect channel knowledge.

New outer bounds, such as those based on the Aligned Image principles, are successfully ap-

plied under the robust assumption of channel knowledge. Given the new achievable schemes

and the new outer bounds, a worthy goal is to bring the theory closer to practice by adapt-

ing the models and metric to increasingly incorporate practical consideration. As a step in

this direction, in this chapter into the study of network capacity we include three practical

concerns — robustness, simplicity, and scalability.
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2.1.1 Robustness in Channel Knowledge

By robustness we refer specifically to the channel state information at the transmitters

(CSIT). GDoF characterizations under perfect CSIT provide important theoretical bench-

marks, but often lead to fragile schemes such as asymptotic [10] or real interference align-

ment [11] whose benefits are outweighed in practice by the potential for drastic failures due

to imperfections in channel knowledge. Robustness to channel uncertainty is addressed by

GDoF characterizations that limit the CSIT to finite1 precision [17]. Optimal schemes for

such GDoF characterizations tend to be naturally robust schemes that require only a coarse

knowledge of channel strength2 parameters αij at the transmitters. Aided by advances in

Aligned Images (AI) bounds [20], GDoF characterizations under finite precision CSIT have

been found for a variety of wireless networks in [23,25,31–33].

2.1.2 Simplicity in Achievable Schemes

The importance of simplicity is reflected in the goal of identifying parameter regimes where

simple schemes are optimal in the GDoF sense [34–47]. The most relevant examples for our

purpose are [34], [35] and [36]. Reference [34] identifies3 a weak interference regime, called

the TIN-regime (Definition 2.1), where the simple scheme of power control and treating

interference as Gaussian noise (in short, TIN4) is GDoF optimal for the K user interference

channel (IC). A broader regime, called CTIN regime (Definition 2.2, the ‘C’ signifies ‘convex’)

is identified by Yi and Caire in [35] where, quite remarkably, the GDoF region achievable

by TIN is shown to be convex without the need for time-sharing. It is not known whether

TIN is GDoF optimal in this regime. Reference [36] identifies an even broader regime,

1In this chapter by default the term GDoF will refer to GDoF under finite precision CSIT.
2αij represents the channel strength from the jth transmitter to the ith receiver, and is measured in the

db scale.
3While originally established under the assumption of perfect CSIT, the robustness of the TIN scheme

ensures that this result carries over to finite precision CSIT.
4Note that TIN also includes optimal power control.
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called the SLS-regime (Definition 2.3), where a simple layered superposition (SLS) scheme is

GDoF optimal for the corresponding K user multiple-input single-output (MISO) broadcast

channel (BC) under finite precision CSIT, but only for K ≤ 3. Optimality of SLS for larger

networks seems plausible, but a rapid growth in the number of parameters stands in the way

of any such effort. Comparisons between the GDoF characterizations for interference and

broadcast channels in these regimes are of interest because they shed light on the benefits of

transmitter cooperation over TIN. However, based on existing results, our ability to make

direct comparisons is limited to very small networks. This brings us to the third practical

concern, scalability.

2.1.3 Scalablity in Analysis

Wireless networks often involve a large number of users. Studies of large networks have

to deal with an explosion in the number of parameters. One way to limit the number of

parameters is to study symmetric settings. For example, consider the symmetric setting

obtained by setting αij = 1 if i = j and αij = α if i ̸= j, for all i, j ∈ [K]. Under

finite precision CSIT, GDoF are characterized for the symmetric K user interference channel

in [25], and for the symmetric K user MISO BC in [31]. Based on the symmetric settings,

sum-GDoF gain of the symmetric K user MISO BC over the symmetric K user IC is at most

a factor of 3/2 for all values of α ∈ [0, 1]. Furthermore, the TIN scheme can only achieve

max(1, K(1 − α)) GDoF [34] while the K user MISO BC has α + K(1 − α) GDoF [31].

Therefore, transmitter cooperation can provide an improvement over TIN by a factor of at

most 3/2 in the TIN-regime and the CTIN regime (both correspond to α ≤ 1/2), and a

factor of at most 2 in the SLS-regime (α ≤ 1). Evidently the benefits of optimal transmitter

cooperation over a simple scheme like TIN, are bounded for large K in both regimes.

But is this also true for asymmetric settings? To answer such questions, we need to venture
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beyond symmetric settings, and yet somehow avoid the curse of dimensionality. Other fields

that face similar challenges, such as graph theory and set theory, find a path to progress

through extremal analysis, i.e., the study of extremal graphs or extremal sets that satisfy

various properties of interest. It stands to reason that a path to progress for wireless networks

may be found in extremal network theory, i.e., the study of extremal networks. This is the

main idea that we wish to explore in this chapter. Our interest in the benefits of transmitter

cooperation provides us a context within which we can test the feasibility of the study of

extremal networks.

2.2 Problem Statement and Contributions

We are interested specifically in the benefits of transmitter cooperation under weak interfer-

ence over the simple baseline of TIN. The question is intriguing because on the one hand,

we expect TIN to be a powerful scheme in weak interference regimes, but on the other hand

full cooperation among all transmitters can also be quite powerful. Appealing to extremal

network theory, we study the ratio,

ηK = sup
[α]K×K∈A

DΣ,BC

DΣ,TINA

, (2.1)

where DΣ,TINA is the supremum (maximum, if it exists) of the sum-GDoF values achievable

by power control and TIN in a K user IC. This is the baseline for comparison. DΣ,BC is

the optimal sum-GDoF of the corresponding K user MISO BC obtained by full transmitter

cooperation. The study of ηK is consistent with extremal network theory because of the

maximization over [α]K×K . Networks that maximize the ratio in (2.1) are extremal networks

within the class of networks specified by the regime of interest, A. The three regimes that

we consider are, the TIN-regime, ATIN, the CTIN-regime, ACTIN, and the SLS-regime, ASLS.

No assumption of symmetry is made within these regimes.
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We characterize the extremal GDoF gain, ηK , from transmitter cooperation over TIN for the

TIN-, CTIN- and SLS-regime. For the CTIN and TIN regimes, we show that ηK = Θ(1),

i.e., it is bounded by a constant regardless of the number of users, K. In fact ηK = 3/2

in the TIN regime (Theorem 2.1), and ηK = 2 − 1/K in the CTIN regime (Theorem 2.2),

for arbitrary number of users K > 1. The bounded gain is consistent with and generalizes

the insight obtained from the GDoF characterizations of symmetric IC and BC in [25, 31].

For the SLS regime, we show that, ηK = Θ(log2(K)), i.e., the extremal GDoF gain of

transmitter cooperation over TIN grows logarithmically with the number of users (Theorem

2.3) for large networks. This is in contrast with the insights from the symmetric case where

the improvement is at most by a factor of 2. The constructive proof of this result reveals a

hierarchical topology (Section 2.7.2) that benefits greatly from transmitter cooperation. It

is also remarkable that the SLS scheme suffices to achieve the logarithmic extremal GDoF

gain from transmitter cooperation over TIN. As a byproduct of our analysis we discover

(Theorem A.1) an important cyclic partition property of a TIN achievable region known as

polyhedral TIN [34] (Definition 2.8) that holds everywhere in the SLS-regime.

2.2.1 Significance of Extremal Analysis

To understand the significance of these results, and of extremal network theory in general,

it is important to be clear about what extremal results represent. As a visual aid, consider

Figure 2.1 where an arbitrary function is shown in black, whose rich variations make it

difficult to characterize it exactly for all parameter values, and contrast it with the simpler

description shown in red which bounds the range of the function in different regimes of

interest by its corresponding extremal values. The simplicity of the extremal characterization

makes it a compelling alternative to the complexity of the complete characterization. This

is also the case with GDoF characterizations for large networks, where a central challenge is

the overwhelming richness of the parameter space. We similarly propose extremal network
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Figure 2.1: A conceptual depiction of a function over a rich parameter space and its simplified
representation through extremal values over various regimes of interest.

analysis as a solution to this challenge.

However, in using extremal results, it is important to remember that extremal values repre-

sent the potential within each regime, and not necessarily the typical or average behavior.

Here, let us consider two possibilities. Suppose extremal analysis shows that the potential

is small, e.g., in the TIN and CTIN regimes we find that cooperation can provide at most

a constant factor gain in GDoF for arbitrarily large networks, i.e., the multiplicative gain

from cooperation does not scale with K. In fact, the constant is quite small, 1.5 for TIN

and at most 2 for CTIN. At this point, one might reasonably conclude that the gain is too

small to be be worthwhile for further studying this class of channels. Thus, small extremal

values bring a measure of closure to the corresponding parameter regimes. On the other

hand, surprisingly large extremal values identify regimes that merit further study. By the

elephant-matchbox doctrine (elephants cannot hide in matchboxes) these are the regimes

where important ideas may be discovered. It is also important to identify the extremal

networks that may be studied carefully to isolate these ideas.

Last but not the least, extremal features are interesting by definition, in the same way

that the speed of light, the blue whale, and Mount Everest are interesting. So whether it

is intellectual curiosity, or the potential for the discovery of big ideas, or the need for a

coarse understanding of overwhelmingly rich parameter spaces, the take home message of

this chapter is that the study of extremal networks presents a promising way forward.
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2.3 System Model

For GDoF studies, the K user interference channel is modeled as [20,25]

Yk(t) =
K∑
i=1

P̄αkiGki(t)Xi(t) + Zk(t), ∀k ∈ [K]. (2.2)

During the tth channel use, Xi(t), Yk(t), Zk(t) ∈ C are, respectively, the symbol transmitted

by Transmitter i subject to a normalized unit transmit power constraint, the symbol received

by User k, and the zero mean unit variance additive white Gaussian noise (AWGN) at User

k. P̄ ≜
√
P , is a nominal parameter that approaches infinity to define the GDoF limit

(see Section 2.3.2). The exponent αki ≥ 0 is referred to as the channel strength of the

link between Transmitter i and Receiver k, and is known to all transmitters and receivers.

The channel coefficients Gki(t) are known perfectly to the receivers but only available to

finite precision at the transmitters. The finite precision CSIT assumption implies that from

the transmitter’s perspective, the joint and conditional probability density functions of the

channel coefficients exist and the peak values of these distributions are bounded, i.e., they

do not grow with P (see [20] for further description of the bounded density assumption).

Note that the transmitters know the distributions but not the actual realizations of Gki(t),

therefore the transmitted symbols Xi(t) are independent of the realizations of Gki(t). In

the K user IC, there are K independent messages, one for each user, and each message is

independently encoded by its corresponding transmitter. The definitions of achievable rate

tuples and capacity region, CIC(P ) are standard, see e.g., [20]. The GDoF region of the K

user interference channel is defined as

DIC =

{
(dk)k∈[K]

∣∣∣∣dk = lim
P→∞

Rk(P )

log(P )
, (Rk(P ))k∈[K] ∈ CIC(P )

}
. (2.3)

The maximum sum-GDoF value is denoted DΣ,IC.
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Allowing full cooperation among the transmitters changes the problem into a K user MISO

BC, where the K messages are jointly encoded by all K transmitters. The GDoF region for

the MISO BC is denoted DBC and the maximum sum-GDoF value is denoted DΣ,BC.

2.3.1 Deterministic Model

As shown in [20] the GDoF of the channel model in (2.2) are bounded above by the GDoF

of the corresponding deterministic model with inputs X̄k(t) and outputs Ȳk(t), defined as

Ȳk(t) =
K∑
i=1

⌊
P̄αki−αmax,iGki(t)X̄i(t)

⌋
, (2.4)

where X̄i(t) = X̄R
i (t) + jX̄I

i (t) with X̄R
i (t), X̄

I
i (t) ∈ {0, 1, 2, · · · , ⌈P̄αmax,i⌉}, and αmax,i =

maxj∈[K] αji. For all the parameter regimes considered in this chapter, αmax,i = αii. The

assumptions regarding channel coefficients Gki(t), channel knowledge at transmitters and

receivers, and definitions of messages, codebooks, achievable rates, and GDoF are the same

as before. Let us also recall a very useful bound for our current purpose, a special case of

Lemma 1 in [25].

Lemma 2.1 (Lemma 1 in [25]).

H

( K∑
i=1

⌊P̄ λi−αmax,iGki(t)X̄i(t)⌋

)[1:T ]
∣∣∣∣∣∣G,WS


−H

( K∑
i=1

⌊P̄ νi−αmax,iGk′i(t)X̄i(t)⌋

)[1:T ]
∣∣∣∣∣∣G,WS


≤ max

i∈[K]
(λi − νi)

+T log(P ) + T o(log(P )), (2.5)

where H(Z) is the entropy of Z, the notation (A(t))[1:T ] stands for (A(1), A(2), · · · , A(T )), G

is a random vector containing the values of all channel coefficients Gki(t), Gk′i(t) for k, k
′, i ∈
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[K], t ∈ [1 : T ], the constants λi, νi are arbitrary values between 0 and αmax,i, the set S ⊂

[K] is an arbitrary (possibly empty) subset of users, say S = {i1, i2, · · · , iM}, and WS =

(Wi1 ,Wi2 , · · · ,WiM ) is comprised of the corresponding users’ desired messages.

The significance of Lemma 2.1 may be intuitively understood as follows. Suppose there

are K transmitters, transmitting symbols X̄i(t), i ∈ [K], independent of the realizations

of the bounded density channel coefficients Gki(t), Gk′i(t), for all i, k, k′ ∈ [K], t ∈ [1 : T ],

and the transmitted symbols X̄i(t) can be heard at two receivers, k and k′ with power

levels up to λi and νi respectively. Then the maximum difference of entropies in the GDoF

sense, that can exist between the signals received at the two receivers is no more than the

maximum of the difference of the corresponding values of λi and νi (or zero if the maximum

difference is negative). In other words, the greatest difference in the GDoF sense that

can be created between the entropies of received signals at two receivers can be achieved

by simply transmitting from only one antenna, which is the antenna that experiences the

largest difference of channel strengths between the two receivers. Remarkably, Lemma 2.1

holds for both interference and broadcast settings, i.e., the symbols X̄i may be independent

across i ∈ [K] as in the IC, or dependent as in the BC.

It will be convenient to introduce a more compact notation for Lemma 2.1. Let us define,

Hg([λ1, λ2, · · · , λK ] | WS) ≜ H

( K∑
i=1

⌊P̄ λi−αmax,iGki(t)X̄i(t)⌋

)[1:T ]
∣∣∣∣∣∣G,WS

 . (2.6)

Using this compact notation and ignoring o(log(P )) terms that are inconsequential for GDoF,

the statement of Lemma 2.1 becomes

Hg([λ1, λ2, · · · , λK ] | WS)−Hg([ν1, ν2, · · · , νK ] | WS)

≤ max(λ1 − ν1, λ2 − ν2, · · · , λK − νK)
+T log(P ). (2.7)
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Note that the bounded density channel coefficients that appear in the two entropy terms in

Lemma 2.1, Gki and Gk′i may be different, however the WS that appears in the conditioning

in both entropy terms must be the same. When Lemma 2.1 is applied in the context of

interference channels, the conditioning on a subset of messages allows the corresponding

codeword symbols X̄i, i ∈ S to be eliminated from the received signal, essentially by setting

the corresponding λi, νi values to 0, after which the conditioning on WS can be dropped

because the remaining X̄i are independent of WS. Once the conditioning on WS is dropped,

any two entropy terms may be compared and their difference bounded by Lemma 2.1. For

example, in the interference channel context,

Hg([λ1, λ2, λ3] | W2)−Hg([ν1, ν2, ν3] | W3) = Hg([λ1, 0, λ3])−Hg([ν1, ν2, 0]) (2.8)

≤ max(λ1 − ν1,−ν2, λ3)
+T log(P ). (2.9)

However, when Lemma 2.1 is applied in the context of broadcast channels, the conditioning

on WS cannot be dropped because all X̄i may depend on all messages. In that case, only

entropy terms conditioned on the same set of messages may be compared through Lemma

2.1. This is the main difference in how Lemma 2.1 may be applied to interference and

broadcast channels.

2.3.2 Significance of GDoF

The GDoF model is essentially a generalization of the deterministic model of [8]. The

significance of the GDoF model may be intuitively understood as follows. The channel

strength parameters represent the arbitrary and finite values of corresponding link SNRs

and INRs in dB scale for a given network setting, i.e., αii = log(SNRii) and αij = log(INRij)

(see, for example [34] for a more detailed explanation). Note that αii and αij may also be

understood to be the approximate capacities of the corresponding links in isolation. Unlike

16



the DoF metric which proportionately scales all the transmit powers, the GDoF model

proportionately scales all the link capacities. The exponential scaling of powers in the GDoF

model corresponds to a linear scaling of all of the corresponding link capacities by the same

factor, and this factor is log(P ) (note that the isolated link with signal strength Pαij has

capacity ≈ αij log(P ), thus the scaling factor is log(P )). The linear scaling of powers in the

DoF model causes the ratios of capacities of any two non-zero links to approach 1 as P → ∞.

Thus, a very weak channel and a very strong channel become essentially equally strong in the

DoF limit, thereby fundamentally changing the character of the original network of interest.

The GDoF model on the other hand keeps the ratios of all capacities unchanged as P → ∞,

so that strong channels remain strong, and weak channels remain weak. The intuition behind

GDoF is that if the capacities of all the individual links in a network are scaled by the same

factor, then the overall network capacity region should scale by approximately the same factor

as well — essentially a principle of scale invariance.5 If so, then normalizing by the scaling

factor log(P ) should produce an approximation to the capacity region of the original finite

SNR network setting. This is precisely how GDoF are measured, note the normalization by

log(P ) in (2.3). Indeed, the validity of this intuition is borne out by numerous bounded-gap

capacity approximations that have been enabled by GDoF characterizations (e.g., [48–52]),

starting with the original result – the capacity characterization of the two user interference

channel within a 1 bit gap in [7].

5While the scaling of P may be interpreted as a physical scaling of transmit powers in the DoF metric
(which unfortunately changes the character of the given network), P does not have the same interpretation
of physical transmit power in GDoF. Instead, in the GDoF setting, P is just a nominal parameter, such that
each value of P identifies a new network according to (2.2). These distinct networks are lumped together
by the GDoF metric based on the intuition that comes from the principle of scale invariance, i.e., when
normalized by log(P ) all of these networks should have approximately the same capacity region (see also the
discussion in [47]).
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2.3.3 Significance of Finite-Precision CSIT

Asymptotic analysis under perfect CSIT often leads to fragile schemes that are difficult to

translate into practice, for example the DoF of the K user interference channel have been

shown in [11,53] to depend on whether the channels take rational or irrational values – a dis-

tinction of no practical significance. Zero forcing schemes that rely on precise channel phase

knowledge to cancel signals can fail catastrophically due to relatively small phase perturba-

tions. Robust schemes are much more valuable in practice. Restricting the CSIT to finite

precision naturally shifts the focus to robust schemes that rely primarily on a coarse knowl-

edge of channel strengths at the transmitters. While the finite precision CSIT model [17,20]

allows arbitrary fading distributions subject to bounded densities, it is instructive to con-

sider in particular the model Gki(t) = gRki(t)+ jgIki(t) where g
R
ki(t), g

I
ki(t) are independent and

uniformly distributed over (1− ϵ, 1+ ϵ) for some arbitrarily small but positive ϵ. Interpreted

this way, Gki(t) are seen as arbitrarily small perturbations in the channel state that serve

primarily to limit CSIT in the channel model to ϵ-precision, while the coarse knowledge of

channel strengths remains available to the transmitters in the form of the parameters αij.

From a GDoF perspective, these perturbations filter out fragile schemes that rely on highly

precise CSIT. Indeed, the GDoF benefits of most sophisticated interference alignment and

zero forcing schemes disappear under finite precision CSIT [20]. However, the benefits of ro-

bust schemes that rely only on the knowledge of channel strengths, such as rate-splitting [54],

elevated multiplexing [55], layered superposition coding [8, 56], and treating interference as

noise [34, 57–59] remain accessible. Thus, GDoF characterizations under finite precision

CSIT provide approximately optimal solutions for power control, rate-splitting, layered su-

perposition based schemes that are quite robust in practice. The approximately optimal

solutions serve as good initialization points for finer numerical optimizations needed at finite

SNR, and inspire approximately optimal resource allocation schemes such as ITLinQ [60]

and ITLinQ+ [61]. As such GDoF characterizations under finite precision CSIT are tremen-
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Figure 2.2: The GDoF region of the 3 user interference channel in red is superimposed upon
the GDoF region of the same channel with transmitter cooperation in blue. A 20% GDoF
gain is seen due to transmitter cooperation for this example.

dously useful in bringing theory closer to practice.

2.3.4 GDoF Comparisons

Comparing the GDoF of interference and broadcast channels under finite precision CSIT re-

veals the benefits of transmitter cooperation. As an example, consider the 3 user interference

channel with the values of αij parameters as shown in Fig. 2.2. The channel parameters

place this setting in the TIN regime [34], so its GDoF region is achieved by a TIN scheme.

The GDoF region is shown in red in Fig. 2.2. Allowing transmitter cooperation under finite
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precision CSIT gives us a MISO BC. Since the TIN regime is included in the SLS regime, the

GDoF of this MISO BC are characterized in [36]. The GDoF region is shown in blue in Fig.

2.2. Superposing the two GDoF regions we notice a significant improvement in sum-GDoF

due to transmitter cooperation – 20% for this example. We would like to perform such

comparisons for larger networks, i.e., networks with more than 3 users. However, since the

results of [36] are limited to 3 users, direct comparisons are not currently feasible. Instead we

will explore extremal GDoF gains for large number of users. Furthermore we will limit our

focus to sum-GDoF achievable by TIN and the optimal GDoF with transmitter cooperation.

2.4 Definitions

Definition 2.1 (TIN Regime). Define

ATIN =
{
[α]K×K ∈ RK×K

+

∣∣αii ≥ αil + αmi ∀i, l,m ∈ [K], i /∈ {l,m}
}
. (2.10)

The significance of the TIN regime is that in this regime, it was shown by Geng et al. in [34]

that TIN is GDoF-optimal.

Definition 2.2 (CTIN Regime). Define

ACTIN =

[α]K×K ∈ RK×K
+

∣∣∣∣∣∣∣
αii ≥ max(αij + αji, αik + αji − αjk),

∀i, j, k ∈ [K], i /∈ {j, k}

 . (2.11)

The significance of the CTIN regime is that in this regime, it was shown by Yi and Caire

in [35] that the GDoF region achievable with TIN (also known as DTINA, see Definition 2.10),

is convex, without the need for time-sharing, and equal to the polyhedral TIN region over

the set of all K users (see Definition 2.8). It is also shown in [62, Theorem 1] that TIN
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Figure 2.3: For the 3 user symmetric setting shown here, the TIN regime is marked by the
slanted line pattern, the CTIN regime includes the TIN regime and the region shaded in
dark gray, and the SLS regime includes the CTIN regime and the region shaded in light
gray.

achieves the optimal GDoF region in the CTIN regime for the K user interference channel

under finite precision CSIT.

Definition 2.3 (SLS Regime). Define the SLS regime,

ASLS =
{
[α]K×K ∈ RK×K

+

∣∣αii ≥ max(αij, αki, αik + αji − αjk), ∀i, j, k ∈ [K], i /∈ {j, k}
}
.

(2.12)

The significance of the SLS regime is that in this regime, it was shown by Davoodi and

Jafar in [36] that a simple layered superposition scheme is GDoF-optimal for the MISO BC

obtained by allowing transmitter cooperation in a K user interference channel. Note that

the result of [36] is limited to K ≤ 3, however the regime is defined for all K. Also note

that the SLS regime includes the CTIN regime, which includes the TIN regime. Fig 2.3

illustrates the progressively larger regimes for TIN, CTIN and SLS in a 3 user cyclically

symmetric setting parameterized by channel strengths a, b.

Definition 2.4 (Cycle π). A cycle π of length M > 1 denoted as

π = (i1 → i2 → · · · → iM ) (2.13)
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Figure 2.4: The links included in the cycle π = (2 → 4 → 1 → 3 ) are highlighted in red.

is an ordered collection of links in the K ×K interference network, that includes the desired

link between Transmitter im and Receiver im, and the interfering link between Transmit-

ter im and Receiver im+1, for all m ∈ [1 : M ], where we set iM+1 = i1, and the indices

i1, i2, · · · , iM ∈ [K] are all distinct. See Fig. 2.4 for an example. A cycle of length M = 1

is called a trivial cycle, represented simply as π = (i1 ) for some i1 ∈ [K], and it includes

only the desired link between Transmitter i1 and Receiver i1.

Also define the following terms related to the cycle π.

1. Define π(1) = i1 as the head of the cycle. Other elements of the cycle may be similarly

referenced, e.g., π(2) = i2, π(3) = i3, and so on. Thus, the cycle may be equivalently

represented as π = (π(1) → π(2) → · · · → π(M) ). Also note that if the cycle has

length M , then the indices are interpreted modulo M , i.e., π(M + i) = π(i) for all

integers i. For example, if π is a cycle of length M = 5, then π(6) = π(1), π(7) = π(2),

etc.

2. Define {π} = {i1, i2, · · · , iM}, i.e., {π} represents the set of users involved in the cycle

π.

3. Define w(π), called the weight of the cycle π, as the sum of strengths of all interfering

links included in the cycle, i.e., w(π) =
∑M

m=1 αim+1im. The weight of a trivial cycle is
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zero because it includes no interfering links.

4. Define Π as the set of all cycles in the K user network.

5. Cycles π1, π2, · · · , πn are said to be disjoint if the sets {π1}, {π2}, · · · , {πn} are disjoint.

6. Cycles π1, π2, · · · , πn are said to comprise a cyclic partition of the set S ⊂ [K], if they

are disjoint and
⋃n

i=1{πi} = S.

The significance of cycles is that they lead to bounds on the sum-GDoF of the users involved

in the cycle. For the interference channel, each cycle π leads to a cycle bound
∑

k∈π dk ≤ ∆π

(see Definition 2.7) which is a bound on the GDoF region achievable by a restricted form

of TIN, called polyhedral TIN (Definition 2.8). For the broadcast channel, each cycle π

leads to a bound
∑

k∈π dk ≤ ∆π + απ(i+1)π(i) (see Lemma A.6 in Section A.2.4). Unlike the

interference channel, the bounds for the BC are information theoretic bounds on the optimal

GDoF region. These bounds are the key to all the results in this chapter.

Definition 2.5 (Combined Cycles). For disjoint cycles

π1 = (i1 → · · · → iM1 ), (2.14)

π2 = (j1 → · · · → jM2 ), (2.15)

the combined cycle, denoted π1,2 = (π1 → π2 ), is defined as

π1,2 = (π1 → π2 ) = (i1 → · · · → iM1 → j1 → · · · → jM2 ). (2.16)

Note that π1,2 is in general different from π2,1. Combinations of more than 2 cycles are

similarly defined. For example, π1,2,3 = (π1 → π2 → π3 ).
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Definition 2.6 (δij). For i, j ∈ [K], define

δij =

 αii − αji, i ̸= j,

0, i = j.
(2.17)

Definition 2.7 (∆π). For any cycle π of length M , π = (i1 → i2 → · · · → iM ), define

∆π =

 δi1i2 + δi2i3 + · · ·+ δiM−1iM + δiM i1 , if M > 1,

αi1i1 , if M = 1.
(2.18)

Definition 2.8 (DP-TIN(S)). For any subset of users, S ⊂ [K], the polyhedral-TIN region [34]

is defined as

DP-TIN(S) =

(dk : k ∈ [K])

∣∣∣∣∣∣∣∣∣∣
0 = dk, ∀k ∈ [K]\S,

0 ≤ dk, ∀k ∈ S,∑
k∈{π} dk ≤ ∆π, ∀π ∈ Π, {π} ⊂ S

 . (2.19)

The bounds,
∑

k∈{π} dk ≤ ∆π, are called cycle-bounds. Note that these are not bounds on the

general GDoF region, rather these are only bounds on the polyhedral TIN region for a given

subset S. The sum-GDoF value of polyhedral-TIN over the set S is defined as

DΣ,P-TIN(S) = max
DP-TIN(S)

∑
k∈S

dk. (2.20)

If S = [K], then we will simply write DΣ,P-TIN([K]) = DΣ,P-TIN.

A remarkable fact about the polyhedral TIN region is that even if S1 ⊂ S2, it is possible

that the polyhedral region for S1 is strictly larger than the polyhedral region for S2. See the

simple example at the end of this section.

Definition 2.9 (P-optimal Cyclic Partition of S). A cyclic partition of a subset of users S,
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S ⊂ [K], say into the n disjoint cycles π1, π2, · · · , πn, is said to be p-optimal if

DΣ,P-TIN(S) = ∆π1 +∆π2 + · · ·+∆πn . (2.21)

In general a p-optimal cyclic partition does not exist. Reference [37] showed that such

partitions exist in the TIN regime. As one of the key elements of this chapter, it is shown

in Theorem A.1 in Appendix A.1, that such partitions must exist in the SLS regime. Since

CTIN and TIN regimes are all included in the SLS regime, these cyclic partitions exist in

all three regimes.

Definition 2.10 (DTINA). The TINA region [34,35] is defined as

DTINA =
⋃

S:S⊂[K]

DP-TIN(S). (2.22)

The sum-GDoF over the TINA region are defined as

DΣ,TINA = max
DTINA

∑
k∈[K]

dk. (2.23)

Thus the TINA region is a union of polyhedral TIN regions. In general this union does not

produce a convex region. For example, consider the two user interference channel shown in

Fig. 2.5 where all αij values are equal to 1. Incidentally this channel is in the SLS regime.

For this channel, DP-TIN({1}) = {(d1, d2) : 0 ≤ d1 ≤ 1, d2 = 0},DP-TIN({2}) = {(d1, d2) : d1 =

0, 0 ≤ d2 ≤ 1},DP-TIN({1, 2}) = {(d1, d2) : 0 ≤ d1 + d2 ≤ 0} = {(d1, d2) : d1 = 0, d2 = 0}.

The union of these three regions, DΣ,TINA = DP-TIN({1})
⋃
DP-TIN({2})

⋃
DP-TIN({1, 2}), is not

convex. However, remarkably, the region DTINA is convex for channels in the TIN regime as

shown by Geng et al. in [34], and for channels in the CTIN regime as shown by Yi and Caire

in [35].

25



1

1

1
1

X1

X2

Y1

Y2 DP-TIN({1, 2})
d11

d2

1

DP-TIN({1})

DP-TIN({2})

Figure 2.5: A two user interference channel in the SLS regime and its non-convex TINA
region corresponding to the union of three polyhedral TIN regions shown in green, blue and
red.

2.5 Extremal Gain from Transmitter Cooperation in

TIN Regime

First, let us compare the sum GDoFs when the topology falls in the TIN regime. Note that

K = 1 is a degenerate case because there can be no cooperation among transmitters when

there is only one transmitter.

Theorem 2.1. For K ≥ 2 users,

max
[α]K×K∈ATIN

DΣ,BC

DΣ,IC

= max
[α]K×K∈ATIN

DΣ,BC

DΣ,TINA

=
3

2
. (2.24)

2.5.1 Proof of Theorem 2.1: Upper Bound

In the TIN regime, the GDoF of the K user interference channel are achieved by TIN as

shown in [34], so DΣ,IC = DΣ,TINA. First, let us prove the upper bound, i.e., in the TIN-

regime, DΣ,BC ≤ 1.5DΣ,IC. Let π = (i1 → i2 · · · → iM ) be any cycle of length M > 1,

and consider the corresponding IC cycle bound, which is an information theoretic bound on

DΣ,IC({π}), i.e., the sum-GDoF of the IC restricted to just the users that are involved in the
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cycle,

DΣ,IC({π}) ≤ δi1i2 + δi2i3 + · · ·+ δiM−1iM + δiM i1 = ∆π. (2.25)

Note that ∆π ≥ αi1i1 because αi1i1 GDoF are trivially achievable by simply allowing only

user i1 to transmit. For the same M users, by Lemma A.6 in Appendix A.2 the sum-GDoF

in the BC are bounded in two ways as,

DΣ,BC({π}) ≤ δi1i2 + δi2i3 + · · ·+ δiM−1iM + δiM i1 + αi1iM = ∆π + αi1iM , (2.26)

DΣ,BC({π}) ≤ δi1i2 + δi2i3 + · · ·+ δiM−1iM + δiM i1 + αi2i1 = ∆π + αi2i1 , (2.27)

=⇒ 2DΣ,BC({π}) ≤ 2∆π + αi2i1 + αi1iM ≤ 2∆π + αi1i1 ≤ 3∆π. (2.28)

In (2.28) we made use of the fact that in the TIN-regime, αi2i1 + αi1iM ≤ αi1i1 ≤ ∆π. Also

for a trivial cycle, π, of length M = 1, say comprised of only user m, we have DΣ,IC({π}) =

DΣ,BC({π}) = αmm = ∆π, so here also DΣ,BC({π}) ≤ 1.5∆π. Therefore for every cycle π

we have DΣ,BC({π}) ≤ 1.5∆π. Now, let us consider the total GDoF of all K users. Since

[α]K×K ∈ ATIN, from [37] we know that DΣ,IC is given by a cycle partition, comprised of, say

the N cycles π1, π2, · · · , πN . Note that the cycles are disjoint and
⋃n

i=1{πi} = [K].

DΣ,IC =
N∑

n=1

∆πn , (2.29)

DΣ,BC ≤
N∑

n=1

DΣ,BC({πn}) ≤
N∑

n=1

1.5∆πn = 1.5DΣ,IC. (2.30)

This completes the proof of the upper bound for Theorem 2.1. □
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2.5.2 Proof of Theorem 2.1: Lower Bound

Next, let us prove the lower bound for Theorem 2.1, i.e., for any K ≥ 2, there exist [α]K×K ∈

ATIN, such that DΣ,BC ≥ 1.5DΣ,IC. For K = 2 users consider the channel with α11 = α22 =

1, α12 = α21 = 0.5, for which DΣ,IC = 1 according to [34] but DΣ,BC = 1.5 according to [63].

For K ≥ 3 it is trivial to generate such [α]K×K ∈ ATIN simply by adding trivial users

k ∈ [3 : K] such that all αij (including the desired links αii) associated with these additional

users are zero, i.e., αij = 0 for i or j is in [3 : K]. The resulting network is still in ATIN. This

completes the proof of Theorem 2.1. □

2.6 Extremal Gain from Transmitter Cooperation in

CTIN Regime

Theorem 2.2. For arbitrary number of users, K,

max
[α]K×K∈ACTIN

DΣ,BC

DΣ,TINA

= max
[α]K×K∈ACTIN

DΣ,BC

DΣ,IC

= 2− 1

K
. (2.31)

Thus, the extremal GDoF gain is always less than 2 in the CTIN regime, regardless of the

number of users.

2.6.1 Proof of Theorem 2.2: Upper Bound

From Theorem 1 in [62] we already know that DΣ,TINA = DΣ,IC. Now let us prove the upper

bound for Theorem 2.2, i.e., DΣ,BC/DΣ,IC ≤ 2− 1/K in the CTIN regime. For any cycle π of
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length M , define

αmax(π) = max
m∈[M ]

απ(m)π(m), (2.32)

αmin(π) =

 minm∈[M ] απ(m+1)π(m), M > 1,

0, M = 1.
(2.33)

In the CTIN regime, DΣ,P-TIN({π}) ≤ ∆π, and as shown by [35], DΣ,P-TIN({π}) ≥ DΣ,P-TIN({π(m)}) =

απ(m)π(m) for all m ∈ [M ]. Therefore,

∆π ≥ αmax(π). (2.34)

From Definition 2.7,

∆π =
∑

m∈[M ]

απ(m)π(m) − απ(m+1)π(m) (2.35)

≤ Mαmax(π)−Mαmin(π). (2.36)

From Lemma A.6,

DΣ,BC({π}) ≤ ∆π + αmin(π) (2.37)

= ∆π

(
1 +

αmin(π)

∆π

)
(2.38)

≤ ∆π

(
1 +

αmax(π)

∆π

− 1

M

)
(2.39)

≤ ∆π

(
2− 1

M

)
. (2.40)

To obtain (2.39) we used (2.36), and to obtain (2.40) we used (2.34).

Now let π1, π2, · · · , πN be a p-optimal cyclic partition of [K] into N cycles of lengths
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M1,M2, · · · ,MN , respectively. Then we have

DΣ,BC ≤
N∑

n=1

DΣ,BC({πn}) (2.41)

≤
N∑

n=1

∆πn

(
2− 1

Mn

)
(2.42)

≤
N∑

n=1

∆πn

(
2− 1

K

)
(2.43)

= DΣ,IC

(
2− 1

K

)
. (2.44)

(2.42) was obtained by using (2.40), and (2.43) follows because any cycle involves at most

K users, Mn ≤ K. Finally, (2.44) follows because π1, · · · , πN represent the p-optimal cyclic

partition, so DΣ,P-TIN([K]) =
∑N

n=1∆πn , and because we are in the CTIN regime, according

to [35], DΣ,P-TIN([K]) = DΣ,TINA which is equal to DΣ,IC according to [62, Theorem 1]. This

proves the upper bound, i.e., DΣ,BC/DΣ,TINA = DΣ,BC/DΣ,IC ≤ 2−1/K for all [α]K×K ∈ ACTIN.

□

2.6.2 Proof of Theorem 2.2: Lower Bound

Next let us prove the lower bound for Theorem 2.2, i.e., there exists [α]K×K ∈ ACTIN such

that DΣ,BC/DΣ,IC ≥ 2−1/K. Let us define channel strength parameters as follows. αij takes

the value K if i = j, and αij takes the value in [1 : K − 1] that is equivalent to (j − i)
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mod K when i ̸= j. The channel strength parameter matrix can be written explicitly as,

[α]K×K =



K 1 2 3 · · · K − 2 K − 1

K − 1 K 1 2 · · · K − 3 K − 2

K − 2 K − 1 K 1 · · · K − 4 K − 3

...
...

...
...

. . .
...

...

2 3 4 5 · · · K 1

1 2 3 4 · · · K − 1 K


. (2.45)

Let us verify that [α]K×K ∈ ACTIN. Due to the symmetry in this topology, it suffices to verify

α11 ≥ α1j + αj1 for all j ∈ [2 : K], and α11 + αjk ≥ α1k + αj1 for all j, k ∈ [2 : K], j ̸= k.

For j ∈ [2 : K], α1j = j − 1, and αj1 = K − (j − 1), so we have α1j + αj1 = K ≤ α11.

Furthermore, since αjk = (k − j) mod K, we have

α11 + αjk − αj1 − α1k (2.46)

=K + ((k − j) mod K)− (K − (j − 1))− (k − 1) (2.47)

=((k − j) mod K)− (k − j) ≥ 0. (2.48)

Thus, the parameters are in the CTIN regime. Next we show that DΣ,TINA = K. According

to [35], in the CTIN regime we have DΣ,TINA([K]) = DΣ,P-TIN([K]). So consider the cycle

π = (1 → 2 → 3 → · · · → K ),

DΣ,TINA([K]) = DΣ,P-TIN([K]) ≤ ∆π =
K∑
i=1

(K − (K − 1)) = K. (2.49)

But we also know that DΣ,TINA ≥ α11 = K because it is possible to activate only user 1

and achieve K GDoF. Therefore, DΣ,TINA = K. Moreover, since TIN is GDoF-optimal in

the CTIN regime according to Theorem 1 in [62], we have DΣ,IC = K. Finally, let us show

that for the given channel strength parameters, DΣ,BC = 2K − 1. We already know from
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Lemma A.6, that DΣ,BC ≤ ∆π + α21 = 2K − 1. Let us show that 2K − 1 sum-GDoF are

also achievable in the MISO BC as follows. Let U be a Gaussian codeword carrying K − 1

GDoF, as a common message for all users. Let Vi, i ∈ [K] be a codeword carrying 1 GDoF,

as a private message for User i. Let the ith transmit antenna send Xi = c(P̄ 0U + P̄−(K−1)Vi)

where c = 1√
1+P−(K−1)

= Θ(1) is a constant chosen to satisfy the input power constraint.

Receiver k (k ∈ [K]) can decode codeword U first while treating all Vi as noise, because U

is heard with power PK , and the noise floor due to all Vi is no more than P 1. Thus, the

SINR for decoding U is PK−1, which suffices because U carries only K − 1 GDoF. After

decoding and removing U from the received signal, Receiver k can decode Vk. This decoding

is successful because Vk is heard by Receiver k with power P , while the interference from

every other Vi, i ̸= k is received with no more than power P 0. Thus, the SINR for decoding

Vk at Receiver k is P 1, which suffices because Vk carries only 1 GDoF. Thus, the BC achieves

a total of (K − 1) +K = 2K − 1 sum-GDoF. This completes the proof of the lower bound

for Theorem 2.2. □

2.7 Extremal Gain from Transmitter Cooperation in

SLS Regime

Theorem 2.3.

sup
[α]K×K∈ASLS

DΣ,BC

DΣ,TINA

= Θ(log(K)). (2.50)

2.7.1 Proof of Theorem 2.3: Upper Bound

Let us describe an iterative procedure. Stage λ of the procedure, λ ∈ [0 : Λ], is char-

acterized by a subset of users, Sλ ⊂ [K], a cyclic partition of Sλ into Nλ disjoint cycles
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πSλ
1 , πSλ

2 , · · · , πSλ
Nλ

, and a cyclic partition of [K] into Nλ disjoint cycles πλ
1 , π

λ
2 , · · · , πλ

Nλ
. The

procedure stops in stage λ = Λ as soon as we find Nλ = 1.

Stage 0 is the initialization stage. The procedure is initialized with the set So = [K], the

set of all users. Let πSo
1 , πSo

2 , · · · , πSo
No

be a p-optimal cyclic partition of So with at most one

trivial cycle. Such a partition exists and produces the tight sum-GDoF bound for polyhedral

TIN over So so that

DΣ,P-TIN(So) = ∆πSo
1

+∆πSo
2

+ · · ·+∆πSo
No

. (2.51)

Choose (πo
1, π

o
2, · · · , πo

No
) = (πSo

1 , πSo
2 , · · · , πSo

No
). This completes the initialization stage. Note

that because the p-optimal cyclic partition cannot have more than one trivial cycle, we must

have No ≤ (K + 1)/2. If No = 1, then Λ = 0 and the procedure stops here. If not, then we

move to the next stage.

Stage 1 begins by defining the set of users,

S1 = {πo
1(1), π

o
2(1), · · · , πo

No
(1)}. (2.52)

Let πS1
1 , πS1

2 , · · · , πS1
N1

be a p-optimal cyclic partition of S1 with at most one trivial cycle, so

that

DΣ,P-TIN(S1) = ∆
π
S1
1

+∆
π
S1
2

+ · · ·+∆
π
S1
N1

. (2.53)

Note that these cycles only span S1. For each of these cycles, πS1
n , n ∈ [1 : N1], we will create

a combined cycle, π1
n such that the N1 combined cycles will be a cyclic partition of [K]. This

is done as follows. Let us write the nth cycle, πS1
n , explicitly as,

πS1
n = (πo

n1
(1) → πo

n2
(1) → · · · → πo

nmn
(1) ). (2.54)
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Then the corresponding combined cycle is defined as

π1
n = (πo

n1
→ πo

n2
→ · · · → πo

nmn
) (2.55)

for n ∈ [1 : N1]. Now note that π1
1, π

1
2, · · · , π1

N1
span [K], in fact they constitute a cyclic

partition of [K]. This completes Stage 1.

Note that S1 has No users, and the p-optimal cyclic partition does not have more than one

trivial cycle, so we must have N1 ≤ (No + 1)/2. Furthermore, it follows from Lemma A.5

that

∆π1
n
≤ ∆πo

n1
+∆πo

n2
+ · · ·+∆πo

nmn
+∆

π
S1
n
. (2.56)

Summing over all n ∈ [1 : N1] we have

∆π1
1
+∆π1

2
+ · · ·+∆π1

N1
≤ ∆πo

1
+∆πo

2
+ · · ·+∆πo

No
+∆

π
S1
1

+∆
π
S1
2

+ · · ·+∆
π
S1
N1

(2.57)

= ∆πo
1
+∆πo

2
+ · · ·+∆πo

No
+DΣ,P-TIN(S1) (2.58)

≤ ∆πo
1
+∆πo

2
+ · · ·+∆πo

No
+DΣ,TINA. (2.59)

If N1 = 1, then we set Λ = 1 and the procedure stops here. If not, then we proceed to the

next stage.

The procedure now simply repeats, so that at the (λ+ 1)th stage we have the set of users

Sλ+1 = {πλ
1 (1), π

λ
2 (1), · · · , πλ

Nλ
(1)}. (2.60)

A p-optimal cyclic partition of Sλ+1 with at most one trivial cycle produces Nλ+1 disjoint
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cycles, π
Sλ+1

1 , π
Sλ+1

2 , · · · , πSλ+1

Nλ+1
, such that the lth cycle in this partition,

π
Sλ+1

l = (πλ
l1
(1) → πλ

l2
(1) → · · · → πλ

lml
(1) ) (2.61)

produces the lth combined cycle

πλ+1
l = (πλ

l1
→ πλ

l2
→ · · · → πλ

lml
) (2.62)

for l ∈ [1 : Nλ+1]. This completes Stage λ + 1. Since Sλ+1 has Nλ users, and the p-optimal

cycle cannot have more than one trivial cycle, we must haveNλ+1 ≤ (Nλ+1)/2. Furthermore,

it follows from Lemma A.5 that

∆πλ+1
1

+∆πλ+1
2

+ · · ·+∆πλ+1
Nλ+1

≤ ∆πλ
1
+∆πλ

2
+ · · ·+∆πλ

Nλ

+DΣ,TINA. (2.63)

If Nλ+1 = 1, then the procedure stops and Λ = λ + 1, otherwise the procedure continues.

This completes the description of the procedure.

Λ can be bounded by using Nλ+1 ≤ (Nλ + 1)/2, No ≤ (K + 1)/2 and NΛ−1 ≥ 2, as follows.

NΛ−1 ≥ 2 ⇒ NΛ−2 ≥ 3 ⇒ NΛ−3 ≥ 5 ⇒ · · · ⇒ No ≥ 2Λ−1 + 1 ⇒ K ≥ 2Λ + 1 ⇒ Λ ≤

log2(K − 1).

Finally, we complete the proof of the upper bound as follows.

DΣ,TINA ≥ DΣ,P-TIN(So) (2.64)

= ∆πo
1
+∆πo

2
+ · · ·+∆πo

No
(2.65)

≥ ∆π1
1
+∆π1

2
+ · · ·+∆π1

N1
−DΣ,TINA (2.66)

≥ ∆π2
1
+∆π2

2
+ · · ·+∆π2

N2
− 2DΣ,TINA (2.67)

...

≥ ∆πΛ
1
− ΛDΣ,TINA (2.68)
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≥ DΣ,BC −DΣ,TINA − ΛDΣ,TINA, (2.69)

where in the last step we used Lemma A.6. Substituting the bound for Λ we obtain

DΣ,BC

DΣ,TINA

≤ 2 + log2(K − 1) (2.70)

= Θ(log2(K)), (2.71)

and the proof of the upper bound is complete. □

2.7.2 Proof of Theorem 2.3: Lower Bound

For the lower bound, let us define a class of interference networks, N [n,ν], that is parame-

terized by the two numbers, n ∈ N, ν ∈ R, 0 ≤ ν ≤ 1. The number of users K(n) = 2n,

all desired channel strengths αkk = 1, and cross-channel strengths satisfy α
[n,ν]
ij = α

[n,ν]
ji for

all i, j, k ∈ [K(n)]. Since α
[n,ν]
ij = αii − δ

[n,ν]
ji = 1 − δ

[n,ν]
ji = 1 − δ

[n,ν]
ij , it suffices to specify

the δ
[n,ν]
ij values instead of the α

[n,ν]
ij values. To specify the δ

[n,ν]
ij values it will be useful to

represent N [n,ν] as a full binary tree of depth n. The 2n leaf nodes of this tree represent the

2n users. The value of δ
[n,ν]
ij = δ

[n,ν]
ji =

(
2p−1

2n

)
ν if the closest common ancestor of user i and

user j is p levels above them. For example, δ
[n,ν]
ij = ν

2n
if user i and j are siblings (share a

common parent), 2ν
2n

if they share the same grandparent (but not the same parent), and the

largest possible value of δ
[n,ν]
ij in N [r,ν] is ν/2, between users whose closest common ancestor

is the root node. An interference network with these parameter values is said to be an N [n,ν]

network. Fig. 2.6 shows the binary tree for the network N [3,1]. We are primarily interested

in the network for ν = 1. 6

6Even though we are interested primarily in ν = 1, the networkN [n,ν] is defined for arbitrary ν because the
network has a hierarchical structure and the two parameters, n and ν, can be used to specify the subnetworks
in the hierarchy. For example, the N [3,1] network in Fig. 2.6 consists of two N [2,1/2] subnetworks, and each
of them in turn contains two N [1,1/4] subnetworks. These subnetworks are important for the proof of
achievability (see e.g., (2.78)).
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Figure 2.6: The binary tree representation of the network N [3,1], and its subnetworks. The
value of δ

[n,1]
ij = 1−α

[n,1]
ij between users i and j is given by the number indicated under their

closest common ancestor. For example, δ78 = δ87 = 1/8, δ14 = δ41 = 1/4, δ37 = δ73 = 1/2.

Let us first prove that an N [n,ν] network is indeed in the SLS regime. From the definition of

δ
[n,ν]
ij = 1− α

[n,ν]
ij , we have

α
[n,ν]
ij = 1−

(
2pij−1

2n

)
ν, (2.72)

α
[n,ν]
ki = 1−

(
2pki−1

2n

)
ν. (2.73)

Since αii = 1 and ν ≥ 0, it is trivially verified that αii ≥ max(αij(ν), αki(ν)) for all i, j, k ∈

[K(n)]. Now, if users i, j have their closest common ancestor pij levels above them, and if

users i, k have their closest common ancestor pki levels above them, then the users j, k must

have a common ancestor no more than max(pij, pki) levels above them. Therefore,

α
[n,ν]
jk ≥ 1−

(
2max(pij ,pki)−1

2n

)
ν (2.74)

=⇒ αii + α
[n,ν]
jk ≥ 1 + 1−

(
2max(pij ,pki)−1

2n

)
ν (2.75)

≥ 1 + 1−
(
2pij−1

2n
+

2pki−1

2n

)
ν (2.76)

= α
[n,ν]
ij + α

[n,ν]
ki . (2.77)

Thus the SLS condition is satisfied.
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Next we will prove that the TINA region for this network does not allow more than 2

sum-GDoF. For this let us go through the following three steps.

1. The main argument for this proof is recursive, where we repeatedly reduce a network

into its subnetworks. In particular, we are interested in the left and right subnetworks

of N [n,ν], as described next. Consider the root node of the binary tree representation

of N [n,ν]. It has two child nodes, say labeled as ‘left’ and ‘right’. If the root node is

eliminated, then the tree splits into two binary trees, and each of those original child

nodes becomes the root node of one of those trees. Let us denote these two networks

as Left(N [n,ν]) and Right(N [n,ν]). Let us show that each of the networks Left(N [n,ν])

and Right(N [n,ν]) is an N [n−1,ν/2] network, as follows. Since the original root node is

eliminated, it is obvious that the binary tree representation of each of these subnetworks

has depth n − 1, and correspondingly each subnetwork has 2n−1 users. The channel

strengths are the same as before, but since the value of n has changed to n − 1, the

value of ν needs to change to ν/2 to preserve the channel strengths, so in the new

subnetworks we have

δ
[n−1,ν/2]
ij =

(
2p−1

2n−1

)(ν
2

)
=

(
2p−1

2n

)
ν = δ

[n,ν]
ij . (2.78)

where either both i, j belong to the left subnetwork or both belong to the right sub-

network.

2. Next we show that D[n,ν]
Σ,TINA

≤ max
(
1, 1

2
D[n,2ν]

Σ,TINA

)
, where D[n,ν]

Σ,TINA
represents the optimal

sum-GDoF value over the D[n,ν]
TINA region for N [n,ν]. This is proved as follows. From

Definition 2.10, we know that D[n,ν]
Σ,TINA

is equal to D[n,ν]
Σ,P-TIN

(S) for some subset of users,

S ⊂ [K(n)]. From Theorem A.1 we know that D[n,ν]
Σ,P-TIN

(S) is determined by the cycle

bounds corresponding to a p-optimal cyclic partition of S. There are two possibilities

— either the cyclic partition includes a trivial cycle, or it does not, and we will consider

38



them one by one.

First, suppose the p-optimal cyclic partition of S does not include any trivial cycles. In

that case, let π = (i1 → · · · → iM ) be any cycle from the p-optimal cyclic partition

of S. By assumption, the length of π is M > 1. The cycle bound corresponding to π

for D[n,ν]
Σ,TINA

is

∑
k∈{i1,··· ,iM}

dk ≤ δ
[n,ν]
i1i2

+ · · ·+ δ
[n,ν]
iM−1iM

+ δ
[n,ν]
iM i1

(2.79)

=
1

2

(
δ
[n,2ν]
i1i2

+ · · ·+ δ
[n,2ν]
iM−1iM

+ δ
[n,2ν]
iM i1

)
. (2.80)

Therefore, all the non-trivial cycle bounds D[n,ν]
Σ,TINA

are exactly half as large as the

corresponding cycle bounds in D[n,2ν]
Σ,TINA

, proving that in this case D[n,ν]
Σ,TINA

= 1
2
D[n,2ν]

Σ,TINA
.

Now consider the remaining alternative, that the p-optimal cyclic partition of S in-

cludes a trivial cycle. We claim that in this case D[n,ν]
Σ,TINA

= 1. This is shown as follows.

Suppose π = {i} is a trivial cycle included in the p-optimal cyclic partition of S. Since

the trivial cycle bound is active we must have di = αii = 1. Now, let User j be any

other user in S. We immediately have the bound di + dj ≤ δij + δji ≤ 1 (because in

N [n,ν], all δij ≤ ν/2 and ν ≤ 1). Since di = 1, we must have di + dj = 1 and therefore,

dj = 0. This is true for every user in S besides user i. Therefore, D[n,ν]
Σ,TINA

= 1 in this

case.

3. The final step is to prove that D[n,ν]
Σ,TINA

≤ 2. Based on previous steps, this is proved as

follows. Isolating the left and right subnetworks of N [n,ν] from each other’s interference

does not hurt either of them, therefore,

D[n,ν]
Σ,TINA

≤ D[n−1,ν/2]
Σ,TINA

+D[n−1,ν/2]
Σ,TINA

(2.81)

= 2D[n−1,ν/2]
Σ,TINA

(2.82)

≤ 2max

(
1,

1

2
D[n−1,ν]

Σ,TINA

)
(2.83)
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= max(2,D[n−1,ν]
Σ,TINA

) (2.84)

≤ max(2,max(2,D[n−2,ν]
Σ,TINA

)) (2.85)

= max(2,D[n−2,ν]
Σ,TINA

) (2.86)

...

≤ max(2,D[1,ν]
Σ,TINA

) (2.87)

= 2. (2.88)

Thus, TIN cannot achieve more than 2 sum-GDoF for our network.

Henceforth we will set ν = 1 and prove that by allowing transmitter cooperation in this

network, a sum-GDoF value of 1 + 1
2
log2(K) is achievable (and optimal). Recall that in a

GDoF model, if Transmitter j sends a message W with power level −γj to Receiver i over

a channel with strength αij, then the received signal strength level is αij − γj. The power

levels are additive because these are exponents of P , or equivalently because they are being

measured in dB scale. If the effective noise floor, i.e., the maximum power level of noise and

interference from other messages heard by Receiver i is µi, and W carries dW GDoF, then

W can be decoded successfully while treating all other signals as noise if dW ≤ αij − γj −µi.

Once a message is decoded it can be subtracted from the received signal before decoding

other messages. This is the basic principle of successive decoding, and we will use it for the

achievability proof.

Before a detailed presentation of the achievable scheme for N [n,1] networks, let us start with

a sketch of the achievable scheme for the example network N [3,1], as shown in Fig. 2.7. We

saw the binary tree representation of this network earlier in Fig. 2.6. Recall that for this

example, all direct links are of strength αii = 1. For the cross links, in Fig. 2.7 the dotted

blue lines are links of strength αij = 7/8, the dashed red lines are of strength αij = 3/4,

and the gray lines are links of strength αij = 1/2. The same gray common message at the
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Figure 2.7: The SLS scheme for N [3,1] that achieves 1 + 1
2
log2(K) = 5

2
sum-GDoF by

transmitter cooperation.

top level is sent from all antennas to all users and carries 1/2 sum GDoF. The dashed red

links are in two separate clusters of 4 users each, representing 2 subnetworks, each of the

type N [2,1/2] containing 4 users. A red common message is sent for the first cluster and a

pink common message is used for the second cluster, each carrying 1/4 GDoF. Similarly, the

dotted blue links are in 4 separate clusters of 2 users each, representing 4 subnetworks, each

of the type N [1,1/4] containing 2 users. The corresponding blue, green, magenta and cyan

power levels represent separate common messages for each of the 4 subnetworks, carrying 1/8

GDoF each. Finally, at the bottom level there is an independent message carrying 1/8 GDoF

for each user. The total sum-GDoF value thus achieved is
(
1
2

)
+2

(
1
4

)
+4

(
1
8

)
+8

(
1
8

)
= 5/2.

For the decoding, consider User 5 as an example. The gray message which carries 1/2 GDoF,

is seen with power level 1 and noise floor due to interference from other messages is at power

level 1/2 so it is successfully decoded and subtracted. Then the pink message, which carries

1/4 GDoF, is seen with power level 1/2 and effective noise floor 1/4, so it is also decoded

and subtracted. Next, the magenta message which carries 1/8 GDoF is seen with power

level 1/4 and noise floor 1/8, so it is also decoded and subtracted successfully. Finally, only
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the dotted white message, which carries 1/8 GDoF is seen with power levels 1/8 and noise

floor 0, so it is decoded as well.

Now, let us explain the scheme for arbitrary N [n,1]. As in the example, the achievable

scheme is also hierarchical where we will start with a common message for all users in N [n,ν]

and then progressively include additional messages for its subnetworks while maintaining

the successive decodability of all messages. For ease of reference, let us call the common

message for the users in a N [n,ν] network a level n message.

The same level-n message, is sent from every transmitter with strength γ = 0, so that it is

received at every receiver with strength γ + αii = 1. It carries 0.5 GDoF. The power levels

of all other messages are set to −1/2 or less so that all other messages are received with

strength no more than −1/2 + 1 = 1/2. Since the noise floor from other messages is at

1/2, the common message is received at strength level 1, and it carries only 1/2 GDoF, it

is decodable at every receiver, After decoding it, every receiver subtracts out the codeword

due to the level n message.

There are two different level n−1 sub-networks. Within each of these two networks a different

level n− 1 message is sent with power level −1/2, so it is received at power level 1/2 at each

receiver within the sub-network. Signals from one sub-network are not heard by the other

subnetwork because the channel strength between the users in different sub-networks is 1/2

and the transmit power of the level n − 1 message is −1/2. All lower level messages are

sent with power levels less than −3/4, so the noise floor due to lower level messages at each

receiver is at power level 1/4. Thus, the level n−1 message is able to achieve 1/2−1/4 = 1/4

GDoF. Since there are 2 such messages corresponding to the 2 subnetworks, the total sum

GDoF value contributed by level n − 1 messages is 1/4 + 1/4 = 1/2. After decoding each

receiver subtracts out the codeword due to level n− 1 message from its own subnetwork.

Next, there are 4 level n− 2 sub-networks. A different common message is sent within each
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subnetwork with power level −1 + (1/2)2 = −3/4, so it is received at power level 1/4, while

all lower level messages are sent with power no more than −1 + (1/2)3 = −7/8, so the

noise floor due to lower level messages is 1− 7/8 = 1/8. The sub-networks do not interfere

with each other because the cross-subnetwork channel strengths are 1 − 1/22 = 3/4 so the

received signals from other subnetworks are below the noise floor. Thus, each of the 4 of the

(n− 2)-level messages is able to achieve 1/4− 1/8 = 1/8 GDoF for a total of 4× 1/8 = 1/2.

The decoded messages are subtracted.

This pattern continues, so that for each i ∈ [0 : n], there are 2i different level-(n − i)

subnetworks. Within each of these subnetworks, a different common message is sent with

power level −1 + (1/2)i so it is received at power level (1/2)i while all lower level messages

are sent with power level no more than −1+(1/2)i+1 so that the noise floor due to lower level

messages is (1/2)i+1 at each receiver. Thus each of the 2i subnetworks achieves 1/2i−1/2i+1 =

1/2i+1 GDoF for a total of 2i/2i+1 = 1/2 sum GDoF.

Adding these values across all n levels we achieve a total of n/2 sum-GDoF. In fact, it is

possible to do a little bit better. At level 0, there are 2n subnetworks comprised of individual

users, and since there are no more lower level messages, the noise floor is 0, so it is possible

to achieve 1/2n − 0 = 1/2n GDoF per user for a total of 1 GDoF instead of just 1/2 GDoF

for level 0 messages. Thus, the total sum-GDoF value achieved is 1 + n/2 = 1 + 1
2
log2(K)

sum-GDoF. Now note that for the N [n,1] network, the sum-GDoF value in the BC setting is

DΣ,BC ≥ 1+ 1
2
log2(K), while the sum-GDoF value achieved by TIN is DΣ,TINA ≤ 2. Therefore,

we have

DΣ,BC

DΣ,TINA

≥
1 + 1

2
log2(K)

2
= Θ(log2(K)), (2.89)

which concludes the proof of the lower bound.

As a final remark, the sum-GDoF 1 + n
2
= 1 + 1

2
log2(K) is optimal for the BC obtained by
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allowing transmitter cooperation in N [n,1]. Applying Lemma A.6 with cycle π = (1 → 2 →

· · · → K ), we have the sum-GDoF in the BC bounded above by

D[n,1]
Σ,BC

([K]) ≤ ∆π + α
[n,1]
1K (2.90)

=
K−1∑
k=1

δ
[n,1]
k,k+1 + δ

[n,1]
K1 + α

[n,1]
1K (2.91)

=
n∑

ℓ=1

1

2n−ℓ+1
2n−ℓ +

1

2
+

1

2
(2.92)

=
1

2
log2K + 1, (2.93)

which matches the achieved sum-GDoF.

2.8 Summary

The main message of this chapter is to underscore the importance of extremal analysis in

order to advance our understanding of fundamental limits of large wireless networks beyond

symmetric settings, where the curse of dimensionality stands in the way. It is exemplified

by the results of this chapter, which identify the extremal gain of transmitter cooperation

in weak interference regimes. Extremal analysis used in conjunction with the GDoF metric

under finite precision CSIT thus appears to be a promising research avenue to bridge the

gap between theory and practice.
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Chapter 3

Robust Optimality of Secure TIN

3.1 Paths to Characterize GDoF of Large Networks

Most networks for which robust Generalized Degrees of Freedom (GDoF) have been found

are either small, e.g., limited to two or three users [26,31,33,36,63], or limited to symmetric

parameter values which cover a negligible fraction of the overall parameter space [25]. With

the availability of new bounds based on the Aligned Image principle, the natural next goal

is to apply them to larger networks under larger parameter regimes. The obstacle is the

inherent curse of dimensionality. To avoid this obstacle, two paths have emerged. One

path focuses on parameter regimes of interest and leads to extremal network theory, where

instead of exact GDoF characterizations, the extremal GDoF values are studied over the

chosen parameter regimes. See Chapter 2 and [64–66] for the applications of the extremal

network theory.

The other path puts its focus on certain schemes of interest, such as those that treat in-

terference as noise (TIN) [34, 35, 62, 67, 68], and seeks to identify large parameter regimes

where the chosen schemes are GDoF optimal. As the current frontiers of research, these
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paths exemplify the progress thus far. For example, GDoF studies of TIN combine the ap-

peal of information theoretic optimality with the advantage of practical robustness, and the

sharpness of exact GDoF characterizations with the surprising breadth of parameter regimes

where TIN schemes are GDoF-optimal. They target the regimes that are the most relevant

in practice, considering that well-designed networks tend to operate under weak interference,

and indeed they have inspired new interference management algorithms [60,61,69,70] based

on information theoretic principles.

3.1.1 Parameter Regimes Identified for GDoF Optimality

The parameter regimes where TIN and similar robust schemes are known to be GDoF-

optimal are the largest regimes where exact GDoF characterizations have been found. Progress

along this path has corresponded to the discoveries of larger and larger regimes where such

schemes are GDoF-optimal. Interest in the optimality of TIN for interference networks

started with the discovery of a relatively small parameter regime where the exact capacity of

the two user interference channel is achieved by TIN [57–59]. A larger regime is found in [7]

where TIN is GDoF optimal for the two user interference channel. For the K user interfer-

ence channel under perfect channel state information at transmitters (CSIT), a parameter

regime, denoted simply as the TIN regime, was identified by Geng et al. in [34] where TIN

with power control is GDoF-optimal. A still larger regime, called the CTIN regime, was

discovered by Yi and Caire in [35] which had the curious property that the TIN region is

convex without the need for time-sharing. By restricting CSIT to finite precision, TIN was

shown to be GDoF-optimal throughout the CTIN regime by Chan et al. in [62].

An even larger parameter regime was discovered in [36] where a simple layered superposi-

tion (SLS) strategy is GDoF optimal for the multiple-input single-output (MISO) broadcast

channel (BC) obtained by allowing full cooperation among the transmitters of a K user in-
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terference channel, under finite precision CSIT. It is notable that the SLS regime is defined

for arbitrary K, but the optimality was established in [36] only for K ≤ 3. Comparisons

between broadcast and interference settings for arbitrary K were conducted via extremal

analysis in Chapter 2, where we showed that the extremal sum-GDoF gain of broadcast over

interference, i.e., the extremal gain of transmitter cooperation under finite precision CSIT,

is equal to 1.5 in the TIN regime, 2− 1/K in the CTIN regime, and of the order of log(K)

in the SLS regime. For cellular networks, modeled as interfering multiple-access channels in

the uplink and interfering broadcast channels in the downlink, non-trivial parameter regimes

where TIN-like schemes are GDoF-optimal, were discovered by Joudeh et al. in [64,67,68].

3.2 Problem Statement and Contributions

3.2.1 Discovering Larger Regimes by Adding Constraints

In this chapter, we aim at discovering even larger parameter regimes where TIN-like schemes

are GDoF optimal. The motivating intuition is that just as including robustness constraints

(finite precision CSIT) into the problem formulation led to the discovery of a larger parameter

regime (CTIN) where TIN is GDoF optimal, perhaps further including secrecy constraints

into the problem formulation may lead to the discovery of even larger parameter regimes

where the corresponding secure versions of TIN would be GDoF optimal. Finding these

larger parameter regimes is the main goal of this this chapter.

It is worth mentioning that the combination of robustness and secrecy constraints is quite

natural, because robustness is very important for communication under secrecy constraints.

While there is an abundance of literature on information theoretic secrecy [42,71–94], robust-

ness issues, especially for larger networks, remain relatively unexplored. Fragile schemes are

susceptible to catastrophic failures due to small deviations from their idealized assumptions.
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In the absence of secrecy constraints, a failed communication attempt may prompt a more

conservative re-transmission. Failure in a secure communication setting on the other hand,

may also lead to a loss of secrecy which is irreversible. Therefore, it is especially important to

avoid the idealized assumption of perfect CSIT when studying secure communication [95–98].

3.2.2 Regimes Where Secure TIN is Optimal

The contributions of this chapter are threefold. First, our main result, confirming the intu-

ition that motivated the work in this chapter, is the discovery of a new parameter regime,

labeled the Secure-TIN regime (STIN in short), for a K user interference channel where a

secure version of TIN (including jamming) is GDoF optimal under finite precision CSIT. The

STIN regime is the largest of all such parameter regimes previously identified — it includes

the SLS regime, which includes the CTIN regime, which includes the TIN regime, and all

these inclusions are strict.

For our second set of results we employ extremal analysis to compare the secure robust

GDoF of the K user interference channel with the corresponding K user MISO broadcast

channel. We show that the extremal GDoF gain from transmitter cooperation in the STIN

regime is unbounded, but when restricted to the SLS parameter regime, the extremal gain is

equal to one. Remarkably, this settles the GDoF of the K user MISO BC in the SLS regime

under both robustness and secrecy constraints, for arbitrary K. Recall that without secrecy

constraints, the GDoF of the MISO BC have been characterized in the SLS regime only for

K ≤ 3 [36]. As such the SLS regime under secrecy constraints now represents the largest

regime for the BC setting where a precise characterization of robust GDoF is now available

for arbitrary K. We also find the secure robust GDoF of the MISO BC for all parameter

regimes when K = 2. Table 3.1 summarizes the available results, from both prior works

and this chapter, regarding the GDoF region and extremal gain of BC and IC in different
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1W1 → X1 1 Y1 → Ŵ1,(((((((((hhhhhhhhhW2,W3, · · · ,WK

2W2 → X2 2 Y2 → Ŵ2,(((((((((hhhhhhhhhW1,W3, · · · ,WK

KWK → XK K YK → ŴK ,((((((((((hhhhhhhhhh
W1,W2, · · · ,WK−1

··
·

··
·

Figure 3.1: Secure K user interference network.

channel regimes under finite precision CSIT, with and without secrecy constraints.

The third set of results extends the study of TIN optimality to settings where either helpers

(transmitters) or eavesdroppers (receivers) are added to the interference network. This may

enlarge or reduce the secure GDoF (SGDoF) region of the original interference channel

[91, 92, 99, 100]. Using insights from the first set of results, we identify various parameter

regimes where adding helpers or eavesdroppers does or does not have an impact on the

GDoF.

3.3 System Model

3.3.1 Secure K User Interference Network

We consider a K user Gaussian interference channel (IC) depicted in Figure 3.1. For i ∈ [K],

Transmitter i encodes message Wi ∈ {1, 2, · · · , ⌈2nRi⌉}, independently of the other trans-

mitters, into an n-length codeword Xn
i = {Xi(t) : t ∈ [n]} with a stochastic encoder subject

to a unit average power constraint 1
n

∑
t∈[n] |Xi(t)|2 ≤ 1. Then Xn

i is sent by Transmitter i

with its single antenna as the channel input. For k ∈ [K], Receiver (User) k desires message

Wk, and within the robust GDoF framework, its received signal at the t-th channel use is
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described as

Yk(t) =
∑K

i=1
P̄αkiGki(t)Xi(t) + Zk(t) ∀k ∈ [K]. (3.1)

All Xi(t), Yk(t), Zk(t), Gki(t) ∈ C. Subscript i refers to Transmitter i, and subscript k to

Receiver k. Zk(t) ∼ CN (0, 1) is the additive white Gaussian noise. P̄ =
√
P , and P > 1 is

a nominal variable (referred to as power) whose asymptotic limit (i.e., P → ∞) is used to

define the GDoF metric. The channel strength parameters αki ≥ 0 represent the strength

of the link from Transmitter i to Receiver k. Gki(t) ∈ G are the channel coefficient values,

whose statistical assumptions are described in Section 3.3.3.

Remark 3.1. The channel strength parameters αki correspond to the approximate capacity

values of the point-to-point channels in a given setting to which the GDoF framework is

applied. The capacity of the link from Transmitter i to Receiver k in the GDoF model is

log (1 + Pαki) ≈ αki log(P ) for large P . The GDoF framework scales the original capacity

of each link, αki, by the same nominal factor log(P ). This intuitively scales the network

capacity approximately by the same factor log(P ) as well. Normalizing all rates by log(P ),

as in the definition of GDoF (See (3.3)), yields an approximation to the capacity of the

original network setting.

A secure rate tuple (R1, R2, ..., RK) is achievable if, for any ϵ > 0, there exist n-length codes

such that (i) |Wj| ≥ 2nRj ; (ii) the decoding error probabilities at all users are less than ϵ;

and (iii) the following1 secrecy constraints are satisfied,

IG(W
K
−i;Y

n
i ) ≤ nϵ ∀i ∈ [K], (3.2)

where WK
−i ≜ {Wk : ∀k ∈ [K]\{i}}, Y n

i = {Yi(t) : t ∈ [n]}, and G is the set of channel

coefficients defined in Section 3.3.3. The secure channel capacity region C is the closure of the

1Notably, all the GDoF results in this chapter hold even if the secrecy constraints are weakened as noted
in Remark 3.4.
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set of all achievable secure rate tuples. With channel strength parameter values collectively

labeled as [α] ≜ {αij : i, j ∈ [K]}, the secure GDoF region and the sum-GDoF of the IC

under finite precision CSIT, are defined as

SGDoF f.p.
IC ([α]) ≜

{
(d1, d2, ..., dK)

∣∣∣∣ di = lim
P→∞

Ri

logP
,∀i ∈ [K], (R1, R2, ..., RK) ∈ C

}
(3.3)

SGDoF f.p.
IC, Σ([α]) ≜ max

(d1,d2,··· ,dK)∈SGDoF f.p.
IC ([α])

K∑
i=1

di (3.4)

The superscript ‘f.p.’ refers to finite precision CSIT, and may be replaced with ‘p’ to refer

to prefect CSIT. The subscript ‘IC ’ may be replaced with ‘BC ’ for the broadcast channel

as defined next.

3.3.2 Secure K User Broadcast Network

The secure K user broadcast channel (BC) with K transmit antennas is obtained from

the secure K user IC by allowing all the K transmitters to jointly encode all the messages

W1,W2, · · · ,WK with a stochastic encoder. The achievable secure rate tuple, secure capacity

region, and the secure GDoF region of BC are the identical to those defined in Section 3.3.1.

3.3.3 Finite precision CSIT

In the setting of finite precision CSIT, we assume that the channel coefficients Gki(t) =

GR,ki(t) + jGI,ki(t) are known to the transmitter only up to finite precision. Specifically,

the transmitter knows only the joint probability density function of the channel coefficients

G ≜ {GR,ki(t), GI,ki(t) : t ∈ [n], i, k ∈ [K]}. The joint density of G is assumed to follow

the “bounded density assumption” [20], i.e., there exists a positive finite constant fmax, such
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that, for any finite disjoint subsets of G, say G1 and G2, the density of G1 conditioned on

G2 satisfies fG1|G2(g1|g2) ≤ f
|G1|
max, where gi is a realization of Gi, i = 1, 2. This assumption

introduces the elements in G into the model as random perturbation factors, with their

realizations known perfectly to the receivers but not to the transmitters. It thus limits the

CSIT to finite precision. To avoid degenerate scenarios, the magnitudes of channel coefficient

values are also bounded away from zero and infinity, i.e., there exists a finite constant ∆ > 1

such that 1/∆ ≤ |Gki(t)| ≤ ∆ for all channel coefficients.

3.3.4 Definitions

Definition 3.1 (Polyhedral TIN Region [34]). The polyhedral TIN region, denoted as TINP ([α]),

is a set of tuples (d1, d2, · · · , dK) satisfying

0 ≤ di ≤ αii ∀i ∈ [K], (3.5)∑
j∈{πm}

dj ≤ ∆πm ∀πm ∈ Πm,m ∈ [2 : K], (3.6)

where πm is a permutation of some m distinct elements taken from [K], Πm collects all

such permutations, and {πm} denotes the set of all elements in πm. The term ∆πm ≜∑
j∈{πm} αjj − αjπm(j), where πm(j) is the successor of j in πm. We abbreviate TINP ([α])

as TINP if no ambiguity in the choice of channel strengths arises.

Recall that in the absence of secrecy constraints, for a K user IC with channel strengths

[α], the GDoF region achievable by TIN and power control (without time-sharing) is TIN ≜⋃
S⊆[K] TINP ([αS]), where [αS] =

{
α′
ij = αij1(i and j ∈ S) : i, j ∈ [K]

}
, and 1(x) is the

indicator function which takes the value 1 if x is true, and 0 otherwise [34]. In general TIN

is not convex. On the other hand, when secrecy constraints are present, TINP is achievable

and turns out to be the SGDoF region in the STIN regime, as explained in Section 3.4.1.

53



Definition 3.2 (TIN Regime. Definition 3.1 of [62]). Define the TIN regime as

ATIN =
{
[α]K×K ∈ RK×K

+

∣∣αii ≥ αil + αmi,∀i, l,m ∈ [K], i /∈ {l,m}
}
. (3.7)

ATIN was identified in [34] as a regime where TIN is GDoF optimal without secrecy constraints

under perfect CSIT. The optimal GDoF region in this parameter regime is TINP ([α]).

As a starting point that subsequent results build upon in order to identify larger regimes

where robust schemes are optimal under various assumptions, ATIN serves as an important

benchmark.

Definition 3.3 (CTIN Regime. Definition 3.2 of [62]). Define the CTIN regime as

ACTIN =

[α]K×K ∈ RK×K
+

∣∣∣∣∣∣∣
αii ≥ max (αij + αji, αik + αji − αjk) ,

∀i, j, k ∈ [K], i /∈ {j, k}

 . (3.8)

The CTIN regime is so-named due to the discovery by Yi and Caire in [35] that TIN becomes

convex when the channel is in this regime. ACTIN was established in [62] as a regime where

TIN is GDoF optimal without secrecy constraints under finite precision CSIT. The optimal

GDoF region in this parameter regime is TIN. When secrecy constraints are imposed, TIN,

which is equal to TINP in ACTIN, remains the SGDoF region (Lemma 3.1 in Section 3.3.5).

It is of interest to go beyond ACTIN and explore the secure optimality of TINP .

Definition 3.4 (SLS Regime. Definition 3.3 of [62]). Define the SLS regime,

ASLS =

[α]K×K ∈ RK×K
+

∣∣∣∣∣∣∣
αii ≥ max (αik, αki, αik + αji − αjk) ,

∀i, j, k ∈ [K], i /∈ {j, k}

 . (3.9)

It was shown in [36] that when the channel is in the SLS regime, then a simple layered

superposition (SLS) scheme is GDoF optimal for BC without secrecy constraints, provided

54



K ≤ 3. Defined for arbitrary K, the regime will be shown in Section 3.4.2 to be sufficient

for TINP to be the optimal SGDoF region for BC.

3.3.5 Polyhedral TIN Region Under Secrecy Constraints

The polyhedral TIN region TINP is known (Theorem 4.1 of [62]) to be GDoF optimal under

finite precision CSIT in the CTIN regime, in the absence of secrecy constraints. Based on

the known results it can be further deduced that TINP remains GDoF optimal under finite

precision CSIT in the CTIN regime if we also impose secrecy constraints. This is formally

noted in the following lemma.

Lemma 3.1. If a K user IC is in the CTIN regime, then the secure GDoF region under

finite precision CSIT is equal to the polyhedral TIN region TINP , i.e.,

[α] ∈ ACTIN =⇒ SGDoF f.p.
IC ([α]) = TINP([α]). (3.10)

Proof. Achievability of TINP follows from Corollary 3.1 that appears below. The converse

follows from Theorem 4.1 of [62], because imposing secrecy constraints cannot make the

GDoF region any larger than the GDoF region without secrecy constraints.

Corollary 3.1. In a K user Gaussian interference channel with secrecy constraints and finite

precision CSIT, the polyhedral TIN region is achievable, i.e., TINP([α]) ⊂ SGDoF f.p.
IC ([α]).

Proof. The corollary follows from Lemma 1 of [42] which shows that TINP is robust to secrecy

constraints, i.e., it remains achievable with secrecy constraints. While [42] assumes perfect

CSIT, the conclusion extends to finite precision CSIT because the achievability of TINP

in [42] only needs the knowledge of the channel strength parameters αki at the transmitters,

which is also available under the finite precision CSIT assumption.
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3.4 Results

Our results for the K user IC are presented in Section 3.4.1, corresponding results for K

user MISO BC are presented in Section 3.4.2, and extensions to helpers and eavesdroppers

are presented in Section 3.4.3.

3.4.1 Secure GDoF of the K User Interference Channel Under

Finite Precision CSIT

We start by defining a new parameter regime.

Definition 3.5 (STIN Regime). Define the STIN regime,

ASTIN =

[α]K×K ∈ RK×K
+

∣∣∣∣∣∣∣
αii ≥ max (αki, αik + αji − αjk) ,

∀i, j, k ∈ [K], i /∈ {j, k}

 . (3.11)

What makes the new regime particularly interesting is that it is the largest of all “weak

interference” regimes discussed previously for which GDoF have been characterized thus far.

Lemma 3.2. The TIN, CTIN, SLS, and STIN regimes satisfy the following inclusion rela-

tionship,

ATIN ⊆ ACTIN ⊆ ASLS ⊆ ASTIN (3.12)

and in all cases the inclusion is strict in general.

Proof. This is easily verified from the definitions. In particular, the relationship ATIN ⊆

ACTIN ⊆ ASLS is already noted in [62]. The remaining condition ASLS ⊆ ASTIN follows because
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1X1 → 1 → Y1

2X2 → 2 → Y2

3X3 → 3 → Y3
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Figure 3.2: A K = 3 user IC, and the parameter regimes corresponding to CTIN (red
polyhedron), SLS (gray-shaded cube), and STIN (dashed box).

the SLS regime includes an additional constraint, αii ≥ maxk αik, that is relaxed for the

STIN regime.

Figure 3.2 illustrates the progressive inclusion relationship between ACTIN, ASLS and ASTIN for

a K = 3 user interference network where the desired channel strengths are equal to 1, and

the interfering links originating at transmitters 1, 2, 3 have strengths α, β, γ, respectively.

Note that the STIN regime is significantly larger than the CTIN and SLS regimes. The

significance of the STIN regime is established in the following theorem.

Theorem 3.1. If an IC is in the STIN regime then the GDoF region under finite precision

CSIT and secrecy constraints is equal to the polyhedral TIN region, which is achievable by

TIN with cooperative jamming.

[α] ∈ ASTIN =⇒ SGDoF f.p.
IC ([α]) = TINP([α]) (3.13)

Achievability proof for Theorem 3.1 follows directly from Corollary 3.1. The converse is

proved in Section 3.5.1, and relies on a combination of Aligned Images bounds and secrecy

constraints. Theorem 3.1 formalizes our original intuition that because imposing secrecy

constraints does not hurt the GDoF region achievable by TIN schemes, these constraints

should work in conjunction with Aligned Images bounds to produce a stronger converse that
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allows a precise GDoF characterization for a broader regime of parameters. This new and

broader regime of parameters is explicitly identified in Theorem 3.1 as the STIN regime.

Remark 3.2. The STIN regime is not strictly necessary for robust TIN optimality. For

example, consider a two-user GIC with α11 = α22 = 1, α21 = 0 and α12 = 2, which is

not in the STIN regime, but TIN with cooperative jamming still achieves the entire GDoF

region [29]. However, we expect that such [α] constitute a set of measure zero, similar to

the situation in [34]. On the other hand, there exist other schemes capable of achieving

more than TIN when the channel is out of the STIN regime. To see this, consider a two-

user symmetric GIC with αii = 1 and αij = 4
3
, where i, j ∈ [2] and i ̸= j. The polyhedral

TIN region is {(0, 0)} by Definition 3.1, but the tuple (2/3, 0) is actually achievable with the

following scheme: let X1 = P̄− 1
3V1, where V1 is encoded from message W1 of GDoF 2

3
, and

X2 = J2 is a jamming signal of GDoF 2
3
. It can be found that W1 is decodable at Receiver

1 by decoding and then removing J2 first, while it remains secret from Receiver 2 as it is

aligned with the jamming signal in power.

3.4.2 Secure GDoF of the K User MISO BC Under Finite Preci-

sion CSIT

Consider the secure, robust GDoF of the MISO BC in the STIN regime. TINP is still

achievable in the MISO BC setting, because transmitter cooperation cannot hurt, but as we

will see in this section, it is no longer optimal. Remarkably, of the two bounds (3.5)-(3.6)

that define the polyhedral TIN region TINP , the more complex bound, (3.6), still holds

in the MISO BC setting, but the simpler bound, (3.5), i.e., di ≤ αii, is the one that fails.

Replacing this bound with the optimal single-user bound for the MISO BC is also non-trivial,

because of the presence of the K − 1 eavesdroppers, makes this a non-degraded compound

wiretap channel setting [101] for which little is known beyond Degrees of Freedom (DoF)
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for degraded special cases. The nature of achievable schemes also changes from TIN and

jamming to include secret-sharing schemes (see Figure 3.5 as an example). Therefore, we

will take an extremal network theory approach instead [62]. Let us define the extremal gain

η([α]) of the BC over the IC.

Definition 3.6. (Extremal Gain) Define extremal gain as

η(α) = sup
λ∈RK

+

max(d1,d2,··· ,dK)∈SGDoF f.p.
BC ([α]) d(λ)

max(d1,d2,··· ,dK)∈SGDoF f.p.
IC ([α]) d(λ)

(3.14)

where λ = (λ1, λ2, · · · , λK), and d(λ) =
∑K

i=1 λidi.

Theorem 3.2. The extremal gain in the STIN regime is

ηSTIN ≜ sup
[α]∈ASTIN

η([α]) =

 1 if K = 2,

∞ if K ≥ 3
(3.15)

The proof of Theorem 3.2 is presented in Section 3.5.2. The unbounded extremal gain

in the STIN regime is mainly a reflection of the fact that the STIN regime is so much

larger than the previously studied TIN, CTIN and SLS regimes where the extremal gain is

bounded. Specifically we find a sequence of channels in the STIN regime, and the associated

weights, such that the weighted sum GDoF of the IC setting goes to zero while that of the

corresponding BC setting remains constant.

Focusing on the smaller SLS regime reveals a strong result.

Theorem 3.3. The extremal gain in the SLS regime, ηSLS ≜ sup[α]∈ASLS
η([α]) = 1.

An extremal gain of unity immediately yields the following corollary.

Corollary 3.2. If a K user MISO BC is in the SLS regime then the GDoF region under

finite precision CSIT and secrecy constraints is equal to the polyhedral TIN region, which is
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1X1 → 1 → Y1

2X2 → 2 → Y2

3X3 → 3 → Y3
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Figure 3.3: A 3-user MISO BC in the SLS regime, and its GDoF region under finite precision
CSIT with (red) and without (blue) the secrecy constraints.

achievable by TIN with cooperative jamming.

[α] ∈ ASLS =⇒ SGDoF f.p.
BC ([α]) = TINP([α]). (3.16)

The proof of Theorem 3.3 is a straightforward extension of the proof of Theorem 3.1 and is

presented in Section 3.5.3. According to Corollary 3.2 a sharp SGDoF characterization is

obtained for the BC in the SLS regime with finite precision CSIT for arbitrary K. Recall

that in the absence of secrecy constraints, the GDoF of the K user BC are still open in

the SLS regime for K ≥ 3 [36]. Thus, Corollary 3.2 presents the largest known parameter

regime where a robust (finite precision CSIT) GDoF characterization is available for the

MISO BC with arbitrarily large K. Figure 3.3 shows a 3-user MISO BC and its GDoF

regions with (red) and without (blue) secrecy constraints. Also note that in the SLS regime,

without secrecy constraints, the extremal gain under finite precision CSIT, was shown to be

of the order of log(K) in [62]. Theorem 3.3 shows that the GDoF benefits of transmitter

cooperation disappear under secrecy constraints.

Remark 3.3. Because any transmitter (transmit antenna) can be used to communicate to

any receiver (receive antenna) in a BC, even if a given K user IC is not in the SLS regime,

its corresponding BC may be in the SLS regime after a permutation of its transmit antenna

indices. The result of Corollary 3.2 would still determine the exact SGDoF region of such a
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GDoFBC,Σ(α)

α

1

2

0.5 1 1.5 2

Perfect CSIT,
with and without
secrecy [2, 88]

Finite precision
CSIT, without
secrecy [63]

Finite precision
CSIT, with

secrecy
(Thm. 3.4)

Figure 3.4: Sum GDoF GDoFBC,Σ(α) for a two user symmetric MISO BC.

BC, even though the SGDoF of the original IC may be unknown.

Building on previous results, we fully (for all parameter regimes) settle the 2 user case.

Theorem 3.4. For a BC setting with 2 users and K transmit antennas (K ≥ 2),

SGDoF f.p.
BC,Σ([α]) = max

k∈[K]
(α1k − α2k)

+ + max
k∈[K]

(α2k − α1k)
+. (3.17)

The proof of Theorem 3.4 appears in Section 3.5.4.

Figure 3.4 considers a symmetric MISO BC with two users and two transmit antennas,

where α11 = α22 = 1 and α12 = α21 = α. Under perfect CSIT, the sum GDoF with

or without secrecy constraints (the dotted line) is achievable via zero-forcing [2, 88]. Under

finite precision CSIT, the sum GDoF without secrecy constraints (the dashed line) is achieved

by rate-splitting, which allows public messages that are decodable by both users [63]. Under

finite precision CSIT and secrecy constraints the sum GDoF, given by Theorem 3.4, is shown

with a solid line. Evidently, both finite precision CSIT and the secrecy constraints incur a

penalty on the sum-GDoF: the former by eliminating the gains of zero-forcing, and the latter

by preventing the use of public messages.
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3.4.3 The Impact of Helpers and Eavesdroppers

In this section we return to our original setting of the interference channel and explore the

impact of helpers and eavesdroppers on the GDoF. Little is known about the impact of

helpers and eavesdroppers in interference networks under finite precision CSIT and secrecy

constraints. The problem is challenging in general, indeed as noted before, even the DoF

of the single user setting with multiple eavesdroppers, also known as the compound wiretap

channel [101], remains an open problem. Our goal here is rather modest, to extract insights

about helpers and eavesdroppers from the new GDoF region characterization in Theorem 3.1.

To see this connection, consider adding a user to an interference network, such that the newly

added user achieves zero GDoF. In the absence of secrecy constraints, this new user is of

no consequence and does not impact the GDoF region. However, under secrecy constraints,

the transmitter of the new user can act as a helper, by sending jamming signals that secure

other transmissions, potentially making the GDoF region larger, while the receiver of the

new user acts as an eavesdropper, imposing additional secrecy constraints, and potentially

making the GDoF region smaller. This is what we wish to explore in this section.

We start from a K user IC, with the transmitters and their paired receivers labeled from

1 to K, and the channel parameters [α] = {αij : i, j ∈ [K]}. Suppose H independent

transmitters (with no knowledge of the messages of the K users, nor any common random-

ness) are added to the network, and labeled as K + 1, K + 2, · · · , K + H. Newly-added

Transmitter h is connected to the K receivers with links of channel strengths collected in

[αH ] ≜ {αih : i ∈ [K], h ∈ [K + 1 : K + H]}. Each newly added transmitter produces

input Xn
h , which is subject to the unit power constraint, and is independent of all the other

codewords. In the following we refer to such a network setting as aK user IC with H helpers,

whose channel strengths are [α] ∪ [αH ].

On the other hand, instead of transmitters, suppose we add E receivers to the network,
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which are respectively labeled K + 1, K + 1, · · · , K +E. The channel strengths of the links

connecting the newly added receivers and the transmitters are collected in [αE] = {αej : j ∈

[K], e ∈ [K + 1 : K + E]}. The outputs of the newly added receivers, Y n
e , are subject to

secrecy constraints I(Y n
e ;W

K) < nϵ, where WK = {W1, · · · ,WK}. We refer such a network

setting as a K user IC with E eavesdroppers, whose channel strengths are [α] ∪ [αE].

Our first result identifies a regime where adding helpers does not improve the GDoF.

Corollary 3.3. For a K user IC with H helpers, if [α] is in the STIN regime, and [α]∪[αH ]

satisfies

αii + αjh ≥ αji + αih, ∀i, j ∈ [K], h ∈ [K + 1 : K +H], (3.18)

then the SGDoF region with helpers is equal to TINP ([α]), same as without helpers.

The proof is presented in Section 3.5.5.

In contrast to these additional helpers that do not impact GDoF if the original network is in

the STIN regime, it turns out that additional eavesdroppers are always harmful for certain

regimes that are included in the STIN regime.

Theorem 3.5. For a K user IC with channel strength parameters [α] that lie in the interior

of the CTIN regime, adding a non-trivial eavesdropper (not all channel strengths to the

eavesdropper are zero) makes the GDoF region strictly smaller.

The proof of Theorem 3.5 is relegated to Section 3.5.6.

However, it is not true in general that additional eavesdroppers must always be detrimental

to the GDoF region. The following theorem formalizes this observation.

Theorem 3.6. For a K user IC with E eavesdroppers, if [α] is in the interior of the STIN
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regime, and for all i ∈ [K], there exists j ∈ [K] with j ̸= i, such that

αjj < αij + αji, (3.19)

then there exists AE ⊂ RKE with non-zero Lebesgue measure, such that, when [αE] ∈ AE,

the SGDoF region is equal to TINP ([α]), same as without eavesdroppers.

The proof of Theorem 3.6 is relegated to Section 3.5.7.

Remark 3.4. As a final observation, let us note that all our results in Section 3.4 hold even

if the (strong) secrecy constraints in (3.2) are weakened to

IG(Wj;Y
n
i ) ≤ nϵ ∀i, j ∈ [K], i ̸= j. (3.20)

This is because weakening the secrecy constraints does not hurt achievability, and it is easily

verified that all our converse proofs need only the weak secrecy constraints. Thus, somewhat

surprisingly, for all cases considered in this chapter, weakening the secrecy constraints does

not produce a larger SGDoF region.

3.5 Proof

3.5.1 Proof of Converse of Theorem 3.1

The bounds in (3.5) are trivial single user capacity bounds. For the bounds in (3.6), the

proof is mainly based on Aligned Images bounds [32]. Proceeding as usual for the application

of Aligned Images bounds, we define a deterministic model for (3.1) as follows:

Ȳk(t) =
∑K

i=1

⌈
P̄α′

kiGkiX̄i(t)
⌉

∀k ∈ [K], (3.21)
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where α′
ki ≜ αki−maxm∈[K] αmi = αki−αii, because according to Definition 3.5, in the STIN

regime we have αii = maxm∈[K] αmi. The notation ⌈z⌉ = ⌈x⌉ + j⌈y⌉ for a complex number

z = x+ jy. The channel input X̄i(t) = ⌈Xi(t)⌉ mod ⌈P̄αii⌉ = X̄R,i(t) + jX̄I,i(t), and

X̄R,i(t), X̄I,i(t) ∈
{
0, 1, · · · ,

⌈
P̄αii

⌉}
. (3.22)

Next, we will prove that, with finite precision CSIT and the secrecy constraints, the GDoF

region of the deterministic model (3.21) constitutes an outer bound of the original BC (3.1).

To this end, we need the following lemma.

Lemma 3.3. For all k ∈ [K],

IG(Wk;Y
n
k ) ≤ IG(Wk; Ȳ

n
k ) + no(logP ), (3.23)

IG(W
K
−k; Ȳ

n
k ) ≤ IG(W

K
−k;Y

n
k ) + no(logP ), (3.24)

where WK
−k ≜ {Wi : ∀i ∈ [K]\{k}}.

The proof of Lemma 3.3 is relegated to Appendix B.1. Let (i1, i2, · · · , im) ∈ Πm with

2 ≤ m ≤ K. (See Definition 3.1 for the definition of Πm.) For all ϵ > 0 and all j ∈ [m] with

the modulo-m arithmetic implicitly used (i.e., i0 = im), we have

nRij ≤ IG(Wij ; Ȳ
n
ij
) + no(logP ) (3.25)

≤ IG(Wij ; Ȳ
n
ij
)− IG(Wij+1

; Ȳ n
ij
) + no(logP ) (3.26)

≤ HG(Ȳ
n
ij
| Wij+1

)−HG(Ȳ
n
ij
| Wij) + no(logP ). (3.27)

We apply Fano’s inequality and (3.23) to get (3.25). Then to obtain (3.26), we apply

IG(Wij+1
; Ȳ n

ij
) ≤ no(logP ), which is deduced from (3.24) and the secrecy constraints. Sum-
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ming the rate Rij over all j ∈ [m], one gets (with no(logP ) suppressed)

n
m∑
j=1

Rij ≤
∑m

j=1
HG(Ȳ

n
ij
| Wij+1

)−HG(Ȳ
n
ij+1

| Wij+1
) (3.28)

≤
∑m

j=1
max
k∈[K]

(
αijk − αij+1k

)+
n logP (3.29)

=
∑m

j=1

(
αijij − αij+1ij

)
n logP. (3.30)

In (3.29), we invoke the Aligned Images bound stated in the following lemma.

Lemma 3.4 (Lemma 1 in [32]). For j ∈ [m], we have

HG(Ȳ
n
ij
| Wij+1

)−HG(Ȳ
n
ij+1

| Wij+1
) ≤ max

k∈[K]
(αijk − αij+1k)

+n logP + no(logP ). (3.31)

Since the channel [α] is assumed in the STIN regime, we have αijij − αij+1ij ≥ αijk − αij+1k

and αijij ≥ αij+1ij for all k ∈ [K] and j ∈ [m], and equality (3.30) holds. Finally, by re-

ordering the negative terms in the summands of (3.30) and applying the definition of GDoF,

we establish (3.6).

3.5.2 Proof of Theorem 3.2

The case K = 2 is not usually the focus of extremal analysis (which is motivated by large

networks), but is included nevertheless for completeness. Its proof is relegated to Appendix

B.2. For K ≥ 3, it suffices to consider the 3 user network shown in Figure 3.5, whose channel

strength parameters ([α0] for ease of reference) place it in the STIN regime. Note that this

network is included in all networks with K ≥ 4 in the STIN regime as a special case, by

setting the strength of all the links not appearing therein as 0. Let (λ1, λ2, λ3) = (1, ε, ε).

From Theorem 3.1, it follows that max(d1,d2,d3)∈SGDoF f.p.
IC ([α0])

d1+εd2+εd3 = 3ε. Although the

SGDoF region of the BC setting remains open, it is possible to achieve (d1, d2, d3) = (0.5, 0, 0)
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1X1 → 1 → Y1

2X2 → 2 → Y2

3X3 → 3 → Y3

ε < 1

1

3

2

1

2

3

1X1 1 Y1

2X2 2 Y2

3X3 3 Y3

ε

1

3

2

1

2

3

V2

J2

0.5

1

1.5

V3

J3

0.5
0.5

2

V2
V3

1

V2

J2
V3

J3
2

1

V2

J2

V3

J3 2

1

P̄αk2X2 P̄αk3X3

Figure 3.5: A network in the STIN regime and a scheme achieving secure GDoF tuple
(d1, d2, d3) = (0.5, 0, 0). Codeword V2 and V3 are encoded from ‘messages’ Z and W1 ⊕ Z,
where Z is i.i.d. uniform secret-sharing noise independent of W1, and ⊕ indicates addition
modulo the support size of W1. Decoding either Z (at User 2) or W1 ⊕ Z (at User 3)
individually reveals nothing about W1, but decoding both (at User 1) reveals W1 fully.

by the scheme depicted in Figure 3.5, making max(d1,d2,d3)∈SGDoF f.p.
BC ([α0])

d1+ εd2+ εd3 ≥ 0.5.

The scheme in Figure 3.5 uses secret-sharing ideas similar to [101] can be alternatively

obtained by starting from the secure Polyhedral TIN scheme that achieves (d2, d3) = (1.5, 0.5)

for Users 2 and 3 in the absence of User 1, reducing d2 to 0.5 (by reducing the size of the

codebook), and then adding User 1 while replacing W2 with Z, W3 with W1⊕Z for uniform

noise Z that is independent of W1 and has the same number of bits as W1 (the addition is

bit-wise in F2). Thus, Users 2 or 3 learn nothing about W1, while User 1 is able to decode

both Z and W1 ⊕ Z, to recover W1. Hence we have a lower bound for ηSTIN,

ηSTIN ≥
maxSGDoF f.p.

BC ([α0])
d1 + εd2 + εd3

maxSGDoF f.p.
IC ([α0])

d1 + εd2 + εd3
≥ 1

6ε
. (3.32)

Since ε can be made arbitrarily small, the lower bound approaches ∞ when ε → 0+.

3.5.3 Proof of Theorem 3.3

Since the SLS regime is contained in the STIN regime according to Lemma 3.2, and trans-

mitter cooperation cannot hurt, Theorem 3.1 implies the achievability of TINP in the BC
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setting. For the converse of Theorem 3.3 (equivalently, Corollary 3.2) we need to prove (3.5)

and (3.6). Out of these, the proof of (3.6) for Theorem 3.1 provided in Section 3.5.1 also

applies to the BC setting, because none of the Aligned Images bounds used in the proof as-

sumes independence of inputs. The only remaining bound, (3.5), is trivial in the SLS regime,

because the single user GDoF even without secrecy constraints and with perfect CSIT, are

still bounded above as di ≤ maxk∈[K] αik. This can be further bounded above by αii in the

SLS regime because of the SLS condition (see Definition 3.4) that αii ≥ αik for all i, k ∈ [K].

3.5.4 Proof of Theorem 3.4

The converse part of (3.17) can be obtained by applying Lemma 3.4 to (3.28) with m = 2.

In the following, we provide the scheme to achieve (3.17). Let i = argmaxk∈[K](α1k − α2k)
+

and j = argmaxk∈[K](α2k −α1k)
+. If there are multiple indices reaching the maximum, then

we choose an arbitrary one of them. We consider the following non-trivial cases:

1. α1i − α2i > 0 and α2j − α1j > 0

In this case, i ̸= j. By re-labeling Transmitter i and j respectively as 1 and 2, we find

the achievability follows from Corollary 3.1.

2. Either α1i − α2i ≤ 0 or α2j − α1j ≤ 0, but not both

Without loss of generality, we assume α2j − α1j ≤ 0, which yields SGDoF f.p.
BC,Σ([α]) =

α1i − α2i. This can be achieved with the following scheme, which achieves the secure

GDoF tuple (α1i − α2i, 0). We prepare a Gaussian wiretap codebook of size 2n(Rs+Rc),

where

Rs = log
(
1 + Pα1i−α2i∆−2

)
− log(1 + ∆2), (3.33)

Rc = log(1 + ∆2). (3.34)
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The wiretap codebook contains codewords V (t), where V (t) ∼ CN (0, P−α2i) for all

t ∈ [n]. We encode W1 at rate Rs into V (t), set Xi(t) = V (t), and shut the rest

transmitters off (Xk(t) = 0, ∀k ̸= i). Such a scheme turns the channel into a wiretap

one, where W1 is desired by Receiver 1 and kept secret from Receiver 2. An achievable

secure rate for W1, denoted by R1, can be inferred from [74] to be

R1 = inf
g∈supp{G}

{I(V ;Y1|G = g)− I(V ;Y2|V2,G = g)} , (3.35)

where g = {Glk : l ∈ [2], k ∈ [K]} is a realization of G, and supp{G} is the support of

the random variables in G. It can be further shown that R1 ≥ Rs, because

R1 = inf
g∈supp{G}

{
log(1 + Pα1i−α2i |G1i|2)− log(1 + |G2i|2)

}
(3.36)

≥ log
(
1 + Pα1i−α2i∆−2

)
− log(1 + ∆2) = Rs, (3.37)

where in (3.37) the inequality holds because it is assumed 1/∆ ≤ |Glk(t)| ≤ ∆. Since

Rs = (α1i − α2i) logP + o(logP ), we have d1 = α1i − α2i.

3.5.5 Proof of Corollary 3.3

The achievability part follows from Corollary 3.1 with Xh(t) = 0 for h ∈ [K + 1 : K +H].

The converse part largely follows the proof for Theorem 3.1 provided in Section 3.5.1. The

only difference lies in the number of the input codewords constituting the channel outputs,

which is K +H instead of K. This makes the index set over which the maximum in (3.29)

is taken expand from [K] to [K +H]. However, equality (3.30) still holds, since [α] is in the

SLS regime, and [αH ] satisfies (3.18).
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3.5.6 Proof of Theorem 3.5

We prove Theorem 3.5 by showing that not all single-user GDoF tuples di = αii and dj = 0

for j ̸= i, which are achievable without eavesdroppers, remain achievable after a non-trivial

eavesdropper is added. This implies that the SGDoF region of the IC with eavesdroppers is

strictly smaller than TINP ([α]).

We add a non-trivial eavesdropper of labelK+1 to the IC, and assume αK+1,1 = maxj∈[K] αK+1,j >

0, without loss of generality. Note that the tuple d∗ ≜ (α11, 0, 0 · · · , 0) is in TINP ([α]) and

thus securely achievable before we add the eavesdropper, as is implied by Lemma 3.1. To

facilitate the proof we define the following terms. First we define E ≜ {j ∈ [K] : αK+1,j =

αK+1,1}, δ̃ ≜ αK+1,1 − maxj∈[K]\E αK+1,j, and δ ≜ min{δ̃,minj∈E α1j}. Note that δ > 0,

because δ̃ > 0, and α1j > 0 due to the assumption that [α] lies in the interior of the CTIN

regime. Next we cast Y n
1 and Y n

K+1 into the deterministic model Ȳ n
1 and Ȳ n

K+1 in a same way

as is done in (3.21). Also, we define Ȳ n
δ ≜

{
Ȳδ(t) : t ∈ [n]

}
, where

Ȳδ(t) =
∑

j∈E

⌈
GK+1,j(t)(X̄j(t))

δ
⌉
, (3.38)

and for a real value X = O(P̄α), and 0 ≤ µ ≤ α, we define (X)µ ≜
⌈
X/P̄α−µ

⌉
.

Now we show that d1 < α11 when Receiver K+1 is present. Starting from Fano’s inequality,

nR1 ≤ IG(Y
n
1 ;W1) (3.39)

≤ IG(Ȳ
n
1 ;W1) = HG(Ȳ

n
1 )−HG(Ȳ

n
1 |W1) (3.40)

≤ HG(Ȳ
n
1 )−HG(Ȳ

n
δ |W1) (3.41)

= HG(Ȳ
n
1 )−HG(Ȳ

n
δ ) (3.42)

≤ max

{
max
j∈E

(α1j − δ)+ , max
j∈[K]\E

α1j

}
n logP (3.43)

< α11n logP. (3.44)
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We apply (3.23) of Lemma 3.3 to get (3.40). Inequality (3.41) holds due to Lemma 3.4 and

the fact that δ ≤ α1j for j ∈ [K]\E . Next we apply (3.24) of Lemma 3.3 (with detailed steps

given later) to obtain IG(Ȳ
n
δ ;W1) ≤ no(logP ), and therefore (3.42). Then we apply Lemma

3.4 to obtain (3.43). Finally, we apply the assumption of the CTIN regime to obtain the

strict inequality (3.44). The strict inequality (3.44) implies d1 < α11, which concludes the

proof.

The remaining part is to show IG(Ȳ
n
δ ;W1) ≤ no(logP ), which is done as below.

IG(Ȳ
n
δ ;W1)

(a)
= IG((Ȳ

n
K+1)

δ;W1)
(b)

≤ IG(Ȳ
n
K+1;W

K)
(c)

≤ no(logP ), (3.45)

where (Ȳ n
K+1)

δ =
{
(ȲK+1(t))

δ : t ∈ [n]
}
. Equality (a) holds because for all t ∈ [n], Ȳδ(t) and

(ȲK+1(t))
δ are within bounded distortion (See Lemma 4.6 and its following discussion for

details). Inequality (b) follows because (Ȳ n
K+1)

δ is a function of Ȳ n
K+1, and WK includes W1.

Finally, we apply (3.24) of Lemma 3.3 to obtain (c).

3.5.7 Proof of Theorem 3.6

To show the existence of a set for [αE] which is not of measure zero, we identify an interval

for each parameter in [αE] satisfying the following requirement: When the parameters are

taken from the interval, we can find a TIN with cooperative jamming scheme for each

d ∈ TINP ([α]), such that none of the messages appear above the noise floors of the newly

added eavesdroppers. Then the cube generated by the interval forms a set for [αE] of a

non-zero Lebesgue measure.

To identify the interval, it suffices to show that all GDoF tuples in TINP ([α]) can be

achieved with the TIN scheme and some power control parameters bounded above by some

negative value. By Theorem 3 of [39], a set of power control parameters ri achieving d =
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(d1, d2, · · · , dK) ∈ TINP ([α]) can be found as

rk(d) = min

{
0, min

m∈[2:K]
min

πm∈Πm(k)

{
∆πm −

(
αkk − αkπm(k)

)
−
∑

j∈{πm}
dj + dk

}}
(3.46)

for all k ∈ [K], where Πm(k) is the collection of all permutations πm with k included. (Refer

to Definition 3.1 for the definition of πm, {πm}, πm(k) and ∆πm .) Although rk(d) are not

necessarily negative, yet one still can achieve the same GDoF tuple while reducing all rk(d)

uniformly by ξ(d) defined as

ξ(d) ≜ min
k∈[K]

αkk + ri(d)− dk

= min
k∈[K]

{
αkk − dk, min

m∈[2:K]
min

πm∈Πm(k)

{
∆πm + αkπm(k) −

∑
j∈{πm}

dj

}}
. (3.47)

Note that ξ(d) sets a upper bound in the power level: it takes at most O(P−ξ(d)) for each

transmitter to achieve d.

It can be verified that ξ(d) > 0 for all d ∈ TINP ([α]) as follows. First, the definition

of TINP ([α]) with [α] being in the interior of the STIN regime implies ∆πm + αkπm(k) −∑
j∈{πm} dj ≥ αkπm(k) > 0. Next we show that dk < αkk. This is because

d∗k ≜ max
d∈TINP ([α])

dk (3.48)

= min

{
αkk, min

m∈[2:K]
min

πm∈Πm(k)
∆πm

}
(3.49)

= min

{
αkk, min

π2∈Π2(k)
∆π2

}
(3.50)

= min

{
αkk, min

j∈[K],j ̸=k
αkk + αjj − αkj − αjk

}
, (3.51)

where (3.50) holds because for every πm ∈ Πm(k), from the assumption of the STIN regime,
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we can find a π2 ∈ Π2(k) such that ∆πm ≥ ∆π2 . By (3.19), we have

d∗k − αkk = min

{
0, min

j∈[K],j ̸=k
αkk − αkj − αjk

}
< 0. (3.52)

Seeing that TINP ([α]) is compact, we have Ξ ≜ min
d∈TINP ([α])

ξ(d) > 0. Note that to

achieve all GDoF tuples in TINP ([α]), it suffices for all the codewords Xn
k to have power

at most O(P−Ξ). If all links to the eavesdroppers take their strengths αek from [0,Ξ), the

messages never appear above the noise floor of the eavesdroppers, and are thus kept secret.

As a result, we identify for [αE] a cube [0,Ξ)KE, which is a subset of RKE with a positive

Lebesgue measure, such that the SGDoF region of the IC with eavesdroppers remains to be

TINP ([α]).

3.6 Summary

By adding secrecy constraints we obtain the largest parameter regimes known thus far (the

STIN regime for interference networks, and the SLS regime for broadcast networks) where

sharp characterizations of robust (finite precision CSIT) GDoF regions are obtained for

arbitrary number of users, and robust TIN-like schemes are optimal. The robustness aspect

is especially strong for interference networks, because the solution is robust not only against

the transmitters’ finite precision knowledge of channel coefficients, but also against errors

in the transmitters’ knowledge of channel strengths (the αij parameters), provided that the

transmitters’ estimates of channel strengths are conservative. In other words, as long as the

channel strengths for desired links are not overestimated and those for interfering links are

not underestimated by the transmitter(s), the messages remain decodable and secure, and

therefore the GDoF characterizations continue to hold. This is because each receiver finds

its desired codeword and the accompanying jammer shifted upward in power, compared to
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what the transmitters expect; meanwhile it finds the other codewords shifted downward in

power. As a result, the desired message remains decodable while the other messages remain

secure.
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Chapter 4

The Robustness of Structured Codes:

Secure GDoF of Z Channels

4.1 Benefits of Structured Codes

The capacity of wireless networks, as evident from recent Degrees of Freedom (DoF) [4] and

Generalized Degrees of Freedom (GDoF) [7] studies, depends rather strongly on the under-

lying assumptions about the availability of channel state information at the transmitter(s)

(CSIT). Zero forcing [2, 102], interference alignment [9–12] — structured codes [103, 104] in

general — are powerful ideas; nevertheless their benefits can quickly disappear under even

moderate amounts of channel uncertainty. Robustness is paramount, and it is enforced in

GDoF studies by limiting CSIT to finite precision [17, 20]. This leads naturally to a crucial

question: how robust are structured codes? Specifically, to what extent does finite precision

CSIT fundamentally limit the benefits of structured coding schemes?

Accounting for arbitrary structure is essential because, unlike random noise, interference

can be arbitrarily structured. It is the structure of the codes that decides how the signals
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align with each other, how many signal dimensions they occupy together, whether they

add constructively or destructively, whether they can be collectively or individually decoded

[53, 89, 94, 105–114]. Accounting for structure, even from the coarse GDoF perspective,

turns out to be difficult, perhaps because structured codes are inherently combinatorial

objects. This is especially the case for robust GDoF studies (e.g., with CSIT limited to

finite precision), where it is increasingly evident that classical information theoretic tools are

lacking.

4.1.1 Bounding Structure Benefits by Aligned Images

With the exception of ‘Aligned Images (AI)’ bounds [20], there are no alternatives, to our

knowledge, that have been found to be capable of bounding the benefits of structure under

non-trivial channel uncertainty. For example, aside from the combinatorial approach of AI

bounds, there still is no other argument to prove that the K user interference channel (IC)

has any less than a total of K/2 DoF under finite precision CSIT. Note that Aligned Images

bounds can prove something much stronger — that it has only a total of 1 DoF [20]. In

fact even if all the transmitters cooperate fully the resulting K user multiple-input single-

output (MISO) broadcast channel (BC) still has only 1 DoF (thus resolving a conjecture by

Lapidoth, Shamai and Wigger [17]). AI bounds have been similarly essential to robust GDoF

characterizations of various interference and broadcast settings, such as the symmetric K

user IC [25], the two user MIMO IC with arbitrary levels of CSIT [33], the 3 user MISO

BC [36], and the two user MIMO BC with arbitrary levels of CSIT, [26, 31]. Robust GDoF

characterizations have also been found using AI bounds for various intermediate levels of

transmitter cooperation in [28,62,63].

Aligned Images bounds are so called because they are based on counting the expected number

of codewords that can cast ‘aligned images’ at one receiver while casting resolvable images at
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another. Because of their essentially combinatorial character, derivations of AI bounds can

be somewhat tedious. Yet, the lack of alternatives thus far makes these bounds indispensable

to the goal of developing a robust understanding of the capacity limits of wireless networks.

In order to make further progress in this direction, it is important to explore and expand

the scope of AI bounds. Notably, the class of AI bounds was recently expanded significantly

into a broad class of sum-set inequalities in [24]. Exploring applications of these increasingly

sophisticated sumset inequalities is another motivation for our work in this chapter.

4.2 Problem Statement and Contributions

4.2.1 Robustness of Structured Jamming

With the aid of sum-set inequalities we wish to explore the robustness of structured codes

for secure communication [89, 94, 107–109, 113, 115–119]. In particular, one powerful idea

that is made possible by structured codes is the aggregate decoding and cancellation1 of

jammed signals [89, 94, 113, 117–119]. Lattice-coded jamming signals are sometimes used to

guarantee the secrecy of a message that is itself encoded with a compatible lattice code. A key

advantage of structured codes in such settings is that even though neither the jamming noise

nor the message is individually decodable, their sum can still be ‘decoded’ and cancelled.

Intuitively, this is because the sum of lattice points is still a valid lattice point. The ability

to decode and cancel jammed signals in aggregate is important because it then allows a

receiver to successively decode [56] desired signals at lower power levels. However, this

ability may not be robust to channel uncertainty, which is especially a concern for secure

communication applications where robustness is paramount. The question is fundamental

1‘Aggregate decoding and cancellation’ is used loosely here to refer to any means by which the interference
from jammed signals at higher power levels to the desired signals at lower power levels can be mitigated.
The focus is on mitigating the residual interference to lower power levels, and not on the aggregate decoding
of higher levels per se.
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Figure 4.1: A toy example. On the left is the ADT deterministic model which shows that
under perfect CSIT the secure GDoF tuple (1/2, 1/2) is achievable (needs lattice alignment
between structured codes B2 and A1). On the right is the corresponding channel model
under finite precision CSIT, for which we prove in this chapter that the GDoF tuple (δ, 1/2)
is not achievable for any δ > 0. This can be seen from Theorem 4.1 by substituting β =
3/2, d2 = 3/2 in Case 2, which yields d1 ≤ 0. Some of the notations are defined in Section
4.6.

and therefore broadly relevant, but in order to minimize distractions we study what is perhaps

the simplest scenario where the question presents itself — a Z interference channel with

secrecy constraints [120–124].

4.2.2 A Toy Example

As a motivating example, consider the toy setting of a Z channel illustrated in Figure 4.1

where the two transmitters wish to send independent secret messages to their respective

receivers, and only Receiver 1 experiences interference. The desired links of each user by

themselves are capable of carrying 1 GDoF, while the cross-link has 3/2 GDoF. Intuitively,

if we think of Cij as representing the capacity of the point-to-point channel between Trans-

mitter j and Receiver i, then the capacities are in the ratio C11 : C12 : C22 = 2 : 3 : 2

for this toy example. Note that the ratios of link capacities correspond to the αij values
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in the GDoF model, and that only the relative values of αij matter2 for the GDoF metric.

Throughout this chapter we will normalize α22 to unity. In the figure3 we see both the

ADT deterministic model [8] (on the left), which implies perfect CSIT, as well as the more

general deterministic4 model (on the right) that allows us to study finite precision CSIT.

Similar to the normalization, α22 = 1, all channel capacities are normalized by the capacity

of the channel between Transmitter 2 and Receiver 2 in the ADT model, so that after the

normalization we have (C11, C12, C22) = (1, 3/2, 1). The ADT model shows, intuitively, how

it is possible with perfect CSIT to achieve the GDoF tuple (1/2, 1/2). Since communication

must be secure and the top signal level B1 is fully exposed to the undesired receiver, while

the bottom signal level B3 cannot be heard by the desired receiver (below the noise floor)

this leaves Transmitter 2 only B2 to achieve its 1/2 GDoF. Transmitter 1 sends a jamming

signal A1 to secure B2 from Receiver 1. The most important aspect of this toy example is

the alignment that takes place between A1 and B2, both of which are structured (lattice)

codes, so that the sum A1 + B2 also has a lattice structure. This allows Receiver 1 to ‘de-

code’ the sum A1 + B2 (without being able to decode A1 or B2 separately, which would

violate secrecy), subtract it from the received signal and then decode its desired signal A2

in order to simultaneously achieve 1/2 GDoF. Now consider the same problem under finite

precision CSIT, which poses obstacles for lattice alignment. If lattice alignment is restricted

then so is the ability of Receiver 1 to ‘decode’ the linear combination of signals A1 and B2,

which in turn limits the potential for decoding the desired signal A2 that appears at a lower

power level. But how strong are these restrictions? Is it still possible to partially mitigate

interference from aligned signals at higher power levels to allow decoding of desired signals

at lower power levels? Are these restrictions fundamental — could there be other structured

2It follows from the definition of GDoF that if all αij values are scaled by the same constant then the
GDoF value is scaled by that constant as well.

3Intuitively, X1, X2 are non-negative integers that can be (approximately) expressed in ⌊
√
P 1/2⌋-ary

symbols as X1 = A1A2 and X2 = B1B2B3.
4The model is not fully deterministic in a strict sense, because the channel coefficients are not perfectly

known to the transmitters. The nomenclature comes from the fact that the Gaussian noise is removed in
this model.
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coding schemes, yet to be discovered, that could overcome such limitations? These are the

fundamental questions that motivate the work in this chapter.

4.2.3 Secure Robust GDoF of the Z Channel

What we find, using Aligned Images sum-set inequalities [24], is that indeed the limitations

imposed on structured codes by finite precision CSIT, are both strong and fundamental. In

the specific context of this toy example, we prove that the GDoF tuple (δ, 1/2) is not achiev-

able for any δ > 0. Thus, the GDoF benefits of lattice alignment, aggregate decoding and

cancellation are all lost under finite precision CSIT, underscoring their fragile nature. More-

over, because the bound is information theoretic, no better alternative can exist. Beyond

the toy example, the general proof formalizes the intuition that under finite precision CSIT,

lower layers cannot be decoded without decoding higher layers, and higher layers cannot be

decoded in aggregate if they cannot be decoded separately. As a byproduct of this analysis,

we fully characterize the secure GDoF region of the Z channel under finite precision CSIT.

Since the Z interference channel is a canonical setting that has been extensively studied

under a variety of assumptions, let us note that there are three essential distinguishing

aspects of our work: 1) robustness, 2) information theoretic optimality in the GDoF sense,

and 3) security. It is the combination of these 3 aspects that makes our setting uniquely

challenging and allows us to explore the limitations of aggregate decoding for structured

jamming under channel uncertainty. In fact it is arguably the simplest problem that allows

us to do so. For example, if we relax any of these three constraints then there would be no

need for AI bounds. If we relax the robustness constraint by allowing perfect CSIT, then the

problem has been studied in [120,121], and since channel uncertainty is not a concern, ADT

models can be used to construct powerful lattice alignment solutions as shown in Figure

4.1. If we do not insist on information theoretic optimality then achievable schemes are
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easily developed, say from [80]. If we stop short of GDoF, e.g., only ask for DoF (degrees of

freedom) by restricting α = β = 1, then the problem becomes trivial because the DoF region

is the simplex bounded by d1+ d2 ≤ 1 even with perfect CSIT, which is also achievable with

finite precision CSIT. If we relax the security constraint, then there is no need for structured

codes (e.g., lattice alignment) and the capacity has been characterized within a gap of a

constant number of bits in [125]. Furthermore, the two user Z interference channel with

secrecy constraint is especially appealing because it has very few channel parameters, which

allows us to seek a comprehensive GDoF characterization for the entire parameter space

without any assumptions of symmetry, and at the same time the secrecy constraint ensures

that the problem is non-trivial and allows room to explore sophisticated applications of the

new sumset inequalities [24].

Remarkably, despite its simplicity, the two user Z channel is not far from exhausting the

scope of known sum-set inequalities. It is noted recently in [30] that even if we introduce

just one more user, which changes the two user Z channel into a 3-to-1 interference channel

(only Receiver 1 experiences interference), then the problem of characterizing the secure

GDoF region under robust CSIT assumptions may be beyond the reach of known sum-set

inequalities. Finally, let us note that the Z interference channel has also been explored

under other assumptions that are not so closely related to the work in this chapter, e.g.,

deterministic encoders [122], cooperation between transmitters [123], cooperation between

receivers [126], binary alphabet [124], and lack of coordination/trust between transmitters

[127].
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Figure 4.2: The Gaussian Z interference channel (ZIC).

4.3 System Model

4.3.1 The Gaussian Z Interference Channel (ZIC)

We consider the two user Gaussian Z Interference Channel depicted in Figure 4.2, which

consists of two transmitters and two receivers, each equipped with a single antenna. As shown

in the figure, the network has a Z topology, so both transmitters are heard by Receiver 1,

while only Transmitter 2 is heard by Receiver 2. There are two independent messages W1

and W2, that originate at Transmitter 1 and Transmitter 2 and are desired by Receiver 1 and

Receiver 2, respectively. Message Wi is uniformly distributed over the set Wi. The messages

are encoded into codewords X1,X2, where X i = {Xi(t) : t ∈ [n]} ∈ Rn is a codeword

spanning n channel uses that is sent from Transmitter i, and satisfies a unit transmit power

constraint, 1
n

∑
t∈[n] E[|Xi(t)|2] ≤ 1, i = 1, 2. The messages are encoded separately and there

is no common randomness shared between transmitters; i.e., X i = fi,n(Wi, θi), where fi,n(.),

i = 1, 2 are encoding functions, θi is private randomness available only to Transmitter i, and

I(θ1,W1; θ2,W2) = 0.

4.3.2 The Gaussian Z Broadcast Channel (ZBC)

While our focus is primarily on the ZIC, as a useful point of reference let us also define the

corresponding Gaussian Z Broadcast Channel (ZBC), shown in Figure 4.3, which is identical

to the ZIC in every regard except that in the ZBC the transmitters are allowed to cooperate
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Figure 4.3: The Gaussian Z broadcast channel (ZBC).

fully to jointly encode the messages; i.e., (X1,X2) = f0,n(W1,W2, θ1, θ2), where f0,n is the

encoding function.

4.3.3 The GDoF framework

Within the GDoF framework, the received signals in the t-th channel use are described as

Y1(t) = G11(t)
√
Pα11X1(t) +G12(t)

√
Pα12X2(t) + Z1(t), (4.1)

Y2(t) = G22(t)
√
Pα22X2(t) + Z2(t), (4.2)

where P is a nominal variable (referred to as power) whose asymptotic limit, i.e., P → ∞,

will be used to define the GDoF metric. Zi(t), i = 1, 2, are the zero-mean unit-variance

additive white Gaussian noise terms. Xi(t), i = 1, 2, are the signals sent from the two

transmitters, each of which is subject to a unit transmit power constraint. All symbols

are real-valued. αij ≥ 0 (i, j = 1, 2) are channel strength parameters for the link from

Transmitter j to Receiver i. Without loss of generality,5 let us normalize the αij parameters

so that α22 = 1, α12 = β and α11 = α.

Let us briefly recall the motivation behind the GDoF framework. The channel strength

parameters αij correspond (approximately) to the capacity of the corresponding point-to-

point Gaussian channel between Transmitter j and Receiver i. Specifically, note that the links

5There is no loss of generality in this assumption because from the definition of GDoF in (4.5) it is obvious
that any normalization of αij parameters results in simply the same normalization factor appearing in the
GDoF value.
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under the GDoF framework in (4.1) and (4.2) have approximate point-to-point capacities

αij

(
1
2
log(P )

)
. Here 1

2
log(P ) may be viewed as a nominal scaling factor that is applied to

proportionately scale the capacity of every link. The intuition behind this scaling is that as

the capacity of every link is scaled by the same factor, the network capacity should scale by

approximately the same factor as well. Therefore, normalizing all rates by 1
2
log(P ) yields

an approximation to the capacity of the network. Letting P approach infinity makes the

problem amenable to asymptotic analysis, which indeed gives us the definition of GDoF (See

equation (4.5)). It is noteworthy that the deterministic models of [8], which have been the

key to numerous capacity approximations over the last decade, are specializations of the

GDoF framework under perfect CSIT. For robust GDoF studies, however, we need to limit

CSIT to finite precision.

4.3.4 Finite Precision CSIT

Following in the footsteps of [20], let us define G as a set of random variables that satisfy

the bounded density assumption of [20] (replicated as Definition 4.3 in Section 4.6.1 of this

chapter). Elements of G may be viewed as random perturbation factors that are introduced

into the model primarily to limit CSIT to finite precision, thus their realizations are assumed

to be known perfectly to the receivers but not to the transmitters. Formally,

I(W1,W2, θ1, θ2,X1,X2;G) = 0. (4.3)

Specifically, the channel coefficients Gij(t) are distinct elements of G for all t ∈ [n], i = 1, 2.
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4.3.5 Perfect CSIT

While our focus in this chapter is primarily on finite precision CSIT, as a useful point of

reference let us also introduce the perfect CSIT assumption, which implies that the channel

coefficients Gij(t) are perfectly known not only to both receivers but to both transmitters as

well. The constraint (4.3) does not hold under perfect CSIT, and the coding functions may

depend on the channel realizations. Thus, X i = fi,n(Wi, θi,G), i = 1, 2 for the ZIC under

perfect CSIT, and (X1,X2) = f0,n(W1,W2, θ1, θ2,G) for the ZBC under perfect CSIT.

4.3.6 Achievable Rates and Secrecy Constraints

A rate tuple (R1, R2) is achievable subject to the secrecy constraint if, for all ϵ > 0, there

exist n-length codes for some n > 0 such that (i) the size of each message set |Wi| ≥ 2nRi ;

(ii) the decoding error probabilities at both users are no larger than ϵ; and (iii) the following

secrecy constraint is satisfied

1

n
I(Wj;Y i | G) ≤ ϵ ∀i, j ∈ {1, 2}, i ̸= j. (4.4)

Note that the secrecy constraint (4.4) is defined in the weak sense (normalized by n) [128].

The secure capacity region CP is the closure of the set of all achievable secure rate tuples.

4.3.7 Secure GDoF Region

The secure GDoF region D is defined as

D ≜

{
(d1, d2) ∈ R2

+

∣∣∣∣∃(R1(P ), R2(P )) ∈ CP , di = lim
P→∞

Ri(P )
1
2
logP

,∀i ∈ {1, 2}
}
. (4.5)
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We will use subscripts to distinguish ZIC from ZBC, and superscripts to distinguish finite

precision CSIT from perfect CSIT, so for example, Df.p.
IC symbolizes the GDoF region for the

ZIC under finite precision CSIT, and Dp
BC is the GDoF region for the ZBC under perfect

CSIT.

4.4 Results

In order to answer our titular question about the robustness of structured codes, we will

compare the GDoF region of the ZIC under perfect CSIT with the GDoF region of the ZIC

under finite precision CSIT, i.e., Dp
IC versus Df.p.

IC . These are characterized below in Lemma

4.1 and Theorem 4.1, respectively.

4.4.1 Secure GDoF of the ZIC With Perfect CSIT

Lemma 4.1. The secure GDoF region of the ZIC under perfect CSIT is characterized as

Dp

IC =

(d1, d2) ∈ R2
+

∣∣∣∣∣∣∣
d1 ≤ α, d2 ≤ min{1, (1 + α− β)+},

d1 + d2 ≤ α + (1− β)+

 , (4.6)

where α, β ≥ 0 are defined in Figure 4.2.

While a direct statement of Lemma 4.1 does not appear in prior literature to our knowl-

edge, the lemma essentially follows from known results and arguments. For the sake of

completeness, these arguments are summarized in Appendix C.1.
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4.4.2 Secure GDoF of the ZIC With Finite Precision CSIT

Theorem 4.1. The secure GDoF region of the ZIC under finite precision CSIT is charac-

terized as,

1. Regime 1: 1 < β < α

Df.p.

IC =
{
(d1, d2) ∈ R2

+

∣∣d2 ≤ 1, d1 + βd2 ≤ α
}
, (4.7)

2. Regime 2: 1 < β and β − 1 < α ≤ β

Df.p.

IC =

{
(d1, d2) ∈ R2

+

∣∣∣∣ d1α +
d2

1 + α− β
≤ 1

}
, (4.8)

3. Regime 3: 1 < β and α ≤ β − 1

Df.p.

IC =
{
(d1, d2) ∈ R2

+

∣∣ d1 ≤ α, d2 = 0
}
, (4.9)

4. Regime 4: 0 ≤ β ≤ 1

Df.p.

IC =

(d1, d2) ∈ R2
+

∣∣∣∣∣∣∣
d1 ≤ α, d2 ≤ 1,

d1 + d2 ≤ 1 + α− β

 , (4.10)

where α, β ≥ 0 are defined in Figure 4.2.

The proof of Theorem 4.1 appears in Section 4.5 and 4.6. The main contribution of this

chapter is the proof of Theorem 4.1 for Regimes 1 and 2. Regime 3 lies in the very strong

interference regime defined in [7], where Receiver 1 can decode whatever Receiver 2 can

decode in the GDoF sense, and hence the GDoF value is trivial in this regime under secrecy.

Regime 4 lies in the STIN regime defined in [129], where optimal secure GDoF are achieved
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Figure 4.4: The parameter regimes corresponding to the four cases in Theorem 4.1.

with jammers, power control and treating interference as noise. The converse proofs for

Regimes 1 and 2 rely on various sum-set inequalities of [24], and are central to the thesis of

this chapter, that the benefits of structured jamming are not robust to finite precision CSIT

in the GDoF sense.

4.4.3 How Robust Are Structured Codes?

With the help of Lemma 4.1 and Theorem 4.1, we are ready to explore the robustness of the

GDoF gains from structured codes through the following observations.

1. There are 4 parameter regimes identified in Theorem 4.1. These regimes are shown in

Figure 4.4. Our first observation is that in regimes 3 and 4, we have Dp
IC = Df.p.

IC , i.e., there

is no loss of GDoF from limiting CSIT to finite precision. However, this is not because

structured codes are robust to finite precision CSIT. Upon inspection of the achievable

scheme, it is evident that these are the regimes where structured codes are not needed even

with perfect CSIT. In Regime 3 we only need to switch off Transmitter 2, thus allowing
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Figure 4.5: (a) Dp
IC (in red) and Df.p.

IC (in grey) are shown for Regime 1 (where 1 < β < α).
(b) The achievability of (d∗∗1 , d∗2) = (α−1, 1) under perfect CSIT is illustrated. In particular,
aggregate decoding and cancellation of lattice-aligned signals (blue and red dotted portions)
is required, which is possible only under perfect CSIT. Signal levels shown in plain white are
empty.

User 1 to achieve α GDoF. It is not possible for User 2 to achieve any positive GDoF value

in Regime 3 without violating the secrecy constraint because the signal from Transmitter

2 appears at Receiver 1 with so much strength (β ≥ α + 1), that even if Transmitter

1 uses all its power to only transmit noise, thus maximally elevating the noise floor at

Receiver 1, the interfering signal that appears above the noise floor at Receiver 1 still

reveals everything that is visible to Receiver 2. In Regime 4 we adjust the power used by

Transmitter 2 to send its own message, which will cause interference at Receiver 1. To

keep it secure, all we need for Transmitter 1 is to transmit enough noise (jamming) to

elevate the noise floor at Receiver 1 to the level of the interfering signal, and then send

its desired message above the new noise floor. The jamming guarantees security, and the

desired signal is decoded by Receiver 1 simply by treating everything else as noise. Thus,

there is no need for structured codes to allow alignment or aggregate decoding of signals.

2. In regimes 1 and 2 a gap appears between Dp
IC and Df.p.

IC . Indeed, these regimes are central

to the work in this chapter, as they reveal the fragility of structured codes. First let us

consider Regime 1. The GDoF regions, Dp
IC and Df.p.

IC for this regime are illustrated in

Figure 4.5(a). Let d∗2 denote the maximal value of d2. According to Figure 4.5(a), d∗2 = 1.

89



Conditioned on d2 = d∗2, let d∗∗1 denote the maximum value of d1. We note that under

perfect CSIT we have (d∗∗1 , d∗2) = (α− 1, 1) but under finite precision CSIT we only have

(d∗∗1 , d∗2) = (α − β, 1). This loss of GDoF reveals the fragility of aggregate decoding of

structured codes. For an intuitive explanation, consider Figure 4.5(b) which shows how

(d∗∗1 , d∗2) = (α − 1, 1) is achieved under perfect CSIT, by lattice alignment between the

dotted portions of signals seen at Receiver 1. This lattice alignment ensures the secrecy

of W2 from Receiver 1, while simultaneously allowing Receiver 1 to decode the sum of

lattice points as a valid codeword. Indeed, while the top α−β GDoF (shown in light red)

of desired message can be decoded by Receiver 1 without any need for alignment, it is

the aggregate decoding of aligned signals that allows Receiver 1 to decode the additional

bottom β − 1 GDoF (shown in dark red) of desired message, thus achieving a total of

d∗∗1 = (α−β)+ (β− 1) = α− 1 GDoF. Intuitively, under finite precision CSIT, aggregate

decoding and cancellation are not possible, thus Receiver 1 is only able to decode the

top α − β GDoF of desired message, i.e., d∗∗1 = α − β. The main technical challenge in

this chapter is to prove this intuition, i.e., to show that aggregate decoding or any other

structured jamming scheme that even partially retains the GDoF benefits of aggregate

decoding and cancellation, is not possible under finite precision CSIT.

3. Now let us consider Regime 2, for which the GDoF regions Dp
IC and Df.p.

IC are illustrated

in Figure 4.6(a). In this case the loss of GDoF is even more severe as we have (d∗∗1 , d∗2) =

(β − 1, 1 + α − β) under perfect CSIT, and only (d∗∗1 , d∗2) = (0, 1 + α − β) under finite

precision CSIT. The loss of GDoF is once again attributable to the fragility of aggregate

decoding, as illustrated in Figure 4.6(b). Aggregate decoding and cancellation of lattice-

aligned signals allows Receiver 1 to decode the bottom β − 1 GDoF of desired message

under perfect CSIT, thus achieving d∗∗1 = β − 1. Intuitively, under finite precision CSIT,

Receiver 1 is no longer able to decode the aggregate signal, indeed d∗∗1 = 0. Once again,

the challenge is to formalize and prove this intuition, for which we will rely on sum-set

inequalities of [24].
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Figure 4.6: (a) Dp
IC (in red) and Df.p.

IC (in grey) are shown for Regime 2 (where 1 < β and
β− 1 < α ≤ β). (b) The achievability of (d∗∗1 , d∗2) = (β− 1, 1+α− β) under perfect CSIT is
illustrated. In particular, aggregate decoding of lattice-aligned signals (blue and red dotted
portions) is required, which is possible only under perfect CSIT. Signal levels shown in plain
white are empty.

4. The loss of GDoF in terms of d∗∗1 values is illustrated for the entirety of Regimes 1, 2, 3

in Figure 4.7. As noted, there is no loss in Regime 3, and Regime 4 is omitted to avoid

clutter. Regime 2 is particularly striking because d∗∗1 = 0 under finite precision CSIT.

The discontinuity between Regime 2 and Regime 3 is interesting, because it shows the

tremendous cost for securing W2 that is incurred in Regime 2 where d∗2 > 0. Note that

this cost disappears in Regime 3 where d∗2 = 0.

5. While the previous observations emphasized the loss of GDoF, let us now provide a

counterpoint to show that the loss is bounded. As another measure of the loss of

GDoF, consider an arbitrary weighted sum of GDoF values, say d(w1, w2) = w1d1 +

w2d2. Let us denote the maximal value of d(w1, w2) for the ZIC under finite precision

CSIT as df.p.IC (w1, w2) = max(d1,d2)∈Df.p.
IC

w1d1 + w2d2. Similarly, for perfect CSIT we have

dpIC(w1, w2) = max(d1,d2)∈Dp
IC
w1d1+w2d2. Based on Lemma 4.1 and Theorem 4.1, it is not

difficult to verify that the extremal value,

inf
(α,β)∈R+

2

inf
(w1,w2)∈R+

2

df.p.IC (w1, w2)

dpIC(w1, w2)
=

1

2
. (4.11)
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Figure 4.7: d∗∗1 under finite precision CSIT (left) and perfect CSIT (right) in the parameter
regimes 1, 2, 3. Regime 4 is omitted. Peak vertices are labeled as (α, β, d∗∗1 ) tuples.

In other words, looking out from the origin, the GDoF region Df.p.
IC is at least half as

large in every direction as the GDoF region Dp
IC. It is also easy to see that the bound

is asymptotically tight because, e.g., in Figure 4.5(a), if we let β → α from below and

α → ∞, then Dp
IC approaches an almost-rectangular shape (with vertices (0, 0), (α, 0), (α−

1, 1), (0, 1)) and Df.p.
IC approaches the lower left half triangle created by a diagonal-wise

partitioning of the rectangle (with vertices (0, 0), (α, 0), (0, 1)). Looking out along the

other diagonal (the ray that passes through the origin and (α − 1, 1)) we note that Df.p.
IC

is (asymptotically) only half as large as Dp
IC. Note that this corresponds to (w1, w2) =

(α− 1, 1).

6. Note that in the absence of secrecy constraints, the GDoF of the ZIC shown in Figure 4.2

under both CSIT assumptions can be found from [7] as

D̃p

IC = D̃f.p.

IC =

(d1, d2) ∈ R2
+

∣∣∣∣∣∣∣
d1 ≤ α, d2 ≤ 1,

d1 + d2 ≤ max{α, β}+ (1− β)+

 . (4.12)
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4.4.4 Secure GDoF of the ZBC With Perfect and Finite Precision

CSIT

The ZBC setting is less of our focus because even under perfect CSIT, the ZBC does not

require lattice codes or aggregate decoding and cancellation of jammed signals for secure

communication. Instead, it achieves secure communication through zero-forcing, which is

conceptually much more straightforward. Nevertheless, it is also not robust under channel

uncertainty. Moreover, the loss of GDoF in the ZBC under finite precision CSIT is also

implied, as a byproduct of our analysis of the ZIC. This is because, remarkably, our converse

proofs for Regimes 1, 2 in Theorem 4.1 hold even if we allow full cooperation among trans-

mitters. Therefore, as our final result let us present the GDoF characterization of the ZBC

under both perfect and finite precision CSIT.

Theorem 4.2. The secure GDoF region of the ZBC under perfect CSIT, Dp
BC, and under

finite precision CSIT, Df.p.
BC , are characterized as

Dp

BC =

(d1, d2) ∈ R2
+

∣∣∣∣∣∣∣
d1 ≤ max{α, β − 1},

d2 ≤ (1− (β − α)+)+

 , (4.13)

Df.p.

BC =


{
(d1, d2) ∈ R2

+

∣∣d1 ≤ β − 1, d2 = 0
}

if 1 < β and α ≤ β − 1,

Df.p.
IC otherwise,

(4.14)

where α, β ≥ 0 are defined in Figure 4.3.

The proof of Theorem 4.2 is presented in Appendix C.2.
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4.5 Proof of Theorem 4.1: Achievability

As noted previously, Regime 3 in Theorem 4.1 is trivial and Regime 4 already follows from

[129]. Thus we only need the proof for Regimes 1 and 2. In this section we provide the proof

of achievability which is quite straightforward.

For Regimes 1 and 2 it suffices to find schemes for the respective corner points and complete

the regions by time-sharing. The tuple (d1, d2) = (α, 0) is one of the corner points for both

cases, and is trivial. For Regime 1 it remains to find an achievable scheme for the other

corner point, (α − β, 1). This is easily seen by modifying the scheme of Figure 4.5(b), such

that Transmitter 1 sends his desired message only in the top α − β levels, i.e., and only a

jamming signal (Gaussian noise) below that. Thus the noise floor at Receiver 1 is elevated to

strength β, i.e., as high as the interfering signal, which guarantees security. Meanwhile, we let

Transmitter 2 transmit at full power. This creates a point-to-point channel for Transmitter

1 where the desired link to Receiver 1 has α − β GDoF, and creates a wiretap channel for

Transmitter 2 where the desired link to Receiver 2 has 1 GDoF and the eavesdropper link to

Receiver 1 has 0 GDoF. Employing a Gaussian codebook in the first point-to-point channel

and a wiretap codebook in the second, we achieve α − β SGDoF for User 1 and 1 SGDoF

for User 2.

For Regime 2 the other corner point is (0, 1−α+β). This is also easily achieved by modifying

the scheme of Figure 4.6(b), such that Transmitter 1 sends only a jamming signal (Gaussian

noise) with its full power. This raises the noise floor at Receiver 1 to power level α. As in

Figure 4.6(b), we reduce the transmit power at Transmitter 2 so that the top β−α levels are

empty, i.e., instead of the unit power constraint, Transmitter 2 only transmits with power

P−(β−α). This creates a wiretap channel for Transmitter 2, where the desired link to Receiver

2 has 1 + α − β GDoF, and the eavesdropper link to Receiver 1 has 0 GDoF. A wiretap

codebook achieves 1 + α− β SGDoF for User 2 and 0 for User 1.
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4.6 Proof of Theorem 4.1: Converse

The single user bound, d2 ≤ 1, in Regime 1 is trivial. Before presenting the proof of the

weighted sum bounds, as preliminary background we need to introduce some definitions,

sum-set inequalities, and a deterministic model, all of which originate in prior works on

Aligned Images bounds.

4.6.1 Preliminaries

Definitions

Definition 4.1 (Power levels). For λ, P > 0, define P̄ λ ≜
⌊√

P
λ
⌋
, and a set Xλ as

Xλ =
{
0, 1, 2, · · · , P̄ λ − 1

}
, (4.15)

We refer to P as power, and λ as power level of X ∈ Xλ. For simplicity, we denote P̄ 1 = P̄ .

Definition 4.2. For non-negative real numbers X, λ1 and λ2, where λ2 ≥ λ1 ≥ 0, we define

a sub-section of X corresponding to interval (λ1, λ2), (X)λ2
λ1
, as

(X)λ2
λ1

≜

⌊
X − P̄ λ2

⌊
X

P̄λ2

⌋
P̄ λ1

⌋
. (4.16)

We say that the (X)λ2
λ1

is a section of X that sits at level λ1, denoted as ℓ
(
(X)λ2

λ1

)
= λ1,

and has height λ2 − λ1, denoted as T
(
(X)λ2

λ1

)
= λ2 − λ1. Sub-sections (X)λ2

λ1
and (X)

λ′
2

λ′
1
of

X ∈ Xλ are disjoint if intervals (λ1, λ2) and (λ′
1, λ

′
2) are disjoint.

Similarly, for a set of non-negative real numbers X = {X(t) : t ∈ [n]}, we define a sub-
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section (X)λ2
λ1

as

(X)λ2
λ1

≜
{
(X(t))λ2

λ1
: t ∈ [n]

}
. (4.17)

Note that the same partitioning is applied to every element in the set. Levels and heights

are similarly defined; i.e., ℓ
(
(X)λ2

λ1

)
= λ1, and T

(
(X)λ2

λ1

)
= λ2 − λ1. Sub-section sets (X)λ2

λ1

and (X)
λ′
2

λ′
1
are disjoint if intervals (λ1, λ2) and (λ′

1, λ
′
2) are disjoint.

Figure 4.8 illustrates this partitioning ofX into various sub-sections. A further interpretation

for sub-sections is by expressing numbers with base P̄ . For X ∈ Xλ and λ ≥ λ2 ≥ λ1 ≥ 0,

sub-section (X)λ2
λ1

can be loosely interpreted in terms of the P̄ -ary expansion of X. The

P̄ -ary expansion of X is represented as X = xλxλ−1 · · ·x2x1, which is equivalent to a string

of length λ in which each symbol xi ∈ {0, 1, · · · , P̄ − 1}. In this sense, what (X)λ2
λ1

retrieves

from X is a sub-string xλ2xλ2−1 · · · xλ1+1 in the middle of X. A case that appears frequently

in this chapter is λ2 = λ and λ1 = λ − µ. The corresponding sub-section (X)λλ−µ, denoted

as (X)µ and referred to as top-µ sub-section of X, retrieves from X the leftmost length-µ

sub-string xλxλ−1 · · ·xλ−µ+1 comprised of the first µ most significant symbols in X. Similar

to (4.17), for a set of non-negative real numbers X with each element in Xλ, we define

(X)µ = {(X)µ : X ∈ X}. While this interpretation is helpful, the coarse understanding is

an oversimplification, as indeed all λ, λ1 and λ2 can take arbitrary non-negative real values.

Such partitioning is essentially a generalization of the original symbol partitioning with

binary representations that appeared in the ADT model in [8]. The generalization is needed

because of our focus on finite precision CSIT.

Definition 4.3 (Bounded density assumption). We define G as a set of real-valued random

variables that satisfies the following conditions (collectively referred to as the bounded density

assumption),

1. The magnitudes of all random variables in G are bounded away from infinity and zero;
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λ

µ

λ1

λ2

λ3

X

A1

(X)λ−µ

A2

A3

Figure 4.8: An illustration of Definition 4.2. The number X can be decomposed into X =
P̄ λ−µA1 + (X)λ−µ. Sub-section A1 = (X)λλ−µ has level ℓ(A1) = λ− µ and height T (A1) = µ.

Sub-section A2 = (X)λ2
λ1

has level ℓ(A2) = λ1 and height T (A2) = λ2 − λ1. Sub-section

A3 = (X)λ3
0 has level ℓ(A3) = 0 and height T (A3) = λ3. Note that A1 and A3 are disjoint

when λ− µ ≥ λ3.

i.e., there exists a constant ∆ > 1 such that |g| ∈
(

1
∆
,∆
)
for all g ∈ G.

2. There exists a finite constant fmax > 0, such that for all finite disjoint subsets G1, G2

of G, the joint probability density function of the random variables in G1, conditioned

on the random variables in G2, exists and is bounded above by f
|G1|
max.

Definition 4.4 (Finite-precision linear combination). For X1 ∈ Xη1 and X2 ∈ Xη2, define

X1 ⊞G X2 as

X1 ⊞G X2 ≜ ⌊G1X1⌋+ ⌊G2X2⌋ , (4.18)

where Gi are distinct random variables in G satisfying the bounded density assumption. For

two sets of random variables of the same cardinality, X1 = {X1(t) ∈ Xη1 : t ∈ [n]} and

X2 = {X2(t) ∈ Xη2 : t ∈ [n]} , we define X1 ⊞G X2 as

X1 ⊞G X2 ≜ {⌊G1(t)X1(t)⌋+ ⌊G2(t)X2(t)⌋ : t ∈ [n]} , (4.19)

where Gi(t) are distinct random variables in G satisfying the bounded density assumption.

The subscript G of operator ⊞ may be omitted if no ambiguity arises.
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Key Sum-set Inequalities

Our proof leans heavily on the sum-set inequalities based on Aligned Images sets from [24,

Theorem 4]. While [24] presents these sum-set inequalities in generalized forms, the following

simplified forms of those inequalities, taken from [28, Lemma 1], will be useful for our

purpose.

Lemma 4.2. Let µ, ν > 0, T (t) ∈ Xµ, U(t) ∈ Xν for t ∈ [n], and T = {T (t) : t ∈ [n]},U =

{U(t) : t ∈ [n]}. Let ST and SU be sets of finitely many disjoint sub-sections, respectively,

of T and U , and let {S1,S2, · · · ,SM} be a subset of ST ∪ SU . Let V = T ⊞G U . Then

HG (V |W) ≥ HG (S1,S2, · · · ,SM |W) + no(log P̄ ), (4.20)

where W is a set of random variables satisfying I(W ,T ,U ;G) = 0, and the following con-

straints on the levels and heights of Si hold for i = 2, 3, · · · ,M :

ℓ(Si) ≥ T (S1) + T (S2) + · · ·+ T (Si−1). (4.21)

Constraint (4.21) in Lemma 4.2 has a box-stacking interpretation that appeared previously

in [24, Section IV] and [28, Section IV], but we tailor it as follows to fit the settings in

Lemma 4.2. Let’s consider the t-th channel use only and drop the index for simplicity. We

can imagine these random variable sub-sections as boxes with labels S1, S2, · · · , SM ; box Si

has height T (Si) and originally sits on level ℓ(Si) in either T or U . Then we stack the boxes in

the index order of S1, S2, · · · , SM from the ground. Now in this stack box Si sits above boxes

S1, S2, · · · , Si−1, therefore it sits at level ℓ̃(Si) = T (S1) + T (S2) + · · ·+ T (Si−1). Constraint

(4.21) says that the new level ℓ̃(Si) cannot be higher than the level at which box Si originally

sits in T or U , which is ℓ(Si). In other words, constraint (4.21) is satisfied if, during retrieving

these boxes in T or U and stacking them up from ground, there is no need to elevate any of
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Figure 4.9: An illustration of the box-stacking interpretation of Lemma 4.2. The bounds
HG(V |W) ≥ HG(A1, A2, A4, A5|W) and HG(V |W) ≥ HG(A1, A5, A6|W) are implied by
Lemma 4.2 in the GDoF sense because the boxes appearing in these inequalities can be
stacked without elevating any of them above their original levels in T or U , as illustrated in
the two stacks marked with a ". On the other hand, Lemma 4.2 implies neither the bound
HG(V |W) ≥ HG(A2, A3, A6|W) nor HG(V |W) ≥ HG(A4, A6|W), because there is no way to
stack the boxes appearing in these inequalities without elevating some of them above their
original level in T or U , as shown in the two stacks marked with a %.

them above their original level. Note that while constraints (4.21) seem to fix the stacking

order according to the indices of the sub-sections, on the right-hand-side of (4.20) the entropy

of the sub-sections does not depend on the index ordering. So one can arbitrarily rearrange

the indices of the sub-sections and test the constraints in (4.21) with the permuted ordering.

In other words, if there exists a stacking order of these boxes with no need to lift up any of

them during stacking, then the sum-set inequality (4.20) holds. Figure 4.9 and 4.10 illustrate

some ways to stack the boxes (sub-sections) which satisfy or violate constraints (4.21). Note

that different choices of {S1, S2, · · · , SM} lead to different stacks of boxes. For example, in

Figure 4.9 the choice of M = 4 and (S1, S2, S3, S4) = (A4, A5, A2, A1) gives us the checked

(") stack on the left, while the choice of M = 3 and (S1, S2, S3) = (A6, A1, A5) produces the

checked stack on the right.
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Deterministic Model

To facilitate the use of Aligned Images bounds, we define a deterministic model as in [20].

In this deterministic model, the inputs are

A(t) =
⌊
P̄αX1(t)

⌋
mod P̄α, (4.22)

B(t) =
⌊
P̄max{1,β}X2(t)

⌋
mod P̄max{1,β}, (4.23)

and the outputs are

Y 1(t) = ⌊G11(t)A(t)⌋+
⌊
G12(t)P̄

β−max{1,β}B(t)
⌋
, (4.24)

Y 2(t) =
⌊
G22(t)P̄

1−max{1,β}B(t)
⌋
. (4.25)

Note that A(t) ∈ Xα and B(t) ∈ Xmax{1,β}. Let A = {A(t) : t ∈ [n]}, and B = {B(t) : t ∈

[n]}, and Y i = {Y i(t) : t ∈ [n]} for i = 1, 2. It can be shown that the GDoF of the

Gaussian model are bounded above by the GDoF of the deterministic model, accounting for

both decoding and secrecy constraints, as described by the following lemma.

Lemma 4.3.

IG(Wi;Y i) ≤ IG(Wi;Y i) + no(log P̄ ) ∀i = 1, 2, (4.26)

IG(Wj;Y i) ≤ IG(Wj;Y i) + no(log P̄ ) ∀i, j = 1, 2, i ̸= j. (4.27)

The proof of Lemma 4.3 is identical to that of Lemma 5.1 in [129].
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4.6.2 Useful Lemmas

With the preliminaries in place, we now proceed to the task of proving the converse for

Theorem 4.1, starting with the following lemmas. The first lemma is a straightforward

consequence of the secrecy constraint (4.27). In the statement of the lemma, note that

(B)µ = (B)β−α is the part of B that is received above A at Receiver 1 when β > α, and

similarly, (A)µ = (A)α−β is the part of A that is received above B at Receiver 1 when

α > β. The lemma essentially says that in terms of GDoF, neither of these exposed sections

should reveal information about W2 to Receiver 1, which already has W1 and Y 1 available

to it.

Lemma 4.4. Let µ = (β − α)+ and µ = (α− β)+. Then we have,

IG(W2;Y 1,W1) = no(log P̄ ), (4.28)

IG(Y 1;W2|W1, (A)µ, (B)µ) = no(log P̄ ), (4.29)

IG(W2;W1, (A)µ, (B)µ) = no(log P̄ ). (4.30)

Proof.

IG(W2;Y 1,W1)

= IG(W2;Y 1) + IG(W2;W1|Y 1) (4.31)

≤ IG(W2;Y 1) +HG(W1|Y 1) (4.32)

≤ IG(W2;Y 1) +HG(W1|Y 1) + no(log P̄ ) (4.33)

= no(log P̄ ). (4.34)

We apply the chain rule to get (4.31), and the definition of mutual information to obtain

(4.32). Next, we obtain (4.33) by applying (4.26) and (4.27). Finally, we apply the secrecy

constraint (4.4) and Fano’s inequality to obtain (4.34).
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To show equality (4.29) and (4.30), we note that from Y 1 one can obtain (A)µ and (B)µ,

and then apply the chain rule; more specifically,

no(log P̄ ) = IG(W2;Y 1,W1) (4.35)

= IG(W2;Y 1,W1, (A)µ, (B)µ) (4.36)

= IG(W2;W1, (A)µ, (B)µ)

+ IG(W2;Y 1|W1, (A)µ, (B)µ). (4.37)

Equality (4.29) and (4.30) thus hold as mutual information is non-negative.

The following lemma bounds from above the entropy difference, in the GDoF sense, of finite-

precision linear combinations of random variables in terms of their power levels. It is adapted

from Lemma 1 of [33] and hence its proof is omitted.

Lemma 4.5. Let µ = maxi=1,2{µi} and ν = maxi=1,2{νi}, where µi, νi > 0, i = 1, 2. Let

T (t) ∈ Xν and U(t) ∈ Xµ for t ∈ [n]; T = {T (t) : t ∈ [n]} and U = {U(t) : t ∈ [n]}. Let

V i = (T )µi ⊞Gi
(U)νi, where i = 1, 2, and G = G1∪G2 is a set of random variables satisfying

the bounded density assumption. Then

HG(V 1|W)−HG(V 2|W)

≤ max{µ1 − µ2, ν1 − ν2}+ log P̄ + no(log P̄ ), (4.38)

where W is a set of random variables satisfying I(W ,T ,U ;G) = 0.

An important issue that arises in applications of Aligned Images bounds is that of trans-

lating between ‘linear combinations of sub-sections’ on one hand, and ‘sub-sections of linear

combinations’ on the other. Sum-set inequalities are formulated in [24] in terms of linear

combinations of various sub-sections of input signals, but converse arguments often involve
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sub-sections of output signals, i.e., sub-sections of linear combinations of input signals. Un-

derstanding the extent to which these two notions can be related remains an open problem in

general [30]. For our present purpose, however, because we only need the ‘top’ sub-sections,

such a relationship is obtained in the following lemma.

Lemma 4.6. Let λ, µ, ν be real numbers satisfying λ ≥ µ > 0 and ν ≥ 0. Let T ∈ Xν+λ and

U ∈ Xν+µ. Then

HG((T ⊞ U)λ) = HG((T )
λ ⊞ (U)µ) +O(1), (4.39)

where G is a set of random variables satisfying the bounded density assumption.

Lemma 4.6 compares the entropy of a top sub-section of linear combination of two signals

versus the entropy of a linear combination of the top sub-sections. Intuitively, the difference

of these entropies is bounded within a constant because in the linear combination of two

signals, the terms carried over from lower levels do not not scale with P . Such a relationship

is referred to as being “within bounded distortion”. The proof of Lemma 4.6 appears in

Appendix C.3.

The next lemma provides an important lower bound on the entropy of a finite-precision linear

combination of random variables based on Lemma 4.2 and the submodularity of entropy.

Lemma 4.7. Let P, µ, ν ≥ 0, and let p, q > 0 satisfy 1
2
≤ p

q
≤ 1 and p

q
∈ Q. Let T (t) ∈ Xq+µ

and U(t) ∈ Xq+ν for t ∈ [n]; T = {T (t) : t ∈ [n]} and U = {U(t) : t ∈ [n]}. Let

V = T⊞GU , where G is a set of random variables satisfying the bounded density assumption.

Then

2pHG(V |W , (T )µ, (U )ν)

≥ qHG((T )p+µ, (U)p+ν |W , (T )µ, (U)ν) + no(log P̄ ), (4.40)
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where W is a set of random variables satisfying I(W ,T ,U ;G) = 0.

Proof. Since p
q
∈ Q, there exists ℓ ∈ R and p̃, q̃ ∈ N, such that p = p̃ℓ and q = q̃ℓ. For all

t ∈ [n], define sub-sections of T (t) and U(t) as

Ai(t) =


(T (t))

q−(i−1)ℓ
q−iℓ if 1 ≤ i ≤ p̃,

(U(t))
q−(i−p̃−1)ℓ
q−(i−p̃)ℓ if p̃+ 1 ≤ i ≤ 2p̃,

(4.41)

and Ai = {Ai(t) : t ∈ [n]} for i ∈ [2p̃]. Then by Lemma 4.2, for i ∈ [2p̃] the following holds:

HG(V |W , (T )µ, (U )ν)

≥ HG(Ai,Ai+1, · · · ,Ai+q−1|W , (T )µ, (U)ν), (4.42)

where we omit no(log P̄ ) for brevity, and implicitly use modulo-2p̃ arithmetic in the indices;

e.g., i0 = i2p̃. Lemma 4.2 is applied in the following way. After removing the top-µ sub-

section of T and top-ν sub-section of U , we take the top-p sub-section of the remaining T

and U , and evenly slice them into p̃ boxes, each of which has height ℓ. The boxes in T are

then indexed from top to bottom with 1 to p̃, and those in U are indexed likewise with p̃+1

to 2p̃. Conditioned on the top-µ sub-section of T and the top-ν sub-section of U , Lemma

4.2 implies that the entropy of T ⊞G U is no less than the joint entropy of the boxes whose

indices are within a circular sliding window of size q̃. This can be verified with the box-

stacking interpretation of Lemma 4.2. See Figure 4.10 for an illustration of the procedure

above.

Adding up (4.42) for all i ∈ [2p̃], we have

2pHG(V |W , (T )µ, (U)ν)

= ℓ2p̃HG(V |W , (T )µ, (U)ν) (4.43)
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Figure 4.10: An illustration of how the sum-set inequality in Lemma 4.2 is applied to the
proof of Lemma 4.7. In this case, µ = ν = 0, p = 2, and q = 3, which implies that ℓ = 1,
p̃ = 2 and q̃ = 3. The left most consecutive bars shows V = T ⊞G U and some sub-sections
of T and U taken by (4.41). The right four bars list all possible sub-section index sets
obtained by a circular sliding window of size q = 3. Seeing that all sub-sections in each
index set satisfy the box-stacking interpretation (All boxes can be stacked without elevating
any above their original levels), Lemma 4.2 implies that HG(V |W) ≥ HG(AI |W), where I
is one of the sub-section index sets, and AI = {Ai : i ∈ I}. Summing up these inequalities
and applying the submodularity of entropy, one can obtain (4.40).

≥ ℓ

2p̃∑
i=1

HG(Ai,Ai+1, · · · ,Ai+q̃−1|W , (T )µ, (U )ν) (4.44)

≥ ℓq̃HG(A1,A2, · · · ,A2p̃|W , (T )µ, (U)ν) (4.45)

≥ qHG((T )p+µ, (U)p+ν |W , (T )µ, (U)ν). (4.46)

Step (4.43) holds since p = p̃ℓ. Step (4.45) follows from the submodularity6 of entropy,

and (4.46) holds because q = q̃ℓ, and one can recover (T )µ+p and (U)ν+p from {Ai : i ∈

[2p̃]}, (T )µ, (U)ν , and G within bounded distortion.

6Let {X1, X2 · · · , Xn} be a set of random variables, then for 1 ≤ k ≤ n, the submodularity of entropy
implies:∑n

i=1
H(Xi, Xi+1, · · · , Xi+k−1) ≥ kH(X1, X2, · · · , Xn), (4.47)

where modulo-n arithmetic is implicitly used in the indices. For example, if k = 2, n = 3, then H(X1, X2) +
H(X2, X3) +H(X3, X1) ≥ 2H(X1, X2, X3).
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4.6.3 The Weighted-sum Bounds in Regime 1 and 2

We break down the proof into the following three lemmas. Throughout this section, we

define µ = β − α, µ = (µ)+, µ = (−µ)+, and W = {W1, (A)µ, (B)µ}. Note that in both

Regime 1 and 2, we have µ < 1. These three lemmas provides lower bounds on the entropy of

the signals and codewords, which are expressed in terms of the model parameters. To make

these bounds more accessible, after each of the following lemmas we explain their intuitions

with an instance of ZIC in Figure 4.2, where α = 1 and β = 8
5
, and demonstrate how they

may be used. For this instance, µ = µ = 3
5
, µ = 0, and W = {W1, (B)

3
5}.

Lemma 4.8. For λ ≥ 1− µ and µ ≤ 1, we have

HG((Y 1)
λ|W) ≥ nR2 +HG((Y 1)

λ−(1−µ)|W) + no(log P̄ ). (4.48)

Remark 4.1. To gain an intuitive understanding of the significance of Lemma 4.8, let us

see how it is useful for our example. For the ZIC in Figure 4.2 with α = 1 and β = 8
5
, we

choose λ = 8
5
and plug it in Lemma 4.8 to obtain the following lower bound:

HG((Y 1)
8
5 |W1, (B)

3
5 )

≥ nR2 +HG((Y 1)
6
5 |W1, (B)

3
5 ) + no(log P̄ ) (4.49)

⇒HG((Y 1)
8
5 |W1, (B)

3
5 , (Y 1)

6
5 ) ≥ nR2 + no(log P̄ ) (4.50)

⇒HG((Y 1)
8
5 |W1, (Y 1)

6
5 ) ≥ nR2 + no(log P̄ ). (4.51)

In (4.50) we used the general property that H(X | Y ) ≥ H(X)−H(Y ), and in (4.51) we used

the fact that the top-3/5 sub-section of B is exposed in the top-3/5 sub-section of Y 1 which

is already included in the top-6/5 sub-section of Y 1. Note that after the conditioning, what

remains on the LHS of (4.51) is the bottom-2/5 sub-section of Y 1, and (4.51) tells us that

its entropy should be at least as large as d2 in the GDoF sense. This is a key insight that may
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be understood intuitively as follows. First, note that d2 ≤ 2/5, because out of the top-1 sub-

section of B that is visible to Receiver 2, the top-3/5 sub-section is also directly exposed to

Receiver 1 and cannot directly carry information about W2 due to secrecy constraints. Now,

the key intuition is that under finite precision CSIT, signals sent at higher levels cannot

be prevented from impacting lower levels, and thus leaking information through them. This

insight is affirmed by (4.50), which shows that after the conditioning, the lowest 2/5 levels

of Y 1 must still contain at least as much entropy (essentially due to jamming noise) as W2,

otherwise the impact of W2 on lower digits of Y 1 would reveal something about W2.

Proof of Lemma 4.8.

HG((Y 1)
λ|W)

= HG((A)λ−µ ⊞ (B)λ−µ|W) + no(log P̄ ) (4.52)

≥ HG((A)λ−1 ⊞ (B)λ−µ|W) + no(log P̄ ) (4.53)

= HG(W2|W) +HG((A)λ−1 ⊞ (B)λ−µ)|W ,W2)

−HG(W2|W , (A)λ−1 ⊞ (B)λ−µ) + no(log P̄ ) (4.54)

= H(W2) +HG((A)λ−1 ⊞ (B)λ−µ|W ,W2) + no(log P̄ ) (4.55)

≥ nR2 +HG((A)λ−1 ⊞ (B)λ−1+µ|W ,W2) + no(log P̄ ) (4.56)

= nR2 +HG((Y 1)
λ−(1−µ)|W ,W2) + no(log P̄ ) (4.57)

= nR2 +HG((Y 1)
λ−(1−µ)|W) + no(log P̄ ). (4.58)

First, equality (4.52) holds because by Lemma 4.6 one can recover (A)λ−µ ⊞ (B)λ−µ from

(Y 1)
λ within bounded distortion. Then we apply Lemma 4.5 to obtain (4.53), and apply

the chain rule to obtain (4.54). Equality (4.55) holds for the following reasons: (a) equality

(4.30) implies the first entropy term; (b) the last entropy term is of order no(log P̄ ) is

because, from (A)µ and (A)λ−1 ⊞ (B)λ−µ, by Lemma 4.6 one can recover (B)1 within

bounded distortion, which one can decode for W2. Then we apply nR2 = H(W2) and
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Lemma 4.5 to obtain (4.56). Note that Lemma 4.5 is applicable because in Regimes 1 and 2,

1−µ = 1+α−β ≥ (α−β)+ = µ. Equality (4.57) holds because by Lemma 4.6, (Y 1)
λ−(1−µ)

can be recovered from (A)λ−1 ⊞ (B)λ−1+µ within bounded distortion. Finally, we arrive at

(4.58) due to (4.29).

In the next lemma, we show that the part of codeword A corresponding to the same power

levels as the part of B carrying W2 has entropy no less than H(W2) = nR2. Intuitively, this

must be so because W2 needs to be hidden from Receiver 1, and for this the ‘jamming signal’

must be at least as big as W2.

Lemma 4.9.

HG((A)1−µ|W , (B)1) ≥ nR2 + no(log P̄ ). (4.59)

Remark 4.2. For the ZIC in Figure 4.2 with α = 1 and β = 8
5
, Lemma 4.9 becomes

HG((A)
2
5 |W1, (B)1) ≥ nR2 + no(log P̄ ). (4.60)

This inequality suggests that, after removing W1 and (B)1, the entropy of (A)
2
5 , which is the

sub-section of A sitting at the same level as (B)1, should be at least nR2 = H(W2) in the

GDoF sense. This is a direct consequence of (4.29), because intuitively, if the signal in (A)
2
5

contains less than W2 in entropy, there is no way to fully hide W2 away and keep it secret.

This is illustrated in Figure 4.11, where (A)
2
5 contains a jamming signal of full entropy.

Proof of Lemma 4.9.

HG((B)1|W)

≤ HG((Y 1)
1+µ|W) + no(log P̄ ) (4.61)

= HG((Y 1)
1+µ|W ,W2) + no(log P̄ ) (4.62)
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J1

W2(A)
2
5

A B

3
5

2
5

3
5

Ȳ1 = A⊞B

Figure 4.11: An illustration for Lemma 4.9. Ȳ1 is the output of the ZIC in Figure 4.2 with
(α, β) = (1, 8

5
), and contains a scheme achieving (d1, d2) = (0, 2

5
).

≤ HG((A)1−µ, (B)1|W ,W2) + no(log P̄ ) (4.63)

= HG((B)1|W ,W2) +HG((A)1−µ|W ,W2, (B)1) + no(log P̄ ) (4.64)

≤ HG((B)1|W ,W2) +HG((A)1−µ|W , (B)1) + no(log P̄ ). (4.65)

First, we apply Lemma 4.5 to obtain inequality (4.61). Note that (Y 1)
1+µ is well-defined

because β > 1 in Regime 1 and 2, and implies that max{α, β} > 1 + µ. Equality (4.62)

holds due to (4.29). Inequality (4.63) is true because µ = β − α < 1 in Regime 1 and 2,

and (Y 1)
1+µ can be recovered by Lemma 4.6 within bounded distortion from (A)1−µ⊞ (B)1,

which is a function of (A)1−µ and (B)1. Then we apply the chain rule to obtain (4.64), and

apply the fact that conditioning reduces entropy to obtain (4.65).

By swapping terms in (4.65), we have

HG((A)1−µ|W , (B)1)

≥ HG((B)1|W)−HG((B)1|W ,W2) + no(log P̄ ) (4.66)

= IG((B)1;W2|W) + no(log P̄ ) (4.67)

= IG((B)1,W ;W2)− I(W ;W2) + no(log P̄ ) (4.68)

= IG((B)1,W ;W2) + no(log P̄ ) (4.69)
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≥ IG((B)1;W2) + no(log P̄ ) (4.70)

≥ IG(Y 2;W2) + no(log P̄ ) (4.71)

≥ nR2 + no(log P̄ ). (4.72)

We apply the definition of mutual information to obtain (4.67), the chain rule to obtain

(4.68), and (4.30) to obtain (4.69). Then we remove W to obtain (4.70). Finally, we apply

data processing inequality to obtain (4.71), and Fano’s inequality to obtain (4.72).

The third lemma is a lower bound for the entropy HG(Y 1|W).

Lemma 4.10. For µ < 1, we have

HG(Y 1|W) ≥ min{β, α}
1− µ

nR2 + no(log P̄ ). (4.73)

Remark 4.3. With α = 1 and β = 8
5
, Lemma 4.10 becomes

HG(Y 1|W1, (B)
3
5 ) ≥ 5

2
nR2 + no(log P̄ ). (4.74)

Figure 4.11 provides an intuition of this lower bound. But instead of resorting to the illustra-

tion only, we provide a sketch of its proof as follows. First we apply (4.49) to the left-hand

side of (4.74).

HG(Y 1|W1, (B)
3
5 )

≥ nR2 +HG

(
(Y 1)

6
5 |W1, (B)

3
5

)
+ no(log P̄ ) (4.75)

≥ nR2 +
3

4
HG

(
(A)

2
5 , (B)1|W1, (B)

3
5

)
+ no(log P̄ ) (4.76)

= nR2 +
3

4

[
HG

(
(A)

2
5 |W1, (B)1

)
+HG

(
(B)1|W1, (B)

3
5

) ]
+ no(log P̄ ) (4.77)

≥ 5

2
nR2 + no(log P̄ ). (4.78)
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To obtain (4.76), we apply Lemma 4.7 by plugging in p = 2, q = 3, µ = 0, ν = 3
5
and W = W1

therein. Equation (4.77) follows by the chain rule, and the fact that (B)
3
5 can be obtained

from (B)1. Finally, we arrive at (4.78) by bounding the first entropy term in (4.77) from

below by nR2 with (4.60), and bounding the second from below with (4.30). Note that the

arguments above are a mere sketch of proof. We relegate the missing details, as well as the

continuity argument when α or β is irrational, to the formal proof of Lemma 4.10.

Proof of Lemma 4.10. Let min{β, α} = k(1−µ) + γ, where k is a non-negative integer, and

γ satisfies either γ = 0 or 1− µ < γ < 2(1− µ).7 As an intermediate result, we claim that

HG((Y 1)
γ+|µ||W) ≥ γ

1− µ
nR2 + no(log P̄ ). (4.79)

The inequality is trivial when γ = 0. If γ ̸= 0, we can find a non-decreasing sequence {ri}

with ri ∈ Q and limi→∞ ri = γ, and a non-increasing sequence {mi} with mi ∈ Q and

limi→∞ mi = 1− µ. 8 Let N = min
{
i
∣∣∣mi

ri
< 1
}
. Such N exists, because as i → ∞, we have

ri → γ, mi → 1− µ, and 1
2
< 1−µ

γ
< 1.

For i ≥ N , we have

HG((Y 1)
γ+|µ||W) (4.80)

≥ HG((Y 1)
ri+|µ||W) + no(log P̄ ) (4.81)

=
1

2mi

(
2miHG((Y 1)

ri+|µ||W)
)
+ no(log P̄ ) (4.82)

≥ ri
2mi

HG((A)mi+µ, (B)mi+µ|W) + no(log P̄ ) (4.83)

7The existence of such k and γ can be shown as follows. In Regime 1, since β > 1, we can find k, γ, where
either γ = 0 or 1 < γ < 2, such that β = k + γ. On the other hand, in Regime 2, since α > 1 + α − β, we
can find k, γ such that α = k(1 + α− β) + γ with either γ = 0 or 1 + α− β < γ < 2(1 + α− β).

8Such a non-increasing sequence {mi} and a non-increasing sequence {ri} can be constructed by the
decimal representation of 1−µ and γ, respectively. For example, let 0.µ1µ2 · · ·µi be the i−decimal of 1−µ,
where µj ∈ {0, 1, · · · , 9} for j ∈ [i]. We may let mi = 0.µ1µ2 · · ·µi + 10−i =

(⌊
(1− µ)× 10i

⌋
+ 1
)
× 10−i,

which is a rational number no less than 1 − µ. On the other hand, let 0.γ1γ2 · · · γi be the i−decimal of γ,
where γj ∈ {0, 1, · · · , 9} for j ∈ [i]. We may let ri = 0.γ1γ2 · · · γi =

⌊
γ × 10i

⌋
× 10−i, which is a rational

number no greater than γ.
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≥ ri
2mi

HG((A)1−µ, (B)1|W) + no(log P̄ ) (4.84)

=
ri
2mi

[
HG((B)1|W) +HG((A)1−µ|W , (B)1)

]
+ no(log P̄ ) (4.85)

≥ ri
2mi

[
HG(W2|W) +HG((B)1|W ,W2)−HG(W2|W , (B)1) + nR2

]
+ no(log P̄ )

(4.86)

≥ ri
mi

nR2 + no(log P̄ ). (4.87)

Inequality (4.81) holds because of Lemma 4.5 and the fact that ri ≤ γ. Then we multiply

and divide the entropy term by 2mi to get (4.82), and apply9 Lemma 4.7 to obtain (4.83).

Inequality (4.84) holds because of Lemma 4.5 and the fact that mi + µ ≥ 1− µ+ µ = 1− µ,

and mi + µ ≥ 1. Next we apply the chain rule to get (4.85), and apply the chain rule and

Lemma 4.9 to get (4.86). Equality (4.87) follows from (4.86) due to the following reasons:

(a) we apply (4.30) and nR2 = H(W2) to the first entropy term; (b) the second entropy term

is non-negative; and (c) W2 can be decoded from (B)1, which makes the third entropy term

no(log P̄ ). Since inequality (4.87) is valid for all i ≥ N , we have

HG((Y 1)
γ+|µ||W) ≥ lim

i→∞

ri
mi

nR2 + no(log P̄ ) =
γ

1− µ
nR2 + no(log P̄ ). (4.88)

Next, based on the intermediate result (4.79), we show the following lower bound.

HG(Y 1|W) ≥ knR2 +HG((Y 1)
|µ|+γ|W) + no(log P̄ ). (4.89)

This bound is reduced to (4.79) when k = 0 because of the following identity

max{β, α} = |µ|+min{β, α} = |µ|+ k(1− µ) + γ. (4.90)

9To apply Lemma 4.7, we define T = (A)ri+µ ∈ Xri+µ,U = (B)ri+µ ∈ Xri+µ, p = mi, and q = ri. This

leads to V = (A)ri+µ ⊞ (B)ri+µ, which by Lemma 4.6 can be recovered from (Y 1)
ri+|µ| within bounded

distortion.
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On the other hand, when k ≥ 1, we apply Lemma 4.8 and omit no(log P̄ ) for brevity as

follows.

HG(Y 1|W)

≥ nR2 +HG((Y 1)
max{β,α}−(1−µ)|W) (4.91)

≥ 2nR2 +HG((Y 1)
max{β,α}−2(1−µ)|W) (4.92)

...

≥ knR2 +HG((Y 1)
max{β,α}−k(1−µ)|W) (4.93)

= knR2 +HG((Y 1)
|µ|+γ|W). (4.94)

Lemma 4.8 can be applied to (4.91) – (4.93) because in both Regime 1 and 2, we have µ < 1

and max{α, β} − (k − 1)(1− µ) ≥ 1− µ.10 Next we apply (4.90) to obtain (4.94).

Finally, we plug (4.79) into (4.89), and get

HG(Y 1|W) ≥ knR2 +
γ

1− µ
nR2 + no(log P̄ ) (4.95)

=
min{β, α}

1− µ
nR2 + no(log P̄ ), (4.96)

where equality (4.96) holds by applying the identity min{β, α} = k(1− µ) + γ.

To finish the proof of the weighted-sum bound, we start by applying Fano’s inequality as

follows.

nR1

≤ IG(Y 1;W1) + no(log P̄ ) (4.97)

≤ IG(Y 1, (B)µ;W1) + no(log P̄ ) (4.98)

10This can be seen by the following. First by (4.90) we have max{α, β}− (k−1)(1−µ) = 1−µ+γ+ |µ| =
1+γ+µ. In Regime 1, we have 1+γ+µ ≥ 1+µ = 1−µ, while in Regime 2, we have 1+γ+µ ≥ 1 ≥ 1−µ.
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= IG(Y 1;W1|(B)µ) + IG((B)µ;W1) + no(log P̄ ) (4.99)

= IG(Y 1;W1|(B)µ) + IG((Y 2)
µ;W1) + no(log P̄ ) (4.100)

= IG(Y 1;W1|(B)µ) + no(log P̄ ) (4.101)

≤ HG(Y 1|(B)µ)−HG(Y 1|W) + no(log P̄ ) (4.102)

≤ αn log P̄ − min{β, α}
1− µ

nR2 + no(log P̄ ). (4.103)

Inequality (4.98) holds because adding (B)µ does not hurt the mutual information. Then we

apply the chain rule to get (4.99). Since µ < 1 in Regime 1 and 2, (B)µ can be converted into

(Y 2)
µ within bounded distortion by Lemma 4.6, and as a result we have (4.100). Equality

(4.101) holds due to (4.27) and the secrecy constraint (4.4), and the fact that µ < 1. Then

seeing that {(B)µ} ⊂ W , inequality (4.102) is obtained by applying the fact that conditioning

reduces entropy. To obtain inequality (4.103), first we apply the uniform bound to the first

entropy in (4.102) as follows:

HG(Y 1|(B)µ) ≤ HG((Y 1)
α
0 ) ≤ αn logP + no(log P̄ ). (4.104)

And then we apply Lemma 4.10 to the second entropy in (4.102). Note that Lemma 4.10 is

applicable since µ < 1 in Regime 1 and 2.

Finally by applying the definition of GDoF, we get

d1 +
min{β, α}

1− µ
d2 = lim

P→∞

R1 +
min{β,α}

1−µ
R2

1
2
logP

≤ α (4.105)

=⇒


d1 + βd2 ≤ α if α > β

d1
α
+ d2

1+α−β
≤ 1 if β − 1 < α ≤ β

. (4.106)

Inequalities (4.106) are the desired weighted-sum bounds for the respective Regime 1 and 2.

Thus, we complete the proof. □
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4.7 Summary

Motivated by robustness concerns that are paramount in secure communications, in this

chapter we study the robust GDoF of secure communication over a two user Z interference

channel. The combination of security, robustness and GDoF optimality makes this problem

uniquely challenging relative to prior work, while the Z channel setting limits the number of

parameters sufficiently to allow a GDoF characterization for all parameter regimes. In the

process we also explore the scope of sum-set inequalities based on Aligned Image principles

that were recently introduced in [24], which involve joint entropies of various sub-sections of

input signals. We found that these new sum-set inequalities, combined with sub-modularity

properties of entropy, are sufficient to characterize the robust secure GDoF region of a

Z interference channel (as well as a further generalization to the corresponding broadcast

channel setting). The result shows that the GDoF benefits of structured jamming, e.g.,

aggregate decoding and cancellation of jammed signals, are entirely lost under finite precision

CSIT. The result reaffirms the hypothesis that random codes may be enough for approximate

capacity characterizations under robust assumptions. Thus, while the fundamental limits of

structured codes under ideal assumptions remain both practically fragile and theoretically

intractable, there remains hope that continued advances in Aligned Images converse bounds

may eventually place within reach a robust network information theory of wireless networks,

based on the understanding of the fundamental limits of random codes.
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Chapter 5

Conclusion

This dissertation explores different approaches to characterize the capacity of large wireless

networks with high SNR asymptotoics under the robust assumption of channel information.

We apply extremal analysis to characterize the benefit of transmitter cooperation, find sharp

GDoF characterizations of secure networks in broadly larger parameter regimes, and show

the fundamental fragility of structured codes in secure communications. These optimality

results are based on the use of Aligned Image sum-set inequalities. The key contributions

are summarized as follows.

� In chapter 2 we demonstrate the feasibility of an extremal netowrk theory by find-

ing the extremal sum-GDoF gain that transmitter cooperation can bring to K user

interference channel in weak interference regimes, as a preliminary attempt to apply

an extremal network theory. Taking treating interference as noise as the baseline for

GDoF comparison, we find the extremal gain within the TIN and CTIN regime respec-

tively as 1.5 and 2− 1
K
, which is a constant with respect to K, while the extremal gain

within the SLS regime is found to be Θ(log2K), which grows logrithmatically with K.

� In chapter 3 we take another path to characterize the GDoF of large wireless networks
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with an arbitrary number of users. With secrecy constraints added, we discover the

largest parameter regimes known so far: the STIN regime for interference networks

and the SLS regime for the broadcast networks. In both network settings, a secure

version of TIN achieves the GDoF optimal.

� In chapter 4 we study the robustness of structured codes under finite precision CSIT

with an instance of structured jamming based on lattice codes. We show that in a

two user Z secure interference channel, the structured jamming loses its GDoF benefit

under finite precision CSIT. As a byproduct, the secure GDoF regions of the Z channels

are fully characterized.

Open problems and Future Directions

The results of extremal gain from transmitter cooperation open the door to a number of

intriguing questions where extremal analysis could be useful to gain a deeper understanding

of the benefits of transmitter cooperation. Some of them are listed as follows:

� Is it possible to achieve more than logarithmic GDoF gain by transmitter cooperation

over TIN in a general weak interference regime where the only constraint is that the

direct links are stronger than cross links?

� What is the maximum possible sum-GDoF gain of a K user MISO BC over the cor-

responding K user IC in the general weak interference regime? Or, even in the SLS-

regime?

� Seeing that with the secrecy constraints the extremal gain in the STIN regime is

unbounded while the extremal gain is 1 in the SLS regime, what are the parameter

regimes lying between, such that the extremal gain shows interesting scaling behavior

with K?
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In general, it seems extremal analysis may be useful to gauge the potential benefits of a

myriad of factors such as multiple antennas, power control, rate-splitting, space-time multi-

plexing, network coherence, robustness of CSIT and secrecy – all intriguing issues for which

the current understanding is extremely limited.

While the extremal network theory points out a novel workaround to bypass the curse of

dimensionality embedded in large wireless networks, another direction is to search for new

schemes and develop new upper bounds. This direction might seem conventional, but it

leads to new tools empowering us to go beyond the known parameter regimes and perform

the extremal analysis in the known regimes as well. One example of new schemes that help

the extremal analysis is the ones found in the study the SGDoF of the K user MISO BC in

the STIN regime. Such schemes, as exemplified in Figure 3.5, combine secret sharing and

simple layered superposition (SLS). Their potential is yet to be explored and appears to

be a promising ingredient for complete secure GDoF characterizations when we go beyond

the SLS regime. Another example appears in [30], where we go beyond the Z networks

to the 3-to-1 interference networks. Under finite precision CSIT and secrecy, we identify a

parameter regime where the problem of characterizing secure GDoF region is beyond the

reach of the known Aligned Image sum-set inequalities. We conjecture a generalized class

of sum-set inequalities which may help provide tight GDoF bounds. Its validity is currently

an open problem.
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Appendix A

Appendix for Chapter 2

A.1 Optimality of Cyclic Partition for Polyhedral TIN

in SLS Regime

Theorem A.1. If [α]K×K ∈ ASLS, then for any subset of users, S, S ⊂ [K], there exists a

p-optimal cyclic partition of S.

A.1.1 Proof of Theorem A.1

Without loss of generality we will prove the lemma for S = [K], since the same proof works

for any S ⊂ [K] as well. Let us start with arbitrary [α]K×K , i.e., not necessarily in the

SLS regime. The sum-GDoF value in the polyhedral region, DΣ,P-TIN is the solution to the

following linear program,

(LP1) DΣ = max d1 + d2 + · · ·+ dK (A.1)
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such that
∑
k∈{π}

dk ≤
∑
k∈{π}

αkk − w(π), ∀π ∈ Π, (A.2)

dk ≥ 0, ∀k ∈ [K], (A.3)

and can be equivalently expressed by the following dual linear program.

(LP2) DΣ = min
∑
π∈Π

λπ

∑
k∈{π}

αkk − w(π)

 (A.4)

such that
∑
π∈Π

λπ1(k ∈ {π}) ≥ 1, ∀k ∈ [K], (A.5)

λπ ≥ 0, ∀π ∈ Π, (A.6)

where 1(·) is the indicator function that returns the values 1 or 0 when the argument to the

function is true or false, respectively.

For all π ∈ Π, let us define λ∗
π as the optimizing values of λπ for LP2. Let the corresponding

optimal values for LP1 be d∗k for all k ∈ [K]. Because a solution must exist, by the strong-

duality of linear programming, the optimal DΣ for LP2 is the same as the optimal DΣ for

LP1. Therefore, the following conditions are implied.

DΣ = d∗1 + d∗2 + · · ·+ d∗K =
∑
π∈Π

λ∗
π

∑
k∈{π}

αkk − w(π)

 , (A.7)

∑
k∈{π}

αkk − w(π) ≥
∑
k∈{π}

d∗k, ∀π ∈ [Π], (A.8)

λ∗
π ≥ 0, ∀π ∈ [Π], (A.9)

d∗k ≥ 0, ∀k ∈ [K]. (A.10)

Definition A.1 (Set of Active Cycles, Π∗). Based on the optimizing solution to LP2, define

Π∗ = {π ∈ Π : λ∗
π > 0}. (A.11)
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This is called the set of active cycles, because the corresponding cycle bounds are active (i.e.,

tight) in the solution to LP2 (see Lemma A.1).

Definition A.2 (Set of Inactive Users, Ko). Define Ko ⊂ [K] as the set of all users k for

which the inequality in (A.5) is strict. Thus,

Ko =

{
k ∈ [K] :

∑
π∈Π

λ∗
π1(k ∈ {π}) > 1

}
. (A.12)

This is called the set of inactive users because for each of these users, we must have d∗k = 0

(see Lemma A.1).

Lemma A.1.

∀k ∈ Ko we must have d∗k = 0, (A.13)

and ∀π ∈ Π∗ we must have
∑
k∈{π}

d∗k =
∑
k∈{π}

αkk − w(π). (A.14)

Note that the conditions are simply complementary slackness conditions. Therefore Lemma

A.1 holds for arbitrary channel parameters, i.e., even if [α]K×K /∈ ASLS. For the sake of

completeness, a proof of Lemma A.1 appears in Appendix A.1.2.

Henceforth, let us restrict our attention to the SLS regime. In fact, let us define a strict SLS

regime as

ĀSLS = {[α]K×K ∈ RK×K
+ : αii > max(αij, αki, αik + αji − αjk), ∀i, j, k ∈ [K], i /∈ {j, k}}.

(A.15)

Note that the only difference between ASLS and ĀSLS is that the defining inequalities in the

latter are all strict inequalities. Note that all αii and δij are strictly positive in the strict SLS

regime. Following the same reasoning as the proof of Lemma A.3, in the strict SLS regime,
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for distinct i, j, k ∈ [K], we must have

[α]K×K ∈ ĀSLS =⇒ δki + δij > δkj. (A.16)

Note that the inequality is strict here as well. This is important for the proof.

We will first prove Theorem A.1 for the strict SLS regime and later use a continuity argument

(identical to the continuity argument in the last paragraph of the proof of Theorem 3 in [37])

to show that the result holds even when the inequalities are relaxed to include equalities.

The shell of the proof is identical to the proof of Theorem 3 in [37]. The main step that

connects the two proofs is Lemma A.2.

Now define the following linear program.

(LP3) DΣ = min
∑
π∈Π

λπ

∑
k∈{π}

αkk − w(π)

 (A.17)

such that
∑
π∈Π

λπ1(k ∈ {π}) = 1, ∀k ∈ [K], (A.18)

λπ ≥ 0, ∀π ∈ Π. (A.19)

Note that the only difference between LP2 and LP3 is that the inequality in (A.5) has been

replaced with the equality in (A.18). The following lemma is the most critical part of the

proof, as it shows that this change does not matter in the strict SLS regime, thereby reducing

the problem to another problem that is already solved in [37].

Lemma A.2.

[α]K×K ∈ ĀSLS =⇒ LP2 ≡ LP3. (A.20)

The proof of Lemma A.2 appears in Appendix A.1.3.
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Following Lemma A.2, LP3 is identical to the LP3 in [37] and the rest of the proof is identical

to the proof of Theorem 3 in [37]. Thus, the proof of Theorem A.1 is complete. □

Remark: Note that Lemma A.2 does not follow from [37]. Only after Lemma A.2 do the

two proofs become identical. In [37], the equivalence of LP2 and LP3 is proved for a strict

TIN regime. However, that proof does not hold in the strict SLS regime, and this distinction

is quite important. In both cases (strict TIN regime and the strict SLS regime), we need to

prove that all the constraints in (A.5) are tight. In the strict TIN regime, [37] accomplishes

this by first proving that all d∗i that optimize the sum-GDoF must be strictly positive, so

that it follows from complementary slackness that the constraints in (A.5) must be tight.

However, in the strict SLS regime, unfortunately it is not true that all d∗i must be strictly

positive. A simple counterexample is the two user IC with α11 = α22 = 1, α12 = α21 = 1/2

which is in the strict SLS regime but not the strict TIN regime, and has DΣ,TINA = 1 which

can be achieved with (d∗1, d
∗
2) = (1, 0). Therefore, Lemma A.2 in the strict SLS regime needs

a different argument that proves directly that all conditions in (A.5) are tight without relying

on strict positivity of all the d∗i that optimize the sum-GDoF. Such an argument is presented

in Appendix A.1.3.

A.1.2 Proof of Lemma A.1

0 =
∑
π∈Π

λ∗
π

∑
k∈{π}

αkk − w(π)

−DΣ (A.21)

≥
∑
π∈Π

λ∗
π

∑
k∈{π}

d∗k

−DΣ (A.22)

=
∑
k∈[K]

d∗k

∑
π∈[Π]

λ∗
π1(k ∈ {π})

−DΣ (A.23)
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=
∑

k∈[K]\Ko

d∗k +
∑
k∈Ko

ckd
∗
k −DΣ (A.24)

=
∑

k∈[K]\Ko

d∗k +
∑
k∈Ko

ckd
∗
k −

∑
k∈[K]

d∗k (A.25)

=
∑
k∈Ko

(ck − 1)d∗k (A.26)

≥ 0, (A.27)

because ck ≜
∑

π∈Π λ∗
π1(k ∈ π) > 1 for all k ∈ Ko, and d∗k ≥ 0 for all k ∈ [K]. Since we

started and ended with 0, all steps from (A.21) to (A.27) must be equalities. Thus, the proof

of Lemma A.1 is complete. □

A.1.3 Proof of Lemma A.2

We need to prove that the set Ko is empty. Suppose, on the contrary, that there exists

ko ∈ Ko. According to Lemma A.1 the user ko must be inactive, i.e., d∗ko = 0. Let πo =

(i1 → i2 → · · · → iM ) be an active cycle that includes User ko. Without loss of generality,

suppose ko = iM . We will consider 3 cases.

1. Case 1: (M > 2)

Suppose the length of the cycle is greater than 2. Since πo is an active cycle, according

to Lemma A.1,

∑
k∈{πo}

d∗k =
∑

k∈{πo}

αkk − w(πo) (A.28)

=⇒ d∗i1 + d∗i2 + · · ·+ d∗iM = δi1i2 + δi2i3 + · · ·+ δiM−1iM + δiM i1 . (A.29)
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But since ko ∈ Ko, according to Lemma A.1 we must have d∗ko = d∗iM = 0. Therefore,

d∗i1 + d∗i2 + · · ·+ d∗iM−1
= δi1i2 + δi2i3 + · · ·+ δiM−2iM−1

+ δiM−1iM + δiM i1 . (A.30)

But now consider the cycle π′ = (i1 → i2 · · · → iM−1 ). This may or may not be an

active cycle. Regardless, the following bound must hold.

d∗i1 + d∗i2 + · · ·+ d∗iM−1
≤ δi1i2 + δi2i3 + · · ·+ δiM−2iM−1

+ δiM−1i1 . (A.31)

Subtracting (A.30) from (A.31) we have

0 ≤ δiM−1i1 − δiM−1iM − δiM i1 (A.32)

=⇒ δiM−1iM + δiM i1 ≤ δiM−1i1 . (A.33)

But this is a contradiction because under strict SLS condition, according to (A.16),

δiM−1iM + δiM i1 > δiM−1i1 . (A.34)

2. Case 2: (M = 1)

The length of the cycle, M , cannot be 1 because then Lemma A.1 would imply that

the single user bound is active, i.e., d∗ko = αkoko , but αkoko > 0 in the strict SLS regime,

so user ko must be active, i.e., we would have a contradiction. This leaves us with the

only possibility, M = 2.

3. Case 3: (M = 2)

Now suppose the length of the cycle πo is M = 2. Then we have

d∗i1 + d∗iM = δi1iM + δiM i1 , (A.35)

135



and since ko = iM ∈ Ko according to Lemma A.1 we have d∗iM = 0. Therefore,

d∗i1 = δi1iM + δiM i1 . (A.36)

Consider the following two subcases.

(a) Subcase 1: πo is the only active bound that includes user ko

Then λπo > 1. But this would mean that user i1 also belongs to Ko, because the

sum of weights of active cycles that include user i1 must be greater than 1 as well.

However, if both user i1 and user iM are in Ko, then they must both be inactive.

This is a contradiction, because d∗i1 + d∗iM = δi1iM + δiM i1 > 0.

(b) Subcase 2: There is another active bound, π1 ̸= πo that includes user ko

Now, π1 must also have length M = 2 because, as we have already established,

any other possibility leads to a contradiction. Since π1 is different from πo it must

involve a user other than i1 in addition to user iM . Let’s call this user i2. Then,

proceeding similarly as in the case of πo we find that we must have

d∗i2 = δi2iM + δiM i2 . (A.37)

But we also know that the following bound must hold

d∗i1 + d∗i2 ≤ δi1i2 + δi2i1 . (A.38)

Subtracting (A.36) and (A.37) from (A.38) we have,

0 ≤ δi1i2 + δi2i1 − δi1iM − δiM i1 − δi2iM − δiM i2 (A.39)

< (δi1iM + δiM i2) + (δi2iM + δiM i1)− δi1iM − δiM i1 − δi2iM − δiM i2 (A.40)

= 0, (A.41)
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which is a contradiction. Note that we used (A.16) in (A.39).

Thus, we have a contradiction in every case, so there cannot be any such ko ∈ Ko, which

implies that Ko is empty, and the proof is complete. □

A.2 Other Useful Lemmas

A.2.1 A condition on δij in the SLS Regime

Lemma A.3. For all i, j, k ∈ [K],

[α]K×K ∈ ASLS =⇒ δki + δij ≥ δkj. (A.42)

Proof of Lemma A.3

Proof: δki + δij − δkj = αkk − αik + αii − αji − αkk + αjk = αii + αjk − αik − αji which, by

definition, is non-negative in ASLS. □

A.2.2 Trivial cycles in the SLS Regime

Lemma A.4. If [α]K×K ∈ ASLS, then for every S ⊂ [K] there exists a p-optimal cyclic

partition containing at most one trivial cycle.
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Proof of Lemma A.4

Let {πi}Ni=1 be a p-optimal cyclic partition for S. Suppose there is more than one trivial

cycle in a p-optimal cyclic partition, we claim that they can be combined into one cycle,

and the resulting partition is still p-optimal and free of trivial cycles. Let π1 = (i1 ), π2 =

(i2 ), · · · , πj = (ij ), 2 ≤ j ≤ N , be all the trivial cycles in {πi}Ni=1. These trivial cycles

can be combined into π1,2,··· ,j = (π1 → π2 → · · · → πj ). Since π1,2,··· ,j and all the other

cycles are disjoint, {π1,2,··· ,j, πj+1, · · · , πN} is a cyclic partition. Moreover,

∆π1,2,··· ,j =

j∑
m=1

δim,im+1 ≤
j∑

m=1

αimim =

j∑
m=1

∆πm , (A.43)

where δij ,ij+1
= δij ,i1 . As a result, {π1,2,··· ,j, πj+1, · · · , πN} is also p-optimal, and contains no

trivial cycles. □

A.2.3 Combining Disjoint Cycles in the SLS Regime

Lemma A.5. If [α]K×K ∈ ASLS, π1, π2, · · · , πn are n > 1 disjoint cycles, and

π1,2,··· ,n = (π1 → π2 → · · · → πn ) (A.44)

is their combination, then

∆π1,2,··· ,n ≤ ∆π1 +∆π2 + · · ·+∆πn +∆π, (A.45)

where π = (π1(1) → π2(1) → · · · → πn(1) ).
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Proof of Lemma A.5

Let us represent the cycles explicitly as

π1 = (i1,1 → · · · → i1,m1 ), (A.46)

π2 = (i2,1 → · · · → i2,m2 ), (A.47)

...

πn = (in,1 → · · · → in,mn ), (A.48)

π1,2,··· ,n = (i1,1 → · · · → i1,m1 → i2,1 → · · · → i2,m2 → · · · → in,mn ). (A.49)

Then we have

∆π1,2,··· ,n ≤ (∆π1 − δi1,m1 i1,1
) + (∆π2 − δi2,m2 i2,1

) + · · ·+ (∆πn − δin,mn in,1)

+ δi1,m1 i2,1
+ δi2,m2 i3,1

+ · · ·+ δin−1,mn−1 in,1 + δin,mn i1,1 (A.50)

≤ ∆π1 + δi1,1i2,1 +∆π2 + δi2,1i3,1 + · · ·+∆πn + δin,1i1,1 (A.51)

= ∆π1 +∆π2 + · · ·+∆πn +∆π. (A.52)

Note that in (A.51) we used the fact that since [α]K×K ∈ ASLS, we must have δij + δjk ≥ δik.

□

A.2.4 Connecting BC Bounds to Cycle Bounds in the SLS Regime

Lemma A.6. In the SLS regime, for any cycle π ∈ Π,

π = (i1 → i2 → · · · → iM ), (A.53)
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we have the following bound on the sum-GDoF of the BC restricted to the users involved in

the cycle π,

DΣ,BC({π}) ≤ ∆π + αim+1im , (A.54)

for any m ∈ [1 : M ], with iM+1 = i1. Furthermore,

DΣ,BC({π}) ≤ ∆π +DΣ,TINA. (A.55)

Proof of Lemma A.6

Lemma A.6 follows directly as a special case of the results presented in [36]. For the sake

of completeness we present a self-contained proof here. The proof is trivial for cycles of

length M = 1, because the single-user bound implies DΣ,BC({π}) ≤ αi1i1 ≤ ∆π + αi1i1 .

To prove Lemma A.6 for M ≥ 2, let us give to each receiver im,m ∈ [M ], the messages

W[m+1:M ] ≜ (Wim+1 ,Wim+2 , · · · ,WiM ) as side information. This can only help, so the converse

for the genie-aided channel is still a converse for the original channel. Note that no messages

are given as side information to receiver M . Now, applying Fano’s inequality within the

deterministic model (Section 2.3.1) of the K user MISO broadcast channel, and omitting

o(log(P )) terms we have,

TRi1 ≤ I(Wi1 ; (Ȳi1(t))
[1:T ]|G,W[2:M ]) (A.56)

≤ H((Ȳi1(t))
[1:T ]|G,W[2:M ]) (A.57)

TRim ≤ I(Wim ; (Ȳim(t))
[1:T ]|G,W[m+1:M ]) (A.58)

= H((Ȳim(t))
[1:T ]|G,W[m+1:M ])−H((Ȳim(t))

[1:T ]|G,W[m:M ]), ∀m ∈ [2 : M ].

(A.59)
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Adding these inequalities we get,

T

M∑
m=1

Rim

≤
M−1∑
m=1

[
H
(
(Ȳim(t))

[1:T ]|G,W[m+1:M ]

)
−H

(
(Ȳim+1(t))

[1:T ]|G,W[m+1:M ]

)]
+H((ȲiM (t))[1:T ]|G)

(A.60)

≤
M−1∑
m=1

[
Hg

(
[αim1, αim2, · · · , αimK ] | W[m+1:M ]

)
−Hg

(
[αim+11, αim+12, · · · , αim+1K ] | W[m+1:M ]

) ]
+ αiM iMT log(P ) (A.61)

≤
M−1∑
m=1

max
ℓ∈[K]

(
αimℓ − αim+1ℓ

)+
T log(P ) + αiM iMT log(P ) (A.62)

≤
M−1∑
m=1

(
αimim − αim+1im

)
T log(P ) + αiM iMT log(P ) (A.63)

≤
M∑

m=1

(
αimim − αim+1im

)
T log(P ) + αi1iMT log(P ) (A.64)

=

(
M∑

m=1

δimim+1

)
T log(P ) + αi1iMT log(P ) (A.65)

=(∆π + αi1iM )T log(P ). (A.66)

Note that Lemma 2.1 was used in (A.62), and the definition of the SLS regime was used in

(A.63) to conclude that

αimim − αim+1im ≥ αim,ℓ − αim+1,ℓ. (A.67)

From (A.66) we have in the GDoF limit,

DΣ,BC({π}) ≤ ∆π + αi1iM = ∆π + απ(M+1)π(M). (A.68)

Next, note that if we go through the same steps starting with a shifted representation of the
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cycle π, e.g.,

πj = (π(1 + j) → π(2 + j) → · · · → π(M + j) ), (A.69)

then we obtain

DΣ,BC({πj}) = DΣ,BC({π}) ≤ ∆π + απ(M+1+j)π(M+j), (A.70)

and in particular for j = m + M , we have the bound DΣ,BC({π}) ≤ ∆π + απ(m+1)π(m) =

∆π + αim+1im for any m ∈ [1 : M ], as desired. Finally, seeing that αij ≤ αii ≤ DΣ,TINA({π})

for all i, j ∈ {π} in the SLS regime, we have

DΣ,BC({π}) ≤ ∆π +DΣ,TINA({π}). (A.71)

This completes the proof of Lemma A.6. □
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Appendix B

Appendix for Chapter 3

B.1 Proof of Lemma 3.3

The proof of (3.23) is identical to the one in [20, Appendix] and is not repeated here. In

the following we prove (3.24) only. Define for all k, i ∈ [K] with the channel use index t

suppressed:

X̃i = P̄αiiXi, Ỹk =
K∑
i=1

⌈
GkiP̄

α′
ki

⌈
X̃i

⌉⌉
,

X̂i =
⌈
X̃i

⌉
− X̄i, ϵ̄ki = GkiP̄

α′
kiX̄i −

⌈
GkiP̄

α′
kiX̄i

⌉
,

∆k = Yk − ⌈Yk⌉ , ϵki =
⌈
GkiP̄

α′
ki

⌈
X̃i

⌉⌉
−GkiP̄

α′
ki

⌈
X̃i

⌉
,

δi =
⌈
X̃i

⌉
− X̃i, δ̂ki = P̄α′

kiX̂i −
⌈
P̄α′

kiX̂i

⌉
.

Now we proceed to the proof of (3.24).

IG(W
K
−k; Ȳ

n
k )
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≤ IG(W
K
−k; Ȳ

n
k , Ỹ

n
k , Y

n
k ) (B.1)

≤ IG(W
K
−k;Y

n
k ) + IG(W

K
−k; Ỹ

n
k | Y n

k ) + IG(W
K
−k; Ȳ

n
k | Y n

k , Ỹ
n
k ) (B.2)

≤ IG(W
K
−k;Y

n
k ) +HG(Ỹ

n
k | Y n

k ) +HG(Ȳ
n
k | Y n

k , Ỹ
n
k ) (B.3)

≤ IG(W
K
−k;Y

n
k ) +HG(Ỹ

n
k | ⌈Y n

k ⌉) +HG(Ȳ
n
k | Ỹ n

k ), (B.4)

where (B.4) holds because ⌈Y n
k ⌉ is a function of Y n

k , and H(X | f(Y )) ≥ H(X | Y ) for any

function f and random variables X, Y . Next we show that HG(Ỹ
n
k | ⌈Y n

k ⌉) and HG(Ȳ
n
k | Ỹ n

k )

in (B.4) is bounded above by no(logP ). For HG(Ỹ
n
k | ⌈Y n

k ⌉), we note that for all k ∈ [K],

(with the channel use index t suppressed,)

Ỹk = ⌈Yk⌉+∆k +
∑K

i=1

(
GkiP̄

α′
kiδi + ϵki

)
, (B.5)

and both Ỹk and ⌈Yk⌉ take integer values in their respective real and imaginary part. The

sum of the truncation errors ∆k+
∑K

i=1GkiP̄
α′
kiδi+ϵki has its real and imaginary part taking

an integer value in (−1− 2K∆, K(1 + 2∆)). Therefore, we have

HG(Ỹ
n
k | ⌈Y n

k ⌉) ≤ H({∆k +
K∑
i=1

(
GkiP̄

α′
kiδi + ϵki

)
}nt=1) (B.6)

≤ n2 log2 (2 ⌈K(1 + 2∆)⌉) = no(logP ). (B.7)

For HG(Ȳ
n
k | Ỹ n

k ) in (B.4), we note that for all k ∈ [K], (with the channel use index t

supressed,)

Ỹk = Ȳk +
K∑
i=1

Gki

⌈
P̄α′

kiX̂i

⌉
+

K∑
i=1

(
Gkiδ̂ki + ϵ̄ki + ϵki

)
. (B.8)

Since Ỹk, Ỹk and ⌈GkiP̄
α′
kiX̂i⌉ take integer values in their respective real and imaginary part,

the sum of the truncation errors
∑K

i=1Gkiδ̂ki + ϵ̄ki + ϵki must be an integer in (−2K(1 +
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∆), 2K(1 + ∆)) in its real and imaginary part. Therefore,

HG(Ȳ
n
k | Ỹ n

k )

≤
K∑
i=1

HG({
⌈
P̄α′

kiX̂i

⌉
}nt=1) +H({

K∑
i=1

(
Gkiδ̂ki + ϵ̄ki + ϵki

)
}nt=1) (B.9)

≤
∑K

i=1
HG({X̂i}nt=1) + n2 log2 (2 ⌈2K(1 + ∆)⌉) , (B.10)

where (B.10) is because ⌈P̄α′
kiX̂i⌉ is a function of X̂i. Finally, seeing that E[|⌈X̃i⌉|2] ≤

E[|2X̃i|2] ≤ 4P−αii , we can further bound H(X̂i(t)) above with a constant by following the

same procedure in [20, (130) – (149), Appendix]. Now HG(Ȳ
n
k | Ỹ n

k ) in (B.4) is bounded by

no(logP ), and (3.24) is therefore established.

B.2 Proof of Theorem 3.2: Case K = 2

It suffices to show SGDoF f.p.
BC ([α]) = TINP([α]) for all [α] in the STIN regime. From

Theorem 3 this holds for all [α] in the SLS regime. So the remaining cases to be tackled are

(i) α11 ≥ α21 ≥ α22 ≥ α12, and (ii) α22 ≥ α12 ≥ α11 ≥ α21, and it suffices to consider case

(i) due to symmetry. In the remainder of this section we assume case (i), where TINP([α])

is characterized as

TINP([α]) =

(d1, d2) ∈ R2
+

∣∣∣∣∣∣∣
d1 ≤ α11, d2 ≤ α22

d1 + d2 ≤ α11 + α22 − α21 − α12

 . (B.11)

The single user bound d1 ≤ α11 and the sum bound follow the proof for Theorem 3, so it

only remains to show the bound d2 ≤ α22. To do so, we cast Y n
2 into the deterministic

model Ȳ n
2 in the same way as is done in (3.21), and define (X)µ ≜

⌈
X/P̄α−µ

⌉
for a real value

X = O(P̄α) and 0 ≤ µ ≤ α. First we apply Fano’s inequality to bound R2 from above (with
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no(logP ) omitted):

nR2 ≤ IG(Ȳ
n
2 ;W2) (B.12)

= HG(Ȳ
n
2 )−HG(Ȳ

n
2 |W2) (B.13)

≤ HG(Ȳ
n
2 )−HG((X̄

n
1 )

α21−α22|W2) (B.14)

= HG(Ȳ
n
2 )−HG((X̄

n
1 )

α21−α22) (B.15)

≤ α22n logP (B.16)

To obtain (B.14), we find (Ȳ n
2 )

α21−α22 , a function of Ȳ n
2 , is within bounded distortion of

(X̄n
1 )

α21−α22 , due to α21 ≥ α22. Next, inequality (B.15) holds, because I((Ȳ n
1 )

α21−α22 ;W2) ≤

no(logP ), and (Ȳ n
1 )

α21−α22 is within bounded distortion of (X̄n
1 )

α21−α22 . The former is due to

Lemma 4 and the chain rule, and the latter is because α21 − α22 ≤ α11 − α12, as implied by

case (i). Finally, we apply Lemma 5 to obtain (B.16). By dividing both sides of (B.16) by

n logP and applying the GDoF limit, we get the desired bound d2 ≤ α22, which concludes

the proof.
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Appendix C

Appendix for Chapter 4

C.1 Proof of Lemma 4.1

Here we present the proof of the SGDoF region Dp
IC. The converse bounds are available from

Lemma 8 of [94] (for single-user bound) and Lemma 2 of [121] (for the sum bound). The

converse bounds are tight in Regime 3 and 4 defined in Theorem 4.1, as Dp
IC = Df.p.

IC in these

regimes, and the schemes for finite precision CSIT also apply to the case with perfect CSIT.

The remaining part to be shown is the achievability of Dp
IC in Regime 1 and 2.

In the following presentation of the schemes, without loss of generality we work on the

simplified ZIC with all channel gains normalized to be 1; i.e.,

Y1(t) =
√
PαX1(t) +

√
P βX2(t) + Z1(t), (C.1)

Y2(t) =
√
PX2(t) + Z2(t), (C.2)

where t ∈ [n], Z1(t), Z2(t) ∼ N (0, 1) and X1(t), X2(t) are subject to unit input power

constraint. This can be done by normalizing the inputs and the outputs of the original
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model (4.1) and (4.2) with the channel coefficients, which are known at both sides. Also we

set the noise variances to unity since they are inconsequential to the GDoF analysis.

C.1.1 The Achievability in Regime 1

The corner points of Dp
IC in Regime 1 are (d1, d2) = (α, 1) and (β − 1, 1). The former is

trivial, and time sharing achieves all tuples on the line segment between these two point.

So we show the tuple (β − 1, 1) is achievable with a scheme based on lattice alignment and

aggregate decoding.

We first present the coding scheme, and then specify the alphabet design for the respective

codebooks later. Message W1 is split into two parts, and they are respectively encoded

into codewords V 11 = {V11(t) : t ∈ [n]} and V 12 = {V12(t) : t ∈ [n]} with codebooks

generated respectively by distribution PV11 on alphabet Γ11, and by PV12 on Γ12. Message W2

is encoded into V 2 = {V2(t) : t ∈ [n]} with a wiretap codebook generated by distribution

PV2 on alphabet Γ2. Let X1(t) = V11(t) + J1(t) + V12(t) and X2(t) = V2(t), where J1(t) ∈ ΓJ

follows distribution PJ . For the channel (C.1) and (C.2), the following rates in single-letter

form are achievable under secrecy constraints:

R1 = I(Y1;V11, V12), (C.3)

R2 = I(Y2;V2)− I(Y1;V2|V11, V12). (C.4)

R1 is achievable because there is no information leakage link. R2 is achievable because

after V11 and V12 are decoded and removed from Y1, what remains is the classical wiretap

channel [72].

To show the desired GDoF tuple is achievable with the rate (C.3) and (C.4), next we specify

the design of the alphabets Γ11,ΓJ ,Γ12, and Γ2. Let Q ≜
⌊√

Pα−ϵ
⌋
, QJ ≜

⌊√
Pα−1−ϵ

⌋
, and
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A = 8
√
P 2ϵ, where ϵ > 0. We define the alphabets (referred to as lattices in the following

discussion) as

V11 ∈ Γ11 ≜ A
√
P−β ×

{
0,±Q,±2Q, · · · ,±

⌊√
P β−α−ϵ

⌋
Q
}
, (C.5)

J1 ∈ ΓJ ≜ A
√
P−β ×

{
0,±QJ ,±2QJ , · · · ,±

(⌊
1
8

√
P 1−ϵ

⌋
− 1
)
QJ

}
, (C.6)

V12 ∈ Γ12 ≜ A
√
P−β ×

{
0,±1,±2, · · · ,±

(⌊
1
4

√
Pα−1−2ϵ

⌋
− 1
)}

, (C.7)

V2 ∈ Γ2 ≜ A
√
P−α ×

{
0,±QJ ,±2QJ , · · · ,±

(⌊
1
8

√
P 1−ϵ

⌋
− 1
)
QJ

}
, (C.8)

where for a real number ξ and a finite set of integers {x1, x2, · · · , xn}, we define their product

ξ × {x1, x2, · · · , xn} ≜ {ξx1, ξx2, · · · , ξxn}. Note that such a choice of A,Q,QJ , along with

the lattices Γ11,ΓJ ,Γ12 and Γ2, satisfies the unit input power constraint for channel (C.1)

and (C.2).

Let V11, V12, J1 and V2 be independent and uniformly distributed in their respective lattices.

Now we can follow the argument from [103,107] to bound (C.3) and (C.4) from below. The

following lemma works as a common tool of the argument. Its proof is straightforward, by

directly applying Fano’s inequality to the achievable rate R = I(X;Y ).1

Lemma C.1. Consider a channel with input X and output Y , whose values are taken from

finite alphabet X . If X is uniformly distributed in X , and Pr [X ̸= Y ] ≤ ϵ, 0 ≤ ϵ ≤ 1, then

the mutual information I(X;Y ) can be bounded from below as I(X;Y ) ≥ H(X)(1− ϵ)− 1.

Now we bound the mutual information terms in (C.3) and (C.4). First we bound (C.3) from

below. This is done firstly by attaching the nearest-neighbor symbol detectors V̂11 and V̂12

to Y1, where

V̂11 ≜ arg min
V11∈Γ11

∣∣∣Y1 −
√
P βV11

∣∣∣ , (C.9)

1By Fano’s inequality, we have H(X|Y ) ≤ 1 +Pr [X ̸= Y ] log |X | ≤ 1 + ϵH(X), where the last inequality
holds because Pr [X ̸= Y ] ≤ ϵ and X is uniformly distributed in X . By plugging this bound in I(X;Y ) =
H(X)−H(X|Y ) we get the desired lower bound.
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V̂12 ≜ arg min
V12∈Γ12

∣∣∣∣∣Ỹ1 − AQJ

[
Ỹ1

AQJ

]
−
√
P βV12

∣∣∣∣∣ , (C.10)

where Ỹ1 ≜ Y1 −
√
P βV̂11, and [x] rounds x to its nearest integer for all x ∈ R. This encloses

the original channel and equivalently creates a new channel of finite-alphabet input and

output. Then we apply the data processing inequality and Lemma C.1 as follows.

I(Y1;V11, V12)

≥ I(V̂11, V̂12;V11, V12) (C.11)

≥ (log |Γ11|+ log |Γ12|)×
(
1− Pr

[
(V̂11, V̂12) ̸= (V11, V12)

])
− 1 (C.12)

≥ (β − 1− 3ϵ) log P̄ ×
(
1− Pr

[
(V̂11, V̂12) ̸= (V11, V12)

])
− 3, (C.13)

where inequality (C.13) holds for P large enough because for x ≥ 2, we have log(2 ⌊x⌋−1) ≥

log x.

Then by following the same steps in (C.12) and (C.13), we can bound the first term in (C.4)

as

I(Y2;V2) ≥ (1− ϵ) log P̄
(
1− Pr

[
V̂2 ̸= V2

])
− 4, (C.14)

where

V̂2 ≜ arg min
V2∈Γ2

∣∣∣Y2 −
√
PαV2

∣∣∣ . (C.15)

The second term in (C.4) can be bounded above by a constant as follows:

I(Y1;V2|V11, V12)

≤ I(Y1;V2|V11, V12, Z1) (C.16)

= I(
√
P βJ1 +

√
PαV2;V2) (C.17)
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= H(
√
P βJ1 +

√
PαV2)−H(

√
P βJ1) (C.18)

≤ log
(
4
⌊
1
8

√
P 1−ϵ

⌋
− 3
)
− log

(
2
⌊
1
8

√
P 1−ϵ

⌋
− 1
)

(C.19)

≤ 1. (C.20)

Inequality (C.16) holds since Z1 is independent of V2, and (C.17) follows because (V11, V12, Z1)

is independent of (J1, V2). Inequality (C.19) is true by applying the uniform bound on the

set AQJ ×
{
0,±1,±2, · · · ,±2

(⌊
1
8

√
P 1−ϵ

⌋
− 1
)}

, from which
√
P βJ1 +

√
PαV2 takes value.

Finally (C.20) holds when P is large enough.

It remains to find upper bounds of Pr[(V̂11, V̂12) ̸= (V11, V12)] in (C.13) and Pr[V̂2 ̸= V2] in

(C.14). They vanish as P goes to infinity, as stated in the following lemma, whose proof is

relegated to Appendix C.1.3.

Lemma C.2. Given V̂11, V̂12, and V̂2 are respectively defined in (C.9), (C.10) and (C.15),

we have

lim
P→∞

Pr[(V̂11, V̂12) ̸= (V11, V12)] = 0, (C.21)

lim
P→∞

Pr[V̂2 ̸= V2] = 0. (C.22)

Finally, by respectively plugging (C.13) into (C.3), and plugging (C.14) and (C.20) into

(C.4), we get

R1 ≥ (β − 1− 3ϵ) 1
2
logP + o(log P̄ ) = (β − 1) 1

2
logP + o(log P̄ ), (C.23)

R2 ≥ (1− ϵ) 1
2
logP + o(log P̄ ) = 1

2
logP + o(log P̄ ). (C.24)

We arrive at d1 = limP→∞
R1

1
2
logP

≥ β − 1, and d2 = limP→∞
R1

1
2
logP

≥ 1. Thus the secure

GDoF tuple (d1, d2) = (β − 1, 1) is achievable with this scheme based on lattice alignment

and aggregate decoding.
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C.1.2 The Achievability in Regime 2

The corner points of Dp
IC in Regime 1 are (d1, d2) = (α, 0) and (β − 1, 1 + α− β). Following

the same reason for the corner points of Regime 1, it remains to show (β − 1, 1 + α − β) is

achievable, which is done with lattice alignment and aggregate decoding as well.

We follow the same order as in Appendix C.1.1 by giving the coding scheme first and the

alphabet design later. Message W1 is encoded into V 1 = {V1(t) : t ∈ [n]} with a codebook

generated with alphabet Γ1, and W2 are encoded into V 2 = {V2(t) : t ∈ [n]} with a wiretap

codebook generated with alphabet Γ2. Let X1(t) = V1(t) + J1(t) and X2(t) = V2(t), where

J(t) ∈ ΓJ . For the channel (C.1) and (C.2), the following rates in single-letter form are

achievable under the secrecy constraints, for the reason similar to (C.3) and (C.4):

R1 = I(Y1;V1), (C.25)

R2 = I(Y2;V2)− I(Y1;V2|V1). (C.26)

Next we specify the design of the alphabets Γ1,ΓJ and Γ2. Let Q ≜
⌊√

Pα−1−ϵ
⌋

and

A ≜
√
P 2ϵ, where ϵ > 0. The alphabets (referred to as lattices in the following as well) are

defined as

V1 ∈ Γ1 ≜ A
√
P−β ×

{
0,±1,±2, · · · ,±

(⌊
1
2

√
Pα−1−2ϵ

⌋
− 1
)}

, (C.27)

J1 ∈ ΓJ ≜ A
√
P−β ×

{
0,±Q,±2Q, · · · ,±

⌊√
P 1−α+β−ϵ

⌋
Q
}
, (C.28)

V2 ∈ Γ2 ≜ A
√
P−α ×

{
0,±Q,±2Q, · · · ,±

⌊√
P 1−α+β−ϵ

⌋
Q
}
. (C.29)

Note that such a choice of A,Q and the lattices Γ1,ΓJ and Γ2 satisfies the unit input power

constraint.

Finally we bound the rate (C.25) and (C.26) from below. Let V1, J1 and V2 be independent
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and uniformly distributed in their respective lattices. By following the steps in Appendix

C.1.1, we have

I(Y1;V1) ≥ (α− 1− 2ϵ)× 1
2
logP

(
1− Pr[V̂1 ̸= V1]

)
− 2, (C.30)

I(Y2;V2)− I(Y1;V2|V1) ≥ (1− α + β − ϵ) 1
2
logP

(
1− Pr[V̂2 ̸= V2]

)
− 3, (C.31)

where V̂1 and V̂2 are respectively defined as

V̂1 ≜ arg min
V1∈Γ1

∣∣∣∣Y1 − AQ

[
Y1

AQ

]
−
√
P βV1

∣∣∣∣ , (C.32)

V̂2 ≜ arg min
V2∈Γ2

∣∣∣Y2 −
√
PV2

∣∣∣ . (C.33)

With a similar reasoning to the one in Lemma C.2, one can show that for both i = 1, 2,

Pr[V̂i ̸= Vi] → 0 as P → ∞, and

R1 ≥ (α− 1− 2ϵ) 1
2
logP + o(log P̄ ) = (α− 1) 1

2
logP + o(log P̄ ), (C.34)

R2 ≥ (1− α + β − ϵ) 1
2
logP + o(log P̄ ) = (1− α + β) 1

2
logP + o(log P̄ ). (C.35)

By applying the definition of GDoF we get d1 = limP→∞
R1

1
2
logP

≥ α−1 and d2 = limP→∞
R2

1
2
logP

≥

1−α+β. Hence the GDoF tuple (d1, d2) = (α−1, 1−α+β) is achievable with this scheme.

C.1.3 Proof of Lemma C.2

Let event E ≜
{
Z1

∣∣|Z1| ≥ A
2

}
, and its complement denoted as Ec =

{
Z1

∣∣|Z1| < A
2

}
. Define

I1 ≜
√
P βV12 + Z1 and I2 ≜

√
P βJ1 +

√
PαV2 + I1. Note that Y1 =

√
P βV11 + I2 is the

sum of a lattice point
√
P βV11 and an offset I2. The lattice point is taken from the lattice

√
P β ×Γ11 with the minimum spacing AQ, while the offset, I2, takes value from

(
−AQ

2
, AQ

2

)
when Ec happens. So when Ec occurs, V11 can be correctly decoded by (C.9), and seeing
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that Z1 ∼ N (0, 1), we have

Pr[V̂11 ̸= V11] ≤ Pr{E} ≤ 2 exp

(
−1

8
A2

)
. (C.36)

Next we move on and argue that V12 can be correctly decoded with (C.10) when V11 is

correctly decoded and Ec occurs. Suppose V11 is correctly decoded and removed from Y1,

resulting in the remaining Ỹ1 = I2 =
√
P βJ1 +

√
PαV2 + I1. Note that I2 is the sum of offset

I1 and a lattice point
√
P βJ1 +

√
PαV2, which is taken from lattice

√
P β × ΓJ +

√
Pα × Γ2.

2

Such a lattice has the minimum spacing AQJ . On the other hand, offset I1 takes value

from
(
−AQJ

2
, AQJ

2

)
when Ec happens. As a result, when Ec occurs, Ỹ1 − AQJ

[
Ỹ1

AQJ

]
= I1 =

√
P βV12 + Z1. Note that, once again, I1 is the sum a lattice point

√
P βV12, which is taken

from lattice P̄ β × Γ12 with the minimum spacing A, and an offset Z1, which is in
(
−A

2
, A
2

)
if Ec happens. Therefore, V12 can be correctly decoded by (C.10) when Ec occurs and V11 is

correctly decoded, and

Pr[V̂12 ̸= V12|V̂11 = V11] ≤ Pr{E} ≤ 2 exp

(
−1

8
A2

)
. (C.37)

Finally we can bound Pr
[
(V̂11, V̂12) ̸= (V11, V12)

]
as follows.

Pr
[
(V̂11, V̂12) ̸= (V11, V12)

]
≤ Pr[V̂11 ̸= V11] + Pr[V̂12 ̸= V12] (C.38)

= Pr[V̂11 ̸= V11] + Pr[V̂12 ̸= V12|V̂11 = V11] Pr[V̂11 = V11]

+ Pr[V̂12 ̸= V12|V̂11 ̸= V11] Pr[V̂11 ̸= V11] (C.39)

≤ Pr[V̂11 ̸= V11] + Pr[V̂12 ̸= V12|V̂11 = V11] + Pr[V̂11 ̸= V11] (C.40)

≤ 6 exp

(
−1

8
A2

)
, (C.41)

2For two sets Γ1 and Γ2, define Γ1 + Γ2 ≜ {a+ b|a ∈ Γ1, b ∈ Γ2} as the sum set of Γ1 and Γ2.
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where we apply the union bound in (C.38), and the law of total probability in (C.39).

Inequality (C.41) holds because of (C.36) and (C.37). Since A2 = O(P 2ϵ) and ϵ > 0, we have

Pr[V̂11 ̸= V11 or V̂12 ̸= V12] → 0 as P → ∞.

Note that Y2 =
√
PV2 + Z2 is the sum of a lattice point

√
PV2, which is taken from lattice

√
P × Γ2 with the minimum spacing A

√
P 1−αQJ , and an offset Z2, which is in

(
−A

2
, A
2

)
if

Ec happens. So V2 can be correctly decoded by (C.15) when E occurs, and

Pr[V̂2 ̸= V2] ≤ Pr{E} ≤ 2 exp
(
−1

8
A2P 1−αQ2

J

)
. (C.42)

Note that A2P 1−αQ2
J = O(Pα−1+ϵ) and α ≥ 1 in Regime 1, we have α − 1 + ϵ > 0, and

Pr[V̂2 ̸= V2] → 0 as P → ∞ as well. Here we conclude the proof.

C.2 Proof of Theorem 4.2

In this section, we provide the proof of Theorem 4.2, which characterizes the SGDoF region

of the ZBC with perfect and finite precision CSIT, respectively.

C.2.1 The SGDoF Region with Perfect CSIT

Converse

To show the converse part, we cast the Gaussian channel model into the deterministic model

defined in Section 4.6.1. Lemma 4.3 implies that the deterministic model incurs no loss in

GDoF. To obtain the single-user bound for d1, we apply Fano’s inequality as follows.

nR1
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≤ IG(Y 1;W1) + no(log P̄ ) (C.43)

= IG(Y 1, (Y 1)
min{(β−α)+,1};W1) + no(log P̄ ) (C.44)

= IG((Y 1)
min{(β−α)+,1};W1) + IG(Y 1;W1|(Y 1)

min{(β−α)+,1}) + no(log P̄ ) (C.45)

≤ IG((Y 2)
min{(β−α)+,1};W1) +HG(Y 1|(Y 1)

min{(β−α)+,1}) + no(log P̄ ) (C.46)

≤ n
(
max{α, β} −min{(β − α)+, 1}

)
log P̄ + no(log P̄ ) (C.47)

= nmax{α, β − 1} log P̄ + no(log P̄ ), (C.48)

where Y 1 andB are defined in Section 4.6.1. Equality (C.44) holds because (Y 1)
min{(β−α)+,1}

is a function of Y 1. Then we apply the chain rule to get (C.45). Next we note that,

since both (Y 1)
min{(β−α)+,1} and (Y 2)

min{(β−α)+,1} contain the top-min{(β − α)+, 1} sub-

section of B only, the latter can be obtained with the former within bounded distortion

with G given. Applying this observation, and by the definition of mutual information, we

get inequality (C.46). The first term in (C.46) is no(log P̄ ) due to Lemma 4.3, and we apply

the uniform bound to obtain (C.47). Equality (C.48) then follows. Finally, we arrive at

d1 = limP→∞
nR1

n 1
2
logP

≤ max{α, β − 1}.

Next we show the single-user bound for d2 as follows. Starting by Fano’s inequality, we get

nR2

≤ I(Y 2;W2) + no(log P̄ ) (C.49)

= IG(Y 2, (Y 2)
min{1,(β−α)+};W2) + no(log P̄ ) (C.50)

= IG((Y 2)
min{1,(β−α)+};W2) + IG(Y 2;W2|(Y 2)

min{1,(β−α)+}) + no(log P̄ ) (C.51)

≤ IG((Y 1)
min{1,(β−α)+};W2) +HG(Y 2|(Y 2)

min{1,(β−α)+}) + no(log P̄ ) (C.52)

≤ n
(
1− (β − α)+

)+
log P̄ + no(log P̄ ), (C.53)

where Y 2 is defined in (4.25) in Section 4.6.1. Equality (C.50) holds because (Y 2)
min{1,(β−α)+}

is a function of Y 2. Then we apply the chain rule to get (C.51). Note that (Y 1)
min{1,(β−α)+}
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contains the top-min{1, (β − α)+} sub-section of codeword B, so it can be obtained with

(Y 2)
min{1,(β−α)+} and G within bounded distortion. So we apply this observation, together

with the definition of mutual information, to get (C.52). Finally we arrive at (C.53) by

applying Lemma 4.3 and the secrecy constraint (3.2) to the first term in (C.52), and the

uniform bound to the second term. Thus the bound d2 = limP→∞
nR2

n 1
2
logP

≤ (1− (β − α)+)
+
.

Achievability

To show the achievability, we present two schemes respectively for the following two regimes:

(a) Regime P1: β − 1 ≤ α, and (b) Regime P2: α < β − 1. For Regime P1, it suffices to

achieve the corner point (d1, d2) = (α, 1− (β − α)+). It can be achieved by zero-forcing the

cross link. More specifically, we define the input codeword X1(t) and X2(t) for t ∈ [n] as

X1(t)

X2(t)

 = c1(t)

1
0

U1(t) + c2(t)

−G12(t)
√
P β

G11(t)
√
Pα

U2(t), (C.54)

where U1(t) and U2(t) are independent codewords encoded respectively from W1 and W2;

c1(t) =
1
2
and

c2(t) =
1√

2 (|G12(t)|2P β + |G11(t)|2Pα)
(C.55)

are chosen to satisfy the unit input power constraint. Such choice of c2(t) and the precoding

vector is possible because of the perfect CSIT assumption. Note that the vector for U2(t) is

chosen such that it zero-forces U2(t) at Receiver 1. Now the receivers respectively see the

cross-link-free channel as follows.

Y1(t) =
1

2
G11(t)

√
PαU1(t) + Z1(t), (C.56)

Y2(t) =
G22(t)

√
P 1+α√

2 (|G12(t)|2P β + |G11(t)|2Pα)
U2(t) + Z2(t). (C.57)
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Channel (C.56) allows GDoF α for W1, and channel (C.57) allows 1 + α − max{α, β} =

1 − (β − α)+ for W2. Note that the secrecy constraint (3.2) is satisfied, because undesired

signals are zero forced and codewords U1(t) and U2(t) are independent.

On the other hand, for Regime P2, it suffices to achieve (d1, d2) = (β − 1, 0). This can be

done by setting X1(t) = 0 and X2(t) =
√
P−1U1(t), where U1(t) is encoded from W1 with a

wiretap codebook. With such a setting, the channel allows a GDoF β − 1 for W1 with the

secrecy constraint (3.2) satisfied in the mean time. Here we conclude the proof.

C.2.2 The SGDoF Region with Finite Precision CSIT

To show Df.p.
BC , we continue the definition of the channel regimes in Theorem 4.1, and further

divide Regime 4 into the following two sub-regimes: (a) Regime 4.1, satisfying β ≤ 1 and

β ≤ α; and (b) Regime 4.2, satisfying β ≤ 1 and α < β. It remains to present the proof for

Regime 4.2, as the proof for the other regimes is implied from the previous results.

More specifically, for Regime 1 and 2, their proofs follow from the proof in Section 4.6.3 for the

corresponding regimes, which still holds when full transmitter cooperation is allowed. The

SGDoF region of Regime 3 is identical to Dp
BC of the same regime, and the achievable scheme

does not rely on the perfect CSIT assumption. So the proof in Appendix C.2.1 holds for finite

precision CSIT. Finally, the proof for Regime 4.1 follows from the results in [129]. As a result,

only the SGDoF region of Regime 4.2, which is {(d1, d2) ∈ R2
+ : d1 ≤ α, d1+d2 ≤ 1+α−β},

remains to be shown.

First let us consider the converse proof. The single-user bound d1 ≤ α follows from the

proof in Appendix C.2.1 in the corresponding channel regime. To show the sum bound,

d1 + d2 ≤ 1 + α− β, we cast the Gaussian ZBC model into the deterministic model defined

in Section 4.6.1. Lemma 4.3 implies that this incurs no GDoF loss. Next we apply Fano’s
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inequality, and get

nR1 + nR2

≤ IG(Y 1;W1) + IG(Y 2;W2) + no(log P̄ ) (C.58)

≤ HG(Y 1)−HG(Y 1|W1) +HG(Y 2)−HG(Y 2|W2) + no(log P̄ ) (C.59)

= HG(Y 1|W2)−HG(Y 1|W1) +HG(Y 2|W1)−HG(Y 2|W2) + no(log P̄ ) (C.60)

≤ max{1− β,−α}+n log P̄ +max{β − 1, α}+n log P̄ + no(log P̄ ) (C.61)

= (1 + α− β)n log P̄ + no(log P̄ ), (C.62)

where Y 1 and Y 2 are defined respectively in (4.24) and (4.25). We apply (4.27) and the

secrecy constraint (3.2) to obtain (C.60). Inequality (C.61) holds due to Lemma 4.5. Since

β ≤ 1 in this regime, we have (C.62), and in the GDoF limit we obtain the sum bound

d1 + d2 = limP→∞
R1+R2
1
2
logP

≤ 1 + α− β.

Finally, let us consider the achievability. Since the SGDoF region of the ZBC in Regime 4.2

is identical to that of the ZIC in the same regime, the same achievable schemes apply. Thus,

we obtain the SGDoF region of the ZBC with finite precision CSIT and conclude the proof.

C.3 Proof of Lemma 4.6

We assume G1 and G2 are real random variables with |Gi| ∈ ( 1
∆
,∆) for i = 1, 2. For quick

reference, we define V = T ⊞ U and Z = (T )λ ⊞ (U)µ, and summarize the definition of the

top-λ sub-section of the random variables as follows:

(T )λ = (T )λ+ν
ν =

⌊
T − P̄ λ+ν

⌊
T

P̄λ+ν

⌋
P̄ ν

⌋
=

⌊
T

P̄ ν

⌋
, (C.63)

(U)µ = (U)µ+ν
ν =

⌊
U − P̄ µ+ν

⌊
U

P̄µ+ν

⌋
P̄ ν

⌋
=

⌊
U

P̄ ν

⌋
, (C.64)
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(V )λ = (T ⊞ U)λ+ν
ν =

⌊
V − P̄ λ+ν

⌊
V

P̄λ+ν

⌋
P̄ ν

⌋
. (C.65)

Note that the last equality of (C.63) and (C.64) holds because
⌊

T
P̄λ+ν

⌋
=
⌊

U
P̄µ+ν

⌋
= 0.

Next we simplify (C.65) in the way as is done to (C.63) and (C.64). Define ηT = G1T−⌊G1T ⌋,

and ηU = G2U−⌊G2U⌋. Note that ηT , ηU ∈ [0, 1). Let us first estimate the size of the support

of
⌊

V
P̄λ+ν

⌋
, which is a term appearing in the denominator of (C.65).

V

P̄ λ+ν
= G1

T

P̄ λ+ν
+G2

U

P̄ λ+ν
+

ηT + ηU
P̄ λ+ν

(C.66)

= η̃1 + η̃2 + η̃3, (C.67)

where η̃i is the ith term in (C.66). It is obvious that η̃1, η̃2 ∈ [−∆,∆], and η̃3 ∈ [0, 2]. So⌊
V

P̄λ+ν

⌋
is a random variable with support {−2∆,−2∆+ 1 · · · , 0, 1, · · · , 2∆+ 2}. Note that

for real numbers x, y, we have ⌊x + y⌋ = ⌊x⌋ + ⌊y⌋ + E, where E ∈ {−1, 0, 1}. With this

observation, we can expand (V )λ defined in (C.65) further as follows.

(V )λ =

⌊
V

P̄ ν

⌋
+

⌊
−P̄ λ+ν

⌊
V

P̄ λ+ν

⌋⌋
+ E︸ ︷︷ ︸

Ẽ

(C.68)

=

⌊
V

P̄ ν

⌋
+ Ẽ, (C.69)

where Ẽ is a random variable with support of size no greater than 3(4∆ + 3).

Finally we relate Z to (V )λ. Define truncation terms δT = T
P̄ ν − (T )λ, δU = U

P̄ ν − (U)λ,

ϵT = G1(T )
λ −

⌊
G1(T )

λ
⌋
, ϵU = G2(U)µ − ⌊G2(U)µ⌋, and ϵ = V

P̄ ν −
⌊

V
P̄ ν

⌋
, whose values are in

[0, 1). With these truncation terms, we relate Z with (V )λ as follows.

Z =
⌊
G1(T )

λ
⌋
+ ⌊G2(U)µ⌋ (C.70)

= G1(T )
λ +G2(U)µ − (ϵT + ϵU) (C.71)
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= G1
T

P̄ ν
+G2

U

P̄ ν
− (G1δT +G2δU + ϵT + ϵU) (C.72)

=
1

P̄ ν
(⌊G1T ⌋+ ⌊G2U⌋)−

(
ηT + ηU

P̄ ν
+G1δT +G2δU + ϵT + ϵU

)
(C.73)

=

⌊
V

P̄ ν

⌋
+ ϵ−

(
ηT + ηU

P̄ ν
+G1δT +G2δU + ϵT + ϵU

)
(C.74)

= (V )λ − Ẽ −
(
ηT + ηU

P̄ ν
+G1δT +G2δU + ϵT + ϵU − ϵ

)
︸ ︷︷ ︸

E′

(C.75)

= (V )λ − Ẽ − E ′, (C.76)

where E ′ is a random variable taking an integer value from [−2∆− 1, 2∆+ 4] and therefore

has a support of size at most 4∆+ 6. As a result, EΣ = Ẽ +E ′ is a random variable with a

support of size at most 3(4∆ + 3)(4∆ + 6), which is a constant with respect to P .

In summary, one can evaluate Z = (T )λ ⊞ (U)λ from (V )λ once EΣ is known, which is a

discrete random variable with a support of constant size invariant of P . By comparing the

entropy of Z and (V )λ, we have H(Z)−H(EΣ) ≤ H(Z|EΣ) ≤ H((V )λ) ≤ H(Z) +H(EΣ),

and therefore establish H((T ⊞ U)λ) = H((T )λ ⊞ (U)λ) +O(1).
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