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Phylogenetic Stochastic Mapping without Matrix
Exponentiation

Jan Irvahn1 and Vladimir N. Minin1,2,∗

1Department of Statistics and 2Department of Biology
University of Washington, Seattle

∗corresponding author: vminin@uw.edu

Abstract

Phylogenetic stochastic mapping is a method for reconstructing the history of trait
changes on a phylogenetic tree relating species/organisms carrying the trait. State-of-
the-art methods assume that the trait evolves according to a continuous-time Markov
chain (CTMC) and work well for small state spaces. The computations slow down
considerably for larger state spaces (e.g. space of codons), because current methodol-
ogy relies on exponentiating CTMC infinitesimal rate matrices — an operation whose
computational complexity grows as the size of the CTMC state space cubed. In this
work, we introduce a new approach, based on a CTMC technique called uniformiza-
tion, that does not use matrix exponentiation for phylogenetic stochastic mapping.
Our method is based on a new Markov chain Monte Carlo (MCMC) algorithm that
targets the distribution of trait histories conditional on the trait data observed at the
tips of the tree. The computational complexity of our MCMC method grows as the
size of the CTMC state space squared. Moreover, in contrast to competing matrix
exponentiation methods, if the rate matrix is sparse, we can leverage this sparsity and
increase the computational efficiency of our algorithm further. Using simulated data,
we illustrate advantages of our MCMC algorithm and investigate how large the state
space needs to be for our method to outperform matrix exponentiation approaches.
We show that even on the moderately large state space of codons our MCMC method
can be significantly faster than currently used matrix exponentiation methods.

1 Introduction

Phylogenetic stochastic mapping aims at reconstructing the history of trait changes on a phy-
logenetic tree that describes evolutionary relationships among organisms of interest. Such
trait mapping on phylogenies has become a key element in computational evolutionary bi-
ology analyses. Stochastic mapping has been used successfully to enable computational
analyses of complex models of protein evolution (Rodrigue et al., 2008, 2010), to reconstruct
geographical movements of ancestral populations (Pereira et al., 2007; Lemey et al., 2009),
and to test hypotheses about morphological trait evolution (Huelsenbeck et al., 2003; Ren-
ner et al., 2007). Another testimony to the usefulness of stochastic mapping is the fact that
this relatively new method has already been implemented in multiple widely used software
packages: SIMMAP (Bollback, 2006), PhyloBayes (Lartillot et al., 2009), Bio++ libraries
(Guéguen et al., 2013), and BEAST (Drummond et al., 2012). Despite all these successes of
stochastic mapping, this technique remains computationally challenging when the number
of states that a trait can assume is large. Here, we present a new phylogenetic stochastic
mapping algorithm that scales well with the size of the state space.
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Stochastic mapping, initially developed by Nielsen (2002) and subsequently refined by
others (Lartillot, 2006; Hobolth, 2008), assumes that discrete traits of interest evolve accord-
ing to a continuous-time Markov chain (CTMC). Random sampling of evolutionary histo-
ries, conditional on the observed data, is accomplished by an algorithm akin to the forward
filtering-backward sampling algorithm for hidden Markov models (HMMs) (Scott, 2002).
However, since stochastic mapping operates in continuous-time, all current stochastic map-
ping algorithms require computing CTMC transition probabilities via matrix exponentiation
— a time consuming and potentially numerically unstable operation, when the CTMC state
space grows large. de Koning et al. (2010) recognized the computational burden of the exist-
ing techniques and developed a faster, but approximate, stochastic mapping method based
on time-discretization. We propose an alternative, exact stochastic mapping algorithm that
relies on recent developments in the continuous-time HMM literature.

Rao and Teh (2011) used a CTMC technique called uniformization to develop a method
for sampling hidden trajectories in continuous time HMMs. The use of uniformization in
this context is not new, but all previous methods produced independent samples of hidden
trajectories with the help of matrix exponentiation — an operation with algorithmic com-
plexity O(s3), where s is the size of the CTMC state space (Fearnhead and Sherlock, 2006).
Rao and Teh (2011) constructed a Markov chain Monte Carlo (MCMC) algorithm targeting
the posterior distribution of hidden trajectories. Their new method eliminates the need for
matrix exponentiation and results in an algorithm with complexity O(s2). Moreover, the
method of Rao and Teh (2011) can further increase its computational efficiency by taking
advantage of sparsity of the CTMC rate matrix. Here, we take the method of Rao and Teh
(2011) and extend it to phylogenetic stochastic mapping.

As in the original method of Rao and Teh (2011), our new stochastic mapping method
must pay a price for bypassing the matrix exponentiation step. The cost of the improved
algorithmic complexity is the replacement of Monte Carlo in the state-of-the-art stochastic
mapping with MCMC. Since Monte Carlo, if practical, is generally preferable to MCMC, it
is not immediately clear that our new algorithm should be an improvement on the original
method in all situations. We perform an extensive simulation study, comparing performance
of our new MCMC method with a matrix exponentiation method for different sizes of the
state space. We conclude that, after accounting for dependence of trait history samples, our
new MCMC algorithm can outperform existing approaches even on only moderately large
state spaces (s ∼ 30). We demonstrate additional computational efficiency of our algorithm
when taking advantage of sparsity of the CTMC rate matrix. Since we suspect that our new
method can speed up computations during studies of protein evolution, we examine in detail
a standard GY94 codon substitution model (s = 61) (Goldman and Yang, 1994). We show
that our new method can reduce computing times of state-of-the-art stochastic mapping by
at least of factor of ten when working with this model. The last finding is important, because
state-of-the-art statistical methods based on codon models often grind to a halt when applied
to large datasets (Valle et al., 2014).
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2 Methods

2.1 CTMC model of evolution

We start with a trait of interest, X(t), and a rooted phylogenetic tree with n tips and 2n−2
branches. We assume that the phylogeny and its branch lengths, β = (β1, . . . , β2n−2), are
known to us. The trait can be in one of s distinct states, {1, . . . , s}, at any particular place on
the tree. We follow standard phylogenetics practice and assume that the trait evolves along
the phylogenetic tree by the following stochastic process. First, a trait value is drawn at the
root of the tree from an initial distribution π = (π1, . . . , πs). Next, starting at the root state,
we use a CTMC with an infinitesimal s×s rate matrix Q = {qkh} to produce two independent
CTMC trajectories along the branches leading to the two immediate descendants of the root
node. After generating a CTMC trajectory along a branch we necessarily have generated a
state for the child node of the branch. The procedure proceeds recursively by conditioning on
a parent node and evolving the same CTMC independently along the two branches leading
to the parent’s children nodes. The random process stops when we reach the tips — nodes
that have no descendants. Trait states at the tips of the tree are observed, while the trait
values everywhere else on the tree are considered missing data. We collect the observed data
into a vector y.

A substitution history for a phylogenetic tree is the complete list of transition events
(CTMC jumps), including the time of each event (location on the tree) and the type of
the transition event (e.g., 2 → 1 transition). This state history can be encoded in a set of
vectors, two vectors for each branch. Suppose branch i has ni transitions so the full state
history for branch i can be described by a vector of state labels, si = (si0, ..., sini

), and a
vector of intertransition times, ti = (ti0, ..., tini

). Let S be the collection of all the si vectors
and let T be the collection of all the ti vectors, forming the full substitution history, (S, T ).
See plot 3 in Figure 1 for a substitution history example. The tree in Figure 1 has four
branches so the collection of state labels is S = {s1, s2, s3, s4}, where s1 = (1), s2 = (1, 2),
s3 = (3), and s4 = (3, 1). The collection of intertransition times is T = {t1, t2, t3, t4}, where
t1 = (3.2), t2 = (0.64, 2.56), t3 = (8), and t4 = (2.4, 2.4).

The goal of stochastic mapping is to be able to compute properties of the distribution of
the substitution history of a phylogenetic tree conditional on the observed states at the tips
of the tree, p(S, T |y).

2.2 Nielsen’s Monte Carlo Sampler

Nielsen (2002) proposed the basic framework that state-of-the-art phylogenetic stochastic
mapping currently uses. His approach samples directly from the conditional distribution,
p(S, T |y), in three steps. First, one calculates partial likelihoods using Felsenstein’s algo-
rithm (Felsenstein, 1981). The partial likelihood matrix records the likelihood of the observed
data at the tips of the tree beneath each node after conditioning on the state of said node.
This requires calculating transition probabilities for each branch via matrix exponentiation.
Second, one recursively samples internal node states, starting from the root of the tree.
Third, one draws realizations of CTMC trajectories on each branch conditional on the sam-
pled states at the branch’s parent and child nodes. The last step can be accomplished by
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multiple algorithms reviewed in (Hobolth and Stone, 2009). In order to avoid matrix expo-
nentiation while approximating p(S, T |y) we will need a data augmentation technique called
uniformization.

2.3 CTMC Uniformization

An alternative way to describe the CTMC model of evolution on a phylogenetic tree uses
a homogenous Poisson process coupled with a discrete time Markov chain (DTMC) that is
independent from the Poisson process. The intensity of the homogenous Poisson process, Ω,
must be greater than the largest rate of leaving a state, maxk|qkk|. The generative process
that produces a substitution history on a phylogenetic tree first samples the total number
of DTMC transitions over the tree, N , drawn from a Poisson distribution with mean equal
to Ω

∑2n−2
i=1 βi — the product of the Poisson intensity and the sum of all the branch lengths.

The locations/times of the N transitions are then distributed uniformly at random across all
the branches of the tree. These transition time points separate each branch into segments.
The intertransition times (the length of each segment) for branch i compose the vector,
wi, where the sum of elements of this vector equal the branch length βi. The state of
each segment evolves according to a DTMC with transition probability matrix B = {bkh}
satisfying B = I + Q/Ω.

Again, the uniformized generative process samples a state at the root of the tree and
works down the tree sampling the state of each branch segment sequentially. Conditional
on the previous/ancestral segment being in state k, we sample the current segment’s state
from a multinomial distribution with probabilities (bk1, . . . , bks). The states of each segment
of branch i compose the vector, vi. It is important to note that the stochastic transition
matrix B allows the DTMC to transition from state k to state k, i.e., self transitions are
allowed. Intuitively, the dominating homogenous Poisson process produces more transition
events (on average) than we would expect under the CTMC model of evolution. The DTMC
allows some of the transitions generated by the Poisson process to be self transitions so that
the remaining “real” transitions and times between them yield the exact CTMC trajectories
we desire (Jensen, 1953).

An augmented substitution history of a phylogenetic tree encodes all the information in
(S, T ) and adds virtual jump times as seen in plot 4 of Figure 1. The notation describing
an augmented substitution history is similar to the notation used to describe a substitution
history. One branch is fully described by two vectors. Let branch i have mi jumps (real
and virtual) and again, vi = (vi0, ..., vimi

) is a vector of state labels, wi = (wi0, ..., wimi
)

is a vector of intertransition times, V is the collection of all the vi vectors, and W is the
collection of all the wi vectors. The augmented state history is (V ,W). The tree in plot 4
of Figure 1 has four branches so the collection of state labels is V = {v1,v2,v3,v4}, where
v1 = (1, 1), v2 = (1, 2), v3 = (3, 3), and v4 = (3, 1). The collection of intertransition
times is W = {w1,w2,w3,w4}, where w1 = (1.6, 1.6), w2 = (0.64, 2.56), w3 = (7, 1), and
w4 = (2.4, 2.4). The locations/times of each virtual jump on branch i is represented by a
vector ui = (ui1, .., ui(mi−ni)). For example, the distance from the parent node of branch i to
the dth virtual jump is uid. The collection of the ui vectors, fully determined by (V ,W), is
denoted by U . In plot 4 of Figure 1 the collection of virtual jump times is U = {u1,u2,u3,u4}
where u1 = (1.6), u2 = (), u3 = (7), and u4 = ().
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2.4 New MCMC Sampler

Equipped with notation describing the CTMC model of evolution and a companion uni-
formization process, we now turn our attention to making inference about a phylogenetic
tree state history conditional on observed data. We investigate the situation where the tree
topology is fixed, branch lengths are fixed, and the rate matrix parameters are all known
and fixed. The goal is to construct an ergodic Markov chain on the state space of augmented
substitution histories with the stationary distribution p(V ,W|y).

Our MCMC sampler uses two Markov kernels to create a Markov chain whose stationary
distribution is p(V ,W|y). The first kernel samples from p(V|W ,y) — the distribution of
states on the tree conditional on tip states and the jump locations on each branch. A Markov
chain that sequentially draws from this full conditional has p(V ,W|y) as its stationary
distribution. This kernel alone is not ergodic because the set of transition times, W , is not
updated. To create an ergodic Markov chain we introduce a second Markov kernel to sample
from p(U|S, T ,y) — the distribution of virtual transitions conditional on the substitution
history. Again, drawing from the full conditional of U ensures that p(V ,W|y) is a stationary
distribution of this kernel. This kernel alone is not ergodic either but when the two kernels
are combined we create an ergodic Markov chain with the desired stationary distribution.
In general, it takes two sequential applications of the above kernels before the probability
density of transitioning between two arbitrary augmented substitution histories becomes
nonzero.

2.4.1 Sampling States from p(V|W ,y)

Our strategy for sampling states V is to make a draw from the full conditional of internal
node states and then to sample the states along each branch conditional on the branch’s
parent and child nodes. It is useful to remember that when conditioning on the number
of virtual and real jumps, and locations of these jumps on the tree, our data generating
process becomes a DTMC with transition probability matrix B and a known number of
transitions on each branch. Alternatively, we can think of the trait evolving along each
branch i according a branch-specific DTMC with transition probability matrix Bmi , where
mi is the number of transitions on branch i. This is similar to representing a regular,
non-uniformized, CTMC model as a collection of branch-specific DTMCs with transition
probability matrices P(β1), . . . ,P(β2n−2). This analogy allows us to use standard algorithms
for sampling internal node states on a phylogenetic tree by replacing in these algorithms
P(βi) with Bmi for all i = 1, . . . , 2n − 2. For completeness, we make this substitution
explicit below.

We start by using Felsenstein’s algorithm to compute a partial likelihood matrix L =
{ljk}, where ljk is the probability of the observed tip states below node j given that node j is
in state k (Felsenstein, 1981). The matrix L has (2n− 1) rows and s columns because there
are (2n− 1) nodes (including the tips) and there are s states. Starting at the tips, we work
our way up the tree calculating partial likelihoods at internal nodes as we go. We need to
calculate the partial likelihood at both child nodes before calculating the partial likelihood
at a parent node because of the recursive nature of the Felsenstein algorithm. The algorithm
is initialized by setting each row corresponding to a tip node to zeros everywhere except for
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the column corresponding to the observed state of that tip. The matrix value at this entry
is set to 1. Next, we calculate the partial likelihoods for all the internal nodes. Suppose
branch i connecting parent node p to child node c has mi jumps so the probability transition
matrix for branch i is E(mi) ≡ Bmi . The probability of transitioning from state h to state
k along branch i is e(i)hk, the (h, k)th element of E(mi). We refer to the state of node j as
yj. The probability of observing the tip states below node c conditional on node p being in
state h is

gpch =
s∑

k=1

Pr(yc = k|yp = h)lck = (e(mi)h−) (lc−)T ,

where lc− = (lc1, . . . , lcs). If node c is a tip then conditioning on the tip states below c is
the same as conditioning on the state of tip c. We combine the probabilities, gpch, for each
state h into a single vector, gpc−, and then create the same type of vector for the second
branch below node p, gpd−. Element wise multiplication of the two vectors yields the vector
of partial likelihoods for node p:

(lp−)T = gpc− ∗ gpd−.

After working our way up the tree we have the matrix of partial likelihoods, L.

Sampling internal node states Starting at the root we work our way down the tree
sampling the states of internal nodes conditional on tip states, the number of jumps on each
branch, and previously sampled internal node states. The prior probability that the root is
in state k is the kth element of the probability vector π. The probability that the root is in
state k given the states of all the tip nodes is,

Pr(yroot = k|y) =
Pr(yroot = k & y)

Pr(y)
=

Pr(yroot = k)Pr(y|yroot = k)∑s
h=1 Pr(yroot = h)Pr(y|yroot = h)

=
πkl(root k)

l(root -)π
.

Once we calculate the probability of the root being in each possible state we sample the state
of the root from the multinomial distribution with probabilities we just computed. Next,
we sample all non-root, non-tip nodes. Without loss of generality, let us consider node c
connected to its parent node, node p, by branch i. Suppose node p’s previously sampled
state is h and the number of jumps on branch i is mi. The vector containing observed tip
states at the eventual descendants of node c is dc. The probability that node c is in state k
given node p is in state h and given the state of the tips below node c is

Pr(yc = k|yp = h & dc) =
Pr(yc = k|yp = h)Pr(dc|yc = k)∑s
k=1 Pr(yc = k|yp = h)Pr(dc|yc = k)

=
e(mi)hklck

e(mi)h−(lc−)T
. (1)

Starting with the root we can now work our way down the tree sampling the states of each
node from the multinomial distributions with probabilities we just described. Equation (1)
may suggest that sampling internal nodes has algorithmic complexity O(s3), because raising
a matrix to a power requires O(s3) multiplications. It is important to note that we never
need to calculate Bm as we only need Bm × vector, which requires O(s2) multiplications.

6



Sampling branch states We sample the states on each branch separately, conditioning
both on previously sampled internal nodes states and on the number of transitions on each
branch. Conditioning on the internal node states means the starting and ending state of each
branch are set so we only sample internal segments of the branches. Conditioning on the
number of transitions on a branch means we are sampling states of the discrete time Markov
chain with transition matrix B. Suppose branch i starts in state vi0 and ends in state vimi

(or
yc). We sample each segment of the branch in turn, starting with the second segment because
the first segment has to be in the same state as the parent node of the branch. The state
of each segment is sampled conditional on the state of the previous segment, the number
of transitions until the end of the branch, and the ending state of the branch, vimi

= yc.
The state of the dth segement is sampled from a multinomial distribution with probabilities
calculated according to the following formula:

Pr(vid = k|vi(d−1) = h, vimi
= yc) =

Pr(vi(d−1) = h, vid = k, vimi
= yc)

Pr(vi(d−1) = h, vimi
= yc)

=
Pr(vi(d−1) = h)Pr(vid = k|vi(d−1) = h)Pr(vimi

= yc|vid = k)

Pr(vi(d−1) = h)Pr(vimi
= yc|vi(d−1) = h)

=
bhke(mi − d)kyc
e(mi − d+ 1)hyc

.

After sampling the states along each branch we have completed one cycle through the first
Markov kernel by sampling from p(V|W ,y). The second Markov kernel requires us to sample
virtual transitions conditional on the current substitution history (not augmented by virtual
jumps).

2.4.2 Sampling Virtual Jumps from p(U|S, T ,y)

After sampling the states on each branch, V , we resample virtual jumps, U , on each branch
separately. Without loss of generality consider a branch with a newly sampled substitution
history, (s, t), which is the augmented substitution history with all the virtual jumps re-
moved. Suppose the branch contains n real transitions. Resampling virtual jumps for the
branch involves resampling virtual jumps for each of the n + 1 segments of the branch sep-
arately. To sample the ath segment of the branch we need to sample the number of virtual
jumps, µa, and the locations of these virtual jumps. After sampling virtual jumps for each
of the n + 1 branch segments we have m transitions total, both real and virtual, so that
m = n +

∑n
a=0 µa. Careful examination of the likelihood of the dominating homogenous

Poisson process for a single branch of the tree allows us to derive the distribution of virtual
jumps conditional on the substitution history of the branch.

Suppose there are m jumps along a branch including real transitions and virtual transi-
tions. Let vd be the state of the chain after the dth transition and let π′v0 be the probability
that the branch starts in state v0. The density of the augmented substitution history is

p(v,w) = π′v0
e−Ωt(Ωt)m

m!

m!

tm

m∏
d=1

Bvd−1,vd . (2)

The density as written above has four parts, the probability of starting in state v0 = s0,
the probability of m transition points, the density of the locations of m unordered points
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conditional on there being m points, and the probability of each transition in a discrete time
Markov chain with transition matrix B.

The density of the augmented substitution history of one branch, p(v,w), can be rewrit-
ten as p(u, s, t), because the substitution history, (s, t) combined with the virtual jump
locations, u, form the augmented substitution history. To derive the full conditional for u,
we follow Rao and Teh (2011) and rewrite density (2) as follows:

p(u, s, t) = p(v,w) =
n∏
a=0

(
rµaa e

−rata
)
π′s0

(
n∏
z=1

|qsz−1 |eqsz−1 tz−1
qsz−1sz

|qsz−1|

)
eqsn tn =

n∏
a=0

(
rµaa e

−rata
)

p(s, t),

where qsa ≡ qsasa and ra = Ω + qsa . Therefore,

p(u|s, t,y) = p(u|s, t) =
p(u, s, t)

p(s, t)
=

n∏
a=0

(
rµaa e

−rata
)

=
n∏
a=0

e−rata(rata)
µa

µa!

µa!

tµaa
. (3)

The full conditional density (3) is a density of an inhomogenous Poisson process with
intensity r(t) = Ω + qX(t). This intensity is piecewise constant so we can add self transition
locations/times to a branch segment in state sa by drawing a realization of a homogenous
Poisson process with rate ra = Ω + qsa . More specifically, we sample the number of self
transitions, µa, on this segment by sampling from a Poisson distribution with mean rata and
then distributing the locations/times of the µa self transitions uniformly at random across
the segment. This procedure is repeated independently for all segments on all branches of
the phylogenetic tree, concluding our MCMC development, summarized in Algorithm 1 and
illustrated in Figure 1.

Algorithm 1 MCMC for phylogenetic stochastic mapping

1: Start with an augmented substitution history, (V0,W0)
2: for γ ∈ {1, 3, 5, . . . , 2N − 1} do
3: sample from p(Vγ|Wγ−1,y) producing a new substitution history (Sγ, Tγ)

(i) sample internal node states conditional on y and the number of jumps on each
branch

(a) starting at the tips work up the tree calculating partial likelihoods

(b) starting at the root work down the tree sampling internal node states

(ii) sample segmental states conditional on end states and number of jumps

4: sample from p(Uγ+1|Sγ, Tγ), producing (Vγ+1,Wγ+1)

(i) remove virtual jumps

(ii) sample virtual jumps conditional on substitution history

5: end for
6: return (V0,W0), (V2,W2), . . . , (V2N ,W2N)
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state 1 state 2 state 3

augmented

substitution history

1)

resample states

2)

remove virtual jumps

3)

1 2

3

4

sample new virtual jumps

4)

Figure 1: An example of applying the two Markov kernels of our MCMC sampler to an
augmented substitution history. The diamonds represent virtual transitions. 1) shows an
initial augmented substitution history; 2) shows the substitution history after resampling
states on the phylogeny conditional on tip node states and the transition points (both real
and virtual); 3) shows the substitution history seen in 2) with no virtual jumps; 4) shows
the augmented substitution history after resampling virtual jumps conditional on the sub-
stitution history seen in 3). The transition from 1) to 2) shows the effect of the first Markov
kernel, sampling from p(V|W ,y). The transition from 3) to 4) shows the effect of the second
Markov kernel, sampling from p(U|S, T ).

3 Assessing Computational Efficiency

3.1 Algorithm Complexity

State-of-the-art stochastic mapping approaches rely on exponentiating CTMC rate matrices,
requiring O(s3) operations. Our MCMC algorithm uses only matrix-by-vector multiplica-
tions, allowing us to accomplish the same task in O(s2) operations. Moreover, if the CTMC
rate matrix is sparse, the algorithmic complexity of our method can go down further. For
example, if Q is a tri-diagonal matrix, as in the birth-death CTMCs used to model evolu-
tion of gene family sizes (Spencer et al., 2006), then our MCMC achieves an algorithmic
complexity of O(s). In contrast, even after disregarding the cost of matrix exponentiation,
approaches relying on this operation require at least O(s2) operations, because eQt is a dense
matrix regardless of the sparsity of Q. However, since the number of matrix-by-vector mul-
tiplications is a random variable in our algorithm, the algorithmic complexity with respect
to the state space size does not tell the whole story, prompting us to perform an empirical
comparison of the two approaches in a set of simulation studies. In these simulation studies,
we need to compare state-of-the-art Monte Carlo algorithms and our MCMC in a principled
way, which we describe in the next subsection.

3.2 Effective Sample Size

When comparing timing results of our MCMC approach and a matrix exponentiation ap-
proach, we need to account for the fact that our MCMC algorithm produces correlated
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substitution histories. One standard way to compare computational efficiency of MCMC
algorithms is by reporting CPU time divided by effective sample size (ESS), where ESS is a
measure of the autocorrelation in a stationary time series (Holmes and Held, 2006; Girolami
and Calderhead, 2011). More formally, the ESS of a stationary time series of size N with
stationary distribution ν is an integer Neff such that Neff independent realizations from ν
have the same sample variance as the sample variance of the time series. The ESS of a
stationary time series of size N is generally less than N and is equal to N if the time series
consists of independent draws from ν.

In MCMC literature, ESSs are usually calculated for model parameters, latent variables,
and the log-likelihood. Since we are fixing model parameters in this paper, we monitor ESSs
for our latent variables — augmented substitution history summaries — and log p(S, T ) —
the log-density of the substitution history. Although the amount of time spent in each state
over the entire tree and the numbers of transitions between each possible pair of states are
sufficient statistics of a fully observed CTMC (Guttorp, 1995), it is impractical to use all
of these summaries for ESS calculations. This stems from the fact that we are interested
in the parameter regimes under which we expect a small number of CTMC transitions over
the entire tree. In such regimes, some of the states are never visited so the amount of
time spent in these states is zero, which creates an impression that the MCMC is mixing
poorly. To avoid this problem, we restrict our attention to the amount of time spent (over
the entire tree) in each of the states that are observed at the tips. Similarly, we restrict our
attention to transition counts between observed tip states. Each of the univariate statis-
tics, including the log-density of the substitution history, yields a potentially different ESS,
which we calculate with the help of the R package coda (Plummer et al., 2006). We follow
Girolami and Calderhead (2011) and conservatively use the minimum of these univariate
ESSs to normalize the CPU time of running our MCMC sampler. More specifically, in all
our numerical experiments, we generate 10,000 substitution histories via both MCMC and
matrix exponentiation methods and then multiply the CPU time of our MCMC sampler by
10, 000/min(univariate ESSs).

3.3 Matrix Exponentiation

In all our simulations we compare timing results of our new MCMC approach with another
CTMC uniformization approach that relies on matrix exponentiation (Lartillot, 2006). For
the matrix exponentiation approach we recalculate the partial likelihood matrix at each
iteration, which involves re-exponentiating the rate matrix. We do so in order to learn
how our MCMC method will compare to the matrix exponentiation method in situations
where the parameters of the rate matrix are updated during a MCMC that targets the joint
posterior of substitution histories and CTMC parameters (Lartillot, 2006; Rodrigue et al.,
2008). Since matrix exponentiation is a potentially unstable operation (Moler and Van Loan,
1978), we do not repeat it at each iteration in our simulations. Instead, we pre-compute an
eigen decomposition of the CTMC rate matrix once, cache this decomposition and then
use it to exponentiate Q at each iteration. Even though exponentiating Q using its pre-
computed eigen decomposition is an O(s3) operation, our simulations do not fully mimic a
more realistic procedure that repeatedly re-exponentiates the rate matrix. Skipping the eigen
decomposition operation at each iteration of stochastic mapping increases computational
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efficiency of the matrix exponentiation method, making our timing comparisons conservative.
In one of our simulation studies, when we consider the effect of sparsity in the rate

matrix, we depart from this matrix exponentiation regime. Instead of exponentiating the
rate matrix at each iteration we exponentiate the rate matrix Q and compute the partial
likelihood matrix once, sampling substitution histories at each iteration without recalculating
branch-specific transition probabilities or partial likelihoods. We refer to this method as
“EXP once.” We do not believe that our MCMC method is the most appropriate in this
regime, but we are interested in how our new method compares to state-of-the-art methods
when the calculations requiring O(s3) operations were not involved.

3.4 Implementation

We have implemented our new MCMC approach in an R package phylomap, available at
https://github.com/vnminin/phylomap. The package also contains our implementation
of the matrix exponentiation-based uniformization method of Lartillot (2006). We reused as
much code as possible between these two stochastic mapping methods in order to minimize
the impact of implementation on our time comparison results. We coded all computationally
intensive parts in C++ with the help of the Rcpp package (Eddelbuettel and François, 2011).
We used the RcppArmadillo package to perform sparse matrix calculations (Eddelbuettel
and Sanderson, 2014).

4 Numerical Experiments

4.1 General Set Up

We started all of our simulations by creating a random tree with 50 or 100 tips using the
diversitree R package (FitzJohn, 2012). For each simulation that required the construc-
tion of a rate matrix, we set the transition rates between all state pairs to be identical. We
then scaled the rate matrix for each tree so that the number of expected CTMC transitions
per tree was either 2 or 6. These two values were intended to mimic slow and fast rates
of evolution. Six expected transitions in molecular evolution settings is usually considered
unreasonably high but six transitions (or more) is reasonable in other settings like phylo-
geography. For example, investigations of Lemey et al. (2009) into the geographical spread
of human influenza H5N1 found on the order of 40 CTMC transitions on their phylogenies.
To obtain each set of trait data we simulated one full state history after creating a tree and
a rate matrix. We used this full state history as the starting augmented substitution history
for our MCMC algorithm.

To ensure our implementation of the matrix exponentiation approach properly sam-
pled from p(S, T |y) and to ensure the stationary distribution of our MCMC approach was
p(V ,W|y), we compared distributions of univariate statistics produced by our implementa-
tions to the same distributions obtained by using diversitree’s implementation of phylo-
genetic stochastic mapping. We found that all implementations, including diversitree’s,
appeared to produce the same distributions. Boxplots and histograms showing the results
of our investigations can be found in Appendix A of the Supplementary Materials.
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4.2 MCMC Convergence

Although we have outlined a strategy for taking MCMC mixing into account via the normal-
ization by ESS, we have not addressed possible problems with convergence of our MCMC.
Examination of MCMC chains with an initial distribution different from the stationary dis-
tribution showed very rapid convergence to stationarity, as illustrated in Figure C-1 in the
Supplementary Materials. Such rapid convergence is not surprising in light of the fact that
we jointly update a large number of components in our MCMC state space without resorting
to Metropolis-Hastings updates.

4.3 Effect of State Space Size

Our MCMC method scales more efficiently with the size of the state space than matrix
exponentiation methods so we were first interested in comparing running times of the two
approaches as the size of the CTMC state space increased. In Figure 2, we show the amount
of time it took the matrix exponentiation method to obtain 10,000 samples for different state
space sizes and we show the amount of time it took our MCMC method to obtain an ESS
of 10,000 for different state space sizes. The size of the state space varied between 4 states
and 60 states. The tuning parameter, Ω, was set to 0.2, ranging between 15 and 103 times
larger than the largest rate of leaving a state.

Figure 2 contains timing results for four different scenarios. We considered two different
rates of evolution corresponding to 2 expected transitions per tree and 6 expected transitions
per tree and we considered two different tree tip counts, 50 and 100. The MCMC approach
started to run faster than the matrix exponentiation approach when the size of the state
space entered the 25 to 35 state range. At 60 states the MCMC approach was clearly faster
in all four scenarios. For the senario involving 100 tips, 2 expected transtions, and 60 states
the MCMC method was almost 3 times faster than the matrix exponentiation approach. For
the scenario involving 50 tips, 2 expected transtions, and 60 states the MCMC method was
about 15 times faster than the matrix exponentiation approach.

Our MCMC approach scales well beyond state spaces of size 60 though matrix expo-
nentiation does not. Timing results for our MCMC approach at larger state space sizes
can be found in Figure D-1 of the Supplementary Materials. Matrix exponentiation-based
stochastic mapping was prohibitively slow on state spaces reported in Figure D-1.

4.4 Effect of the Dominating Poisson Process Rate

Our tuning parameter, the dominating Poisson process rate Ω, balances speed against mixing
for our MCMC approach. The larger Ω is the slower the MCMC runs and the better it mixes.
The optimal value for Ω depends on the CTMC state space and on the entries of the CTMC
rate matrix. In our experience, it is not difficult to find a reasonable value for Ω for a
fixed tree and a fixed rate matrix by trying different Ω values. We show the results of this
exploration in Figure 3 for two different values of the state space size, 4 and 60, and for two
different trees, with 50 and 100 tips.

The top left plot in Figure 3 shows the balance between speed and mixing most clearly.
The optimal value for Ω appears to be around 0.2 for 4 states and 50 tips. Our MCMC
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Figure 2: State space effect. All four plots show the amount of time required to obtain
10,000 effective samples as a function of the size of the state space for two methods, matrix
exponentiation in purple squares and our MCMC sampler in black circles. The two plots in
the top row show results for a randomly generated tree with 50 tips. The two plots in the
bottom row show results for a randomly generated tree with 100 tips. The two plots in the
left column show results for a rate matrix that was scaled to produce 2 expected transitions
while the two plots in the right column show results for a rate matrix that was scaled to
produce 6 expected transitions.
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Figure 3: Time to obtain 10,000 effective samples as a function of the dominating Poisson
process rate, Ω. All four plots show results of our MCMC sampler in black. Timing results
for the matrix exponentiation method are represented by a purple horizontal line because
the matrix exponentiation result does not vary as a function of Ω. The two plots in the top
row show results for a randomly generated tree with 50 tips. The two plots in the bottom
row show results for a randomly generated tree with 100 tips. The rate matrix for the plots
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states.
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approach is clearly faster than the matrix exponentiation approach for a wide range of Ω
values when the size of the state space is 60. When the size of the state space is 4 the matrix
exponentiation approach can be faster, which is not surprising given the small size of the
state space. Matrix exponentiation is about two times faster than our MCMC approach for
the 100 tip tree with 4 states. Our MCMC approach can yield comparable speeds to the
matrix exponentiation approach for the 50 tip tree with 4 states.

4.5 Effect of Sparsity

Unlike matrix exponentiation methods, our new MCMC sampler is able to take advantage
of sparsity in the CTMC rate matrix. There are three steps in our algorithm that can
take advantage of sparsity: computing the partial likelihood matrix, sampling internal node
states, and resampling branch states. In all three situations we need to multiply BM by
a vector of length s – the size of the state space. For a dense matrix this takes O(Ms2)
operations. When matrix B is sparse, the above multiplication requires fewer operations.
For example, multiplying a vector by BM takes O(Ms) operations when B is triadiagonal.
It is interesting to note that while matrix exponentiation approaches cannot take advantage
of sparsity when creating the partial likelihood matrix they can use sparsity when sampling
branches via the uniformization technique of Lartillot (2006).

Speed increases due to sparsity depend on the size of the state space and the degree
of sparsity in the probability transition matrix, B. In Figure 4 we contrast the sparse
implementation of our MCMC method with the implementation that does not take advantage
of sparsity. Figure 4 also shows timing results for a matrix exponentiation method that only
exponentiates the rate matrix once.

For a state space of size 60, the sparse implementation is about 2 times faster than the
non-sparse implementation. Exponentiating the rate matrix once was always faster than
the sparse implementation, sometimes by a factor of 4. We used uniformization to sample
substitution histories for individual branches within the matrix exponentiation algorithm.
This portion of the algorithm can take advantage of sparsity but there was not a large overall
difference in run times between the sparse and non-sparse implementations.

4.6 Models of Protein Evolution

We now turn to the investigation of efficiency of our new phylogenetic stochastic mapping
in the context of modeling protein evolution. Evolution of protein coding sequences can
be modeled on the following state spaces: state space of 4 DNA bases/nucleotides, state
space of 20 amino acids, and state space of 61 codons — nucleotide triplets — excluding
the three stop codons. The codon state space is the most computationally demanding of the
three, causing existing phylogenetic mapping approaches to slow down considerably. The
increased complexity that comes from modeling protein evolution at the codon level enables
investigations into selective pressures and makes efficient use of the phylogenetic information
for phylogeny reconstruction (Ren et al., 2005).

In our numerical experiments, we use the Goldman-Yang-94 (GY94) model — a popular
codon substitution model proposed by Goldman and Yang (1994), where the rate of sub-
stitution between codons depends on whether the substitution is synonymous (the codon
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Figure 4: Time to obtain 10,000 effective samples as a function of the size of the state space.
All four plots show results for three different implementations, our MCMC sampler in black,
a sparse version of our MCMC sampler in red, and a matrix exponentiation approach that
only exponentiates the rate matrix once per branch in blue. The rate matrix is tridiagonal
and scaled to produce 2 expected transitions per tree (in the left column) or 6 expected
transitions per tree (in the right column). The two plots in the top row show results for a
randomly generated tree with 50 tips. The two plots in the bottom row show results for a
randomly generated tree with 100 tips. The dominating Poisson process rate, Ω, is 0.2.
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Figure 5: Time to obtain 10,000 effective samples as a function of the dominating Poisson
process rate, Ω, for the GY94 codon rate matrix. All four plots show results for three different
implementations: our MCMC sampler in black, a sparse version of our MCMC sampler in
red, and a matrix exponentiation approach in purple. The GY94 rate matrix was scaled to
produce 2 expected transitions per tree (in the left column) or 6 expected transitions per tree
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codes for the same amino acid before and after the substitution) or nonsynonymous and
whether the change is a transition (A ↔ G, C ↔ T ) or a transversion. The rate matrix
is parameterized by a synonymous/nonsynonymous rate ratio, ω, a transition/transversion
ratio, κ, and a stationary distribution of the CTMC, πc. The non-diagonal entries of the
GY94 rate matrix, as described are

qab =


ωκπcb if a→ b is a non-synonymous transition,
ωπcb if a→ b is a non-synonymous transversion,
κπcb if a→ b is a synonymous transition,
πcb if a→ b is a synonymous transversion,
0 if a and b differ by 2 or 3 nucleotides.

The diagonal rates are determined by the fact that the rows of Q must sum to zero. In
our simulations, we used the default GY94 rate matrix as found in the phylosim R package
(Sipos et al., 2011). The dominating Poisson process rate, our tuning parameter Ω, ranged
between being 8 times larger than the largest rate of leaving a state to being 80 times larger.
Timing results for the GY94 codon model rate matrix can be found in Figure 5. GY94
contains structural zeros allowing our MCMC sampler to take advantage of sparsity and
improve running times. Our MCMC approach was about 5 times faster than exponentiating
the rate matrix at each iteration. A sparse version of our MCMC approach was about ten
times faster than the matrix exponentiation method.

Encouraged by the computational advantage of our method on the codon state space, we
also compared our new algorithm and the matrix exponentiation method on the amino acid
state space. We used an amino acid substitution model called JTT, proposed by Jones et al.
(1992). The results can be found in Figure B-1 of the Supplementary Materials. We found
that our MCMC approach is competitive even on the amino acid state space, but does not
clearly outperform the matrix exponentiation method. This finding is not surprising in light
of the fact that the size of the amino acid state space is three times smaller than the size of
the codon state space.

5 Discussion

We have extended the work of Rao and Teh (2011) on continuous time HMMs to phylogenetic
stochastic mapping. Our new method avoids matrix exponentiation, an operation that all
current state-of-the-art methods rely on. There are two advantages to avoiding matrix
exponentiation: 1) matrix exponentiation is computationally expensive for large CTMC
state spaces; 2) matrix exponentiation can be numerically unstable. In this manuscript,
we concentrated on the former advantage, because it is easier to quantify. However, it
should be noted that numerical stability of matrix exponentiation is an obstacle faced by
all phylogenetic inference methods. Currently, the most popular approach is to employ a
reversible CTMC model, whose infinitesimal generator is similar to a symmetric matrix and
therefore, can be robustly exponentiated via eigendecomposition (Schabauer et al., 2012).
Researchers typically shy away from non-reversible CTMC models, to a large extent, because
of instability of the matrix exponentiation of these models’ infinitesimal generators (Lemey
et al., 2009). In our new approach to phylogenetic stochastic mapping, we do not rely on
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properties of reversible CTMCs, making our method equally attractive for reversible and
nonreversible models of evolution.

We believe our new method will be most useful when integrated into a larger MCMC
targeting a joint distribution of phylogenetic tree topology, branch lengths, and substitu-
tion model parameters. Our optimism stems from the fact that stochastic mapping has
already been successfully used in this manner in the context of complex models of protein
evolution (Lartillot, 2006; Rodrigue et al., 2008). These authors alternate between using
stochastic mapping to impute unobserved substitution histories and updating model param-
eters conditional on these histories. We plan to incorporate our new MCMC algorithm into
a conjugate Gibbs framework of Lartillot (2006) and Rodrigue et al. (2008). Since such a
MCMC algorithm will operate on the state space of augmented substitution histories and
model parameters, replacing Monte Carlo with MCMC in phylogenetic stochastic mapping
may have very little impact on the overall MCMC mixing and convergence. A careful study
of properties of this new MCMC will be needed to justify this claim.

The computational advances made in (Lartillot, 2006; Rodrigue et al., 2008) are examples
of considerable research activity aimed at speeding up statistical inference under complex
models of protein evolution, prompted by the emergence of large amounts of sequence data
(Lartillot et al., 2013; Valle et al., 2014). Challenges encountered in these applications also
appear in statistical applications of many other models of evolution that operate on large
state spaces: models of microsatellite evolution (Wu and Drummond, 2011), models of gene
family size evolution (Spencer et al., 2006), phylogeography models (Lemey et al., 2009),
and covarion models (Penny et al., 2001; Galtier, 2001). Our new phylogenetic stochastic
mapping without matrix exponentiation should be a boon for researchers using these models
and should enable new analyses that, until now, were too computationally intensive to be
attempted.
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Appendix A

We present evidence supporting the claim that the stationary distribution of our new MCMC
sampler is the posterior distribution, p(V ,W|Y). This posterior has many aspects that could
be examined, but for simplicity we focus on univariate statistics: the amount of time spent
in each state and the number of transitions between each pair of states.

We compare the results of five different implementations. The first is a sampler imple-
mented in the diversitree package (FitzJohn, 2012), labeled diversitree or DIV. The second
is our version of the same method, labeled EXP. The third is the same method that only
exponentiates the rate matrix once, labeled EXP ONCE or ONCE. The fourth is our new
method, labeled MCMC. The fifth is a sparse version of our new method, labeled SPARSE
or SPA.

We present results for four regimes, two different sizes of state spaces, and two different
sets of transition rates. The smaller state space has 4 states and the larger has 20. The
lower transition rates correspond to 2 expected transitions per tree and the higher transition
rates correspond to 20 expected transitions per tree. In an effort to reduce the number of
plots we focus only on states that were observed at the tips of the tree. All four simulated
trees had 20 tips.

Our first example used the smaller state size, 4, with the smaller number of expected
transitions per tree, 2. A random simulation resulted in two unique tip states, states 1 and
3. For each method we produced 100,000 state history samples. Figure A-1 contains plots
of four univariate statistics pulled from the posterior distributions. All five implementations
produced the same results.

Our second example used the smaller state size, 4, with the larger number of expected
transitions per tree, 20. A random simulation resulted in three unique tip states, states 1,
2, and 4. Figure A-2 contains four boxplots pulled from the posterior distributions. Figure
A-3 contains six histograms pulled from the posterior distributions.

Our third example used the larger state size, 20, with the smaller number of expected
transitions per tree, 2. A random simulation resulted in two unique tip states, states 1 and 5.
Figure A-4 contains plots of four univariate statistics pulled from the posterior distributions

Our fourth example used the larger state size, 20, with the larger number of expected
transitions per tree, 20. A random simulation resulted in six unique tip states, states 1, 4,
8, 10, 12, and 15. Figure A-5 contains six boxplots pulled from the posterior distributions.
Figure A-6 contains six histograms pulled from the posterior distributions.

Appendix B

One state space of interest in molecular evolution is the amino acid state space. Jones et al.
(1992) proposed a rate matrix for an amino acid CTMC substitution model, called JTT.
Figure B-1 contains timing results for this rate matrix and a tree with 40 tips. When our
MCMC approach used an appropriately tuned value of Ω we saw slightly faster running
times as compared to the matrix exponentiation approach. We examined other scenarios for
the JTT rate matrix in which we saw faster running times with the matrix exponentiation
approach.

23



EXP MCMC SPA ONCE DIV

10
0

10
5

11
0

11
5

12
0

4  states

tim
e 

in
 s

ta
te

  1

EXP MCMC SPA ONCE DIV

55
60

65
70

75

2  expected transitions per tree

tim
e 

in
 s

ta
te

  3

0 1 2 3
transitions from state 1 to state 3

0
20

00
0

40
00

0
60

00
0

80
00

0

EXP
MCMC
SPARSE
EXP ONCE
diversitree

0 1 2 3 4
transitions from state 3 to state 1

0
20

00
0

40
00

0
60

00
0

80
00

0

EXP
MCMC
SPARSE
EXP ONCE
diversitree

Figure A-1: Univariate summaries for five implementations of state history sampling of a
20 tip tree. There were 4 states and 2 expected transitions per tree. The top plots contain
boxplots illustrating the distribution of the amount of time spent in state 1 and state 3.
Outliers were not included though all five implementations showed the same outlier behavior.
The bottom plots contain histograms illustrating the posterior distribution of the number of
transitions between state 1 and state 3.

Appendix C

Our MCMC sampler seems to converge to stationarity quickly. Figure C-1 shows two con-
vergence plots, one for fast evolution and one for slow evolution. In both cases we started
the chain with an augmented substitution history containing one transition in the middle of
each branch leading to a tip whose state was different from an arbitrarily chosen root state.
In the case of slow evolution this substitution history was a poor starting point but the log
likelihood of the chain appeared to achieve stationarity quickly. In both cases, the tree had
50 tips and the size of the state space was 10.
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Figure A-2: Boxplots illustrating the posterior distribution of the amount of time spent in
each state. Outliers were not included though all five implementations showed the same
outlier behavior. There were 4 states and 20 expected transitions per tree.

25



0 1 2 3 4 5
transitions from state 1 to state  2

0
40

00
0

EXP
MCMC
SPARSE
EXP ONCE
diversitree

0 1 2 3 4 5 6 7 8 9
transitions from state 1 to state  4

0
10

00
0

25
00

0

EXP
MCMC
SPARSE
EXP ONCE
diversitree

0 1 2 3 4 5 6 7
transitions from state 2 to state  1

0
20

00
0

50
00

0 EXP
MCMC
SPARSE
EXP ONCE
diversitree

0 1 2 3 4 5 6 7 8
transitions from state 2 to state  4

0
20

00
0

50
00

0 EXP
MCMC
SPARSE
EXP ONCE
diversitree

0 1 2 3 4 5 6 7 8 9
transitions from state 4 to state  1

0
10

00
0

25
00

0

EXP
MCMC
SPARSE
EXP ONCE
diversitree

0 1 2 3 4 5 6 7 8
transitions from state 4 to state  2

0
20

00
0

50
00

0

EXP
MCMC
SPARSE
EXP ONCE
diversitree

Figure A-3: Histograms illustrating the posterior distribution of the number of transitions
between states 1, 2, and 4. There were 4 states and 20 expected transitions per tree.
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Figure A-4: Univariate summaries for 5 implementations of state history sampling of a 20
tip tree. There were 20 states and 2 expected transitions per tree. The top plots contain
boxplots illustrating the posterior distribution of the amount of time spent in state 1 and
state 5. Outliers were not included though all five implementations showed the same outlier
behavior. The bottom plots contain histograms illustrating the posterior distribution of the
number of transitions between state 1 and state 5.
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Figure A-5: Boxplots illustrating the posterior distribution of the amount of time spent in
each tip state. Outliers were not included though all five implementations showed the same
outlier behavior. There were 20 states and 20 expected transitions per tree.
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Figure A-6: Histograms illustrating the posterior distribution of the number of transitions
between a subset of the tip states. There were 20 states and 20 expected transitions per
tree.
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Figure B-1: Time to obtain 10,000 effective samples as a function of the dominating Poisson
process rate, Ω, for the JTT amino acid rate matrix as found in the phylosim R package.
Results for our MCMC sampler are shown in black. Timing results for the matrix exponenti-
ation method are represented by a purple horizontal line because the matrix exponentiation
result does not vary as a function of Ω. The randomly generated tree had 40 tips. The JTT
rate matrix was scaled to produce 2 expected transtions in the left hand plot. The JTT rate
matrix was scaled to produce 6 expected transtions in the right hand plot.
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Figure C-1: MCMC trace plots. We show the log density of substitution histories for two
MCMC chains at every tenth iteration. The top plot shows results for a trait that evolved
quickly (with 6 expected substitutions). The bottom plot shows results for a trait that
evolved slowly (with 2 expected substitutions). In both cases, the tree had 50 tips and the
size of the state space was 10.
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Appendix D

Our MCMC method scales well with the size of the state space even when state space sizes
exceed 100. Figure D-1 shows timing results for state space sizes going out to 300. We show
results for our MCMC method and a sparse version of our MCMC method using tridiagonal
rate matrices.
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Figure D-1: State space effect for a tridiagonal rate matrix. All four plots show the amount
of time required to obtain 10,000 effective samples as a function of the size of the state space
for two methods, our MCMC sampler in black circles and a sparse version of our MCMC
sampler in red triangles. The two plots in the top row show results for a randomly generated
tree with 50 tips. The two plots in the bottom row show results for a randomly generated
tree with 100 tips. The two plots in the left column show results for a rate matrix that was
scaled to produce 2 expected transitions while the two plots in the right column show results
for a rate matrix that was scaled to produce 6 expected transitions.
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