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Abstract

The self-controlled case series (SCCS) method is useful for estimating the relative incidence (RI) 

of acute events, such as adverse events (AEs) during a specified risk period following an exposure 

(e.g., 6-week period after vaccinations or 30-day period after infection-related hospitalizations). In 

practice, the “optimal” risk period is unknown and must be specified. To date, two approaches are 

available to guide the specification of the risk period. Both methods do not fully utilize the nature 

of the bias due to misspecification, which to date has not been characterized. Thus, we elucidate 

the bias of SCCS estimate of the RI when the risk period is misspecified. We then propose a novel 

method that more effectively estimates the optimal risk period and the associated RI of AEs. The 

new method incorporates information on the functional form of the bias. Efficacy of the proposed 

approach is illustrated with substantial reduction in bias and variance in simulation studies. The 

proposed method is illustrated with two SCCS studies to determine the (1) risk of idiopathic 

thrombocytopenic purpura after measles-mumps-rubella vaccination in children and (2) risk of 

cardiovascular events after infection-related hospitalizations in older patients on dialysis.

Keywords

case series analysis; dialysis; idiopathic thrombocytopenic purpura; infection; maximum 
likelihood; measles-mumps-rubella; risk length; non-homogeneous Poisson process; vaccination

1. Introduction

The self-controlled case series (SCCS) method was proposed by Farrington (1995) as an 

approach to study the relationship between time-varying exposures and adverse events 

(AEs), such as AEs following vaccination (Farrington, 1995; Farrington et al., 1996). The 

SCCS method has been used to examine the relationship between rare vaccine reactions, 
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such as idiopathic thrombocytopenic purpura (ITP) after measles-mumps-rubella (MMR) 

vaccination (Miller et al., 2001; Black et al., 2003). For example, the incidence of AEs in the 

pre-specified 6-week post-MMR vaccination risk period is compared to the incidence in the 

control period, defined as time periods outside of the 6-week risk period. The length of the 

risk period (e.g., the 6-week risk period) is typically pre-specified in practice based on prior 

studies.

The SCCS method has also emerged as a useful method in diverse areas of applications, 

such as the study of the relative incidence (RI) of cardiovascular events during the 30-day 

period after infection-related hospitalization in patients on dialysis (Dalrymple et al., 2011; 

Mohammed et al., 2012). In SCCS studies, the primary quantity of interest is the RI of AEs 

in the risk period relative to the control period. Although of secondary interest, estimation of 

the optimal risk period is of interest as well because it provides the time frame for 

monitoring/surveillance of AEs.

An advantage of the SCCS method is that it controls for all measured and unmeasured 

baseline confounders and is self-matched. Thus, the SCCS estimate of the RI of AEs is not 

confounded by differences in individual baseline factors, such as socioeconomic status, 

underlying genetics, and baseline health status, which are difficult to accurately ascertain in 

exposed and unexposed individuals (e.g., in vaccinated and unvaccinated populations or in 

dialysis patients who did and did not acquire infections). Traditional cohort and case-control 

methods are susceptible to these baseline confounding biases. See reviews in Fine and Chen 

(1992).

As described in the aforementioned studies, the risk period (e.g., the 6-week period after 

MMR vaccination or 30-day period after an infection-related hospitalization) must be 

specified a priori in SCCS studies. However, the true risk period, which is referred to as the 

“optimal” risk period in the literature (Xu et al., 2011; 2013), is not known and must be 

hypothesized or explored in practice. If the goal is to unbiasedly estimate the RI of events 

within the optimal risk period relative to the control period, then misspecification of the risk 

period will lead to biased estimates. More precisely, misspecification of the optimal risk 

period in SCCS studies will result in either (a) over-specification where a portion of the true 
control period is included in the specified risk period or (b) under-specification where a 

portion of the true risk time period is included as part of the control period. The consequence 

of this misspecification is biased estimate of the RI of adverse events in the optimal risk 

period relative to the control period.

Previous works offer two approaches to the estimation of the RI and associated true risk 

period. The first is a graphical approach based on the observed linearity pattern of the 

estimated RIs and the maximum RI (Xu et al., 2011). Although it can be informative, the 

subjectivity of the graphical approach poses challenges in practice and a second approach 

using a hypothesis testing framework based on a scan likelihood ratio test statistic was 

proposed (Xu et al., 2013).

An impediment to a more effective approach to estimation of the optimal risk period length 

and the corresponding RI is that the (asymptotic) bias due to misspecification of the risk 
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period is not fully understood. Thus, in this work, our first objective is to fill this knowledge 

gap by fully characterizing this bias. We will show that for practical purposes, the bias can 

be well-approximated by a simple parametric linear-quadratic spline (or a linear-nonlinear 

spline function generally). Second, after elucidating this pattern of bias, we then incorporate 

this information to propose a novel estimation procedure (Section 2). Through simulation 

studies, we demonstrate the overall superior performance of the new method compared to 

previous methods (Section 3). The proposed method is illustrated with two SCCS studies to 

examine the (1) risk of ITP after MMR vaccination in children and (2) risk of cardiovascular 

(CV) events after infection-related hospitalizations in older patients on dialysis (Section 4).

2. Methods

In this section we describe the SCCS method commonly used in the evaluation of vaccine 

safety, bias under misspecification of optimal risk period, previous approaches to estimate 

the optimal risk period length and the associated relative incidence, and our novel estimation 

method.

2.1. SCCS model and formulation of the risk period misspecification problem

Consider a cohort of N individuals, where each individual has at least one event during the 

observation or follow-up period. More formally, denote the observation period by (ai, bi] for 

individual i, where the start and and end of the observation period are ai and bi, respectively. 

In SCCS studies, adjustment for the confounding effect of the (time-varying) age 

distribution of the events during the observation period may be needed. Thus, to account for 

age effects, the observation period is partitioned into J + 1 age groups, j = 0,…J, along with 

the control period (k = 0) and the risk period (k = 1). Given the exposure history (e.g., 

infection or vaccination) over the observation period for individual i, the number of events in 

each age-risk (or age-control) interval, denoted nijk, is modeled as a non-homogeneous 

Poisson process with rate λijk = exp(φi + αj + β·k), for k = 0, 1. That is, nijk ~ 

Poisson(eijkλijk), where eijk is the length of time in the jth age group and kth risk period for 

individual i, where k = 0 corresponds to the control period. Here the parameters φi, αj and β 
are, respectively, the individual-specific, jth age group (relative to age group j = 0) and risk 

group (relative to control period k = 0) effects, with α0 = 0. The main parameter of interest 

is β, the log RI of events in the risk period relative to the control period.

Farrington (1995) formulated the SCCS method and showed that when conditioned on ni‥ = 

Σjk nijk ≥ 1, where ni‥ is the total number of events for individual i, the kernel of the SCCS 

(conditional) likelihood is product multinomial. That is, the contribution to the SCCS 

likelihood from subject i is Li(α, β) = ∏ j, k πijk
nijk, with probabilities

πijk =
eijkλijk

∑r = 0
J ∑s = 0

1 eirsλirs
=

eijk exp(α j + β · k)
∑r = 0

J ∑s = 0
1 eirs exp(αr + β · s)

, (1)

where α = (α1,…,αJ)T. The term “self-controlled” refers to the fact that the individual 

effects φi cancel out from (1), thus, self-controlling for all fixed covariates. Estimation can 
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be based on maximum likelihood (ML) by using the log-likelihood 

ℓ(α, β) = ∑i = 1
N  log{Li(α, β)}.

We note that in the more general SCCS model, especially in non-vaccine applications, 

several risk periods are allowed (e.g., the first, second and third month after an infection) as 

well as non-contiguous risk periods. Our work here focuses on the specialized SCCS model 

(1), tailored to the applications considered in Section 4.

In practice the risk period length must be specified in SCCS studies. Not surprisingly, when 

the specified risk length, denoted τ̃, is not equal to the optimal risk length, denoted τ, the 

estimate of the RI is biased. To formulate this problem, denote the specified risk length as τ̃ 

= τ + u, where u is the amount of risk length error (u ≠ 0). Also, let ñijk and ẽijk denote the 

number of events and the amount of time spent in the risk period (k = 1) or the control 

period (k = 0) in age group j under the misspecified model. Although the bias will be 

characterized under this more general SCCS model in Section 2.3, we first consider here a 

simple, but illustrative, special case to track the bias.

In this special case, assume equal follow-up for all individuals, i.e., (ai, bi] = (a, b], and 

without age effects. Also, consider one exposure per individual. Dropping the subject index i 
and age index j in ẽ0 and ẽ1 since the follow-up is the same for each individual, the ML 

estimate of the RI is

R∗ =
∑i = 1

N n∼i1/∑i = 1
N n∼i0

e∼1/e∼0
, (2)

which targets R* ≡ exp(β*), a quantity that will not be equal to the correct relative incidence 

R = exp(β), unless τ̃ = τ (i.e., when u = 0). Note that in this case, the average observed time 

in the risk period and the control period are ẽ1 = τ ̃and ẽ0 = T − τ̃, respectively, where T = b 
− a is the follow-up time. Also, note that these are functions of the specified risk length τ̃. 
For over-specification (τ̃ > τ), applying the law of large numbers and Slutsky’s theorem, R̂* 

is consistent for R* = γ0 + γ1 (τ̃−1 − τ−1), which is a linear function of 1/τ̃, with γ0 = R and 

γ1 = τ(R − 1). A similar analysis for the case when the optimal risk period is under-

specified, τ̃ < τ (i.e., u < 0), shows that R* = γ0 + {−γ1 (τ̃−1 − τ−1)}/{γ2(τ̃−1 − τ−1) + γ3}, 

which is a nonlinear function of 1/τ̃, with γ2 = {T + τ(R − 1)}/R and γ3 = (T − τ)/(Rτ). The 

optimal risk period (when u = 0) and the associated unbiased RI estimate are obtained where 

the linear and nonlinear parts of the function R* joins at a single knot point (at τ̃ = τ). Figure 

1 illustrates this pattern of bias for both R > 1 and R < 1. Thus, the bias as a function of the 

inverse of the specified risk length, τ̃−1, can be expressed as

R∗ = γ0 + γ1(τ∼−1 − τ−1)− +
−γ1 τ∼−1 − τ−1

+
γ2 τ∼−1 − τ−1

+ + γ3
, (3)
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where (x)+ = x if x > 0 and 0 otherwise and, similarly, (x)− = x if x < 0 and 0 otherwise. A 

proof of equation (3) is deferred to the Supplemental Information. The first main result of 

this paper, presented in Section 2.3, will be a systematic approach to elucidate the bias 

function due to misspecification of the optimal risk more generally.

2.2. Previous approaches under risk period misspecification

Recognizing that R* is linear in 1/τ̃ when τ̃ > τ, Xu et al. (2011) proposed a graphical 

approach to determine the optimal risk period and RI based on the maximum estimated RI, 

Rmax = maxm Rm
∗ , where {Rm

∗ }
m = 1
M

 are the RI estimates obtained from the standard SCCS 

model (1) for a given sequence of specified risk lengths, τ̃m, m = 1,…,M and where pattern 

of relationship between Rm
∗  and 1/τ̃m is “visually” linear. The estimated optimal risk length is 

taken to be the τ̃m corresponding to R̂
max, which we denote as τ̂max. There are several 

drawbacks with this approach. First, it assumes that τ̃ > τ (i.e., u > 0) and R > 1 is known. 

This is impossible to determine in practice. (Also, when R < 1, then the minimum RI should 

be taken instead, i.e., Rmin = minm Rm
∗ ; see Figure 1, second row.) Second, as we will 

demonstrate in Section 3, the high bias of the estimated maximum RI, R̂
max, is problematic. 

Third, the transition between linearity and nonlinearity of Rm
∗  as a function of 1/τ̃m is 

difficult to assess from visual inspection which introduces much subjectivity, particularly for 

small to moderate effect sizes.

A second method to estimate the optimal risk period and RI was subsequently proposed to 

circumvent the subjectivity of the R̂
max/graphical approach (Xu et al., 2013). It is based on a 

scan likelihood ratio test (LRT) statistic. The idea is to examine the difference between the 

log-likelihood for a specified risk length under the alternative hypothesis where RI ≠ 1 (β ≠ 

0) and the null log-likelihood under RI = 1 (β = 0), where the incidence of AEs is constant 

throughout the follow-up period (i.e., no time period of elevated risk). That is, the LRT 

statistic for a specified τ̃ is

T(ν, τ∼) = ℓ1(ν, τ∼, β, α) − ℓ0(ν, τ∼, α),

where ℓ1(ν, τ̃, β̂, α̂) is the maximized SCCS log-likelihood under the alternative hypothesis 

(β ≠ 0) and ℓ0(s, τ̃, α̂) is the corresponding maximized log-likelihood under the null 

hypothesis that β = 0. Here ν denotes the fixed time when the risk period starts (e.g., ν = 1 

for the first day after vaccination). Similar to the graphical approach, this method estimates 

the optimal risk period length to be τ̂lrt = argmaxτ̃mT(ν, τ̃m) for a sequence of specified risk 

lengths {τ∼m}
m = 1
M  (and for ν fixed). The optimal RI estimate is obtained from the SCCS 

model fitted with the estimated optimal risk period τ̂lrt, which we denote as R̂
lrt.

2.3. Bias due to non-optimal risk period specification

In this section, we elucidate the bias functional form due to misspecification of the risk 

period. We then use this theoretical result to propose a new estimation method.
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For the SCCS model (1) with J + 1 age groups, denote the misspecified risk period length by 

τ̃ = τ + u. Let ñijk and ẽijk denote the number of events and the amount of time spent in the 

misspecified risk period (k = 1) or misspecified control period (k = 0) in age group j, j = 0,

…,J, respectively. Furthermore, denote the targets of the MLEs under the misspecified SCCS 

model for the risk period and age effect as β* and α∗ = (α1
∗, …, αJ

∗)T, respectively. Under this 

misspecified model, the MLEs of (β*, α*), denoted (β̂*, α̂*), are obtained by solving the set 

of (J + 1) estimating equations:

N−1 ∑
i = 1

N
∑

j = 0

J
(n∼ij1 − ni‥πij1

∗ ) = 0

N−1 ∑
i = 1

N
∑

k = 0

1
(n∼ijk − ni‥πijk

∗ ) = 0, j = 1, …, J, (4)

where πijk
∗ = e∼ijk exp(α j

∗ + β∗ · k)/∑r = 0
J ∑s = 0

1 {e∼irs exp(αr
∗ + β∗ · s)}. The MLEs, (β̂*, α̂*), are 

consistent for (β*,α*), which satisfy the estimating equations (4) in expectation. Thus, for a 

given design and specified risk length τ̃, the solution (β*, α*) can be obtained by solving the 

following (J + 1) equations:

h0(β∗, α∗) ≡ N−1 ∑
i = 1

N
∑

j = 0

J
{E(n∼ij1) − ni‥πij1

∗ } = 0

h j(β∗, α∗) ≡ N−1 ∑
i = 1

N
∑

k = 0

1
{E(n∼ijk) − ni‥πijk

∗ } = 0, j = 1, …, J, (5)

where πijk
∗ = e∼ijk exp(α j

∗ + β∗ · k)/Δi
∗ and Δi

∗ = ∑r = 0
J ∑s = 0

1 e∼irs exp(αr
∗ + β∗ · s).

Because the distribution of the events in the misspecified periods for subject i, namely ñijk, 

conditioned on the total number of events, exposure history and misspecification error (ni‥, 

eijk, u) is multinomial, the probabilities of seeing an event in the specified risk and control 

time periods in the jth age group are

π∼ij0 ≡ π∼ij0(u) =
{eij0 − (eij1 − e∼ij1)} exp(α j)

Δi
,
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π∼ij1 ≡ π∼ij1(u) =
eij1 exp(α j + β) + (eij1 − e∼ij1) exp(α j)

Δi
, (6)

when u < 0 and Δi = ∑ j = 0
J ∑k = 0

1 eijk exp(α j + βk). Hence, E(ñijk) = ni‥πĩjk. Similarly, for u > 

0 these probabilities are

π∼ij0 ≡ π∼ij0(u) =
eij0 exp(α j) − (eij1 − e∼ij1) exp(α j + β)

Δi
,

π∼ij1 ≡ π∼ij1(u) =
{eij1 + (eij1 − e∼ij1)} exp(α j + β)

Δi
. (7)

The bias as a consequence of optimal risk period misspecification error is the difference 

between β* (the target of β̂*) and β, the true parameter corresponding to the unknown 

optimal risk period τ. Similarly, for the age effects, the difference between α* and α can be 

evaluated.

To determine the bias, the set of equations (5) can be solved numerically for (β*,α*) using a 

Newton-Raphson (NR) method. Thus, (β*,α*) can be determined for any set of parameters 

(β, α) and {eijk, ẽijk, ñijk}. More precisely, let (β*,α*)(t) be the NR update at iteration t and 

h(t) = (h0(β*,α*)(t),…,hJ(β*,α*)(t)). Then the next NR update is

(β∗, α∗)(t + 1) = (β∗, α∗)(t) − (J(t))−1h(t), (8)

where J(t) is the (J + 1) × (J + 1) Jacobian matrix of partial derivatives evaluated at (β*,α*)
(t). The entries of J(t) are provided in the Supplemental Information. See also Mohammed et 

al. (2013) for a similar application.

2.4. Proposed estimation of the optimal risk period and relative incidence

The motivation for our proposed estimation procedure is based on the general patterns of 

bias due to the optimal risk misspecification in the SCCS model. These patterns of bias are 

illustrated in Figure 1 for three cases: (i) a special case where all individuals have equal 

follow-up times, 1 exposure and 1 event, where a closed-form solution to (8) is available 

(see Section 2.1, equation 3); (ii) a general case with unequal follow-up times among 

individuals, one or more events per person, and one exposure, analogous to the MMR-ITP 

data of Section 4; and (iii) a general case as in case (ii), but with multiple exposures. As 

Figure 1 illustrates, for the SCCS model without age effects (left column) and with age 

effects (right column), the bias is linear in 1/τm̃ when the misspecified length is greater than 

the optimal risk length (τ̃m > τ) and it is nonlinear in 1/τ̃m when the misspecified risk length 

is less than the optimal risk length (τ̃m < τ). Furthermore, the single knot point where the 
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linear bias region transitions to the nonlinear region of the bias function corresponds to the 

optimal risk period length (at τ̃m = τ, or equivalently at u = 0). This analysis of the form of 

the bias function suggests a direct approach to estimate the optimal risk period and RI. More 

specifically, the proposed estimation approach is to fit a sequence of linear-quadratic spline 

models, one for each knot point. For a given knot point, a linear-quadratic spline model is 

fitted through the scatterplot of the estimated RIs and the (inverse of) a sequence of risk 

period lengths. Selection of the optimal knot is carried out via minimization of a square-

error loss criterion. Our choice to fit a linear-quadratic spline model is illustrated in Figure 2, 

which shows how closely the chosen model (dotted line) fits the theoretical bias function 

(gray solid line).

More precisely, let {τ∼m}
m = 1
M  be a sequence of M specified risk lengths covering τ for the 

SCCS model (1) and {βm
∗ }

m = 1
M

 be the corresponding estimated log RIs from fitting a 

standard SCCS model. Next, fit the linear-quadratic spline model,

g(t, τm, δ) = δ0 + δ1τ∼m
−1 + δ2(τ∼m

−1 − t−1)+ + δ3(τ∼m
−1 − t−1)+

2 , (9)

through the scatterplot of {τ∼m
−1,  exp(βm

∗ )}
m = 1
M

. This will capture the bias relationship with t 

as a given single knot with coefficients δ ≡ (δ0, δ1, δ2, δ3). Let δ̂ denote the estimated 

coefficients from the model fit. We fit model (9) for a sequence of equally spaced knots τ̃M 

< t < τ̃1 and choose the knot with minimum sum of square error as our estimate of the 

optimal risk period:

τ = arg min
t

∑
m = 1

M
exp(βm

∗ ) − g(t, τm, δ)
2

. (10)

Corresponding to this proposed optimal risk estimate, τ̂, the proposed estimate of the 

relative incidence is defined as the ML estimate from fitting the standard SCCS using τ̂ as 

the risk length. We denote this proposed estimator as R̂. We examine the properties and 

performance of the proposed estimators (τ̂, R̂) and compare them to the two previous 

estimators, namely (τ̂max, R̂
max) and (τ̂lrt, R̂

lrt).

Finally, we note that there are several reasons for the proposed choice of the linear-quadratic 

spline model (9). The linear-quadratic spline form provides a simple, but accurate, 

parametric approximation to the true bias function and can be fitted with a standard linear 

regression model (Figure 2). Although the 4-parameter nonlinear spline form given by (3) 

provides a slightly better approximation to the theoretical bias for very large effect size and 

large window length (compare dashed and solid gray lines in Figure 2 for the case of R = 4 

and τ = 45), it would require an iterative nonlinear fitting routine with specification of initial 

values. Also, unlike standard fitting of nonlinear models through a scatterplot, stable fitting 

of the nonlinear spline is difficult in the current problem because there is only a single data 
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point at each specified risk period length, τ̃. These difficulties are avoided with the proposed 

linear-quadratic spline.

3. Simulation studies and results

3.1. Study objectives and design

In this section, we implement studies to address several specific objectives. First, using the 

theoretical calculation described in Section 2.3 we characterize the bias due to 

misspecification of the true risk for the SCCS model (1). These bias patterns, determined by 

the set of Newton-Raphson equations (5), are then verified with extensive simulation studies. 

Second, we implement simulation studies to evaluate the performance (bias, variance and 

mean square error).

For our studies, we consider the following general scenarios to assess our proposed methods: 

(a) a general case with unequal follow-up times among individuals, one or more events per 

person, and one exposure, analogous to the MMR-ITP data of Section 4 where a single 

MMR immunization is administered typically around 1 year of age; and (b) a general case, 

as in case (a), but with multiple exposures. Under both cases (a and b), we simulate data 

with 2 and 3 age groups (J = 1, 2) as well as a single age group (no age effects). Follow-up 

times are different for each individual as in real data applications and with an average of 365 

days of follow-up. The true risk lengths, τ, are 15, 30 and 45 days after an exposure. 

Exposures are randomly assigned throughout an individual’s observation period. For the 

estimation procedures described in Section 2.4 the sequence of specified risk lengths 

{τ∼m}
m = 1
M  are {8,…,15,…,24}, {15,…,30,…,45} and {20,…,45,…,70} corresponding to τ = 

15, 30 and 45 days, respectively. The choice of each of these sequences reflects several 

considerations to guide implementation in practice: 1) It should be as broad (wide) as 

possible, which is applicable to all methods (not just the proposed method). 2) The first 

guideline must be balanced with the fact that for a very small risk length, events will be 

extremely sparse.

For case (b) with multiple exposures, individuals can have 1, 2 or 3 exposures with 

probabilities 0.7, 0.2 and 0.1, respectively. The marginal totals of the number of AEs for 

individuals i = 1,…,N are generated according to the SCCS model. That is, AEs are 

generated from a non-homogeneous Poisson model given by ni‥ ~ Poisson(Σjk eijkλijk), 

where λijk = exp(φi + αj + β·k) with φi = log(1/10000) fixed. These marginal totals are 

randomly distributed throughout each individual’s observation period based on the 

multinomial probabilities shown in (1). Supplemental Table S1 summarizes the 32 different 

experiments: (i) single and multiple exposures models, (ii) 1, 2 and 3 age groups, (iii) 3 risk 

lengths, and (iv) 2 distribution of exposure settings. Each experiment was replicated at 6 

different RIs, exp(β) ∈ {0.7, 0.9, 1.2, 1.5, 2, 4}, and at 4 sample sizes, N = 100, 200, 400, 

and 800 individuals.

3.2. Patterns of bias: Theoretical calculations and simulation

As summarized in Section 2.3, the general patterns of bias due to non-optimal risk period 

specification are characterized by the equations (5–7). We first check the validity of 
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equations (5–7) via simulation. Figure 3 presents Monte Carlo simulation results, averaged 

over 200 simulated data sets. It shows that the theoretical quantity R* (solid gray line) 

determined from equation (5–7) tracks closely the simulation results (dashed line). Also, 

given are 95% confidence intervals (CIs; dotted lines) along with the benchmark case where 

the optimal risk length is specified in the model fitting (i.e., τ̃ = τ); this is indicated with the 

vertical blue line at 1/τ = 1/45. As expected, the CI width decreases as N increases and, also 

not surprisingly, substantial under-specification (1/τ̃ ↑) of optimal risk period length is 

associated with increased variance. We present in Figure 3 the cases where R = 2 and R = 

0.7 for the general SCCS model with unequal follow-up times among individuals, one or 

more events per person, multiple exposures, with age groups and true risk length of 45 days. 

The results are similar for the other cases (results not shown). We also note that the age 

effects α*, which is of secondary interest, have small to negligible bias since they are not 

substantially affected by the misspecified risk period. These results are not shown here but 

are available upon request.

As described earlier, when β > 0 (RI > 1), the target of the RI due to misspecification, R* = 

exp(β*), is linearly and nonlinearly attenuated towards the null for over- and under-

specification of the optimal risk period (τ) respectively (e.g., see Figure 1, top row). The 

attenuation bias systematically increases as τ̃ moves away from τ. When β < 0, the bias in 

R* is linearly and nonlinearly increasing towards the null for over- and under-specification, 

respectively.

3.3. Efficacy of the proposed estimator and comparison to current methods

We report here extensive simulation studies to assess the efficacy of the proposed estimation 

of the relative incidence, R, and the corresponding optimal risk period, τ. We also compare 

the performance of the proposed method (τ̂, R̂) to the two existing methods based on the 

maximum RI (τ̂max, R̂
max) and the scan likelihood ratio test statistics (τ̂lrt, R̂

lrt). Relative 

efficacy of the methods were assessed under 32 different simulation studies summarized in 

supplemental Table S1 (exposure models × age groups × risk lengths × distribution of 

exposures) and each experiment was replicated at 6 different effect sizes (R = 0.7, 0.9, 1.2, 

1.5, 2, and 4) and 4 sample sizes (N = 100, 200, 400, and 800 individuals). For each of the 

320 (32 × 10) experimental combinations, 200 datasets were simulated.

Table 1 presents the results for estimation of the relative incidence, R = 1.5, based on the (a) 

SCCS benchmark where the true risk period τ is used; (b) proposed linear-quadratic spline 

fit; (c) R̂
max approach; and (d) scan LRT statistic approach. Given are mean RI estimates 

over 200 simulated datasets, along with bias, variance and mean square error (MSE) for true 

risk period lengths of τ = 15, 30, and 45 and for sample sizes of N = 100 to 800. Several 

salient finite sample performance characteristics emerge. First, the bias of the proposed 

linear-quadratic spline approach is closest to the benchmark (for all τ), while the (absolute) 

biases for the LRT and R̂
max methods remain substantial, even for the largest sample size of 

800. For example, for τ = 15 and N = 200, the mean estimate of the RI of 1.5 are 1.52, 1.55, 

1.74 and 1.68 for the benchmark, proposed method, R̂
max and LRT method, respectively. 

Thus, relative to the benchmark, for this case the bias is about 2%, 14.5%, and 10.5% for the 

proposed method, Rm̂ax and LRT method, respectively. Second, although the recently 
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proposed LRT method improves on bias reduction relative to R̂
max, it still performs 

relatively poorly with respect to bias compared to the proposed linear-quadratic spline 

method. However, LRT has higher variance; the proposed method and the R̂max method have 

similar lower variances compared to the LRT method. Third, the MSE of the proposed 

method is lowest and closest to the benchmark and the MSEs of the R̂
max and LRT methods 

are similarly higher. Overall, the proposed linear-quadratic spline method significantly 

improves both bias and variance and the gains are substantial for small sample sizes (N = 

100, 200). These characteristics are easily seen in Figure 4 (rows 1–3). We note that 

although Table 1 presents the results for the case of multiple exposures uniformly distributed 

during the follow-up of each individual and two age groups, these patterns of results are 

similar in other settings (which are available upon request).

We next turn to estimation of the optimal risk period length, τ, that corresponds to the RI 

estimation presented in Table 1. Table 2 summarizes the results from estimation of the true τ 
= 15, 30, and 45 days. There are several striking observations that can be made. First, the 

estimation of τ is highly variable and the variance dominates bias; for example, with τ = 30 

and N = 200, the mean estimates of τ = 30 are (24.6, 29.30, 29.0) with variance (59.6, 71.23, 

35.54) for the R̂
max approach, the LRT method, and the proposed linear-quadratic spline fit, 

respectively. For this case, the reduction in variance of the proposed method is substantial, 

40.4% and 50.1% relative to the Rm̂ax approach and LRT method, respectively. We note that 

the LRT and the proposed method have similarly low bias and target the true τ well, even at 

small to moderate sample sizes. However, the LRT method has higher variance in the 

estimation of τ and this adversely affects the estimation of the relative incidence, R, as 

described above. Not surprisingly, the R̂
max approach has both high bias and variance in the 

estimation of τ and, therefore, negatively impacts the estimation of R. These patterns of 

results for τ estimation can be seen in Figure 4 (rows 4–6).

4. Applications

4.1. CV event risk following infection-related hospitalization

Infection and cardiovascular (CV) disease are leading causes of hospitalization and death in 

older (age ≥ 65) patients on dialysis. For this unique population where infection rates are 

high, infections may affect vascular endothelium, induce a chronic sub-clinical 

inflammatory state, or may create a procoagulant state, all factors potentially contributing to 

increased CV risk. Previous SCCS studies found that the RI of CV events (myocardial 

infarction, unstable angina, stroke, or transient ischemic attack) was elevated during the 30-

day period following infection-related hospitalizations (Dalrymple et al., 2011; Mohammed 

et al., 2012), although knowledge of the precise risk period is lacking. These studies suggest 

that the “short-term” risk of CV events may extend to 90 days following infection. We use 

the proposed method to explore the optimal risk period and associated RI of CV events.

The study is based on data from the United States Renal Data System (USRDS) which 

captures nearly all patients with end-stage renal disease (ESRD) in the U.S. More 

specifically, the source population included patients 65–100 years of age with ESRD who 

newly initiated dialysis between January 1, 2000 and December 31, 2002. Study follow-up 

ended December 31, 2004. We refer the reader to (Dalrymple et al., 2011) for further details 
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on the study protocol. The analysis cohort consisted of N = 16,779 patients with one or more 

CV events. The large size of the data allows for examination of the risk period, incremented 

daily, from day 15 to day 90; i.e., τ̃m ∈ {15, 16,…,90}. Thus, the SCCS model was fitted for 

each specified risk length τ̃m, m = 1,…,76 = M resulting in the corresponding RI estimates 

Rm
∗ = exp(βm

∗ ), for m = 1,…,M. Following previous works, age was divided into groups of 

age 65–75, 76–85, and > 85 to account for potential age effects.

The results are displayed in Figure 5 (top). Note that the sequence of estimates in Figure 5 

exhibit the linear-nonlinear spline pattern theoretically predicted by equation (3) and also 

illustrated earlier in Figure 1. For this large data where the linear-nonlinear pattern is clear, 

all three approaches produced similar results. The graphical/R̂
max estimate of the log relative 

incidence was β̂Rmax = 0.2839; thus, R̂
max = 1.33 (95% CI: 1.26–1.41) corresponding to an 

estimated optimal risk length of τ̂max = 36 days after infection. For the LRT approach, we 

searched window lengths from 15 to 90 days and the maximum T(ν = 1, τ̃) occurs at τ̃ = τl̂rt 

= 36 days. Therefore, the corresponding RI estimation result was identical to the graphical/ 

R̂
max result (i.e., R̂

lrt = R̂
max). The optimal risk period length estimate using our proposed 

method was similar: τ = arg mint
−1 ∑m = 1

M {exp(βm
∗ ) − g(t, τm, θ)}

2
= 34 days and the 

corresponding log relative incidence estimate was β̂ = 0.2899 so the RI estimate was R̂ = 

1.34 (95% CI: 1.26–1.40). Finally, we note that the results here provided an “automatic” 

exploration of the risk period and associated RI estimate. Incidentally, the results support 

previous works that identified the 30-day period after infection-related hospitalization as a 

period of high risk for CV events in patients on dialysis (Dalrymple et al., 2011; Mohammed 

et al., 2012).

4.2. ITP after MMR vaccination

To further illustrate the proposed methodology, we consider a second SCCS study to 

examine the relationship between the occurrence of idiopathic thrombocytopenic purpura 

(ITP), a blood disorder characterized by abnormal decreased platelets count in the blood, 

after MMR vaccination in children aged 12–23 months.

As described in the Introduction section, several studies have examined the MMR-ITP 

relationship using various risk periods ranging widely from about 2 to 6 weeks (e.g., Miller 

et al., 2001; Farrington et al., 1995; O’Leary et al., 2012). Using the MMR-ITP data from 

Miller et al. (2001) we illustrate the proposed method and compare it to the previous 

approaches, namely the graphical/ R̂
max and the scan LRT methods. Briefly, the data consist 

of ascertained records of hospitalization discharges for primary thrombocytopenia (ICD9 

code 287.3) and linked to immunization data. A total of 35 children were admitted to the 

hospital for ITPs (events) at least once: 29 children with 1 event; 5 children had 2 events; 

and 1 child had 5 events. The start of the follow-up for 33 children started on day 365 of age, 

1 child on day 438 and another on day 453 of age. The end of the follow-up period was day 

730 for 31 children, day 723 for 1 child, day 677 for 2 children, and day 674 for 1 child. To 

account for age effects, the follow-up period was divided into 60-day intervals (similar to Xu 

et al. (2011) and Whitaker et al. (2006)) as follows: 366–426, 427–487, 488–548, 549–609, 

610–670, and 671–730 days.
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To directly compare with the two previous approaches, we also use a 7-day increment 

starting at 21 days after MMR vaccination, so that τ̃m ∈ {21, 28,…,147} as in Xu et al. 

(2011). Thus, the SCCS model was fitted for each specified risk length τ̃m, m = 1,…,19 = M 

resulting in the corresponding RI estimates Rm
∗ = exp(βm

∗ ), for m = 1,…,M, displayed in 

Figure 5 (bottom). The graphical/ R̂
max and LRT yielded the same estimate of the log 

relative incidence of β̂Rmax = 1.2268; thus, R̂
max = 3.4 (95% CI: 1.6–7.3) corresponding to 

an estimated optimal risk length of τ̂max = 77 days. Next, for the proposed method, we fitted 

a sequence of linear-quadratic spline models, g(t, τ̃m, θ̂), one for each knot t = 21, 22,…,

147. The optimal risk period length estimate using our proposed method was τ̂ = 84 days 

and the corresponding log relative incidence estimate was β̂ = 1.1497; R̂ = 3.2 (95% CI: 1.5–

6.8).

Note from Figure 5 that the estimated RI of ITP at the optimal estimated risk period length 

of 84 (RI = 3.2) remains fairly stable for risk lengths down to about 30 days (i.e., 1/τ̃m = 

0.03 with RI = 3.5). This has important potential clinical implication because the RI of ITP 

remains similarly high in the estimated optimal risk period of 84 days compared to previous 

studies with a priori selected shorter risk period of 42 days. Thus, the estimated optimal risk 

period suggests that surveillance of ITP may need to extend to more than 6 weeks after 

MMR vaccination.

5. Discussion

Our work here focuses on the problem of bias and estimation for the SCCS method when the 

optimal risk period is unknown, as is typically the case in practice. It provides an 

“automatic” tool, useful for exploring risk periods when such knowledge is lacking. We 

provide the first comprehensive characterization of the bias in the estimation of the relative 

incidence of AEs for the SCCS method commonly used in vaccine safety studies and also 

illustrated with an example on the infection-CV risk in the dialysis population. Our linear-

quadratic spline estimation method incorporates information on the specific patterns of bias 

when the optimal risk period length is misspecified. The new method yielded substantial 

improvement in performance in simulation studies over previous methods. The finite sample 

performance for small and moderate sample sizes is clearly superior with respect to both 

bias and variance reduction. Implementation of our proposed method is straight-forward 

because it only requires fitting a linear regression model after fitting a sequence of standard 

SCCS models, which can be done with readily available software (e.g., in R, SAS, Stata).

Finally, we note that we have chosen to focus on the standard SCCS model (1) where the 

risk is constant (step function) during the exposure period because that is the model that is 

widely used in practice. One can extend this model to allow for non-constant risk function as 

well as non-contiguous risk periods. However, the bias due to incorrectly specified risk 

period considered in this work would still apply; one can simply visualize this as a shift in 

the risk period (whether it be shifting of a constant risk function or a non-constant risk 

function).
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Figure 1. 
Relative incidence pattern of bias as a function of the specified risk period length τ̃ for three 

models/cases: (i) a special case where all individuals have equal follow-up time, 1 exposure 

and 1 event; (ii) a general case with unequal follow-up times among individuals, 1 or more 

events per person, and 1 exposure, analogous to the MMR-ITP data; (iii) a general case as in 

case (ii), but with multiple exposures. Given are both models with and without age effects as 

well as R > 1 (first row) and R < 1 (second row).
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Figure 2. 
Linear-quadratic spline (dotted line) as well as nonlinear spline fits to the theoretical (true) 

bias, R* = exp(β*), as a function of the inverse of the specified risk period length, 1/τ̃. The 

specific examples given are for combinations of the true relative incidence of 0.7, 1.5, 4 and 

risk length of τ = 30 and 45. The simple linear-quadratic spline tracks the true bias function 

R* well, although for very large effect size (R = 4, τ = 45) the nonlinear spline function 

improves slightly.
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Figure 3. 
Theoretical characterization of bias (solid gray) in the relative incidence estimate for varying 

specified risk period length, 1/τ̃. Dashed black curve denotes the naive SCCS estimate for a 

given risk period length along with 95% confidence interval; given are averages (ave(R̂*)) 

over 200 simulated datasets. Given are for R = 2 (top 4 plots) and 0.7 (bottom 4 plots) for 

sample size N = 100 to 800. The blue vertical bar indicates the SCCS model using the true τ 
(benchmark).
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Figure 4. 
Performance: Bias (absolute), variance and mean square error for estimation of the true 

relative incidence R (R = 1.5, rows 1–3) and risk period length τ (τ = 15, 30, 45, rows 4–6) 

corresponding to Tables 1 – 2.
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Figure 5. 
Estimation of the relative incidence of (a: top) cardiovascular events following infection-

related hospitalizations in patients on dialysis from USRDS data and (b: bottom) idiopathic 

thrombocytopenic purpura (ITP) after measles-mumps-rubella (MMR) vaccination using the 

proposed linear-quadratic spline method and the currently available methods (R̂max approach 

and scan likelihood ratio test (LRT) statistic approach). Given is the scatterplot (solid 

circles) of R̂* versus 1/τ̃. The R̂
max approach (square) and the LRT method (gray diamond) 

resulted in the same estimates.

Campos et al. Page 19

Stat (Int Stat Inst). Author manuscript; available in PMC 2018 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Campos et al. Page 20

Ta
b

le
 1

R
el

at
iv

e 
in

ci
de

nc
e 

es
tim

at
io

n 
of

 R
 =

 e
xp

(β
) 

=
 1

.5
 b

as
ed

 o
n 

(a
) 

SC
C

S 
be

nc
hm

ar
k 

w
he

re
 th

e 
tr

ue
 r

is
k 

pe
ri

od
 τ

 is
 u

se
d;

 (
b)

 p
ro

po
se

d 
lin

ea
r-

qu
ad

ra
tic

 s
pl

in
e 

m
et

ho
d;

 (
c)

 R
̂ m

ax
 a

pp
ro

ac
h;

 a
nd

 (
d)

 s
ca

n 
lik

el
ih

oo
d 

ra
tio

 te
st

 (
L

R
T

) 
st

at
is

tic
 a

pp
ro

ac
h.

 G
iv

en
 a

re
 m

ea
n 

es
tim

at
e 

(E
st

.)
, a

bs
ol

ut
e 

bi
as

 (
B

ia
s)

, v
ar

ia
nc

e 

(V
ar

.)
, a

nd
 m

ea
n 

sq
ua

re
 e

rr
or

 (
M

SE
) 

ov
er

 2
00

 s
im

ul
at

ed
 d

at
as

et
s.

(a
) 

B
en

ch
m

ar
k

(b
) 

L
in

ea
r-

qu
ad

ra
ti

c 
sp

lin
e

(c
) 

R
̂ m

ax
 a

pp
ro

ac
h

(d
) 

Sc
an

 L
R

T

τ
N

E
st

.
B

ia
s

V
ar

.
M

SE
E

st
.

B
ia

s
V

ar
.

M
SE

E
st

.
B

ia
s

V
ar

.
M

SE
E

st
.

B
ia

s
V

ar
.

M
SE

15
10

0
1.

53
7

0.
03

7
0.

39
0

0.
39

1
1.

61
1

0.
11

1
0.

48
4

0.
49

7
1.

88
6

0.
38

6
0.

50
7

0.
65

6
1.

72
8

0.
22

8
0.

72
9

0.
78

1

15
20

0
1.

52
0

0.
02

0
0.

13
9

0.
13

9
1.

55
1

0.
05

1
0.

16
2

0.
16

4
1.

74
0

0.
24

0
0.

18
6

0.
24

3
1.

67
8

0.
17

8
0.

21
4

0.
24

6

15
40

0
1.

50
3

0.
00

3
0.

06
7

0.
06

7
1.

54
8

0.
04

8
0.

09
2

0.
09

4
1.

66
2

0.
16

2
0.

09
7

0.
12

3
1.

61
2

0.
11

2
0.

09
8

0.
11

0

15
80

0
1.

50
8

0.
00

8
0.

03
8

0.
03

9
1.

51
8

0.
01

8
0.

04
6

0.
04

6
1.

60
3

0.
10

3
0.

04
3

0.
05

4
1.

56
9

0.
06

9
0.

03
6

0.
04

1

30
10

0
1.

56
2

0.
06

2
0.

14
0

0.
14

4
1.

61
7

0.
11

7
0.

19
4

0.
20

8
1.

84
4

0.
34

4
0.

20
7

0.
32

5
1.

78
9

0.
28

9
0.

26
5

0.
34

8

30
20

0
1.

46
8

0.
03

2
0.

07
2

0.
07

3
1.

50
8

0.
00

8
0.

09
2

0.
09

2
1.

64
7

0.
14

7
0.

08
6

0.
10

7
1.

60
3

0.
10

3
0.

10
5

0.
11

6

30
40

0
1.

50
8

0.
00

8
0.

04
1

0.
04

1
1.

54
0

0.
04

0
0.

05
1

0.
05

2
1.

62
4

0.
12

4
0.

04
9

0.
06

4
1.

59
5

0.
09

5
0.

04
8

0.
05

7

30
80

0
1.

50
9

0.
00

9
0.

01
6

0.
01

6
1.

52
9

0.
02

9
0.

01
8

0.
01

8
1.

57
6

0.
07

6
0.

01
9

0.
02

5
1.

55
2

0.
05

2
0.

01
7

0.
02

0

45
10

0
1.

55
1

0.
05

1
0.

16
9

0.
17

1
1.

61
6

0.
11

6
0.

23
1

0.
24

4
1.

82
7

0.
32

7
0.

21
7

0.
32

4
1.

75
7

0.
25

7
0.

30
2

0.
36

9

45
20

0
1.

50
9

0.
00

9
0.

06
9

0.
06

9
1.

54
3

0.
04

3
0.

08
1

0.
08

3
1.

68
8

0.
18

8
0.

08
5

0.
12

0
1.

64
9

0.
14

9
0.

09
7

0.
12

0

45
40

0
1.

50
9

0.
00

9
0.

03
7

0.
03

7
1.

54
1

0.
04

1
0.

04
7

0.
04

9
1.

61
6

0.
11

6
0.

04
4

0.
05

8
1.

59
3

0.
09

3
0.

04
0

0.
04

9

45
80

0
1.

48
5

0.
01

5
0.

01
8

0.
01

9
1.

49
4

0.
00

6
0.

01
9

0.
01

9
1.

54
5

0.
04

5
0.

01
8

0.
02

0
1.

52
2

0.
02

2
0.

01
7

0.
01

8

Stat (Int Stat Inst). Author manuscript; available in PMC 2018 November 21.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Campos et al. Page 21

Ta
b

le
 2

E
st

im
at

io
n 

of
 th

e 
tr

ue
 p

er
io

d 
ri

sk
 le

ng
th

, i
s 
τ 

=
 1

5,
 3

0 
an

d 
45

, b
as

ed
 o

n 
(b

) 
pr

op
os

ed
 li

ne
ar

-q
ua

dr
at

ic
 s

pl
in

e 
fi

t; 
(c

) 
R
̂ m

ax
 a

pp
ro

ac
h;

 a
nd

 (
d)

 s
ca

n 
lik

el
ih

oo
d 

ra
tio

 te
st

 (
L

R
T

) 
st

at
is

tic
 a

pp
ro

ac
h.

 G
iv

en
 a

re
 m

ea
n 

es
tim

at
e 

(E
st

.)
, a

bs
ol

ut
e 

bi
as

 (
B

ia
s)

, v
ar

ia
nc

e 
(V

ar
.)

, a
nd

 m
ea

n 
sq

ua
re

 e
rr

or
 (

M
SE

) 
ov

er
 2

00
 s

im
ul

at
ed

 

da
ta

se
ts

.

(b
) 

L
in

ea
r-

qu
ad

ra
ti

c 
sp

lin
e

(c
) 

R
̂ m

ax
 a

pp
ro

ac
h

(d
) 

Sc
an

 L
R

T

τ
N

E
st

.
B

ia
s

V
ar

.
M

SE
E

st
.

B
ia

s
V

ar
.

M
SE

E
st

.
B

ia
s

V
ar

.
M

SE

15
10

0
14

.1
0

0.
90

7.
92

8.
73

12
.8

7
2.

13
18

.7
1

23
.2

5
13

.9
0

1.
10

20
.2

7
21

.4
7

15
20

0
14

.4
9

0.
51

8.
19

8.
45

12
.3

3
2.

67
14

.1
3

21
.2

8
14

.5
0

0.
50

19
.0

3
19

.2
9

15
40

0
14

.4
2

0.
58

8.
93

9.
26

11
.7

9
3.

21
10

.4
0

20
.6

8
14

.8
3

0.
17

16
.3

2
16

.3
5

15
80

0
14

.6
9

0.
31

6.
58

6.
68

12
.0

2
2.

98
9.

66
18

.5
7

14
.7

4
0.

26
11

.3
0

11
.3

7

30
10

0
28

.8
4

1.
16

42
.9

4
44

.2
7

25
.4

9
4.

51
80

.5
6

10
0.

92
28

.9
7

1.
03

89
.7

7
90

.8
3

30
20

0
29

.0
4

0.
96

35
.5

4
36

.4
7

24
.6

4
5.

36
59

.5
7

88
.2

6
29

.3
0

0.
70

71
.2

3
71

.7
3

30
40

0
28

.7
9

1.
21

34
.2

9
35

.7
5

23
.8

8
6.

12
46

.3
7

83
.8

3
29

.2
7

0.
73

48
.4

3
48

.9
6

30
80

0
29

.1
7

0.
83

24
.6

1
25

.3
0

24
.4

9
5.

51
35

.9
2

66
.3

1
29

.5
3

0.
47

29
.7

7
29

.9
8

45
10

0
41

.8
2

3.
18

99
.7

1
10

9.
80

36
.8

4
8.

16
19

3.
79

26
0.

39
41

.5
9

3.
41

21
4.

61
22

6.
22

45
20

0
43

.1
9

1.
81

10
0.

46
10

3.
75

34
.8

2
10

.1
8

17
4.

91
27

8.
46

41
.5

4
3.

46
16

2.
15

17
4.

14

45
40

0
43

.7
0

1.
30

68
.5

5
70

.2
3

37
.4

6
7.

54
13

2.
50

18
9.

39
44

.2
0

0.
80

11
4.

45
11

5.
10

45
80

0
45

.0
6

0.
06

48
.5

8
48

.5
9

35
.3

9
9.

61
93

.9
5

18
6.

26
45

.1
8

0.
18

69
.1

8
69

.2
2

Stat (Int Stat Inst). Author manuscript; available in PMC 2018 November 21.


	Abstract
	1. Introduction
	2. Methods
	2.1. SCCS model and formulation of the risk period misspecification problem
	2.2. Previous approaches under risk period misspecification
	2.3. Bias due to non-optimal risk period specification
	2.4. Proposed estimation of the optimal risk period and relative incidence

	3. Simulation studies and results
	3.1. Study objectives and design
	3.2. Patterns of bias: Theoretical calculations and simulation
	3.3. Efficacy of the proposed estimator and comparison to current methods

	4. Applications
	4.1. CV event risk following infection-related hospitalization
	4.2. ITP after MMR vaccination

	5. Discussion
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Table 1
	Table 2



