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Abstract. Observations during the 2006 dry season of highly
elevated concentrations of cyanides in the atmosphere above
Mexico City (MC) and the surrounding plains demonstrate
that biomass burning (BB) significantly impacted air qual-
ity in the region. We find that during the period of our
measurements, fires contribute more than half of the organic
aerosol mass and submicron aerosol scattering, and one third
of the enhancement in benzene, reactive nitrogen, and carbon
monoxide in the outflow from the plateau. The combination
of biomass burning and anthropogenic emissions will affect
ozone chemistry in the MC outflow.

1 Introduction

The 20 million (2005) inhabitants of Mexico City experi-
ence some of the worst air quality in the world. The high
population density coupled with the topography of the city
(2200 m, surrounded on three sides by mountains) leads to
the daily buildup of pollutants in the region (Molina and
Molina, 2002). Despite growing population and greatly in-
creased automobile use, air quality has improved measurably

Correspondence to:J. D. Crounse
(crounjd@caltech.edu)

in the last decade as the federal and city governments imple-
mented a series of air quality regulations broadly similar to
those that have been effective in, for example, Los Angeles
(Lloyd, 1992). Nevertheless, ozone and particulate matter
(PM) in the city often exceed international standards (WHO,
2008) and the city is consistently enveloped in a pall by the
large amount of aerosol present.

The pollution from the city has impacts beyond the basin.
Aerosols and ozone produce important forcing on regional
climate through their interaction with both thermal infrared
and visible radiation (Solomon et al., 2007). Indeed, the ef-
fluents from megacities, such as Mexico City, are now seen
as globally important sources of pollution.

In the last decade, there have been several intensive stud-
ies of the air quality in the Mexico City basin. A major study
undertaken in the Mexico City Metropolitan Area in spring
of 2003 (MCMA-2003) included significant international co-
operation (Molina et al., 2007). In the spring of 2006, a con-
sortium of atmospheric scientists expanded significantly on
this study, obtaining a large suite of measurements in and
around Mexico City in an effort to understand both the con-
trolling chemistry in the basin and the impacts of the out-
flow pollution on the broader region. Named Megacity Initia-
tive: Local and Global Research Observations (MILAGRO),
this campaign involved measurements at several ground sites
along the most common outflow trajectory, and from several
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Fig. 1. MODIS-Aqua images of the Mexico City basin on(a) 5 March 2006 at 13:35 CST and(b) 10 March 2006 at 13:55 CST, illustrate
how large fires in the hillsides surrounding the city can impact visibility. Red boxes are thermal anomalies detected by MODIS. Black lines
represent Mexican state boundaries. Images courtesy of MODIS Rapid Response Project at NASA/GSFC.

aircraft. The National Science Foundation (NSF) C-130
(operated by the National Center for Atmospheric Research
(NCAR)), and the US Forest Service Twin Otter, along with
several other aircraft operated from Veracruz, Mexico. Here,
we focus on observations made from the C-130 aircraft on
seven flights above the Central Mexican Plateau. Details
about the broader MILAGRO study are reviewed byFast
et al.(2007).

Most efforts to engineer improvements in Mexico City air
quality have logically focused on reducing emissions from
the transportation and power generation sectors (McKinley
et al., 2005) and on new liquefied petroleum gas (LPG) reg-
ulations. However, as in Los Angeles, as the emissions from
transportation and industrial sectors decline, continued im-
provement in air quality will require addressing additional
sources.

Biomass burning can be a significant contributor to poor
air quality in many regions of the world, including southern
California (Muhle et al., 2007). Several previous studies have
suggested that fires in and around the Mexico City basin can
impact air quality (Molina et al., 2007; Bravo et al., 2002;
Salcedo et al., 2006). During the springtime (March–May),
many fires occur in the pine forests on the mountains sur-
rounding the city, both inside and outside the basin. These
fires are virtually all of human origin. Primarily they origi-
nate from accidental means (escaped agricultural/land main-
tenance fires, escaped campfires, smoking, fireworks, vehi-

cles, etc.), with a smaller number originating from inten-
tional ignition (E. Alvarado, Univ. of Washington, personal
communication, 2009). Typically, the biomass burning sea-
son intensifies in late March, reaching a maximum in May
(Fast et al., 2007; Bravo et al., 2002). The heat from these
fires is observable from space by the infrared channels of the
moderate resolution imaging spectroradiometer (MODIS) in-
struments operated from NASA’s Aqua and Terra platforms
(Giglio et al., 2003). Figure1, for example, shows two visi-
ble images from MODIS taken on 5 March (panel a) and 10
March (panel b) 2006. The locations of the detected thermal
anomalies are shown as red boxes. The aerosol haze from
the fires can be seen covering large areas of land around and
above MC, particularly on 5 March. MODIS imagery sug-
gests that the total biomass burning around MC in March
2006 was greater than climatological amounts, and closer to
what is normally observed during the month of April.

Using tracers of pollution from biomass burning and ur-
ban emissions, we show that fires significantly impacted
air quality above and downwind of Mexico City in March
2006. We use aircraft measurements of hydrogen cyanide
(HCN) to estimate the contribution of biomass burning to
the regional air quality. HCN is produced in the pyrolysis
of amino acids (Ratcliff et al., 1974) and has been widely
used as an atmospheric tracer of biomass burning emissions
(e.g.,Li et al., 2003). We use simultaneous observations of
acetylene (C2H2) to characterize the contribution of urban
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Fig. 2. C-130 flight tracks during MILAGRO colored by trac-
ers: (a) observed HCN–HCNbackground, and (b) observed C2H2.
The map has been divided into 0.2×0.2 degree pixels and all ob-
servations from the C-130 across the MILAGRO campaign within
a given pixel have been averaged together. High concentration data
have been rounded down to capped values of 800 and 1500 ppbv
for HCN and C2H2, respectively. Color scales range from 0 ppbv
(dark blue) to the capped value (dark red). The black star in each
panel is the center of Mexico City, and the black box outlines the
3×3 degree box centered on Mexico City which is the study area
considered for the fire impact analysis.

emissions. We show that a simple two end-member mix-
ing model (biomass burning and urban emissions) developed
from these tracers can explain most of the observed vari-
ability in several pollutants including carbon monoxide, ben-
zene, organic aerosol, reactive nitrogen oxides (NOy), and
the amount of submicron aerosol particles.

2 Observations

The NSF C-130 flew through the Mexico City region on
eleven flights in March 2006 (Fig.2). Of these flights,
three had fewer than ten samples of C2H2 within our study
area (3×3 degree box centered on MC, shown in Fig.2
and termed Central Mexican Plateau) and one flight did not
have HCN observations. These flights are excluded from
the calculation of the overall fire impact (4, 12, 26, and
28 March). In Fig.2a, the aircraft flight tracks are col-

Table 1. Anthropogenic and biomass burning emission ratios de-
rived here (TLS) and those measured directly in the Mexico City
area.

Urban Biomass Burning
(1[x]/1[C2H2])a (1[x]/1[HCN])a

Species optb 29 March optb fire obs.d

CO 96±3
2 92 104±8

9 117
C6H6 0.137±0.005

0.005 0.13 0.19±0.01
0.01 –

NOy 4.3±
0.3
0.3 3.7 5.4±

1.0
1.0 7.1f

OA 3.9±
1.0
0.6 2.9 22±4

4 14
scatteringe 22±4

3 22 75±6
7 78

HCN – 0.056c –1– –1–
C2H2 –1– –1– – 0.17

a Units are mol/mol, except ford[OA]/d[y] and d[scat]/d[y],
which have units of µg sm−3 ppbv−1 and Mm−1 ppbv−1, respec-
tively.
b Calculated emission ratios determined from TLS anaylsis.
c An upper limit for how much HCN comes from urban emissions
in MC, derived from data collected from C-130 on 29 March 2007,
a day with low BB influence. This factor is not optimized.
d Median values for fires sampled by the Twin Otter around Mexico
City in March 2006 (Yokelson et al., 2007b).
e This refers to submicron scattering measured at 550 nm.
f This value is the NOx/HCN emission ratio, not NOy/HCN. For this
comparison we assume that in the fresh smoke sampled byYokelson
et al.(2007b), NOx≈NOy.

ored by the average amount of HCN measured in the air.
Acetonitrile (CH3CN) mixing ratios, which also have been
used extensively as a biomass burning tracer, were highly
correlated (r2

=0.78) with overall regression slope of 0.39
(1CH3CN/1HCN) (Fig. A1), similar to several previous
measurements of biomass burning emission ratios (Yokelson
et al., 2007a; Singh et al., 2003). The mean mixing ratio of
HCN in the study area (7 flights considered, within the 3×3
degree box) was measured to be 530 pptv, about 390 pptv
higher than the background values observed in clean air en-
countered above the plateau pollution.

Figure 2b shows the C-130 flight tracks colored by the
mixing ratio of C2H2. C2H2 is produced in the combustion
of both gasoline and diesel fuels. We chose C2H2 as our ur-
ban tracer because its atmospheric lifetime is quite long. We
calculate that with respect to its major loss mechanism (re-
action with the hydroxyl radical, OH), the atmospheric life-
time is ten days to two weeks in the Mexico City region. We
did not use other tracers of city emissions such as toluene or
methyl tert-butyl ether (MTBE) because their shorter atmo-
spheric lifetimes complicate the regional analysis. In fresh
city plumes (as determined by the ratio of toluene to C2H2),
all the urban tracers (e.g. C2H2, MTBE, toluene) are highly
correlated.

Although the regions of enhanced C2H2 and HCN ap-
pear geographically coincident in Fig.2, the sources of these

www.atmos-chem-phys.net/9/4929/2009/ Atmos. Chem. Phys., 9, 4929–4944, 2009
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Fig. 3. Timeline from the flight of 8 March 2006:(a) measured HCN, C2H2, and radar altitude. The observed (dots) and reconstructed
(bars) CO, benzene, and organic aerosol concentrations, are shown in panels(b–d), respectively. The bar widths represent the relative bottle
sampling time (width has been expanded by 3× for clarity). The measurements in panels (b–d) are colored by [toluene]/[C2H2]

∗ with
color scale ranging from red=1 to blue=0, and grey meaning data was unavailable for this calculation. Data points with black borders in
panels(b–d) lie within the 3×3 degree study area.

gases within the basin are geographically (and temporally)
distinct and significant differences in their distribution can
be observed on smaller spatial scales. This is illustrated
in Fig. 3a. On 8 March 2006, the C-130 flew into the
Mexico City basin and over a short period encountered air
masses significantly enhanced in either HCN, C2H2, or both
(panel a). Fig.4 shows the flight track corresponding with
data shown in Fig.3 on top of the MODIS – Aqua image for
8 March.

To quantify the contribution of both fire and urban emis-
sions to the distribution of a trace gas (or aerosol),Y , we im-
plement a simple two end-member model using the measured
excess HCN,[HCN]

∗, and measured excess C2H2, [C2H2]
∗,

as tracers:

Y = FY (fire) × [HCN]
∗

+ FY (urban) × [C2H2]
∗ (1)

where,

[HCN]
∗=[HCN]−SHCN(urban)×[C2H2]

∗
−[HCN]background(2)

[C2H2]
∗=[C2H2]−SC2H2(fire)×[HCN]

∗
−[C2H2]background(3)

FY are scalars that relate the emission ofY from fire and ur-
ban sources to the emissions of HCN and C2H2, respectively
(Table1). SHCN andSC2H2 are the emission ratios of HCN
to C2H2 and C2H2 to HCN for urban and fire emissions, re-
spectively. These cross terms account for the contribution of
urban and fire emissions to the excess HCN and C2H2, re-
spectively. We also account for the amounts of these tracers
advected into the region from afar (backgrounds).

We derive a set of emission ratios,FY , for the pollutants
using total least squares (TLS) analysis (Table 1). We weight
[HCN]

∗ and[C2H2]
∗ by estimates of their error determined

primarily from uncertainties in the backgrounds and in the
variability of the emission ratios. We estimate the uncer-
tainty in the derived emission ratios using a bootstrap method
(Efron and Tibshirani, 1993). The bootstrap method cre-
atesx alternate data sets by pickingn random samples with
replacement from the original data set, wheren equals the

Atmos. Chem. Phys., 9, 4929–4944, 2009 www.atmos-chem-phys.net/9/4929/2009/
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number of samples in the original data set. The TLS analysis
is then performed across all alternate data sets, and statistics
are computed on the results of all analyses. For this analysis
we usedx=1000. In Table1, we also summarize the emis-
sion factors determined independently from measurements
made directly in biomass burning plumes measured in the
basin during MILAGRO.

Gasoline and diesel engine exhaust contain HCN, though
previous measurements of the emissions vary by orders of
magnitude (Baum et al., 2007). Automobiles lacking cat-
alytic converters can produce 100 times more HCN than au-
tomobiles with functional catalysts (Baum et al., 2007; Har-
vey et al., 1983). To estimate the appropriate emission ra-
tio for Mexico City, SHCN, we use observations made from
the C-130 on 29 March when the C-130 sampled city emis-
sions with what appears to be minimal fire influence (Fast
et al., 2007). The measured slope of HCN to C2H2 in the
city plumes encountered on this day is 0.056(mol/mol). The
ratio of CH3CN to HCN in the city emissions is 0.5, similar
to the ratio measured in both fire plumes and in the region as
a whole. This is in contrast to observations from Asia where
urban emissions had a much lower ratio CH3CN to HCN (Li
et al., 2003). Thus it is possible that even on the 29th, some of
the HCN is from burning. Given our cross term corrections,
and assuming urban fire sources such as garbage, coal, and
biofuel burning was no different on 29 March than on other
days, emissions from these urban fire sources are counted
as urban emissions and not as fire emissions. Using the
0.056(mol/mol) as an upper limit for the HCN/C2H2 emis-
sion ratio from urban emissions, we estimate that all urban
emissions of HCN account for no more than 15% of the to-
tal emissions in the basin during March 2006. Other sources
of HCN from, for example, coal burning and petrochemical
industries are also estimated to be small (see Appendix A2).

We use measurements of C2H2 and HCN observed in for-
est fires in and around Mexico City to estimateSC2H2 (Yokel-
son et al., 2007b). The emission of C2H2 from these forest
fires was near the low end of the range typically observed for
extratropical forest fires (Yokelson et al., 2007b; Andreae and
Merlet, 2001). We estimate that the contribution of biomass
burning to C2H2 accounts for less than 10% of the C2H2 in
and around Mexico City.

To account for the background amounts of C2H2 and HCN
advected into to the region, we use our observations in air
sampled aloft, away from the Mexico City basin. We use
separate HCN and C2H2 backgrounds for the gas phase
species and for organic aerosol/scattering, as aerosols have
a more variable atmospheric lifetime. For the gas phase
species (CO, benzene, and NOy), we use a constant value
of 140 pptv for the background values of HCN for flights
before 21 March. Following a shift in weather on 21–22
March (Fast et al., 2007) (see also Figs.A5–A7, and supple-
mentary material (http://www.atmos-chem-phys.net/9/4929/
2009/acp-9-4929-2009-supplement.pdf) for higher resolu-
tion MODIS images), we find higher background concentra-
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Fig. 4. MODIS-Aqua image and C-130 flight track from 8 March
2006, as accompanyment to Fig.3. Flight track is colored by aicraft
radar altitude (altitude above the ground). Specific times along the
flight track are shown as red asterisks, and labeled as local time in
hours (GMT-6). The blue box encompasses the 3×3 degree study
area.

tions for HCN (220 pptv). C2H2 backgrounds are quite small
(0–30 pptv), so we have used a constant background value of
0 pptv for the analysis of the gas phase species. For organic
aerosol and scattering, we have used a flight-by-flight anal-
ysis of the correlation of organic aerosol mass and scatter-
ing with HCN and C2H2 to define the background HCN and
C2H2. For flights in early March, the implied background of
HCN and C2H2 for organic aerosol (the abundance of these
gases when the amount of organic aerosol is zero) is very
close to the global backgrounds used in the analysis of the
gases, but following the rainy period, 20–26 March, the ap-
parent backgrounds for both HCN and C2H2 increased more
drastically than for the gas phase pollutants; organic aerosol
concentrations were near zero at significantly higher concen-
trations of HCN and C2H2 (300 and 150 pptv, respectively).
This difference is likely due to removal of aerosol (but not
insoluble gases such as HCN, CO, C2H2, etc.) in the region
during the rain storms.

The variance in the abundance of our fire and urban trac-
ers (HCN and C2H2) explains most of the variability in CO
and other pollutants. For example, in panels (b), (c), and (d)
of Fig. 3, we show the observations (circles) for CO, ben-
zene, and organic aerosol mass along the C-130 flight track.
The observations are averaged to the sampling time of the
whole air samples used to determine C2H2. The bars show
the contributions from fire and urban emissions, estimated
from [HCN]

∗ (orange) and acetylene,[C2H2]
∗ (black) us-

ing the emission ratios described in Table1 and the mixing
model described by Eq. (1).

Figure5a shows a scatter plot of the predictions from the
two component model and all observations (from all flights)

www.atmos-chem-phys.net/9/4929/2009/ Atmos. Chem. Phys., 9, 4929–4944, 2009

http://www.atmos-chem-phys.net/9/4929/2009/acp-9-4929-2009-supplement.pdf
http://www.atmos-chem-phys.net/9/4929/2009/acp-9-4929-2009-supplement.pdf


4934 J. D. Crounse et al.: Biomass burning pollution over Central Mexico

0 0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
(a)

r2 = 0.98
n = 497

Observed CO (ppmv)

C
al

cu
la

te
d 

C
O

 (
pp

m
v)

0

2

4

6

8(b) slope = 8.1
r2 = 0.94
n = 497

C
2H

2* 
(p

pb
v)

0 0.2 0.4 0.6 0.8
0

0.5

1

1.5(c) slope = 1.9

r2 = 0.25
n = 497

Observed CO (ppmv)

H
C

N
* 

(p
pb

v)

0 0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
(d)

r2 = 0.97
n = 550

Observed benzene (ppbv)

C
al

cu
la

te
d 

be
nz

en
e 

(p
pb

v)

0

2

4

6

8(e) slope = 4.7
r2 = 0.91
n = 550

C
2H

2* 
(p

pb
v)

0 0.2 0.4 0.6 0.8
0

0.5

1

1.5(f) slope = 1.4

r2 = 0.34
n = 550

Observed benzene (ppbv)

H
C

N
* 

(p
pb

v)

Fig. 5. Scatter plots for observed vs. reconstructed CO(a) and benzene(d). Associated scatter plots for CO vs. each tracer,[C2H2]
∗ (b)

and[HCN]
∗ (c) and for benzene vs. each tracer,[C2H2]

∗ (e) and[HCN]
∗ (f). Lines are best fit to all data using total least squares (TLS)

regression. Points are colored by [toluene]/[C2H2]
∗, where red=1 and blue=0. Points with black border lie within the 3×3 degree study

area.

made from the C-130 during MILAGRO for CO. The obser-
vations made within the 3×3 degree box surrounding MC,
during the 7 flights considered in this analysis are highlighted
with a black border. CO has a relatively long lifetime in
the atmosphere and there is a persistent northern hemispheric
background of between 60 and 150 ppb that varies with sea-
son and latitude. To estimate the regional increase in [CO],
we assume that the background [CO] is equal to the simu-
lation of background CO taken from the Model for OZone
And Related chemical Tracers (MOZART) chemical trans-
port model (Horowitz et al., 2003), plus a constant 34 ppbv
offset (see Fig.3b, green bars). The offset was determined
from the bias between MOZART simulations and the ob-
served CO in the cleanest air encountered during MILAGRO
– typically aloft and outside the Mexico City basin. Figure5d
shows the comparison for benzene. From the tracer analy-
sis, we estimate that biomass burning accounts for(31±3)%,

(36±3)%, and(34±7)% of the CO, benzene, and reactive
nitrogen (NOy). These estimates are the mean of the mass-
weighted, daily-averaged fire/excess fractions for observa-
tions made within the 3×3 degree box centered on MC, for
the seven flights considered in this analysis. The sensitivity
of these ratios to the size of the box is described in TableA1.
Consistent with expectation, the fraction of pollution from
biomass burning is lower for a smaller box centered over the
city.

Figure6a shows a scatter plot of the predictions from the
two component model for organic aerosol. The data are col-
ored by the ratio of toluene to acetylene. High ratios (red col-
ors) are indicative of very fresh emissions with little photo-
chemical processing. A similar figure for submicron aerosol
scattering is shown as Fig.A3. From the tracer analysis, we
estimate that biomass burning accounts for(66±11)%, and
(57±5)% of the organic aerosol mass and total submicron

Atmos. Chem. Phys., 9, 4929–4944, 2009 www.atmos-chem-phys.net/9/4929/2009/
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scattering (which determines visibility). These estimates are
the mean of the mass-weighted, daily-averaged fire/excess
fractions for observations made within the 3×3 degree box
centered on MC for the seven flights considered in this anal-
ysis.

3 Discussion

In Table1, we compare the emission ratios estimated from
the TLS analysis with observations made in the city plume
encountered on 29 March (little BB influence) and in fresh
fire plumes sampled within the study area by the Twin Otter
(Yokelson et al., 2007b). The emission ratios derived here do
not change if the data from the 29th are excluded from the
least-squares analysis. Note, whileYokelson et al.(2007b)
report emission factors for up to 5 fires (or groups of fires) as
well as the geometric mean of the reported individual emis-
sion factors, here we report (Table1) the median values of the
individual emission ratios calculated from the emission fac-
tors given therein. Median values are reported here because
of the high variability of the individual emission factors, and
the non-uniform weighting across fires in the geometric mean
calculation. In particular, the unusually high modified com-
bustion efficiency (MCE) of the “17 March – Planned Fire”
and the group of fires reported as “6 March – Fires 1–4” are
given 25% of the weight as the remainder of the fires in cal-
culating the geometric mean. While not as good, the com-
parison using the mean of the emission ratios derived from
Yokelson et al.(2007b) does not alter the conclusions.

The urban ratio of CO to C2H2 measured on 29 March,
92(mol/mol), is very close to the emission ratio estimate
from the total least squares (TLS) analysis, 96(mol/mol)

(Table1). This ratio is lower than typically observed in US
(300–500 mol/mol), and Asian cities (220 mol/mol) (Xiao
et al., 2007), but comparable to the value observed byGros-
jean et al.(1998) in urban air in Brazil. The lower emis-
sion ratios in Mexico and Brazil may reflect differences in
fuel composition or catalytic converter functionality (Sigsby
et al., 1987). The relatively high concentration of C2H2 in
traffic exhaust combined with the emissions of C2H2 from
fires near the low end of the typical range makes C2H2 a good
tracer for the Mexican urban emissions. Observations made
during the same period of CO and C2H2 at a ground sta-
tion (T1) in Mexico City and described byde Gouw et al.
(2009) show a mean CO to C2H2 ratio of 150 mol/mol. It
is not known at this time what accounts for this difference,
but likely it is due to a difference in calibration factors. The
analysis described here is not sensitive to an absolute error in
C2H2 or CO as the emission ratios are derived internally to
the data set. While a calibration error in either CO or C2H2
will affect the C2H2 emission ratios reported in Table1, it
will not change the calculated fire impact for the trace gasses
reported in TableA1.

The median ratio of CO to HCN observed in biomass burn-
ing plumes within the study area, 117 mol/mol (Yokelson
et al., 2007b), is close to that derived in the total least-squares
analysis, 104 mol/mol. As noted byYokelson et al.(2007b),
this ratio is at the low end of the range typically observed
for biomass burning. The relatively high emissions of HCN
in biomass burning plumes combined with the low emission
ratios from urban sources makes HCN a very good tracer for
biomass burning in Mexico City.

Biomass burning is a significant global source of benzene
and the impact of this source in and around the Mexico City
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basin is quite apparent in the correlations of benzene with
the tracers (Fig.5d–f). From the least squares analysis, we
estimate that fires contributed 36% of this pollutant to the at-
mosphere above the central Mexican Plateau in March 2006.
Relative to CO, the benzene emission ratio for biomass burn-
ing derived here is similar to those reported in other stud-
ies (Andreae and Merlet, 2001). As an aside, measurements
of the ratio of benzene and toluene have been used in many
previous studies to estimate the aging of an urban airmass
as the atmospheric oxidation of toluene occurs much more
rapidly than benzene (e.g.,Cubison et al., 2006). Because
the benzene/toluene emission ratio from fires (∼1–3) is much
greater than the same emission ratio from urban emissions
(0.2), this method is not appropriate for cities – such as Mex-
ico City during the biomass burning season – that have sig-
nificant contributions of benzene from fire emissions.

Organic aerosol generally accounts for more than half the
mass of fine particulate matter (PM2.5) in (Salcedo et al.,
2006) and around (DeCarlo et al., 2008) Mexico City. As
shown in Fig.6b–c, the amount of organic aerosol is highly
correlated with[HCN]

∗ and[C2H2]
∗, suggestive of large fire

and urban emission influences. Using the emission ratios de-
scribed in Table 1, we estimate that biomass burning con-
tributes 66% of the organic aerosol to the study area in March
2006. These estimates are quite uncertain, however, due to
complex aerosol chemistry.

Organic aerosol is both formed in and lost from the at-
mosphere on relatively fast timescales. Although direct (or
primary) emissions of organic aerosol from automobiles are
quite small (∼5–10 µg per standard (T =273 K, P=1 atm)
cubic meter of air (sm3) per ppmv CO (de Gouw et al., 2005;
Robinson et al., 2007)), subsequent atmospheric oxidation
of co-emitted hydrocarbons such as toluene and other aro-
matics, as well as biogenic and biomass burning hydrocar-
bon emissions, can yield low vapor pressure compounds that
condense on the existing particulate forming secondary or-
ganic aerosol (SOA) (Kroll and Seinfeld, 2008). The amount
of SOA produced from these gas-phase sources over the pe-
riod of a day substantially exceeds the primary emissions
from urban sources (de Gouw et al., 2005; Kleinman et al.,
2008; Robinson et al., 2007; Volkamer et al., 2006). The
influence of this process is apparent in the aircraft data. In
Fig. 6a, the organic aerosol data is colored by the ratio of
toluene to acetylene. Toluene is co-emitted with acetylene
in urban emissions, but is oxidized in the atmosphere with
a lifetime of approximately 12 daylight hours. In samples
containing very high toluene (less oxidized), the total least-
squares analysis tends to over-predict the amount of organic
aerosol. For example, the urban emission ratio derived from
the least-squares analysis (∼39 µg per sm3 per ppmv CO or
∼3.9 µg per sm3 per ppbv of C2H2) is greater than the factor
derived from the slope of the correlations in the fresh plumes
encountered on 29 March.

In addition to aerosol growth, aerosol mass can be lost
through several mechanisms. As aerosol is transported away

from its source and diluted with clean air, semi-volatile com-
pounds evaporate to the gas phase (Robinson et al., 2007).
Dry and wet deposition also remove aerosol from the at-
mosphere. As mentioned earlier, the changing backgrounds
for aerosol relative to insoluble gases observed during late
March are likely explained by aerosol loss via wet deposi-
tion.

Despite the complexity of the aerosol chemistry, the sim-
ple two end-member mixing model does describe much of
the variability of organic aerosol mass observed from the C-
130. This result may be related to our sampling – most of the
observations were made in the afternoon when the city and
fire emissions had experienced some aging. The apparent
organic aerosol emission ratio for urban emissions derived
from the 29 March plume, 32 µg OA per sm3 per ppmv CO, is
not inconsistent with other estimates for organic aerosol from
urban emissions aged 3–6 h (de Gouw et al., 2005; Volkamer
et al., 2006). The aerosol burden continues to increase as the
air masses are further oxidized in the MC outflow (Kleinman
et al., 2008); similar to what has been observed in the New
York City (de Gouw et al., 2005) and Atlanta plumes (Weber
et al., 2007).

The complexity of the mixing of the urban-core aerosol
emissions with the regional aerosol emissions (often domi-
nated by fire emissions) as well as mixing with the clean free
troposphere precludes strong statements on the aerosol dy-
namics of these different sources.

The average NOx/VOC emission ratio for the fires sur-
rounding Mexico City is similar to the urban NOx/VOC
emission ratio for Mexico City. This is due in part to the
higher than expected NOx emission from the fires, which is
significantly (2–4 times) larger than typical for fires (Yokel-
son et al., 2007b). As the fire and urban NOx/VOC emissions
are similar, the fire emissions will significantly impact the
ozone production in the Mexico City outflow. Modeling of
the transport and aging of the MC plume using a 3-D chem-
ical transport model with full chemistry and accurate urban
and fire emissions will be required to quantify the full impact
of the fire emissions on ozone concentrations.

4 Implications for air quality improvement

The implications of this study for air quality engineering in
Mexico City are not straight forward. Although visibility
within the city and the export of aerosol, ozone, and other
trace gases is significantly impacted by biomass burning dur-
ing the period of our observations, it is not possible to esti-
mate from this data set the long-term impact of such burn-
ing on the urban dwellers of Mexico City. Biomass burn-
ing in March 2006 was significantly higher than typical for
March, though not unlike the amount of burning usually ob-
served in the height of the biomass burning in April/May.
During most of the year (June–February), however, these
sources are negligible. Thus, annually-averaged, the impact
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Table A1. Fire impact for pollutants considering several box sizes.

Species Box 1a (%) Box 2b (%) Box 3c (%)

CO 21 28 31
C6H6 25 33 36
NOy 24 31 34
OA 52 61 66
scattering 43 52 57

a Box defined by latitude: [19.269 to 19.867] and longitude:
[−99.300 to−98.867].
b Box defined by latitude: [19.067 to 20.033] and longitude:
[−99.433 to−98.667].
c Box defined by latitude: [17.900 to 20.900] and longitude:
[−100.400 to−97.400].

of biomass burning will certainly be much smaller. In addi-
tion, because our sampling was from aircraft and primarily in
the afternoon, and because the biomass burning was primar-
ily in the forest above the city (Yokelson et al., 2007b), the
impact of fire on the air breathed by people within Mexico
City will be smaller than the regional impact estimated here.
Indeed, we observe that even in the relatively well mixed af-
ternoon planetary boundary layer, the impact of fire increases
with altitude (Fig.A4). Consistent with this finding, esti-
mates of the impact of fire on air quality at the ground sta-
tions within the city suggest a smaller fire influence (Molina
et al., 2007; Bravo et al., 2002; Salcedo et al., 2006; Yokel-
son et al., 2007b; Stone et al., 2008; Moffet et al., 2008;
Aiken et al., 2009). A possible method for estimating the im-
pact of fires to people on the ground in Mexico City would
be through the use of a high resolution 3-D chemical trans-
port model constrained by accurate winds and meteorolog-
ical conditions, accurate fire emissions, and coupled with
population maps. For example, an extension of theFast et al.
(2009) study could provide such an estimate, however addi-
tional work would be required to properly model the night-
time and early morning boundary layer, as well as an ade-
quate parameterization of SOA growth which considers both
anthropogenic and biomass burning precursors. Finally, un-
like reducing emissions from the urban sources, reducing fire
emissions through fire suppression efforts may have environ-
mental costs as well as benefits; although forest fire suppres-
sion in and around the basin would yield improvement in vis-
ibility, such fire suppression actions may be inconsistent with
proper forest management practices.
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Fig. A1. Scatter plot of the HCN and the CH3CN observa-
tions made aboard the C-130 during the MILAGRO experiment
(r2

=0.78). The data (black x symbols) were fit using least squares
(red: slope=0.45, intercept=0.039 ppbv), and robust total least
squares (blue: slope=0.39, intercept=0.054) regression techniques.
Robust least squares is an iterative algorithm using reweighted least
squares and a bisquare weighting function, where data which lie far
from the best fit are given less weight in successive iterations. The
r2 value is calculated via the standard method.

Appendix A

Additional information

A1 Data sources

HCN was measured on the NCAR C-130 as discrete 0.5 s
samples obtained every 5 s. The analysis was performed by
chemical ionization mass spectrometry (CIMS). While the
Caltech CIMS instrument has been described previously in
detail (Crounse et al., 2006), the particular HCN method
has not. In brief, HCN reacts rapidly with the CF3O−

(and CF3O−
·H2O) anion to form the cluster product ion,

CF3O−
·HCN, which is monitored atm/z=112. Instrumen-

tal backgrounds were measured once every 15 min by pass-
ing ambient air through a filter containing nylon wool coated
with NaHCO3. In-flight calibrations were preformed once
per hour using HNO3 and H2O2 calibration standards and
proxied to laboratory calibrations of HCN. Similar to H2O2,
the sensitivity of the CIMS instrument toward HCN is a
function of water vapor. This is corrected for using the air-
craft water vapor measurement and a water vapor sensitivity
curve for HCN determined in the laboratory. Absolute labo-
ratory calibrations were conducted using HCN permeation
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Fig. A3. Scatter plot for observed vs. reconstructed submicron scattering(a). Associated scatter plots for submicron scattering vs. each tracer,
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∗ (c). Lines are best fit to all data using total least squares (TLS) regression. Points are colored by [toluene]/[C2H2]
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where red=1 and blue=0. Points with black border lie within the 3×3 degree study area.

tubes (KIN-TEC), whose output was determined through
both gravimetric and spectroscopic (FTS) means. Both ab-
solute calibration methods agreed within 10%. Considering
uncertainties in the absolute laboratory calibrations and wa-
ter vapor concentration, the accuracy of the HCN observa-
tions is estimated to be better than±30%. The precision is
limited mostly by counting statistics (background + signal)

and is about 5% (1 standard deviation) at 250 pptv HCN un-
der low to moderate water vapor levels (H2O mixing ratio
≤0.004) for a 0.5 s integration period.

CH3CN was measured by a cryotrap concentrator coupled
to a gas chromatograph mass spectrometer (cryo-GCMS), an
instrument similar to the one described byApel et al.(2003).
The cryo-GCMS instrument concentrated ambient air in the
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cryotrap for 45 s prior to a 125 s analysis, yielding one data
point every 170 s. The accuracy for the cryo-GCMS CH3CN
determination is estimated to be±20% with a precision of
±3%.

C2H2, benzene, and toluene were recovered from 2 L can-
ister samples that were periodically filled (approximately 12
samples per hour for the flights into the city). Each canis-
ter is filled over a period of 30–120 s. These samples were
analyzed by gas chromatography at UC-Irvine (Blake et al.,
1997). The detection limit for each of these compounds is
3 pptv, and the accuracy is estimated to be better than±5%
for C2H2 and±10% for benzene and toluene.

NOy was measured via catalytic reduction of reactive ni-
trogen species to NO on a gold surface in the presence of a
small flow of CO, used as a reducing agent. The resulting
NO was measured by the standard chemiluminescence tech-
nique. In order to keep the conversion efficiency constant
the converter was maintained at a constant pressure using a
heated teflon valve just upstream of the converter. The con-
verter was housed in the inlet pylon, extending about 30 cm
into the airstream, in order to minimize the length of inlet
tubing upstream of the converter. The upstream plumbing
(tubing and valve) were limited to a heated length of about
15 cm. The inlet tubing and converter were oriented perpen-
dicular to the airstream with an aft-facing 45◦ cut on the end
of the tubing. This configuration minimized particle ampli-
fication, and tended to exclude larger particles (1 micron or
so). At 1 ppbv, the estimated NOy precision and accuracy are
±3% and±15%, respectively.

Carbon monoxide was measured continuously with an
vacuum ultraviolet (VUV) fluorescence instrument similar to
the one developed byGerbig et al.(1999) with a precision
of 3 ppbv and a typical accuracy of±10% at 100 ppbv CO.
On several flights, the VUV fluorescence CO measurements
were not available and CO concentrations were determined
from the canister samples.

Aerosol composition (organic, sulfate, nitrate, ammonium,
and chloride) and mass were determined with a high resolu-
tion aerosol mass spectrometer (HR-AMS) (DeCarlo et al.,
2006, 2008). The HR-AMS detection limit for the organic
aerosol is 0.35µg sm−3 for a 12 s integration period, and its
accuracy is estimated to be better than±25%. Aerosol scat-
tering coefficients were measured at 450, 550, and 700 nm
wavelengths using two TSI-3563 nephelometers. One neph-
elometer measured submicron scattering employing a 1µm
aerodynamic impactor, and the other measured total scatter-
ing (Anderson et al., 2003).

A2 Alternative HCN sources

In addition to biomass burning and gasoline/diesel combus-
tion, other sources of HCN may contribute to the enhanced
HCN in the Mexico City basin. For example, HCN has also
been shown to be produced in the pyrolysis of coal from the
breakdown of pyrrolic and pyridinic nitrogen (Leppalahti and
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Fig. A4. Altitude dependence of fire CO over Mexico City region.
The fraction of excess CO (CO-background) which according to
the two component analysis comes from biomass burning versus
pressure altitude for observations (black x symbols) made within
the 3×3 degree study area around Mexico City. Note the ground
level in MC is at 2.2 km pressure altitude. The mean (red circles)
and median (blue diamonds) averages are shown for 750 m altitude
bins.

Koljonen, 1995). Coal burning, however, is minimal in the
basin. According to the 1999 Mexico National Emissions In-
ventory (NEI), 88% of the CO produced in Mexico City, and
surrounding states (summing over Distrito-Federal, Mexico,
and Morales) comes from mobile sources (NEI, 2008).

We did observe elevated HCN in the plumes from the
power plants (fuel-oil fired) and petrochemical complex in
Tula, north of Mexico City. The ratio of HCN to CO in the
Tula plume is similar to that from fire. The Tula CO emis-
sions are, however, significantly smaller than the CO emis-
sions from fire in the MC basin suggesting these emissions
have minimal influence on the regional HCN budget.

A3 HCN and acetonitrile correlation

A reasonable correlation (r2
=0.78, n=835) exists between

HCN and CH3CN observations, suggesting similar sources
(Fig. A1). However, on multiple occasions, directly over
Mexico City, enhanced CH3CN was observed without ac-
companying enhancements in HCN (see Fig.A1, data excur-
sions well above the best fit line). Explanations for these
CH3CN plumes could include industrial, non-combustion,
sources, or possibly a different compound interfering with
the GC-MS CH3CN measurement. Overall,1CH3CN is
39% of1HCN (Fig.A1). On 29 March, a day with little fire
influence according to HCN levels relative to CO, the slope
of CH3CN to HCN is similar to the overall relationship, indi-
cating that these compounds are emitted from urban sources
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Fig. A5. MODIS-Aqua images around Mexico City for 5 March through 13 March 2006. Red boxes represent detected fires. Black lines are
state boundaries. Blank areas represent missing data. Images courtesy of MODIS Rapid Response Project at NASA/GSFC.

in about the same ratio as from fire, or that fire is still the
dominating source of these compounds even for days with-
out large fires.

A4 NOy and submicron scattering

Analogous to Figs.5 and6, NOy (Fig. A2), and submicron
scattering at 550 nm (Fig.A3) reconstructions are shown.
The two component fit for total scattering yielded very simi-
lar results as the one for submicron scattering (e.g. fire frac-
tion also equal to 57%), with similar correlation coefficients.
Significant amounts of aerosol nitrate were measured in and
around Mexico City. For this analysis total NOy was taken
as the sum of measured NOy and aerosol nitrate. While the
NOy instrument likely measures some of the aerosol nitrate

as NOy, at this time it is not known what fraction of aerosol
nitrate was sampled by the NOy instrument. To the extent
aerosol nitrate is sampled by this NOy instrument, we are
double counting the aerosol nitrate. The correlation with the
2-component model is significantly better if the aerosol ni-
trate is added to the NOy measurement to give total NOy.

A5 Altitude dependence of fire impact

As observed from the C-130, and inferred by comparing the
C-130 data with observations on the ground in Mexico City,
the impact of the fires surrounding Mexico City is not as se-
vere on the ground, as it is above the City. This is due in
part to the location of the fires, elevated above the city on
the mountainsides surrounding the city. The impact of fire
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Fig. A6. MODIS-Aqua images around Mexico City for 14 March through 22 March 2006. Red boxes represent detected fires. Black lines
are state boundaries. Blank areas represent missing data. Images courtesy of MODIS Rapid Response Project at NASA/GSFC.

increases with altitude above Mexico City (Fig.A4), sug-
gesting that the smoke from the fires does not fully impact
the ground.

A6 Box size for study area

The fire impact for the pollutants reported in the main text,
considered a 3×3 degree rectangular study area, centered on
Mexico City. As one decreases the box size, the urban emis-
sions become relatively more important (TableA1). This
makes sense considering the fires emissions originate from
many diffuse sources (individual fires) scattered across the
plateau, while the urban emissions are more centrally located
in and around the MC basin. TableA1 compares the results
for the 2-component model using three different box sizes.

Box 1 is the smallest, encompassing the populated area of
Mexico City and some adjacent terrain. Box 2 is somewhat
larger, including the ring of mountains around MC. Box 3 is
the largest box, equating to the 3×3 degree box used for the
results presented in the main body of this work.

A7 MODIS Aqua satellite image time line

A daily timeline of true color satellite images of the Mex-
ico City area, collected from the MODIS instrument aboard
the Aqua satellite, for the Month of March 2006 are shown
in Figs. A5–A7. The images were taken at approximately
1:30 p.m. local time each day. The red boxes on each
satellite image represent detected thermal anomalies. One
can observe from inspection of the images that many fires
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Fig. A7. MODIS-Aqua images around Mexico City for 23 March through 31 March 2006. Red boxes represent detected fires. Black lines
are state boundaries. Blank areas represent missing data. Images courtesy of MODIS Rapid Response Project at NASA/GSFC.

are not detected due to a number of reasons, including
cloud cover, smoke cover, low fire temperature, or sim-
ply lack of satellite coverage. Also, the number of de-
tected fires does not necessarily correlate with the impact
of fires on the visibility as observed from the satellite pic-
tures. Higher resolution images are available as supple-
mentary material (http://www.atmos-chem-phys.net/9/4929/
2009/acp-9-4929-2009-supplement.pdf) for both Aqua and
Terra images of the Mexico City region during March 2006.
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