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Open Forum Infectious Diseases                                   

M A J O R  A R T I C L E
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Background. Ceftriaxone-resistant (CRO-R) Escherichia coli bloodstream infections (BSIs) are common.
Methods. This is a prospective cohort of patients with E coli BSI at 14 United States hospitals between November 2020 and April 

2021. For each patient with a CRO-R E coli BSI enrolled, the next consecutive patient with a ceftriaxone-susceptible (CRO-S) E coli 
BSI was included. Primary outcome was desirability of outcome ranking (DOOR) at day 30, with 50% probability of worse outcomes 
in the CRO-R group as the null hypothesis. Inverse probability weighting (IPW) was used to reduce confounding.

Results. Notable differences between patients infected with CRO-R and CRO-S E coli BSI included the proportion with Pitt 
bacteremia score ≥4 (23% vs 15%, P = .079) and the median time to active antibiotic therapy (12 hours [interquartile range 
{IQR}, 1–35 hours] vs 1 hour [IQR, 0–6 hours]; P < .001). Unadjusted DOOR analyses indicated a 58% probability (95% 
confidence interval [CI], 52%–63%) for a worse clinical outcome in CRO-R versus CRO-S BSI. In the IPW-adjusted cohort, no 
difference was observed (54% [95% CI, 47%–61%]). Secondary outcomes included unadjusted and adjusted differences in the 
proportion of 30-day mortality between CRO-R and CRO-S BSIs (−5.3% [95% CI, −10.3% to −.4%] and −1.8 [95% CI, −6.7% 
to 3.2%], respectively), postculture median length of stay (8 days [IQR, 5–13 days] vs 6 days [IQR, 4–9 days]; P < .001), and 
incident admission to a long-term care facility (22% vs 12%, P = .045).

Conclusions. Patients with CRO-R E coli BSI generally have poorer outcomes compared to patients infected with CRO-S E coli 
BSI, even after adjusting for important confounders.
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Escherichia coli is the most common gram-negative 
pathogen recovered in bloodstream infections (BSIs) [1]. 

Unfortunately, the incidence of ceftriaxone-resistant (CRO-R) 
E coli BSI continues to rise in the United States (US), with 
the Centers for Disease Control and Prevention estimating a 
53% increase in CRO-R E coli in clinical cultures from 2012 
through 2017 [2]. Extended-spectrum β-lactamase (ESBL) pro-
duction is the most common mechanism of ceftriaxone resis-
tance in E coli, and ceftriaxone resistance is frequently used 
as a proxy for the production of ESBLs [3]. Identification of 
CRO-R E coli has important treatment implications because 
ESBLs hydrolyze a number of β-lactam antibiotics beyond 
just ceftriaxone, limiting β-lactam treatment options [3]. 
Additionally, ESBL-encoding genes frequently co-circulate 
with genes encoding resistance to fluoroquinolones (eg, gyrA, 
parC), trimethoprim-sulfamethoxazole (TMP-SMX) (eg, sul), 
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and aminoglycosides (eg, aminoglycoside-modifying en-
zymes), further limiting antibiotic choices [3].

Retrospective studies demonstrate that CRO-R E coli BSIs 
are associated with worse clinical outcomes than BSIs caused 
by ceftriaxone-susceptible (CRO-S) E coli isolates [4–8]. It is 
unclear, however, if poorer outcomes persist after adjustment 
for confounding factors such as delays in time to active antibi-
otic therapy, immunocompromise, and challenges with achiev-
ing source control—all generally more prevalent in patients 
infected with drug-resistant phenotypes [9]. Moreover, these 
variables can be more challenging to accurately capture retro-
spectively than prospectively.

Furthermore, errors in determination of minimum inhibito-
ry concentrations (MICs) observed with automated susceptibil-
ity testing platforms used to define ceftriaxone resistance in the 
published literature can lead to misclassification of susceptibil-
ity, obscuring the findings of outcomes studies [10]. Using a 
prospective, multicenter cohort of patients from across the 
US with comprehensive clinical data as well as microbial iso-
lates available for accurate ceftriaxone MIC determination, 
we sought to compare clinical outcomes of patients with 
CRO-R E coli versus CRO-S E coli. These data will help inform 
the impact of ceftriaxone resistance for clinical prognostication 
of E coli BSI.

METHODS

Study Population

We conducted a prospective multicenter study of unique adult 
and pediatric patients with monomicrobial E coli BSI hospital-
ized at any of the 14 participating acute care facilities in the US 
between 12 November 2020 and 28 April 2021 (Figure 1). A tar-
get enrollment of 300 patients—150 each with CRO-R E coli 
BSI and CRO-S E coli BSI—was selected to ensure at least 
90% power to detect a 20% difference in desirability of outcome 
ranking (DOOR) outcomes between the 2 groups, using a 
2-sided exact test at the α = .05 level. For each patient with a 
CRO-R E coli BSI enrolled from a participating site, the next 
consecutive patient with a CRO-S E coli BSI at the same site 
was also enrolled. Clinical and Laboratory Standards Institute 
(CLSI) criteria were used to categorize isolates as CRO-R E 
coli (ie, ceftriaxone or cefotaxime MIC ≥4 µg/mL) or CRO-S 
E coli (ie, ceftriaxone or cefotaxime MIC ≤1 µg/mL) [11].

Eligibility Criteria

Patients meeting any of the following criteria were excluded 
from enrollment: (1) infection with E coli isolates with ceftriax-
one MICs of 2 µg/mL (ie, CLSI intermediate category); (2) in-
fection with E coli exhibiting nonsusceptibility to at least 1 
carbapenem agent; (3) E coli isolates not available for confirma-
tory antibiotic susceptibility testing by the central laboratory; 
and (4) polymicrobial BSI.

Microbiological Analysis

Genus and species identification of the index E coli isolate and 
antimicrobial susceptibility testing were initially performed at 
local microbiology laboratories. Isolates were shipped to the 
central research laboratory where frozen isolates were subcul-
tured twice and nonfrozen isolates once to tryptic soy agar 
with 5% sheep blood and eosin-methylene blue agar. 
Bacterial genus and species were confirmed by matrix-assisted 
laser desorption/ionization–time-of-flight mass spectrometry 
(Bruker Daltonics). Broth microdilution (BMD) was per-
formed to confirm ceftriaxone MICs [12]. Isolates with ceftri-
axone MICs not achieving categorical agreement (ie, MICs 
not within the same susceptibility category) when comparing 
local laboratory and BMD results underwent replicate BMD 
testing [12].

Outcomes

The primary outcome for the analysis was DOOR based on dis-
position at day 30 after collection of the index blood culture (ie, 
day 1), comparing patients with CRO-R E coli versus CRO-S E 
coli BSI [13]. The DOOR was reported as 4 ordinal levels as de-
scribed in Table 1. Additionally, the following were evaluated: 
(1) 30-day mortality; (2) postculture length of stay (ie, days 
from index blood culture collection to hospital discharge, for 
patients who survived until hospital discharge); (3) recurrence 
of E coli BSI over the subsequent 30 days (and with an interven-
ing gap of 7 days from collection of the index blood culture); 
and (4) hospital readmission within 30 days (excluding patients 
who died prior to or were still hospitalized at day 30).

Data Collection

Data collection occurred locally and was entered into a central, 
secure, and standardized database following criteria in a de-
tailed data dictionary developed to maximize valid data entry 
across the 14 sites. Data cleaning and validation occurred in 
real time by a central team. Local study teams were requested 
to reenter outlier or conflicting data. The following information 
was collected on all patients: (1) demographic data; (2) preex-
isting medical conditions (Charlson Comorbidity Index 
[CCI] and severe immunocompromise, defined as solid organ 
or stem cell transplant, human immunodeficiency virus infec-
tion, chemotherapy within 6 months, or receipt within 30 
days of prednisone ≥10 mg/day or equivalent corticosteroid 
dose, or tumor necrosis factor α inhibitor or other directed 
monoclonal immunomodulatory antibody); (3) severity of ill-
ness at the time of blood culture collection (Pitt bacteremia 
score, intensive care unit [ICU] admission on day 1); (4) likely 
source of BSI and adequate source control (defined as either no 
source control needed or, for patients in need of source control, 
drainage of infected fluid collections and removal of infected 
hardware or catheters); (5) detailed antibiotic administration 
including use of active antibiotic therapy (ie, antibiotics 
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exhibiting in vitro susceptibility when applying CLSI criteria), 
duration of active antibiotic therapy (including antibiotic ther-
apy continued after hospital discharge), and use of oral step- 
down therapy (ie, the discontinuation of all intravenous antibi-
otic therapy on or before day 5 and transition to an active oral 
antibiotic); and (6) clinical outcomes data [11, 14–16].

Analytic Approach

The Pearson χ2 test was used to compare proportions between 
categorical variables. The Wilcoxon rank-sum test was used to 
compare distributions between continuous and ordered cate-
gorical variables. As it was hypothesized that patients with 
CRO-R E coli BSI would be more likely to have characteristics 
independently associated with poor outcomes compared to 
those with CRO-S E coli BSI (eg, complex underlying medical 
conditions), adjustment using inverse probability weighting 
(IPW) based on propensity scores was undertaken. The follow-
ing variables were selected in calculating propensity scores: age 
≥65 years, preadmission location other than home, hospital- 
onset infection (defined as blood cultures collected on or after 
day 3 of hospitalization), CCI, Pitt bacteremia score ≥4 on day 
1, ICU status on day 1, severe immunocompromise, diabetes, 
cirrhosis, chronic renal replacement therapy, urinary source, 
and adequate source control. Patients in the CRO-R group 
were weighted by the inverse of the propensity score and pa-
tients in the CRO-S group were weighted by the inverse of 1 mi-
nus the propensity score. A new, weighted pseudo-population 
was created in which individuals in the CRO-R and CRO-S 
groups were up-weighted or down-weighted to ensure that 
both groups were as similar as possible for all variables in the 
propensity score at baseline, except for the susceptibility of 
the E coli isolate to ceftriaxone. The primary efficacy analysis 
was an IPW-adjusted disposition plot illustrating the probabil-
ity of outcomes at day 30. The probability that a randomly 

Figure 1. Location of the 14 hospitals (note, two hospitals located in Detroit, MI represented by a single dot) contributing patient data and clinical isolates for the current 
study.

Table 1. Ordinal Outcomes for Desirability of Outcome Rankings in a 
Cohort of 300 Patients Infected With Ceftriaxone-Resistant Versus 
Ceftriaxone-Susceptible Escherichia coli Bloodstream Infections

Category Criteriaa,b

1 (Most desirable) Alive and no events

2 Alive and 1 event

3 Alive and at least 2 events

4 (Least desirable) Death

Events definition

• Failure to achieve a favorable clinical response within 30 d

• New Escherichia coli bloodstream infection within 30 d

• Remaining in the hospital at day 30 and/or readmission to the same hospital 
within 30 d

• Discharge to a nursing home or skilled nursing facility (if originally admitted to 
the hospital from home)

aAll criteria evaluated compared to day 1, with day 1 being the first day a positive blood 
culture was collected.  
bIf the reason for hospital readmission was a new E coli bloodstream infection, it is counted 
as a single event.
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selected patient with a CRO-R versus a CRO-S E coli BSI had a 
less desirable DOOR was determined. A probability of 50% im-
plied no difference between DOOR distributions of the 2 
groups, whereas a probability >50%, with a 95% confidence in-
terval (CI) that excludes 50%, implied inferiority of the CRO-R 
versus CRO-S group over the other. Confidence intervals were 
calculated using 4000 bootstrap resamples. The difference in 
proportions and 95% CI of 30-day mortality between CRO-R 
and CRO-S E coli BSI was determined. Markers of severity of 
illness on the causal pathway between the exposure and out-
come (eg, ICU transfer after day 1) were not included in the de-
velopment of propensity scores. However, as active empiric 
therapy was considered an important confounder between pa-
tients infected with CRO-R and CRO-S E coli, a subgroup anal-
ysis was performed in which the IPW-adjusted DOOR 
probability was estimated in the subgroup of patients receiving 
active empiric therapy. P values of ≤.05 were considered statis-
tically significant for all analyses. All tests were 2-sided. 
Analyses were performed using SAS software, version 9.4 
(SAS Institute, Cary, North Carolina).

RESULTS

Overall Cohort

In total, 300 patients with E coli BSI, including 150 patients with 
CRO-R E coli and 150 with CRO-S E coli, were enrolled from 14 
participating sites (Table 2). The median age of participating 
patients was 68 years (interquartile range [IQR], 55–76 years). 
Follow-up blood cultures were obtained in 210 (70%) patients 
on hospital days subsequent to the collection of the index blood 
culture; of these 210 patients, 1 patient (0.5%) had a positive 
follow-up blood culture.

Microbiology

In CRO-R E coli, the median ceftriaxone MIC was ≥32 µg/mL 
(IQR, ≥32−≥32) versus 0.06 µg/mL (IQR, 0.03–0.06) in CRO-S 
E coli. CRO-R E coli isolates were less likely to be susceptible to 
several other antibiotics as compared to CRO-S isolates: aztreo-
nam, 4% versus 100%; cefepime, 13% versus 100%; ciprofloxa-
cin, 21% versus 85%; gentamicin, 67% versus 95%; levofloxacin, 
20% versus 87%; piperacillin-tazobactam, 85% versus 98%; and 
TMP-SMX, 42% versus 73%.

Baseline Characteristics

Overall, patients with CRO-R and CRO-S E coli were similar 
with regard to age, sex, and race/ethnicity (Table 2). Patients 
with CRO-R E coli BSI were more likely to be admitted from 
nursing homes compared to those with CRO-S E coli BSI (20 
[13%] vs 6 [4%], P = .013). Patients with CRO-R isolates were 
also more likely to have hospital-onset BSI, compared with pa-
tients with CRO-S isolates (41 [27%] vs 21 [14%], P = .004). 
While the median CCI was the same in both groups, the 

distribution of values indicated that patients with CRO-R E 
coli had overall more comorbidities than patients infected 
with CRO-S E coli (P = .021). There were no statistically signifi-
cant differences between groups in the proportion of individu-
als with specific underlying medical conditions, including the 
proportions of patients with severe immunocompromise (38 
[26%] vs 30 [20%], P = .27). Patients with CRO-R E coli BSI 
had a nonsignificant trend toward being more acutely ill on 
the day of first positive blood culture compared to patients 
with CRO-S E coli BSI; the proportion of patients with 
CRO-R E coli and CRO-S E coli BSI with Pitt bacteremia score 
≥4 was 35 (23%) and 23 (15%), respectively (P = .079). 
Common sources of E coli BSI in the cohort as a whole were 
urinary (186 [62%]), intra-abdominal (29 [10%]), presumed 
(after no other source was identified) intestinal translocation 
(41 [14%]), and biliary (18 [6%]), with similar distributions be-
tween both groups (Table 2). Adequate source control was 
achieved in 117 (78%) versus 119 (79%) patients in the 
CRO-R and CRO-S E coli BSI groups, respectively (P = .778).

Antibiotic Therapy

Treatment in the first 4 days after obtaining blood cultures is 
summarized in Figure 2. Empiric carbapenem therapy (ie, car-
bapenem agents administered within the first 2 days of collec-
tion of the index blood culture) was more common in patients 
with CRO-R E coli versus CRO-S E coli BSI; 81 (54%) versus 16 
(11%), respectively (P < .001). In the CRO-R group, fewer pa-
tients (31 [21%]) were treated empirically with ceftriaxone as 
compared to the CRO-R group (65 [44%]) (P < .0001). The me-
dian number of hours to active antibiotic therapy in the CRO-R 
and CRO-S groups was 12 hours (IQR, 1–35 hours) and 1 hour 
(IQR, 0–6 hours), respectively (P < .001). Although patients in-
fected with CRO-R E coli had a longer time to receipt of active 
therapy than patients infected with CRO-S E coli, a similar pro-
portion in both groups was receiving active therapy by day 3 
(139 [97%] vs 145 [99%], respectively, P = .24). Durations of ac-
tive antibiotic therapy were similar between both groups with 
the median duration of therapy (limited to patients alive be-
yond day 7) at 13 days (IQR, 8–16 days) and 12 days (IQR, 
8–16 days) in the CRO-R and CRO-S groups, respectively 
(P = .44). Patients with CRO-R E coli were less likely to be tran-
sitioned to oral therapy; 9 (6%) patients with CRO-R E coli ver-
sus 60 (41%) patients with CRO-S E coli were transitioned to 
oral therapy (P < .001).

Impact of Ceftriaxone Resistance on Clinical Outcomes

The DOOR outcomes at 30 days after index blood culture col-
lection both before adjustment and after IPW are illustrated in 
Figure 3A and 3B. In the unadjusted DOOR analysis, CRO-R 
BSI had a 58% probability (95% CI, 52%–63%) for a worse clin-
ical outcome than CRO-S BSI. In the IPW-adjusted DOOR 
analysis no difference was seen, with CRO-R BSI having an 
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estimated 54% probability (95% CI, 47%–61%) for a worse clin-
ical outcome than CRO-S BSI. The unadjusted and adjusted 
differences in proportion of 30-day mortality between 
CRO-R and CRO-S was −5.3% (95% CI, −10.3% to −.4%) 

and −1.8 (95% CI, −6.7% to 3.2%), respectively. In the 
IPW-adjusted DOOR analysis limited to patients receiving ac-
tive empiric therapy, the results were very similar with CRO-R 
BSI having an estimated 54% probability (95% CI, 48%–61%) 

Table 2. Baseline Characteristics Comparing Patients With Escherichia coli Bloodstream Infection, by Ceftriaxone Susceptibility Status

Variable Ceftriaxone Resistant (n = 150) Ceftriaxone Susceptible (n = 150) P Valuea

Age, y, median (IQR) 69 (60–73) 67 (54–78) .788

Age ≥65 y 90 (60) 78 (52) .163

Female sex 73 (49) 86 (57) .133

Weight, kg, median (IQR) 80 (66–94) 75 (63–91) .271

Race/ethnicityb

White 82 (55) 95 (63) .127

Black 39 (26) 33 (22) .417

Latino 12 (8) 11 (7) .828

Asian 7 (5) 11 (7) .331

Other/unknown 22 (15) 13 (9) .106

Preadmission location .013

Home 120 (80) 136 (91)

Nursing home 20 (13) 6 (4)

Skilled nursing facility 10 (7) 8 (5)

Hospital-onset infection 41 (27) 21 (14) .004

CCI score, median (IQR) 2 (1–5) 2 (0–4) .021

Preexisting medical conditionsb

Coronary artery disease 21 (14) 30 (20) .167

Congestive heart failure 25 (17) 22 (15) .634

Peripheral vascular disease 9 (6) 4 (3) .156

Diabetes 53 (35) 42 (28) .172

Cerebrovascular disease 19 (13) 21 (14) .734

Chronic kidney disease 35 (23) 28 (19) .321

Chronic renal replacement therapy 9 (6) 3 (2) .077

COPD 21 (14) 12 (8) .101

Cirrhosis 9 (6) 10 (7) .801

Severe immunocompromisec 38 (26) 30 (20) .269

Severity of illnessb

Intensive care unit on day 1 41 (28) 39 (26) .794

Pitt bacteremia score ≥4 on day 1 35 (23) 23 (15) .079

Vasopressors on day 1 28 (19) 27 (18) .881

Mechanical ventilation on day 1 25 (17) 19 (13) .352

Change in mental status on day 1 59 (39) 46 (31) .116

Highest peripheral WBC count on day 1, cells/mL, median (IQR) 12 600 (6800–19 200) 13 600 (7800–18 000) .411

Source of bacteremia .295

Urinary 90 (60) 96 (64)

Vascular catheter 4 (3) 5 (3)

Biliary 8 (5) 10 (7)

Intra-abdominal 16 (11) 13 (9)

Pneumonia 1 (1) 4 (3)

Neutropenic fever 7 (5) 2 (1)

Primary/presumed intestinal translocationd 21 (14) 20 (13)

Adequate source control 117 (78) 119 (79) .778

Data are presented as No. (%) unless otherwise indicated.  

Abbreviations: CCI, Charlson Comorbidity Index; COPD, chronic obstructive pulmonary disease; IQR, interquartile range; WBC, white blood cell.  
aPearson χ2 test for categorical variables; Wilcoxon rank-sum test for ordered and continuous variables.  
bNot mutually exclusive.  
cDefined by the presence of at least 1 of the following: hematopoietic stem cell transplant within the prior 12 months, chemotherapy within the prior 6 months, solid organ transplant recipient, 
human immunodeficiency virus infection with a CD4 count <200 cells/µL, receipt of corticosteroids at a dose equivalent to 10 mg daily of prednisone for ≥14 days, or other immunosuppressive 
therapy (ie, calcineurin inhibitors, mammalian target of rapamycin inhibitors, chemotherapy, monoclonal antibodies, or mycophenolates).  
dNo alternative source identified; does not include 1 patient each with a bone and joint infection, skin and soft tissue infection, and endocarditis.
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for a poorer clinical outcome than CRO-S BSI. There were 23 
(26%) and 23 (22%) hospital readmissions within 30 days 
among patients discharged alive in the CRO-R and CRO-S 
groups, respectively. The postculture length of stay was 8 
days (IQR, 5–13 days) and 6 days (IQR, 4–9 days), respectively 
(P < .001). Of the 268 (89%) patients alive at day 30, 13 (10%) 
and 5 (4%) remained in the hospital on day 30 (P = .037). Of 
patients originally admitted to the hospital from their homes 
and alive at discharge, more patients with CRO-R E coli as com-
pared to patients with CRO-S E coli were transferred to long- 
term care facilities (22 [22%] vs 15 [12%], P = .045).

DISCUSSION

In this prospective cohort study of 300 patients with E coli BSI 
from 14 hospitals across the US, patients infected with CRO-R 
E coli BSI had worse clinical outcomes compared to patients in-
fected with CRO-S E coli BSI in unadjusted analyses. After ad-
justing for important confounders, no difference was seen in 
the primary DOOR analysis. However, patients infected with 
CRO-R BSI were more likely to have prolonged lengths of hos-
pital stays, to remain in the hospital at day 30, and to be newly 
transferred to long-term care facilities. These findings under-
score the importance of judicious antibiotic use to reduce the 
development of antibiotic resistance and its subsequent nega-
tive impacts on patient outcomes [17].

All-cause mortality has been evaluated in existing literature 
investigating outcomes associated with drug resistance. 
Previous studies have demonstrated that infections exhibiting 
drug-resistant phenotypes are generally associated with in-
creased mortality compared to infections caused by drug- 
susceptible isolates [4–8]. Our investigation was not powered 
to detect a mortality difference. However, all-cause mortality 
was numerically higher in the CRO-R group, although this dif-
ference was not statistically significant. To evaluate additional 

factors negatively impacting the quality of life of patients infect-
ed with drug-resistant organisms, we elected to use DOOR as a 
primary endpoint to capture a more wide-ranging experience 
of patients infected with drug-resistant pathogens [18]. 
Concerns with available observational studies are that they 
are either missing several key variables due to their retrospec-
tive nature or that they insufficiently adjust for important base-
line and treatment variables independently associated with 
mortality (eg, delays in time to active therapy, complex under-
lying medical conditions, severe immunocompromise, ade-
quate source control measures). We attempted to overcome 
the first concern by enrolling a prospective cohort with com-
prehensive data collection occurring in real time. Regarding 
the second concern, there were differences between patients 
with CRO-R E coli and CRO-S E coli at baseline. For example, 
patients with CRO-R E coli tended to be more acutely ill at base-
line (ie, higher Pitt bacteremia score), had risk factors increas-
ing their likelihood of drug-resistant infections (ie, long-term 
care facility residency), and had more underlying medical con-
ditions (ie, higher CCI). By employing IPW, we reduced the 
impact of the baseline differences and associated confounding 
by indication between patients infected with CRO-R E coli and 
CRO-S E coli BSI.

Clinicians treating patients in our study were reasonably ac-
curate in predicting the antibiotic resistance phenotype on the 
day of blood culture collection. Treating physicians prescribed 
empiric carbapenem therapy for most patients with CRO-R E 
coli and only in few patients with CRO-S E coli. This accuracy 
may have contributed to the limited differences observed in 
30-day mortality. In an international randomized clinical trial, 
carbapenem therapy was associated with a significant decrease 
in 30-day mortality in patients with CRO-R E coli BSI [19]. 
Patients with CRO-R E coli bacteremia who receive early carba-
penem therapy may have similar 30-day mortality rates as those 
with CRO-S E coli bacteremia.

Figure 2. Antibiotic agents administered to patients with Escherichia coli bloodstream infections over the first 4 days of antibiotic therapy, by ceftriaxone susceptibility 
status.

6 • OFID • Tamma et al



Alive without events Alive with 1 event Alive with 2 or 3 events Died

Ce
ft

ria
xo

ne
 s

us
ce

pt
ib

ili
ty

 s
ta

tu
s

Ceftriaxone-
susceptible

(n = 150)

Ceftriaxone-
resistant
(n = 150)

8%5%24%63%

50% 13%9%28%

Alive without events Alive with 1 event Alive with 2 or 3 events Died

Ce
ft

ria
xo

ne
 s

us
ce

pt
ib

ili
ty

 s
ta

tu
s

Ceftriaxone-
susceptible

(n = 150)

Ceftriaxone-
resistant
(n = 150)

10%5%24%61%

55% 11%9%25%

A

B

Figure 3. Unadjusted desirability of outcome ranking (DOOR) proportions at day 30 by ceftriaxone susceptibility status (A) and inverse probability weighting–adjusted 
DOOR proportions at day 30 (B), by ceftriaxone susceptibility status. Unadjusted DOOR probability: 58% (95% bootstrap confidence interval [CI], 52%–63%). Adjusted D-
OOR probability: 54% (95% bootstrap CI, 47%–61%).
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We decided to focus on ceftriaxone resistance rather than the 
presence of specific β-lactamase genes as ceftriaxone resistance 
is more reflective of the ability of a β-lactamase to hydrolyze 
ceftriaxone. Moreover, as the CLSI does not endorse routine 
ESBL testing and it is performed by a minority of clinical mi-
crobiology laboratories [11, 20, 21], a phenotype-guided study 
design is more reflective of real-world antibiotic decision mak-
ing. Although clinicians often equate CRO-R E coli with ESBL 
production, E coli can exhibit ceftriaxone resistance due to a 
number of mechanisms including ESBL genes (eg, 
blaCTX-M-15, blaSHV-12), plasmid-mediated blaampCgenes (eg, 
blaDHA, blaFOX), chromosomally derepressed blaampC genes, 
and hyperexpressed narrow-spectrum β-lactamase genes with 
associated mutations in permeability [3].

CRO-R E coli often carry additional antimicrobial resistance 
markers (eg, qnr, mutations in gyrA and sul genes) conferring 
resistance to oral antibiotics such as ciprofloxacin, levofloxacin, 
and TMP-SMX [22]. In our cohort, susceptibility of CRO-R E 
coli isolates to fluoroquinolones and TMP-SMX was signifi-
cantly lower than for CRO-S E coli isolates. The limited avail-
ability of active oral treatment options likely, at least partially, 
contributed to the low percentage of patients in the CRO-R E 
coli group transitioned to oral therapy, when compared to 
the CRO-S E coli group (6% vs 41%). Unfortunately, the lack 
of suitable oral antibiotic treatment options increases the like-
lihood of placement of peripherally inserted central catheters, 
prolonged hospital stays, or transfer to long-term care facili-
ties—further contributing to the morbidity associated with 
CRO-R E coli BSI. As oral carbapenem agents are currently 
in advanced phases of clinical trials, these may help alleviate 
morbidity associated with CRO-R E coli BSI in the future.

There are important limitations to this work. First, although 
variables expected to be independently associated with poor 
outcomes for patients with E coli BSI were collected, there 
were likely additional unmeasured confounders that were not 
accounted for. We attempted to mitigate the impact of co-
founders on clinical outcomes through IPW propensity 
score–adjusted analysis. Nonetheless, residual confounding 
persists. Second, the associated differential impact of specific 
antibiotics on clinical outcomes could not be investigated given 
the heterogeneity of antibiotic therapy prescribed to study par-
ticipants. Additionally, we were likely underpowered to identi-
fy some important clinical differences because of the sample 
size. For example, 30-day mortality was 13% in patients with 
CRO-R E coli versus 8% in those with CRO-S E coli.

In conclusion, this work shows that patients infected with 
CRO-R E coli generally have worse clinical outcomes as com-
pared to patients infected with CRO-S E coli. This observation 
is primarily driven by host factors such as increased comorbid-
ities. Furthermore, effective empiric therapy may further de-
crease differences in outcomes between groups. These 
findings highlight the importance of judicious antibiotic 

prescribing and infection control practices to prevent emer-
gence of antibiotic resistance, and its negative downstream 
consequences.
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