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Abstract

Large scale neural models show impressive performance
across a wide array of linguistic tasks. Despite this they re-
main, largely, black-boxes - learning vector-representations of
their input that prove difficult to interpret. This limits our abil-
ity to understand what they learn, and when the learn it, or
characterise why they often fail to generalise systematically.
To address this we introduce a novel approach to interpretabil-
ity that looks at the mapping a model learns from sentences to
representations as a kind of language in its own right. In doing
so we introduce a set of information-theoretic measures that
quantify how structured a model’s representations are with re-
spect to its input, and when during training that structure arises.
Our measures are fast to compute, grounded in linguistic the-
ory, and can predict which models will generalise best based on
their representations. We use these measures to describe two
distinct phases of training a transformer: an initial phase of
in-distribution learning which reduces task loss, then a second
stage where representations becoming robust to noise. Gen-
eralisation performance begins to increase during this second
phase, drawing a link between generalisation and robustness to
noise. Finally we look at how model size affects the structure
of the representational space, showing that larger models ulti-
mately compress their representations more than their smaller

counterparts! .
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Introduction

Deep-Learning models achieve remarkable performance
across a broad range of natural-language tasks (Vaswani et al.,
2017), but we still have a limited understanding of the learn-
ing process they undertake, and how they come to represent
information so effectively. This is in part because these mod-
els are black-boxes (Tishby & Zaslavsky, 2015; Shwartz-Ziv
& Tishby, 2017). They learn representations of their train-
ing data that are high-dimensional vectors, gigantic lists of
numbers that are hard to interpret. While there is a growing
body of work on interpretability, offering techniques for pre-
dicting what is encoded in a model’s representations (Voita &
Titov, 2020; Pimentel et al., 2020), there’s still lack of clar-
ity about how representations themselves are structured, how
that structure emerges, and what kinds of structures are desir-
able.

Central to language’s ability to generalise is its regularity,
exemplified by syntactic structure (Partee et al., 1995), which
allows predictable and regular encoding of meanings across
the entire system. Languages are also rich with variation
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Figure 1: a depiction of basic quantities we measure and how
they relate to each other. We measure structure in the map-
ping between labels for the dataset, and latent representations

inside of a transformer. Here some example labels are given
the sentence "the fine print."

which can make them more expressive expressive (Hurford,
2003) and structured ambiguities that can make it more com-
pressible (Piantadosi, Tily, & Gibson, 2012). Do the repre-
sentations learned by a transformer model (Vaswani et al.,
2017) exhibit similar system level-structures? In order to an-
swer this, we look at the representations that emerge over the
course of training as a kind of language in their own right. At
a high-level we can think of language as a mapping between
spaces, like between meaning and form (de Saussure, 1916).
A multi-layered neural model needs to learn to map a sen-
tence to a vector representation that later layers can success-
fully map to the output; encoder-decoder models (Cho et al.,
2014) even more explicitly use separate parts of a model to
map in and out of vector space. We draw an analogy between
these two mappings, quantifying different kinds of regularity
and variation in a model’s mapping between inputs and repre-
sentations. While there has long been interest in the kinds of
representations learned by deep-models (Bengio, Courville,
& Vincent, 2013; Locatello et al., 2019), there has been little
work quantifying systematic structure in the representations
learned by transformers or relating them to the kinds of struc-
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tures that characterise natural language. It’s worth noting our
approach is in contrast to some existing work that draws par-
allels between model weights and formal languages (trying to
infer functions or ’source code’ from model weights; Elhage
et al.,, 2021) — we think an approach grounded in natural
language is more scalable and better suited to characterising
the kinds of systematic structure & variation that emerge in
deep-learning models, especially those trained on linguistic
tasks.

We introduce a novel information-theoretic framework for
assessing whether the representations learned by a model are
systematic. In order to do this we first discretise vector repre-
sentations into a sequence of symbols, then quantify 4 prop-
erties of the learned mapping from sentences to symbols: the
degree of compression, regularity, variation and disentangle-
ment. By doing this at different levels of abstraction we show
when lexical and syntactic information are learned. We can
identify two clear phases of training, the first characterised by
the model rapidly learning to disentangle and align represen-
tations with token and part of speech information, the second
(far longer) phase of training characterised by representations
becoming more robust to noise. During this second phase
models compress their representations, with larger models
compressing considerably more; at the same time, generali-
sation performance begins to slowly improve, showing a link
between robustness to noise and generalisation. Finally we
discuss what kinds of representational structure is desirable,
using our measures to predict which models will perform best
on a generalisation set.

Methods

Our experiments use a Transformer (Vaswani et al., 2017)
encoder-decoder model, with a two layer encoder, and single
layer decoder. The model’s encoder maps each input sentence
to a vector representation, then the decoder uses this represen-
tation to generate the corresponding output, in our case a for-
mal semantic representation of the input sentence. We look
at the encoder’s mapping between sentences and representa-
tions, and quantify the degree to which it exhibits systematic
structure. We train each model (from scratch) on two differ-
ent semantic parsing datasets, designed to evaluate a model’s
ability to systematically generalise: SLOG (Li et al., 2023)
where the task is to generate lambda expressions for a sen-
tence, and CFQ-MCD (Keysers et al., 2020) where questions
about movies need to be mapped to SQL queries that answer
them. Both of these datasets come with an out-of-distribution
generalisation set containing examples generated by the same
grammar as the training data, but purposefully designed to be
challenging. We also look at whether the capacity of a model
affects the kinds of structure that emerges, training three dif-
ferent model sizes (with either 64, 128, or 256 hidden dimen-
sions).

Estimating Entropy in Vector space

Shannon Entropy describes the amount of information con-
tained in a random variable (Shannon, 1948). While meth-

ods exist for estimating entropy of continuous variables, these
approaches are difficult to compare across representational
spaces and often require strong assumptions about the un-
derlying probability distribution (Jaynes, 1957). Instead we
discretise the hidden representations into a sequence of ran-
dom variables, enabling us to directly estimate the Shannon
entropy of our latent space. Our method is analogous to con-
verting each vector into a sequence of discrete symbols, with
a symbol for each dimension of vector space. Previous infor-
mation theoretic analyses of deep learning have performed a
similar estimation (e.g. Saxe et al., 2019), although it’s been
noted this approach is more reflective of non-uniformity, like
clustering behaviour, than it is of the true entropy of the space
(Goldfeld et al., 2018). For our purposes identifying the de-
gree to which a variable is uniformly distributed, or tightly
clustered is sufficient to draw substantive conclusions.

For a given vector in a set of vectors v; € V with dimen-
sions d € D we cut each dimension V;, into N equal-width
bins between the attested maximum and minimum values of
that V,;. This enables a straightforward maximum-likelihood
estimate of the entropy of V by counting the frequency of
each bin and normalising by number of representations in V.
Resulting bin probabilities p(Vy,) are used to estimate the en-
tropy of each dimension, then averaged across dimensions to
give us an overall estimate of the dimension-wise entropy of
V.

1 D N
Hy(V) = Dl Y Y —p(Van)log(p(Van)) (1)
d n

On the right in 1 is the equation for shannon entropy
(Shannon, 1948). As this estimate is an approximation we
also use the Miller-Meadow correction in order to smooth
the estimate based on sample size and improve its accuracy
(Miller & Miller, 1955). No method of estimating discrete
entropy in continuous spaces is perfect (see Paninski, 2003
for extensive discussion), but our estimator is invariant to lin-
ear transformations while making minimal assumptions about
the underlying distribution. Note that while in the results pre-
sented here we estimate entropy per dimension we can just
as easily estimate entropy per pair or set of dimensions (akin
to modelling at the unigram vs n-gram level); our use of a
dimension-wise estimate simplifies our analysis but limits its
ability to track cross-dimensional dependencies. Additionally
it allows us some insight into the role of different subspaces
of the representational space, by letting us break the estimate
down dimension by dimension.

Measuring Structure

We are interested in whether a model’s representations be-
come systematically structured during training, reflecting the
system-level structure of the data they’re trained on. Using
our entropy estimator we can assess 4 different quantities at
different levels of abstraction, which allow us to describe the
degree to which the representations a model learns are struc-
tured with respect to structure in the dataset it’s trained on.
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Here we walk through our measures for describing the rep-
resentational system that emerges over the course of training,
quantifying the amount of Information, Variation, Regularity,
and Disentanglement.

Information: We have a model f that maps a set of sen-
tences X to representational space Y. For each sentence
Sk € X, the model takes as input a sequence of tokens — usu-
ally words — tb, e S* and returns a sequence of vectors
v’;, v’;, k..e V" where v is the vector corresponding to token
a when it occurs in sentence k. While each sequence V* is of
variable length, the individual vectors are the same size. We
can therefore create a list Y of all token representations from
all sentences in the dataset

Y = [k owk e £(sF) s vsk e X 2)
and calculate its dimension-wise entropy. The result gives
us a measure of the average amount of information encoded
in each dimension of the representation, Hy,,(Y). Given that
the amount of information the model needs to encode is con-
stant (the dataset doesn’t change during training) this also
tells us how compressed the model’s representations are. As
the dimension-wise entropy goes down, the model uses less of
its available representational space. Information is minimised
(i.e. compression is maximised) as all tokens are mapped to
the same vector regardless of the token and sentence they cor-
respond to, and information is maximised when token repre-
sentations are spread out uniformly across representational
space. To aid interpretation we normalise this measure, as
well as Variation and Regularity, so that 1.0 indicates a uni-
form distribution and 0.0 is one-hot. Our estimator is invari-
ant to linear transformations, which means it ignores how
numerically large a representational space is used. That is,
this score is maximised if representations are spread out uni-
formly between the interval -2, 2 or -10,10 — what matters is
representations’ dispersion, not their magnitude.

Variation captures how much a property varies in represen-
tation space. Given a class of labels, like tokens, or parts of
speech, it reflects whether the model learns a single global
representation of each label invariant to context, or if each
representation is completely unique to the sentence it occurs
in. We quantify this in terms of the conditional entropy of
representations, given a label, creating a list of all instances
of that label Y |label, across all contexts where it occurs

Y |label = VX if a = label : WE € Y] (3a)

Labels for the tokens fed into a model are virtually always
known, so we can easily estimate the conditional dimension-
wise entropy of Y given a specific token Hg, (Y |foken). This
is minimised when all instances of a token map to the same
vector regardless of the sentence they occur in, and max-
imised when Hy,, (Y |token) = Hy,,(Y) indicating instances of

the same token are no more likely to be similar than two to-
kens chosen at random. The mean variation across the set S
of all tokens gives us a general sense of how much the model
encodes context in its internal representations.

variation(Y |Set) =

Z Hy,,(Y|label) (3b)
| label

We can also calculate variation with respect to any features
we have a set of labels for. For example, if we know the
part of speech for each of the input tokens variation(Y |POS)
could tell us if members of the same syntactic class share
more information with each other than expected by chance.
In the general case we just need a set of labels to condition
on (e.g. part of speech, morphological case, tense etc.) when
estimating Hp, (Y |Set).

Regularity measures how structured a model’s representa-
tions are with respect to a feature in the input — in particular,
whether the mapping between a label and its representation
is monotonic (one-to-one). The inverse of variation, Regu-
larity quantifies how much knowing something about a token
is going to tell us about its representation; quantifiable as the
dimension-wise mutual information between a label and its
representations.

regularity(Y,Ser) — Hy(Y|label)  (4)

H,
|S| ZZ dw

abel

This is maximised when a label and its representations are
monotonically aligned — knowing the label tells us every-
thing there is to know about the representation. As with vari-
ation we can quantify regularity with respect to individual la-
bels in a set and mean across them to get a general notion of
how aligned representations are with e.g. tokens, POS tags,
or the bigrams a token is part of.

Disentanglement measures how separable different labels
within a set are from one another, e.g. whether separate to-
kens are represented in distinct regions of representational
space, rather than overlapping. We measure this by assess-
ing the Jensen-Shannon divergence between P(Y |label) and
all other labels in the set P(Y |Set—label); if tokens are dis-
tributed uniformly across a space their disentanglement will
be 0, while if they are entirely separable it approaches 1.

dis(Y,Set) = JSD(P(Y |label); P(Y |Set—label))  (5)
As with previous measures we aggregate this to get an assess-
ment of how disentangled the class of labels is. This measure
is related to previous assessments of entanglement (Chen, Li,
Grosse, & Duvenaud, 2018; Conklin & Smith, 2022) but is
implemented quite differently, and requires no pair-wise com-

parison of different labels.
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Figure 2: Each facet shows a different measure (along the
y axis) against training steps (log scaled). Lines and shad-
ing give means and 95% ClIs; line colours give results for 3
different model sizes. Values are calculated across the entire
training set for 10 different random seeds. Efficiency (nor-
malised entropy) is bounded such that 1.0 indicates a uniform
distribution and 0.0 one-hot.
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Results

We report results on two different datasets designed to as-
sess compositional generalisation. Our measures allow us
to characterise the trajectory of training, which we identify
as having two distinct phases. We also compare models of
different sizes to see how capacity changes representational
space. Summary results are found in table 1. It is worth not-
ing that some of our results may be particular to the hyper-
parameters used for training. We use hyperparameters rec-
ommended by the authors of the datasets we use, or that the
transformer was introduced with Vaswani et al. (2017). We
believe this means that our design choices are representa-
tive of common ones for training sequence-to-sequence trans-
formers, our code itemises all parameters used. We compute
measures with respect to labels for Tokens, Parts of Speech,
and Bigrams in the input and for brevity report the values
with the clearest effect on model performance. We also fo-
cus discussion on results from the MCD CFQ dataset, as it’s
the larger of the two (100,000 training examples) and is a
more realistic task — mapping questions to SQL queries. We
report results for the most challenging split of this dataset,
known as MCD2. We include some discussion of SLOG, but
an exhaustive listing of all results, across all datasets levels of
analysis and model sizes can be found with the released code.

Two Distinct Phases of Training

We see 2 distinct phases of training, similarly to Shwartz-Ziv
and Tishby (2017) who also describes two phases of training,
despite using rather different methods (studying classification
with a feed-forward network rather than a linguistic task with
a transformer). This suggests some generality to this char-
acterisation of deep-learning, though our results point to dif-
ferent analyses of each phase (particularly the second, much
longer one), likely due in large part to the difference in model
and domain. While overall trajectories are consistent across
conditions when different model sizes move between phases
differs, for clarity here we refer to specific steps in the train-
ing timeline for the mid-size model on CFQ.

Phase 1 | In-Distribution Learning

Alignment & Disentanglement. In Phase 1 the model achieves
high in-distribution accuracy, climbing to ceiling perfor-
mance on the training data by step 1,000. This increase in
accuracy is driven by an increase in token and POS regular-
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SLOG POS Token Bigram
Information 0.957 +0.000 0.957 +0.000 0.957 +0.000
Variation 0.920 +0.001 0.850 +0.001 0.754 +0.000
Regularity 0.036 +0.001 0.107 £0.001 0.097 +0.001
Disentanglement | 0.148 +0.002 0.353 +0.002 0.373 +£0.002

Accuracy: 27.843 +0.761

CFQ
Information 0.953 +0.000 0.953 +0.000 0.953 +0.000
Variation 0.936 +0.000 0.900 +0.000 0.837 +£0.002
Regularity 0.017 +0.000 0.053 +0.001 0.063 +0.001
Disentanglement 0.071 +0.001 0.196 +0.001 0.241 +£0.004

Accuracy: 7.594 £0.413

Table 1: Summary results for measures at the POS, Token,
and Bigram level, across 10 runs of the medium model on
both datasets, with 95%CIs. Measures are computed at the
last step of training across the entire training set. Models’
accuracy % reported on the held out generalisation set.

ity between steps 100 and 1000 as representations become
more monotonically aligned with the corresponding input to-
ken and its part of speech (fig 2, top left). This period also
reflects an increase in POS and Token disentanglement indi-
cating different tokens are represented in increasingly distinct
regions of representational space. Conversely bigram regular-
ity and disentanglement are reduced over the same interval as
different token representations in the same bigram become
more uniformly distributed over the support of Y |[roken.

Does training select for structure? During training the
model tries to minimise a loss function, here the cross entropy
between its predicted semantic representation for the input
sentence and the correct one. During phase 1 we find a lower
loss on the task (indicating better performance) correlates
with our measures, suggesting the objective selects for cer-
tain structural properties in representation space. The time-
course of this is shown in figure 3, with correlations between
structure measures and the loss for 100 different runs of the
medium model on SLOG. From steps 100 to 200 all four of
our token-level measures correlate negatively with task loss
(p < 0.001), This dynamic shifts slightly from steps 200-600,
where higher token disentanglement (p < 0.001) and regular-
ity (indicative of a more monotonic alignment) (p < 0.001)
continue to correlate with lower task loss but now with less
variation (p < 0.001, steps 280-600).

Past this point all measures cease correlating with the task
loss, which is also the point where empirical error begins
to saturate — as the model approaches ceiling performance
on the training set, the loss asymptotically approaches its
floor. Figure 3 also shows the correlation between loss and
our measures conditioned on part of speech tags. Similarly,
greater regularity and disentanglement with respect to part of
speech labels and less variation correlate strongly with a bet-

Token Information vs. Loss

spearman r
1N
IS

0.2

POS Information vs. Loss

0 200 400 600 800 1000
step

legend:  information regularity disentanglement

Figure 3: Spearman correlation coefficients between the loss
minimised during training and our measures. Negative co-
efficients suggest the objective increases a quantity. Results
for 100 runs of the medium model on SLOG. When exactly
significance fades is noted in body text. Top: measures con-
ditioned on token labels. Bottom: measures conditioned on

part of speech tags for the tokens.

ter task loss from step 100 until 600 (p < 0.001). The peak
spearman coefficient for disentanglement reaches -0.71 indi-
cating the objective optimizes more strongly for disentangle-
ment of parts of speech than tokens (which peaks at -0.58 and
fades from significance faster).

Phase 2 | Robustness to Noise

Contextualisation & Compression This is the dominant dy-
namic of training, taking place from step 1000 onwards. Dur-
ing this period the representational space slowly compresses,
with dimension-wise entropy decreasing. This is coupled
with an increase in bigram regularity as clusters for different
contextualizations become more distinct in representational
space, forcing the overall token regularity down. These shifts
happen slowly taking thousands of training steps.

Shwartz-Ziv and Tishby (2017) note that later in training,
after the loss has reached its floor, the update steps the model
takes begin to behave like ‘gaussian noise with very small
means.” This aligns with what we see here, as measures of
structure cease to consistently correlate with the task objec-
tive by phase 2. This suggests that a major dynamic of the
latter period of training is representations becoming increas-
ingly robust to noise. The model’s mapping from sentences to
representations needs to continue to encode the input, but do
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so robustly enough that the mapping won’t be undermined by
constant noisy updates, otherwise the task loss will begin to
increase. Unlike previous work we note mutual information
increases between inputs and representations later in training,
just at higher level of granularity — here, bigrams.

It’s also worth noting that while the model achieves ceiling
performance on the training and validation data during phase
1, it only begins to succeed on the more challenging out-of-
distribution generalisation task 10,000 steps later (see figure
2 top right). This means robust generalisation ability begins
to appear only after a sustained period of representations be-
coming more robust to noise. This is related to the double
descent phenomenon (Nakkiran et al., 2021), where models
begin to exhibit strong generalisation performance long after
the initial learning of in-distribution data. Voita, Sennrich,
and Titov (2021) also note that in machine translation a trans-
former starts by learning individual token probabilities be-
fore acquiring more complex sentential structure. Our results
give a mechanistic account of how this may happen, with
token alignment increasing first, then a much longer phase
where representations become more contextualised. Though
our task is simpler than large-scale translation, in future we
aim to apply this analysis to that context.

What kinds of representations generalise best? We also
look within conditions to see if representational structure cor-
relates with generalisation across different runs of the same
model. We take the middle-sized model on CFQ and corre-
late across 10 runs at the final step of training. This anal-
ysis shows that runs with higher bigram disentanglement
(r =0.65, p =0.04), and higher bigram regularity generalise
better (r = 0.61, p = 0.06). The generalisation set of CFQ
contains tokens seen during training as part of novel contexts.
In order to do well our model needs to correctly encode to-
kens it has seen before, in contexts it hasn’t. Higher bigram
regularity and disentanglement indicates different contextual-
isations for the same token are more tightly clustered in space
and that those clusters are more pure, which may help novel
contextualisations of a token to be decoded correctly.

Model Size Clearly Affects Representational Space

While the overall phases of training are remarkably consis-
tent across datasets and model sizes, there is a clear influence
of model size on representational structure. Figure 2 shows
trajectories for our three different model sizes over the course
of training. Smaller models are less compressed, and have
greater regularity and disentanglement with respect to tokens
and parts of speech. They also perform worse on both tasks
than their larger counterparts. Larger models are more entan-
gled at the POS and token level, but have more disentangled
bigrams — indicating larger models learn more pure clusters
for different contextualisations of the same token.

Why Models Compress & Larger Models Compress More
It’s common to think of connectionist models as cognitive

models, and expect them to be governed by similar con-
straints (Futrell, Wilcox, Morita, & Levy, 2018). Humans
may generalise robustly because constraints on our cognitive
capacity force us to learn generalisable solutions rather than
memorizing every possible outcome (Griffiths, 2020; Hahn,
Futrell, Levy, & Gibson, 2022). The fact that larger models
(with greater capacity) compress more per-dimension, would
seem at odds with this framing. While we agree that drawing
cognitive parallels can be useful, on a representational level
looking at models as a language can help us to reason about
the effects of scale and the phases of training.

Specifically, our interpretation is that larger models are
able to exploit their higher-dimension internal representations
to develop representations more robust to noise. An obvious
analogy in communication is mapping an input to a discrete
signal, where the signal space is defined by an alphabet of
characters and a maximal signal length. If the signal length
is low, a larger alphabet is needed to encode the input unam-
biguously. In contrast, if longer signals are allowed a smaller
alphabet is required, the limiting case being a binary alpha-
bet (like morse code) where sentences are encoded in com-
paratively long signals. Signals composed from a smaller
alphabet are more resilient to noise 2 for instance, when an
operator interprets morse code, at each point in the sequence
they only need to differentiate between two possibilities, dot
or dash, which is easier than distinguishing between e.g. 26
different outcomes, particularly on signals transmitted over
copper wire. We have shown how, during the second phase
of training, transformers compress their representations in re-
sponse to noisy update steps. This is directly analogous to
models using a progressively smaller vocabulary for each di-
mension of hidden space. Larger models have more dimen-
sions, which in our analysis is akin to having a longer max-
imum signal length, enabling them to learn a mapping more
robust to noise, like morse code, converging to a smaller al-
phabet but longer signal.

Conclusion

We have introduced a linguistically-motivated approach to in-
terpreting transformer models. By looking for system-level
structure in the model’s representations, we characterise two-
distinct phases of training, and show how representational
structure develops during those phases and how this explains
model’s ability to generalise. This is enabled by an effi-
cient approach to estimating the entropy of transformers’ la-
tent space, that allows for non-parametric analysis of repre-
sentational structure. Our findings help shed light on what
the learning process looks like in deep-learning models, and
makes a case that intuitions from linguistics and cognitive
science about what makes for a ‘good’ representation may
meaningfully transfer here.

2This is implicit in Shannon’s definition of entropy, as the maxi-
mum uncertainty of a binary distribution is lower than one with more
outcomes (log(2) < log(3))
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