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Efficient solution of Boolean 
satisfiability problems with digital 
memcomputing
Sean R. B. Bearden, Yan Ru Pei & Massimiliano Di Ventra  *

Boolean satisfiability is a propositional logic problem of interest in multiple fields, e.g., physics, 
mathematics, and computer science. Beyond a field of research, instances of the SAT problem, as it 
is known, require efficient solution methods in a variety of applications. It is the decision problem of 
determining whether a Boolean formula has a satisfying assignment, believed to require exponentially 
growing time for an algorithm to solve for the worst-case instances. Yet, the efficient solution of many 
classes of Boolean formulae eludes even the most successful algorithms, not only for the worst-
case scenarios, but also for typical-case instances. Here, we introduce a memory-assisted physical 
system (a digital memcomputing machine) that, when its non-linear ordinary differential equations 
are integrated numerically, shows evidence for polynomially-bounded scalability while solving 
“hard” planted-solution instances of SAT, known to require exponential time to solve in the typical 
case for both complete and incomplete algorithms. Furthermore, we analytically demonstrate that 
the physical system can efficiently solve the SAT problem in continuous time, without the need to 
introduce chaos or an exponentially growing energy. The efficiency of the simulations is related to the 
collective dynamical properties of the original physical system that persist in the numerical integration 
to robustly guide the solution search even in the presence of numerical errors. We anticipate our 
results to broaden research directions in physics-inspired computing paradigms ranging from theory 
to application, from simulation to hardware implementation.

The Boolean satisfiability problem1 (SAT) is an important decision problem solved by determining if a solution 
exists to a Boolean formula. A SAT instance is satisfiable when there exists an assignment of Boolean variables 
(each either TRUE or FALSE) that results in the Boolean formula returning TRUE. Apart from its academic 
interest, the solution of SAT instances is required in a wide range of practical applications, including, travel, 
logistics, software/hardware design, etc.2.

The SAT problem has been studied for decades, and has an important role in the history of computational 
complexity. Computer scientists, while categorizing the efficiency of algorithms, defined the NP class for dif-
ficult decision problems3,4. Some are known as intractable problems, meaning they are “hard” in the sense 
that all known algorithms cannot be bounded in polynomial time when determining if a solution exists in the 
worst-case scenario. The SAT problem was the first to be shown to belong to the class of NP-complete problems3, 
implying that any decision problem in NP is reducible to a SAT problem in polynomial time. There are no 
known polynomial time algorithms for solving an NP-complete problem, though there are exponential time 
algorithms that are efficient for special cases of problem structure4. There is a “widespread belief ”4 that crea-
tion of a polynomial time algorithm is impossible, but this belief does not limit the realization of a polynomial 
continuous-time physical system.

NP-completeness is not exclusive to SAT, with hundreds of other NP-complete problems ranging from those 
of academic interest (graph theory, algebra and number theory, mathematical programming) to industry appli-
cation (network design, data storage and retrieval, program optimization)4. If a polynomial time algorithm can 
solve any NP-complete problem class, then all NP problems can be computed efficiently. The 3-SAT problem is 
NP-complete and a special case of SAT4. Randomly-generated 3-SAT instances are known to be difficult to many 
solution methods because they lack an exploitable problem structure. For instance, one lauded algorithm, survey 
inspired decimation (SID), performs well on large instances of uniform random 3-SAT in the “hard regime”5, but 
performs poorly in what is known as the “easy regime”6. We focus on the 3-SAT problem in the following due to 
it being a subclass of SAT with a consistent formulaic representation (three literals per clause).
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Physics‑inspired approach to computing
A research direction that has been far less explored concerns the solution of SAT using non-quantum dynamical 
systems7–10. The idea behind this approach is that the solutions of the SAT instance are mapped into the equilib-
rium points of a dynamical system. If the initial conditions of the dynamics belong to the basin of attraction of the 
equilibrium points, then the dynamical system will have to “fall” into these points. The approach is fundamentally 
different from the standard algorithms because dynamical systems perform computation in continuous time. 
Numerical simulation of continuous-time physical systems, an algorithm, requires the discretization of time to 
integrate the ordinary differential equations (ODEs) representing the physical system. As such, the dynamical-
systems approach is ideally suited for a hardware implementation.

The authors of Ref.8 have shown that an appropriately designed dynamical system can find the solutions of 
hard 3-SAT instances in continuous polynomial time, however, at a cost of exponential energy fluctuations. The 
reason for this exponential energy cost can be traced to the transient chaotic dynamics of the dynamical systems 
proposed in Ref.8. As the problem size grows, the chaotic behavior translates into an exponentially increasing 
number of integration steps required to find the equilibrium points of the corresponding ODEs.

The digital memcomputing approach
In recent years, a different physics-inspired computational paradigm has been introduced, known as digital 
memcomputing10,12. Digital memcomputing machines (DMMs) are non-linear dynamical systems specifically 
designed to solve constraint satisfaction problems, e.g., 3-SAT, with the assistance of memory10 (Fig. 1). The only 
equilibrium point(s) of the DMM is the solution(s) of the original problem. However, unlike previous work, 
DMMs are designed so that they have no other equilibrium points; see Sect. VI.D of the supplementary mate-
rial (SM). Additionally, the dynamics will never enter a periodic orbit or a state of chaos13 (see Sect. IX of SM).

Figure 1.   Schematic of a self-organizing logic circuit representing a 3-SAT instance. The circuit is created 
from the constraints of a 3-SAT formula consisting of N = 10 variables, and M = 43 clauses. The formula is 
converted into 10 voltage nodes (inner nodes) and 43 self-organizing OR gates11. The black nodes (outer nodes) 
traditionally associated with the output of the OR gates are fixed to TRUE to enforce the constraints. Dashed 
lines in the circuit represent NOT gates on the OR gate terminals. Ignoring the black nodes, the circuit can be 
interpreted as a factor graph with the gates becoming function nodes (see also Fig. 3). The clause represented by 
the highlighted self-organizing OR gate is (ȳi ∨ yj ∨ ȳk) , where NOT gates invert the polarity of the voltages. The 
double-headed arrow indicates this is a self-organzing logic gate with no distinction between an input and an 
output (terminal agnosticism). The circular representation of the linear circuit is a reminder that the ordering of 
gates is irrelevant to the solution search.
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The ability of continuous time dynamics to perform the solution search without resorting to chaotic dynamics 
results in efficient simulations (an algorithmic implementation) of DMMs using computationally-inexpensive 
integration schemes and modern computers. In addition, it was shown that DMMs find the solution of a given 
problem by employing topological objects, known as instantons, that connect critical points of increasing stability 
in the phase space14,15 (see Sect. XI of SM). Simulations found the DMMs then self-tune into a critical (collec-
tive) state which persists for the whole transient dynamics until a solution is found16. It is this critical branching 
behavior that allows DMMs to explore collective updates of variables during the solution search, without the 
need to check an exponentially-growing number of states. This is in contrast to local-search algorithms which 
are characterized by a “small” (not collective) number of variable updates at each step of the computation17.

Here, we introduce a physical DMM to find solutions of the 3-SAT problem. (So as to facilitate the reading of 
our paper, we have contained the mathematical description of our physical DMM in the section below.) We then 
perform numerical simulations of the ODEs (discretized time) of the DMM to solve random 3-SAT instances 
with planted solutions. These instances are generated with a clause distribution control (CDC) procedure, known 
to require exponentially growing time to solve in the typical case for both complete and incomplete algorithms18. 
The CDC instances have found use as benchmarks in recent years of SAT competitions (satcompetition.org)19–21. 
The simulations have been performed using a forward-Euler integration scheme22 with an adaptive time step, 
implemented in MATLAB R2019b with each solution attempt run on a single logic core of an AMD EPYC 7401 
server (see also Sect. II of SM).

We compare our results with those obtained from two well-known algorithms: WalkSAT, a stochastic local-
search procedure23, and survey-inspired decimation, a message-passing procedure utilizing the cavity method 
from statistical physics5. (in Sect. II of the SM we also compare with the winner of a recent SAT competition 
and AnalogSAT24). Comparison is achieved via scalability of some indicator vs. the problem size. As expected, 
both algorithms show an exponential scaling for the CDC instances (Fig. 2). Our simulations instead show a 
power-law scalability of integration steps ( ∼Na ) for typical cases, where the typical case is inferred from the 
median number of integration steps.

Finally, we show that the dynamics is capable of finding satisfying variable assignments for 3-SAT in polyno-
mially-bounded (linear or sub-linear) continuous time without the need of an exponentially increasing energy 
cost demonstrated via certain dissipative and topological properties of the system (see Secs. X-XI of SM).

While the reported numerical and analytical results do not resolve the famous P vs. NP debate, (which, 
incidentally, is formulated for Turing machines, that compute in discrete, not continuous time) they show the 
tremendous advantage of physics-based approaches to computation over traditional algorithmic approaches.

DMM for 3‑SAT
The 3-SAT formula is constructed by applying conjunction (AND), disjunction (OR), and negation (NOT) 
operations to Boolean variables (TRUE or FALSE), with parentheses used to indicate the order of operations25. 
A formula contains N Boolean variables ( yi ), M clauses, and 3M literals. Each clause (constraint) consists of 

Figure 2.   Typical case scalability of 3-SAT instances at fixed clause-to-variable ratio. In the main panel, we 
use our DMM algorithm to attempt to solve 100 planted-solution instances of 3-SAT per pair of αr (clause-to-
variable ratio) and N (number of variables). When we achieve more than 50 instances solved, we find power-
law scalability of the median number of integration steps (typical case) as the number of variables, N, grows. 
(In the SM, we show many data points are comprised of 90 or more instances solved within the allotted time.) 
The exponent values ( ∼Na ) are a4.3 = 3.0± 0.1 , a5 = 1.00± 0.05 , a6 = 0.63± 0.03 , a7 = 0.48± 0.03 , and 
a8 = 0.46± 0.04 . The insets show exponential scalability for a stochastic local-search algorithm (WalkSAT) 
and a survey-inspired decimation procedure (SID) on the same instances. (S is for number of steps.) Notice 
the scalability for SID has a trend opposite that seen in the DMM and WalkSAT. This is expected when 
one considers the increase in factor graph loops as αr grows. For the SID scaling of αr = 4.3 , the N = 350 
did not achieve a median number of solutions, and is thus a lower bound. Parameters of the scaling for 
SID: b4.3 = (3± 1)× 10

−2 , b5 = (3.7± 0.7)× 10
−2 , b6 = (4.1± 0.6)× 10

−2 , b7 = (5± 1)× 10
−2 , 

and b8 = (5± 1)× 10
−2 ; for WalkSAT: c4.3 = (3.2± 0.3)× 10

−2 , c5 = (1.9± 0.2)× 10
−2 , 

c6 = (1.2± 0.1)× 10
−2 , c7 = (7.5± 0.6)× 10

−3 , and c8 = (4.1± 0.5)× 10
−3.
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three literals connected by logical OR operations, i.e., (li ∨ lj ∨ lk) , where a literal, li , is simply one of the Boolean 
variables ( li = yi ) or its negation ( li = ȳi ). A clause is satisfied if at least one literal is TRUE (OR operations), 
and the formula is satisfiable if all clauses (AND operations) are simultaneously satisfied. The complexity of the 
problem emerges from the interaction among constraints, and is observed in the well-studied easy-hard-easy 
transition in 3-SAT, where easy and hard regimes are identified by the ratio αr = M/N  , with the complexity 
peak (hardest instances) occurring around αr = 4.2726.

To construct a DMM that finds a satisfying assignment for 3-SAT we follow the general procedure outlined 
in Ref.12. To begin, the Boolean variables, yi , are transformed into continuous variables for use in the DMM. 
The continuous variables can be realized in practice as voltages on the terminals of a self-organizing OR gate10. 
Such a gate can influence its terminals to push voltages towards a configuration satisfying its OR logic regardless 
of whether the signal received by the gate originates from the traditional input or the traditional output (see 
Fig. 1). The voltages are bounded, vi ∈ [−1, 1] , with Boolean values recovered by thresholding: TRUE if vi > 0 , 
FALSE if vi < 0 , and ambiguous if vi = 0 . To perform the logical negation operation on the continuous variable, 
one trivially multiplies that quantity by −1 . The self-organizing logic circuit that comprises the DMM is built by 
connecting all of the self-organizing OR gates (see Fig. 1). See Sect. III.A of SM for an extended discussion of 
the thresholding procedure for the voltages.

Next, we interpret a Boolean clause as a dynamical constraint function, with its state of satisfaction deter-
mined by the voltages. The m-th Boolean clause, (li,m ∨ lj,m ∨ lk,m) , becomes a constraint function,

where qi,m = 1 if li,m = yi , and qi,m = −1 if li,m = ȳi . The function is bounded, Cm ∈ [0, 1] , and a clause is nec-
essarily satisfied when Cm < 1/2 . The instance is solved when Cm < 1/2 for all clauses. By thresholding the 
constraint function we avoid the ambiguity associated with vi = 0 . If some voltage is ambiguous ( vj = 0 ) and all 
clauses are satisfied, then any Boolean assignment to yj will be valid in that configuration. The use of a minimum 
function in Cm preserves an important property of 3-SAT. A clause is a constraint, and, by itself, a clause can only 
constrain one variable (via its literal). (Note that the minimum operation introduces some form of discontinuity 
to the dynamical system, for which we develop the formalism to study in Secs. IV and V of SM.) The values of 
two literals are irrelevant to the state of the clause if the third literal results in a satisfied clause.

Finally, a DMM employs memory variables to assist with the computation10,12. The memory variables trans-
form equilibrium points that do not correspond to solutions of the Boolean formula into unstable points in the 
voltage space (see Sect. VIII of SM), leaving the solutions of the 3-SAT problem as the only minima. We choose 
to introduce two memory variables per clause: short-term memory, xs,m , and long-term memory, xl,m . The ter-
minology intuitively describes the behavior of their dynamics. For the short-term memory, xs,m lags Cm , acting 
as an indicator of the recent history of the clause. For the long-term memory, xl,m collects information so it can 
“remember” the most frustrated clauses, weighting their dynamics more than clauses that are “historically” easily 
satisfied. Both the number and type of memory variables, as well as the form of the resulting dynamical equations, 
are not unique provided neither chaotic dynamics nor periodic orbits are introduced12.

We choose for the dynamics of voltages and memory variables the following,

where Gn,m and Rn,m equal 0 when variable n does not appear in clause m, and the summation is taken 
over all constraints in which the voltage appears. The memory variables are bounded, with xs,m ∈ [0, 1] and 
xl,m ∈ [1, 104M] . The boundedness of voltage and memory variables implies that there are no diverging terms 
in the above equations (see Sect. VI.B of SM).

The parameters α and β are the rates of growth for the long-term and short-term memory variables, respec-
tively. Each memory variable has a threshold parameter used for evaluating the state of Cm , and the two param-
eters are restricted to obey δ < γ < 1/2 . (This also guarantees that there is a sufficiently large basin of attraction 
for the solutions. See Sect. VII of SM for a detailed explanation.). Equation (3) has a small, strictly-positive 
parameter, 0 < ǫ ≪ 1 , to remove the spurious solution ( xs,m = 0 ). However, ǫ additionally serves as a trapping 
rate in the sense that smaller values of ǫ make it more difficult for the system to flip voltages when some Cm 
begins to grow larger than γ.

In Eq. (2), the first term in the summation is a “gradient-like” term, the second term is a “rigidity” term16. The 
gradient-like term attempts to influence the voltage in a clause based on the value of the other two voltages in the 
associated clause. Consider the two extremes: if the minimum results is Gi,m = 1 , then vi needs to be influenced 

(1)Cm(vi , vj , vk) =
1

2
min[(1− qi,mvi), (1− qj,mvj), (1− qk,mvk)],

(2)v̇n =

∑

m

xl,mxs,mGn,m(vn, vj , vk)+ (1+ ζxl,m)(1− xs,m)Rn,m(vn, vj , vk),

(3)ẋs,m = β(xs,m + ǫ)(Cm(vi , vj , vk)− γ ),

(4)ẋl,m = α(Cm(vi , vj , vk)− δ),

(5)Gn,m(vn, vj , vk) =
1

2
qn,m min[(1− qj,mvj), (1− qk,mvk)],

(6)Rn,m(vn, vj , vk) =

{

1
2
(qn,m − vn), Cm(vn, vj , vk) =

1
2
(1− qn,mvn),

0, otherwise,
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to satisfy the clause. Conversely, if the minimum gives Gi,m = 0 , then vi does not need to influence the clause 
state (see Sect. II.A of SM).

The purpose of the three rigidity terms for one constraint is to attempt to hold one voltage at a value satisfy-
ing the associated m-th clause, while doing nothing to influence the evolution of the other two voltages in the 
constraint. Again, this aligns with the 3-SAT interpretation that a clause can only constrain one variable. The 
short-term memory variable acts as a switch between gradient-like dynamics and rigid dynamics. During the 
solution search, Gm will seek to influence three voltages until clause m has been satisfied. Then, as xs,m decays to 
zero, Rm takes over. The long-term memory variables weight the gradient-like dynamics, giving greater influ-
ence to clauses that have been more frustrated during the solution search. The rigidity is also weighted by xl,m , 
but reduced by ζ. 

Numerical results and discussion
It is important to realize that any simulation of a dynamical system is an algorithm because the continuous-time 
dynamics of the system must be discretized. Identifying our simulation as an algorithm invites a method to 
compare our results with those of popular algorithms, specifically, WalkSAT23 and survey inspired decimation5. 
Before we compare results, we need a general definition of a step.

We define an algorithmic step to be all the computation that occurs between checks of satisfiability. The 
WalkSAT algorithm flips one variable at a time then checks the satisfiability of the formula. Therefore, a Walk-
SAT step is a single variable flip. SID uses WalkSAT as part of its solution search, so the interpretation of steps is 
the same when SID uses WalkSAT. Prior to entering into WalkSAT, SID performs a message-passing procedure 
known as survey propagation5. In the SID implementation we used27 there is no check for satisfiability during 
the decimation procedure, so we generously identify the entire survey propagation with decimation as a single 
step. Our DMM algorithm checks the satisfiability of the formula after each time step of the integration. Of 
course, the amount of computation within a step may vary greatly based on the algorithm, but this does not affect 
comparison of the scalability. In fact, if an algorithm is exponential in the number of steps, then the amount 
of computation within a step cannot improve its scalability. For our DMM, each step has a constant amount 
of computation per time step of integration. With this definition of an algorithmic step, we have a method to 
meaningfully compare the different algorithms.

We can now test these approaches on CDC instances with planted solutions. In Sect. III.C of the SM, we 
give an account of how these instances are generated, and why they are difficult to solve. Here, we just note that 
difficult CDC instances are created when αr > 4.25 and 0.077 < p0 < 0.25 , where p0 is the probability that 
the planted solution results in a clause with zero false literals18. We have performed no preprocessing on the 
3-SAT instances to reduce their size, not even the removal of pure literals (those appearing wholly negated or 
unnegated)28.

We numerically integrated Eqs. (2), (3), and (4) with the forward-Euler method using an adaptive time step, 
�t ∈ [2−7, 103] . For parameters, we have used α = 5 , β = 20 , γ = 1/4 , δ = 1/20 , and ǫ = 10−3 . For high ratio, 
αr ≥ 6 , we find ζ = 10−1 to provide better scaling results. For ratios that approach the complexity peak, we used 
ζ = 10−2 for αr = 5 , and ζ = 10−3 for αr = 4.3 . In Fig. 2, we report the results for CDC instances generated 
with p0 = 0.08 . In our simulations, we expectedly find the difficulty of CDC instances increases with increasing 
p0 (see Sect. II in SM).

In Fig. 2, for the problem sizes tested, we find a power-law scaling for the median number of integration steps 
for the simulations of DMMs. We also find that integration time variable (t), CPU time, and long-term memory 
( xl ) are bounded by a polynomial scaling, and the average step size shows power-law decay (see Sect. II.C of 
SM). The optimized WalkSAT algorithm29 we have used instead exhibits an exponential scaling at relatively 
small problem sizes, confirming the previous results of Ref.18. An exponential scaling is also observed for the 
SID algorithm27.

The CDC instances are formulated to confuse stochastic local-search algorithms, so the exponential scaling 
of WalkSAT is expected (right inset Fig. 2). To understand the exponential performance of SID (left inset Fig. 2), 
we need to understand the success of SID on random 3-SAT. When generating uniform random 3-SAT at the 
complexity peak with a general method (no planted solutions), the typical case can be exploited by SID due to 
the existence of treelike structures in the factor graph30. (For those unfamiliar with factor graphs, if the factor 
graph was a tree, then one would be able to visually, thus easily, find the solution from the graph31.) However, as 
demonstrated in Fig. 2, SID performs poorly when given a 3-SAT instance with a factor graph that is not locally 
treelike. It is also known that SID performs poorly at high ratios ( αr � 4.25)6, as loops in the factor graph become 
more common, explaining the opposite scaling trend seen in Fig. 2.

To further confirm that the usefulness of our DMM algorithm on CDC instances is independent of our 
generation of formulae, we have solved generalized CDC instances19 used in the 201720 and 201821 SAT compe-
titions (satcompetition.org). Our modified competition DMM solves all tested competition CDC instances on 
its first attempt with random initial conditions, and does so within the 5000-second timeout established by the 
competition (see Sect. II.E of SM). We find the overhead of numerical simulations of ODEs does not forbid our 
DMM from being competitive due to the use of the forward-Euler integration scheme.

Long‑range order and analytical properties of DMMs for 3‑SAT.  We finally show that collective 
behavior (long-range order)14,15 in DMMs is responsible for the observed efficiency in the solution search. In 
order to do this, it is helpful to visualize subgraphs of the factor graph generated from a 3-SAT instance. In 
Fig. 3, we visualize the change in state of local factor graphs during a single time step of integration as our DMM 
approaches a solution. It is apparent that the system explores many paths in the factor graph, collecting informa-
tion as it does. However, unlike SID, when the DMM explores a path leading to contradiction it can correct itself. 
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The factor graphs shown in Fig. 3 only include clauses (function nodes) that are unsatisfied (red) or recently 
unsatisfied (green), and all variable nodes connected to these clauses. A clause, m, is identified as recently unsat-
isfied if the short-term memory is xs,m > 0 but the clause is currently satisfied. The factor graph transitions show 
that collective events occur that satisfy multiple clauses. This is in agreement with many results on DMMs for 
different types of problems14,32. Additionally, the factor graph transition on the left of Fig. 3 breaks up the graph 
into smaller, disconnected factor graphs, making the search exponentially more efficient.

As anticipated, to strengthen these numerical results, we have also analytically demonstrated that the dynam-
ics described by Eqs. (2), (3), and (4) terminate only when the system has found the solution to the 3-SAT prob-
lem (namely the phase space has only saddle points and the minima corresponding to the solution of the given 
problem; Secs. VI and VII of SM). In addition, neither periodic orbits nor chaos can coexist if solutions of the 
3-SAT are present (Sect. IX of SM). Finally, using supersymmetric topological field theory, we have demonstrated 
that the continuous-time dynamics (physical implementation) reach the solution of a 3-SAT instance, for a fixed 
αr , in linear or sub-linear continuous time, irrespective of the difficulty of the instance (Sect. XI of SM).

However, note that such a scalability does not necessarily translate to the same scalability of the numerical 
integration of Eqs. (2), (3), and (4), where the discretization of time is necessary. Nevertheless, due to the absence 
of chaos, we empirically find that the scalability of our numerical simulations is still polynomially bounded for 
typical-case CDC instances.

Conclusions
We have presented an efficient dynamical-system approach to solving Boolean satisfiability problems. Along with 
arguments for polynomial-time scalability in continuous time, we have found that the numerical integration of the 
corresponding ODEs show power-law scalability for typical cases of 3-SAT instances which required exponential 
time to solve with successful algorithms. The efficiency derives from collective updates to the variables during 
the solution search (long-range order).

In contrast to previous work8, our dynamical systems do not suffer from exponential fluctuations in the energy 
function due to chaotic behavior. The dynamical systems we propose find the solution of a given problem with-
out ever entering a chaotic regime, by virtue of the variables being bounded. The implication is that a hardware 
implementation of DMMs would only require a polynomially-growing energy cost. Our work then also serves as 
a counterexample to the claim of Ref.8 that chaotic behavior is necessary for the solution search of hard optimiza-
tion problems. In fact, we find chaos to be an undesirable feature for a scalable approach (See Sect. II.F of SM).

Although these analytical and numerical results do not settle the famous P vs. NP question, they show that 
appropriately designed physical systems are very useful tools for new avenues of research in constraint satisfac-
tion problems.

Data availability
All instances used to generate all figures in this paper are available upon request from the authors.

Received: 28 August 2020; Accepted: 29 October 2020

Figure 3.   Time evolution of a typical DMM simulation showing collective updates to the solution search. 
The figure highlights one solution attempt of a CDC instance of size N = 500 at αr = 4.3 . The inset shows the 
number of unsatisfied clauses during the entire solution search. The main panel zooms in on the search as the 
solution is approached. We choose two single integration step transitions and explore the local factor graph. 
The circles are the variable nodes (blue), and squares are function nodes (red if unsatisfied, green if recently 
unsatisfied). The transition at left is characterized by 13 clauses becoming satisfied, the transition at right results 
in 4 clauses becoming satisfied. Neither transition results in satisfied clauses becoming unsatisfied.
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