
Lawrence Berkeley National Laboratory
Recent Work

Title
General Asymmetric Neural Networks and Structure Design by Genetic Algorithms: A
Learning Rule for Temporal Patterns

Permalink
https://escholarship.org/uc/item/00z401fm

Authors
Bornholdt, S.
Graudenz, D.

Publication Date
1993-07-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/00z401fm
https://escholarship.org
http://www.cdlib.org/

I

)

LBL-34384
UC-414

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA

Physics Division

Presented at the IEEE/SMG '93 Conference, Le Touquet, France,
October 17-20, 1993, and to be published in the Proceedings

General Asymmetric Neural Networks and Structure
Design by Genetic Algorithms: A Learning Rule for
Temporal Patterns

S. Bornholdt and D. Graudenz

July 1993

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098

----fin
0 ,
"1 "1 0

0 »
~s:: z

--'
~l1In
CD· r+ 0
CDCD"'C
;0:'"1/1 -<
1/1 ---
OJ
--'
a.
co .
01
lSI

I
O"n
"1 0
111"0
"1'<
'< . I\)

I
OJ
I
I

w
~
W
(X)
~

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

J

July 1993 HD-THEP-93-26
LBL-34384

General Asymmetric Neural Networks
and Structure Design by Genetic Algorithms:

A Learning Rule for Temporal Patterns *t

Stefan Bornholdt:!:
Institut fUr Theoretische Physik

U niversitat Heidelberg
Philosophenweg 16, 69120 Heidelberg, Germany

Dirk Graudenz §'II
Theoretical PhysIcs Group·

Physics Divis~on
Lawrence Berkeley Laboratory

University of California
Berkeley, CA 94720

Abstract

. A learning algoritlu::p. based on genetic algorithms for asymmetric neural networks with
an arbitrary structure is presented. It is suited for the learrung of temporal patterns and
leads to stable neural networks with feedback.

..

* This work was supported by the DireCtor; Office of Energy Research, Office of High Energy and Nu­
clear Physics, Division of High Energy Physics of the U.S. Department of Energy under Contract DE-AC03-
76SF00098.

t This work was supported in part by the Studienstiftung des deutschen Volkes.
t E-mail address: TOOBOR @ DHHDESY3.bitnet
§ supported by Max K ade Foundation, New York
~Address after January 1, 1994: CERN, Theoretical Physics Division, CH-1211 Geneva, Switzerland.
liE-mail addresses: graudenz @ theorm.lbl.gov, I02GAU @ DHHDESY3.bitnet

....

1 Introduction

During the last decade, a highly active' research field has 'developed dealing with artificial
neural networks (ANN), which aims at developing new computational techniques as well as
trying to get an understanding of brain functioning. In recent years, neural network concepts

, have been successfully combined, with genetic algorithms [1]. From the engineering point of
view, combining two powerful tools is a promising challenge, whereas in a. more biologically
inspired approach one is naturally led to evolutionary methods, since in nature brains and
hard-wired neural structures are to a great extent determined by genetic encoding created
through evolution. Most work on combining artificial neural networks and genetic algorithms
has been done under the "engineering paradigm" of competitiveness with the standard training
algorithms for artificial neural networks, like back propagation [2], which, in our view, is a
constraint on the potential of genetic algorithms too strong in the early stage of the art. Many
attempts have been made to assist standard learning algorithms by genetic algorithms, either
by preparing the initial data for the neural net [3], or by let~ the genetic algorithm choose the
initial weights ("synapses") for learning through back-propagating errors [4]. A more general
concept is to use a genetic algorithm to determine the topology of a neural net. Most work in
this direction applies the idea to the architecture of feed forward nets with some local learning
rule choosing the weights (while the genetic algorithm decides which weights are supposed to
be different from zero) [5]. Although combining genetic algorithms with standard local learning
rules might be more efficient than using genetic algorithms alone to choose the weights, one
has to pay a price: The standard learning methods are in general restricted to fixed types of
nets, like a strict feed forward architecture. In our view, one of the main advantages of the
use of genetic algorithms is that they can provide learning rules for neural nets with arbitrary
structures where conventional learning rules are not available. In particular this applies to
networks with feedback as required for the training of temporal patterns. More sophisticated
systems of this genetic mechanism for the evolution of the network topology could be useful
for the solution of complex problems related to the detection of pattern sequences in time (e.g.
speech recognition, analysis of picture sequences, etc.). .

In this article we take a more biologically motivated view and allow for arbitrary connections
between the neurons of an in general diluted model-bram (the terms neuron, brain, etc. are
used in the following for the constituents of the simulated models which are understood to be
only very crude approximations to the natural equivalents). Especially this includes asymmetric
connections, backwards directed connections, and feedback loops. These kinds of connections
are clearly observed in nature and we see no reason to exclude them from our model. However,
there is no basic traming concept for such general neural nets. In particular for the learning of
temporal patterns one 'has to introduce some form of feedback into the neural net which makes
standard learning rules inapplicable. Extended versions of standard learning rules for feedback
nets are plagued by severe dynamical problems [6]. However, one can show [7] that a genetic
algorithm can provide a usefullea.rning rule for general asymmetric neural networks.

In this work we extend ~he genetic algorithm based learning Concept to neural networks
with feedback. It is applied to the training of temporal patterns with an emphasis of the
network architecture arid the learning dynamics. To allow for an arbitrary network structure,

1

we will divide the neurons of the model into three groups: input neurons, "cortex" neurons,
and output neurons. The connections from the input to the cortex and from the cortex to the

. output neurons are of the feed forward type, while connections inbetween the cortex neurons
are arbitrary, i.e. they may be asymmetric or backwards directed thus' creating loops, etc. In
conventional terms this includes within-layer-links and feedback-links, however, note that the

. present cortex architecture is not grouped into layers but that the topology within the cortex
is completely arbitrary. Since we allow for an arbitrary network structure there is no simple
linear representation of its architecture. In our present simulations we therefore use a one to
one mapping from the genome onto the network and do not use crossing over (It is certa.in1.y
desirable to find a representation that allows for crossing over in order to take advantage of the
combination of building blocks which would yield a very fast increase of the fitness -in every .
recombination step. In nature, however, -evolution did not start with sexual reproduction from
the very beginning; this feature was implemented when individuals became too complicated
in order to allow for a large mutation rate). A genetic encoding of every neuron with all its
connections is not implemented in the ontogeny of biological brains [8].- However, our present'
approach is motivated by small hard wired neuron structures in nature like those for heart
rhythm or oscillatory proceSses in primitive animals.

Asexual reproduction is best suited for the evolution of small systems. For the following
simulations we chose to train Boolean functions and time sequences of Boolean functions which
are simple enough but nevertheless include the most general data structure and can be applied
to any "real world" problem. The next section describes the program used in the simulations
followed by a section presenting our results.

2 The Simulation Program

The simulations described in this paper have been done with the program GARFIEID (which
is an acronym for General Asymmetric ReFIned Evolutionary Learning Device). This
program consists of two basic parts: the genetic algorithm CREATOR, and the neural network
management part DEEP_TIiOUGHT.

CREATOR sets up the initial population, determines the fitness and controls the mutation and
selection step. In the current version of the program the genome of a network is the network
structure itself, so that there is no mechanism for crossing over of genomes.The algorithm
therefore solely uses mutations as a driving force. The fitness of a member of the population is
determined by applying to its inputs the input Bits of the Boolean function or time sequence
that is to be learned. Then the update of the network is performed until it either reaches a
stable state or the number of updates exceeds a certain limit. The output status of the network
is then compared with the required output, and the fraction of correct Bits is determined. This
procedure is performed for every possible input combination in the case of Boolean functions or
every sequence of inputs in the case of time sequences. The fitness is calculated as a function
of the fraction of correct Bits and other quantities like the size of the cortex (in analogy to
the power consumption being a constraint in biological systems) and the average number of
updates that was required to reach a stable state (being a measure for speed and stability). The
fitnesses of all members are ranked in increasing order. The selection step picks out a ~

2

number of the networks with a large fitness that replace some networks of lower fitness. Finally,
in the mutation step, the networks are modified in a random way by removing neurons from
the network or inserting neurons with a specified average number of synapses (with a random
coupling between -1 and 1). .

DEEP~1l10UGHT is a package of functions that allows the management of a very flexible struc­
ture of neural networks. The network data structure is based on linked lists. This representation
has several advantages: it is Illemory efficient,. the networks are easy to mamtain; the update
of the network structure is quite fast, the mutation operators have a simple· implementation,
and the network structUre is reflected directly in the data structure. The approach described
in this paper is based on the assumption that every individual neuron has only a small number
of synapses that are connected to the outputs of other neurons. The topology of these conriec­
tions is not fixed by an initial assumption about the architecture of the network. Certainly a
representation by a matrix whose entries are the coupling strengths between the neurons would
be possible, but most of the entries in such a matrix would be zero (under the assumption of
a sparse network), and therefore the update algorithm would be too slow to be effective. In
the approach based on linked lists, a network is described by a ·linked list of neurons, each. of
which in turn possesses a linked list representing its synapses. These synapses have a pointer
to the neuron from which they get their. input. To update the state of a neuron the algorithm.
simply has to traverse the linked lists of the synapses and add up the weights associated with
the synapses multiplied by the output of the neuron they are pointing to.

3 Genetic Training and Temporal Patterns

The simulations that are described in the following deal with supervised learning of Boolean
functions and time sequences of Boolean functions, No additional local learning rules are
implemented besides the genetic algorithm. The weights and the topology of the neural net
are contained in the genotype. Therefore one is free to choose a very general architecture· of·
the net. As stated above, we will· group our neurons only in three regions of input, cortex, and
output neuronS. Binary threshold neurons are used while t~e weights take on continuous values
in the range from -1 to 1.

Asymmetric neural networks do not in general settle down to a stable . state [9]. Problems of
this type are avoided by defining a maximum allowed number 01 sweeps. Then the stable nets
are sorted out by the genetic algorithm through asynchronous update of the net in randomly
chosen order.

We now describe the genetic training of two small tasks, firstly a five Bit parity function to
demonstrate the ability of the present algorithm to genetically train stable Boolean functions,
and secondly a small counting problem to demonstrate the learning of a temporal pattern.

For the training of a five Bit parity problem· we choose a population of 10 iridividuals.
Each individU¥ starts with a cortex of one single neuron, 5 input synaPses and one output
synapse. In the selection step, a number of2nr individuals are removed from the population
and replaced by nr cOpies of the two best individuals each with nr = 2 in this example.
Then, the complete population is mutated (whereas in the second simulation described below
we will only mutate the new individuals). In the mutation step· new genotypes are produced

3

by inserting neurons with a limited but random number of randomly chosen synapses with
randomly chosen weights in the range from -1 to 1, arid by removing complete neurons with
all their synaptic connections. The numbers of neurons which are added or removed are also
limited and randomly chosen. The processes of adding or deleting neurons are put in action·
with probability of 0.5 each. The numbers of added or deleted neurons are limited to 3 resp.
2. Also the numbers of new synapses per neuron are limited (5 'input' to .. 'neuron', 3 'cortex'
to 'neuron' and 'neuron' to 'cortex' and 1 'neuron' to 'output'). The creation process for each .
type of synapses is started with probability 0.5. The cortex size is limited to 100 neurons while
the age of an individual is not constrained. For the fitness function we choose

fitness = . Ie
(1 + 0.01 * ns + 0.0001 * Ne) ,

(1)

where Ie denotes the fraction of correct output Bits, n6 the average number of sweeps until the
network reaches a stable state, and Nc is the number of neurons in the cortex. That means, .
for two individuals with equal numbers of correct Bits, the faster one wins, and of those with
similar score and speed, the sm.ciller oile is considered to be better.

The results of four simulations with different initializations of the random number gener­
ator are presented in Figs. 1 - 5. The parity function is usually learned in less than 10000
generations. In Table 1 we give the properties of the emerging neural nets at the point where
it first solves the given task where N denotes the total number of neurons in the cortex, S the
number of synapses andD the degree of dilution defined by D = S/JV2. In Fig. 1 the fitness

/

generation N S sweeps D
700 100 457 7.5 0.0457
800 57 268 6.7 0.0825
1100 96 425 7.7 0.0461
4600 101 425 7.4 0.0417

Table 1: NEURAL NETS THAT SOLVE THE 5 BIT PARITY PROBLEM

of the four different nets for the :first 2000 generations is plotted. One realizes a continuous
increase during the first few hundred generations. Due to the asynchronous update one arrives
at totally different net architectures in different .runs, however the learning behavior is aston­
ishingly uniform. Also the number of neurons (Fig. 2) and synapses (Fig. 3) shows a similar
evolution. The fraction of corted Bits (Fig. 4) increases quickly during the first few hundred
generations, while the last steps of improvement take longer. This is sometimes called the
"hare strategy" as opposed to the the "tortoise strategy"· of slow and· steady increase. These
learning behaviors are determined by the choice. of the parameters of the genetic algorithm..
The number of sweeps until the nets are stable (Fig. 5) is increasing in the phase of growth,
and·then slightly decreases in the more stable phase due to the pressure of the fitness function
that prefers fast individuals. A picture of one of the neural nets is shown in Fig. 11, where ..
the squares are input neurons and the discs are cortex neurons. Weights greater thari 2erO are

4

.,.

denoted by lines, weights smaller than zero by dotted lines. One clearly sees that this net is
diluted, thus the encoding by conventional matrices would be very unhandy.

The second task under investigation is a counting problem for the number of ones in an
mput sequence applied to a single input neuron. The population is now chosen to contain
20 individuals with the starting configuration of one. cortex neuron with only one input and
one output synapse. The probabilities for creating or deleting new neurons are set to 0.7, the
probabilities for creating new input synapses to 0.4 and for all other types of synapses to 0.8.
The fitness function is here .

fitness = . Ie
(1 +0.001 * ns + 0.000001 * Ne) ,

(2)

~d nr = 5. All other parameters are equal to the previous case. The sequence of Boolean
functions applied to the net is given in Table 2. This set of sequences is ~ccesSfully learned by ..

I input I desired output I
0 00
1 01

·1 01
0 01
1 10
1 01
0 01
1 10
0 10
1 11

Table 2: SEQUENCES OF INPUT FUNCTIONS FOR THE COUNTING PROBLEM

the genetically trained neural net. Remarkably, the required learning time can be reduced con­
siderably by checking this sequence several times (three times in our simulations) to determine
the fitness. The reason is that the asynchronous update is different every time and requiring
the results to be reproducible under asynchronous update leads to more robust networks. This
selection process works faster when teSting this "robustness" already at the individual level
during one generation. In Fig~ 6 the fitness curve of the learning of this temporal. sequence is
shown and in Fig. 7 the number of correct output Bits. The latter increases rapidly during the
first few hundred generations and after 2000 generations networks emerge that perfectly fulfill
the given task. However, due to the asynchronous update and the requirement that the network
gives correct results three times in a row, still single errors occur, which axe straightened out
.a£ter about 3000 more generations. In Table 3 the parameters of the net after learning the
counting problem are shown. The average number of sweeps that are required to stabilize the
neural net after a pattern is presented to it is shown in Fig. 8. Again, it increases with· the
complexity of th~ emerging neural net. The average cortex size (Fig. 9) increases to' about 20

5

,,~ .l
,,;tl i1'1

generation N S sweeps D
1600 20 169 8.5 0.4225

Table 3: NEURAL NET THAT SOLVES THE COUNTING PROBLEM

neurons and after the task is ful£lled, it slightly decreases since this is again favored by the
fitness function. The number of synapses (Fig. 10) shows a similar behavior. The emerging
brain structure of this example is plotted in Fig. 12. One realizes the diluted nature and the
statistical origin of the architecture.

In conclusion: It has been demonstrated that genetic algorithms provide a learri.ing rule
for general asymmetric neural nets which is suited for learning temporal patterns without
any assumptions on the topology of the emerging network. The learning capability has been
demonstrated with a 5 Bit parity problem for a static diluted neural net. The successful training
of a counting neural network shows the ability of the learning rule to choose the weights in a
way that lead to feedback loops in the neural network that store the information necessary for
counting. This mechanism turns out to be robust against asymmetric update of the neural
network. Genetic· algorithms prove. to be useful for training and choosing the weights of neural
networks where standard learning rules fail.

4 Acknowledg:ments

We wish to thank the computer centers of Heidelberg University and LBL for support and
computer time.

6

References

[1] J.D. Schaffer, D. Whitley, and L.J. Eshelman, "Comomations of genetic algorithms and
neural networks: A survey of the state of the art", in: COGANN-92: International work­
shop on combinations of genetic algorithms and neural networks (1992: Baltimore, MD),
Los Alamitos, CA: IEEE Computer society press, 1992, and references therein.

[2] D.E. Rumelhard, G.E. Hinton, and R.J. Williams, "Learning Representations by Back­
propagating Errors", Nature 323 (1986) 533. Y. Le Cun, "Learning Process in an Asym­
metric Threshold Network", in: NATO AS! Series, F 20, New York: Springer-Verlag
(1986). D.B. ~axker, "Learning-Logic: Casting the Cortex of the Human Brain in Silicon" ,
¥IT Technical Report, TR 47 (1985).· .

[3] J.D. Kelly and L. Davis, "Hybridizing the genetic algorithm and the K nearest neighbor
classification algorithm", in: R.K. Belew and L.B. Booker (eds.), "Fourth international
conference on genetic algorithms", San Mateo, CA: Morgan Kall'fmari·n (1991).

[4] R.K. Belew, J. McInerney and N.N. Schraudolph, "Evolving networks: Using genetic algo­
rithms with connectionists learning" , CSE technical report C890-174, La Jolla, CA: IEEE
(1990).

[5] J.D. Schaffer, .R.A. Caruana and L.J. Eshelman, "Using genetic search to exploit the
emergent behavior of neural networks", in: S. Forest (ed.), '''Emergent computation",
Amsterdam: North Holland (1990).

[6] H.-U. Bauer and T. Geisel, "Nonlinear dynamics of feedback multilayer-perceptrons",
Phys. Rev. A42 (1990) 2401.

[7] S. Bornholdt and D. Graudenz, "General asymmetric neural networks and structure design
by genetic algorithms", Neural Networks 5, (1992) 327.

[8] G.M. Edelman, "Topobiology :. an introduction to moleculaxembryology". New York:
Basic Books (1988).

[9] B. Derrida and R. Meir, "Chaotic Behavior of a Layered Neural Network" , Physical Review,
A 38 (1988) 3116-3119.

7

fitness
1.1

. 1

10

o

+
+ ~ + +
o
~

,

400

~ ~ ~ • • • I • ~ • • ~ • • .
o i .i

•

800 1200 1600 2000

generations
FigUre 2: Number of neurons (5 Bit parity)

8

'~'

synapses
103

+ +

o 400

~ ~. ~ ~ ! e I ~ • • ~ iii
~

-

800 1200 1600 2000

generations

Figure 3: Number of synapses (5 Bit parity)

correct

Figure 4: Fraction of correct Bits (5 Bit parity)

9

/

sweeps
10

9

8

7
6

5
4

3
2

1

o

o

+ ~ +

6

*

+
.f-

i
)I< ,
+

~ A
)I<

0

A

+ A
~ ..

A A
Si1 + 0 +

0 ~ + ~ A)I< • 0

It)I<

-

'-

o 400 800 1200 1600 2000

generations

fitness
1.1

j 1

0.9

0.8

0.7

0.6

05
o

Figure 5: Number of sweeps (5 Bit parity)

2000 1000 3000 4000 5000

generations
Figure 6: Fitness (Counting problem)

10

.f<

""

correct
1.1

1

0.9

0.8

0.7

0.6

0.5
o 1000 2000 3000 4000 5000

generations

·Figure 7: Fraction of correct Bits (Counting problem)

sweeps
10

9
8

7

6

5

4

3

2

1

o
o 1000 2000 3000 4000 5000

generations
Figure 8: Number of Sweeps (Counting problem)

11

4

cortex

10

1

o 1000 2000 3000 4000 5000

generations

Figure 9: Average cortex siZe (Counting problem)

synapses

10

o 1000 2000 3000 4000 5000

generations
Figure 10: Number of synapses (Counting problem)

12

· I

Figure 11: BraID. architecture (5 Bit parity)

13

Figure 12: Brain architecture (Counting problem)

14

-<:

LA~NCEBERKELEYLABORATORY

UNIVERSITY OF CALIFORNIA
TECHNICAL INFORMATION DEPARTMENT

BERKELEY, CALIFORNIA 94720

.......... ~

-- en -0)
T"'" .~

I'- ro
~-.o
I :.:::i
(])
<t:J

co
....J

r

