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Abstract 

. A learning algoritlu::p. based on genetic algorithms for asymmetric neural networks with 
an arbitrary structure is presented. It is suited for the learrung of temporal patterns and 
leads to stable neural networks with feedback. 
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1 Introduction 

During the last decade, a highly active' research field has 'developed dealing with artificial 
neural networks (ANN), which aims at developing new computational techniques as well as 
trying to get an understanding of brain functioning. In recent years, neural network concepts 

, have been successfully combined, with genetic algorithms [1]. From the engineering point of 
view, combining two powerful tools is a promising challenge, whereas in a. more biologically 
inspired approach one is naturally led to evolutionary methods, since in nature brains and 
hard-wired neural structures are to a great extent determined by genetic encoding created 
through evolution. Most work on combining artificial neural networks and genetic algorithms 
has been done under the "engineering paradigm" of competitiveness with the standard training 
algorithms for artificial neural networks, like back propagation [2], which, in our view, is a 
constraint on the potential of genetic algorithms too strong in the early stage of the art. Many 
attempts have been made to assist standard learning algorithms by genetic algorithms, either 
by preparing the initial data for the neural net [3], or by let~ the genetic algorithm choose the 
initial weights ("synapses") for learning through back-propagating errors [4]. A more general 
concept is to use a genetic algorithm to determine the topology of a neural net. Most work in 
this direction applies the idea to the architecture of feed forward nets with some local learning 
rule choosing the weights (while the genetic algorithm decides which weights are supposed to 
be different from zero) [5]. Although combining genetic algorithms with standard local learning 
rules might be more efficient than using genetic algorithms alone to choose the weights, one 
has to pay a price: The standard learning methods are in general restricted to fixed types of 
nets, like a strict feed forward architecture. In our view, one of the main advantages of the 
use of genetic algorithms is that they can provide learning rules for neural nets with arbitrary 
structures where conventional learning rules are not available. In particular this applies to 
networks with feedback as required for the training of temporal patterns. More sophisticated 
systems of this genetic mechanism for the evolution of the network topology could be useful 
for the solution of complex problems related to the detection of pattern sequences in time (e.g. 
speech recognition, analysis of picture sequences, etc.). . 

In this article we take a more biologically motivated view and allow for arbitrary connections 
between the neurons of an in general diluted model-bram (the terms neuron, brain, etc. are 
used in the following for the constituents of the simulated models which are understood to be 
only very crude approximations to the natural equivalents). Especially this includes asymmetric 
connections, backwards directed connections, and feedback loops. These kinds of connections 
are clearly observed in nature and we see no reason to exclude them from our model. However, 
there is no basic traming concept for such general neural nets. In particular for the learning of 
temporal patterns one 'has to introduce some form of feedback into the neural net which makes 
standard learning rules inapplicable. Extended versions of standard learning rules for feedback 
nets are plagued by severe dynamical problems [6]. However, one can show [7] that a genetic 
algorithm can provide a usefullea.rning rule for general asymmetric neural networks. 

In this work we extend ~he genetic algorithm based learning Concept to neural networks 
with feedback. It is applied to the training of temporal patterns with an emphasis of the 
network architecture arid the learning dynamics. To allow for an arbitrary network structure, 
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we will divide the neurons of the model into three groups: input neurons, "cortex" neurons, 
and output neurons. The connections from the input to the cortex and from the cortex to the 

. output neurons are of the feed forward type, while connections inbetween the cortex neurons 
are arbitrary, i.e. they may be asymmetric or backwards directed thus' creating loops, etc. In 
conventional terms this includes within-layer-links and feedback-links, however, note that the 

. present cortex architecture is not grouped into layers but that the topology within the cortex 
is completely arbitrary. Since we allow for an arbitrary network structure there is no simple 
linear representation of its architecture. In our present simulations we therefore use a one to 
one mapping from the genome onto the network and do not use crossing over (It is certa.in1.y 
desirable to find a representation that allows for crossing over in order to take advantage of the 
combination of building blocks which would yield a very fast increase of the fitness -in every . 
recombination step. In nature, however, -evolution did not start with sexual reproduction from 
the very beginning; this feature was implemented when individuals became too complicated 
in order to allow for a large mutation rate). A genetic encoding of every neuron with all its 
connections is not implemented in the ontogeny of biological brains [8].- However, our present' 
approach is motivated by small hard wired neuron structures in nature like those for heart 
rhythm or oscillatory proceSses in primitive animals. 

Asexual reproduction is best suited for the evolution of small systems. For the following 
simulations we chose to train Boolean functions and time sequences of Boolean functions which 
are simple enough but nevertheless include the most general data structure and can be applied 
to any "real world" problem. The next section describes the program used in the simulations 
followed by a section presenting our results. 

2 The Simulation Program 

The simulations described in this paper have been done with the program GARFIEID (which 
is an acronym for General Asymmetric ReFIned Evolutionary Learning Device). This 
program consists of two basic parts: the genetic algorithm CREATOR, and the neural network 
management part DEEP_TIiOUGHT. 

CREATOR sets up the initial population, determines the fitness and controls the mutation and 
selection step. In the current version of the program the genome of a network is the network 
structure itself, so that there is no mechanism for crossing over of genomes.The algorithm 
therefore solely uses mutations as a driving force. The fitness of a member of the population is 
determined by applying to its inputs the input Bits of the Boolean function or time sequence 
that is to be learned. Then the update of the network is performed until it either reaches a 
stable state or the number of updates exceeds a certain limit. The output status of the network 
is then compared with the required output, and the fraction of correct Bits is determined. This 
procedure is performed for every possible input combination in the case of Boolean functions or 
every sequence of inputs in the case of time sequences. The fitness is calculated as a function 
of the fraction of correct Bits and other quantities like the size of the cortex (in analogy to 
the power consumption being a constraint in biological systems) and the average number of 
updates that was required to reach a stable state (being a measure for speed and stability). The 
fitnesses of all members are ranked in increasing order. The selection step picks out a ~ 
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number of the networks with a large fitness that replace some networks of lower fitness. Finally, 
in the mutation step, the networks are modified in a random way by removing neurons from 
the network or inserting neurons with a specified average number of synapses (with a random 
coupling between -1 and 1). . 

DEEP~1l10UGHT is a package of functions that allows the management of a very flexible struc­
ture of neural networks. The network data structure is based on linked lists. This representation 
has several advantages: it is Illemory efficient,. the networks are easy to mamtain; the update 
of the network structure is quite fast, the mutation operators have a simple· implementation, 
and the network structUre is reflected directly in the data structure. The approach described 
in this paper is based on the assumption that every individual neuron has only a small number 
of synapses that are connected to the outputs of other neurons. The topology of these conriec­
tions is not fixed by an initial assumption about the architecture of the network. Certainly a 
representation by a matrix whose entries are the coupling strengths between the neurons would 
be possible, but most of the entries in such a matrix would be zero (under the assumption of 
a sparse network), and therefore the update algorithm would be too slow to be effective. In 
the approach based on linked lists, a network is described by a ·linked list of neurons, each. of 
which in turn possesses a linked list representing its synapses. These synapses have a pointer 
to the neuron from which they get their. input. To update the state of a neuron the algorithm. 
simply has to traverse the linked lists of the synapses and add up the weights associated with 
the synapses multiplied by the output of the neuron they are pointing to. 

3 Genetic Training and Temporal Patterns 

The simulations that are described in the following deal with supervised learning of Boolean 
functions and time sequences of Boolean functions, No additional local learning rules are 
implemented besides the genetic algorithm. The weights and the topology of the neural net 
are contained in the genotype. Therefore one is free to choose a very general architecture· of· 
the net. As stated above, we will· group our neurons only in three regions of input, cortex, and 
output neuronS. Binary threshold neurons are used while t~e weights take on continuous values 
in the range from -1 to 1. 

Asymmetric neural networks do not in general settle down to a stable . state [9]. Problems of 
this type are avoided by defining a maximum allowed number 01 sweeps. Then the stable nets 
are sorted out by the genetic algorithm through asynchronous update of the net in randomly 
chosen order. 

We now describe the genetic training of two small tasks, firstly a five Bit parity function to 
demonstrate the ability of the present algorithm to genetically train stable Boolean functions, 
and secondly a small counting problem to demonstrate the learning of a temporal pattern. 

For the training of a five Bit parity problem· we choose a population of 10 iridividuals. 
Each individU¥ starts with a cortex of one single neuron, 5 input synaPses and one output 
synapse. In the selection step, a number of2nr individuals are removed from the population 
and replaced by nr cOpies of the two best individuals each with nr = 2 in this example. 
Then, the complete population is mutated (whereas in the second simulation described below 
we will only mutate the new individuals). In the mutation step· new genotypes are produced 
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by inserting neurons with a limited but random number of randomly chosen synapses with 
randomly chosen weights in the range from -1 to 1, arid by removing complete neurons with 
all their synaptic connections. The numbers of neurons which are added or removed are also 
limited and randomly chosen. The processes of adding or deleting neurons are put in action· 
with probability of 0.5 each. The numbers of added or deleted neurons are limited to 3 resp. 
2. Also the numbers of new synapses per neuron are limited (5 'input' to .. 'neuron', 3 'cortex' 
to 'neuron' and 'neuron' to 'cortex' and 1 'neuron' to 'output'). The creation process for each . 
type of synapses is started with probability 0.5. The cortex size is limited to 100 neurons while 
the age of an individual is not constrained. For the fitness function we choose 

fitness = . Ie 
(1 + 0.01 * ns + 0.0001 * Ne ) , 

(1) 

where Ie denotes the fraction of correct output Bits, n6 the average number of sweeps until the 
network reaches a stable state, and Nc is the number of neurons in the cortex. That means, . 
for two individuals with equal numbers of correct Bits, the faster one wins, and of those with 
similar score and speed, the sm.ciller oile is considered to be better. 

The results of four simulations with different initializations of the random number gener­
ator are presented in Figs. 1 - 5. The parity function is usually learned in less than 10000 
generations. In Table 1 we give the properties of the emerging neural nets at the point where 
it first solves the given task where N denotes the total number of neurons in the cortex, S the 
number of synapses andD the degree of dilution defined by D = S/JV2. In Fig. 1 the fitness 

/ 

generation N S sweeps D 
700 100 457 7.5 0.0457 
800 57 268 6.7 0.0825 
1100 96 425 7.7 0.0461 
4600 101 425 7.4 0.0417 

Table 1: NEURAL NETS THAT SOLVE THE 5 BIT PARITY PROBLEM 

of the four different nets for the :first 2000 generations is plotted. One realizes a continuous 
increase during the first few hundred generations. Due to the asynchronous update one arrives 
at totally different net architectures in different .runs, however the learning behavior is aston­
ishingly uniform. Also the number of neurons (Fig. 2) and synapses (Fig. 3) shows a similar 
evolution. The fraction of corted Bits (Fig. 4) increases quickly during the first few hundred 
generations, while the last steps of improvement take longer. This is sometimes called the 
"hare strategy" as opposed to the the "tortoise strategy"· of slow and· steady increase. These 
learning behaviors are determined by the choice. of the parameters of the genetic algorithm.. 
The number of sweeps until the nets are stable (Fig. 5) is increasing in the phase of growth, 
and·then slightly decreases in the more stable phase due to the pressure of the fitness function 
that prefers fast individuals. A picture of one of the neural nets is shown in Fig. 11, where .. 
the squares are input neurons and the discs are cortex neurons. Weights greater thari 2erO are 

4 



.,. 

denoted by lines, weights smaller than zero by dotted lines. One clearly sees that this net is 
diluted, thus the encoding by conventional matrices would be very unhandy. 

The second task under investigation is a counting problem for the number of ones in an 
mput sequence applied to a single input neuron. The population is now chosen to contain 
20 individuals with the starting configuration of one. cortex neuron with only one input and 
one output synapse. The probabilities for creating or deleting new neurons are set to 0.7, the 
probabilities for creating new input synapses to 0.4 and for all other types of synapses to 0.8. 
The fitness function is here . 

fitness = . Ie 
(1 +0.001 * ns + 0.000001 * Ne ) , 

(2) 

~d nr = 5. All other parameters are equal to the previous case. The sequence of Boolean 
functions applied to the net is given in Table 2. This set of sequences is ~ccesSfully learned by .. 

I input I desired output I 
0 00 
1 01 

·1 01 
0 01 
1 10 
1 01 
0 01 
1 10 
0 10 
1 11 

Table 2: SEQUENCES OF INPUT FUNCTIONS FOR THE COUNTING PROBLEM 

the genetically trained neural net. Remarkably, the required learning time can be reduced con­
siderably by checking this sequence several times (three times in our simulations) to determine 
the fitness. The reason is that the asynchronous update is different every time and requiring 
the results to be reproducible under asynchronous update leads to more robust networks. This 
selection process works faster when teSting this "robustness" already at the individual level 
during one generation. In Fig~ 6 the fitness curve of the learning of this temporal. sequence is 
shown and in Fig. 7 the number of correct output Bits. The latter increases rapidly during the 
first few hundred generations and after 2000 generations networks emerge that perfectly fulfill 
the given task. However, due to the asynchronous update and the requirement that the network 
gives correct results three times in a row, still single errors occur, which axe straightened out 
.a£ter about 3000 more generations. In Table 3 the parameters of the net after learning the 
counting problem are shown. The average number of sweeps that are required to stabilize the 
neural net after a pattern is presented to it is shown in Fig. 8. Again, it increases with· the 
complexity of th~ emerging neural net. The average cortex size (Fig. 9) increases to' about 20 
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generation N S sweeps D 
1600 20 169 8.5 0.4225 

Table 3: NEURAL NET THAT SOLVES THE COUNTING PROBLEM 

neurons and after the task is ful£lled, it slightly decreases since this is again favored by the 
fitness function. The number of synapses (Fig. 10) shows a similar behavior. The emerging 
brain structure of this example is plotted in Fig. 12. One realizes the diluted nature and the 
statistical origin of the architecture. 

In conclusion: It has been demonstrated that genetic algorithms provide a learri.ing rule 
for general asymmetric neural nets which is suited for learning temporal patterns without 
any assumptions on the topology of the emerging network. The learning capability has been 
demonstrated with a 5 Bit parity problem for a static diluted neural net. The successful training 
of a counting neural network shows the ability of the learning rule to choose the weights in a 
way that lead to feedback loops in the neural network that store the information necessary for 
counting. This mechanism turns out to be robust against asymmetric update of the neural 
network. Genetic· algorithms prove. to be useful for training and choosing the weights of neural 
networks where standard learning rules fail. 
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Figure 12: Brain architecture (Counting problem) 
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