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Abstract: Few-shot learning (FSL) is suitable for plant-disease recognition due to the shortage of data.
However, the limitations of feature representation and the demanding generalization requirements
are still pressing issues that need to be addressed. The recent studies reveal that the frequency
representation contains rich patterns for image understanding. Given that most existing studies
based on image classification have been conducted in the spatial domain, we introduce frequency
representation into the FSL paradigm for plant-disease recognition. A discrete cosine transform
module is designed for converting RGB color images to the frequency domain, and a learning-based
frequency selection method is proposed to select informative frequencies. As a post-processing
of feature vectors, a Gaussian-like calibration module is proposed to improve the generalization
by aligning a skewed distribution with a Gaussian-like distribution. The two modules can be
independent components ported to other networks. Extensive experiments are carried out to explore
the configurations of the two modules. Our results show that the performance is much better in the
frequency domain than in the spatial domain, and the Gaussian-like calibrator further improves the
performance. The disease identification of the same plant and the cross-domain problem, which are
critical to bring FSL to agricultural industry, are the research directions in the future.

Keywords: few-shot learning; plant disease recognition; frequency domain; Gaussian-like calibration;
discrete cosine transform; power transform

1. Introduction

Plant disease is a significant factor that reduces the quality and harvest in the crop pro-
duction [1]. In recent years, deep learning in computer vision has obtained excellent achieve-
ments. In agriculture industry, image-based deep learning methods for auto-diagnosing
have raised great concerns due to their accessible and economical characteristics [2]. Once
the technology is applied, it will benefit farmers and the agriculture industry greatly.
However, the data shortage has been an obstacle to taking advantage of deep-learning
methods [2]. As we know, deep-learning methods always rely on large-scale data. How-
ever, the existing data resources are very limited in plant-disease recognition. Meanwhile,
creating large-scale datasets of plant-disease images is an exhausting task that needs ex-
perts’ involvement. Some approaches have been proposed to alleviate the data shortage,
including data augmentation, transfer learning, few-shot learning (FSL), etc.

FSL has been proposed in recent years, which can generalize to novel categories with
the support of few samples. It has been effective at alleviating the hard requirement of
data. One branch of FSL is the metric-based method [3]. Its principle is that the features
of samples belonging to the same category are close to each other, and the features of
samples belonging to different categories are far from each other. The earliest representative
work was the Siamese network, which is trained with a positive sample pair or negative
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sample pair [4]. Then, some classical networks were proposed successively. Matching
networks borrow the concept “seq2seq+attention” to train an end-to-end nearest neighbor
classifier [5]. The prototypical network learns to match the proto-center of the class in
semantic space through few samples [6]. The relational network concatenates the feature
vectors of the support samples with those of the query samples to discover the relationship
of classes [7]. CoveMNet extracts the second-order statistic information of each category
by an embedding local covariance to measure the consistency of the query sample with
the novel classes [8]. In the meta-baseline method, which is based on a naive metric-based
concept, the centroid of category is the mean vector of the support samples. It measures
the distances from the query sample to the centroids of novel categories [9].

Recently, FSL has started to be used in the research of plant-disease recognition. The
Siamese network and the dataset PlantVillage (PV) were used in [10,11]. A generative
model using a conditional adversarial auto-encoder was proposed for identification of
citrus aurantium L. diseases [12]. A semi-supervised FSL approach was proposed and PV
was used in [13]. A matching network was also used to test cross-domain performance
by mixing pest data [14]. Baseline [15], Baseline++ [15] and DAML [16] were compared
on PV and the Coffee Leaf Dataset in [17]. In addition, some methods, such as multi-scale
feature fusion, attention, transformer etc. were also used to improve the performance of
FSL [18–21]. These existing works have been tried from various perspectives and have
made important progresses; however, they are all focused on the spatial domain.

In this work, we intended to take advantage of FSL to deal with the shortage of data
and improve the identification accuracy. While FSL has many advantages in dealing with
data limitations, it still has two common challenging issues: (1) The limited features ex-
tracted from a few samples are poorly representative of the categories. (2) The requirement
of generalization ability is demanding. Thus, improving the representation of features and
the generalization of the model are the urgent problems in FSL research. The conventional
studies of classification tasks are mainly focused on the spatial domain [22]. In this work,
we aimed to tackle these problems from another perspective: shifting the conventional
spatial domain to the frequency domain to enhance the feature representation. Additionally,
we adopted the Gaussian-like calibration (GC) to improve the generalization ability of
the model.

In computer vision, most of the existing studies of classification [22], segmentation [23],
object detection [24] etc., are focused on the spatial domain. The frequency representation
is mainly used for image compression, such as JPEG encoding [25,26]. The underlying
rationale is that the human visual system has unequal sensitivity to different frequency
components. Hence, for compression reasons, the unimportant frequencies can be aban-
doned without much degradation of image quality. Meanwhile, it has been validated
that frequency representations can be fed to the convolutional neural network (CNN) to
extract features. Coincidentally, as with the human visual system, the CNN model is more
sensitive to low-frequency channels than high-frequency channels [27]. In 2020, the use of
frequency representations was shown to achieve impressive performance in classification
task using various CNNs as backbone networks [28]. In 2021, a method of integrating
spatial representations and frequency representations together was proposed, and the ex-
periments show that the performance in the frequency domain is higher than in the spatial
domain [29]. The existing works demonstrate that a compressed frequency representation
still contains rich patterns for image understanding tasks [28]. Inspired by these works, we
take advantage of the frequency representations of features in the FSL classification task
and use the discrete cosine transform (DCT) as the transformer to transfer from the spatial
domain to the frequency domain.

The DCT is one of the most efficient transform coding schemes and was introduced
in [30]. It is an orthogonal, separable and real transform which translates the image
information from the spatial domain to the frequency domain, to be represented in a
more compact form [31,32]. In JPEG encoding, the DCT is used to improve the efficiency
because not all frequency channels are equally important for the feature representation [33].



Plants 2022, 11, 2814 3 of 22

According to the human visual mechanism, the low frequencies are kept and the high
frequencies are abandoned without much accuracy loss [28].

To improve the generalization of model, we discuss the distribution of the features
extracted from CNN and calibrate the skewed distribution. Although the mainstream works
using deep-learning neural networks involve feature extraction, few have explored the
distributions of the features. The features extracted from the encoder networks (e.g., CNN)
are hypothesized to be aligned with a particular distribution. Generally, one assumes
that the samples of the same category are aligned with a certain distribution, and the
samples from the same dataset are aligned with the approximate distributions. However,
these assumptions are rarely experimentally discussed and demonstrated. The main
problem is that the distributions of the features extracted using a backbone architecture
are complex. In fact, it is very likely that they are not of a Gaussian distribution or other
distribution. Unfortunately, the problem is enlarged in FSL, because it is a method that
requires generalization to new categories. The big differences in the feature distributions
in training and testing increase the difficulty of generalization. In particular, the distance-
metric methods are sensitive to the distribution of features. If the vectors are aligned
with the same distribution (e.g., Gaussian-like distribution) before measuring the distance
between them, then these aligned features will help improve the generalization of model.
The significance of distribution calibration in FSL is introduced in [34].

In statistics, the power transform (PT) denotes a family of functions applied to create
a monotonic transformation of data using power functions. It is a data transformation
technique used to stabilize variance and make the data more Gaussian-like [35]. The PT
was used in the pre-processing of feature vectors before they were fed into the classifier
in [36,37]. In this work, we designed a GC module to calibrate a skewed feature distribution.

In the pipeline of the network architecture in this work, there is a DCT module to
transform 2D color images from the spatial domain to the frequency domain, and a GC
module for post-processing after feature extraction and before distance measurement.
The main contributions of this work are summarized as follows:

1. This is the first work to introduce plant-disease recognition in the frequency domain.
2. We adopted DCT to transform data to the frequency domain. For the DCT module,

we propose a learning-based frequency selection method to improve the adaptability
to different datasets or data settings. In addition, we designed a GC module to align
the skewed distributions of feature vectors to a Gaussian-like distribution. The two
modules can be flexibly ported to other methods or networks.

3. We conduct extensive experiments to explore the DCT module and GC module.
Compared with the related methods, the accuracy our method is state-of-the-art.

The rest of this paper is organized as follows: Section 2 introduces all experiments
and analyses results; Section 3 is the discussion part; Section 4 introduces the hardware
configurations, data settings and our methods including the problem definition, framework,
DCT module, Gaussian-like calibrator and distance measurement; the paper is concluded
in Section 5.

2. Experiments and Results

We carried out 47 comparison experiments and ablation experiments to illustrate
our method in detail. The details of experiments and results are illustrated and analyzed
as below. All results are average accuracy (%) of 10 epochs in the test. The N-way was
set as 5. The ResNet12 was chosen as the feature extraction backbone network. We set
up data pre-processing before feeding it into the feature extractor. In the spatial domain,
the pre-processing includes:

• RandomResizedCrop;
• RandomHorizontalFlip;
• Normalize.

In the frequency domain, the data-processing includes:
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• Resize(int(filter_size*image_size*1.15)) (before DCT);
• CenterCrop(filter_size*image_size) (before DCT);
• Normalize (after DCT).

Resize was used to enlarge the image_size by up to filter_size*1.15 times first. Center-
Crop is used for getting the center part of the resized image. As mentioned in Section 4.2.3,
the size of each channel is image_size/filter_size after transformation. Resize is used for
keeping the size of each channel the same as the image_size after DCT.

2.1. Comparison and Ablation Study

For showing the effectiveness of frequency representation and GC module, we con-
ducted experiments with three data splits to compare the spatial domain, spatial domain
with GC, frequency domain and frequency domain with GC. The experiments on the spatial
domain were without the DCT module but feeding the RGB image into encoder directly.
The results are listed in Table 1 and the three data settings are introduced in Section 4.1.
e1–e4 were conducted with data setting-1. e5–e8 were conducted with data setting-2.
e9–e12 were conducted with data setting-3. In each group, the lowest accuracy was for
the spatial domain. The accuracy in the frequency domain was much higher compared
to that in the spatial domain. The GC can be added in either the spatial domain pipeline
or the frequency domain pipeline, and obviously improves the accuracy in both domains.
The method of using DCT and GC resulted in the best accuracy in all three data settings.
In the case of 1-shot, accuracy was improved by more than 7% in the three data settings.

Table 1. The experimental results of the three data settings. ( fθ : Resnet12; filter-size: 8 × 8; full
channels: 192; s: spatial domain; f: frequency domain).

ID Method Channel 1-Shot 5-Shot 10-Shot 20-Shot 30-Shot 40-Shot 50-Shot

setting-1

e1 s - 79.32 91.19 92.53 93.55 93.84 93.97 93.86
e2 s + GC - 83.08 93.15 94.71 95.75 95.90 96.01 95.84
e3 f top-24 84.99 94.92 96.71 95.91 97.15 97.31 97.62
e4 f + GC top-24 86.34 95.30 96.93 97.48 97.62 97.83 98.01

setting-2

e5 s - 78.27 90.96 92.69 93.60 93.76 94.02 94.03
e6 s + GC - 79.81 92.11 93.58 94.26 94.51 94.50 94.74
e7 f top-24 82.85 94.48 95.58 96.35 96.59 96.78 96.77
e8 f + GC top-24 85.41 95.21 96.17 96.66 96.90 97.04 97.15

setting-3

e9 s - 57.46 75.12 79.32 81.41 82.48 83.32 83.50
e10 s + GC - 60.69 79.38 82.78 85.19 86.18 86.87 86.86
e11 f top-24 62.32 80.37 83.57 85.75 86.51 87.11 87.22
e12 f + GC top-24 64.54 80.89 84.06 85.91 86.67 87.01 87.33

The bolded values indicates the highest performance in each data setting.

2.2. Channel Selection

As introduced in Section 4.2.3, the more impactful frequency channels will be selected
from Y, Cb and Cr frequency cubes to be the final frequency representation. There are two
ways of selecting frequency channels: fixed channel selection and learning channel selection.
The fixed selection method is based on some principles and experiences. Generally, the more
impactful channels are in low-frequency band. The upper part of the minor diagonal (the
left-bottom to right-top one) is considered as the low frequency part, and the lower part is
considered as the high frequency part. However, at least half of the frequency channels
(including the diagonal) are still in the low-frequency band. Such a crude selection is not
beneficial for computational efficiency. Alternatively, some works have proposed heatmaps
of some popular datasets (e.g., Imagenet) [28]. Actually, different datasets have different
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combinations of informative frequency channels, which was verified in [28]. The coarse or
empirical selection can not adapt to different datasets very well. Thus, it is not reasonable
to use static frequency combinations for different datasets. We use two experiments to
illustrate the effects of different frequency combinations. As shown in Table 2, e13 used
the frequency combination according to the heat map of ImageNet [28] and e7 used the
learning frequency combination of data setting-2 proposed in this work. The results show
that even such a large-scale dataset cannot generalize to different datasets very well. Using
the corresponding frequencies for specific datasets is necessary.

Table 2. The results of different channel selection strategies. e13 uses the frequency combination for
ImageNet; e7 uses the frequency combination for setting-2. ( fθ : Resnet12; method: f; data: setting-2;
filter-size: 8 × 8).

ID Channel Y-Cb-Cr Y Cb Cr 1-Shot 5-Shot 10-Shot

e13 top-24 14-5-5 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 14, 15, 20 0, 1, 2, 6, 9 0, 1, 2, 6, 9 79.66 93.56 95.24
e7 top-24 11-7-6 0, 1, 3, 4, 5, 8, 12, 16, 24, 32, 40 0, 2, 7, 8, 10, 17, 27 0, 1, 3, 7, 8, 16 82.85 94.48 95.58

The bolded values indicates the highest performance in this table.

In this work, we propose to use a learning method to select the informative frequency
channels. In [38], the Squeeze-and-Excitation (SE) attention module was used to learn
the attention of channels. In our method, we adopt the SE channel attention module to
learn the significance of each frequency channel. Taking the standard filter-size 8× 8 as
an example, the full frequencies are 192 channels. The SE module calculates 192 values
as weights of the 192 frequencies. Top-N channels are selected according to the weights.
For the three data settings, from the 192 frequencies obtained with the 8× 8 filter, the top-24
frequencies are selected using the learning method, which is shown in Figure 1.
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(a)

(b)

(c)

Figure 1. (a) The frequency selection of setting-1. (b) The frequency selection of setting-2; (c) The
frequency selection of setting-3. The colored grids are the selected frequencies. Yellow grids are fre-
quencies selected from Y, green grids are frequencies selected from Cb and blue grids are frequencies
selected from Cr. The number of the selected grids was 24. e3 and e4 used the frequencies listed in (a).
e7 and e8 used the frequencies listed in (b). e11 and e12 used the frequencies listed in (c).
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We found that most of the selected channels are indeed in the low-frequency band.
However, the layout of these frequencies does not follow a regular triangular or rectangular
arrangement, but is asymmetrical [28]. Even though all three data settings were for the
same dataset, different categories and samples still exhibit different frequency sensitivities.
Thus, for different datasets or data settings, the learning-based selection method helps to
obtain the optimal combination of frequencies.

2.3. The Effect of Top-N

In this section, we explore the effect of the number of selected frequencies. In Table 3,
we compare the top-N frequencies: top-8, top-16, top-24, top-32, top-48 and top-64. This
group of experiments was performed with data setting-2. It showed that there are more
channels from Y than Cb and Cr in the N selected frequencies, which means that Y contains
more informative features. It verifies the theory of image compression again. The best
accuracy of 1-shot was with the top-24, and the best accuracies of 5-shot and 10-shot were
with the top-64. The accuracy with the top-24 did not degrade too much compared with
that of the top-64, but the communication bandwidth was reduced greatly. In this work,
we choose the top-24 as the optimal top-N to achieve a balance of accuracy and efficiency.
The results for e19 using only the frequencies of the Y channel decrease sharply, suggesting
that some frequencies of Cb and Cr are also important for this classification task.

Table 3. The results of different top-N frequencies selected from full 192 channels. ( fθ : Resnet12;
method: f; data: setting-2; filter-size: 8 × 8).

ID Channel Y-Cb-Cr Y Cb Cr 1-Shot 5-Shot 10-Shot

e14 top-8 4-2-2 0, 8, 24, 40 0, 7 0, 16 80.53 93.08 94.39

e15 top-16 8-4-4 0, 1, 4, 5, 8, 24, 32, 40 0, 7, 8, 17 0, 7, 8, 16 81.34 93.73 95.05

e7 top-24 11-7-6 0, 1, 3, 4, 5, 8, 12, 16, 24, 32, 40 0, 2, 7, 8, 10, 17, 27 0, 1, 3, 7, 8, 16 82.85 94.48 95.58

e16 top-32 14-8-10 0, 1, 2, 3, 4, 5, 8, 12, 16, 24, 32, 34, 35, 40 0, 2, 7, 8, 10, 16, 17, 27 0, 1, 2, 3, 7, 8, 16,
17, 24, 32 82.25 94.10 95.36

e17 top-48 25-9-14 0, 1, 2, 3, 4, 5, 6, 8, 12, 16, 20, 24, 32, 34,
35, 36, 39, 40, 43, 49, 51, 56, 58, 59, 60

0, 2, 7, 8, 10, 16, 17, 18,
27

0, 1, 2, 3, 5, 7, 8,
10, 16, 17, 18, 19,
24, 32

81.84 93.71 94.94

e18 top-64 38-11-15

0, 1, 2, 3, 4, 5, 6, 7, 8, 12, 16, 20, 22, 24,
31, 32, 34, 35, 36, 38, 39, 40, 41, 43, 45,
46, 48, 49, 51, 53, 54, 55, 56, 58, 59, 60,
61, 62

0, 2, 7, 8, 10, 16, 17, 18,
19, 26, 27

0, 1, 2, 3, 4, 5, 7, 8,
10, 16, 17, 18, 19,
24, 32

82.84 94.49 95.77

e19 64(Y) 64-0-0 0-63 - - 71.01 86.61 88.71

The bolded values indicates the highest performance in this table.

2.4. The Effect of High Frequency

From the previous experiments, the most informative frequencies are in low-frequency
bands. Hence, we conducted another group of experiments to explore the effect of selection
range. Three ranges using the 8× 8 filter were tested: the full 192 frequencies; the 108 fre-
quencies of the upper triangle, including the minor diagonal; and the 84 frequencies of
the upper triangle without a minor diagonal. The results of e7, e20 and e21 using the
top-24 channels that were, respectively, selected from the three ranges are shown in Table 4.
The best performance was the top-24 of the full 192 frequencies, which indicates that even if
the more influential frequencies are in the lower-frequency bands, it is not an absolute rule.
Some high frequencies also have important contributions to our task, such as the number
40 channel in Y.
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Table 4. The results of top-24 channels selected from different ranges. ( fθ : Resnet12; method: f; data:
setting-2; filter-size: 8× 8).

ID Channel Y-Cb-Cr Y Cb Cr 1-Shot 5-Shot 10-Shot

e7 top-24/192 11-7-6 0, 1, 3, 4, 5, 8, 12, 16, 24, 32, 40 0, 2, 7, 8, 10, 17, 27 0, 1, 3, 7, 8, 16 82.85 94.48 95.58
e20 top-24/108 11-6-7 0, 1, 3, 4, 5, 8, 12, 16, 20, 24, 32 0, 7, 8, 10, 16, 27 0, 1, 2, 7, 8, 16, 24 80.20 92.50 94.24
e21 top-24/84 11-6-7 0, 1, 2, 3, 4, 5, 8, 12, 16, 20, 24 0, 7, 8, 16, 19, 27 0, 1, 2, 7, 8, 16, 24 81.23 93.79 95.19

The bolded values indicates the highest performance in this table.

2.5. The Effect of Filter-Size

In this subsection, we explore the effect of filter-size. As analyzed in Section 4.2.3,
SDCT × SDCT is the filter-size of the DCT. The size can be a standard setting of 8x8 pixels or
other different integer sizes between 4× 4 and 32× 32 pixels [39]. The number SDCT× SDCT
represents the frequency granularity. A small number means a coarse frequency separation,
and large number means a fine frequency separation. For example, the 8× 8 filter means
Y, Cb and Cr channels are transferred to 64 frequencies, and the full frequencies is 192.
The 16× 16 filter transforms Y, Cb and Cr to 256 frequencies, and the frequencies number
768. We compare three filter-sizes, 4× 4, 8× 8 and 16× 16, and the results are shown in
Table 5. e22–e24 used a 4× 4 filter, e7, e25 and e26 usd ae 8× 8 filter, and e27–e29 used a
16× 16 filter. The selected top-N frequencies follow the ratios: 1/8, 1/4 and 1. The best
result used the standard 8× 8 filter with the top-24 frequencies.

Table 5. The results of different filter-sizes and top-N frequency selections. The full channels of
filter-size 4× 4, 8× 8 and 16× 16 were 48, 192 and 768, respectively. ( fθ : Resnet12; method: f; data:
setting-2).

ID Channel Y-Cb-Cr Y Cb Cr 1-Shot 5-Shot 10-Shot

filter-size: 4× 4

e22 top-6 3-2-1 0, 3, 8 0, 8 0 81.15 93.42 94.87
e23 top-12 5-3-4 0, 1, 2, 3, 8 0, 2, 8 0, 3, 5, 8 80.65 92.67 94.26
e24 full-48 16-16-16 0-15 0-15 0-15 80.84 92.59 94.12

filter-size: 8× 8

e7 top-24 11-7-6 0, 1, 3, 4, 5, 8, 12, 16, 24, 32, 40 0, 2, 7, 8, 10, 17, 27 0, 1, 3, 7, 8, 16 82.85 94.48 95.58

e25 top-48 25-9-14
0, 1, 2, 3, 4, 5, 6, 8, 12, 16, 20, 24,
32, 34, 35, 36, 39, 40, 43, 49, 51, 56,
58, 59, 60

0, 2, 7, 8, 10, 16, 17, 18, 27 0, 1, 2, 3, 5, 7, 8, 10, 16, 17, 18,
19, 24, 32 81.84 93.71 94.94

e26 full-192 64-64-64 0-63 0-63 0-63 81.62 93.55 95.04

filter-size: 16× 16

e27 top-96 45-26-25

0, 1, 2, 3, 4, 17, 19, 32, 34, 37, 40,
43, 52, 54, 56, 58, 71, 73, 82, 85, 96,
103, 106, 107, 113, 117, 142, 144,
145, 150, 158, 170, 173, 187, 188,
190, 200, 201, 208, 219, 240, 242,
244, 253, 254

0, 1, 2, 17, 23, 46, 69, 75,
76, 90, 126, 129, 131, 140,
160, 164, 193, 196, 200,
207, 216, 217, 224, 229,
231, 252

0, 33, 46, 51, 54, 59, 71, 74, 85,
87, 100, 111, 112, 164, 166,
169, 172, 189, 199, 234, 237,
238, 249, 252, 254

80.93 92.84 94.42

e28 top-192 82-50-60

0, 1, 2, 3, 4, 13, 17, 19, 25, 27, 28,
29, 32, 34, 37, 38, 40, 41, 43, 46, 52,
53, 54, 56, 58, 60, 62, 71, 73, 82, 85,
94, 96, 99, 103, 106, 107, 113, 117,
122, 126, 141, 142, 144, 145, 150,
154, 158, 161, 168, 170, 173, 174,
179, 180, 184, 187, 188, 190, 192,
200, 201, 206, 208, 209, 211, 212,
218, 219, 223, 224, 240, 242, 244,
252, 253, 254, 255

0, 1, 2, 17, 23, 36, 45, 46,
58, 66, 69, 75, 76, 79, 90,
92, 97, 112, 115, 117, 119,
126, 129, 131, 132, 140,
143, 147, 157, 160, 161,
164, 165, 169, 180, 193,
196, 200, 205, 207, 210,
212, 216, 217, 219, 224,
229, 231, 235, 238, 240,
252

0, 7, 17, 18, 26, 32, 33, 34, 36,
39, 45, 46, 48, 51, 52, 53, 54,
59, 60, 71, 74, 82, 85, 87, 90,
98, 99, 100, 103, 111, 112, 135,
153, 154, 156, 158, 164, 166,
169, 172, 173, 177, 181, 183,
185, 189, 196, 198, 199, 210,
219, 229, 234, 237, 238, 245,
246, 249, 250, 252, 254

81.73 93.63 95.05

e29 full-768 256-256-256 0-255 0-255 0-255 81.47 93.41 94.87

The bolded values indicates the highest performance in this table.

2.6. Ablation Experiment of the GC Module

In the GC module, in addition to the core part of PT, we have vertical sliding, normal-
ization and centralization. The vertical sliding is a necessary step to solve to negative-value
problem. We carried out ablation experiments to show the effects of the other two compo-
nents, as shown in Table 6. Compared to e30, e31 and e32 show the contributions of the
normalization and the centralization, respectively. In e33, the normalization was performed
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before PT. The best setting of GC module was PT+normalization+centralization, that is, the
configuration of e8.

Table 6. The ablation experiments of the GC module. ( fθ : Resnet12; data: setting-2; method: f + GC;
filter-size: 8× 8; channel: top-24).

ID Components of GC Module 1-Shot 5-Shot 10-Shot

e30 PT 81.82 93.27 94.91
e31 PT + normalization 82.60 94.55 95.95
e32 PT + centralization 85.36 94.94 96.08
e8 PT + normalization + centralization 85.41 95.21 96.17
e33 normalization + PT + centralization 85.04 94.76 95.92

The bolded values indicates the highest performance in this table.

In order to see the effect of the Gaussian-like calibrator, we use a histogram to show
the distribution of the feature vectors. In Figure 2, the first row shows a sample embedded
in the spatial domain and the second row shows the same sample embedded in frequency
domain. The first column shows the raw feature distribution; the second column shows
the distribution after calibration; the third column shows the distribution after PT and
normalization; and the last column shows the distribution after PT, normalization and
centralization. Obviously, PT adjusts the right-skewed distribution to a Gaussian-like
distribution. The centralization makes the distribution more standardized and symmetrical.
The distribution in the frequency domain is more like a Gaussian distribution than that
in the spatial domain, which is one of the reasons why the performance in the frequency
domain is better than that in the spatial domain.

(a)

(b)
(1) raw feature distribution (2) PT (3) PT + normalization (4) PT + normalization +  centralization

Figure 2. The histograms of each step in the GC module. The red line highlights the symmetry of
the histogram when µ = 0. (a) A sample embedded in the spatial domain. (b) The same sample
embedded in the frequency domain. The first column is the raw feature distribution, the second
column is after PT, the third column is after PT + normalization, the fourth column is after PT +
normalization + centralization.

2.7. Setting of β

According to the definition of PT, the degree of calibration is decided by the hyper-
parameter β. β = 1 leads no effect, and decreasing β can phase out the right-skewed
distribution [36]. We carried out a group of experiments to observe the effects of different
β, as shown in Table 7. As observed, most of our data are right-skewed. The value of β
starts at 1.5 and decreases gradually. The histograms of the feature distributions are shown
in Figure 3. Figure 3a is the raw feature distribution which is a right-skewed example,
Figure 3b is the distributions after PT, Figure 3c is the distribution after PT+normalization
and Figure 3d shows the distribution after PT+normalization+centralization. It is clear that
after centralization, β = 0.5 leads to the closest normal distribution calibration, which is
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consistent with the results of e8. The first column and the second column are left-skewed
distributions because the β is negative. The optimal setting of β is 0.5 or 0. The β in e35
is 1, which means no effect of PT. However, the results of e35 are better than e7 because
the normalization and centralization still work and have positive effects. The degree of
normalization of the distributions and the results shows a positive correlation. The closer
the morphology of the distribution to the normal distribution, the higher the accuracy. This
group of experiments demonstrated that the distribution calibration is necessary.

Table 7. The results of different values of β. ( fθ : Resnet12, data: setting-2, method: f + GC, filter-size:
8× 8, channel: top-24).

ID β 1-Shot 5-Shot 10-Shot

e34 1.5 83.13 93.57 94.77
e35 1 84.74 94.82 95.88
e8 0.5 85.41 95.21 96.17
e36 0 84.75 95.08 96.37
e37 −0.5 69.44 78.84 79.73
e38 −1 68.10 77.19 78.22

The bolded values indicates the highest performance in this table.

(a) raw feature distribution

(b) PT

(c) PT + normalization

(d) PT + normalization + centralization

−1 −0.5 0        0.5 1        1.5 

Figure 3. The histograms of different β of each step in the GC module. The red line highlights the
symmetry of the histogram when µ = 0. (a)The raw feature distribution. (b) After PT. (c) After PT +
normalization. (d) After PT + normalization + centralization.

2.8. Integrating Spatial and Frequency Representation

We carried out another experiment of integrating the spatial representation and fre-
quency representation together. The framework is shown in Figure 4. A sample was fed
into the spatial branch and one into the frequency branch, and two feature vectors were
generated. Then, the two feature vectors were concatenated as the representation of the
sample. The results are shown in Table 8. It is unexpected that the results of integrating
method are not better than the results in the frequency domain only. The reason is discussed
in Section 3.
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DCT

sample +

GC

GC

spatial domain

frequency domain

Figure 4. The network architecture of integrating spatial and frequency representations.

Table 8. The results of integrating the spatial and frequency representations. ( fθ : Resnet12; data:
setting-2; filter-size: 8× 8; channel: top-24).

ID Method 1-Shot 5-Shot 10-Shot

e6 s + GC 79.81 92.11 93.58
e8 f + GC 85.36 94.86 96.13
e39 s + f + GC 84.08 94.35 95.92

The bolded values indicates the highest performance in this table.

2.9. Efficiency Analysis

In our experiments, we found that the convergence speed of backbone CNNs in spatial
domain is very different from in the frequency domain. The four loss curves of e5, e6,
e7 and e8 in the pre-training stage are shown in Figure 5. e5 and e6 are in the spatial
domain, and e7 and e8 are in the frequency domain. The network was convergent within 20
epochs, and the loss declined to around 0.008 in frequency domain. In the spatial domain,
the network was convergent within 30 epochs, and the loss declined to around 0.07. This
means that CNNs are very efficient at extracting features from frequency representations.

ì

ìXñ

í

íXñ

î

îXñ

ì íì îì ïì

o}
�
�

��}�Z

�ñ �ò

�ó �ô

Figure 5. The loss in the spatial domain and frequency domain in the pre-training stage.

2.10. Comparison with Related Works

In order to show the superiority of our method, we conducted many experiments to
compare our method with the recent related ones. We used other data settings of PV: 32
categories for training and the remaining 6 categories (apple 4 classes, blueberry healthy,
cherry healthy) for testing. We compared it with the work of [10,13,40] (e40, e41, e42, e43).
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We also used three other data settings to compare with [13] (e9, e10, e11, e12; e5, e6, e7,
e8; e44, e45, e46, e47). In order to be comparable, we executed the experiments with the
same data settings as their work. The results are shown in Table 9. The related frequency
combinations of each data setting are listed in this table too.

Table 9. The results compared with related works.

Data Setting and K-Shot
ID Method 1-Shot 5-Shot 10-Shot Y Cb Cr

Data setting in [10]

Siamese Contrastive [10] 50.2 64.2 70.2
Siamese Triplet [10] 65.2 72.3 76.8
Single SS [13] 74.5 89.7 92.6
Iterative SS [13] 75.1 90.0 92.7

0 1 5 6 14 15 27 28 0 1 5 6 14 15 27 28 0 1 5 6 14 15 27 28

2 4 7 13 16 26 29 42 2 4 7 13 16 26 29 42 2 4 7 13 16 26 29 42

3 8 12 17 25 30 41 43 3 8 12 17 25 30 41 43 3 8 12 17 25 30 41 43

9 11 18 24 31 40 44 53 9 11 18 24 31 40 44 53 9 11 18 24 31 40 44 53

10 19 23 32 39 45 52 54 10 19 23 32 39 45 52 54 10 19 23 32 39 45 52 54

20 22 33 38 46 51 55 60 20 22 33 38 46 51 55 60 20 22 33 38 46 51 55 60

21 34 37 47 50 56 59 61 21 34 37 47 50 56 59 61 21 34 37 47 50 56 59 61

35 36 48 49 57 58 62 63 35 36 48 49 57 58 62 63 35 36 48 49 57 58 62 63

0 1 5 6 14 15 27 28 0 1 5 6 14 15 27 28 0 1 5 6 14 15 27 28

2 4 7 13 16 26 29 42 2 4 7 13 16 26 29 42 2 4 7 13 16 26 29 42

3 8 12 17 25 30 41 43 3 8 12 17 25 30 41 43 3 8 12 17 25 30 41 43

9 11 18 24 31 40 44 53 9 11 18 24 31 40 44 53 9 11 18 24 31 40 44 53

10 19 23 32 39 45 52 54 10 19 23 32 39 45 52 54 10 19 23 32 39 45 52 54

20 22 33 38 46 51 55 60 20 22 33 38 46 51 55 60 20 22 33 38 46 51 55 60

21 34 37 47 50 56 59 61 21 34 37 47 50 56 59 61 21 34 37 47 50 56 59 61

35 36 48 49 57 58 62 63 35 36 48 49 57 58 62 63 35 36 48 49 57 58 62 63

0 1 5 6 14 15 27 28 0 1 5 6 14 15 27 28 0 1 5 6 14 15 27 28

2 4 7 13 16 26 29 42 2 4 7 13 16 26 29 42 2 4 7 13 16 26 29 42

3 8 12 17 25 30 41 43 3 8 12 17 25 30 41 43 3 8 12 17 25 30 41 43

9 11 18 24 31 40 44 53 9 11 18 24 31 40 44 53 9 11 18 24 31 40 44 53

10 19 23 32 39 45 52 54 10 19 23 32 39 45 52 54 10 19 23 32 39 45 52 54

20 22 33 38 46 51 55 60 20 22 33 38 46 51 55 60 20 22 33 38 46 51 55 60

21 34 37 47 50 56 59 61 21 34 37 47 50 56 59 61 21 34 37 47 50 56 59 61

35 36 48 49 57 58 62 63 35 36 48 49 57 58 62 63 35 36 48 49 57 58 62 63

0 1 5 6 14 15 27 28 0 1 5 6 14 15 27 28 0 1 5 6 14 15 27 28

2 4 7 13 16 26 29 42 2 4 7 13 16 26 29 42 2 4 7 13 16 26 29 42

3 8 12 17 25 30 41 43 3 8 12 17 25 30 41 43 3 8 12 17 25 30 41 43

9 11 18 24 31 40 44 53 9 11 18 24 31 40 44 53 9 11 18 24 31 40 44 53

10 19 23 32 39 45 52 54 10 19 23 32 39 45 52 54 10 19 23 32 39 45 52 54

20 22 33 38 46 51 55 60 20 22 33 38 46 51 55 60 20 22 33 38 46 51 55 60

21 34 37 47 50 56 59 61 21 34 37 47 50 56 59 61 21 34 37 47 50 56 59 61

35 36 48 49 57 58 62 63 35 36 48 49 57 58 62 63 35 36 48 49 57 58 62 63

MAML [40,41] 58.8 79.3 87.1
IMAL [40] 63.8 83.5 89.9

e40 Ours s 76.4 91.0 93.2
e41 Ours s + GC 78.7 91.0 92.3
e42 Ours f 79.8 92.5 94.3
e43 Ours f + GC 81.6 93.1 94.3

Split-1 of [13]

Single SS [13] 33.7 50.9 66.7

0 1 5 6 14 15 27 28 0 1 5 6 14 15 27 28 0 1 5 6 14 15 27 28

2 4 7 13 16 26 29 42 2 4 7 13 16 26 29 42 2 4 7 13 16 26 29 42

3 8 12 17 25 30 41 43 3 8 12 17 25 30 41 43 3 8 12 17 25 30 41 43

9 11 18 24 31 40 44 53 9 11 18 24 31 40 44 53 9 11 18 24 31 40 44 53

10 19 23 32 39 45 52 54 10 19 23 32 39 45 52 54 10 19 23 32 39 45 52 54

20 22 33 38 46 51 55 60 20 22 33 38 46 51 55 60 20 22 33 38 46 51 55 60

21 34 37 47 50 56 59 61 21 34 37 47 50 56 59 61 21 34 37 47 50 56 59 61

35 36 48 49 57 58 62 63 35 36 48 49 57 58 62 63 35 36 48 49 57 58 62 63

0 1 5 6 14 15 27 28 0 1 5 6 14 15 27 28 0 1 5 6 14 15 27 28

2 4 7 13 16 26 29 42 2 4 7 13 16 26 29 42 2 4 7 13 16 26 29 42

3 8 12 17 25 30 41 43 3 8 12 17 25 30 41 43 3 8 12 17 25 30 41 43

9 11 18 24 31 40 44 53 9 11 18 24 31 40 44 53 9 11 18 24 31 40 44 53

10 19 23 32 39 45 52 54 10 19 23 32 39 45 52 54 10 19 23 32 39 45 52 54

20 22 33 38 46 51 55 60 20 22 33 38 46 51 55 60 20 22 33 38 46 51 55 60

21 34 37 47 50 56 59 61 21 34 37 47 50 56 59 61 21 34 37 47 50 56 59 61

35 36 48 49 57 58 62 63 35 36 48 49 57 58 62 63 35 36 48 49 57 58 62 63

0 1 5 6 14 15 27 28 0 1 5 6 14 15 27 28 0 1 5 6 14 15 27 28

2 4 7 13 16 26 29 42 2 4 7 13 16 26 29 42 2 4 7 13 16 26 29 42

3 8 12 17 25 30 41 43 3 8 12 17 25 30 41 43 3 8 12 17 25 30 41 43

9 11 18 24 31 40 44 53 9 11 18 24 31 40 44 53 9 11 18 24 31 40 44 53

10 19 23 32 39 45 52 54 10 19 23 32 39 45 52 54 10 19 23 32 39 45 52 54

20 22 33 38 46 51 55 60 20 22 33 38 46 51 55 60 20 22 33 38 46 51 55 60

21 34 37 47 50 56 59 61 21 34 37 47 50 56 59 61 21 34 37 47 50 56 59 61

35 36 48 49 57 58 62 63 35 36 48 49 57 58 62 63 35 36 48 49 57 58 62 63

0 1 5 6 14 15 27 28 0 1 5 6 14 15 27 28 0 1 5 6 14 15 27 28

2 4 7 13 16 26 29 42 2 4 7 13 16 26 29 42 2 4 7 13 16 26 29 42

3 8 12 17 25 30 41 43 3 8 12 17 25 30 41 43 3 8 12 17 25 30 41 43

9 11 18 24 31 40 44 53 9 11 18 24 31 40 44 53 9 11 18 24 31 40 44 53

10 19 23 32 39 45 52 54 10 19 23 32 39 45 52 54 10 19 23 32 39 45 52 54

20 22 33 38 46 51 55 60 20 22 33 38 46 51 55 60 20 22 33 38 46 51 55 60

21 34 37 47 50 56 59 61 21 34 37 47 50 56 59 61 21 34 37 47 50 56 59 61

35 36 48 49 57 58 62 63 35 36 48 49 57 58 62 63 35 36 48 49 57 58 62 63

Iterative SS [13] 34.0 53.1 68.8
[19] 46.6 63.5 -

e9 Ours s 57.5 75.1 79.3
e10 Ours s + GC 60.7 79.4 82.8
e11 Ours f 62.3 80.4 83.6
e12 Ours f + GC 64.5 80.9 84.1

Split-2 of [13]

Single SS [13] 44.7 74.7 85.7

0 1 5 6 14 15 27 28 0 1 5 6 14 15 27 28 0 1 5 6 14 15 27 28

2 4 7 13 16 26 29 42 2 4 7 13 16 26 29 42 2 4 7 13 16 26 29 42

3 8 12 17 25 30 41 43 3 8 12 17 25 30 41 43 3 8 12 17 25 30 41 43

9 11 18 24 31 40 44 53 9 11 18 24 31 40 44 53 9 11 18 24 31 40 44 53

10 19 23 32 39 45 52 54 10 19 23 32 39 45 52 54 10 19 23 32 39 45 52 54

20 22 33 38 46 51 55 60 20 22 33 38 46 51 55 60 20 22 33 38 46 51 55 60

21 34 37 47 50 56 59 61 21 34 37 47 50 56 59 61 21 34 37 47 50 56 59 61

35 36 48 49 57 58 62 63 35 36 48 49 57 58 62 63 35 36 48 49 57 58 62 63

0 1 5 6 14 15 27 28 0 1 5 6 14 15 27 28 0 1 5 6 14 15 27 28

2 4 7 13 16 26 29 42 2 4 7 13 16 26 29 42 2 4 7 13 16 26 29 42

3 8 12 17 25 30 41 43 3 8 12 17 25 30 41 43 3 8 12 17 25 30 41 43

9 11 18 24 31 40 44 53 9 11 18 24 31 40 44 53 9 11 18 24 31 40 44 53

10 19 23 32 39 45 52 54 10 19 23 32 39 45 52 54 10 19 23 32 39 45 52 54

20 22 33 38 46 51 55 60 20 22 33 38 46 51 55 60 20 22 33 38 46 51 55 60

21 34 37 47 50 56 59 61 21 34 37 47 50 56 59 61 21 34 37 47 50 56 59 61

35 36 48 49 57 58 62 63 35 36 48 49 57 58 62 63 35 36 48 49 57 58 62 63

0 1 5 6 14 15 27 28 0 1 5 6 14 15 27 28 0 1 5 6 14 15 27 28

2 4 7 13 16 26 29 42 2 4 7 13 16 26 29 42 2 4 7 13 16 26 29 42

3 8 12 17 25 30 41 43 3 8 12 17 25 30 41 43 3 8 12 17 25 30 41 43

9 11 18 24 31 40 44 53 9 11 18 24 31 40 44 53 9 11 18 24 31 40 44 53

10 19 23 32 39 45 52 54 10 19 23 32 39 45 52 54 10 19 23 32 39 45 52 54

20 22 33 38 46 51 55 60 20 22 33 38 46 51 55 60 20 22 33 38 46 51 55 60

21 34 37 47 50 56 59 61 21 34 37 47 50 56 59 61 21 34 37 47 50 56 59 61

35 36 48 49 57 58 62 63 35 36 48 49 57 58 62 63 35 36 48 49 57 58 62 63

0 1 5 6 14 15 27 28 0 1 5 6 14 15 27 28 0 1 5 6 14 15 27 28

2 4 7 13 16 26 29 42 2 4 7 13 16 26 29 42 2 4 7 13 16 26 29 42

3 8 12 17 25 30 41 43 3 8 12 17 25 30 41 43 3 8 12 17 25 30 41 43

9 11 18 24 31 40 44 53 9 11 18 24 31 40 44 53 9 11 18 24 31 40 44 53

10 19 23 32 39 45 52 54 10 19 23 32 39 45 52 54 10 19 23 32 39 45 52 54

20 22 33 38 46 51 55 60 20 22 33 38 46 51 55 60 20 22 33 38 46 51 55 60

21 34 37 47 50 56 59 61 21 34 37 47 50 56 59 61 21 34 37 47 50 56 59 61

35 36 48 49 57 58 62 63 35 36 48 49 57 58 62 63 35 36 48 49 57 58 62 63

Iterative SS [13] 46.4 76.9 89.2
[19] 70.9 87.0 -

e5 Ours s 78.3 91.0 92.7
e6 Ours s + GC 79.8 92.1 93.6
e7 Ours f 82.9 94.5 95.6
e8 Ours f + GC 85.4 94.9 96.1

Split-3 of [13]

Single SS [13] 52.3 67.6 79.9

0 1 5 6 14 15 27 28 0 1 5 6 14 15 27 28 0 1 5 6 14 15 27 28

2 4 7 13 16 26 29 42 2 4 7 13 16 26 29 42 2 4 7 13 16 26 29 42

3 8 12 17 25 30 41 43 3 8 12 17 25 30 41 43 3 8 12 17 25 30 41 43

9 11 18 24 31 40 44 53 9 11 18 24 31 40 44 53 9 11 18 24 31 40 44 53

10 19 23 32 39 45 52 54 10 19 23 32 39 45 52 54 10 19 23 32 39 45 52 54

20 22 33 38 46 51 55 60 20 22 33 38 46 51 55 60 20 22 33 38 46 51 55 60

21 34 37 47 50 56 59 61 21 34 37 47 50 56 59 61 21 34 37 47 50 56 59 61

35 36 48 49 57 58 62 63 35 36 48 49 57 58 62 63 35 36 48 49 57 58 62 63

0 1 5 6 14 15 27 28 0 1 5 6 14 15 27 28 0 1 5 6 14 15 27 28

2 4 7 13 16 26 29 42 2 4 7 13 16 26 29 42 2 4 7 13 16 26 29 42

3 8 12 17 25 30 41 43 3 8 12 17 25 30 41 43 3 8 12 17 25 30 41 43

9 11 18 24 31 40 44 53 9 11 18 24 31 40 44 53 9 11 18 24 31 40 44 53

10 19 23 32 39 45 52 54 10 19 23 32 39 45 52 54 10 19 23 32 39 45 52 54

20 22 33 38 46 51 55 60 20 22 33 38 46 51 55 60 20 22 33 38 46 51 55 60

21 34 37 47 50 56 59 61 21 34 37 47 50 56 59 61 21 34 37 47 50 56 59 61

35 36 48 49 57 58 62 63 35 36 48 49 57 58 62 63 35 36 48 49 57 58 62 63

0 1 5 6 14 15 27 28 0 1 5 6 14 15 27 28 0 1 5 6 14 15 27 28

2 4 7 13 16 26 29 42 2 4 7 13 16 26 29 42 2 4 7 13 16 26 29 42

3 8 12 17 25 30 41 43 3 8 12 17 25 30 41 43 3 8 12 17 25 30 41 43

9 11 18 24 31 40 44 53 9 11 18 24 31 40 44 53 9 11 18 24 31 40 44 53

10 19 23 32 39 45 52 54 10 19 23 32 39 45 52 54 10 19 23 32 39 45 52 54

20 22 33 38 46 51 55 60 20 22 33 38 46 51 55 60 20 22 33 38 46 51 55 60

21 34 37 47 50 56 59 61 21 34 37 47 50 56 59 61 21 34 37 47 50 56 59 61

35 36 48 49 57 58 62 63 35 36 48 49 57 58 62 63 35 36 48 49 57 58 62 63

0 1 5 6 14 15 27 28 0 1 5 6 14 15 27 28 0 1 5 6 14 15 27 28

2 4 7 13 16 26 29 42 2 4 7 13 16 26 29 42 2 4 7 13 16 26 29 42

3 8 12 17 25 30 41 43 3 8 12 17 25 30 41 43 3 8 12 17 25 30 41 43

9 11 18 24 31 40 44 53 9 11 18 24 31 40 44 53 9 11 18 24 31 40 44 53

10 19 23 32 39 45 52 54 10 19 23 32 39 45 52 54 10 19 23 32 39 45 52 54

20 22 33 38 46 51 55 60 20 22 33 38 46 51 55 60 20 22 33 38 46 51 55 60

21 34 37 47 50 56 59 61 21 34 37 47 50 56 59 61 21 34 37 47 50 56 59 61

35 36 48 49 57 58 62 63 35 36 48 49 57 58 62 63 35 36 48 49 57 58 62 63

Iterative SS [13] 55.2 69.3 80.8
[19] 75.4 88.5 -

e44 Ours s 76.6 88.6 90.7
e45 Ours s + GC 81.2 90.0 91.5
e46 Ours f 79.9 90.8 92.7
e47 Ours f + GC 82.7 92.1 93.7

The bolded values indicates the highest performance in the comparable group.

3. Discussion
3.1. Motivation, Works and Contributions

FSL is currently in the rapid development phase of theoretical research and has
just started to be used in smart agriculture. Although FSL is very suitable for plant
disease identification and has attracted active research in recent years, its accuracy is not so
confident when applying this technique. These reasons motivated us to further improve
the accuracy of plant disease identification. After an exhaustive literature review, we found
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that the existing studies in this field are all in spatial domain. Therefore, we intended to
explore FSL from a new perspective, i.e., in the frequency domain.

Inspired by the image compression technique, we proposed an FSL method in the
frequency domain for plant-disease recognition. In the framework, the RGB image is trans-
ferred to the frequency domain by the DCT module. Then, the frequency representation is
fed to the CNN for feature extraction. In order to align the feature vectors with a Gaussian-
like distribution, we designed the GC module to calibrate the skewed distribution. Through
extensive experiments, the effectiveness of the two modules were explicitly illustrated, and
the configurations of DCT module and GC module were analyzed. No matter the data
settings, and in comparison to related studies, the superiority of our method indicates that
our method has good universality.

Our work is the first work on FSL for plant-disease recognition in the frequency
domain. In the DCT module, we proposed a learning-based frequency selection method for
improving the adaptability to different datasets or data settings. We designed a GC module
to align these complex distributions with a Gaussian-like distribution, which has positive
effects in both the spatial domain and the frequency domain. The two modules can be used
independently from our pipeline as plug-ins for other methods or networks. In particular,
they can be easily transplanted to the popular CNNs, suggesting that these two modules
have a wide range of application scenarios. Comparing with the related works, our method
is state-of-the-art.

3.2. Findings

1. The performance was improved in the frequency domain compared to in the spatial
domain, which indicates that better features can be obtained from frequency repre-
sentation. In other words, CNNs can extract more critical features from a frequency
representation. Another proof demonstrates this point, which is that the convergent
speed was much faster for the frequency domain than for the spatial domain, and the
loss was smaller as well. This important finding suggests that the frequency repre-
sentation in the frequency domain can be attempted not only for classification tasks
in FSL, but also for other classification tasks, and even for any other task that uses a
CNN to extract features.

2. In this work, we used cosine similarity to calculate the distance, and the GC module
has shown prominent improvements in both the frequency domain and the spatial
domain. Our method illustrates the use of Gaussian-like calibration in a CNN pipeline.
In fact, the GC module can be used in a broader range of machine learning. Several
researches have shown that not only cosine similarity, but also other distance-based
methods, such as KNN, K-means and the SVM classifier, are worth using on PT to
improve performance.

3. We have demonstrated that channel selection in DCT is critical to determine the
performance. Different frequency combinations lead to very different results. As the
frequencies are considered as channels, the channel attention can be used to calculate
the weights of different frequencies. We provided an idea for frequency selection.
In this work, the SE module was used. Actually, it can be replaced with other channel
attention modules, such as the channel attention module in the CABM, thereby
providing great flexibly [42].

4. In principle, performance is always lifted when adding more information. However,
the experiment of combining the spatial and frequency representations together did
not show an improvement, but a detriment. According to our analysis, the spatial
representation and the frequency representation are two ways of representing the
same entity, but the substance of the content is the same. In the whole pipeline,
the performance is also decided by the parsing ability of the backbone network to
a certain representation of sample. The combination of the spatial representation
and frequency representation does not enrich the features or generate extra useful
information. Conversely, redundant representation become the interference factor.
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5. In recent years, the architectures of networks have gone deeper and deeper. However,
it does not mean that deeper networks always outperform shallower networks. First,
FSL is a kind of learning task with limited data-scale. For a deeper network, it always
has a large number of parameters that need to be updated. Under the data-limitation
condition, too deep a network could result in insufficient updating of parameters
in back-propagation due to the overly long back-propagation path. In parameter
updating, shallower networks are more flexible, and the deeper networks are bulky.
In addition, our specific task identified diseases while relying on the colors, shapes
and textures of lesions. These simpler and more basic features are learnt in shallower
layers. Hence, the very deep networks are not helpful. In short, the size of network
should match the specific task and data resources.

3.3. Limitations and Future Works

1. Multi-disease cases are not involved in this work. In short, the samples of PV were
taken under controlled conditions (laboratory settings). These settings make the
samples relatively simple and differ significantly from those obtained under in-field
conditions. That is the reason many researches have already achieved high accuracy
by using deep-learning CNNs on PV [43]. Since the aim of this work was to explore
methods in the frequency domain and we did not want the content of this paper to
be scattered, we only used PV in our experiments. Therefore, the multi-disease cases
were not taken into account in this work. In fact, once infected by the first disease,
the plant is vulnerable to other diseases, as the immune system is attacked and be-
comes weak [44]. In real field conditions, it is relatively common for multiple diseases
to occur in one plant. However, the combinations of different diseases are too many
to collect sufficient samples for each category from classification perspective (e.g.,
three diseases of a species generate seven categories). Hence, if using classification to
solve this problem, requirements of data are difficult to meet. We recommend using
semantic segmentation to solve this problem.

2. As shown in Section 4.1, the images of PV have simple backgrounds. Complex back-
ground cases were not considered in this work. In the application, we could not
predict the scenario in the test. Images may be taken from fields with complex back-
grounds. In order to improve the accuracy, it is necessary to perform pre-processing to
reduce the influence of the background, which involves the research direction of object
detection (e.g., leaves, fruits or lesions detection). In future work, research on plant
disease identification should shift to real field environments. The treatment of complex
environments is important to advance the technology into practical applications.

3. In this work, we set up three data settings to mimic different application scenarios.
The results of setting-1 and setting-2 are far superior to those of setting-3. setting-1
is the easiest setting because the features of different plants are very distinguishable.
Setting-1 covers 10 plants, and setting-2 covers 3 plants. The results of setting-2 got
close to those of the setting-1, which indicates that the model not only identified the
plants but also the diseases. The performance of setting-3 with 10 test categories
belonging to tomato dropped. This kind of setting is more meaningful to farmers
but is a difficult task. To some extent, this is the purest form of disease identifica-
tion, without any notion of species. It is sub-class classification (fine-grained vision
classification), which is another research topic for computer vision. It needs more
finely distinguishable features, which like humans, distinguish two similar objects.
The lesion detection can help the networks focusing on the fine-grained features and
improve the sub-class classification task.

4. Cross-domain research is a hot topic in FSL recently, which is defined as training
with one dataset and generalizing to another dataset in the test. Our work does not
refer to this topic because only one dataset was used. Further mining the benefits of
feature distribution may solve the cross-domain problem. In PV, although there are
differences between categories, the distributions of the samples are similar because
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these samples were collected under the same conditions. The data from different
datasets would lead to more complex distributions. The feature distributions of
different datasets and the distribution calibration of the different domains are worth
studying.

5. Another focus is the fine research of the frequency channels. In this work, although we
evaluated the weights of each channel, we did not do further research of these chan-
nels. In future work, some visualization works and fine studies of each channel could
help to better understand the frequency representation.

6. Even though we demonstrated that CNNs can extract better features from frequency
representations, networks that are more suitable for frequency representations are
worth being investigated.

4. Materials and Methods
4.1. Materials

The configuration of hardware used in this work was: graphics: Tesla V100-DGXS-32
GB; video memory: 32 G × 4; processor: Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz;
operating system: Ubuntu 18.04.6 LTS.

For the data, we used PV [45] as our experiment materials, which was released in 2015
by Pennsylvania State University. It is the most frequently used and comprehensive dataset
in academic research up to now in plant-disease recognition. It includes 50,403 images
which cover over 14 crop species and 38 categories. As shown in Figure 6, each category is
given an ID. The characteristics of PV are: (1) a single leaf is included in per image; (2) a
single disease occurs per leaf; (3) the backgrounds of the images were unified by using a
clean board; (4) the illumination was controlled when taking photos.
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Figure 6. The samples of 38 categories in PV.

According to the requirement of data setting in FSL, data should be split into two
parts without intersection: source set and target set. The source set is used for training, and
the target set is used for testing. We set up three data settings, as illustrated in Table 10:
(1) setting-1: 10 categories covering 10 species were selected as the target set, and the
remaining 28 categories were used as the source set; (2) setting-2: 10 categories covering
3 species were selected as the target set, and the remaining 28 categories were used as the
source set; (3) setting-3: 10 categories belonging to tomato only were selected as the target
set, and the remaining 28 categories were used as the source set.
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Table 10. The three data settings of PV used in our work.

Data
Setting Source Set (28) Target Set (10) Target Species

setting-1
2, 3, 4, 5, 7, 9, 10, 11, 13, 14, 15, 18, 20, 22,
23, 24, 25, 26, 28, 30, 31, 32, 33, 34, 35, 36,
37, 38

1, 6, 8, 12, 16, 17, 19, 21, 27,
29

apple, cherry, corn, grape,
peach, pepper, potato,
strawberry, tomato, orange

setting-2
5, 8, 9, 10, 11, 16, 17, 18, 19, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38

1, 2, 3, 4, 6, 7, 12, 13, 14, 15 apple, grape, cherry

setting-3 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28

29, 30, 31, 32, 33, 34, 35, 36,
37, 38 tomato

The three settings represent three difficulties: setting-1 is the easiest task because it
consists of 10 different species. The features of different species are more distinguishable.
setting-2 is the middle-difficulty task due to it covering 3 species. The most difficult setting
is setting-3, because all samples only belong to tomato and the samples are similar to each
other. As the number of samples in PV is unbalanced, we used the data after augmentation
and selected 1000 images per category to maintain balance.

4.2. Method
4.2.1. Problem Definition

In the FSL paradigm, given two labeled sets with categories Ctrain and Cnovel , Ctrain is
used in training and Cnovel is used in testing. The two sets are exclusive, Ctrain ∩ Cnovel =
∅, which means that categories used in the test are not seen during training. Data are
formulated to tasks, and each task T is made up of a support set S and a query set Q.
The definition of T is formalized as:

T = (S, Q) = ((N-Way,K-Shot), (N-Way,W-query samples)) (1)

The sample of S is denoted by (xs, ys), and the sample of Q is denoted by (xq, yq),
which are (image, label) pairs. In training, the label yq is used for calculating loss, which is
supervised learning. An N-way, K-shot task indicates that the S contains N categories with
K samples in each category; the Q contains the same N categories with W samples in each
category. The goal is to classify the N ×W unlabelled samples of Q into N categories.

4.2.2. Framework

The pipeline of our work contains four components: the DCT module, fθ , GC module
and distance measurement module, which is illustrated in Figure 7. The original RGB
image is input into the DCT module first to be transferred to the frequency domain.
The output of the DCT module is a combination of different frequencies, which is then
fed to fθ for feature extraction. fθ can be any CNN, such as Resnet or Densenet, which is
initialized with the pre-trained model. The pre-trained model is trained in the pre-training
stage with source data or other large-scale datasets (e.g., Imagenet) in an image-wise
format, which is considered as prior knowledge. Then, in the meta-learning stage, fθ is
initialized by the pre-trained model, and the classifier is a fully connected layer in the
pre-training stage, which is used in a distance measurement module. To these feature
vectors, before measuring the distances, a Gaussian-like calibration module is arranged for
calibrating the skewed features. At the end, the aligned feature vectors are used to measure
distances and determine the classification results.
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Figure 7. The network’s architecture.

FSL is a task-driven paradigm where data are formulated as tasks. Given a N-way, K-shot
task, all samples of S are transferred to frequency representations by DCT, which are then
embedded into feature space by fθ and become feature vectors. A mean vector of K fea-
ture vectors of category Ci is calculated as the centroid of Ci, which is considered as the
representative of category Ci:

Ci =
1
K ∑

j∈K
fθ(d(xsij)) (i ∈ N) (2)

where xsij denotes the jth sample of the ith category in S, d is the DCT, K is the number
of shots in each category and Ci is the centroid of the ith category. Hence, N centroids
are obtained in each task. To a query sample xq in Q, it is also transferred by DCT and
embedded by fθ to be a vector Vq. The probability that the sample xq belongs to category
Ci is decided by the distances from Vq to the group of centroids:

p(y = Ci|xq, S) =
exp(< g( fθ(d(xq))), g(Ci) >)

∑i∈N exp(< g( fθ(d(xq))), g(Ci) >)
(3)

where g denotes the Gaussian-like calibration and < ., . > denotes the distance between
two vectors. The objective is defined in Formula (4). In training, we use cross entropy loss
to train our model:

θ ← argmin
θ

− 1
N ×W ∑

xq∈Q
∑
c∈C

yqclog(P(y = c|xq, S)) (4)

where θ represents the trainable parameters; C is the category set of S; yqc is a sign value,
which equals 1 when yq = c and equals 0 when yq 6= c, y is the prediction category;
P(y = c|xq, S) is the possibility of query sample xq belonging to class c and being supported
by S .

4.2.3. DCT Module

The processing flow in the DCT module is shown in Figure 8. First, all images are
unified to the same size. In Step (a), referring to the JPEG compression method, the original
RGB image is converted to a YCbCr image. Y represents brightness, Cb and Cr represent
color. Since the human visual system is more sensitive to brightness than to color, we aim to
retain more brightness information and follow the 4:2:0 chroma subsampling ratio [46,47].
For example, the RGB image is 256× 256× 3 after resizing. After converting to YCbCr, the
Y channel is 256× 256× 1, and the Cb channel and Cr channel are both 128× 128× 1.
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Figure 8. The pipeline of the DCT module. Step (a): The 2D RGB image is transformed to three
channels: Y, Cb and Cr. Then, the channels are separated into patches as the size SDCT × SDCT . Step
(b): The Y, Cb and Cr channels are filtered by different frequent filters and reshaped to frequency
cube. In the cube, each channel represents each frequency. Step (c): Informative frequency channels
are selected to be frequency representations of the sample.

In Step (b), each channel is divided into patches of size SDCT × SDCT (e.g., 8× 8), the
same size as the DCT filter:

X =
{

Xpq|p ∈ [0, bH/Sdct − 1c], q ∈ [0, bW/Sdct − 1c]
}

(5)

where Xpq denotes each patch of channel X and (p, q) indicates the position of each patch.
Then, the SDCT × SDCT DCT is performed on each patch. The 2D DCT for one patch can be
expressed in matrix form as [48]:

Zpq = CXpqCT (6)

where Zpq is the frequency representation of the patch Xpq in the DCT domain, C denotes
the DCT metric and CT is the transpose metric of C. C is calculated as:

Ci,j =


1√

SDCT
i = 0√

2
SDCT

cos( (2j+1)iπ
2SDCT

) i > 0
(7)

where i, j ∈ (0, . . . , SDCT − 1). In the frequency representation of each patch, the lower
frequencies are in the left-top corner and higher frequencies are in the right-bottom corner,
which are illustrated in Figure 9. Figure 9a is a 8× 8 2D DCT basis image, which shows the
combination of horizontal and vertical frequencies [48]. Each step of movement from left to
right yields a half-cycle increase in the horizontal frequency, and each step of movement
from top to bottom yields a half-cycle increase in the vertical frequency. In Figure 9b, each
digit in the matrix represents a frequency (8× 8 filter yields 64 frequencies). These digits
are listed as “Z” from left-top corner to right-bottom corner in order from low to high
frequency. For example, in the Y channel, totally, bH/Sdct − 1c × bW/Sdct − 1c values of
each frequency are obtained. In each channel (Y, Cb, Cr), these values are reshaped to a
cube by grouping instances with the same frequency into a sub-channel. Each channel in a
cube represents a certain frequency. The number of frequencies is decided by filter-size,
which is Sdct × Sdct (e.g., 8× 8).
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Figure 9. (a) The DCT basis images, forming the complete DCT dictionary of size 8× 8. (b) The
numbered basis images; the numbers are listed as the shape “Z” from 0 to 63.

In Step (c), the more impactful frequencies are selected from the three frequency
cubes Y, Cb and Cr. Many researches indicate that not all frequencies are significant for
a given task [28,29]. The less informative frequency channels can be removed without
any performance degradation. By discarding the useless channels, the size of input data
is reduced, along with the computational complexity and communication bandwidth.
The meaningful frequencies (e.g., top-24 channels) are selected and concatenated together
to be the final frequency representation of an image. The details of frequency selection
are introduced in Section 4.2. Since the size of elements in Cb and Cr channels is half that
of elements in the Y channel, it is necessary to upsample the elements of Cb and Cr so
that they are the same size as the elements of Y before concatenation. The concatenated
frequencies are used for the subsequent feature extraction by backbone network.

4.2.4. Gaussian-like Calibrator

A Gaussian-like calibrator is used to calibrate the skewed features. The group of
centroid vectors of support set S and the feature vectors of query set Q are fed into the GC
module for calibration. The sequential processing of the calibration consists of four steps,
as shown in Figure 10. The five curves represent the histograms of the inputs and outputs
of the steps in this schematic diagram.

Vertical sliding

(Non negative processing)

Power 

transform

Euclidean

normalization
Centralization

(1) (2) (3) (4) (5)

(1) (2) (3) (4) (5)

Figure 10. The schematic diagram of the GC module. (1) The histogram of the raw feature distribution,
(2) The histogram after vertical sliding. (3) The histogram after power transform. (4) The histogram
after normalization. (5) The histogram after centralization.

Before the PT, all values must be non-negative because the PT is calculated as the
square root when the power value is equal to 0.5. However, the raw feature vectors may
contain negative values. Hence, non-negative processing is needed before PT. The vertical
sliding shifts the feature vector along the y-axis so that all values are non-negative without
changing its distribution.
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Tukey (1977) describes an orderly way of re-expressing variables using a power
transformation [35], which is defined as:

v′ =


(v + ε)β if β > 0
log(v + ε) if β = 0
−((v + ε)β) if β < 0

(8)

where v = [v1, . . . , vi, . . . , vd] ∈ Rd is a d-dimensional vector, 1 ≤ i ≤ d, vi denotes the
value in the ith position, ε = 1 × 10−6. v + ε is used to ensure that the values of v are
strictly positive. β is a hyper-parameter. The skewed distribution can be adjusted by
changing β. Generally, if a distribution is right-skewed (positively skewed), decreasing
β can phase out the right-skewed distribution, and phase into a left-skewed (negatively
skewed) distribution when β becomes negative. Note that β = 1 leads to no effect.

An euclidean normalization is often combined with PT, which is used to scale the fea-
tures to the same area to avoid the large variance values predominating over the others [36].
The formula is defined as:

v′ =
v
‖v‖2

(9)

At the end, the centralization makes all values symmetrical on the y-axis.

4.2.5. Distance Measurement

After the Gaussian-like calibration, a set of high-dimensional calibrated vectors is
ready for distance measurement. In meta-learning, the purpose is not to learn the specific
knowledge of the training categories, but to learn “how to distinguish different categories”.
Therefore, the classifier is no longer a traditional classifier, such as a linear classifiers, but is
replaced by a distance measurement module.

A distance metric uses distance function which provides a relationship metric between
each element of the input [49]. It is used to find the data pattern in order to make data-based
decisions in many machine learning algorithms. In this work, cosine similarity is used to
calculate the distance between the vector of a query sample and the centroid of the category,
which is defined as Formula (10). It is a measure of similarity between two non-zero vectors
of an inner product space and measured by the cosine of the angle between two vectors,
to determine whether two vectors are pointing in roughly the same direction [50].

< A, B >=
A · B
‖A‖‖B‖ =

∑d
i=1 AiBi√

∑d
i=1 A2

i

√
∑d

i=1 B2
i

(10)

5. Conclusions

Given that most existing studies are in the spatial domain, we introduced the FSL of
image-based plant-disease recognition into the frequency domain in this work. The DCT
module and the GC module were proposed for improving the feature representations of
samples and the generalization ability of the model. From the experimental results, we
found that the CNNs can extract better features from frequency representation, and the
Gaussian-like calibration is beneficial to the metric-based methods. The two modules are
easily adapted to CNNs, and combining them achieves the best result. The settings of
data in this work mainly simulated two application scenarios: mixed-plant target and
single-plant target. For the first case, when extending a new category, the identification
accuracy can reach 95% with a 5-shot, 5-way task. To the latter one, when extending a
new disease of a species, the accuracy can reach 80% with the 5-shot, 5-way task. Even
the increase in N-way could degrade the accuracy, increasing the number of shots that can
offset the drawback. The results indicate that using FSL in an application of plant-disease
recognition is worthwhile. In brief, we provided a new perspective for dealing with FSL
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in the frequency domain. Our method has wide universality, which can be used in other
related tasks. In the frequency domain, there is huge potential for exploration.
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