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The gut microbiota is a complex community of microbial species inhabiting the digestive
tract. Each microbial species is further composed of microbes with slightly different genetic
variants also known as strains. While most evolutionary studies of the gut microbiome occur at
the community level or focus on narrow clades of vertebrates, few studies have examined the
evolution of wildlife and their gut microbiome at the strain level across the animal kingdom. In
this exploratory study, we examine a wildlife gut metagenomic dataset to investigate the
evolutionary dynamics of bacterial species and their respective host. In particular, this is the first
examination of whether there is significant congruence between the phylogeny of bacterial
strains and that of their respective hosts, which we refer to as strain phylosymbiosis, across the
animal kingdom. Our analysis of the most abundant bacteria in our dataset revealed Akkermansia

muciniphila and Bacteroides vulgatus exhibited strong signals of strain phylosymbiosis.
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INTRODUCTION

The advent of next-generation sequencing (NGS) has significantly expanded our ability
to investigate the microbial world (1). Such technologies have revolutionized the field of
microbiology from clinical applications to environmental studies by allowing us to efficiently
sequence unculturable microbes and analyze entire microbial communities (2-3). With such
advances, researchers have discovered the vast, once unknown, number and diversity of
microbes in our gut, learned how our behavior (what we eat, antibiotic use, FMT, how we give
birth, etc.) affects the make-up or composition of our gut microbiome and uncovered the links
between various chronic diseases and microbes (4-6).

We are continuously learning about the intricate role microbes play in host fitness. In
humans, microbes affect not just our metabolic and digestive systems, but also our nervous and
immune systems (7-9). In the wild, although we have known about the various symbiotic
relationships between microbial species and their insect hosts as far back as 1965, only in recent
decades has it been possible to uncover the relationships between microbial species and
vertebrates, which usually carries much larger, and more diverse microbial community than that
of insects (10, 11). For example, researchers have found sanguivorous, or blood-feeding,
organisms such as sea lamprey, leeches, mosquitoes, and blood-feeding bats all possessing
digestive tracts dominated by Aeromonas spp. (12). This shared association in sanguivores from
distant host lineages highlights Aeromonas spp.’s important role in the digestion of blood for the
energy requirement of its host. As another example, one study examining the microbiome of the
American alligator has found the alligator’s core gut microbiome to be uniquely enriched with
Fusobacteria while low in Bacteroidetes and Proteobacteria, forming a core microbiome distinct

from that of mammalian, avian, and other reptilian guts (13). The authors speculate that



Fusobacteria interacts closely with the American alligator’s immune system as well as serves
important roles in the animal’s nutrient acquisition and organ development. With increasing
evidence of microbial communities playing important roles in host fitness beyond humans,
biologists have begun exploring the evolutionary dynamics of and partnership between microbial
communities and their respective host species (14).

Early studies of the wildlife gut microbiome have hypothesized that consistent vertical
transmission (passing of microbes from mother to child within a host species) of the microbial
community could result in co-diversification of the host and its microbial community (14). Not
to be confused with co-diversification (also sometimes referred to as co-evolution) of host and
specific symbionts which implies parallel evolutionary changes reflected in each partner’s
genetics, co-diversification of host and microbial community does not involve reciprocal
evolutionary changes, since the microbial community does not possess a shared genome. Instead,
the diversification of the microbial community is mainly driven by ecological processes of
microbial dispersal (ways in which microbes and hosts come in contact) and microbial selection
(ways in which microbes and hosts select for each other) that determine the community
assemblage (15). Over time, consistent co-diversification could lead to signals of
phylosymbiosis, which is the overall congruence between the host phylogeny measured in
evolutionary relatedness and microbial community phylogeny measured in ecological relatedness
(16). Put more simply, phylosymbiosis examines if the makeup of microbial communities is
more similar between more closely related host species (e.g. tiger & lion) than between two more
distantly related host species (e.g. tiger & cuttlefish).

To dissect the evolutionary dynamics of phylosymbiosis, many biologists have

traditionally interrogated 16S amplicon sequences of wildlife microbiomes. Amplicon



sequencing involves the amplification and sequencing of a usually universal, yet slightly variable
genomic region for the identification of bacteria, and therefore, community-level characterization
of the microbiome. A recent review by Mallot & Amato condensing various studies on host
specificity of microbiome across vertebrates has found that more “primitive” classes of
organisms such as Insect, Anthozoa (Sea anemones, corals, etc.), and Actinopterygii (bony
fishes) with low microbial richness (<100 ASVs) exhibit stronger signals of phylosymbiosis,
while more “complex” classes of organisms such as Amphibia, Reptilia, Aves with higher
microbial richness (>100 ASVs) exhibit weaker signals of phylosymbiosis (15). This general
trend could be explained by it being harder for a group of bacteria co-evolving with a host to
influence the composition of a richer community than a less rich community. However, the
notable exception to this trend is the microbiome within the Mammalia class which generally
exhibits strong signals of phylosymbiosis while having rich microbial communities. They
propose that Mammalian traits such as milk feeding, viviparous birth, and parental care, all of
which facilitate vertical transmission of core microbial communities, are key factors in elevating
signals of phylosymbiosis in Mammals (15). Overall, the host specificity of the gut microbiome
appears to be weaker in taxonomically richer gut microbial communities but stronger in
vertically transmitted microbial communities.

Researchers have also investigated the co-speciation (co-diversification could lead to
parallel speciation) of certain bacteria lineages and their associated hosts (17). A study by
Moeller et al. has explored the co-speciation of specific bacterial strains within the great ape
microbiome by examining the amplicon sequence of the gyrase B gene. Unlike the 16S rRNA
gene, the Gyrase B gene is more variable and enables robust resolution of closely related

bacterial species and strains in the host gut microbiome. By comparing phylogenies and



calculating divergence time of wild apes and their associated bacterial species, the authors found
strong evidence for co-speciation of Bacteroidaceae and Bifidobacteriacea family of bacteria
with hominids that started millions of years ago.

Previous studies of phylosymbiosis and co-diversification have inspired us to wonder if
we can detect signals of phylosymbiosis at the strain level not just in great apes but across the
animal kingdom. Could we find a bacterial species where the phylogeny of its strain and
phylogeny of each strain’s respective host correlate? A significant positive correlation would
suggest strains from a bacterial species are more similar between more closely related host
species (e.g. tiger & lion) than between two more distantly related host species (e.g. tiger &
cuttlefish). We refer to this evolutionary dynamic as strain phylosymbiosis. Unlike
phylosymbiosis that compares the ecological relatedness of the microbial community and the
evolutionary relatedness of its respective host, strain phylosymbiosis compares the genetic
relatedness between strains and the evolutionary relatedness of each strain’s respective host.

Furthermore, since shotgun metagenomic (or whole-genome shotgun) data are becoming
increasingly prevalent, we sought to investigate strain phylosymbiosis using shotgun
metagenomic data. As opposed to various amplicon data that contain sequences of a particularly
useful marker such as 16S rRNA or Gyrase B, shotgun metagenomic data contains the entire
collection of genetic information within an environmental sample. Therefore, shotgun
metagenomic data allows for strain-level resolution of gut microbiome samples much like
Gyrase B amplicon data. However, compared to Gyrase B amplicon dataset, shotgun
metagenomic dataset is much more prevalent and, therefore, available, which provides a major
advantage for research looking for scientific insights about strain-level evolutionary dynamics.

With the development of tools that leverage the potential of shotgun metagenomic reads to



profile strains quickly and accurately, culture-independent strain-profiling with shotgun
metagenomic datasets have enabled the investigation of strain-level evolutionary dynamics of
wildlife gut microbes across the animal kingdom (18).

Thus, in this exploratory study, we leveraged a large shotgun metagenomic dataset
aggregated from five Qiita studies (Qiita study ID: 2338, 11166, 13114, 11212, 13881) to explore
the diversity of the vertebrate gut microbiome as well as to investigate the presence of
strain-level phylosymbiosis in vertebrate (19-21). Our dataset contains samples from 288
vertebrate species spanning 6 host classes: Mammalia, Aves, Reptilia, Amphibia, Actinopterygii,
Hyperoartia. To get a general community-level understanding of our dataset, we first examined
the diversity and composition within our samples. Then to examine signals of strain
phylosymbiosis of available bacteria in the dataset, we applied Mantel Spearman statistics to
examine congruence between each strain tree, found with a marker-based strain profiler
StrainPhlAn 3.0, and each corresponding host tree. Due to the advent of tools with different
strain profiling approaches, the precise definition of strain has become quite ambiguous and
fluid. It is therefore important to define strain considered in this study. Determined by our choice
of strain profiler, strains examined in this study are the dominant genotype per bacterial species
found in a sample. As one of the first works exploring the congruent phylogenies of bacterial
strains and hosts using a large shotgun metagenomic dataset, our results provide evidence that
Akkermansia muciniphila and Bacteroides vulgatus exhibit strain phylosymbiosis across

distantly related hosts from across the animal kingdom.



METHOD

Dataset selection

To examine the diversification of strain across vertebrates, we searched for shotgun
metagenomic datasets containing wildlife gut samples within the Qiita database
(https://qgiita.ucsd.edu/) (22). At the time of selection, the most datasets available in Qiita were
either 16S amplicon sequences or related to human studies. Nevertheless, we were first able to
identify 4 viable studies (Qiita study ID: 2338, 11166, 13114, 11212) to incorporate. By far the
smallest study, study 2338 includes 6 samples of wild bats. Study 11166 primarily consists of 90
bird and bat samples, around half of which are wild (51%). Study 11212 consists of 95 wild
primate samples. Lastly, study 13114 contains 182 mostly wild samples (67%) with the majority
from the Mammalia class and the rest distributed among Aves, Reptilia, and Amphibia. Notably,
out of the 182 samples from study 13114, 120 samples come from one mammalian species
Myodes glareolus, commonly known as the bank vole. To improve the diversity of hosts within
the final dataset, we sought out and incorporated shotgun metagenomic data from a recent study
from Youngblue et al., which is now available as study 13881 on Qiita (20). Study 13881

contains 289 mostly wild samples (67%) from Mammalia, Aves, Reptilia, and Amphibia.

Metadata construction

Metadata was manually built by aggregating the available metadata information
submitted to Qiita. Some categories such as sample name, sample type, taxonomic information
of hosts, host common name, captivity information, and country of collection were already

present in the available metadata so these categories were directly combined.
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Figure 1. Overview of major steps carried out in this study.

Other metadata categories were present in some studies but not others. For example,
information about host flight was missing in study 13881, host modality was present in 13114
only, and information about trophic guilds such as carnivore, herbivore, or omnivore was not
present in study 2338 and study 11166.

Because of diet’s strong influence on the gut microbial community, it is important to have

a detailed category that details the dietary information for each host (23). So far, there is no tool



or database publicly available to obtain diets of various vertebrates, so to complete this metadata
category, a custom script based in Python (v. 3.6.11) was built to extract dietary information on
all hosts by scraping information from Wikipedia. The script counts keywords on a host’s
Wikipedia page to deduce the trophic guild of the host. For example, keywords such as
carnivore, carnivorous, and meat-eating were associated with the dietary mode carnivore,
whereas keywords such as herbivore, herbivorous, and plant-eating were associated with the
dietary mode herbivore. The script was able to directly find the dietary mode for 33.3% of our
hosts. If dietary mode cannot be determined directly, sentences containing keywords such as eat,
consume, and feed were extracted for manual curation. Then dietary modes for the remaining
hosts were determined from the relevant dietary information extracted from Wikipedia and
manually curated with information available online. References used to make judgments about
dietary mode have been recorded in a datasheet. We categorized host diet into 12 trophic guilds,
which are Sanguivore (blood feeder), Scavenger, Carnivore, Insectivore, Omnivore, Herbivore,
Folivore, Frugivore, Gummivore (specialist in tree sap), Granivore (specialist in seeds),
Nectivore, and Filter Feeders. This metadata category was titled diet category 12. We tried to be
as detailed and inclusive in our approach as possible. If a host organism is known to feed on fruit
and leaves, we tag it as both a frugivore and folivore. If a host shifts between an omnivorous and
carnivorous diet during different seasons, it is categorized as both an omnivore and a carnivore.
A more general category (diet category 3) which contained only 3 trophic guilds (carnivore,
omnivore, herbivore) was made by generalizing the trophic guilds in the more diet category 12.
For example, Insectivore would be generalized to Carnivore and Folivore would be generalized

to Herbivore.



To get an understanding of the sequencing depth, we also incorporated read counts of
files before and after the host filtering into the metadata. In addition, we also incorporated the
host name whose genome was used to filter the associated file and the scientific names of host
species submitted to the TimeTree database to construct our host tree (24).

The final metadata consists of 662 rows (excluding header) for the 662 samples and 28
columns (sample name, studylD, SamplelD, file filtered r1r2 combined,
reads_per unfiltered file, reads per file, species_id, host phylum, host class, host family,
host genus, host _kingdom, host order, host species, reference for filtering,

TimeTree returned, host common name, host flight, host modality, host diet, country, habitat,

sample type, diet category 12, diet category 3, captive wild).

Host tree construction

The TimeTree database was relied upon to construct the host tree of our dataset (24).
Scientific names of our host species within our dataset were submitted to the TimeTree
(http://www.timetree.org/) to obtain a complete newick tree containing 285 of 288 available host
species. 3 species (Aspius aspius, Cervus canadensis, and Geospiza acutirostris) were not

present in the TimeTree database and were not represented in our complete host tree.

Sequence preprocessing

The raw FASTQ reads associated with each Qiita study were acquired directly from
barnacle, which is the supercomputer hosting files submitted to the Qiita database. These files
had already been demultiplexed using Trimmamatics and adapter trimmed with minimap2 (v.

92021.1) on Qiita before being downloaded for additional processing (25). Files that were
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generated from multiple sequencing runs of the same sample (samples from study 2338, 11166,
13881 were sequenced in multiple runs and lanes) were merged into one sample file. All files
were then filtered by each respective host’s reference genome obtained from the NCBI genome
database (26). To prepare the files for strain evolution analysis, the forward and reverse reads
were concatenated. To prepare the files for microbiome diversity analysis, the forward and
reverse reads were interleaved using seqtk (v. 1.3) (https://github.com/lh3/seqtk). Figure 1 is an

illustrative representation of the major steps taken in this project.

Host filtering

Samples were host filtered using either a host genome that was a direct match or the
closest phylogenetic relative with a host genome using bowtie2 (v.2.4.4) (27). A custom bash
script was built to expedite gathering host genomes for our samples. The script utilized the
assembly summary genbank.txt file downloaded from NCBI’s FTP server
(https://ftp.ncbi.nih.gov/genomes/ASSEMBLY _REPORTS), which stores FTP links to host
genomes. The script first checked if a direct host genome assembly was available for download.
Out of the 288 host species represented in our dataset, 128 had direct host genomes assemblies.
Because host genomes for the remaining 160 hosts were not available on NCBI, the genome
assembly of the closest phylogenetic relative was found on the NCBI genome database and used
for filtering. The closest relative was found by searching for viable hosts at higher taxonomic
levels and then plotting candidates on a phylogenetic tree using TimeTree if multiple options
existed at the same taxonomic level. For example, Transcaspian wild ass (Equus hemionus kulan)
did not have a direct host genome available on NCBI, so the three relatives belonging to the

genus Equus with genomes available were considered: Equus caballus, Equus przewalskii,

10
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Equus asinus. These relative host species along with our host species of interest were submitted
to TimeTree to construct a phylogenetic tree that was used to determine the closest phylogenetic
relative to our species of interest. Once the closest phylogenetic relative was determined, in this
case, Equus asinus, its host genome was used to filter samples from our species of interest,
Equus hemionus kulan. We did not set a specific cutoff at which we did not pursue host genome
for filtering, such that if there were no relative species at a specific taxonomic level with host

genomes, we would look for closest relative species at one level higher until we found a viable

Table 1. Summary on taxonomic level of host genomes available for host filtering. 44% of
the species represented by our samples had direct host genomes for filtering, while, of the 66%
of species that did not have a direct host genome for filtering, 55% of the relative host genome
was found at the genus level.

Relative host genome

Direct host Genus  Subfamily  Family  Superfamily Infraorder = Suborder
genome level level level level level level

128 89 26 35 5 3 2

relative reference genome for host filtering. More than half (~55%) of the relative host genome
used for host filtering was found on the genus level, while the most distantly related host used for
host filtering was found on the suborder level (Table 1). For cases where multiple host genomes
were available for one species, we selected the host genome based on the following three criteria
by order of decreasing importance: 1) the most complete assembly (Chromosomes > Scaffolds >

Contigs), 2) the most recent genome assembly, 3) the genome assembly with the largest size.

11



Microbiome Compositional analysis

Microbiome analysis of our dataset relied upon SHOGUN (v. 1.0.8), Woltka (v. 0.1.2),
and QIIME2 (v. 2020.1) (28-30). Shogun was used for sequence alignment of our interleaved
FASTA files against the Web of Life (WoL) database (30, 31). The WoL database includes
10,575 evenly sampled bacteria and archaea genomes as well as a reference phylogeny built with
381 single-copy marker genes (31). The alignments are then used to generate feature tables at the
phylum, species, and Operational Genomic Unit levels (OGU-level). Proposed as a new feature
providing the finest resolution possible for a shotgun metagenomic dataset, OGU refers to the
taxonomically independent reference genomes with which shotgun metagenomic reads are
mapped to. The OGU-level and species-level feature tables were randomly subset to contain one
sample per species. For the alpha and beta diversity analysis, the OGU-level feature table was
rarified to 50,000 reads per sample, which retained 2.15% of features in 65.28% of the available
samples. The feature tables were then used for diversity analysis with QIIME 2’s Python API.
The subsetted species-level feature table was not rarified for the compositionally-aware PCA
analysis by DEICODE (v. 0.2.4) (32).

QIIME2’s heatmap function was used to generate a heatmap of phyla represented in our
dataset from the phylum-level feature table. Robust Atchison PCA analysis was performed on
the species feature table. The PERMANOVA and PERMDISP function available through
scikit-bio (v. 0.5.6) was used for the multivariate analysis. Alpha and beta diversity significance
were calculated by QIIME2’s diversity alpha group significance and beta group significance
plugin which runs the Kruskal-Wallis test and PERMANOVA, respectively. The heatmap and

diversity figures were generated with the Python package Dokdo (v. 1.11.0), which enables

12



visualization of QIIME2 figures. The Kruskal-Wallis test was used to calculate significance.

Statistical significance was defined as having a p-value < 0.05 for all analyses.

BioBakery3 pipeline overview

MetaPhlAn 3 (v. 3.0.11) aligned our merged FASTQ files against the ChocoPhlAn 3.0
database, which contains 1.1M unique clade-specific marker genes, to produce alignment files as
well as species profiles for each sample (33). The species profiles for each sample were then
merged to make a species-level feature table. This species-level feature table was used for
bacterial abundance analysis using Python (v. 3.6.11) packages.

StrainPhlAn 3.0, a marker-based strain profiling tool within MetaPhlAn 3.0, was used to
investigate strains from a particular bacterial species in this dataset (34). In brief, StrainPhlAn
3.0 concatenated the clade-specific markers of a bacterial species from ChocoPhlAn3 into a
species-specific marker sequence with which metagenomic reads of a sample could be aligned
against to estimate the consensus sequence of detected species-specific markers (34). The
consensus sequences of each detected species-specific marker are then concatenated to form a
strain-specific consensus marker sequence. Then, for a bacterial species of interest, StrainPhlAn
3.0 generated a multiple sequence alignment (MSA) of strain-specific consensus marker
sequences, each representing the most dominant strain of bacteria found in a sample (34). It is
important to note that the markers that are chosen to be concatenated into the strain-specific
consensus markers sequence are influenced by the marker threshold. For example, if the marker
threshold is set at 80%, then markers found in less than 80% of the strains are discarded. Finally,
the MSA generated by StrainPhlAn 3.0 is used to build a maximum-likelihood phylogenetic tree

with the GTRGAMMA model using RAXML (v 8.2.12) (35). Since consensus marker sequence

13



represents the dominant genotype of bacterial strains in a sample, we will refer to strain found by
StrainPhlAn 3.0 as representative strain for the rest of the method section.

It is important to note that StrainPhlAn 3.0 has two important parameters that affect the
output of StrainPhlAn MSA considerably; one parameter (i.e --marker in_n_samples), which
was touched upon in the last paragraph, specifies the marker inclusion criteria by the minimum
percentage of representative strain each marker has to be found in (default: 80%), whereas the
other parameter (i.e. --marker in n samples) specifies the strain inclusion criteria by the
minimum number of markers each representative strain needs to have (default: 20). To simplify
the following explanation, we will refer to the marker inclusion criteria as marker threshold and
strain inclusion criteria as the strain threshold. To explore the effect marker threshold on the
outcome of our strain phylosymbiosis analysis, MSAs at five different marker thresholds (i.e
20%, 35%, 50%, 65%, 80%) were generated for each bacterial species examined. However, to
maximize the number of representative strains without neglecting alignment quality, the strain
threshold was determined using a custom approach that seeks to maximize the alignment score.

This custom approach is described in detail in the next section.

Custom approach to choosing strain threshold at a specific marker threshold

At a given marker threshold, setting a lower minimum strain threshold (i.e. minimum
markers present in a given strain to include a strain in MSA) will generate an MSA with more
strains (Fig. 2A). Since the MSA will be used to generate a phylogenetic tree detailing the
relationship between our strain, it will lead to a larger phylogenetic tree. However, this tree
would be populated with strains whose phylogenetic relationship to others is more uncertain

since they harbor fewer markers used for tree building (Fig. 2A). On the other hand, setting a
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higher minimum strain threshold will lead to MSA of strains with very high marker counts,
therefore a more phylogenetically confident tree. However, this approach likely unnecessarily
excludes strains from downstream analysis (Fig. 2B). The extremes of the two simple scenarios
above illustrate the difficulty in determining the strain threshold (or marker count per strain)
without some sort of objective measurement we could use to maximize or minimize.

Thus, we introduce the concept of alignment score, which is the sum of nucleotides
present in markers that lie within the marker threshold (Fig. 3). We believe MSA with a higher
alignment score would improve MSA’s performance in tree building or ordination analysis since
there are more overlapping nucleotides across strains for comparison. In our custom StrainPhlAn
3.0 approach, we sought to find the minimum strain threshold that can maximize the alignment
score for a set of strains iteratively (Fig. 3). We believe this approach optimizes the MSA for tree
building as it maximizes the overlapping alignments of nucleotide positions given a certain
marker threshold while avoiding the two problems with the previous two approaches; it does not
maximize sample count by including samples with low marker count nor does it unnecessarily
exclude samples with marker count that does not satisfy the often arbitrarily set threshold (Fig. 3

with sample calculation).
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A.

Approach 1: Maximize strains in tree by including
all strains in MSA for tree construction

Markers | l | l
1 |
700nt
2
300nt ’ [] [] [] [] [] [] ’L I|E
s| (0 ;
n
We cannot be confident about
5 ’ [] [] [] [] the placement of strains F & H
150nt as it is placed in the tree using
only small number of available
LB c D E F G J markers for the species.
Strains in dataset
B.

Approach 2: Only select strains with high marker numbers for
MSA for tree construction

Markers | l | l

1
700nt

8 (A ﬂ ]
300nt A

sl (1 L
250nt ¢

4 We can be quite confident
800nt about the phylogenetic

relationship of strains in this

5 ‘ [] [] [] [] tree but we are excluding alot

150nt of potential samples in our
C

D E F G J dataset.

Strains in dataset

Figure 2. Approaches considered to strain selection for multiple sequence alignment. A)
Approach 1 seeks to maximize strain count but produces a bloated tree. B) Approach 2 seeks to
maximize the quality of strains chosen but neglect available strain diversity.
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Custom approach:

Markers
Find the maximum number of
700;',[ strains to include in MSA that
can maximize the alignment score.
2 The alignment score is the sum
300nt [ [ [ [] [ of the nucleotides present in
markers that satisfies the
3 [ [ requirement for alignment which
250nt . . .
by default is being present in
4 80 percent of the strains.
800nt ﬂ l
5 (
150nt
LB C D E F G J /L | | |
D[]
Strains in dataset é (|: E G

Significance: This tree contains strains whose markers maximizes the J
nucleotide information stored in the number of shared marker. Shared
markers in this case are markers that are present in more than 80% of

the strains.

Example calculation

1st iteration -->  Considering all strains with at least 1 marker (all 8 strains), only marker 4
is present in at least 80% of the strains (7/8=87.5% > 80%), therefore the alignment score is
7 * 800 = 5600

2nd iteration --> Considering all strains with at least 2 markers (6 strains, excluding strains
H & F), marker 4 & 2 are in at least 80% of the strains (For marker 4: 6/6=100%, for marker
5/6=83%), therefore the alignment score is 5*800 + 6*300 = 7200

3rd iteration --> Considering all strains with at least 3 markers (4 strains, excluding strains
D, E, F, H), marker 4 & 2 are in at 80% of the strains, therefore the alignment score is
4*300 + 4* 800 = 4400

We have n iteration until we reach the highest number of markers available per strains. We
then keep strains with number of markers that maximizes our alignment score.

The best alignment score for the above dataset is when we consider all strains that has
at least 2 markers thus we will retain 6 out of the 8 strains for tree contruction.

Figure 3. Illustration of custom approach to strain selection. The optimal number of strains
to include for each species is determined by maximizing the alignment score, which is the sum of
nucleotides in shared markers.
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Bacterial selection for StrainPhlAn 3.0 processing

MetaPhlAn3 profiled around 86% (~570/662) of our metagenomic samples at the species
level. 92 samples contained reads with unknown taxonomical identity. There appears to be a
higher occurrence of unprofiled samples at a lower read count per sample (Fig. 4). Nevertheless,

we targeted the 20 most abundant bacterial species by normalized abundance and by sample

(o))

N

Log10( Filtered read count )
S

(o)}

MetaPhlAn3

bacteria profiling
M Known bacteria profiled
mmm No known bacteria profiled

N

Log10( Unfiltered read count )
Y

0

Log10( Host read filtered count )

Samples (n=662)

Figure 4. Distribution of read count per sample colored by MetaPhlAn3’s success in
profiling bacteria in each sample. Panel A & B represents a filtered and unfiltered read count
of each sample whereas panel C represents the read count of host reads filtered out from each
sample. Samples that failed to be profiled by MetaPhlAn3 seem to be concentrated in low read
count samples and not related to the number of host reads in the sample.

presence in our dataset for strain analysis (Fig. 5). However, of these species, four species (i.e.
Bacillaceae bacterium EAG3, Lactobacillus apodemi, Plesiomonas shigelloides, Pseudomonas

lundensis) could not be processed by StrainPhlAn 3.0 because each had fewer than 4 strains
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remaining in the MSA even at the least conservative marker threshold (20%) with custom strain

threshold. These species were excluded from downstream analysis.
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Top 20 bacterial species
Figure 5. Top 20 abundant bacterial species profiled by MetaPhlAn3 measured by
normalized bacterial abundance (A) and sample presence (B). In total, 27 bacterial species
were found by both measurements. Strain analysis for all 27 bacterial species was attempted. E.
coli 1s the most commonly detected bacterial species by far in both metrics.
The rest of the 23 bacteria species were processed through StrainPhlAn 3.0 at five
different marker thresholds of 20%, 35%, 50%, 65%, 80%. For a given marker threshold, the

custom approach to StrainPhlAn 3.0 parameter was applied, which relied on Pandas (v. 1.1.4) to
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Figure 6. Overview of strains and bacteria selected for strain evolution analysis when
setting marker threshold at 80%. A) The distribution of markers with each strain found per
bacterial species is represented by the box plot. The box represents the interquartile range, while
the whiskers extend to the minimum and maximum value. The box plot is overlaid with a strip
plot of marker count of each strain per bacterial species colored by strain inclusion based on our
custom approach. The yellow dots represent strains that are included in the MSA using our
custom approach. B) 10 bacteria have at least 15 representative strains in the dataset at this
marker threshold and will be processed by StrainPhlAn3.

calculate the strain threshold that maximizes the alignment score (36). The number of strains that
were retained at the chosen marker threshold and calculated strain threshold was then calculated.

If at least 15 strains were retained for a bacterial species, then the bacterial species was chosen
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for StrainPhlAn 3.0 processing. Figure 5 illustration of bacterial species selection process when

the marker threshold was set at 80%.

Strain phylosymbiosis and diversification analysis

Since our dataset includes samples from the same host species, we often find
representative strains from the same host in the MSA as well as the strain tree for a bacteria of
interest (i.e. of the Akkermansia muciniphila strains found two were from Hoffman’s
two-fingered sloth in figure 13). Therefore, to conduct the Mantel test, the strain tree is subsetted
to one strain per species. If the subsetted strain tree had less than 15 strains, it was excluded from
further analysis. Once a strain tree is constructed, the corresponding host tree is found by
subsetting the host tree of our dataset to contain only host species represented in the strain tree.
The subset strain tree and corresponding host tree are then converted to a patristic distance
matrix for Mantel Spearman correlation test. Patristic distance is the sum of all branch lengths
between two leaves of a tree. For each strain tree in the analysis, Mantel tests were carried out
100 times, each time with a random selection of one strain per species. The final Spearman
correlation and p-value were averages of the Spearman correlations and p-values from 100
iterations of the Mantel Spearman test. The Mantel Spearman correlation test was carried out by
the mantel function from the ecopy python package.

Strain trees generated by the GTRGAMMA model with RAXML were annotated by host
class, host captivity status, and diet. in ITOL (v. 6.3.2) (37). In addition, for a strain tree of a
bacteria species of interest, we calculated the Spearman correlation coefficient of each of its
subtree that has at least 3 strains from distinct hosts (e.g. Fig. 15A). The level of Spearman
correlations from each subtree regardless of statistical significance are then represented as branch

colors on the strain tree with ITOL.
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For a species of interest, a pairwise patristic distance of a randomly subsetted strain tree
was plotted against the patristic distance of the corresponding host tree with Python (v. 3.6.11).
Patristic distance of the host tree represents the estimated divergence time between hosts in terms
of millions of years. This scatterplot was used as background visualization to present the overall
Mantel Spearman correlation result (e.g. 15B).

For bacterial strains investigated for strain phylosymbiosis, evidence of divergence across
host classes was investigated by examining the clustering of strain groups from different host
classes. The patristic distance matrix of the strain tree was also used for ordination analysis and
permutational multivariate analysis of variance [PERMANOVA] analysis of strains group across
host class, host captivity, or host diet (e.g. 15C). Patristic distances were generated with R (v.
4.0.5)’s APE (v. 5.5) package (38). Ordinations were generated with Tidyverse (v. 1.3.1) (39). To
assist visualization of the ordinations, ellipses are drawn using the stat_ellipse function in
Tidyverse. Statistical multivariate analysis of strain divergence across the host class was
processed using R’s adonis, betadisper, ANOVA, TukeyHSD function from Vegan (v. 2.5.7) (
40). The betadisper and ANOVA functions were used in conjunction to examine the variance of
strain groups involved in the comparison. To find out if there are significant differences between

the means of two groups, we also applied Tukey’s HSD (honest significance difference) test.
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RESULTS
Dataset assembly and filtering overview
Merging the samples from the 5 Qiita studies, our dataset consists of 662 samples from
288 species spanning 6 taxonomic classes: Mammalia, Aves (birds), Reptilia, Amphibia,
Actinopterygii (bony fishes), Hyperoartia (Lampreys) (Fig. 7). Overall, mammals make up

around half of the dataset (51%), whereas Aves accounted for more than a quarter (27%). By the

host_class
Actinopterygii
Amphibia
Aves
Hyperoartia
Mammalia
Reptilia
studyIlD
11166_13114
11166_13114_13881
11212_13114
11212_13114_13881
13114_13881
2338
11166
11212
13114
13881
captive_wild
captive
captive_wild
human
wild
reads_per_file
Minimum 74786
Maximum 148074190

Fig 7. Overview of host species represented in our vertebrate gut dataset. Starting with the
innermost ring, host species are labeled by host class, Qiita study ID, captivity information. The
outermost ring represents the level of average read from associated gut samples after host
filtering.

general dietary group, our dataset is split into 40.2% carnivores, 38.04% herbivores, and 21.7%

omnivores (Fig. 7). Lastly, the vast majority (76.1%) of samples come from wild hosts (Fig. 7).
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During sample processing, host filtering removed 17.8% of the initial sample reads (Fig.
8). Samples were processed for future projects hoping to generate MAGs from these samples.
Interestingly, samples from sea lampreys and vampire bats were found to contain the highest
level of host reads (data not shown). Since both animals are known sanguivores (blood feeders),

this points to the potential that blood-feeding may lead to higher host shedding in the gut.

—— Sample reads
108 -
] Host reads
107 |
[%2]
©
(o}
& 106 -
105'E
104 |

Samples (n=662)

Figure 8. Distribution of host reads removed from samples in the dataset. In total, 17.8% of
initial metagenomic reads were removed through host filtering.

Microbiome diversity analysis results

As expected, commonly known enteric bacterial phyla such as Firmicutes, Bacteroidetes
are represented in our gut and fecal samples (Fig. 9). Looking at figure 8’s heatmap more closely,
Proteobacteria appear to be more abundant in herbivore gut than that of carnivore or omnivore.

Unfortunately, because of time constraints, I did not conduct differential abundance analysis to
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investigate feature enrichment in certain trophic guilds or host classes, which would be an

interesting future project.

Log 10 Frequency

1
LU I | 11 Wi
nmn
LIy pus

(n=222)
TN

(BRI LI |

Carnivore samples

Eon
lllrll monmn ‘III\ ‘[,IM IHI[I‘II]I nm F[] i

LLLTE MR

(n=120)
T
(R

Omnivore samples
NI I AR IR S B
nm llf IH (L R 1IR3 [l

10000 1

wn
o
5 £
g g
Ll E =
o < =
2= £ g
e = =
(] |
I = -
RECRE Bacteria Phylum a
N ot = QS e ©
e m=0a) &
<> 3 W% ® AQ}\)

Figure 9. Heatmap of the absolute abundance of bacteria phyla represented in our dataset
clustered by three general trophic guilds. Expected enrichment of known enteric bacterial
phyla such as Bacteroides, Firmicutes, and Proteobacteria was observed.

To decipher the diversity within our samples, we used three different metrics (observed
features, faith’s phylogenetic distance, shannon entropy) to evaluate alpha diversity. We found

microbiome diversity to be significantly different across host classes ([Kruskal-Wallis (all
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groups)] Observed features: H = 12.28, p-value = 0.031 **; Faith’s pd: H=15.42, p-value =
0.009 **; Shannon entropy: H = 22.89, p-value = 0.00035 **%*) (Fig. 10). Pairwise comparisons
between host classes revealed that mammalian gut microbiome to be generally more diverse than
that of avian gut microbiome ([Kruskal-Wallis (pairwise)] Observed features: H = 12.28, p-value
=0.0082 **, g-value = 0.123; Faith’s pd: H=10.12, p-value = 0.0015 **, g-value = 0.0220 *;
Shannon entropy: H = 17.28, p-value = 0.000032 ****g-value = 0.000484 ***) (Fig. 10). We
also found microbiome diversity to be significantly different across general dietary categories
([Kruskal-Wallis (all groups)] Observed features: H = 11.65, p-value = 0.0029 **; Faith’s pd: H
= 18.40, p-value = 0.0001 ***; Shannon entropy: H = 11.52, p-value = 0.0031 **). Pairwise
comparisons between general dietary categories revealed that herbivore gut microbial
communities to be generally more diverse than that of carnivores ([Kruskal-Wallis (pairwise)]
Observed features: H = 11.14, p-value = 0.00085 **, g-value = 0.0025 **; Faith’s pd: H = 18.28,
p-value = 0.000019 **** g-value = 0.000057 ****; Shannon entropy: H = 11.86, p-value =
0.00058 *** g-value = 0.0017 **) and omnivores ([Kruskal-Wallis (pairwise)] Observed
features: H = 5.135, p-value = 0.023 *, g-value = 0.035 *; Faith’s pd: H = 6.184, p-value = 0.013

* q-value = 0.019 *; Shannon entropy: H = 3.465, p-value = 0.063, g-value = 0.094) (Fig. 11).
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Figure 10. Alpha diversity compared across 6 host classes. Gut samples from Mammals
exhibited statistically significant higher diversity than that of Aves. Feature table used is at
OGU-level and subset to 1 sample per species rarified to 50,000 reads/sample, which retains
2.15% of features in 65.28% of the samples. * represents 0.05 > p-value > 0.01, ** represents
0.01 > p-value > 0.001, *** represents 0.001 > p-value > 0.0001.
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Figure 11. Alpha diversity compared across 3 general trophic guilds. Gut samples from
herbivores exhibited statistically significant higher alpha diversity than samples from carnivores
and omnivores. Feature table used is at OGU-level and subset to 1 sample per species rarified to
50,000 reads/sample, which retains 2.15% of features in 65.28% of the samples. * represents
0.05 > p-value > 0.01, ** represents 0.01 > p-value > 0.001, *** represents 0.001 > p-value >
0.0001.
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Figure 12. PCoA ordinations of weighted UniFrac distances colored by 4 different
categories. From left to right and top to bottom, the microbiome communities are colored by
host class, general host dietary category, host captivity, and study ID. The microbial composition
differs across host class and general host dietary category. The feature table used is at OGU-level
and subset to 1 sample per species rarified to 50,000 reads/sample, which retains 2.15% of
features in 65.28% of the samples.
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Figure 13. Biplot of Robust PCA of bacteria community colored by detailed trophic guilds.
The Species-level feature table was used in this compositionally aware PCA analysis. The top 15
features of the PCA are dominated by bacteria of the Enterobacteriaceae family.

Beta-diversity analysis of UniFrac distances between microbiome samples revealed
significant clustering of microbiome communities across host class (number of samples = 185,
number of groups = 6: [PERMANOVA] pseudo-F = 3.3, p-value = 0.001 **; [PERMDISP]

F-value = 7.71, p-value = 0.83) as well as general dietary categories (number of samples = 185,
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number of groups = 3: [PERMANOVA] pseudo-F = 3.880, p-value = 0.001 **; [PERMDISP]

F-value = 1.288, p-value = 0.248) (Fig. 12).

Unlike the weighted UniFrac distances, robust Aitchison distance between microbiomes
did not reveal any statistically significant clustering of groups via multivariate analysis (Fig. 13).
Nevertheless, DEICODE revealed the top 15 features driving the differences among samples,

which are dominated by bacterial species of the Enterobacteriaceae family (Fig. 13).

Strain evolution analysis results

Evidence for strain phylosymbiosis was observed via the Mantel Spearman correlation
test. Out of the 13 bacterial species investigated for strain phylosymbiosis, 7 bacterial species
exhibited significant congruence between the host and strain tree at one or more marker
thresholds (Fig. 14 & Table 2). Of these 7 bacterial species, A. muciniphila and B. vulgatus had
significant Mantel Spearman correlation across all marker thresholds at which at least 15 strains
were available (Fig. 14 & Table 2). The bacterial species with the highest number of strains, E.

coli did not exhibit strain phylosymbiosis at any of the 5 marker thresholds (Fig. 14 & Table 2).

Exhibiting strong evidence for strain phylosymbiosis, A. muciniphila strains at 50%
marker threshold were examined more closely (Fig. 15). The signal of strain phylosymbiosis is
stronger near the root of the tree as shown by the yellow branch concentrated near the root of the
tree (Fig. 15A). Taken as a whole, the strain tree exhibits significant strain phylosymbiosis via
100 iterations of the Mantel Spearman statistic ([Mantel Spearman results averaged over 100

iterations] r = 0.253, p-value =0.022) (Fig. 15B).
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Figure 14. Overview of strain phylosymbiosis results, strain clustering across host class
results, and basic biology of bacterial species examined for strain phylosymbiosis. A) Strain
phylosymbiosis signals shown via the Mantel results averaged over 100 iterations of the mantel
test. The numbers of samples involved in each mantel test are shown along with the significance
of each test. Mantel test conducted on bacterial species involving at least 15 strains across 5
marker thresholds (20%, 35%, 50%, 65%, 80%). Green tick marks highlight mantel test results
with positive correlation and statistically significant standard p-value < 0.05 value, whereas red
cross marks highlight insignificant mantel test results. Mantel statistics were based on a
two-sided spearman rank correlation with 999 permutations. B) Green tick marks indicate
significant PERMANOVA results and insignificant ANOVA results when examining strains
from different host classes. For panel A & B, ~ represents 0.1 > p-value > 0.05, * represents
0.05 > p-value > 0.01, ** represents 0.01 > p-value > 0.001, *** represents 0.001 > p-value >
0.0001. C) Basic biological characteristics of examined bacterial species (41).

32



JUSLIUOIIAUS B
s|ewiue Jo 101} [RUISEU|

llos

1081} AJRULIN UBWNH

j0B1) [EUNSBJUI UBWNKH

s|ewliue papoojq
wiem Jo joel) [eunsaju| Ajay

J0BJ} [BUNSBJUI UBWNH

0B} |BUNSAJUl UBWINK

s|ewiue papoolq
WieM JO JOBJ} [BUNSBIU|

1081} [BUNSB)UI UBWINH

S[ew|ue papoojq
WM JO JOBJ} [BUNSBIU|

joel) |eulisejul uewny
Joed) [BUNSAIUI UBWINKH

JoBJ) [BUNSSIUI UBWNH

L€ - Mo

82 - 8o

1€ —-9INoW-UoN

a|jow-uoN

a|IjoW-uoN

a|low-uoN

LE --9Jjow-uoN

a|ljow-uoN

LE --dJow-uoN

BN

a|ljow-uoN

s|qeuep

1€ --9joWw-UoN

agoiseue

aAng)noey

10 8qoiay

aqolay

8goJaeue JOLIS

agoJseue JouIS

aqoJeeue JOUIS

8qoJsBUE JOLIS

aqoJaeue JoL)S

2qoJaeue JOLIS

aqolaeue LIS

aqoieeue
aAne)noey

aqoJseue JoLIS

agoJaeue uIS

aqoJlaeue oIS

* * *
*
*
x
* e
*x xx *x

99" €9 99

L

Q8

=2

G¥

Sk
S
Ge° G se€

~

8l

89

44

8y

8¢

144

*ax

8

oF

34

¥

0

8¢

0€

L)

0€
*x
3
¥
74
4
pA
*x

74
x

1]02 BIYoLBYoSy

wnioueweA seuowopnasd

UOIDILUOE]}OIE}aY} SOPI0JjoEY —f

siwiojiun saplosoeyg

snjeBinA seplosejory —
1210p Saplolejoeg —
SIUOSE)SIp soplolejoeqeled —
doo ejjsjonald — |
Si|edae) SN02020I18)uT

suabuupad wniplysol)

SLI00JS)S B|j8suloD

ejiydiuionw eIsUBLLISYYY

116ely sep|oleory mm

JUBWUOIIAUB
umouy Jo 82Inog

(D,) ainjesadwa)
== Aumon

juswalinbay
uabAxp

]

%08 %S9 %0S %SE %02
1O ploysaly) Jaxlew je

‘d

%08 %S9 %0S %SE %02
:JO ploysaiy} Joxylew je
1Nsa1 YAONYINYId 3Insel 1s9) |sjuew pabelaay

v

sisA|eue ulens

yum saioads |eusioeg

ersjoeqos)0.q

saleploeloeg

|
%,

(3
g

%
%

Seinoluwl

BL$0BqOUNOY

elqdioIuoonLaA

! ]

S €,
"9
S,
B0 7

o
%

33



Table 2. Numeric values of mantel spearman statistic result across all five marker
thresholds. Mantel test results are averaged over 100 iterations; mantel tests are only conducted
on strains trees with at least 15 strains across 5 marker thresholds (20%, 35%, 50%, 65%, 80%).
The numbers of samples involved in each mantel test are shown along with the significance of
each test. Each iteration of the mantel statistics was based on a two-sided spearman rank
correlation with 999 permutations. * represents 0.05 > p-value > 0.01, ** represents 0.01 >
p-value > 0.001, *** represents 0.001 > p-value > 0.0001.
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Table 3. Numeric values of multivariate results selected bacterial strains across five marker
thresholds (20%, 35%, 50%, 65%, 80%). For each bacteria and marker threshold, the
columns from left to right contain the R? and p-value of overall and pairwise adonis permanova
results, the F-value and p-value of ANOVA of beta dispersion results, and TukeyHSD p-value
between groups. * represents 0.05 > p-value > 0.01, ** represents 0.01 > p-value > 0.001, ***
represents 0.001 > p-value > 0.0001. The table is split into two parts and presented on the
following two pages for clearer visuals.
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Overall, A. muciniphila strains exhibit genotypic differences across the host class. 4.
muciniphila strains cluster significantly across host classes ([adonis PERMANOVA] R?
=0.45328, p-value = 0.0048 ** with no difference in variance), but not across host captivity
status ([adonis PERMANOVA] R?=0.05533, p-value = 0.2309) or general diet category ([adonis
PERMANOVA] R?2=0.05161, p-value = 0.2237) (Fig. 15C). Pairwise comparisons of 4.
muciniphila strain across host classes using suggests there are genotypic difference between
mammalian strains and reptilian strains (J[adonis PERMANOVA] R? = 0.52099, p-value = 0.0124
* with no difference in variance ), avian strains and reptilian strain (J[adonis PERMANOVA] R?
=0.60146, p-value = 0.0224 * with no difference in variance), but not mammalian strains and
avian strains (adonis [PERMANOVA] R? = 0.03008, p-value = 0.77). However, pairwise
comparisons via Tukey’s HSD test reveal no differences in means between strain groups from

different host classes (Table 3).

Similarly, B. vulgatus also presented a strong case for strain phylosymbiosis and its strain
tree at 50% marker threshold was examined more closely (Fig. 16). The general level of strain
phylosymbiosis decreases traveling down the strain tree except in the subtree containing humans,
fallow deer, and tamandua in which it is elevated (Fig. 16A). The B. vulgatus strain tree proves
to exhibit significant strain phylosymbiosis via 100 iterations of the Mantel Spearman statistic
(Fig. 16B). Similar to that of A. muciniphila strains, we see a positive relationship between the
evolutionary relatedness of B. vulgatus strains and that of their corresponding hosts ([Mantel

Spearmam results averaged over 100 iterations] r = 0.337, p-value =0.029) (Fig. 16B).
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Figure 15. Analysis of Akkermansia muciniphila MSA with 50% marker inclusion criteria
reveals evidence for strain phylosymbiosis and strain diversification across host classes. A)
Strain tree of detected 4. muciniphila strains with tips labeled by the common name of each
strain’s host. Strength of strain phylosymbiosis as measured by Mantel Spearman correlation of
each subtree with at least 3 leaves is represented by branch color. From the innermost to the
outermost ring, strains are colored by hosts’ taxonomic class, captivity information, fine and
general dietary information. The percent of markers for A. muciniphila available for each strain
for tree building is represented by the annotated bar chart. The strain tree is built with the
GTRGAMMA model and visualized with branch length ignored. B) Strong signal of strain
phylosymbiosis detected for 4. muciniphila. Mantel spearman test reveals a statistically
significant positive correlation between host divergence time and patristic distance between 4.
muciniphila strains. C) A. muciniphila strains differ across host classes. Multivariate analysis
was conducted on the distance matrix based on the patristic distance of the GTRGAMMA
maximum-likelihood (ML) tree above. (As a clarification, values under “ANOVA” represent
ANOVA results testing if the multivariate dispersions (average distance to centroid calculated
with betadisper) are significantly different between groups compared.)
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Figure 16. Analysis of Bacteroides vulgatus MSA with 50% marker inclusion criteria
reveals evidence for strain phylosymbiosis, but no strain diversification across host classes.
A) Strain tree of detected strains with tips labeled by the common name of each strain’s host.
Strength of strain phylosymbiosis as measured by Mantel Spearman correlation of each subtree
with at least 3 leaves is represented by branch color. From the innermost to the outermost ring,
strains are colored by hosts’ taxonomic class, captivity information, fine and general dietary
information. The percent of markers for B. vulgatus available for each strain for tree building is
represented by the annotated bar chart. The strain tree is built with the GTRGAMMA model and
visualized with branch length ignored. B) Strong signal of strain phylosymbiosis detected for B.
vulgatus. Mantel spearman test reveals a statistically significant positive correlation between host
divergence time and patristic distance between B. vulgatus strains. C) B. vulgatus strains did not
differ across host classes. Multivariate analysis was conducted on the distance matrix based on
the patristic distance of the GTRGAMMA ML tree above. (As a clarification, values under
“ANOVA" represent ANOVA results testing if the multivariate dispersions (average distance to
centroid calculated with betadisper) are significantly different between groups compared.)
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Overall, B. vulgatus strains does not cluster significantly across host classes (Mammalia,
Aves) ((PERMANOVA] R?=0.01224, p-value = 0.5781) or general diet category ([adonis
PERMANOVA] R?=0.04974, p-value = 0.6723), but does across host captivity status ([adonis
PERMANOVA] R?=0.18761, p-value = 0.0428 * with no difference in variance) (Fig. 16C).

However, when we examine B. vulgatus strains at 20% marker threshold, we do see
strains cluster significantly across host classes ([adonis PERMANOVA] R? =0.21473, p-value =
0.0402%*; [ANOVA of betadisper] F value = 0.5643, p-value = 0.573) (Fig. 17A). Similar to
before, pairwise comparisons via Tukey’s HSD test reveal no differences in means between

strain groups from different host classes (Table 3)
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a F value: 0.5643 e F value: 3.3196
p-value: 0.573 p-value: 0.0482 *
04 -0.1
Mammalia © Mammalia
Aves ° Aves
Reptilia Reptilia
—0‘80 —0‘55 -0 '30 -0 '05 0 '20 -0 ‘40 -0 '15 0 l10 0 ‘35
PCoA1-49.2% PCoA1 -76.4%

Figure 17. PCoA ordination and multivariate analysis of patristic distance between B.
vulgatus strains found at 20% and 35% marker threshold. A) B. vulgatus strains found with
a 20% marker threshold do cluster significantly across host classes. B) B. vulgatus strains found
with a 35% marker threshold exhibit significant variance among groups. (As a clarification,
values under “ANOVA” represent ANOVA results testing if the multivariate dispersions (average
distance to centroid calculated with betadisper) are significantly different between groups
compared.)

Although E. faecalis strains do not exhibit significant levels of strain phylosymbiosis,
they do exhibit genotypic difference between strains from different host classes at 20%, 35%

marker thresholds examined (20%: [adonis PERMANOVA] R? =0.22214, p-value = 0.0002 ***
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with no difference in variance; 35% [adonis PERMANOVA] R? =0.21023, p-value = 0.0207 *
with no difference in variance) (Fig. 18). Across both marker thresholds, pairwise comparisons

of strains from different host classes reveal genotypic differences between stains from mammals
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Figure 18. PCoA ordination and multivariate analysis of patristic distance between E.
faecalis strains found at A) 20%, B) 35%, C) 50% marker thresholds. A & B) E. faecalis
strains found with 20% and 35% marker threshold do cluster significantly across host classes. C)
E. faecalis strains found with a 50% marker threshold does not exhibit difference across host
classes. (As a clarification, values under “ANOVA” represent ANOVA results testing if the
multivariate dispersions (average distance to centroid calculated with betadisper) are
significantly different between groups compared.)

and birds (20% marker threshold [adonis PERMANOVA] R? = 0.17483, p-value = 0.0037 **
with no difference in variance; 35% marker threshold [adonis PERMANOVA] R? = 0.16242,
p-value = 0.0113 * with no difference in variance) as well as reptiles and birds (20% marker

threshold [PERMANOVA] R?=0.16184, p-value = 0.0163 * with no difference in variance;
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35% marker threshold [PERMANOVA] R?=0.15176, p-value = 0.0488 * with no difference in
variance). However, pairwise comparisons via Tukey’s HSD test reveal no differences in means

of strain groups from different host classes (Table 3)

Lastly, as the most abundant bacteria from the dataset, Escherichia coli was examined for
its lack of strain phylosymbiosis (Fig. 19). The general level of strain phylosymbiosis was weak
across the stain tree except in certain clades (Fig. 17A). Overall, we see a lack of relationship
between the evolutionary relatedness of E. coli strains and that of their corresponding hosts
([Mantel Spearman result averaged over 100 iterations] r = -0.038, p-value =0.377) (Fig. 17B).
In addition, the strains does not cluster significantly across host classes (Mammalia, Aves,
Reptilia) or general diet category ((PERMANOVA] R? = 0.04974, p-value = 0.6723), but does
across host captivity status ([PERMANOVA] R?=0.18761, p-value = 0.0428 * with no

difference in variance) (Fig. 19C).
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Figure 19. Analysis of Escherichia coli MSA with 50% marker inclusion criteria does not
reveal evidence for strain phylosymbiosis and strain diversification across host classes. A)
Strain tree of detected E. coli strains. Strength of strain phylosymbiosis measured by Mantel
Spearman correlation is plotted as branch color. From the innermost to the outermost ring, strains
are colored by hosts’ taxonomic class, captivity information, fine and general dietary
information. The percent of markers for E. coli available for each strain for tree building is
represented by the annotated bar chart. The strain tree is built with the GTRGAMMA model and
visualized with branch length ignored. B) Signal of strain phylosymbiosis was not detected for E.
coli via Mantel spearman statistics. C) E. coli strains do not differ across host classes.
Multivariate analysis was conducted on the distance matrix based on the patristic distance of the
GTRGAMMA ML tree above. (As a clarification, values under “ANOVA” represent ANOVA
results testing if the multivariate dispersions (average distance to centroid calculated with
betadisper) are significantly different between groups compared.)
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DISCUSSION

Overall, analysis of our vertebrate gut dataset found expected trends of microbiome
diversity and bacterial species that exhibited strain phylosymbiosis across the animal kingdom.
Diversity of the vertebrate gut microbiome was found to be higher in herbivores than carnivores
and omnivores, and higher in mammals than birds (Fig. 10 & Fig. 11 ). These relationships of
diversity found at the OGU-level echoed results from previous studies (20, 21, 42). In addition,
we also found host class and general dietary strategy (herbivore, omnivore, carnivore) to affect
microbiome composition (Fig. 12). Top bacteria driving differences in microbiome composition
as measured by Aitchison distance are dominated by bacteria from the Proteobacteria phylum
(Fig. 11). Our microbiome composition analysis provides a general understanding of the

microbiome diversity represented in our dataset.

Strain phylosymbiosis analysis was conducted on 13 bacterial species in the dataset (Fig.
14). As mentioned above, only bacterial species with strains found from at least 15 distinct hosts
at a given marker threshold are analyzed. All of these species are known to be common
inhabitants of the human intestinal tract, except for Pseudomonas yamanorum, which is a
psychrotolerant bacteria found in the subarctic soil (Fig. 14C) (41, 42). For most species, we did
not observe consistent signals of strain phylosymbiosis across marker thresholds tested. Six
bacterial species E. faecalis, P. copri, B. thetaiotaomicron, B. fragilis, P. yamanorum, E. coli did
not exhibit signals of strain phylosymbiosis at any marker thresholds, whereas four bacterial
species C. perfringens, P. distasonis, B. dorei, B. uniformis had signals of strain phylosymbiosis
depending on the marker threshold used. Only 4. muciniphila and B. vulgatus exhibited strain

phylosymbiosis across all marker thresholds (Fig. 14).
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For a species of interest, if the signal of strain phylosymbiosis is present at the host class
level, we could potentially find strains to exhibit genotypic differences across host classes.
Therefore, we sought to investigate evidence of host class divergence by examining if there was
significant clustering of strains from different host classes. Results showed that 4. muciniphila
strains differed across host class at all examined marker thresholds, which mirrors the bacteria’s
signal of strain phylosymbiosis. Interestingly, when looking at the pairwise comparison between
A. muciniphila strains from different host classes, we see a significant difference between
mammalian strains and reptilian strains, and avian strains and reptilian strains, but no difference
between avian strains and mammalian strains. This suggests that, at least for A. muciniphila,
reptilian strains are significantly different from that of avian or mammalian strains, which may
be due to the degree of gut physiological difference between the host class such as reptiles
having a shorter intestine than that of mammals (44). Unlike that of A. muciniphila, B. vulgatus
strains did not cluster significantly across host classes at 35% and 50% marker thresholds.
Whereas E. faecalis, which had no signal of strain phylosymbiosis, exhibits the differences

between strains of mammalian, avian, and reptilian origins.

We find that the presence of strain phylosymbiosis and analysis of strain genotype from
different host classes are both sensitive to the marker threshold levels. This is expected as the
level of marker threshold would determine the markers available for strain-specific consensus
marker sequence construction, therefore, affect the nucleotide identity of the available strains
under analysis. Since the strain trees are based on the MSA of strain-specific consensus marker
sequence, differences in any consensus sequence would affect the resulting strain tree and,
therefore, both the Mantel test results and multivariate results. One important consideration is

that the marker threshold determines the criteria of marker inclusion by each marker’s
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uniqueness. At a higher marker threshold, markers included in the MSA need to be shared by a
higher number of strains, whereas, at a lower marker threshold, markers shared by a lower
percentage of strains (more unique) will be included in the MSA. Therefore, strains from certain
host classes such as reptiles may potentially have more unique markers that can only be included
in the MSA for analysis at a lower marker threshold. This would affect the host class represented
by bacterial strains available for this analysis. Therefore, although ideally, a high marker
threshold would improve analysis as there will be more overlap between marker sequences for
comparison, lower marker thresholds also have their advantages in including markers more

unique to strains from certain host clades (see Fig. 18 for an example).

It is important to note that Mantel test statistics using Spearman correlation tests for
congruence of the relative positions of the leaves and not the relative distances between the
leaves in the tree. This is because our Mantel test results presented in this study uses Spearman
correlation which correlates the rankings of leaf pairs derived from leaf distances and not the
distances themselves. For example, in a particular patristic distance matrix where the “distance
A-B” is 100 branch unit, “distance B-C” is 101 branch unit, and “distance C-D” is 300 branch
unit, Spearman correlation would convert the distances into the respective ranks for correlation
tests while ignoring the relative unit differences (rank 1: distance A-B <rank 2: distance B-C <
rank 3: distance C-D). To factor in the relative differences between branch lengths, one could
theoretically apply Pearson correlation through the Mantel test statistics. Thus, we did also run
Mantel tests based on Pearson correlation, the results of which mostly match results obtained
with Spearman correlation. However, since Pearson correlation is a parametric test, which
requires our data to satisfy a normal distribution, we decided not to present our Mantel test

results based on the Pearson correlation as our input data is not normally distributed. Therefore,
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our phylosymbiosis results presented above reflect the overall structural or architectural

congruence between phylogenies and not the overall shape of the tree.

It is also important to consider that our strain phylosymbiosis analysis searches for
structural congruences between phylogenies while being agnostic about the forces responsible
for these congruences. Nevertheless, most evolutionary biologists would point to co-speciation,
host-shift speciation, intrahost speciation, and extinction as the main factors affecting the
congruence of phylogenies (45). As briefly touched upon before, co-speciation refers to the
parallel speciation of host and microbial species (or more generally symbionts) that could occur
from long-term co-diversification. Host-shift speciation, on the other hand, refers to the
speciation of symbionts to occupy niches available in new host species (45). Intrahost speciation
(also referred to as duplication) refers to the one-sided speciation of the symbionts within a host
lineage (45). As Vienne et al. eloquently illustrated in their review, other than the process of
co-speciation, host-shift speciation alone could also lead to congruencies of phylogenies. On the
other hand, intrahost speciation and extinction events could mitigate signals of congruencies
even for host-symbiont systems that experience co-speciation. To confidently deduce which of
these events affected the congruences of phylogenies in the past, one would have to calculate and
compare estimated divergence time via molecular clocks such as in Moeller et al. 2016. In the
103 available studies on evolutionary dynamics of host-symbiont published before 2013, the
majority (48 studies) found host-shift speciation as the primary evolutionary force while less
than a dozen (9 studies) found convincing cases of co-speciation. Based on these studies thus far,
Vienne et al. reasonably point out that the host-symbiont evolutionary relationship is primarily

affected by host-shift speciation events and only rarely driven by co-speciation events.
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However, regardless of whether host-symbiont congruence is based on host-shift
speciation or co-speciation, we propose that bacterial species with the highest chance of
exhibiting strain phylosymbiosis are those species that experience consistent microbial dispersal
and favorable microbial selection within the host species. Consistent microbial dispersal within
species refers to the reliable, potentially long-term, exposure of microbial symbionts within
populations of host species through successive generations. It is important to stress that the
source of the exposure should not be from the environment or different species. Microbial
dispersal is facilitated by both vertical transmission (transfer from mother to child) and
horizontal transmission (transfer between members of the same species except mother to child)
(15). Favorable microbial selection refers to microbial species' successful colonization of the
host gut, which enables close interaction of host and microbial species. We hypothesize that only
when these two conditions are met will microbial strains from different host species accumulate
enough respective reciprocal genotypic changes that allow for congruent phylogenetic detection.
On the other hand, we believe sufficient environmental transmission or cross-species
transmission of microbial strains would overwhelm signals of strain phylosymbiosis, even if the
original strain has been diversifying with the host. If our hypothesis is correct, then strain
phylosymbiosis analysis across the animal kingdom may be a tool to search for bacterial species
that are prone to consistent microbial dispersion and favorable microbial selection within a wide
range of vertebrates. These bacterial species could be of special interest to biologists

investigating host-microbe interaction or microbial adaptation to the host environment.

Interestingly, A. muciniphila was suggested to possess vertical transmissibility in humans
as it is found to be present in human milk and being able to metabolize human milk

oligosaccharides (46). Additionally, A. muciniphila has been found to enhance the intestinal
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barrier in humans and induce an adaptive immune response in mice (47, 48). These findings
suggest that 4. muciniiphila interacts closely with hosts and, potentially, does so within many
different host species. Another recent study has found vertical transmission of B. vulgatus, B.
fragilis, P. distasonis, and E. coli in humans (49). A prior study by Moeller et al. has provided
compelling evidence of co-speciation of hominids and bacteria of the Bacteroidaceae family
including B. vulgatus (17). In addition to the technical limitations of our study, the lack of
evidence for strain phylosymbiosis in B. fragilis and E. coli could be a result that these bacterial
species experience sufficient levels of environmental transmission. In particular, E. coli, as a
motile facultative anaerobe, can be commonly found in the environment and could potentially

spread to different wildlife species via water sources.

One limitation of our analysis worth noting is the unevenly distributed dataset. Although
the number of host species represented in the dataset is quite large (n=288), our dataset is heavily
biased towards the mammalian class (51%) (Fig. 7). This impedes our ability to detect strain
phylosymbiosis across host classes as well as analyze if there were different degrees of strain
phylosymbiosis within different host classes. Given that pairwise PERMANOVA analysis of 4.
muciniphila strains revealed that there are only differences between strains of Mammalia and
Reptilia, and strains of Aves and Reptilia, but not stains of Mammalia and Aves, it would be
interesting to have more Reptilia samples to reaffirm if strains of reptilian origin are different
than that of mammalian and avian origins. An ideal dataset to analyze strain phylosymbiosis
would include deeply sequenced WGS samples (>10° reads per file) representing a large number

of host species evenly distributed across host classes of interest.

One apparent limitation of our strain analysis is that 14% of samples in our dataset cannot

be profiled by MetaPhlAn3 (Fig. 4). These samples did not have enough alignments against
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markers of ChocoPhlAn3 database for species classification. Most of these unprofiled samples
are concentrated at lower sequencing depth (<10° reads per sample) (Fig 4.). Without sufficient
alignments, the strains available in the samples could not be included for the strain analysis.
However, some unprofiled samples are also present at higher sequencing depth (>10° reads per
sample) (Fig. 4). Therefore, low sampling depth (<10° reads per sample) should not be the only

reason for the presence of unprofiled samples.

We suspect the presence of novel, uncharacterized bacteria in our samples to be a large
factor in the lack of species detection. Previous de novo studies have found that, as of March
2021, large proportions of (up to 75%) metagenomic samples from wildlife microbiomes remain
uncharacterized (20, 42). Since around three-quarters of our dataset is from wild animals, we
should expect a large proportion of diversity to remain uncharacterized in our dataset and,
therefore, unprofiled with our reference-based profiler. Therefore, the most abundant bacteria
selected for strain phylosymbiosis potentially does not reflect the actual abundance of bacteria

represented in our sample.

Furthermore, in addition to undetected species, we suspect that the available markers in
ChocoPhlAn3 do not capture the genetic variability of bacterial species found in wildlife
samples. Since these markers used for strain detection are thoughtfully selected from
characterized genes in Uniprot and the genes in Uniprot is mostly assembled from studies related
to human and the human gut microbiome, the strains detected by StrainPhlan 3.0 could be
limited to strains that resemble characterized strains found in human (33). This would exclude
highly divergent strains of a bacterial species that is only present in certain wildlife gut
microbiomes, therefore, limiting our ability to detect potential signals of strain phylosymbiosis in

wildlife samples.

52



All in all, a reference-based approach to analysis involving wildlife gut microbiome
likely neglects large, crucial diversity. Given these challenges, we could utilize de novo assembly
of metagenome-assembled genomes (MAGs) to alleviate this problem. This could be done in two
ways. First, apply MAG-based strain profiling tools such as the newly released inStrain to the
study of strain phylosymbiosis (50). With higher sensitivity than StrainPhlAn 3.0, the de novo
approach of inStrain should be able to detect more strains especially those uncharacterized,
allowing for more complete assessment of strain phylosymbiosis for our species of interest. And,
unlike StrainPhlAn 3.0 that exclusively considers the consensus sequence that represents the
dominant genotype, inStrain considers both major and minor alleles during genomic
comparisons. This allows for better resolution of the natural genetic variability of strains present
within a sample, which would improve the accuracy of our analysis. Another way, perhaps more
technically challenging, is to utilize MAGs to find additional markers that could detect more
divergent wildlife bacterial strains. Since ChocoPhlAn3 is customizable, these markers could
then be added to ChocoPhlAn3 to supplement our existing marker-based strain analysis. Both
methods should be able to detect more uncharacterized bacterial strains and, therefore, should

improve our ability to investigate the evolutionary dynamics of strain phylosymbiosis.

Overall, our reference-based approach exhibits limitations with regards to detecting
divergent strains in variable species we would expect in wildlife samples. In addition, most strain
profiling tools including StrainPhlAn3 require deep sequencing depth (> 10x coverage) to
perform effectively (18). However, these challenges are not inherent to the shotgun metagenomic
dataset. As technology allows for sequencing with deeper coverage and new de novo methods
emerge such as inStrain that utilizes MAGs to profile strains, shotgun metagenomic data could

become the standard medium through which we profile strains in wildlife samples. In contrast,
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traditional culture-based comparative genetics of isolate could not be used to investigate
unculturable bacterial diversity within wildlife metagenomic samples. However, it remains an
essential tool in identifying and tracking certain culturable bacterial strains, especially for those
with clinical interest (18). Furthermore, although high-throughput single-cell sequencing offers
unprecedented insight into the genetic, transcriptomic, and proteomic composition of individual
cells within a cellular community, this emerging technology is more applicable for the analysis of
eukaryotic cells than microbial cells from gut samples (18). This is, in large part, due to the
heterogeneity of microbial cell walls and complexities associated with environmental samples
such as animal stool (18). The Shotgun metagenomic dataset should remain a compelling

medium to study bacterial strains found on or within wildlife in the foreseeable future.

In summary, as an exploratory study investigating strain phylosymbiosis across the
animal kingdom, we were able to detect signals of strain phylosymbiosis in various bacteria.
Within the confines of a marker-based approach, we found 4. muciniphila and B. vulgatus
exhibit the strongest signals of strain phylosymbiosis. The correlation between the strain of these
bacteria and their respective host, once again, highlights the interconnectedness of the
host-microbiota system. Future studies should utilize a de novo approach to the study of strain
phylosymbiosis and strive to uncover the intricate biological mechanisms underlying this

interesting evolutionary dynamic within our tree of life.

Material from this thesis is currently being prepared for submission for publication of the
material. Chiu, Jeffrey H.; Song, Se J.; Cantu, Victor; Shaffer, Justin; Lutz, Holly L.; Knight,

Rob. The thesis author was the primary author of this material.
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