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The gut microbiota is a complex community of microbial species inhabiting the digestive

tract.  Each microbial species is further composed of microbes with slightly different genetic

variants also known as strains. While most evolutionary studies of the gut microbiome occur at

the community level or focus on narrow clades of vertebrates, few studies have examined the

evolution of wildlife and their gut microbiome at the strain level across the animal kingdom. In

this exploratory study, we examine a wildlife gut metagenomic dataset to investigate the

evolutionary dynamics of bacterial species and their respective host. In particular, this is the first

examination of whether there is significant congruence between the phylogeny of bacterial

strains and that of their respective hosts, which we refer to as strain phylosymbiosis, across the

animal kingdom. Our analysis of the most abundant bacteria in our dataset revealed Akkermansia

muciniphila and Bacteroides vulgatus exhibited strong signals of strain phylosymbiosis.
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INTRODUCTION

The advent of next-generation sequencing (NGS) has significantly expanded our ability

to investigate the microbial world (1). Such technologies have revolutionized the field of

microbiology from clinical applications to environmental studies by allowing us to efficiently

sequence unculturable microbes and analyze entire microbial communities (2-3). With such

advances, researchers have discovered the vast, once unknown, number and diversity of

microbes in our gut, learned how our behavior (what we eat, antibiotic use, FMT, how we give

birth, etc.) affects the make-up or composition of our gut microbiome and uncovered the links

between various chronic diseases and microbes (4-6).

We are continuously learning about the intricate role microbes play in host fitness. In

humans, microbes affect not just our metabolic and digestive systems, but also our nervous and

immune systems (7-9). In the wild, although we have known about the various symbiotic

relationships between microbial species and their insect hosts as far back as 1965, only in recent

decades has it been possible to uncover the relationships between microbial species and

vertebrates, which usually carries much larger, and more diverse microbial community than that

of insects (10, 11). For example, researchers have found sanguivorous, or blood-feeding,

organisms such as sea lamprey, leeches, mosquitoes, and blood-feeding bats all possessing

digestive tracts dominated by Aeromonas spp. (12). This shared association in sanguivores from

distant host lineages highlights Aeromonas spp.’s important role in the digestion of blood for the

energy requirement of its host. As another example, one study examining the microbiome of the

American alligator has found the alligator’s core gut microbiome to be uniquely enriched with

Fusobacteria while low in Bacteroidetes and Proteobacteria, forming a core microbiome distinct

from that of mammalian, avian, and other reptilian guts (13). The authors speculate that
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Fusobacteria interacts closely with the American alligator’s immune system as well as serves

important roles in the animal’s nutrient acquisition and organ development. With increasing

evidence of microbial communities playing important roles in host fitness beyond humans,

biologists have begun exploring the evolutionary dynamics of and partnership between microbial

communities and their respective host species (14).

Early studies of the wildlife gut microbiome have hypothesized that consistent vertical

transmission (passing of microbes from mother to child within a host species) of the microbial

community could result in co-diversification of the host and its microbial community (14). Not

to be confused with co-diversification (also sometimes referred to as co-evolution) of host and

specific symbionts which implies parallel evolutionary changes reflected in each partner’s

genetics, co-diversification of host and microbial community does not involve reciprocal

evolutionary changes, since the microbial community does not possess a shared genome. Instead,

the diversification of the microbial community is mainly driven by ecological processes of

microbial dispersal (ways in which microbes and hosts come in contact) and microbial selection

(ways in which microbes and hosts select for each other) that determine the community

assemblage (15). Over time, consistent co-diversification could lead to signals of

phylosymbiosis, which is the overall congruence between the host phylogeny measured in

evolutionary relatedness and microbial community phylogeny measured in ecological relatedness

(16). Put more simply, phylosymbiosis examines if the makeup of microbial communities is

more similar between more closely related host species (e.g. tiger & lion) than between two more

distantly related host species (e.g. tiger & cuttlefish).

To dissect the evolutionary dynamics of phylosymbiosis, many biologists have

traditionally interrogated 16S amplicon sequences of wildlife microbiomes. Amplicon
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sequencing involves the amplification and sequencing of a usually universal, yet slightly variable

genomic region for the identification of bacteria, and therefore, community-level characterization

of the microbiome. A recent review by Mallot & Amato condensing various studies on host

specificity of microbiome across vertebrates has found that more “primitive” classes of

organisms such as Insect, Anthozoa (Sea anemones, corals, etc.), and Actinopterygii (bony

fishes) with low microbial richness (<100 ASVs) exhibit stronger signals of phylosymbiosis,

while more “complex” classes of organisms such as Amphibia, Reptilia, Aves with higher

microbial richness (>100 ASVs) exhibit weaker signals of phylosymbiosis (15). This general

trend could be explained by it being harder for a group of bacteria co-evolving with a host to

influence the composition of a richer community than a less rich community. However, the

notable exception to this trend is the microbiome within the Mammalia class which generally

exhibits strong signals of phylosymbiosis while having rich microbial communities. They

propose that Mammalian traits such as milk feeding, viviparous birth, and parental care, all of

which facilitate vertical transmission of core microbial communities, are key factors in elevating

signals of phylosymbiosis in Mammals (15). Overall, the host specificity of the gut microbiome

appears to be weaker in taxonomically richer gut microbial communities but stronger in

vertically transmitted microbial communities.

Researchers have also investigated the co-speciation (co-diversification could lead to

parallel speciation) of certain bacteria lineages and their associated hosts (17). A study by

Moeller et al. has explored the co-speciation of specific bacterial strains within the great ape

microbiome by examining the amplicon sequence of the gyrase B gene. Unlike the 16S rRNA

gene, the Gyrase B gene is more variable and enables robust resolution of closely related

bacterial species and strains in the host gut microbiome. By comparing phylogenies and
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calculating divergence time of wild apes and their associated bacterial species, the authors found

strong evidence for co-speciation of Bacteroidaceae and Bifidobacteriacea family of bacteria

with hominids that started millions of years ago.

Previous studies of phylosymbiosis and co-diversification have inspired us to wonder if

we can detect signals of phylosymbiosis at the strain level not just in great apes but across the

animal kingdom. Could we find a bacterial species where the phylogeny of its strain and

phylogeny of each strain’s respective host correlate? A significant positive correlation would

suggest strains from a bacterial species are more similar between more closely related host

species (e.g. tiger & lion) than between two more distantly related host species (e.g. tiger &

cuttlefish). We refer to this evolutionary dynamic as strain phylosymbiosis. Unlike

phylosymbiosis that compares the ecological relatedness of the microbial community and the

evolutionary relatedness of its respective host, strain phylosymbiosis compares the genetic

relatedness between strains and the evolutionary relatedness of each strain’s respective host.

Furthermore, since shotgun metagenomic (or whole-genome shotgun) data are becoming

increasingly prevalent, we sought to investigate strain phylosymbiosis using shotgun

metagenomic data. As opposed to various amplicon data that contain sequences of a particularly

useful marker such as 16S rRNA or Gyrase B, shotgun metagenomic data contains the entire

collection of genetic information within an environmental sample. Therefore, shotgun

metagenomic data allows for strain-level resolution of gut microbiome samples much like

Gyrase B amplicon data. However, compared to Gyrase B amplicon dataset, shotgun

metagenomic dataset is much more prevalent and, therefore, available, which provides a major

advantage for research looking for scientific insights about strain-level evolutionary dynamics.

With the development of tools that leverage the potential of shotgun metagenomic reads to
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profile strains quickly and accurately, culture-independent strain-profiling with shotgun

metagenomic datasets have enabled the investigation of strain-level evolutionary dynamics of

wildlife gut microbes across the animal kingdom (18).

Thus, in this exploratory study, we leveraged a large shotgun metagenomic dataset

aggregated from five Qiita studies (Qiita study ID: 2338, 11166, 13114, 11212, 13881) to explore

the diversity of the vertebrate gut microbiome as well as to investigate the presence of

strain-level phylosymbiosis in vertebrate (19-21). Our dataset contains samples from 288

vertebrate species spanning 6 host classes: Mammalia, Aves, Reptilia, Amphibia, Actinopterygii,

Hyperoartia. To get a general community-level understanding of our dataset, we first examined

the diversity and composition within our samples. Then to examine signals of strain

phylosymbiosis of available bacteria in the dataset, we applied Mantel Spearman statistics to

examine congruence between each strain tree, found with a marker-based strain profiler

StrainPhlAn 3.0, and each corresponding host tree. Due to the advent of tools with different

strain profiling approaches, the precise definition of strain has become quite ambiguous and

fluid. It is therefore important to define strain considered in this study. Determined by our choice

of strain profiler, strains examined in this study are the dominant genotype per bacterial species

found in a sample. As one of the first works exploring the congruent phylogenies of bacterial

strains and hosts using a large shotgun metagenomic dataset, our results provide evidence that

Akkermansia muciniphila and Bacteroides vulgatus exhibit strain phylosymbiosis across

distantly related hosts from across the animal kingdom.
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METHOD

Dataset selection

To examine the diversification of strain across vertebrates, we searched for shotgun

metagenomic datasets containing wildlife gut samples within the Qiita database

(https://qiita.ucsd.edu/) (22). At the time of selection, the most datasets available in Qiita were

either 16S amplicon sequences or related to human studies. Nevertheless, we were first able to

identify 4 viable studies (Qiita study ID: 2338, 11166, 13114, 11212) to incorporate. By far the

smallest study, study 2338 includes 6 samples of wild bats. Study 11166 primarily consists of 90

bird and bat samples, around half of which are wild (51%). Study 11212 consists of 95 wild

primate samples. Lastly, study 13114 contains 182 mostly wild samples (67%) with the majority

from the Mammalia class and the rest distributed among Aves, Reptilia, and Amphibia. Notably,

out of the 182 samples from study 13114, 120 samples come from one mammalian species

Myodes glareolus, commonly known as the bank vole. To improve the diversity of hosts within

the final dataset, we sought out and incorporated shotgun metagenomic data from a recent study

from Youngblue et al., which is now available as study 13881 on Qiita  (20).  Study 13881

contains 289 mostly wild samples (67%) from Mammalia, Aves, Reptilia, and Amphibia.

Metadata construction

Metadata was manually built by aggregating the available metadata information

submitted to Qiita. Some categories such as sample name, sample type, taxonomic information

of hosts, host common name, captivity information, and country of collection were already

present in the available metadata so these categories were directly combined.
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Figure 1. Overview of major steps carried out in this study.

Other metadata categories were present in some studies but not others. For example,

information about host flight was missing in study 13881, host modality was present in 13114

only, and information about trophic guilds such as carnivore, herbivore, or omnivore was not

present in study 2338 and study 11166.

Because of diet’s strong influence on the gut microbial community, it is important to have

a detailed category that details the dietary information for each host (23). So far, there is no tool
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or database publicly available to obtain diets of various vertebrates, so to complete this metadata

category, a custom script based in Python (v. 3.6.11) was built to extract dietary information on

all hosts by scraping information from Wikipedia. The script counts keywords on a host’s

Wikipedia page to deduce the trophic guild of the host. For example, keywords such as

carnivore, carnivorous, and meat-eating were associated with the dietary mode carnivore,

whereas keywords such as herbivore, herbivorous, and plant-eating were associated with the

dietary mode herbivore. The script was able to directly find the dietary mode for 33.3% of our

hosts. If dietary mode cannot be determined directly, sentences containing keywords such as eat,

consume, and feed were extracted for manual curation. Then dietary modes for the remaining

hosts were determined from the relevant dietary information extracted from Wikipedia and

manually curated with information available online. References used to make judgments about

dietary mode have been recorded in a datasheet. We categorized host diet into 12 trophic guilds,

which are Sanguivore (blood feeder), Scavenger, Carnivore, Insectivore, Omnivore, Herbivore,

Folivore, Frugivore, Gummivore (specialist in tree sap), Granivore (specialist in seeds),

Nectivore, and Filter Feeders. This metadata category was titled diet_category_12. We tried to be

as detailed and inclusive in our approach as possible. If a host organism is known to feed on fruit

and leaves, we tag it as both a frugivore and folivore. If a host shifts between an omnivorous and

carnivorous diet during different seasons, it is categorized as both an omnivore and a carnivore.

A more general category (diet_category_3) which contained only 3 trophic guilds (carnivore,

omnivore, herbivore) was made by generalizing the trophic guilds in the more diet_category_12.

For example, Insectivore would be generalized to Carnivore and Folivore would be generalized

to Herbivore.
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To get an understanding of the sequencing depth, we also incorporated read counts of

files before and after the host filtering into the metadata. In addition, we also incorporated the

host name whose genome was used to filter the associated file and the scientific names of host

species submitted to the TimeTree database to construct our host tree (24).

The final metadata consists of 662 rows (excluding header) for the 662 samples and 28

columns (sample_name, studyID, SampleID, file_filtered_r1r2_combined,

reads_per_unfiltered_file, reads_per_file, species_id, host_phylum, host_class, host_family,

host_genus, host_kingdom, host_order, host_species, reference_for_filtering,

TimeTree_returned, host_common_name, host_flight, host_modality, host_diet, country, habitat,

sample_type, diet_category_12, diet_category_3, captive_wild).

Host tree construction

The TimeTree database was relied upon to construct the host tree of our dataset (24).

Scientific names of our host species within our dataset were submitted to the TimeTree

(http://www.timetree.org/) to obtain a complete newick tree containing 285 of 288 available host

species. 3 species (Aspius aspius, Cervus canadensis, and Geospiza acutirostris) were not

present in the TimeTree database and were not represented in our complete host tree.

Sequence preprocessing

The raw FASTQ reads associated with each Qiita study were acquired directly from

barnacle, which is the supercomputer hosting files submitted to the Qiita database. These files

had already been demultiplexed using Trimmamatics and adapter trimmed with minimap2 (v.

92021.1) on Qiita before being downloaded for additional processing (25). Files that were
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generated from multiple sequencing runs of the same sample (samples from study 2338, 11166,

13881 were sequenced in multiple runs and lanes) were merged into one sample file. All files

were then filtered by each respective host’s reference genome obtained from the NCBI genome

database (26). To prepare the files for strain evolution analysis, the forward and reverse reads

were concatenated. To prepare the files for microbiome diversity analysis, the forward and

reverse reads were interleaved using seqtk (v. 1.3) (https://github.com/lh3/seqtk). Figure 1 is an

illustrative representation of the major steps taken in this project.

Host filtering

Samples were host filtered using either a host genome that was a direct match or the

closest phylogenetic relative with a host genome using bowtie2 (v.2.4.4) (27). A custom bash

script was built to expedite gathering host genomes for our samples. The script utilized the

assembly_summary_genbank.txt file downloaded from NCBI’s FTP server

(https://ftp.ncbi.nih.gov/genomes/ASSEMBLY_REPORTS), which stores FTP links to host

genomes. The script first checked if a direct host genome assembly was available for download.

Out of the 288 host species represented in our dataset, 128 had direct host genomes assemblies.

Because host genomes for the remaining 160 hosts were not available on NCBI, the genome

assembly of the closest phylogenetic relative was found on the NCBI genome database and used

for filtering. The closest relative was found by searching for viable hosts at higher taxonomic

levels and then plotting candidates on a phylogenetic tree using TimeTree if multiple options

existed at the same taxonomic level. For example, Transcaspian wild ass (Equus hemionus kulan)

did not have a direct host genome available on NCBI, so the three relatives belonging to the

genus Equus with genomes available were considered: Equus caballus, Equus przewalskii,
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Equus asinus. These relative host species along with our host species of interest were submitted

to TimeTree to construct a phylogenetic tree that was used to determine the closest phylogenetic

relative to our species of interest. Once the closest phylogenetic relative was determined, in this

case, Equus asinus, its host genome was used to filter samples from our species of interest,

Equus hemionus kulan. We did not set a specific cutoff at which we did not pursue host genome

for filtering, such that if there were no relative species at a specific taxonomic level with host

genomes, we would look for closest relative species at one level higher until we found a viable

Table 1. Summary on taxonomic level of host genomes available for host filtering. 44% of
the species represented by our samples had direct host genomes for filtering, while, of the 66%
of species that did not have a direct host genome for filtering, 55% of the relative host genome
was found at the genus level.

Relative host genome

Direct host
genome

Genus
level

Subfamily
level

Family
level

Superfamily
level

Infraorder
level

Suborder
level

128 89 26 35 5 3 2

relative reference genome for host filtering. More than half (~55%) of the relative host genome

used for host filtering was found on the genus level, while the most distantly related host used for

host filtering was found on the suborder level (Table 1). For cases where multiple host genomes

were available for one species, we selected the host genome based on the following three criteria

by order of decreasing importance: 1) the most complete assembly (Chromosomes > Scaffolds >

Contigs), 2) the most recent genome assembly, 3) the genome assembly with the largest size.
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Microbiome Compositional analysis

Microbiome analysis of our dataset relied upon SHOGUN (v. 1.0.8), Woltka (v. 0.1.2),

and QIIME2 (v. 2020.1) (28-30). Shogun was used for sequence alignment of our interleaved

FASTA files against the Web of Life (WoL) database (30, 31). The WoL database includes

10,575 evenly sampled bacteria and archaea genomes as well as a reference phylogeny built with

381 single-copy marker genes (31). The alignments are then used to generate feature tables at the

phylum, species, and Operational Genomic Unit levels (OGU-level). Proposed as a new feature

providing the finest resolution possible for a shotgun metagenomic dataset, OGU refers to the

taxonomically independent reference genomes with which shotgun metagenomic reads are

mapped to. The OGU-level and species-level feature tables were randomly subset to contain one

sample per species. For the alpha and beta diversity analysis, the OGU-level feature table was

rarified to 50,000 reads per sample, which retained 2.15% of features in 65.28% of the available

samples. The feature tables were then used for diversity analysis with QIIME 2’s Python API.

The subsetted species-level feature table was not rarified for the compositionally-aware PCA

analysis by DEICODE (v. 0.2.4) (32).

QIIME2’s heatmap function was used to generate a heatmap of phyla represented in our

dataset from the phylum-level feature table. Robust Atchison PCA analysis was performed on

the species feature table. The PERMANOVA and PERMDISP function available through

scikit-bio (v. 0.5.6) was used for the multivariate analysis. Alpha and beta diversity significance

were calculated by QIIME2’s diversity alpha group significance and beta group significance

plugin which runs the Kruskal-Wallis test and PERMANOVA, respectively. The heatmap and

diversity figures were generated with the Python package Dokdo (v. 1.11.0), which enables
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visualization of QIIME2 figures. The Kruskal-Wallis test was used to calculate significance.

Statistical significance was defined as having a p-value < 0.05 for all analyses.

BioBakery3 pipeline overview

MetaPhlAn 3 (v. 3.0.11) aligned our merged FASTQ files against the ChocoPhlAn 3.0

database, which contains 1.1M unique clade-specific marker genes, to produce alignment files as

well as species profiles for each sample (33). The species profiles for each sample were then

merged to make a species-level feature table. This species-level feature table was used for

bacterial abundance analysis using Python (v. 3.6.11) packages.

StrainPhlAn 3.0, a marker-based strain profiling tool within MetaPhlAn 3.0, was used to

investigate strains from a particular bacterial species in this dataset (34). In brief, StrainPhlAn

3.0 concatenated the clade-specific markers of a bacterial species from ChocoPhlAn3 into a

species-specific marker sequence with which metagenomic reads of a sample could be aligned

against to estimate the consensus sequence of detected species-specific markers (34). The

consensus sequences of each detected species-specific marker are then concatenated to form a

strain-specific consensus marker sequence. Then, for a bacterial species of interest, StrainPhlAn

3.0 generated a multiple sequence alignment (MSA) of strain-specific consensus marker

sequences, each representing the most dominant strain of bacteria found in a sample (34). It is

important to note that the markers that are chosen to be concatenated into the strain-specific

consensus markers sequence are influenced by the marker threshold. For example, if the marker

threshold is set at 80%, then markers found in less than 80% of the strains are discarded. Finally,

the MSA generated by StrainPhlAn 3.0 is used to build a maximum-likelihood phylogenetic tree

with the GTRGAMMA model using RAxML (v 8.2.12) (35). Since consensus marker sequence
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represents the dominant genotype of bacterial strains in a sample, we will refer to strain found by

StrainPhlAn 3.0 as representative strain for the rest of the method section.

It is important to note that StrainPhlAn 3.0 has two important parameters that affect the

output of StrainPhlAn MSA considerably; one parameter (i.e --marker_in_n_samples), which

was touched upon in the last paragraph, specifies the marker inclusion criteria by the minimum

percentage of representative strain each marker has to be found in (default: 80%), whereas the

other parameter (i.e. --marker_in_n_samples) specifies the strain inclusion criteria by the

minimum number of markers each representative strain needs to have (default: 20). To simplify

the following explanation, we will refer to the marker inclusion criteria as marker threshold and

strain inclusion criteria as the strain threshold. To explore the effect marker threshold on the

outcome of our strain phylosymbiosis analysis, MSAs at five different marker thresholds (i.e

20%, 35%, 50%, 65%, 80%) were generated for each bacterial species examined. However, to

maximize the number of representative strains without neglecting alignment quality, the strain

threshold was determined using a custom approach that seeks to maximize the alignment score.

This custom approach is described in detail in the next section.

Custom approach to choosing strain threshold at a specific marker threshold

At a given marker threshold, setting a lower minimum strain threshold (i.e. minimum

markers present in a given strain to include a strain in MSA) will generate an MSA with more

strains (Fig. 2A). Since the MSA will be used to generate a phylogenetic tree detailing the

relationship between our strain, it will lead to a larger phylogenetic tree. However, this tree

would be populated with strains whose phylogenetic relationship to others is more uncertain

since they harbor fewer markers used for tree building (Fig. 2A). On the other hand, setting a
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higher minimum strain threshold will lead to MSA of strains with very high marker counts,

therefore a more phylogenetically confident tree. However, this approach likely unnecessarily

excludes strains from downstream analysis (Fig. 2B). The extremes of the two simple scenarios

above illustrate the difficulty in determining the strain threshold (or marker count per strain)

without some sort of objective measurement we could use to maximize or minimize.

Thus, we introduce the concept of alignment score, which is the sum of nucleotides

present in markers that lie within the marker threshold (Fig. 3). We believe MSA with a higher

alignment score would improve MSA’s performance in tree building or ordination analysis since

there are more overlapping nucleotides across strains for comparison. In our custom StrainPhlAn

3.0 approach, we sought to find the minimum strain threshold that can maximize the alignment

score for a set of strains iteratively (Fig. 3). We believe this approach optimizes the MSA for tree

building as it maximizes the overlapping alignments of nucleotide positions given a certain

marker threshold while avoiding the two problems with the previous two approaches; it does not

maximize sample count by including samples with low marker count nor does it unnecessarily

exclude samples with marker count that does not satisfy the often arbitrarily set threshold (Fig. 3

with sample calculation).
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Figure 2. Approaches considered to strain selection for multiple sequence alignment. A)
Approach 1 seeks to maximize strain count but produces a bloated tree. B) Approach 2 seeks to
maximize the quality of strains chosen but neglect available strain diversity.
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Figure 3.  Illustration of custom approach to strain selection. The optimal number of strains
to include for each species is determined by maximizing the alignment score, which is the sum of
nucleotides in shared markers.
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Bacterial selection for StrainPhlAn 3.0 processing

MetaPhlAn3 profiled around 86% (~570/662) of our metagenomic samples at the species

level. 92 samples contained reads with unknown taxonomical identity. There appears to be a

higher occurrence of unprofiled samples at a lower read count per sample (Fig. 4). Nevertheless,

we targeted the 20 most abundant bacterial species by normalized abundance and by sample

Figure 4. Distribution of read count per sample colored by MetaPhlAn3’s success in
profiling bacteria in each sample. Panel A & B represents a filtered and unfiltered read count
of each sample whereas panel C represents the read count of host reads filtered out from each
sample. Samples that failed to be profiled by MetaPhlAn3 seem to be concentrated in low read
count samples and not related to the number of host reads in the sample.

presence in our dataset for strain analysis (Fig. 5). However, of these species, four species (i.e.

Bacillaceae bacterium EAG3, Lactobacillus apodemi, Plesiomonas shigelloides, Pseudomonas

lundensis) could not be processed by StrainPhlAn 3.0 because each had fewer than 4 strains
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remaining in the MSA even at the least conservative marker threshold (20%) with custom strain

threshold. These species were excluded from downstream analysis.

Figure 5.  Top 20 abundant bacterial species profiled by MetaPhlAn3 measured by
normalized bacterial abundance (A) and sample presence (B). In total, 27 bacterial species
were found by both measurements. Strain analysis for all 27 bacterial species was attempted. E.
coli is the most commonly detected bacterial species by far in both metrics.

The rest of the 23 bacteria species were processed through StrainPhlAn 3.0 at five

different marker thresholds of 20%, 35%, 50%, 65%, 80%.  For a given marker threshold, the

custom approach to StrainPhlAn 3.0 parameter was applied, which relied on Pandas (v. 1.1.4) to
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Figure 6. Overview of strains and bacteria selected for strain evolution analysis when
setting marker threshold at 80%. A) The distribution of markers with each strain found per
bacterial species is represented by the box plot. The box represents the interquartile range, while
the whiskers extend to the minimum and maximum value. The box plot is overlaid with a strip
plot of marker count of each strain per bacterial species colored by strain inclusion based on our
custom approach. The yellow dots represent strains that are included in the MSA using our
custom approach. B) 10 bacteria have at least 15 representative strains in the dataset at this
marker threshold and will be processed by StrainPhlAn3.

calculate the strain threshold that maximizes the alignment score (36). The number of strains that

were retained at the chosen marker threshold and calculated strain threshold was then calculated.

If at least 15 strains were retained for a bacterial species, then the bacterial species was chosen
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for StrainPhlAn 3.0 processing. Figure 5 illustration of bacterial species selection process when

the marker threshold was set at 80%.

Strain phylosymbiosis and diversification analysis

Since our dataset includes samples from the same host species, we often find

representative strains from the same host in the MSA as well as the strain tree for a bacteria of

interest (i.e. of the Akkermansia muciniphila strains found two were from Hoffman’s

two-fingered sloth in figure 13). Therefore, to conduct the Mantel test, the strain tree is subsetted

to one strain per species. If the subsetted strain tree had less than 15 strains, it was excluded from

further analysis. Once a strain tree is constructed, the corresponding host tree is found by

subsetting the host tree of our dataset to contain only host species represented in the strain tree.

The subset strain tree and corresponding host tree are then converted to a patristic distance

matrix for Mantel Spearman correlation test. Patristic distance is the sum of all branch lengths

between two leaves of a tree. For each strain tree in the analysis, Mantel tests were carried out

100 times, each time with a random selection of one strain per species. The final Spearman

correlation and p-value were averages of the Spearman correlations and p-values from 100

iterations of the Mantel Spearman test. The Mantel Spearman correlation test was carried out by

the mantel function from the ecopy python package.

Strain trees generated by the GTRGAMMA model with RAxML were annotated by host

class, host captivity status, and diet. in ITOL (v. 6.3.2) (37). In addition, for a strain tree of a

bacteria species of interest, we calculated the Spearman correlation coefficient of each of its

subtree that has at least 3 strains from distinct hosts (e.g. Fig. 15A). The level of Spearman

correlations from each subtree regardless of statistical significance are then represented as branch

colors on the strain tree with ITOL.
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For a species of interest, a pairwise patristic distance of a randomly subsetted strain tree

was plotted against the patristic distance of the corresponding host tree with Python (v. 3.6.11).

Patristic distance of the host tree represents the estimated divergence time between hosts in terms

of millions of years. This scatterplot was used as background visualization to present the overall

Mantel Spearman correlation result (e.g. 15B).

For bacterial strains investigated for strain phylosymbiosis, evidence of divergence across

host classes was investigated by examining the clustering of strain groups from different host

classes. The patristic distance matrix of the strain tree was also used for ordination analysis and

permutational multivariate analysis of variance [PERMANOVA] analysis of strains group across

host class, host captivity, or host diet (e.g. 15C). Patristic distances were generated with R (v.

4.0.5)’s APE (v. 5.5) package (38). Ordinations were generated with Tidyverse (v. 1.3.1) (39). To

assist visualization of the ordinations, ellipses are drawn using the stat_ellipse function in

Tidyverse. Statistical multivariate analysis of strain divergence across the host class was

processed using R’s adonis, betadisper, ANOVA, TukeyHSD function from Vegan (v. 2.5.7) (

40).  The betadisper and ANOVA functions were used in conjunction to examine the variance of

strain groups involved in the comparison. To find out if there are significant differences between

the means of two groups, we also applied Tukey’s HSD (honest significance difference) test.
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RESULTS

Dataset assembly and filtering overview

Merging the samples from the 5 Qiita studies, our dataset consists of 662 samples from

288 species spanning 6 taxonomic classes: Mammalia, Aves (birds), Reptilia, Amphibia,

Actinopterygii (bony fishes), Hyperoartia (Lampreys) (Fig. 7). Overall, mammals make up

around half of the dataset (51%), whereas Aves accounted for more than a quarter (27%).  By the

Fig 7. Overview of host species represented in our vertebrate gut dataset. Starting with the
innermost ring, host species are labeled by host class, Qiita study ID,  captivity information.  The
outermost ring represents the level of average read from associated gut samples after host
filtering.

general dietary group, our dataset is split into 40.2% carnivores, 38.04% herbivores, and 21.7%

omnivores (Fig. 7).  Lastly, the vast majority (76.1%) of samples come from wild hosts (Fig. 7).

23



During sample processing, host filtering removed 17.8% of the initial sample reads (Fig.

8). Samples were processed for future projects hoping to generate MAGs from these samples.

Interestingly, samples from sea lampreys and vampire bats were found to contain the highest

level of host reads (data not shown). Since both animals are known sanguivores (blood feeders),

this points to the potential that blood-feeding may lead to higher host shedding in the gut.

Figure 8. Distribution of host reads removed from samples in the dataset. In total, 17.8% of
initial metagenomic reads were removed through host filtering.

Microbiome diversity analysis results

As expected, commonly known enteric bacterial phyla such as Firmicutes, Bacteroidetes

are represented in our gut and fecal samples (Fig. 9). Looking at figure 8’s heatmap more closely,

Proteobacteria appear to be more abundant in herbivore gut than that of carnivore or omnivore.

Unfortunately, because of time constraints, I did not conduct differential abundance analysis to
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investigate feature enrichment in certain trophic guilds or host classes, which would be an

interesting future project.

Figure 9. Heatmap of the absolute abundance of bacteria phyla represented in our dataset
clustered by three general trophic guilds. Expected enrichment of known enteric bacterial
phyla such as Bacteroides, Firmicutes, and Proteobacteria was observed.

To decipher the diversity within our samples, we used three different metrics (observed

features, faith’s phylogenetic distance, shannon entropy) to evaluate alpha diversity. We found

microbiome diversity to be significantly different across host classes ([Kruskal-Wallis (all
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groups)] Observed features: H = 12.28, p-value = 0.031 **; Faith’s pd: H = 15.42, p-value =

0.009 **; Shannon entropy: H = 22.89, p-value = 0.00035 ***) (Fig. 10). Pairwise comparisons

between host classes revealed that mammalian gut microbiome to be generally more diverse than

that of avian gut microbiome  ([Kruskal-Wallis (pairwise)] Observed features: H = 12.28, p-value

= 0.0082 **, q-value = 0.123; Faith’s pd: H = 10.12, p-value = 0.0015 **, q-value = 0.0220 *;

Shannon entropy: H = 17.28, p-value = 0.000032 ****, q-value = 0.000484 ***)  (Fig. 10). We

also found microbiome diversity to be significantly different across general dietary categories

([Kruskal-Wallis (all groups)] Observed features: H = 11.65, p-value = 0.0029 **; Faith’s pd: H

= 18.40 , p-value = 0.0001 ***; Shannon entropy: H = 11.52, p-value = 0.0031 **). Pairwise

comparisons between general dietary categories revealed that herbivore gut microbial

communities to be generally more diverse than that of carnivores ([Kruskal-Wallis (pairwise)]

Observed features: H = 11.14, p-value = 0.00085 **, q-value = 0.0025 **; Faith’s pd: H = 18.28,

p-value = 0.000019 ****, q-value = 0.000057 ****; Shannon entropy: H = 11.86, p-value =

0.00058 ***, q-value = 0.0017 **) and omnivores ([Kruskal-Wallis (pairwise)] Observed

features: H = 5.135, p-value = 0.023 *, q-value = 0.035 *; Faith’s pd: H = 6.184, p-value = 0.013

*, q-value = 0.019 *; Shannon entropy: H = 3.465, p-value = 0.063, q-value = 0.094) (Fig. 11).
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Figure 10. Alpha diversity compared across 6 host classes. Gut samples from Mammals
exhibited statistically significant higher diversity than that of Aves. Feature table used is at
OGU-level and subset to 1 sample per species rarified to 50,000 reads/sample, which retains
2.15% of features in 65.28% of the samples. * represents 0.05 > p-value > 0.01, ** represents
0.01 > p-value > 0.001, *** represents 0.001 > p-value > 0.0001.
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Figure 11. Alpha diversity compared across 3 general trophic guilds. Gut samples from
herbivores exhibited statistically significant higher alpha diversity than samples from carnivores
and omnivores. Feature table used is at OGU-level and subset to 1 sample per species rarified to
50,000 reads/sample, which retains 2.15% of features in 65.28% of the samples. * represents
0.05 > p-value > 0.01, ** represents 0.01 > p-value > 0.001, *** represents 0.001 > p-value >
0.0001.
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Figure 12. PCoA ordinations of weighted UniFrac distances colored by 4 different
categories. From left to right and top to bottom, the microbiome communities are colored by
host class, general host dietary category, host captivity, and study ID. The microbial composition
differs across host class and general host dietary category. The feature table used is at OGU-level
and subset to 1 sample per species rarified to 50,000 reads/sample, which retains 2.15% of
features in 65.28% of the samples.
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Figure 13. Biplot of Robust PCA of bacteria community colored by detailed trophic guilds.
The Species-level feature table was used in this compositionally aware PCA analysis. The top 15
features of the PCA are dominated by bacteria of the Enterobacteriaceae family.

Beta-diversity analysis of UniFrac distances between microbiome samples revealed

significant clustering of microbiome communities across host class (number of samples = 185,

number of groups = 6: [PERMANOVA] pseudo-F = 3.3, p-value = 0.001 **; [PERMDISP]

F-value = 7.71, p-value = 0.83) as well as general dietary categories (number of samples = 185,

30



number of groups = 3: [PERMANOVA] pseudo-F = 3.880, p-value = 0.001 **; [PERMDISP]

F-value = 1.288, p-value = 0.248) (Fig. 12).

Unlike the weighted UniFrac distances, robust Aitchison distance between microbiomes

did not reveal any statistically significant clustering of groups via multivariate analysis (Fig. 13).

Nevertheless, DEICODE revealed the top 15 features driving the differences among samples,

which are dominated by bacterial species of the Enterobacteriaceae family (Fig. 13).

Strain evolution analysis results

Evidence for strain phylosymbiosis was observed via the Mantel Spearman correlation

test. Out of the 13 bacterial species investigated for strain phylosymbiosis, 7 bacterial species

exhibited significant congruence between the host and strain tree at one or more marker

thresholds (Fig. 14 & Table 2). Of these 7 bacterial species, A. muciniphila and B. vulgatus had

significant Mantel Spearman correlation across all marker thresholds at which at least 15 strains

were available (Fig. 14 & Table 2). The bacterial species with the highest number of strains, E.

coli did not exhibit strain phylosymbiosis at any of the 5 marker thresholds (Fig. 14 & Table 2).

Exhibiting strong evidence for strain phylosymbiosis, A. muciniphila strains at 50%

marker threshold were examined more closely (Fig. 15).  The signal of strain phylosymbiosis is

stronger near the root of the tree as shown by the yellow branch concentrated near the root of the

tree (Fig. 15A). Taken as a whole, the strain tree exhibits significant strain phylosymbiosis via

100 iterations of the Mantel Spearman statistic ([Mantel Spearman results averaged over 100

iterations] r = 0.253, p-value =0.022)  (Fig. 15B).
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Figure 14. Overview of strain phylosymbiosis results, strain clustering across host class
results, and basic biology of bacterial species examined for strain phylosymbiosis. A) Strain
phylosymbiosis signals shown via the Mantel results averaged over 100 iterations of the mantel
test. The numbers of samples involved in each mantel test are shown along with the significance
of each test. Mantel test conducted on bacterial species involving at least 15 strains across 5
marker thresholds (20%, 35%, 50%, 65%, 80%). Green tick marks highlight mantel test results
with positive correlation and statistically significant standard p-value < 0.05 value, whereas red
cross marks highlight insignificant mantel test results. Mantel statistics were based on a
two-sided spearman rank correlation with 999 permutations. B) Green tick marks indicate
significant PERMANOVA results and insignificant ANOVA results when examining strains
from different host classes. For panel A & B, ~ represents 0.1 > p-value > 0.05,  * represents
0.05 > p-value > 0.01, ** represents 0.01 > p-value > 0.001, *** represents 0.001 > p-value >
0.0001. C) Basic biological characteristics of examined bacterial species (41).
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Table 2. Numeric values of mantel spearman statistic result across all five marker
thresholds. Mantel test results are averaged over 100 iterations; mantel tests are only conducted
on strains trees with at least 15 strains across 5 marker thresholds (20%, 35%, 50%, 65%, 80%).
The numbers of samples involved in each mantel test are shown along with the significance of
each test. Each iteration of the mantel statistics was based on a two-sided spearman rank
correlation with 999 permutations. * represents 0.05 > p-value > 0.01, ** represents 0.01 >
p-value > 0.001, *** represents 0.001 > p-value > 0.0001.
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Table 3. Numeric values of multivariate results selected bacterial strains across five marker
thresholds (20%, 35%, 50%, 65%, 80%). For each bacteria and marker threshold, the
columns from left to right contain the R² and p-value of overall and pairwise adonis permanova
results, the F-value and p-value of ANOVA of beta dispersion results, and TukeyHSD p-value
between groups. * represents 0.05 > p-value > 0.01, ** represents 0.01 > p-value > 0.001, ***
represents 0.001 > p-value > 0.0001. The table is split into two parts and presented on the
following two pages for clearer visuals.
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Overall, A. muciniphila strains exhibit genotypic differences across the host class. A.

muciniphila strains cluster significantly across host classes ([adonis PERMANOVA] R²

=0.45328, p-value = 0.0048 ** with no difference in variance), but not across host captivity

status ([adonis PERMANOVA] R² =0.05533, p-value = 0.2309) or general diet category ([adonis

PERMANOVA] R² = 0.05161, p-value = 0.2237) (Fig. 15C). Pairwise comparisons of A.

muciniphila strain across host classes using suggests there are genotypic difference between

mammalian strains and reptilian strains ([adonis PERMANOVA] R² = 0.52099, p-value = 0.0124

*  with no difference in variance ), avian strains and reptilian strain ([adonis PERMANOVA] R²

= 0.60146, p-value = 0.0224 * with no difference in variance), but not mammalian strains and

avian strains (adonis [PERMANOVA] R² = 0.03008, p-value = 0.77). However, pairwise

comparisons via Tukey’s HSD test reveal no differences in means between strain groups from

different host classes (Table 3).

Similarly, B. vulgatus also presented a strong case for strain phylosymbiosis and its strain

tree at 50% marker threshold was examined more closely (Fig. 16). The general level of strain

phylosymbiosis decreases traveling down the strain tree except in the subtree containing humans,

fallow deer, and tamandua in which it is elevated (Fig. 16A). The B. vulgatus strain tree proves

to exhibit significant strain phylosymbiosis via 100 iterations of the Mantel Spearman statistic

(Fig. 16B). Similar to that of A. muciniphila strains, we see a positive relationship between the

evolutionary relatedness of B. vulgatus strains and that of their corresponding hosts ([Mantel

Spearmam results averaged over 100 iterations] r = 0.337, p-value =0.029) (Fig. 16B).
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Figure 15. Analysis of Akkermansia muciniphila MSA with 50% marker inclusion criteria
reveals evidence for strain phylosymbiosis and strain diversification across host classes. A)
Strain tree of detected A. muciniphila strains with tips labeled by the common name of each
strain’s host. Strength of strain phylosymbiosis as measured by Mantel Spearman correlation of
each subtree with at least 3 leaves is represented by branch color. From the innermost to the
outermost ring, strains are colored by hosts’ taxonomic class, captivity information, fine and
general dietary information. The percent of markers for A. muciniphila available for each strain
for tree building is represented by the annotated bar chart. The strain tree is built with the
GTRGAMMA model and visualized with branch length ignored. B) Strong signal of strain
phylosymbiosis detected for A. muciniphila. Mantel spearman test reveals a statistically
significant positive correlation between host divergence time and patristic distance between A.
muciniphila strains. C) A. muciniphila strains differ across host classes. Multivariate analysis
was conducted on the distance matrix based on the patristic distance of the GTRGAMMA
maximum-likelihood (ML) tree above. (As a clarification, values under “ANOVA” represent
ANOVA results testing if the multivariate dispersions (average distance to centroid calculated
with betadisper) are significantly different between groups compared.)
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Figure 16. Analysis of Bacteroides vulgatus MSA with 50% marker inclusion criteria
reveals evidence for strain phylosymbiosis, but no strain diversification across host classes.
A) Strain tree of detected strains with tips labeled by the common name of each strain’s host.
Strength of strain phylosymbiosis as measured by Mantel Spearman correlation of each subtree
with at least 3 leaves is represented by branch color. From the innermost to the outermost ring,
strains are colored by hosts’ taxonomic class, captivity information, fine and general dietary
information. The percent of markers for B. vulgatus available for each strain for tree building is
represented by the annotated bar chart. The strain tree is built with the GTRGAMMA model and
visualized with branch length ignored. B) Strong signal of strain phylosymbiosis detected for B.
vulgatus. Mantel spearman test reveals a statistically significant positive correlation between host
divergence time and patristic distance between B. vulgatus strains. C) B. vulgatus strains did not
differ across host classes. Multivariate analysis was conducted on the distance matrix based on
the patristic distance of the GTRGAMMA ML tree above. (As a clarification, values under
“ANOVA'' represent ANOVA results testing if the multivariate dispersions (average distance to
centroid calculated with betadisper) are significantly different between groups compared.)
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Overall, B. vulgatus strains does not cluster significantly across host classes (Mammalia,

Aves) ([PERMANOVA] R² = 0.01224, p-value =  0.5781) or general diet category  ([adonis

PERMANOVA] R² = 0.04974, p-value =  0.6723), but does across host captivity status ([adonis

PERMANOVA] R² = 0.18761, p-value = 0.0428 * with no difference in variance)  (Fig. 16C).

However, when we examine B. vulgatus strains at 20% marker threshold, we do see

strains cluster significantly across host classes ([adonis PERMANOVA] R² =0.21473, p-value =

0.0402*; [ANOVA of betadisper] F value = 0.5643, p-value = 0.573) (Fig. 17A). Similar to

before, pairwise comparisons via Tukey’s HSD test reveal no differences in means between

strain groups from different host classes (Table 3)

Figure 17. PCoA ordination and multivariate analysis of patristic distance between B.
vulgatus strains found at 20% and 35% marker threshold. A) B. vulgatus strains found with
a 20% marker threshold do cluster significantly across host classes. B) B. vulgatus strains found
with a 35% marker threshold exhibit significant variance among groups. (As a clarification,
values under “ANOVA” represent ANOVA results testing if the multivariate dispersions (average
distance to centroid calculated with betadisper) are significantly different between groups
compared.)

Although E. faecalis strains do not exhibit significant levels of strain phylosymbiosis,

they do exhibit genotypic difference between strains from different host classes at 20%, 35%

marker thresholds examined (20%: [adonis PERMANOVA] R² =0.22214, p-value = 0.0002 ***
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with no difference in variance; 35% [adonis PERMANOVA] R² =0.21023, p-value = 0.0207 *

with no difference in variance) (Fig. 18). Across both marker thresholds, pairwise comparisons

of strains from different host classes reveal genotypic differences between stains from mammals

Figure 18. PCoA ordination and multivariate analysis of patristic distance between E.
faecalis strains found at A) 20%, B) 35%, C) 50% marker thresholds. A & B) E. faecalis
strains found with 20% and 35% marker threshold do cluster significantly across host classes. C)
E. faecalis strains found with a 50% marker threshold does not exhibit difference across host
classes. (As a clarification, values under “ANOVA” represent ANOVA results testing if the
multivariate dispersions (average distance to centroid calculated with betadisper) are
significantly different between groups compared.)

and birds (20% marker threshold [adonis PERMANOVA] R² = 0.17483, p-value = 0.0037 **

with no difference in variance; 35% marker threshold [adonis PERMANOVA] R² = 0.16242,

p-value = 0.0113 * with no difference in variance) as well as reptiles and birds (20% marker

threshold [PERMANOVA] R² = 0.16184, p-value = 0.0163 * with no difference in variance;
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35% marker threshold [PERMANOVA] R² = 0.15176, p-value = 0.0488 * with no difference in

variance). However, pairwise comparisons via Tukey’s HSD test reveal no differences in means

of strain groups from different host classes (Table 3)

Lastly, as the most abundant bacteria from the dataset, Escherichia coli was examined for

its lack of strain phylosymbiosis (Fig. 19). The general level of strain phylosymbiosis was weak

across the stain tree except in certain clades (Fig. 17A). Overall, we see a lack of relationship

between the evolutionary relatedness of E. coli strains and that of their corresponding hosts

([Mantel Spearman result averaged over 100 iterations] r = -0.038, p-value =0.377) (Fig. 17B).

In addition, the strains does not cluster significantly across host classes (Mammalia, Aves,

Reptilia) or general diet category ([PERMANOVA] R² = 0.04974, p-value =  0.6723), but does

across host captivity status ([PERMANOVA] R² = 0.18761, p-value = 0.0428 * with no

difference in variance)  (Fig. 19C).
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Figure 19. Analysis of Escherichia coli MSA with 50% marker inclusion criteria does not
reveal evidence for strain phylosymbiosis and strain diversification across host classes. A)
Strain tree of detected E. coli strains. Strength of strain phylosymbiosis measured by Mantel
Spearman correlation is plotted as branch color. From the innermost to the outermost ring, strains
are colored by hosts’ taxonomic class, captivity information, fine and general dietary
information. The percent of markers for E. coli available for each strain for tree building is
represented by the annotated bar chart. The strain tree is built with the GTRGAMMA model and
visualized with branch length ignored. B) Signal of strain phylosymbiosis was not detected for E.
coli via Mantel spearman statistics. C) E. coli strains do not differ across host classes.
Multivariate analysis was conducted on the distance matrix based on the patristic distance of the
GTRGAMMA ML tree above. (As a clarification, values under “ANOVA” represent ANOVA
results testing if the multivariate dispersions (average distance to centroid calculated with
betadisper) are significantly different between groups compared.)
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DISCUSSION

Overall, analysis of our vertebrate gut dataset found expected trends of microbiome

diversity and bacterial species that exhibited strain phylosymbiosis across the animal kingdom.

Diversity of the vertebrate gut microbiome was found to be higher in herbivores than carnivores

and omnivores, and higher in mammals than birds (Fig. 10 & Fig. 11 ). These relationships of

diversity found at the OGU-level echoed results from previous studies (20, 21, 42). In addition,

we also found host class and general dietary strategy (herbivore, omnivore, carnivore) to affect

microbiome composition (Fig. 12). Top bacteria driving differences in microbiome composition

as measured by Aitchison distance are dominated by bacteria from the Proteobacteria phylum

(Fig. 11). Our microbiome composition analysis provides a general understanding of the

microbiome diversity represented in our dataset.

Strain phylosymbiosis analysis was conducted on 13 bacterial species in the dataset (Fig.

14). As mentioned above, only bacterial species with strains found from at least 15 distinct hosts

at a given marker threshold are analyzed. All of these species are known to be common

inhabitants of the human intestinal tract, except for Pseudomonas yamanorum, which is a

psychrotolerant bacteria found in the subarctic soil (Fig. 14C) (41, 42). For most species, we did

not observe consistent signals of strain phylosymbiosis across marker thresholds tested. Six

bacterial species E. faecalis, P. copri, B. thetaiotaomicron, B. fragilis, P. yamanorum, E. coli did

not exhibit signals of strain phylosymbiosis at any marker thresholds, whereas four bacterial

species C. perfringens, P. distasonis, B. dorei, B. uniformis had signals of strain phylosymbiosis

depending on the marker threshold used. Only A. muciniphila and B. vulgatus exhibited strain

phylosymbiosis across all marker thresholds (Fig. 14).
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For a species of interest, if the signal of strain phylosymbiosis is present at the host class

level, we could potentially find strains to exhibit genotypic differences across host classes.

Therefore, we sought to investigate evidence of host class divergence by examining if there was

significant clustering of strains from different host classes. Results showed that A. muciniphila

strains differed across host class at all examined marker thresholds, which mirrors the bacteria’s

signal of strain phylosymbiosis. Interestingly, when looking at the pairwise comparison between

A. muciniphila strains from different host classes, we see a significant difference between

mammalian strains and reptilian strains, and avian strains and reptilian strains, but no difference

between avian strains and mammalian strains. This suggests that, at least for A. muciniphila,

reptilian strains are significantly different from that of avian or mammalian strains, which may

be due to the degree of gut physiological difference between the host class such as reptiles

having a shorter intestine than that of mammals (44). Unlike that of A. muciniphila, B. vulgatus

strains did not cluster significantly across host classes at 35% and 50% marker thresholds.

Whereas E. faecalis, which had no signal of strain phylosymbiosis, exhibits the differences

between strains of mammalian, avian, and reptilian origins.

We find that the presence of strain phylosymbiosis and analysis of strain genotype from

different host classes are both sensitive to the marker threshold levels. This is expected as the

level of marker threshold would determine the markers available for strain-specific consensus

marker sequence construction, therefore, affect the nucleotide identity of the available strains

under analysis. Since the strain trees are based on the MSA of strain-specific consensus marker

sequence, differences in any consensus sequence would affect the resulting strain tree and,

therefore, both the Mantel test results and multivariate results. One important consideration is

that the marker threshold determines the criteria of marker inclusion by each marker’s
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uniqueness. At a higher marker threshold, markers included in the MSA need to be shared by a

higher number of strains, whereas, at a lower marker threshold, markers shared by a lower

percentage of strains (more unique) will be included in the MSA. Therefore, strains from certain

host classes such as reptiles may potentially have more unique markers that can only be included

in the MSA for analysis at a lower marker threshold. This would affect the host class represented

by bacterial strains available for this analysis. Therefore, although ideally, a high marker

threshold would improve analysis as there will be more overlap between marker sequences for

comparison, lower marker thresholds also have their advantages in including markers more

unique to strains from certain host clades (see Fig. 18 for an example).

It is important to note that Mantel test statistics using Spearman correlation tests for

congruence of the relative positions of the leaves and not the relative distances between the

leaves in the tree. This is because our Mantel test results presented in this study uses Spearman

correlation which correlates the rankings of leaf pairs derived from leaf distances and not the

distances themselves. For example, in a particular patristic distance matrix where the “distance

A-B” is 100 branch unit, “distance B-C” is 101 branch unit, and “distance C-D” is 300 branch

unit, Spearman correlation would convert the distances into the respective ranks for correlation

tests while ignoring the relative unit differences (rank 1: distance A-B < rank 2: distance B-C <

rank 3: distance C-D). To factor in the relative differences between branch lengths, one could

theoretically apply Pearson correlation through the Mantel test statistics. Thus, we did also run

Mantel tests based on Pearson correlation, the results of which mostly match results obtained

with Spearman correlation. However, since Pearson correlation is a parametric test, which

requires our data to satisfy a normal distribution, we decided not to present our Mantel test

results based on the Pearson correlation as our input data is not normally distributed. Therefore,
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our phylosymbiosis results presented above reflect the overall structural or architectural

congruence between phylogenies and not the overall shape of the tree.

It is also important to consider that our strain phylosymbiosis analysis searches for

structural congruences between phylogenies while being agnostic about the forces responsible

for these congruences. Nevertheless, most evolutionary biologists would point to co-speciation,

host-shift speciation, intrahost speciation, and extinction as the main factors affecting the

congruence of phylogenies (45). As briefly touched upon before, co-speciation refers to the

parallel speciation of host and microbial species (or more generally symbionts) that could occur

from long-term co-diversification. Host-shift speciation, on the other hand, refers to the

speciation of symbionts to occupy niches available in new host species (45). Intrahost speciation

(also referred to as duplication) refers to the one-sided speciation of the symbionts within a host

lineage (45). As Vienne et al. eloquently illustrated in their review, other than the process of

co-speciation, host-shift speciation alone could also lead to congruencies of phylogenies. On the

other hand, intrahost speciation and extinction events could mitigate signals of congruencies

even for host-symbiont systems that experience co-speciation. To confidently deduce which of

these events affected the congruences of phylogenies in the past, one would have to calculate and

compare estimated divergence time via molecular clocks such as in Moeller et al. 2016. In the

103 available studies on evolutionary dynamics of host-symbiont published before 2013, the

majority (48 studies) found host-shift speciation as the primary evolutionary force while less

than a dozen (9 studies) found convincing cases of co-speciation. Based on these studies thus far,

Vienne et al. reasonably point out that the host-symbiont evolutionary relationship is primarily

affected by host-shift speciation events and only rarely driven by co-speciation events.
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However, regardless of whether host-symbiont congruence is based on host-shift

speciation or co-speciation, we propose that bacterial species with the highest chance of

exhibiting strain phylosymbiosis are those species that experience consistent microbial dispersal

and favorable microbial selection within the host species. Consistent microbial dispersal within

species refers to the reliable, potentially long-term, exposure of microbial symbionts within

populations of host species through successive generations. It is important to stress that the

source of the exposure should not be from the environment or different species. Microbial

dispersal is facilitated by both vertical transmission (transfer from mother to child) and

horizontal transmission (transfer between members of the same species except mother to child)

(15). Favorable microbial selection refers to microbial species' successful colonization of the

host gut, which enables close interaction of host and microbial species. We hypothesize that only

when these two conditions are met will microbial strains from different host species accumulate

enough respective reciprocal genotypic changes that allow for congruent phylogenetic detection.

On the other hand, we believe sufficient environmental transmission or cross-species

transmission of microbial strains would overwhelm signals of strain phylosymbiosis, even if the

original strain has been diversifying with the host. If our hypothesis is correct, then strain

phylosymbiosis analysis across the animal kingdom may be a tool to search for bacterial species

that are prone to consistent microbial dispersion and favorable microbial selection within a wide

range of vertebrates. These bacterial species could be of special interest to biologists

investigating host-microbe interaction or microbial adaptation to the host environment.

Interestingly, A. muciniphila was suggested to possess vertical transmissibility in humans

as it is found to be present in human milk and being able to metabolize human milk

oligosaccharides (46). Additionally, A. muciniphila has been found to enhance the intestinal

50



barrier in humans and induce an adaptive immune response in mice (47, 48). These findings

suggest that A. muciniiphila interacts closely with hosts and, potentially, does so within many

different host species. Another recent study has found vertical transmission of B. vulgatus, B.

fragilis, P. distasonis, and E. coli in humans (49). A prior study by Moeller et al. has provided

compelling evidence of co-speciation of hominids and bacteria of the Bacteroidaceae family

including B. vulgatus (17). In addition to the technical limitations of our study, the lack of

evidence for strain phylosymbiosis in B. fragilis and E. coli could be a result that these bacterial

species experience sufficient levels of environmental transmission. In particular, E. coli, as a

motile facultative anaerobe, can be commonly found in the environment and could potentially

spread to different wildlife species via water sources.

One limitation of our analysis worth noting is the unevenly distributed dataset. Although

the number of host species represented in the dataset is quite large (n=288), our dataset is heavily

biased towards the mammalian class (51%) (Fig. 7). This impedes our ability to detect strain

phylosymbiosis across host classes as well as analyze if there were different degrees of strain

phylosymbiosis within different host classes. Given that pairwise PERMANOVA analysis of A.

muciniphila strains revealed that there are only differences between strains of Mammalia and

Reptilia, and strains of Aves and Reptilia, but not stains of Mammalia and Aves, it would be

interesting to have more Reptilia samples to reaffirm if strains of reptilian origin are different

than that of mammalian and avian origins. An ideal dataset to analyze strain phylosymbiosis

would include deeply sequenced WGS samples (>10⁶ reads per file) representing a large number

of host species evenly distributed across host classes of interest.

One apparent limitation of our strain analysis is that 14% of samples in our dataset cannot

be profiled by MetaPhlAn3 (Fig. 4). These samples did not have enough alignments against
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markers of ChocoPhlAn3 database for species classification. Most of these unprofiled samples

are concentrated at lower sequencing depth (<10⁶ reads per sample) (Fig 4.). Without sufficient

alignments, the strains available in the samples could not be included for the strain analysis.

However, some unprofiled samples are also present at higher sequencing depth (>10⁶ reads per

sample)  (Fig. 4). Therefore, low sampling depth (<10⁶ reads per sample) should not be the only

reason for the presence of unprofiled samples.

We suspect the presence of novel, uncharacterized bacteria in our samples to be a large

factor in the lack of species detection. Previous de novo studies have found that, as of March

2021, large proportions of (up to 75%) metagenomic samples from wildlife microbiomes remain

uncharacterized (20, 42). Since around three-quarters of our dataset is from wild animals, we

should expect a large proportion of diversity to remain uncharacterized in our dataset and,

therefore, unprofiled with our reference-based profiler. Therefore, the most abundant bacteria

selected for strain phylosymbiosis potentially does not reflect the actual abundance of bacteria

represented in our sample.

Furthermore, in addition to undetected species, we suspect that the available markers in

ChocoPhlAn3 do not capture the genetic variability of bacterial species found in wildlife

samples. Since these markers used for strain detection are thoughtfully selected from

characterized genes in Uniprot and the genes in Uniprot is mostly assembled from studies related

to human and the human gut microbiome, the strains detected by StrainPhlan 3.0 could be

limited to strains that resemble characterized strains found in human (33). This would exclude

highly divergent strains of a bacterial species that is only present in certain wildlife gut

microbiomes, therefore, limiting our ability to detect potential signals of strain phylosymbiosis in

wildlife samples.
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All in all, a reference-based approach to analysis involving wildlife gut microbiome

likely neglects large, crucial diversity. Given these challenges, we could utilize de novo assembly

of metagenome-assembled genomes (MAGs) to alleviate this problem. This could be done in two

ways. First, apply MAG-based strain profiling tools such as the newly released inStrain to the

study of strain phylosymbiosis (50). With higher sensitivity than StrainPhlAn 3.0, the de novo

approach of inStrain should be able to detect more strains especially those uncharacterized,

allowing for more complete assessment of strain phylosymbiosis for our species of interest. And,

unlike StrainPhlAn 3.0 that exclusively considers the consensus sequence that represents the

dominant genotype, inStrain considers both major and minor alleles during genomic

comparisons. This allows for better resolution of the natural genetic variability of strains present

within a sample, which would improve the accuracy of our analysis. Another way, perhaps more

technically challenging, is to utilize MAGs to find additional markers that could detect more

divergent wildlife bacterial strains. Since ChocoPhlAn3 is customizable, these markers could

then be added to ChocoPhlAn3 to supplement our existing marker-based strain analysis. Both

methods should be able to detect more uncharacterized bacterial strains and, therefore, should

improve our ability to investigate the evolutionary dynamics of strain phylosymbiosis.

Overall, our reference-based approach exhibits limitations with regards to detecting

divergent strains in variable species we would expect in wildlife samples. In addition, most strain

profiling tools including StrainPhlAn3 require deep sequencing depth (> 10x coverage) to

perform effectively (18). However, these challenges are not inherent to the shotgun metagenomic

dataset. As technology allows for sequencing with deeper coverage and new de novo methods

emerge such as inStrain that utilizes MAGs to profile strains, shotgun metagenomic data could

become the standard medium through which we profile strains in wildlife samples. In contrast,
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traditional culture-based comparative genetics of isolate could not be used to investigate

unculturable bacterial diversity within wildlife metagenomic samples. However, it remains an

essential tool in identifying and tracking certain culturable bacterial strains, especially for those

with clinical interest (18). Furthermore, although high-throughput single-cell sequencing offers

unprecedented insight into the genetic, transcriptomic, and proteomic composition of individual

cells within a cellular community, this emerging technology is more applicable for the analysis of

eukaryotic cells than microbial cells from gut samples (18). This is, in large part, due to the

heterogeneity of microbial cell walls and complexities associated with environmental samples

such as animal stool (18). The Shotgun metagenomic dataset should remain a compelling

medium to study bacterial strains found on or within wildlife in the foreseeable future.

In summary, as an exploratory study investigating strain phylosymbiosis across the

animal kingdom, we were able to detect signals of strain phylosymbiosis in various bacteria.

Within the confines of a marker-based approach, we found A. muciniphila and B. vulgatus

exhibit the strongest signals of strain phylosymbiosis. The correlation between the strain of these

bacteria and their respective host, once again, highlights the interconnectedness of the

host-microbiota system. Future studies should utilize a de novo approach to the study of strain

phylosymbiosis and strive to uncover the intricate biological mechanisms underlying this

interesting evolutionary dynamic within our tree of life.

Material from this thesis is currently being prepared for submission for publication of the

material. Chiu, Jeffrey H.; Song, Se J.; Cantu, Victor; Shaffer, Justin; Lutz, Holly L.; Knight,

Rob. The thesis author was the primary author of this material.
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