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PURPOSE. To determine whether high-resolution retinal imaging measures of macular structure
correlate with visual function over 36 months in retinal degeneration (RD) patients and
normal subjects.

METHODS. Twenty-six eyes of 16 RD patients and 16 eyes of 8 normal subjects were studied at
baseline; 15 eyes (14 RD) and 11 eyes (6 normal) were studied 36 months later. Adaptive
Optics Scanning Laser Ophthalmoscopy (AOSLO) was used to identify regions of interest
(ROIs) with unambiguous cones at baseline to measure cone spacing. AOSLO images were
aligned with spectral-domain optical coherence tomography (SD-OCT) and fundus-guided
microperimetry results to correlate structure and function at the ROIs. SD-OCT images were
segmented to measure inner segment (IS) and outer segment (OS) thickness. Correlations
between cone spacing, IS and OS thickness and sensitivity were assessed using Spearman
correlation coefficient q with bootstrap analyses clustered by person.

RESULTS. Cone spacing (q ¼ 0.57, P < 0.001) and macular sensitivity (q ¼ 0.19, P ¼ 0.14)
were significantly correlated with eccentricity in patients. Controlling for eccentricity, cone
spacing Z-scores were inversely correlated with IS (q ¼ �0.29, P ¼ 0.002) and OS thickness
(q ¼ �0.39, P < 0.001) in RD patients only, and with sensitivity in normal subjects (q ¼
�0.22, P < 0.001) and RD patients (q ¼ �0.38, P < 0.001). After 36 months, cone spacing
increased (P < 0.001) and macular sensitivity decreased (P ¼ 0.007) compared to baseline in
RD patients.

CONCLUSIONS. Cone spacing increased and macular sensitivity declined significantly in RD
patients over 36 months. High resolution images of cone structure correlated with retinal
sensitivity, and may be appropriate outcome measures for clinical trials in RD.

Keywords: adaptive optics scanning laser ophthalmoscopy, optical coherence tomography,
microperimetry

Retinitis pigmentosa (RP) refers to a diverse group of
hereditary retinal degenerative disorders that all cause

progressive, diffuse, and relentless loss of photoreceptors,
resulting in vision loss and, ultimately, blindness. RP is a leading
cause of hereditary blindness in developed countries and
affects 1 in 3500 people worldwide.1 RP manifests with
nyctalopia, progressive visual field constriction, and eventual
decline in visual acuity. Loss of visual function accompanies
fundus findings, including retinal pigment epithelium (RPE)
changes, arteriolar attenuation, waxy optic disc pallor, and
variable bone spicule pigmentation.2 RP can occur in isolation
or as part of a syndrome that involves other organs, such as
Usher syndrome, which is characterized by sensorineural
hearing loss in addition to retinal degeneration (RD).1 Although
RP is characterized clinically by degeneration and death (first of
rod, followed by cone photoreceptors), RP is genetically
heterogeneous and has been associated with mutations in over
60 genes (www.Retnet.org, accessed January 23, 2019), each of
which may affect rod and cone survival differently.

Because photoreceptor death is slowly progressive over
many years, it has been challenging to demonstrate whether
treatments and cures are safe and effective. Specific, reliable,
precise, objective, and sensitive measures of photoreceptor
health and survival are urgently needed to expedite develop-
ment of treatments to prevent blindness, monitor disease
progression, and measure response to therapies.

Previous studies have shown that measures of visual
function in RP correlate with the integrity of the photoreceptor
layers imaged using spectral-domain optical coherence tomog-
raphy (SD-OCT).3–5 However, current SD-OCT techniques lack
sufficient resolution for examination of individual photorecep-
tors, raising the possibility that subtle changes in photoreceptor
structure are being missed. In contrast, adaptive optics
scanning laser ophthalmoscopy (AOSLO) has been used to
visualize the retina with lateral resolution at the single cell
level,6,7 enabling imaging of the cone mosaic and measurement
of cone spacing and density, and AOSLO has been used to study
eyes with inherited retinal degenerations.8–10 Cone density and
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spacing correlate with clinical measures of visual function
including visual acuity and foveal sensitivity in RD,11,12

suggesting that the high-resolution measures of cone structure
obtained with AOSLO may be useful in tracking disease
progression.13,14

However, in eyes with RD, cone spacing and density are not
always found to correlate with cross-sectional measures of
photoreceptor layer thickness obtained with SD-OCT,15–17

possibly because rods contribute to measures of outer nuclear
layer thickness outside the fovea, and some cones have
diminished reflectivity,18–20 accounting for decreased cone
density measures in regions with normal cross-sectional
thickness. Confocal AOSLO images of photoreceptors are
generated by light reflected at the photoreceptor inner
segment/outer segment (IS/OS) and OS/RPE junctions,21 while
the cell bodies of degenerating photoreceptors may persist in
the outer nuclear layer (ONL) even after the IS and OS have
degenerated.22 Thus, it is possible that areas with intact
photoreceptor cell bodies that have degenerating IS and OS
with reduced visual function could show no correlation
between cone spacing or density and cross-sectional measures
of ONL thickness from OCT scans. Prior studies have
demonstrated a correlation between cone spacing measures
with AOSLO and visual function at the fovea in patients with
retinal degenerations,12 and parafoveal cone density has been
correlated with spatial contrast sensitivity23 and multifocal
electroretinography,24 but the relationship between retinal
structure and visual sensitivity, when measured using micro-
perimetry to assess function at macular locations outside the
central fovea, has not been previously reported on a cellular
level in RP.

The current study was designed to test the hypothesis that
cone spacing measures from confocal AOSLO images correlate
with typical clinical structural and functional measures,
including spectral domain OCT and fundus-guided micro-
perimetry. High-resolution measures of macular structure and
function were analyzed in eyes imaged at baseline and again 36
months later in patients with RD and age-similar, visually
normal subjects. Structural measures of outer retinal health—
including cone spacing from en face high-resolution images
acquired with AOSLO and thickness of the IS and OS layers on
SD-OCT scans—were compared with functional measures of
visual sensitivity from fundus-guided microperimetry at iden-
tical retinal locations in normal eyes and in eyes with RD. The
results may help improve current measures of detection and
progression of RD to monitor the outcome of therapeutic
interventions over 36 months.

METHODS

Study Design

This study was approved by the Institutional Review Boards
of the University of California, San Francisco and the
University of California, Berkeley, and adhered to the tenets
of the Declaration of Helsinki. All subjects provided written
informed consent.

Clinical Examination

Best-corrected visual acuity (BCVA) and refractive error were
measured according to the Early Treatment of Diabetic
Retinopathy (ETDRS) study protocol.25 Axial length was
measured using partial coherence interferometry (IOL Master;
Carl Zeiss Meditec, Dublin, CA, USA). Genetic testing was
performed in 2 patients (40032 and 30007, respectively) as
previously described.26,27 Twelve patients (30015, 40023,

40030, 40043, 40046, 40039, 40064, 40067, 40070, 40079,
40080, and 40082) were tested using next-generation sequenc-
ing of 181 genes in a retinal dystrophy panel that included
copy number analysis (Blueprint Genetics, San Francisco, CA,
USA) through the genetic testing study of the Foundation
Fighting Blindness My Retina Tracker registry for inherited
retinal degenerative diseases (NCT 0245940).

SD-OCT Data Collection and Cross-sectional
Thickness Measurements

Spectral-domain optical coherence tomography (SD-OCT,
Spectralis HRAþOCT system; Heidelberg Engineering, Vista,
CA, USA) images analyzed included 208 or 308 horizontal and
vertical cross section B-scans through the fovea. SD-OCT
images were segmented manually to measure inner and outer
segment (IS and OS) length at locations corresponding to
regions of interest (ROIs) using custom software to measure
inner and outer segment thickness at locations 0.1 degree
apart.5,28–32 Examples of segmented horizontal OCT B-scans
for an RD patient (40039) are shown in Supplementary Figure
S1.

Microperimetry Analysis

Fundus-guided microperimetry was obtained as formerly
described28 (Nidek MP1, NAVIS software, ver. 1.7; Nidek
Technologies, Fremont, CA, USA) under light-adapted condi-
tions (32 cd/m2) with spot size V (104 arcmin diameter, 1.73
degrees) delivered for 200 milliseconds under a 4-2-1 threshold
strategy. With this staircase algorithm, threshold estimates are
measured so that if the subject responds affirmatively that they
are able to see the stimulus, the subsequent stimulus appears 4
dB dimmer until a reversal occurs (once the patient responds
negatively that they cannot see the stimulus), and then the
stimulus appears 2 dB brighter until a second reversal occurs.
Following the second reversal, the stimulus is adjusted by 1 dB
until the third reversal, at which point the threshold estimate is
produced. A 3-degree diameter red ring was used as a fixation
target, and patients were instructed to look in the center of the
red ring after correcting for refractive error and presbyopia to
focus the stimuli on the retina for each patient (Microperimeter
MP1 Operator’s Manual; Nidek Technologies Srl 2003–2016, p
23). Fundus-guided perimetric sensitivity was determined at
locations spaced 2 degrees apart along the horizontal and
vertical meridians through the fovea in the central 10 degrees
surrounding fixation. To ensure the light-adapted measurement
isolated cone function, sensitivity was determined with a long-
pass dichroic filter (605 nm; NT30-634; Edmund Optics,
Barrington, NJ, USA).

AOSLO Image Acquisition and Cone Spacing
Analysis

High-resolution images were acquired with Adaptive Optics
Scanning Laser Ophthalmoscopy (AOSLO) and processed as
described previously.8,12,13 Regions of interest (ROIs) were
selected at locations within 5.7 degrees of the fovea at which
unambiguous cones were visualized in AOSLO images acquired
at baseline to improve the likelihood that the cones could be
monitored longitudinally. For each subject AOSLO images were
aligned with the near-infrared (NIR) SLO fundus images
acquired with the SD-OCT and the microperimeter (Adobe
Illustrator; Adobe, Inc., San Jose, CA, USA) to permit direct
comparisons between measures of retinal structure and
function (Fig. 1). Eight to 12 ROIs that aligned with the
horizontal and vertical SD-OCT scans acquired through the
fovea were selected from each AOSLO montage. Chosen for
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analysis in the present study was a subset of ROIs that
corresponded to regions tested using MP1 stimuli and located
within 1 degree of the center of a given MP1 location. The
average distance from the center of the ROI to the center of the
region stimulated with the MP1 stimulus was 0.37 degrees
(standard deviation 0.29, range: 0–1 degree), so most of the
ROIs were well within the size of the MP1 stimulus. Cone
spacing (or average nearest neighbor distance) was measured
by 1 to 5 graders using a density recovery profile method33

with custom-written software, as previously described.8,17 The
distance from the foveal center to the center of each ROI was
measured in degrees. Cone spacing was measured in arcmi-
nutes and converted into Z-scores representing the number of
standard deviations from the mean of 27 normal subjects11 to
control for eccentricity. For subjects imaged more than once,
precise alignment of follow up images with baseline images
ensured the same locations were measured and images were
analyzed in random order.

Comparisons for Statistical Analysis

For each patient, macular sensitivity and average IS and OS
thickness at each ROI were compared to cone spacing Z-
scores, controlling for visit year, using a Spearman correlation
with bootstrap clustered by person to establish that data from
both eyes of some subjects were included. In addition, IS
thickness and OS thickness were compared to sensitivity.

RESULTS

Study Subjects

Twenty-six eyes of 16 patients with RD and 16 eyes from 8
normal control subjects were studied at baseline (Table 1). Of
those, 15 eyes of 14 patients with RD and 11 eyes from 6
visually normal control subjects were studied longitudinally 36
months later (Table 2). Patient 40023 developed cystoid
macular edema at 36 months which precluded reliable cone
spacing measures at ROIs that were visible at baseline. RD
patients 10048, 30007, 30015, 40030, 40032, 40043, 40046,
40064, 40067, 40070, 40079, 40080, and 40082 participated in
a clinical trial of an experimental treatment for RP, adminis-
tered to only one eye randomly selected for each subject; after
the baseline visit treated eyes were excluded from analysis at
36 months and only the sham-treated eye was analyzed at the

36-month visit (labeled ‘‘study eye’’ in Table 1). One RD patient
(40026) and 2 normal controls (10017 and 40048) left the
study after completing the baseline visit but before completing
the 36-month visit. The control subjects were age-similar
(mean 6 standard deviation¼ 46 6 11.2 years) to, but slightly
older than, the patients (mean 6 standard deviation ¼ 38 6

10.5 years, t-test P ¼ 0.07). The mean BCVA was better in the
normal group (20/16) than in the patient group (20/20) (t-test
P < 0.0001).

Due to a variety of causes—including patient drop out,
relocation, or participation in a clinical treatment trial—not all
eyes of all subjects studied with SD-OCT, AOSLO, and MP1 at
baseline were imaged using the same measures 36 months later.
Similarly, not all subjects participated in the MP1 experiments
or, due to unstable fixation, the MP1 data was found unreliable
at both baseline and 36-month visits. The numbers of values for
each of the analyzed measures are listed in Table 2.

Figure 2 presents eccentricity and cone spacing for all
patients and normal subjects. Cone spacing measures and
eccentricity were significantly correlated for patients (q¼0.57,
95% confidence interval (CI): 0.37 to 0.79, P < 0.001) and
normal subjects (q ¼ 0.90, 95% CI: 0.87 to 0.92, P < 0.001).
The average eccentricity of measurements was lower in
patients (1.46 degrees) compared to normal subjects (1.87
degrees) (t-test P < 0.0001; Fig. 2). This is expected because
retinal degeneration precluded measurement at greater eccen-
tricities in some patients where cone loss extended within the
region imaged using AOSLO.

Structural and Functional Correlations

Structural and functional correlations described here are
summarized in Table 3. Cone spacing was significantly and
negatively correlated with IS and OS thickness in patients and
normal subjects (Figs. 3A, 3B; Table 3). However, when cone
spacing Z-scores were used to control for eccentricity, cone
spacing Z-scores were not significantly correlated with IS or OS
thickness in normal eyes but were both significantly and
negatively correlated with IS and OS thickness in RD patients
(Figs. 3C, 3D; Table 3).

Functional Correlations

Photoreceptor IS thickness and OS thickness were not
significantly correlated with macular sensitivity in patients,

FIGURE 1. Adaptive optics scanning laser ophthalmoscopy (AOSLO) image, spectral domain-optical coherence tomography (SD-OCT) horizontal
and vertical scans, and fundus-guided microperimetry map superimposed in patient 30015 OD. (A) Macular sensitivity values in color-coded circles
are shaded from green (normal) to red (stimulus not seen) based on the sensitivity measured at each location; color scale bar at top of panel; scale

bar: 300 lm. (B) Magnified view of (A); regions of interest (ROIs) are outlined in white boxes; small white pixels indicate the patient’s preferred
retinal locus of fixation; scale bar: 300 lm. (C) Magnified view of ROI N1. Red crosses indicate positions of cones used to assess cone spacing; scale

bar: 10 lm.
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TABLE 1. Summary of Clinical Information for Patients and Normal Control Subjects in this Study

AOSLO ID Sex Age (y) Diagnosis/Mutation Eye

Baseline

Acuity

36-Month

Acuity

Refractive

Error

10048 F 40 Multiplex RP/Unknown OD 20/25 20/32* �1.25þ1.25x080

OS 20/20 �1.25þ1.25x120

30007 F 27 Usher syndrome type 3: homozygous CLRN1

mutations c.144T>G, p.Asn48Lys

(pathogenic)

OD 20/20 20/20* �1.50þ0.75x170

OS 20/20 �0.75þ0.50x030

30015 M 40 Simplex RP/PRPH2 c.634A>G, p.Ser212Gly

(likely pathogenic)

OD 20/20 20/20* �2.75DS

OS 20/20 �2.50DS

40023 M 34 Simplex RP/NGS: PDE6B: c.1624C>T,

p.Arg542Trp and c.2140A>T, p.Met714Leu

(both variants of uncertain significance)

OD 20/25 N/A þ0.50þ1.25x118

OS 20/25 planoþ1.25x075

40026 F 28 Simplex RP/no genetic testing OD 20/25 N/A �1.25þ0.25x075

OS 20/20 �1.25þ0.50x100

40030 F 40 Simplex RP/negative NGS OD 20/16 20/13* �3.75DS

OS 20/16 �3.75DS

40032 M 30 ARRP: compound heterozygous RPE65

mutations (c.1451G>A, p.Gly484Asp and

c.746A>G, p.Tyr249Cys) and homozygous

ABCA4 mutations (c.5882G>A,

p.Gly1961Glu)

OD 20/25 20/25* �3.75þ4.00x092

OS 20/20 5.00þ4.25x080

40043 F 30 ARRP: compound heterozygous mutations in

USH2A (c.2276G>T, p.Cys759Phe and

deletion exons 12-16, c.(1971þ1_1972-

1)_(3316þ1_3317-1)del) (pathogenic)

OD 20/20 20/20* �1.75þ1.00x090

OS 20/20 �2.25þ1.00x075

40046 M 62 Simplex RP/negative NGS OD 20/20 20/20* planoþ0.50x082

OS 20/25 planoþ0.75x100

40039 M 45 ARRP: USH2A: c.2276G>T, p.Cys759Phe and

c.2296T>C, p.Cys766Arg (pathogenic)

OD 20/20 20/20 �8.75þ2.50x137

OS 20/16 20/16 �7.25þ1.25x040

40064 M 18 XLRP: RPGR hemizygous c.1243_1244delAG,

p.Arg415Glyfs*27 (pathogenic)

Study eye 20/25 20/25 �8.75þ2.50x137

40067 M 42 Simplex RP, negative NGS Study eye 20/20 20/16 �0.50þ0.00x000

40070 F 39 Simplex RP, IFT140 c.634G>A, p.Gly212Arg

(pathogenic) and c.1390G>T, p.Val464Leu

(likely pathogenic); one inherited from each

parent

Study eye 20/16 20/20 �1.50þ0.50x090

40079 M 53 ADRP: PRPF31 c.1273 C>T, p.Gln425* (likely

pathogenic)

Study eye 20/16 20/20 �0.75þ1.00x010

40080 M 30 XLRP: RPGR hemizygous c.28þ5 G>A (likely

pathogenic)

Study eye 20/20 20/16 �4.25þ0.50x090

40082 M 40 ARRP: USH2A c. 8522G>A, p.W2841 and

c.11266 G>A, p.G3756S, (likely pathogenic);

one inherited from each parent

Study eye 20/25 20/25 �4.75þ0.25x090

10017 F 31 Normal OD 20/16 N/A �0.25DS

OS 20/16 �0.50DS

10023 M 57 Normal OD 20/10 20/16 �1.00þ1.00x025

OS 20/13 N/A �1.50þ1.25x135

10033 M 57 Normal OD 20/16 20/13 þ0.25þ0.50x135

OS 20/16 20/13 þ0.50þ0.00x000

40048 M 51 Normal OD 20/13 N/A �0.50þ0.50x075

OS 20/16 �0.50þ0.50x140

40053 F 37 Normal OD 20/20 20/16 �0.75þ0.25x168

OS 20/13 20/16 �0.25þ0.25x015

40054 F 24 Normal OD 20/16 20/16 �0.25þ0.00x000

OS 20/16 20/16 �0.25þ0.25x105

40055 M 50 Normal OD 20/13 20/13 �0.25þ0.00x000

OS 20/16 20/13 �0.75þ0.00x000

40061 M 50 Normal OD 20/16 20/16 �1.50�1.75x015

* Asterisk indicates study eye used (eye not specified to keep readers masked to the treated eye). M, male; F, female; AR, autosomal recessive; XL,
X-linked; OD, right eye; OS, left eye; NGS, next generation sequencing genetic testing; N/A, not available.
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but both were significantly correlated in normal subjects (Figs.
4A–B; Table 4). The correlation was positive, where reduced
sensitivity correlated with decreased IS and OS thickness.
Patients showed a trend in which reduced IS and OS thickness
and sensitivity were observed; the small sample size and
variability in sensitivity at regions with normal IS and OS
thickness may have reduced the power to detect a significant
correlation in patients. However, cone spacing Z-scores were
significantly and negatively correlated with macular sensitivity
in both normal subjects and patients (Fig. 4C; Table 5), such
that increased cone spacing Z-scores correlated with reduced
sensitivity for both normal subjects and patients. When cone
spacing was greater than 2 standard deviations above the
normal mean (Z-scores 6 2), sensitivity was reduced (Fig. 4C).

Change from Baseline to 36 Months

Comparing measures at baseline to 36 months, cone spacing
increased significantly in patients by 0.10 arcminutes (95% CI:
0.059 to 0.14, P < 0.001), and cone spacing Z-scores increased
significantly in patients by 0.94 (95% CI: 0.52 to 1.31, P <
0.001), but cone spacing did not change significantly in normal
subjects. In addition, although there was no significant change
in normal subjects, mean macular sensitivity decreased by
�3.74 dB over 36 months (95% CI:�5.56 to�0.81, P¼ 0.007),
indicating loss of macular function in RD patients. There was
no significant change between baseline and 36 months in IS
thickness or OS thickness in either patients or normal subjects.
Baseline measures compared to measures at 36 months are
summarized in Table 6.

DISCUSSION

This study presents further evidence that structural cone
measures using AOSLO images correlate with cross-sectional
thickness measures of the IS and OS layers on SD-OCT.34–36

Both the IS and OS thickness were correlated with cone
spacing measures in the present study of normal eyes and
patients with RD; patients in the present study all had rod-cone
dystrophy (RP or Usher syndrome type 3), so the results are
most relevant for RP patients. However, the correlation of IS,
OS, and cone spacing with eccentricity from the fovea did
likely influence the observed correlation between cone
spacing and OCT measures because IS and OS thickness was
significantly correlated with cone spacing Z-score in patients
but in not normal subjects, when eccentricity was accounted
for using Z-scores. The negative correlation between cone
spacing Z-scores and both IS and OS thickness indicates that
cone spacing Z-scores increase while outer retinal layer
thickness decreases. The difference in correlation strength
between OS thickness and cone spacing Z-scores versus IS
thickness and cone spacing Z-scores may be related to the
sequence in which cone photoreceptors degenerate in patients
with RP: OS are the earliest affected, then IS are lost, and the
nuclei of cone photoreceptors in the outer nuclear layer are
last to degenerate.22,37 The variation in OS thickness in patients
observed in Figures 3B and 3D likely reflects inclusion of
patients at different stages of degeneration, with some
retaining longer photoreceptor OS while having normal cone
spacing Z-scores, but many with shorter OS showing abnormal
cone spacing normal Z-scores.

The correlation between IS and OS thickness and sensitivity
was significant only in normal subjects. We anticipated that OS
thickness would correlate with sensitivity since the OS contain
the photoreceptor disc structures that are responsible for
phototransduction. However, sensitivity in RD patients was
variable, likely due (at least in part) to inclusion of a genetically
heterogeneous population. Some of the mutations associated
with RP in the present study (such as PRPH2) are associated
with long OS,38 while others (such as PDE6B) affect photo-
transduction,39 or the retinoid cycle (such as RPE6540) each of
which may affect sensitivity of photoreceptors differently with
different OS thickness. Analysis of macular function using
fundus-guided microperimetry in a genetically homogeneous
patient population may provide clearer insight into the
relationship between structure and function in the macula of
RD patients. Other research using experimental conditions
similar to the present study has reported large variabilities in
macular sensitivity for both patients and normal subjects.28

Lack of significant correlations between sensitivity and IS or OS
thickness in RD patients is likely due to the insensitivity of
fundus-guided perimetric stimuli when detecting subtle visual
loss, due to the variability observed in microperimetric
responses and coarse resolution of fundus-guided microperi-
metric visual function tests.

Another fundus-guided microperimetry study tested macu-
lar function in patients with X-linked RP. Using a slightly
different protocol—white stimuli, which might have allowed
for a mixed rod-cone response—variability was seen as well.41

TABLE 3. Summary of Statistical Analyses from This Study. OCT Thickness Correlated With Cone Spacing

OCT Layer

Thickness (lm)

Spearman’s Correlation q

95% CI P Value Fig.

Spearman’s Correlation q

95% CI P Value Fig.Cone Spacing (arcmin) Cone Spacing (Z-scores)

IS thickness

Normal subjects �0.45 �0.56 to �0.32 <0.001 3A �0.17 �0.31 to 0.011 0.068 3C

Patients �0.50 �0.65 to �0.40 <0.001 �0.29 �0.61 to �0.090 0.002

OS thickness

Normal subjects �0.52 �0.67 to �0.36 <0.001 3B �0.1 �0.30 to 0.12 0.36 3D

Patients �0.59 �0.75 to �0.46 <0.001 �0.39 �0.81 to �0.19 <0.001

Sig, statistical significance; IS, inner segment; OS, outer segment; lm, microns; dB, decibels.

TABLE 2. Summary of Clinical Measures Acquired on Patients and
Normal Subjects Used In The Current Study

Subjects

OCT & AOSLO MP1

BL 36mo BL 36mo

Patients

# patients 16 14 9 9

# eyes 26 15 13 10

Normals

# subjects 8 6 4 4

# eyes 16 11 8 8

BL, baseline visit; 36mo, 36 months; MP1, fundus-guided micro-
perimetry.
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In that study, mean sensitivity values across the visual field
spanned from 1–20 dB with a mean value of 13.1 [standard
deviation (SD) 4.5] dB in patients, whereas the age-matched
normal subject values ranged from 5–20 dB with an average of
14.6 [SD 3.3] dB.41 The current study used a red filter to deliver
red stimuli to optimize cone responses and minimize rod
activation because rods are relatively insensitive to longer
wavelengths.42 However, use of the red filter might have
contributed to greater variability in threshold responses
because the task is more difficult. Another study using the
same light-adapted test with red stimuli as in the present study
also reported a wide range of sensitivity values spanning across
the central visual field.28

The current study provides evidence of the correlation
between cone spacing Z-scores and macular sensitivity in
patients with RD. Although there is a wide range of sensitivity
values among the ROIs with Z-scores less than 2, ROIs with Z-
scores greater than 2 show reduced sensitivity (Fig. 4C). This
provides further evidence that substantial photoreceptor loss is
required before it is possible to observe significant decreases in

visual function. The current study is aligned with previous
studies that showed areas of greater photoreceptor loss with
stronger correlations of functional measures, including con-
trast sensitivity with parafoveal cone density23 and visual acuity
with cone spacing Z-scores within 1 degree of the foveal
center.12,43

The present study demonstrated significantly increased
cone spacing at 36 months compared to baseline in RD
patients, measured both in arcminutes and as Z-scores to
account for eccentricity. Cone spacing did not change
significantly in normal eyes over this 36-month study. Although
there was no significant change between baseline and 36
months in IS or OS length, macular sensitivity decreased
significantly in patients but not in normal eyes. Due to cone
photoreceptor degeneration—particularly in patients studied
in the current manuscript with RP and Usher syndrome type
3—a decrease in sensitivity over a period of 36 months is
expected and coincides with increased cone spacing or cone
loss. Nevertheless, the current study was limited by the
number of subjects with sensitivity data at both baseline and 36
months; larger, more prospective studies incorporating fundus-
guided microperimetry may demonstrate macular sensitivity to
be an even more sensitive measure of disease progression.28

Some of the variability in sensitivity measures may be due to

FIGURE 2. Cone spacing measures correlated with eccentricity as measured by distance from the fovea. The small black filled circles represent a
normal data set composed of 27 controls.11 The dashed curved lines represent the 95% CI of this normal dataset, and the solid black line represents
the mean. Normal subjects: blue; patients with RD: orange; circles: baseline measures; triangles: 36-month follow-up measures.

TABLE 4. OS and IS Thickness Correlated With Sensitivity in Normal
Eyes but not in RD Patients

OCT Layer

Thickness (lm)

Spearman’s

Correlation q

95% CI P Value Fig.Sensitivity (dB)

IS thickness

Normal subjects 0.18 0.006 to 0.43 0.047 4A

Patients 0.11 �0.25 to 0.38 0.60

OS thickness

Normal subjects 0.36 0.27 to 0.61 <0.001 4B

Patients 0.30 �0.09 to 0.70 0.14

TABLE 5. Cone Spacing Correlated with Sensitivity

Sensitivity (dB)

Spearman’s

Correlation q

95% CI P Value Fig.

Cone Spacing

(Z-scores)

Normal subjects �0.22 �0.49 to �0.07 <0.001 4C

Patients �0.38 �0.67 to �0.08 <0.001
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discrepancy in background luminance measurements of the
liquid crystal display (LCD) used by the fundus-guided micro-
perimetry system in the present study,44 which has not been
observed using other systems that use a super luminescent
diode in place of the LCD (MAIA; CenterVue, Inc., Fremont,
CA, USA).45 In addition, fundus-guided microperimetry with
commercially available systems does not have resolution
commensurate with measures of retinal structure from SD-
OCT or AOSLO images. Microperimetry with single cell
resolution may improve evaluation of the earliest functional
changes in photoreceptor survival. Adaptive Optics Micro-
perimetry (AOMP) enables the precise delivery of visual stimuli
to individual cone photoreceptors with a delivery error of 0.89
arcmin,46 which is less than the cone-to-cone spacing at all
eccentricities beyond 1 degree and approximately 5.5 times
better at tracking errors of the system used in the present
study.46 Future studies will use AOMP to investigate the
relationship between cone spacing Z-scores, IS, and OS
thickness and visual sensitivity using this more precise
measure of function.

In conclusion, objective measures of photoreceptor struc-
ture (such as cross-sectional measures of IS and OS thickness,
and cone spacing Z-scores) were significantly correlated with

FIGURE 3. Outer retinal layer thickness correlated with cone spacing measures. (A) Inner segment (IS) thickness was significantly correlated with
cone spacing in normal subjects and patients. (B) Outer segment (OS) thickness was significantly correlated with cone spacing in normal subjects
and patients. (C) IS thickness was correlated with cone spacing Z-scores in patients but not normal subjects. (D) OS thickness was correlated with
cone spacing Z-scores in patients but not normal subjects. Normal subjects: blue; patients with RD: orange; circles: baseline measures; triangles: 36-
month follow-up measures. The gray bands on graphs C and D indicate the 62 Z-score limits of normal subjects.

TABLE 6. Summary of Baseline vs. 36-Month Changes. The P Values for
the Comparisons Were Considered Significant if Less than 0.05

Outcome Measure

Mean

Difference 95% CI P Value

IS thickness (lm)

Normal subjects 0.78 �0.35 to 1.89 0.18

Patients 0.81 �0.36 to 2.04 0.17

OS thickness (lm)

Normal subjects 0.66 �0.34 to 2.09 0.22

Patients �0.66 �1.72 to 0.45 0.22

Cone spacing (arcmin)

Normal subjects 0.014 �0.009 to 0.030 0.19

Patients 0.1 0.059 to 0.14 <0.001

Cone spacing (Z-scores)

Normal subjects 0.14 �0.06 to 0.27 0.14

Patients 0.94 0.52 to 1.31 <0.001

Sensitivity (dB)

Normal subjects �1.4 �3.78 to 0.93 0.18

Patients �3.74 �5.56 to �0.81 0.007
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visual function in patients with retinal degeneration. Cone
spacing increased and microperimetry decreased significantly
over 36 months in RD patients. These correlations observed
suggest that high-resolution images of cone structure can be
used to assess patients with RD longitudinally. Furthermore,
these correlations between structural measures and visual
function may prove to be appropriate outcome measures for
clinical trials.
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