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Abstract

BACKGROUND: Heart failure (HF) is a leading cause of cardiac morbidity among women, 

whose risk factors differ from those in men. We used machine learning approaches to develop 

risk prediction models for incident HF in a cohort of postmenopausal women from the Women’s 

Health Initiative (WHI).

METHODS AND RESULTS: We used two machine learning methods, Least Absolute 

Shrinkage and Selection Operator (LASSO) and Classification and Regression Trees (CART), 

to perform variable selection on 1,227 baseline WHI variables for the primary outcome of incident 

HF. These variables were then used to construct separate Cox proportional hazard models, and 

we compared these results, using receiver operating characteristic (ROC) curve analysis, against 

a comparator model built using variables from the Atherosclerosis Risk in Communities (ARIC) 

HF prediction model. We analyzed 43,709 women who had 2,222 incident HF events; median 

follow-up was 14.3 years. LASSO selected 10 predictors and CART selected 11 predictors. The 

highest correlation between selected variables was 0.46. In addition to selecting well-established 
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predictors such as age, myocardial infarction, and smoking, novel predictors included physical 

function, number of pregnancies, number of prior live births and age at menopause. In ROC 

analysis, the CART-derived model had the highest c-statistic of 0.83 (95% CI 0.81–0.85), followed 

by LASSO 0.82 (95% CI 0.81–0.84) and ARIC 0.73 (95% 0.70–0.76).

CONCLUSIONS: Machine learning approaches can be used to develop HF risk prediction 

models that can have better discrimination compared to an established HF risk model, and may 

provide a basis for investigating novel HF predictors.

Brief Summary:

We used two machine learning methods to build models to predict incident heart failure in the 

Women’s Health Initiative cohort. We analyzed 43,709 women who had 2,222 incident HF events 

over a median follow-up was 14.3 years. Both machine learning methods selected novel and 

sex-specific predictors, in addition to well-established predictors of heart failure. The two machine 

learning models demonstrated higher discrimination compared to a standard heart failure risk 

model in this cohort.
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INTRODUCTION

Cardiovascular disease (CVD) is the leading cause of morbidity and mortality among 

women in the United States. Prevalence rates of CVD in women closely approach those 

in men,1 with heart failure (HF) also causing a significant proportion of cardiac-related 

morbidity in women. While numerous studies have identified predictors of incident HF 

overall,2 data specific to women are more sparse, even though HF risk factors in women 

likely differ from those in men.3,4 For example, women are twice as likely as men to develop 

HF with preserved ejection fraction (HFpEF), and tend to do so at older ages and with 

less attributable ischemic etiology.4 Therefore, there is an opportunity to improve HF risk 

prediction in women by including female-specific predictors. In addition, since C-statistics 

for existing HF prediction algorithms range from 0.6–0.7,5–7 there is a broader opportunity 

to improve existing HF prediction algorithms.

Traditional approaches to develop risk prediction algorithms often focus on a limited 

set of known risk factors which have a priori associations with HF.5,8 Although this 

valuable approach is rooted in ensuring biologic plausibility,8 it may miss predictors with 

less clear links to HF or may ignore predictors which are unique to a given population 

or cohort of interest, such as women. This can ultimately limit the discovery of novel 

predictors which could improve incident HF prediction within a given cohort beyond 

existing models. Particularly in understudied populations, it may be possible to build 

better-performing and better tailored risk prediction models if more candidate variables—

including population-specific variables—are considered for inclusion into prediction models 

in a “data-driven” manner. Machine learning techniques are well suited to identify predictive 

patterns among large numbers of candidate variables,9–11 providing an opportunity to 
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perform data-driven discovery of HF predictors. Machine learning techniques can provide 

notable advantages in settings of large number of variables (high dimensionality),12 and 

for automatic variable selection, selecting the strongest predictors from many candidate 

variables.13 Most prior applications of machine learning models to predict HF outcomes in 

general cohorts14–16 have lacked female-specific predictors. The Women’s Health Initiative 

(WHI) cohort uniquely has well-adjudicated HF outcomes in post-menopausal women, 

providing a valuable opportunity to use machine learning to develop female-specific HF 

risk prediction models that may improve performance beyond existing HF risk models for 

women.17

We aimed to examine if machine learning algorithms can be used to select predictors from a 

large number of candidate variables, in order to build high-performing and interpretable risk 

prediction models based on population-specific predictors. We utilized two complimentary 

machine learning methods to develop HF prediction models using women in the WHI cohort 

and compared the performance of these models against a previously published HF risk 

model derived from the Atherosclerosis Risk in Communities (ARIC) cohort.

METHODS

Study population

This study was performed in the WHI, a longitudinal cohort study that recruited women 

from 40 clinical centers in the United States between 1993–1998. Details of the study design 

have been published previously.17 In brief, a total of 161,808 women 50–79 years of age at 

baseline, who had no terminal illness, were enrolled in the observational study and clinical 

trial components. In this study, we used the 44,174 participants that had records centrally 

adjudicated at the University of North Carolina (UNC) to meet criteria for hospitalized HF 

from baseline through January 2015, which totaled 43,709 after exclusions. Data collection 

methods are described in the Supplement. The study received institutional review board 

approval and all participants gave informed consent.

Outcomes of interest

The primary outcome for this study was development of first incident HF hospitalization. 

We also examined two HF subgroups separately for those that had data on ejection fraction 

at the time of hospitalization: HFpEF—defined as HF with an ejection fraction ≥50%—and 

HF with reduced ejection fraction (HFrEF), defined as HF with ejection fraction <50%. 

Participants were removed from analysis following occurrence of the primary outcome.

Statistical and Machine Learning Analysis

We used two machine learning algorithms to perform variable selection from the 1,227 

baseline variables, which we then used to build two novel HF prediction models. We 

compared performance of these models against a comparator model based on the previously 

published HF prediction model derived from the ARIC cohort,5 and whose individual model 

coefficients we re-fit in the WHI cohort.
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The full dataset was randomly divided into a 70% training dataset and 30% validation 

dataset. Variable selection was performed in the training dataset. Classification and 

Regression Trees (CART) 18 and Least absolute shrinkage and selection operator 

(LASSO)19 machine learning models were fit to the HF outcome variable using the entire set 

of 1,227 variables. Our objective was to identify a reduced set of variables using these two 

complimentary machine learning approaches that perform inherent feature selection. These 

two methods were selected because they emphasize different aspects of the feature space, as 

discussed more in the Supplement.

RESULTS

Population

Over a median follow-up time of 14.3 years, there were a total of 2,222 (5.1%) cases of 

incident HF out of a total of 43,709 women. Of those for whom ejection fraction was 

known, there were 597 HFrEF cases and 715 HFpEF cases. The baseline characteristics 

of the cohort are presented in Table 1. Mean age of the entire cohort was 62.8 years and 

33% of the cohort was African American women. Women who developed HF tended to be 

older, White women, with a higher mean number of pregnancies and pregnancy loss, and 

were less likely to have Medicare. They had a significantly higher waist circumference, body 

mass index (BMI), heart rate and systolic blood pressure. The mean physical function score, 

derived from the RAND questionnaire, was also significantly lower at baseline in women 

who developed HF (59.7±0.5 vs 73.9±0.1, p<0.0001). Furthermore, the mean creatinine was 

higher in women with HF than those without HF (0.83±0.007 vs 0.78±0.001, p<0.0001). 

Finally, women with incident HF had a higher prevalence of baseline hypertension, treated 

high cholesterol, diabetes, smoking, prior myocardial infarction, coronary revascularization, 

atrial fibrillation and valvular heart disease.

Variable Selection

Variable selection was performed separately using CART and LASSO algorithms. The 

model built using CART (Figure 1) selected 11 variables (Table 2, CART-WHI Model 

1) including age, prior myocardial infarction, physical function, cardiotonic and diuretic 

medications, smoking, number of pregnancies, age at menopause, time since stopping 

hormone therapy and dietary beta-cryptoxanthin and vitamin K. LASSO selected 10 

variables (Table 2, LASSO-WHI Model 2) including age, prior myocardial infarction, 

physical function, diabetes, valvular heart disease, diuretic medications, mineral and 

electrolyte supplements, smoking (pack years), number of prior live births and hypertension. 

The highest correlation between variables in each model was 0.46.

Separately, we used the same algorithms to perform variable selection among those 

individuals who had data on ejection fraction to examine how selected predictors differ 

for HFrEF vs HFpEF (Table 3). Higher age of last menses and age of menopause were 

identified as predictors of HFpEF by both CART and LASSO, but these were not identified 

as positive predictors in the HFrEF sub-cohort. Similarly, prior pregnancy loss, number 

of live births and antihypertensive use were selected as predictors for HFrEF only. Some 

variables were selected as predictors for both HFpEF and HFrEF, as well as being selected 
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as predictors of overall HF (Table 2), such as age, prior myocardial infarction, physical 

function and use of diuretic medications.

Comparison of model discrimination

We assessed the discrimination performance of each model by performing ROC analysis 

in the 30% held-out, validation dataset. The model derived from CART-selected variables 

had the highest C-statistic of 0.83 (95% CI 0.81–0.85), followed by the LASSO model 

0.82 (95% CI 0.81–0.84), and the model derived using ARIC variables 0.73 (95% CI 

0.70–0.76) (Table 2). In sensitivity analysis, whereby Cox models were re-fit in 10 random 

training splits of the dataset and assessed in the validation dataset, averaged AUC and 

95% confidence intervals were very similar to the main analysis: LASSO 0.83 (95% CI 

0.81–0.84); CART: 0.83 (95% CI 0.81–0.85).

DISCUSSION

Improving risk prediction using machine learning techniques

In this study, we employed a machine learning-based approach to develop prediction models 

for incident HF in women, an understudied population. In this large prospective WHI 

cohort of postmenopausal women which captured female-specific data and well-adjudicated 

HF outcomes, two machine learning algorithms selected from 1,227 candidate variables 

in a data-driven manner. The models built using this approach demonstrated substantially 

improved HF discrimination among women in WHI compared to deploying the established 

ARIC HF risk model5 in WHI. In addition, this approach identified novel predictors—

including predictors specific to female physiology—which likely contributed to improved 

discrimination. A machine learning-based approach to model building may provide a 

complementary alternative to traditional model-building methods, offering particular benefit 

in populations whose predictors may differ from those in existing risk models.

Our work demonstrates that machine learning methods like LASSO or CART can provide 

powerful approaches to automatically select from a large number of unique variables to 

build high-performing predictive models tailored to specific populations. For example, when 

the ARIC HF model was applied to women in WHI, it exhibited a substantially lower 

c-statistic (0.73) than was reported in the ARIC cohort among women (0.81).5 Notably, two 

ARIC model predictors were not available in WHI (male gender and NT-proBNP), and the 

ARIC model ignores most female-specific predictors that are available and highly relevant to 

the WHI population. While decreased model performance is not uncommon when applying 

a pre-established risk model to a new population, this underscores the opportunity to use 

machine learning methods to improve discriminative performance for HF prediction in 

women, while also leveraging the many female-specific predictors uniquely available in 

WHI.

Despite having no underlying “understanding of disease”, machine learning algorithms can 

leverage patterns within data to identify HF predictors in a data-driven manner. Recent 

prior efforts have applied machine learning approaches to predict risk of incident HF10 or 

HF outcomes such as mortality15 in general populations. In light of efforts to decrease the 
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potential biases associated with applying machine learning in medicine,20 it is critical to also 

use similar approaches in traditionally understudied patient populations. Machine learning 

has been previously applied to predict incident HF in race-specific14 settings and in patients 

with diabetes,16 or to predict HF outcomes in patients with HFpEF.21 However, despite 

the ample evidence to suggest that risk factors for HF in women likely differ from those 

in men,3,4 machine learning efforts to identify female-specific HF predictors are lacking. 

Our work is unique in utilizing WHI to investigate incident HF among women, taking 

advantage of the large number of baseline WHI variables, including many predictors specific 

to female-physiology. Additionally, we identified predictors specific to HFpEF and HFrEF 

subgroups in women, for which prior data is sparse.

While our machine-learning based model-building approach identified both established and 

novel predictors, we would caution against causal interpretation of predictor coefficients 

(hazard ratios), since the primary goal of this work is prediction rather than causal inference. 

Well-established HF predictors were identified through our variable selection process as 

predictors in women, including age, previous myocardial infarction, diabetes, cigarette 

smoking, and hypertension. The fact that these machine-learning-selected predictors are 

consistent with conventional HF risk factors that have established pathophysiologic links to 

HF22,23 is reassuring. The selection of these predictors without a priori input suggests that 

at least some of the patterns that these algorithms identified in the WHI data are consistent 

with our conceptual understanding of HF physiology. For example, coronary heart disease, 

which is perhaps the most prominent HF risk factor and is uniformly present in existing risk 

models,5–7 was also selected by both of our models—along with age—as being amongst 

the strongest predictors of incident HF (Table 2). Similarly, though hypertension is well 

recognized as a strong HF predictor, women in particular may be at greater risk than men 

to suffer long-term harmful effects of hypertension,1,24–26 making it especially important to 

recognize among women.

Identifying novel female-specific predictors of HFrEF and HFpEF

Few studies have examined predictors specific for the HF subtypes of HFpEF and HFrEF, 

and to our knowledge, none have done so expressly in women. Though it has been 

previously thought that women are at higher risk of HFpEF than men, more recent analyses 

have suggested that this is not the case.27–29 However, sex-specific differences are still likely 

to play an important role in HF.27 Several female-specific predictors were selected through 

our variable selection process in each of the HF sub-cohorts examined. Among the full 

WHI cohort, the number of prior pregnancies and prior live births were found to predictors 

of HF, as identified by CART and LASSO, respectively. The number of live births was 

also found to predict HFpEF by CART, but was not identified as a predictor of HFrEF. 

This is consistent with prior work which has shown that the risk of heart failure increases 

along with parity and may exhibit a J-shaped relationship, with risk increasing significantly 

after 2 births.26 Though less well-studied, gravidity was not shown in the Framingham 

cohort to be associated with HF. Conversely, in the HFrEF sub-cohort of WHI, LASSO 

identified pregnancy loss as a predictor of HFrEF in women, but not HFpEF.29 Pregnancy 

loss has been associated with increased cardiovascular events in WHI previously,30 and may 

Tison et al. Page 6

Can J Cardiol. Author manuscript; available in PMC 2022 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



suggest underlying endothelial dysfunction, therefore helping to identify individuals who 

have higher risk of atherosclerosis and subsequent HFrEF.31,32

Other female-specific predictors of HFpEF but not HFrEF in WHI included age at last 

menses and age at menopause, which were predictors selected by CART and LASSO, 

respectively. Higher age of menopause predicting HFpEF is consistent with studies which 

have shown higher overall cardiovascular risk associated with late menopause.24,33 LASSO 

also selected diabetes and BMI for HFpEF but not HFrEF, which mirrors the association 

reported by Eaton et al. of some risk factors such as obesity with HFpEF but not HFrEF.25 

Our findings demonstrate that reproductive risk factors are important independent predictors 

for HF,26 expanding upon other reports from WHI on the importance of reproductive risk 

factors in coronary heart disease.31 If confirmed in future studies, this may help guide future 

investigation about risk factors and potential targets for intervention in each HF subgroup 

among women.

Limitations

The generalizability of the two specific models we developed may be limited by lack of 

availability of some of the model’s predictors in other cohorts. However, our goal with 

this study was to demonstrate a novel approach to model building using machine learning 

techniques like CART and LASSO to develop parsimonious high-performing models in 

population cohorts with unique characteristics and/or data. We believe that this approach can 

be generalized to other similar settings. If developing externally-generalizable models is a 

specific goal using this approach, then at the variable selection stage the variables should 

be limited to those available in expected target cohorts/populations. Similarly, more readily 

available variables from amongst physiologically-related groups could be preferentially 

included at the variable selection stage to facilitate generalizability via availability of 

predictors (i.e. select age at menopause to represent menopause or menstruation-related 

variables). Indeed, variable availability is a common limitation when applying predictive 

models trained in other settings, further supporting our approach to develop population-

specific models. For example, two predictors in the ARIC model5 were not available in 

WHI, namely male gender and NT-proBNP, likely diminishing the predictive performance 

of the ARIC model in WHI. This limitation in applying ARIC to WHI illustrates the 

reality of deploying models derived from other cohorts in any target cohort, whereby some 

predictors may not be available. We also acknowledge the limitations of not having an 

external validation cohort and the fact that unmeasured or residual confounding are concerns 

with observational data. In addition, model over-fitting is always a possibility when training 

and validating a predictive model on the same dataset. We mitigated these to the best of 

our ability by performing cross-validation and reporting the predictive performance of each 

model in the holdout test dataset.

Conclusions

When applied to the WHI cohort, a rich dataset with incident HF outcomes, machine 

learning methods were able to automatically select HF predictors from among many 

candidate predictors and yielded prediction models with improved discrimination compared 

to a pre-established heart failure risk model, in the WHI cohort. Machine learning could 
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provide a powerful approach to develop high-performing risk prediction models, particularly 

in understudied populations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Acronyms

ARIC Atherosclerosis Risk in Communities

BMI Body mass index

CART Classification and regression tree

CVD Cardiovascular disease

HF Heart Failure

HFpEF Heart failure with preserved ejection fraction

HFrEF Heart failure with reduced ejection fraction

IQR Interquartile range

LASSO Least Absolute Shrinkage and Selection Operator

Pap Papanicolaou

SD Standard deviation

WHI Women’s Health Initiative

References

1. Benjamin EJ, Virani SS, Callaway CW, et al. Heart Disease and Stroke Statistics-2018 Update: 
A Report From the American Heart Association. Circulation. 2018;137(12):e67–e492. doi:10.1161/
CIR.0000000000000558 [PubMed: 29386200] 

2. Ouwerkerk W, Voors AA, Zwinderman AH. Factors influencing the predictive power of models for 
predicting mortality and/or heart failure hospitalization in patients with heart failure. JACC Heart 
Fail. 2014;2(5):429–436. doi:10.1016/j.jchf.2014.04.006 [PubMed: 25194294] 

3. Bibbins-Domingo K Predictors of Heart Failure Among Women With Coronary Disease. 
Circulation. 2004;110(11):1424–1430. doi:10.1161/01.CIR.0000141726.01302.83 [PubMed: 
15353499] 

4. Garcia M, Mulvagh SL, Merz CNB, Buring JE, Manson JE. Cardiovascular Disease in Women: 
Clinical Perspectives. Circ Res. 2016;118(8):1273–1293. doi:10.1161/CIRCRESAHA.116.307547 
[PubMed: 27081110] 

Tison et al. Page 8

Can J Cardiol. Author manuscript; available in PMC 2022 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



5. Agarwal SK, Chambless LE, Ballantyne CM, et al. Prediction of incident heart failure in general 
practice: the Atherosclerosis Risk in Communities (ARIC) Study. Circ Heart Fail. 2012;5(4):422–
429. doi:10.1161/CIRCHEARTFAILURE.111.964841 [PubMed: 22589298] 

6. Kannel WB, D’Agostino RB, Silbershatz H, Belanger AJ, Wilson PW, Levy D. Profile for 
estimating risk of heart failure. Arch Intern Med. 1999;159(11):1197–1204. [PubMed: 10371227] 

7. Butler J, Kalogeropoulos A, Georgiopoulou V, et al. Incident heart failure prediction in the 
elderly: the health ABC heart failure score. Circ Heart Fail. 2008;1(2):125–133. doi:10.1161/
CIRCHEARTFAILURE.108.768457 [PubMed: 19777072] 

8. Green M, Björk J, Forberg J, Ekelund U, Edenbrandt L, Ohlsson M. Comparison between 
neural networks and multiple logistic regression to predict acute coronary syndrome in 
the emergency room. Artif Intell Med. 2006;38(3):305–318. doi:10.1016/j.artmed.2006.07.006 
[PubMed: 16962295] 

9. Deo RC. Machine Learning in Medicine. Circulation. 2015;132(20):1920–1930. doi:10.1161/
CIRCULATIONAHA.115.001593 [PubMed: 26572668] 

10. Ambale-Venkatesh B, Yang X, Wu CO, et al. Cardiovascular Event Prediction by Machine 
Learning: The Multi-Ethnic Study of Atherosclerosis. Circ Res. 2017;121(9):1092–1101. 
doi:10.1161/CIRCRESAHA.117.311312 [PubMed: 28794054] 

11. Taslimitehrani V, Dong G, Pereira NL, Panahiazar M, Pathak J. Developing EHR-driven heart 
failure risk prediction models using CPXR(Log) with the probabilistic loss function. J Biomed 
Inform. 2016;60:260–269. [PubMed: 26844760] 

12. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–444. doi:10.1038/
nature14539 [PubMed: 26017442] 

13. James G, Witten D, Hastie T, Tibshirani R. An Introduction to Statistical Learning: with 
Applications in R. Springer Publ Co Inc. Published online January 1, 2014:430.

14. Segar MW, Jaeger BC, Patel KV, et al. Development and Validation of Machine Learning-
Based Race-Specific Models to Predict 10-Year Risk of Heart Failure: A Multicohort Analysis. 
Circulation. 2021;143(24):2370–2383. doi:10.1161/CIRCULATIONAHA.120.053134 [PubMed: 
33845593] 

15. Adler ED, Voors AA, Klein L, et al. Improving risk prediction in heart failure using machine 
learning. Eur J Heart Fail. 2020;22(1):139–147. doi:10.1002/ejhf.1628 [PubMed: 31721391] 

16. Segar MW, Vaduganathan M, Patel KV, et al. Machine Learning to Predict the Risk of Incident 
Heart Failure Hospitalization Among Patients With Diabetes: The WATCH-DM Risk Score. 
Diabetes Care. 2019;42(12):2298–2306. doi:10.2337/dc19-0587 [PubMed: 31519694] 

17. Design of the Women’s Health Initiative clinical trial and observational study. The Women’s 
Health Initiative Study Group. Control Clin Trials. 1998;19(1):61–109. [PubMed: 9492970] 

18. Breiman L, Friedman JH, Olshen RA, Stone CJ. Classification and Regression Trees. Wadsworth; 
1984.

19. Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning. Springer New York Inc.; 
2001.

20. Gianfrancesco MA, Tamang S, Yazdany J, Schmajuk G. Potential Biases in Machine Learning 
Algorithms Using Electronic Health Record Data. JAMA Intern Med. 2018;178(11):1544–1547. 
doi:10.1001/jamainternmed.2018.3763 [PubMed: 30128552] 

21. Angraal S, Mortazavi BJ, Gupta A, et al. Machine Learning Prediction of Mortality and 
Hospitalization in Heart Failure With Preserved Ejection Fraction. JACC Heart Fail. 2020;8(1):12–
21. doi:10.1016/j.jchf.2019.06.013 [PubMed: 31606361] 

22. D’Agostino RBS, Vasan RS, Pencina MJ, et al. General cardiovascular risk profile for use 
in primary care: the Framingham Heart Study. Circulation. 2008;117(6):743–753. doi:10.1161/
CIRCULATIONAHA.107.699579 [PubMed: 18212285] 

23. Rosamond WD, Chang PP, Baggett C, et al. Classification of heart failure in the atherosclerosis 
risk in communities (ARIC) study: a comparison of diagnostic criteria. Circ Heart Fail. 
2012;5(2):152–159. doi:10.1161/CIRCHEARTFAILURE.111.963199 [PubMed: 22271752] 

24. Canonico M, Plu-Bureau G, O’Sullivan MJ, et al. Age at menopause, reproductive history, 
and venous thromboembolism risk among postmenopausal women: the Women’s Health 

Tison et al. Page 9

Can J Cardiol. Author manuscript; available in PMC 2022 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Initiative Hormone Therapy clinical trials. Menopause N Y N. 2014;21(3):214–220. doi:10.1097/
GME.0b013e31829752e0

25. Eaton CB, Pettinger M, Rossouw J, et al. Risk Factors for Incident Hospitalized Heart Failure With 
Preserved Versus Reduced Ejection Fraction in a Multiracial Cohort of Postmenopausal Women. 
Circ Heart Fail. 2016;9(10). doi:10.1161/CIRCHEARTFAILURE.115.002883

26. Hall PS, Nah G, Howard BV, et al. Reproductive Factors and Incidence of Heart Failure 
Hospitalization in the Women’s Health Initiative. J Am Coll Cardiol. 2017;69(20):2517–2526. 
doi:10.1016/j.jacc.2017.03.557 [PubMed: 28521890] 

27. Dunlay SM, Roger VL, Redfield MM. Epidemiology of heart failure with preserved 
ejection fraction. Nat Rev Cardiol. 2017;14(10):591–602. doi:10.1038/nrcardio.2017.65 [PubMed: 
28492288] 

28. Ho JE, Enserro D, Brouwers FP, et al. Predicting Heart Failure With Preserved and 
Reduced Ejection Fraction: The International Collaboration on Heart Failure Subtypes. 
Circ Heart Fail. 2016;9(6):10.1161/CIRCHEARTFAILURE.115.003116 e003116–9. doi:10.1161/
CIRCHEARTFAILURE.115.003116

29. Ness RB, Harris T, Cobb J, et al. Number of pregnancies and the subsequent risk of cardiovascular 
disease. N Engl J Med. 1993;328(21):1528–1533. doi:10.1056/NEJM199305273282104 [PubMed: 
8267704] 

30. Parker DR, Lu B, Sands-Lincoln M, et al. Risk of cardiovascular disease among postmenopausal 
women with prior pregnancy loss: the women’s health initiative. Ann Fam Med. 2014;12(4):302–
309. doi:10.1370/afm.1668 [PubMed: 25024237] 

31. Parikh NI, Jeppson RP, Berger JS, et al. Reproductive Risk Factors and Coronary Heart Disease 
in the Women’s Health Initiative Observational Study. Circulation. 2016;133(22):2149–2158. 
doi:10.1161/CIRCULATIONAHA.115.017854 [PubMed: 27143682] 

32. Maino A, Siegerink B, Algra A, Martinelli I, Peyvandi F, Rosendaal FR. Pregnancy loss and risk 
of ischaemic stroke and myocardial infarction. Br J Haematol. 2016;174(2):302–309. doi:10.1111/
bjh.14043 [PubMed: 27061416] 

33. Simon T, Beau Yon de Jonage-Canonico M, Oger E, et al. Indicators of lifetime endogenous 
estrogen exposure and risk of venous thromboembolism. J Thromb Haemost JTH. 2006;4(1):71–
76. doi:10.1111/j.1538-7836.2005.01693.x [PubMed: 16409454] 

Tison et al. Page 10

Can J Cardiol. Author manuscript; available in PMC 2022 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Example of the first four layers of a CART tree
Figure shows the first four layers of an example CART tree, demonstrating how splits are 

made at each tree-node leading to separation of individuals based on values of chosen 

variables.
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Table 1.

Baseline Characteristics

Baseline characteristic
n (%)

Experienced incident heart failure
N = 2,222

No incident heart Failure
N = 41,487 p-value

Age, mean±s.d., yrs 66.8±6.9 62.3±7.2 0.04

Number of pregnancies, mean±s.d. 3.8±2.2 3.6±2.1 < 0.002

Experienced pregnancy loss, mean±s.d. 0.8±1.3 0.7±1.1 <0.0001

Medicare 1,229 (55.6%) 13,114 (32.1%) <0.0001

Race or ethnic group

 White (not of Hispanic origin) 1,404 (63.2%) 20,503 (49.4%) <0.0001

 Black or African American 658 (29.6%) 13,692 (33.0%)

 Hispanic/Latino 121 (5.4%) 6,293 (15.2%)

 Asian or Pacific Islander 17 (0.8%) 508 (1.2%)

 American Indian or Alaskan Native 6 (0.3%) 124 (0.3%)

 Other 14 (0.6%) 310 (0.7%)

 Unknown 2 (0.1%) 57 (0.1%)

Clinical parameters at baseline

 Heart rate, mean±s.d. bpm 68.9±11.3 66.8±10.2 <0.0001

 Systolic blood pressure, mean±s.d., mmHg 137.1±19.0 128.9±17.6 <0.0001

 Waist circumference, mean±s.d., cm 95.3±15.2 89.3±13.8 <0.0001

 Body mass index (BMI) mean±s.d. m2/kg 31.5±0.16 29.6±11.6 <0.0001

 Physical Function, mean±s.d.* 59.7±0.5 73.9±0.1 <0.0001

 Social Function mean±s.d. *(IQR) 84.6±11.4 87.3±11.1 0.06

 Hemoglobin, mean±s.d., g/dL 13.5±0.03 13.4±0.01 <0.0001

 Creatinine, mean±s.d. mg/dL 0.83±0.007 0.78±0.001 <0.0001

Previous medical history

 Hypertension 1,210 (59.7%) 14,628 (38.1%) <0.0001

 Treated high cholesterol 425 (21.1%) 5,323 (14.0%) <0.0001

 Diabetes mellitus 505 (22.8%) 3,432 (8.3%) <0.0001

 Current smoking 290 (13.1%) 4,076 (9.8%) <0.0001

 Prior myocardial infarction 604 (27.2%) 1,387 (3.3%) <0.0001

 Coronary revascularization 591 (26.6%) 2,068 (5.0%) <0.0001

 Atrial Fibrillation 122 (5.5%) 550 (1.3%) <0.0001

 Valvular heart disease 41 (1.9%) 126 (0.3%) <0.0001

Abbreviations: BMI: Body Mass Index; cm: Centimeters; kg: kilogram; s.d.: Standard Deviation.

*
Physical function and social function scores are derived from the RAND questionnaire
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