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Abstract

Cancer Cell Growth Measurement using Computer Vision and Machine Learning

by

Amir R. Pourshafiee

We have devised a pipeline of computer vision and machine learning algorithms

and developed a cell growth rate detection software. The algorithm has the ability to

perform single cell detection.

Our cell segmentation mechanism uses the Canny edge detection method to

detect the foregrounds of an image; after processing and filtering the foregrounds of the

image, the living cell images are stored. In each iteration, we run a very fast object

recognition algorithms to detect and match the image of the cells that have had been

stored in the previous iteration with the ones that are stored in the recent iteration.

If the algorithm fails to find any matches stored from the prior iteration, we run a

slower algorithm with that provides a higher likelihood of recognition. After finding the

matches we calculate the rate at which the cell’s area and perimeters have changed.

We also considered automated cell injection and have made our program for-

ward compatible with possible future automated injection software or devices.
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Chapter 1

Introduction

1.1 Description of the thesis

In this section, we describe the flow of the content in this thesis. In the rest of

this chapter we explain our motivations and the objectives of this research. From this

perspective, in the next section we highlight some of the state-of-the-art cell detection

papers. We explain the literature review that we did about foreground detection, cell

segmentation, and object detection. Chapter 3 discusses our methods and challenges

with foreground detection, filtering, and cell interpretation. Chapter 4 describes our

implementation of object detection and a survey of three of the most prominent object

detection algorithms and explain how we calculate the rate of growth in cells.

Chapter 5 is dedicated to automated injection and our attempts and methods

to perform it as well as the challenges we faced and our solution. In chapter 6 we have

concluded the thesis by describing the computer vision and machine learning pipeline.
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We also discussed the future work and the expansions that are possible for this research.

1.2 Goals

Our highest level goal was to detect cells and determine their rate of growth

using the images obtained by a digital microscope camera. We wanted to be able to

distinguish each cell and be able to detect it rapidly. Knowing that cells can only live

for several minutes before they need to be placed in an incubator, we knew there might

be challenges in terms of positioning the cells exactly where they were before (without

rotation). Our goal was to find algorithms that can tolerate the noise and are rotation

and scaling invariant. We also wanted to be able to automatically inject the cells.

amir
Typewriter
2



Chapter 2

Literature Review

After reviewing the literature and understanding the challenges, we performed

algorithms for cell detection and individual-cell identification. In this section we explain

how we devised the algorithms and we show our results, comparing different algorithms.

We tried two methods to distinguish between the cells and the background, edge de-

tection and blob detection. Unfortunately, other methods like color discrimination and

shape detection could not be coupled with our algorithms to improve the detection and

its robustness. By adding dye to cells, we might alter the results of the future experi-

ments. Since the cells are alive, they could react to the foreign agent and either die or

demonstrate a different reaction than would those unmodified by coloring. Regarding

the shape, cells, even from the same cell line can have varying shapes that could not be

unified.

In terms of the identification algorithms, the challenges were the rapid defor-

mation of cells (24 hours to 48 hours) and the short shelf life of cell lines. We have
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listed a few algorithms that we found in the literature, explained their methods, and

have concluded the reasons each might or might not suit our applications. In the next

section we surveyed various edge detection methods and determined that Canny edge

detection delivers the best results in our application.

2.1 Foreground Detection and Cell Segmentation

In this section we first did a survey of the most predominant edge detection

methods and concluded that the Canny edge detector is best suited for our application.

We briefly introduce these methods and then show the results of our survey and compare

it with a related study[14].

2.1.1 Canny edge detection

The Canny edge detector is an algorithm that follows a stochastic procedure

for the design of arbitrary edge profiles [5]. The detector uses adaptive thresholding,

which changes based on the noise level of the image, with hysteresis to eliminate the

streaking of edge contours [5].

According to John Canny, the inventor of the algorithm, ”In two dimensions,

it was shown that marking edge points at the maxima of gradient magnitude in the

gradient direction is equivalent to finding zero-crossings of a certain nonlinear differential

operator” [5]. The algorithm is devised to do the following: [16]

1. Smoothing: Noise reduction by blurring the image
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2. Finding local gradient anomalies: By marking the areas that have gradients with

high magnitudes

3. Local maxima markup: markings that were not a result of local maxima are

suppressed

4. Thresholding: Edges are determined by thresholding

5. Hysteresis: By applying a hysteresis that discriminates against edges that are not

connected to strong edges, the algorithm returns the likely edges of the image.

However, a drawback of the algorithm for our purpose was that the perfor-

mance of the algorithm is hindered when the image operator is locally circular as op-

posed to straight. This disadvantage has become less important with today’s technology;

with higher resolution cameras, the image operators locally appear to be more linear.

Figure 2.1 illustrates the image that Maini used to survey the detection along

with the binary conversion of the image for the edge detection algorithms to run. We

have reproduced the results of an edge detection survey by Maini [14] in Matlab which

can be seen in Figure 2.4. The survey suggests that Canny edge detection delivers the

best results. By reproducing the survey result and doing experimental edge detection

testings on a cell using the Canny edge detection and comparing it to the Matlab’s cell

segmentation tutorial (2.4), we confirmed that the Canny edge detection was the best

method. The other algorithms are briefly described in the rest of this section.
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(a) Original image in Maini’s survey (b) Maini’s sample image converted to binary

Figure 2.1: Sample image for surveying and its corresponding binary image for image

processing. 2.1

In both methods we used the Canny edge detection which filters the images

with the derivative of their Gaussian filter mask. The Gaussian filter mask is generated

by the local standard deviation (which at edges, results into higher values). The value

of the standard deviation with respect to the mean determines the width of the filter

matrix. Thus, standard deviation controls the amount of smoothing produced by the

Gaussian filter, and using the Gaussian filter make the detection less prone to noise.
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(a) Prewitt edge detection (b) Robert’s edge detection

(c) Sobel edge detection (d) Canny edge detection

Figure 2.2: Reproduction of Maini’s survey with 4 different edge detection algorithms.

It can be seen that Canny edge detection has performed significantly better than the rest

of the algorithm

2.1.2 Sobel-Feldman Filter

Irwin Sobel and Gary Feldman presented a talk in Stanford in 1968 ”on a

relatively isotropic 3x3 gradient operator”, Which was inspired by the work of Larry
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Roberts [25, 8]. In this method, an image is treated as a density function and ”for a 3x3

neighborhood each simple central gradient estimate is a vector sum of a pair of orthog-

onal vectors. Each orthogonal vector is a directional derivative estimate multiplied by a

unit vector specifying the derivative’s direction.[26, 7]” A weighted unit vector is chosen

that represents the neighbor’s directions and the threshold is calculated that outlines

the edge of the element[26, 7].

We have used the Matlab implementation of the algorithm in Figures 2.2c and

2.4 (re-implementation of a Matlab cell segmentation example) to compare it with some

other edge detection algorithms.

2.1.3 Roberts cross operator

One of the earliest edge detection techniques, Larry Roberts presented a 2x2

gradient estimator as a PhD thesis in 1963 under the title of ”Machine Perception Of

Three-Dimensional Solids”[7]. In this algorithm, the image is convolved with
(
1 0
0 −1

)
and

(
0 1
−1 0

)
. When they are put together they result in the edge detection. The square

root of the sum of the convoluted images yields the gradient.[8].

The limitations of the algorithm were known and Roberts proposed a well

defined edges, low noise, and high contrast[8]. These limitations cannot provide a

solution for cell detection as the background environment is uncontrollably noisy because

of the cell culture, and most cells do not have defined edges. The performance of the

algorithm can be seen in figure 2.4.

amir
Typewriter
8



2.1.4 Prewitt

Developed by Judith M. S. Prewitt, Prewitt algorithm convoluted the two

matrices in equation 2.1, which are derived from the following partial derivatives, extract

the edges of the image. [22, 6]

δI

δx
≈ I(i−1, j+1)+I(i, J+1))+I(i+1, j+1)−I(i−1, j−1)−I(i, j−1)−I(i+1, j−1)

and,

δI

δy
≈ I(i1, j−1)+I(i+1, J))+I(i+1, j+1)−I(i−1, j−1)−I(i−1, j)−I(i−1, j+1)

Mx =


−1 0 1

−1 0 1

−1 0 1

 ,My =


−1,−1,−1

0, 0, 0

1, 1, 1

 (2.1)

Figure 2.3: Sample cell image. Image courtesy of Alan Partin, John Hopkins University
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(a) Sobel binary gradient mask (b) Canny binary gradient mask

(c) Sobel dialted gradient mask (d) Canny dialted gradient mask

(e) Sobel with filled holes (f) Canny with filled holes

(g) Sobel binary gradient mask (h) Canny binary gradient mask

(i) Sobel segmented and outlined cell border (j) Canny segmented and outlined cell border

Figure 2.4: Cell segmentation by reproducing Matlab’s cell detection image processing

pipeline and its comparison to replacing the Canny edge detection with Sobel edge de-

tection in the pipeline. Image courtesy of Alan Partin, John Hopkins University.
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Figure 2.5: The histogram of the figure 2.3. Thresholding the background image

2.2 Object Detection

In this section we have reviewed several object recognition methods and in-

vestigated which ones are well suited for our application, cell detection. The challenges

that cell identification impose include the physical structure of the cells, their relatively

fast growth rate, and the environmental image capturing conditions such as the lighting

and whether the cell cultures have been rotated. The literature review and our brief

survey rendered many of the methods unsuitable for our research topic. In this section
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we have used the terms detection and identification interchangeably; these terms refer

to ’single objects’ and thus we no longer mean clustering. The following are a few object

recognition algorithms that we have investigated:

2.2.1 Haar cascade classifier

Haar cascade is a robust machine learning algorithm that has gained significant

popularity in detection algorithms. It was one the earlier face-detection algorithms that

has been used by the industry. Its popularity is in part due to the fact that after the

learning algorithm has produced a model using the training set, it can detect the object

in real-time.

In this algorithm, Paul Viola describes that they use an ”Integral Image” that

allows for a rapid detector computation. The algorithm then performs AdaBoosting

on a few distinctive points (like edges and points with high contrast intensity). Then

classifiers are cascaded to remove the background and detecting the object.[29]

In essence the algorithm is trained by different image features and classified

using AdaBoosting. Then the classifications are cascaded and the algorithm’s model

converges to a model that can be run in real-time to detect the same object. In order to

make a robust model, many images need to be taken in different lighting conditions and

from various positions. The algorithm is not rotation-agnostic, and classifications and

cascading on a training set usually takes a few days.[4] However, most human cells tend

to go through mitosis and even full cell cycle in less than 24 hours, not enough time

for the algorithm to converge to a robust cascaded classifier. Also, it is very difficult
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to capture images of the cells without them being rotated since they cannot survive for

more than a few minutes at room temperature. Putting cells in incubators for each trial

and recapturing images from them can cause them to rotate in their petri dish.

2.2.2 Speeded-Up Robust Features (SURF)

SURF is an image processing algorithm developed by Dr. Herbert Bay et al.

from Eidgenssische Technische Hochschule Zrich in 2006[2]. It analyzes the distinctive

features of a source image under different perspectives, creates a descriptor for it using

descriptor vectors of neighboring features, and attempts to match the descriptor vectors

in the target image.

One of the distinctive characteristics of SURF is that it is rotation, scale, and

contrast agnostic[12], making it an optimal algorithm for cell identification in microbiol-

ogy applications where it is not possible to fixate the cells and it is difficult to maintain

the contrast, light intensity, and light color temperature levels constant.

2.2.3 Scale Invariant Feature Transform (SIFT)

SIFT extracts and stores distinctive image features in a database. The features

of the target picture (the image that we want to match) are compared to the stored

features in the database. If enough vector distances between the features match, the

algorithm stochastically determines if there is a match between the two images. The fact

that the length of vectors doesn’t change with rotation, and that vectors are scalable, the

algorithm can perform flawlessly when the image is rotated or scaled. Feature extraction
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is done using Hough transform which employs a voting procedure of the local maxima

in images. [13]
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Chapter 3

Cell Detection

3.1 Edge detection

We have developed the cell segmentation programs in both Matlab and OpenCV.

However, because of the differences in the underlying programming environment and

the library functions available the pipelines are slightly different.

The image processing pipeline for the OpenCV code is as follows: Since the

edge detection operator can only calculate one channel, the image is converted to a bi-

nary black and white (grayscale) image to be passed to the thresholding filter that can

dynamically detect the color of the background. After calculating the threshold, a fore-

ground detection (background subtraction) method runs to detect portions of the image

with ”bags” of similar features (color intensity, gradient). This method is packaged in

OpenCV as the Blob detection module. The blob detection algorithm detects any de-

viations from the thresholded background, and thus not all the foregrounds (”blobs”)

15



represent living cells as it can be seen in figure 3.4.

In cases where there is a high contrast between the background and the cells,

the edge detection method performs much better as it can be seen in figure 3.1. The

image was taken with a fluorescent filter.

(a) fibroblast tissues (b) detected foregrounds

Figure 3.1: Edge detection of an image with high contrast using a florescent filter

The segmentation pipeline using Matlab is inspired by ”Detecting a Cell Using

Image Segmentation” by Mathworks. Our algorithm replaces the Sobel filter with Canny

edge detection. The segmentation image processing pipeline is illustrated step by step

in figure 2.4 which compares our algorithm and the one by Mathworks. After converting

the RGB image to grayscale, we run the Canny edge detection to find the Canny gradient

mask. By dilating the mask, we produce more robust borders. This is done by adding a
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white pixel to every neighboring white pixel that has resulted from the Canny gradient

mask. Then we fill in the holes (i.e. the enclosed portions of the image). Since we

cannot calculate the correct parameters of cells that are not entirely in a frame, we

ignore them. This can be illustrated in figure 2.4(h). Using this method we can find

the foreground in Matlab. The next sequences of the pipeline are identical for Matlab

and OpenCV.

Figure 3.2: cell segmentation image processing pipeline

Both OpenCV and Matlab enable us to calculate the enclosed area of a detected

segment and the perimeter of the enclosure after applying the edge detection method.

Knowing that dead cells form spherical shapes, and cell flagella form elongated linear

shapes, we devised a filter, that by setting the thresholds, can filter the foregrounds

that are either too circular or too linear. The formula to calculate the circularity is as
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follows:

Circularity =
4A

P 2
(3.1)

Where A is the area enclosed by the blob, and P is its perimeter. The closer the

Circularity is to one, the more circular the image is and the closer it is to 0 the more

linear it is. We empirically chose a threshold range between 0.5 and 0.8 to eliminate

the cells and cell flagella. Figure 3.3 shows the post-processed and filtered cells. Note

that although the living cell recognition has improved drastically, there are still false

positives and false negatives in the picture. The algorithm does not perform well when

images are out of focus because the blur causes the edge detection to fail finding the

edges.

Finally by calculating the cell’s physical parameters (areas and perimeters)

and eliminating some of the false positives, we enumerate the blobs, store their physical

parameters in a Comma Separated Value (CSV) file, and store each cell’s image as a

Region of Interest (ROI) in the local drive.
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Figure 3.3: Image of HeLa cell culture. Image courtesy of Akshar Lolith from University

of California, Santa Cruz
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Figure 3.4: pre-processed foreground detection. The false positives and false negatives

are indicated in this picture
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Table 3.1: Detected cell’s physical parameters and center point coordinates

Cell ID Area Perimeter x-center y-center

1 1414 1131 317 766

2 1381 1096 584 682

3 586 406 467 531

4 1264 1010 1039 328

Figure 3.5: Processed and filtered detected cells. There are still a few false positives

and false negatives. One of the reasons for the false negative might be because it is not

in focus and there is another cell overlapping
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Chapter 4

Single Cell Identification

4.1 Speeded-Up Robust Features (SURF)

One of the challenges in utilizing the SURF machine learning algorithm is that

there are not many distinctive features in a pool of different cells. The cells are seen

as blobs of similar colors, often with similar curvatures, and without many distinctive

features, which makes feature extraction more difficult than macro-scale objects. How-

ever, in our implementations, we have been able to successfully distinguish between cells

and identify the target cell by reducing the number of features required to match the

images. Figure 4.2 illustrates a cell detection using the SURF algorithm. The algorithm

found only one matching point but was able to find the Region Of Interest (ROI) in the

image.
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Figure 4.1: Sample cell (ROI)

Figure 4.2: Detection and matching of a ROI using SURF

4.2 Scale Invariant Feature Transform (SIFT)

The SIFT algorithm provides many more matching points, increasing the like-

lihood of a detection, and although that might increase the chance of finding a match,
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it also increases the chance of a false positive. Moreover, SIFT is much slower than the

SURF algorithm. Because of the algorithm’s higher likelihood of finding a match, if

in an iteration SURF cannot find a match, SIFT is run. Finally, if SIFT can not find

a match, we conclude the search without a matched cell. Figure 4.3 Illustrates a cell

detection using the SIFT algorithm. It can be observed that the number of the matches

has increased significantly compared to the detection performed by the SURF algorithm

(in figure 4.2).

Figure 4.3: Detection and matching of a ROI using SIFT
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4.3 Descriptor Outlier and Mismatch Rectification

In order to rectify the mismatches and increase the accuracy of the SURF and

SIFT descriptors, we investigated between the Fast Approximate Nearest Neighbor(FLANN)[18]

which is a variation of the nearest neighbor algorithm and Random sample consensus

(RANSAC)[9], based on Fischler’s discriminator method. We found out that RANSAC

provides better results while FLANN is a faster method for finding and dismissing the

mismatches. We chose to run FLANN with the SURF and SIFT descriptor algorithms.

4.4 Comparisons and survey results

SURF is the fastest descripting algorithm that can be used for matching images

and although SIFT performs better in terms of finding the matching features, when it

comes to rotation tolerance, SURF is more robust when the illumination changes, and

is more than 4.5 orders of magnitude faster in finding matching images [11]. A more

comprehensive comparison is shown in table 4.1. Inspired by [11] we used K Nearest

Neighbor to perform the matches and to dismiss the outliers from the correct matches.
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Table 4.1: Comparison of matching algorithms

Method Rotation Scale Time Blur Illumination

SIFT best very good good best fair

Haar Cascade very poor very good
very slow training

but fast detection

good good

SURF very good good best good best

4.5 Time-Lapsed Calculation of Cell Growth

In order to find cells in an image, we first perform image processing to detect

the foreground in the image. After applying a circularity filter and performing a fore-

ground size thresholding we reduce the number of false positives and eliminate the dead

cells from the rest of the calculation to work only with the living cells. Each living cell

is indexed and its physical parameters are calculated using edge detection. We draw an

outline around each detected cell and store the enclosed content (image of the detected

cell) as an image in a database.

To find the cell growth, we use the matching algorithms to determine which

ROI corresponds to the secondary set of images. We first run the SURF algorithm

which is very fast and illumination tolerant and if SURF can not find the matches, we

run the SIFT algorithm to detect the corresponding cell. Because cells grow rapidly

and divide, the images are only compared to the previous iteration of the algorithm.
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We can find the difference in the physical parameters of each cell in each iteration and

thus calculate the cell growth. Figure 4.4 illustrates the chain process of calculation of

rate of growth of the cell culture.

Figure 4.4: Time-lapsed cell parameter calculation.
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Chapter 5

Automation

In order to perform cell injections using the cell segmentation, we attempted

to perform cell aspiration/injection on two different micro-manipulator instruments, the

Sutter Instrument Company’s MP-285 manipulator and the BioStinger, a manipulator

unit designed by Adam Seger, a UCSC alumnus. Both devices provide supervised and

manual cell injection and aspiration. The user calibrates the device under each focus

and can click on the cells for the end effector to move to the position under the semi-

automatic injection. Under automatic injection, the cell segmentation provides the

center points of the bounding rectangle of the cell and the software can inject those

points1 .

1Unfortunately although every part of the underlying software has been developed and tested in an
isolated manner, due to various hardware shortcomings, automated cell injection has not been tested.
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5.1 Mapping and Calibration

To automate the system, we implemented a pixel to x and y coordinate map-

ping. Using this mapping scheme, the X and Y components of each pixel on the screen

gets mapped to the relative x and y of the last position of the microcontroller end ef-

fector. This mapping and calibration process has to be executed every time the focus

objectives changes. It runs when the program starts, which also provides a compen-

sation for the accumulated stepper motor’s missed steps, thus increasing the accuracy

of the injection. Equation 5.1 and 5.2 shows the pixel to the location mapping scheme

where a and b are the mapping factors for x and y coordinates, respectively, and x and

y denote relative position of the end effector while X and Y represent the pixel seen on

the screen. Figure 5.1 illustrates a screen shot of the calibration interface. The user is

instructed to move the end effector to the top left target and click on it and then move

it to the bottom right target and click on it. The mapping factors are populated and

when the user clicks on any new point on the screen, the mapping factor is multiplied

by the pixel coordinates.

∆x = a(∆X) (5.1)

and

∆y = b(∆Y ) (5.2)

Because different magnification objectives can change the mapping and to en-

sure that the drift associated with the stepper motors has a lower impact in the auto-
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mated cell injection process, the mapping and calibration are done every time when the

program starts.

Figure 5.1: Calibration and mapping stage

5.2 Sutter Instrument LabVIEW Integration

We integrated our automated injection code that has been written in C++

(in conjunction with the cell detection module that was written using OpenCV) to the
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LabVIEW driver that was provided by Sutter Instrument Company.

In order to run the OpenCV code and do the pixel to position mapping, we

communicated using the TCP-IP protocol. In this communication scheme, the C++

detection and calculation program works as the server while the LabVIEW Virtual

Instrument (VI) is the client. The Sutter Instrument MP-285 uses the RS-232 Serial

interface to communicate with the PC. The MP-285 had various bugs that did not allow

for the automatic or manual injection as was advertised. Trying to resolve the problems

with the Sutter Instrument Company and them upgrading the VIs several times did not

fix these issues.[1, 23]

Figure 5.2: Serial interface using LabVIEW driver for MP-285 for automatic cell injec-

tion and aspiration

5.3 C/C++ Driver using MP-285 Micro-manipulator Unit

After several failed attempts at making the supplied VI performing the au-

tomatic injection, despite VI upgrades, we could not make a significant improvement
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in moving the manipulator using serial communication. We integrated the serial com-

mands in our C++ code. In this scheme, there was no need for any communication

protocols other than the communication between the MP-285 and the computer.

Although we were able to send short commands such as resetting the position

and changing the velocity, we have not been able to move the manipulator. After several

discussions, we and our point-of-contact with Sutter Instrument Company concluded

that the bugs relate to the firmware of the MP-285. [1, 23]

We modified our code to generate a text file with the pixel coordinates of

the center points of the bounding rectangles (with the respect to the screen resolution).

Scott Rad, a perspective graduate student at UCSC, has been working on the BioStinger

unit and he has written a TCP-IP server-client program to read the center points to

inject cells.
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Chapter 6

Conclusion and Future Work

In this thesis, we have been able to use machine learning and computer vision

methods to segment cells and detect cells individually. Our research involved review-

ing various literature and resources and performing trade studies and surveys of the

available methods. We implemented filters to distinguish cells from other objects in

the foreground. After segmenting the cells and storing the images of each individual

cell, we perform a SURF descriptor detection to detect the cells in the new scenario

(in a few hours) and if the Surf detector is unable to find matches, we run the SIFT

algorithm to find the matches. When the match is found the physical parameters of a

cell is compared over time to update the growth rate of the cell.

We also attempted to perform automated cell injection using micro-manipulators

and an injection piezo-cube. However, we have not completed due to limitations posed

by the hardware and its associated firmware. We provided a solution by outputting the

center points as a text file, to enable future projects to be able to work on the injection
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phase as an isolated problem and integrate it with the cell detection. This also makes

the cell detection hardware agnostic and allows for expansion in the future.
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Appendix A

CITRIS Day Poster, Oct. 2015

Berkeley, CA
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Appendix B

Sutter Instrument MP-285 LabVIEW

Interface

Figure B.1: LabVIEW Interface
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