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Abstract

The skew mean curvature flow is an evolution equation for d dimensional ma-
nifolds embedded in R4*? (or more generally, in a Riemannian manifold). It can be
viewed as a Schrodinger analogue of the mean curvature flow, or alternatively as a
quasilinear version of the Schrodinger Map equation. In an earlier paper, the authors
introduced a harmonic/Coulomb gauge formulation of the problem, and used it to
prove small data local well-posedness in dimensions d = 4. In this article, we
prove small data local well-posedness in low-regularity Sobolev spaces for the
skew mean curvature flow in dimension d = 2. This is achieved by introducing a
new, heat gauge formulation of the equations, which turns out to be more robust in
low dimensions.
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1. Introduction

In this article we continue our study of the local well-posedness for the skew
mean curvature flow (SMCF). This is a nonlinear Schrodinger type flow modeling
the evolution of a d dimensional oriented manifold embedded into a fixed oriented
d + 2 dimensional manifold; it can be seen as a Schrodinger analogue of the well
studied mean curvature flow.

In an earlier work [9], we considered the (SMCF) flow in higher dimension
d 2 4, and proved local well-posedness for small initial data in low regularity
Sobolev spaces. This was achieved by developing a suitable harmonic/Coulomb
gauge formulation of the equations, which allowed us to reformulate the problem
as a quasilinear Schrodinger evolution.

In this article, we consider the small data local well-posedness for the skew
mean curvature flow in low dimensions d = 2, also for low regularity initial data.
As the earlier harmonic/Coulomb gauge formulation has issues in low dimensions,
here we introduce an alternative heat gauge, which resolves these difficulties.
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1.1. The (SMCF) Equations

Let ¢ be a d-dimensional oriented manifold, and (N d+2, gn) bead + 2-
dimensional oriented Riemannian manifold. Let / = [0, T] be an interval and
F: I x %% — N be aone parameter family of immersions. This induces a time
dependent Riemannian structure on >4, For each t € I, we denote the submani-
fold by X; = F (¢, X), its tangent bundle by T %;, and its normal bundle by N %;
respectively. For an arbitrary vector Z at F we denote by Z+ its orthogonal pro-
jection onto N %;. The mean curvature H(F') of X, can be identified naturally with
a section of the normal bundle N X;.

The normal bundle N %, is a rank two vector bundle with a naturally induced
complex structure J(F) which simply rotates a vector in the normal space by
7 /2 positively. Namely, for any point y = F(¢,x) € %; and any normal vector
v € N,%,, we define J(F) € N, %, as the unique vector with the same length so
that

J(F)VJ—U’ CL)(F*(el), F*(e2), e F*(ed)s v, J(F)l)) > 0’

where  is the volume form of N and {e, - - - , e4} is an oriented basis of >4 The
skew mean curvature flow (SMCF) is defined by the initial value problem

(3 F)* = J(F)H(F),

1.1
F(-,0) = Fo, (D

which evolves a codimension two submanifold along its binormal direction with a
speed given by its mean curvature.

The (SMCF) was derived both in physics and mathematics. The one-dimensional
(SMCF) in the Euclidean space R3 is the well-known vortex filament equation
(VFE)

0y = 0sy X Bszy,

where y is a time-dependent space curve, s is its arc-length parameter and x denotes
the cross product in R3. The (VFE) was first discovered by Da Rios [4] in 1906 in
the study of the free motion of a vortex filament.

The (SMCF) also arises in the study of asymptotic dynamics of vortices in
the context of superfluidity and superconductivity. For the Gross—Pitaevskii equa-
tion, which models the wave function associated with a Bose—Einstein condensate,
physics evidence indicates that the vortices would evolve along the (SMCF). An
incomplete verification was attempted by Lin [18] for the vortex filaments in three
space dimensions. For higher dimensions, Jerrard [11] proved this conjecture when
the initial singular set is a codimension two sphere with multiplicity one.

The other motivation is that the (SMCF) naturally arises in the study of the
hydrodynamical Euler equation. A singular vortex in a fluid is called a vortex
membrane in higher dimensions if it is supported on a codimension two subset. The
law of locally induced motion of a vortex membrane can be deduced from the Euler
equation by applying the Biot—Savart formula. Shashikanth [23] first investigated
the motion of a vortex membrane in R* and showed that it is governed by the two
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dimensional (SMCF), while Khesin [15] then generalized this conclusion to any
dimensional vortex membranes in Euclidean spaces.

From a mathematical standpoint, the (SMCF) equation is a canonical geometric
flow for codimension two submanifolds which can be viewed as the Schrodinger
analogue of the well studied mean curvature flow. In fact, the infinite-dimensional
space of codimension two immersions of a Riemannian manifold admits a gener-
alized Marsden—Weinstein sympletic structure, and hence the Hamiltonian flow of
the volume functional on this space is verified to be the (SMCF). Haller—Vizman
[8] noted this fact where they studied the nonlinear Grassmannians. For a detailed
mathematical derivation of these equations we refer the reader to the article [26,
Section 2.1].

The one dimensional case of this problem has been extensively studied. This is
because the one dimensional (SMCF) flow agrees the classical Schrodinger Map
type equation, provided that one chooses suitable coordinates, i.e. the arclength
parametrization. As such, it exhibits many special properties (e.g. complete inte-
grability) which are absent in higher dimensions. For more details we refer the
reader to the survey article of Vega [27] as well as [1] and [8].

The study of higher dimensional (SMCF), on the other hand, is far less devel-
oped. Song—Sun [26] proved the local existence of (SMCF) with a smooth, compact
oriented surface as the initial data in two dimensions, then Song [25] generalized this
result to compact oriented manifolds for all = 2 and also proved a corresponding
uniqueness result. Song [24] also proved that the Gauss map of a d dimensional
(SMCF) in R4*?2 satisfies a Schrodinger Map type equation but relative to the
varying metric. More recently, Li [16,17] considered a class of transversal small
pertubations of Euclidean planes under the (SMCF) and proved a global regularity
result for small initial data.

This article is instead concerned with the case when ©¢ = RY, i.e. where
¥, has a trivial topology. We will further restrict to the case when N4+ is the
Euclidean space R?*2. Thus, the reader should visualize X, as an asymptotically
flat codimension two submanifold of RY*+2.

Such manifolds ¥ = R? with d > 4 were already considered in our earlier
work [9], where we proved the local well-posedness for small data in low-regularity
Sobolev spaces. Here we consider instead the lower dimensional case, namely the
dimensions d = 2, 3. A key role in both [9] and in this article was played by our
gauge choices, which are discussed next.

1.2. Gauge Choices for (SMCF)

There are two components for the gauge choice, which are briefly discussed
here and in full detail in Section 2:

(1) The choice of coordinates on I x X.
(2) The choice of an orthonormal frame on I x N X.

Indeed, as written above in (1.1), the (SMCF) equations are independent of the
choice of coordinates in I x X; here we include the time interval / to emphasize that
coordinates may be chosen in a time dependent fashion. The manifold X¢ simply
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serves to provide a parametrization for the moving manifold ¥;; it determines the
topology of X, but nothing else. Thus, the (SMCF) system written in the form
(1.1) should be seen as a geometric evolution, with a large gauge group, namely
the group of time dependent changes of coordinates in / x . One may think of
the gauge choice here as having two components, (i) the choice of coordinates at
the initial time, and (ii) the time evolution of the coordinates. One way to describe
the latter choice is to rewrite the equations in the form

(0 = Vo) F = J(F)H(F),
F(-,0) = Fy,

where the vector field V can be freely chosen, and captures the time evolution of
the coordinates. Indeed, some of the earlier papers [26] and [25] on (SMCF) use
this formulation with V' = 0. This would seem to simplify the equations, however
it introduces difficulties at the level of comparing solutions.This is because the
regularity of the map F is no longer determined by the regularity of the second
fundamental form, and instead there is a loss of derivatives which may only be
avoided if the initial data is assumed to have extra regularity. This loss is what
prevents a complete low regularity theory in that approach.

In our earlier work [9] in dimension d = 4, we chose harmonic coordinates
on X, separately at each time. This implicitly fixes V, which may be obtained as
the solution of an appropriate elliptic equation. The same approach could be made
to work in dimension d = 3, if one uses a more careful study of the linearized
equation as in the present paper. Unfortunately this does not seem to work well in
two dimensions, essentially due to a lack of sufficient control on the metric at low
regularity, which is caused by a lack of decay of the fundamental solution for the
Laplacian.

To rectify this issue, in the present paper we use instead a heat gauge, where the
coordinates and implicitely the metric are determined dynamically via a heat flow.
This in particular requires also a good choice of coordinates at the initial time; there,
we fall back to the harmonic coordinates. In dimension three and higher, this is all
that is needed, and in effect both gauge choices, i.e. the heat gauge and the harmonic
gauge, work equally well. However, in two dimensions the harmonic coordinates
fail to yield the needed low frequency decay of the metric. We rectify this by adding
an a-priori low frequency assumption on the metric in suitable coordinates, and then
propagate this in time via the heat gauge.

We now discuss the second component of the gauge choice, namely the or-
thonormal frame in the normal bundle. Such a choice is needed in order to fix the
second fundamental form for X; indeed, the (SMCF) is most naturally interpreted
as a nonlinear Schrodinger evolution for the second fundamental form of ¥. In our
earlier paper [9] we use the Coulomb gauge. But that seems to no longer be well
behaved in two dimensions, so we replace it again with a heat flow. In this context,
this strategy is reminiscent of the work of the second author and collaborators for
the Chern—Simons—Schrodinger flow in [20].
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1.3. Scaling and Function Spaces

To understand what are the natural thresholds for local well-posedness, it is
interesting to to consider the scaling properties of the solutions. As one might
expect, a clean scaling law is obtained when ¢ = R? and N9*2 = R?*2. Then
we have the following:

Proposition 1.1. (Scale invariance for (SMCF)) Assume that F is a solution of
(1.1) with initial data F(0) = Fy, then F,(t, x) := p~'F(u’t, ux) is a solution
of (1.1) with initial data F,,(0) = =" Fo(ux).

The above scaling would suggest the critical Sobolev space for our moving

surfaces ¥, to be H %H. However, instead of working directly with the surfaces,
it is far more convenient to track the regularity at the level of the curvature H(%;),
which scales at the level of H %_1.

For our main result we will use instead inhomogeneous Sobolev spaces, and it
will suffice to go one derivative above scaling. There is also a low frequency issue,
precisely in two space dimensions where the L> norm is critical. There we will
need to make a slightly stronger assumption on the low frequency part of the initial
data.

1.4. The Main Result

Our objective in this paper is to establish the local well-posedness of skew mean
curvature flow for small data at low regularity. A key observation is that providing
a rigorous description of fractional Sobolev spaces for functions (tensors) on a
rough manifold is a delicate matter, which a-priori requires both a good choice of
coordinates on the manifold and a good frame on the vector bundle (the normal
bundle in our case). This is done in the next section, where we fix the gauge and
write the equation as a quasilinear Schrodinger evolution in a good gauge. At this
point, we content ourselves with a less precise formulation of the main result.

Theorem 1.2. (Small data local well-posedness in dimensions d = 3) Letd = 3,
s > % and o4 = % — 8. Then there exists €y > 0 sufficiently small such that, for

all initial data o with metric go and mean curvature Hy satisfying
DI (g0 — 1)l gs+1-04 = €0, IIHollms(s0) = €0, (1.2)

relative to some parametrization of X, the skew mean curvature flow (1.1) for
maps from R to the Euclidean space (R412, gra+2) is locally well-posed on the
time interval I = [0, 1] in a suitable gauge.

With a slight adjustment, a similar result holds in dimension d = 2.

Theorem 1.3. (Small data local well-posedness in dimension d = 2) Letd = 2,
s > % and o4 = % — 8. Then there exists €y > 0 sufficiently small such that, for
all initial data o with metric go and mean curvature Hy satisfying

11D1% (g0 — I || ys+1-04 = €0, [1Hollms(xg) < €0,
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as well as a low frequency bound for gg
ligo — Lallyo < <o, (1.3)

relative to some parametrization of X, the skew mean curvature flow (1.1) for
maps from R to the Euclidean space (R412, gra+2) is locally well-posed on the
time interval I = [0, 1] in a suitable gauge.

We continue with some comments on the function spaces in the above theorems:

e For the metric gg, we use the difference go — I in the above statements in order
to emphasize the normalization go — I, at infinity.

e In dimension d = 3, the go — I; norm in (1.2) only plays a qualitative role,
namely to place us in a regime where, in harmonic coordinates, go is uniquely
determined by the mean curvature Hy.

e The Yéo norm in (1.3), defined in Section 3, captures low frequency /! summa-
bility properties for go with respect to cube lattice partitions of R?. Similar
norm appear in our analysis in dimensions d = 3. The main difference is that in
higher dimension, the ¥ norms of gg — I; can be estimated in terms of the H*
norm of H in harmonic coordinates. In two dimensions, this estimate borderline
fails, so we instead include the Y(l)o bound in the hypothesis.

Following the spirit of our earlier work [9], in these results we consider rough
data and provide a full, Hadamard style well-posedness result based on a more
modern, frequency envelope approach and using a paradifferential form for both
the full and the linearized equations. For an overview of these ideas we refer the
reader to the expository paper [10]. This is unlike any of the prior results, which
prove only existence and uniqueness for smooth data.

The favourable gauge mentioned in the theorem is defined in the next section
in two steps:

(a) at the initial time, where we proceed as in [9], and use

e Harmonic coordinates on the manifold X.

e The Coulomb gauge for the orthonormal frame on the normal bundle N Z.
(b) dynamically for r > 0, where we use

e The heat coordinates on the manifolds ;.

e The heat gauge for the orthonormal frame on the normal bundle NX.

One simple example of initial data allowed by our theorem consists of graph
submanifolds with defining functions u 1, u2, of the form

o = {x, u1 (x), ua(x); x € RY)

Here one may simply take u1 and u; to be small in H**2, with the added low
frequency control in the Yé” space in dimension two. However, the H**2 control
is only needed at high frequency, while at low frequency it suffices to have control

X o d . . .
only in homogeneous norms H2!7% with § > 0. This allows for perturbations
which are not small in any uniform norm.



10 Page 8of 79 Arch. Rational Mech. Anal. (2024) 248:10

Example 1.3.1. (Bump-like sub-manifolds) Let ¢;, i = 1, 2 be Schwartz functions.
Then for small € > 0 and § > 0, the manifold X, given by the defining functions

d
52468
uj =e€2 +¢j(6x)

satisfies the hypotheses of our theorem. with € > 0 sufficiently small. This manifold
is not a small perturbation of the Euclidean plane in low dimension.

Example 1.3.2. (Sub-manifolds with nontrivial asymptotics) For small €; > 0 and
§ > 0, the manifold ¥ given by the defining functions

uj=ej(1+x2)=5?

satisfies the hypotheses of our theorem. with €; > 0 sufficiently small. This mani-
fold is also not a small perturbation of the Euclidean plane.

In the next section we reformulate the (SMCF) equations as a quasilinear
Schrodinger evolution for good scalar complex variable A, which is exactly the
second fundamental form but represented in the good gauge. There we provide
an alternate formulation of the above result, as a well-posedness result for the A
equation. In the final section of the paper we close the circle and show that one can
reconstruct the full (SMCF) flow starting from the good variable A.

Once our problem is rephrased as a nonlinear Schrodinger evolution, one may
compare its study with earlier results on general quasilinear Schrodinger evolu-
tions. This story begins with the classical work of Kenig—Ponce—Vega [12-14],
where local well-posedness is established for more regular and localized data.
Lower regularity results in translation invariant Sobolev spaces were later estab-
lished by Marzuola—Metcalfe-Tataru [20-22]. The local energy decay properties
of the Schrodinger equation, as developed earlier in [2,3,5,6] play a key role in
these results. While here we are using some of the ideas in the above papers, the
present problem is both more complex and exhibits additional structure. Because of
this, new ideas and more work are required in order to close the estimates required
for both the full problem and for its linearization.

1.5. An Overview of the Paper

Our first objective in this article will be to provide a self-contained formulation
of the (SMCF) flow, interpreted as a nonlinear Schrédinger equation for a well
chosen variable. This variable, denoted by A, represents the second fundamental
form on %, in complex notation. We remark that in our earlier paper [9] we have
used instead the complex representation ¥ of the mean curvature H as the good
variable, and A was uniquely determined by v via an elliptic div-curl system.
However, solving this system in two dimensions is a delicate matter, which is why
here we switch to A. The slight downside of this strategy is that the components of
A are not independent, and instead satisfy a set of compatibility conditions which
need to be propagated along the flow.

In addition to the main variable A, we will use several dependent variables, as
follows:
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e The Riemannian metric g on X;.
e The magnetic potential A, associated to the natural connection on the normal
bundle N X;.

These additional variables will be viewed as uniquely determined by our main
variable A and initial metric g in a dynamical fashion. This is first done at the initial
time by choosing harmonic coordinates on X, respectively the Coulomb gauge on
N %. Finally, our dynamical gauge choice also has two components:

(i) The choice of coordinates on X;; here we use heat coordinates, with suitable
boundary conditions at infinity.

(i1) The choice of the orthonormal frame on N X;; here we use the heat gauge, again
assuming flatness at infinity.

To begin this analysis, in the next section we describe the gauge choices, so that
by the end we obtain

(a) A nonlinear Schrédinger equation for A, see (2.28).
(b) A parabolic system (2.29) for the dependent variables S = (g, A), together
with suitable compatibility conditions (constraints).

Setting the stage to solve these equations, in Section 3 we describe the function
spaces for both A and S. This is done at two levels, first at fixed time, which is needed
in order to track data sets, and then in the space-time setting, which is needed in
order to solve both the heat flows (2.29) and the Schrodinger evolution (2.28). The
fixed time spaces are classical Sobolev spaces, with matched regularities for all
the components. The main space-time norms are the so called local energy spaces
associated to the Schrodinger evolution, as developed in [20-22]. In addition, we
also use parabolic mixed norm spaces, which capture the regularity gain in the heat
flows.

We begin our analysis in Section 4, where we place the initial data in the
harmonic/Coulomb gauge. In higher dimension this analysis was already carried
out in our earlier paper [9]. Thus our emphasis here is on the two dimensional case,
where some additional low frequency issues arise in connection with the ¥ norms
for the metric g. Compared to our earlier article [9], here we are able to improve
the analysis and relax the low frequency component of the ¥ norm. This suffices
in dimension three, but is only borderline in dimension two, which is why we add
the low frequency Y bound to the hypothesis of Theorem 1.3.

Next, in Section 5, we consider the solvability of the parabolic system (2.29).
We will do this in two steps. First we prove that this system is solvable in the space
&*. Then we prove space-time bounds for the metric % in local energy spaces; the
latter will be needed in the study of the Schrodinger evolution (2.28).

Finally, we turn our attention to the Schrodinger system (2.28), whose study
may be compared with earlier results on general quasilinear Schrodinger evolutions.
This begins with the classical work of Kenig—Ponce—Vega [12—14], where local
well-posedness is established for more regular and localized data. Lower regularity
results in translation invariant Sobolev spaces were later established by Marzuola—
Metcalfe-Tataru [20-22]. The local energy decay properties of the Schrodinger
equation, as developed earlier in [2,3,5,6] play a key role in these results. Here we
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are following a similar track, though the present problem is both more complex
and exhibits additional structure. Because of this, new ideas and more work are
required in order to close the estimates required for both the full problem and for
its linearization.

We divide our approach in several steps. In Section 6 we establish several
multilinear and nonlinear estimates in our space-time function spaces. These are
then used in Section 7 in order to prove local energy decay bounds first for the
linear paradifferential Schrodinger flow, and then for a full linear Schrodinger flow
associated to the linearization of our main evolution.

The analysis is completed in Section 8, where we combine the linear heat flow
bounds and the linear Schrédinger bounds in order to (i) construct solutions for the
full nonlinear Schrodinger flow, and (ii) to prove the uniqueness and continuous
dependence of the solutions. The solutions are initially constructed without refer-
ence to the constraint equations, but then we prove that the constraints are indeed
satisfied, by propagating them from the initial time.

Last but not least, in the last section we prove that the full set of variables
(1, g, A) suffice in order to uniquely reconstruct the defining function F for the
evolving surfaces X, as Hlsotz manifolds. More precisely, with respect to the
parametrization provided by our chosen gauge, F has regularity

& F, 3°F € C[0, 1; H*].

2. The Differentiated Equations and the Gauge Choice

The goal of this section is to introduce our main independent variable A, which
represents the second fundamental form in complex notation, as well as the follow-
ing auxiliary variables: the metric g, the connection coefficients A for the normal
bundle. For A we start with (1.1) and derive a nonlinear Schodinger type system
(2.28), with coefficients dependingon S = (g, A). Under suitable gauge conditions,
the auxiliary variables S are shown to satisty a parabolic system (2.29), as well as
a natural set of constraints. We conclude the section with a gauge formulation of
our main result, see Theorem 2.5. Here we will introduce the heat coordinates and
heat gauge in detail. For some of the detailed derivations, we refer to section 2 in

[9].

2.1. The Riemannian Metric g and the Second Fundamental Form

Let (29, ) be a d-dimensional oriented manifold and let (R4+2, gRrd+2) be
(d+2)-dimensional Euclidean space. Leto, B, y, - -- € {1, 2, -- - , d}. Considering
the immersion F : X — (Rd+2, grd+2), we obtain the induced metric g in X,

8up = Ox, F' - 0xy F. (2.1)
We denote the inverse of the matrix g,g by g ie.

P = (gup)™".  gayg”? =L
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Let V be the cannonical Levi—Civita connection on X associated with the in-
duced metric g. A direct computation shows that on the Riemannian manifold
(2, g) we have the Christoffel symbols

FV

o= 8" Tapo = 87704 F - 05 F.

For any tensor 7'’ g’dxﬁl ® ..dxP @ 72 ® ... ® 7%, we define its covariant

derivative as follows

VyTpip =0 Tp g Z L5 T b opinr- 5J+Z LT
1
" (2.2)
Hence, the Laplace—Beltrami operator A, can be written in the form
Aof = twV2f =g @ f —Tlydy, /),

for any twice differentiable function f : ¥ — R. The curvature R on the Rieman-
nian manifold (X, g) is given by
o — o o m o m
Ry = 0al'g, — g0y, + T, Iy, — Ty Fﬂm

We also have
Royap = 0alpy.o — 9play.o + Fglora%m — Lo Tpy.m. (23)
and the Ricci curvature
Ricop = Ryop = 8°7 Ryaop-

Next, we derive the second fundamental form for . Let V be the Levi-Civita
connection in (Rd+2, gra+2) and let h be the second fundamental form for X as an
embedded manifold. For any vector fields u, v € T, X, the Gauss relation is

V,Fwv = F.(V,v) + h(u, v).
Then we have
hog = h(y, dp) = Va,0pF — Fu(Vy,0p) = 005 F — Thsdy F
This gives the mean curvature H at F (x),
H=trgh=g"hy =g (95, F — T 40y F) =
Hence, the F-equation in (1.1) is rewritten as
(O F)" = J(F)AgF = J(F)g* (954 F — Tygdy F).

This equation is still independent of the choice of coordinates in X¢.
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2.2. The Complex Structure Equations

Here we introduce a complex structure on the normal bundle NX;. This is
achieved by choosing {v1, v2} to be an orthonormal basis of N ¥; such that

Jvi=wv, Jvy = —v.

Such a choice is not unique; in making it we introduce a second component to our
gauge group, namely the group of sections of an SU (1) bundle over I x R?.

The vectors {F, ---, Fg, vy, v2} form a frame at each point on the manifold
(X, g), where Fy, fora € {1, --- ,d} are defined as
Fy =0, F.

We define the tensors kqg, Teg, the connection coefficients A, and the temporal
component B of the connection in the normal bundle by

Kap = 0uFp - V1, Tog:=0aFp-v2, Ay =0uv1-v2, B =231
Then we complexify the normal frame {v;, v} and second fundamental form as
m=v|+ivy, Aeg =kKap+IiTap.
Here we can define the complex scalar mean curvature 1 to be
Yi=trh = g% 8. (2.4)

Our objective for the rest of this section will be to interpret the (SMCF) equation
as a nonlinear Schrédinger evolution for A, by making suitable gauge choices. We
remark that the action of sections of the SU (1) bundle is given by

v — ei‘w, A= e’m, m — eiem, Ay = Ay — 0,0. 2.5)
for a real valued function 6.

If we differentiate the frame, we obtain a set of structure equations of the
following type

{ 3 Fp = rgﬁFy + Re(hgpit), 06

ddm = -2V F,,

where 8&4 =0y +1Agy.
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2.3. The Gauss and Codazzi Relations

The Gauss and Codazzi equations are derived from the equality of second
derivatives 9,08 F,, = 00, I, for the tangent vectors on the submanifold ¥ and
for the normal vectors respectively. Here we use the Gauss and Codazzi relations to
derive the Riemannian curvature, the first compatibility condition and a symmetry.

By the structure equations (2.6), we get

9 dpFy = (TG, + ngrgu —Re(AgyA0)) Fy o
+ Re[(35' 2py + T, hao)]. ’

Then in view of 9,08 F), = 950, F), and equating the coefficients of the tangent
vectors, we obtain

TG, + rt roe — 9Ty, — T4, Tg, = Re(AgyAS — Awig).

By~ an
This gives the Riemannian curvature
Royaﬁ = Re()\ﬂyxcw - )\ozy)_\ﬁa)v (2.8)

which is a complex formulation of the Gauss equation. Correspondingly we obtain
the the Ricci curvature

Ric,s = Re(h, g — AWX;;). (2.9)
After equating the coefficients of the vector m in (2.7), we obtain
9 hpy + TG hao = 34 hay + T3 Aga.

By the definition of covariant derivatives (2.2), we obtain the complex formulation
of the Codazzi equation, namely

Virgy = Vihay. (2.10)

Next, we use the relation d,dgm = dgdym in order to derive a compatibility
condition between the connection A in the normal bundle and the second funda-
mental form. Indeed, from d,dgm = 0gdym we obtain the commutation relation

[07. 04 1m = i(0,Ap — dp Ag)m. (2.11)
By (2.6) we have
g 0fm = —ag‘(ngy) = =425 + ML) Fy = 2 Re(hay ).
Then multiplying (2.11) by m yields
douAp — dpAg = Im(W Y Ag,).
This gives the compatibility condition for the curvature A,
VoAp — VgAg = Im(W2Ag,), (2.12)

which can be seen as the complex form of the Ricci equations. We remark that,
by equating the coefficients of the tangent vectors in (2.11) , we also obtain the
relation (2.10) again.
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2.4. The Motion of the Frame {Fy, - - - , Fg, m} under (SMCF)

Here we derive the equations of motion for the frame, assuming that the im-
mersion F satisfying (1.1).
We begin by rewriting the SMCF equations in the form

oF =J(F)H(F)+ VYF,,
where V7 is a vector field on the manifold X, which in general depends on the

choice of coordinates. By the definition of m and Ag, the above F-equation is
rewritten as

0 F = —Im(ym) + V' F,. (2.13)

Then by (2.13), the structure equations (2.6) and the orthogonality relation

m1 F, = 0 we obtain the following equations of motion for the frame
O Fy = —Im@2 Y — ikg, Vi) + [ImYAL) + Vo VY 1F,, o1
0fm = —i @y — XA VY)F,. '

where covariant derivative BIB = 0 +iB and B = (0;v1, v2) is the temporal
component of the connection in the normal bundle.

From this we obtain the evolution equation for the metric g. By the definition
of the induced metric g (2.1) and (2.14) , we have

3 8up = 2IM(Yhop) + Vo Vs + Vg V. (2.15)

So far, the choice of V has been unspecified; it depends on the choice of coordinates
on our manifold as the time varies.

2.5. The Motion of A and A Under (SMCF)

Here we use the equations of motion for the frame in (2.14) in order to repeat
the computations of Section 2.3 with respect to time differentiation, with the aim
of computing the time derivative of both A and A. We start from the commutation
relation

(05,8 1m = i (8, Ay — 0 B)m.
In order, for the left-hand side, by (2.6) and (2.14) we have
309, m = =972 + 2L AmWYR)) + Vo VO Fp + 2L Im(@) it — idyo Vi),
and
90 m = —ivi @YY —ix VY Fy — i@y — ik VY ) Re(hayiit).

Then by the above three equalities, equating the coefficients of the tangent vectors
and the normal vector m, we obtain the evolution equation for A

OPAG + 2L (Im(YAY) + V, Vo) = iV @47y —iag V), (2.16)
as well as the compatibility condition (curvature relation)

Ay — 0y B = Re(xgé;‘&) —Im(AL Ay ) V. (2.17)
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2.6. The Equations for the Connection A in the Coulomb Gauge and the Heat
Gauge

Here we take the first step towards fixing the gauge, and consider the choice of
the orthonormal frame in N X. Our starting point consists of the curvature relations
(2.12) at fixed time, respectively (2.17) dynamically, together with the gauge group
(2.5). We will fix the gauge in two steps, first in a static, elliptic fashion at the initial
time, and then dynamically, using a heat flow, for later times.

At the initial time # = 0 we obtain an elliptic system for A by imposing the
Coulomb gauge condition

V¥ A, = 0. (2.18)

As in [9], this yields

Lemma 2.1. (Div-curl system for A) Under the Coulomb gauge condition (2.18),
the connection A solves

V*Ay =0, VyeAg— VA, =Im(ALAg,). (2.19)

In our previous work [9], the connection coefficients A and B were determined
via the Coulomb gauge condition (2.18) at all times. Instead, in this article we only
enforce the Coulomb gauge condition at the initial time r+ = 0, while for r > 0
we adopt from [19] a different gauge condition called the parabolic gauge or heat
gauge. This is defined by the relation

V¥Ay = B, (2.20)
which in turn yields a parabolic equation for A:

Lemma 2.2. (Parabolic equations for A) Under the heat gauge condition (2.20),
the connection A solves

(3 — Vo V) Ay = V7 Im(AL Asy) — Ricgs A°
+Re(A,VAY) — Im(ALAy6) V7. (2.21)

Proof. Since by (2.12) we have

VaV?As = [Va, V1As + V7 (Vg As — Vo Ag) + V7 V5 Ay
= —Ricge A7 + VO Im(W 2 hoy) + VOV, Ag

Then the equations (2.21) is obtained from (2.17) and the heat gauge (2.20). O
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2.7. The Equations for the Metric g in Harmonic Coordinates and Heat
Coordinates

Here we take the next step towards fixing the gauge, by choosing to work in
harmonic coordinates at + = 0 and heat coordinates for ¢+ > 0. Precisely, at the

initial time t = 0 we will require the coordinate functions {xy,, o« = 1,---,d} to
be globally Lipschitz solutions of the elliptic equations
Agxq =0. (2.22)

This determines the coordinates uniquely modulo time dependent affine transfor-
mations. This remaining ambiguity will be removed later on by imposing suitable
boundary conditions at infinity. After this, the only remaining degrees of freedom in
the choice of coordinates at # = 0 will be given by translations and rigid rotations.

Here we interpret the above harmonic coordinate condition at fixed time as an
elliptic equation for the metric g. The equations (2.22) may be expressed in terms
of the Christoffel symbols I, which must satisfy the condition

g“ﬂrgﬂ =0, fory=1,---,d. (2.23)
This leads to an equation for the metric g:

Lemma 2.3. (Elliptic equations of g, Lemma 2.4 [9]) In harmonic coordinates, the
metric g satisfies

gaﬂ 32,38;/0 = [_aygaﬂaﬁgao - aagaﬁaﬂgay + aygocﬂ 8aga5] (2.24)
+28" Toan T, — 2ReChya ¥ — hayh). '

For latter times r > 0 we will introduce the heat gauge, where we require the
coordinate functions {x*,« = 1,---,d} to be global Lipschitz solutions of the
heat equations

(0 —Ag —VV3),)xq =0.
This can be rewritten as
AgxV = =V7,
and can also be expressed in terms of the Christoffel symbols I", namely,
g% Thy=V7. (2.25)

Once a choice of coordinates is made at the initial time, the coordinates will be
uniquely determined later on by this gauge condition.

With the advection field V fixed via the heat coordinate condition (2.25), we
can derive a parabolic equation for the metric g.

Lemma 2.4. (Parabolic equations for metric g) Under the condition (2.25), the
metric g solves

diguv — 8P 02480 = 2Ricy, +2Im(Yhy,) — 28" T4 5 TG,

(2.26)
+ aﬂgaﬁralg,u + 8vg°‘ﬂl“a,3,u.
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Proof. By the relation (2.25) we have
ViVo = g9, Tap v + 08" Tapv — 8T, Tap.o

Using the expression for I' and for the Riemannian curvature (2.3) we have

1 1
gaﬁ(auraﬂ,v +0lep ) = gaﬂ |:a//. (avtgﬂv - Eavgaﬂ) + 9y (aozgﬁ//. - Eap.gutﬂ)]

= 8 [3a(8u8pv + B8pu — Dp8yw) — 9 (B 8ap + dugup
— 0p8av) + 0pp8uv]
= 8% 120aT v p — 204 Tav.p + Igp8un]
= 28" (Rpvan — Top.o Ty + Tapo Tin) + 8% 0358100
We then obtain
Vo + ViV = g% 035800 + 2Ricuy +0, 8" Tapy + 008 Tapy — 28" Top TS,
Combined with (2.15), this implies (2.26). O

2.8. Derivation of the Modified Schrodinger System from SMCF

Here we carry out the last step in our analysis of the equations, and obtain the
main Schrodinger equation which governs the time evolution of A.
Our starting point is the equations (2.16), which are rewritten as

108 hap + VIVEY — AL Im(Yhyp) — i, VgV, — iM; Ve Vy —iVI Ve =0,

We use the compatibility conditions (2.4), (2.12) and (2.8) to write the second term
as

VAVEY = VIVIAG = VS, VLG + VAV hap
= Ruooshy + Raopsh® + i Im(heu ARG + VI VAT dyg
= —RiCas A} + RaopsA”® + i Im(hap AIAG + VAV g
= —Re(has¥)A) + Re(ostap — Aophas)A”’ + dapdlinG + VAV hap
Since
2L ReGus ) — Reupgi2l — i3 Im i) — i) Im(yTya)] = ¥ ReChas ).
we obtain the A-equations
108 hap + VIV hap = iV Vi hap + XL VpVy +id[Va V) + ¥ Re(hash)
—Re(Aoshap — hophas)h® = hauhlirf. (2.27)

In conclusion, under the heat coordinate condition g*# F(’;ﬂ = V7 and heat

gauge condition V*A, = B, by (2.27), (2.26) and (2.21), we obtain the covariant
Schrddinger equation for the complex second fundamental form tensor A
(0 + Vo V) hap =i(V = 24)" Vo hap — iVo A" hap + M,V Vy + MV V,
+ (B+ Ag A% — Vo A7) hap + ¥ Re(hashy) 2.28)
—Re(hoshap — rophras)A®® — hauhlAg,

20, x) = Ap(x).
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These equations are fully covariant, and do not depend on the gauge choices made
earlier. On the other hand, our gauge choices imply that the advection field V and
the connection coefficient B are determined by the metric g and connection A via
(2.25), respectively, (2.20). In turn, the metric g and the connection coefficients A
are determined in an parabolic fashion via the following equations

(0 — 8P 05) 8w =2 Ricyy +2Im(YAu) — 28% Ty o T,

+ 8,8 Tapv + 0,8 Tup
(& — VoV7)Ay = —V7 Im(AL Ay, ) — Ricgs A° + Re(A, VAy) —ImG ) hyo) VO,
vV’ =g*rl,, B=VA,,

(2.29)
with initial data
g0, x) = go(x), A0, x)= Ao(x). (2.30)

These are determined at the initial time by choosing harmonic coordinates on X,
respectively the Coulomb gauge for A.

Fixing the remaining degrees of freedom (i.e. the affine group for the choice of
the coordinates as well as the time dependence of the SU (1) connection) we can
assume that the following conditions hold at infinity in an averaged sense:

g(00) = I, A(co) = 0.

These are needed to insure the unique solvability of the above parabolic equa-
tions in a suitable class of functions. For the metric g it will be useful to use the
representation

g=lat+h

so that & vanishes at infinity.

We have arrived at the main Schrodinger-Parabolic system (2.28)—(2.29), whose
solvability is the primary objective of the rest of the paper. This system is accom-
panied by a family of compatibility conditions as follows:

(1) The Gauss equations (2.8) connecting the curvature R of g and A.
(i) The Codazzi equations (2.10) for A.
(iii)) The Ricci equations (2.12) for the curvature of A.
(iv) The compatibility condition (2.17) for the B.

We will solve the system irrespective of these compatibility conditions, but then
show them to be satisfied for small solutions to the nonlinear system (2.28)—(2.29),
by propagating them from the initial time ¢ = 0.

Now we can restate here the small data local well-posedness result for the
(SMCEF) system in Theorem 1.2 in terms of the above system:
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Theorem 2.5. (Small data local well-posedness in the good gauge) Letd = 2 and

s > % Then there exists €y > 0 sufficiently small such that, for all initial data

(Xo, ho, Ag) satisfying the constraints (2.10), (2.8) and (2.12) and with
I20llms + lIollys+2 + 1 Aol s+ = «o, (2.31)

the modified Schrodinger system (2.28), coupled with the parabolic system (2.29) for
(h, A) is locally well-posed in 12X x E on the time interval I = [0, 1]. Moreover,
the second fundamental form A, the metric g and the connection coefficients A
satisfy the bounds

2 ll2xs 411G, Allgs S Iollas + Ihollyse2 + Aol s+ (2.32)

In addition, the functions (A, g, A) satisfy the constraints (2.8), (2.10), (2.12) and
2.17).

Here the solution X satisfies in particular the expected bounds

IXlcro1: 857 S Aol as.

The spaces / 2XS and E£°, defined in the next section, contain a more complete de-
scription of the full set of variables X, i, A, which includes both Sobolev regularity
and local energy bounds.

In the above theorem, by well-posedness we mean a full Hadamard-type well-
posedness, including the following properties:

(i) Existence of solutions A € C[0, 1; H*], with the additional regularity proper-

ties (2.32).

(i) Uniqueness in the same class.

(iii) Continuous dependence of solutions with respect to the initial data in the
strong H*® topology.

(iv) Weak Lipschitz dependence of solutions with respect to the initial data in the
weaker L2 topology.

(v) Energy bounds and propagation of higher regularity.

We conclude this section with several remarks concerning the result in Theo-
rem 2.5:

Remark 2.5.1. (The variable ) vs ) In our earlier paper [9] we have worked
with ¢ as the main dynamic variable for the Schrodinger flow, and the full second
fundamental form A was obtained from i by solving an elliptic div-curl system
derived from the Codazzi relations (2.10). Here we work directly with A, because
solving this elliptic system has issues at the L level in two! space dimensions.
The downside is that the components of A are not independent, and are instead
connected via the compatibility relations (2.10). Thus, these relations will have to
be propagated dynamically.

I However, in three and higher dimensions one could still work with v if desired.
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Remark 2.5.2. (Initial data sets) The harmonic/Coulomb gauge condition at the
initial time plays no role in Theorem 2.5, where smallness is assumed for both A,
ho and Ag. However, it is useful in order to connect Theorem 2.5 with the earlier
statement in Theorems 1.2, 1.3.

3. Function Spaces and Notations

The goal of this section is to define the function spaces where we aim to solve
the (SMCF) system in the good gauge, given by (2.28). Both the spaces and the
notation presented in this section are similar to those introduced in [20-22].

We begin with some constants. Let regularity index s > d/2 and § > 0 be a
small® constant satisfying

0<d<Ks —s4.
We then define the constant o, depending on dimensions d as
oq=dJ2 8. (3.1

For a function u(¢, x) or u(x), let i = Fu and &t = F~'u denote the Fourier
transform and inverse Fourier transform in the spatial variable x, respectively. Fix
a smooth radial function ¢ : RY — [0, 1] supported in {x € R? : x| < 2} and
equalto 1in {x € R? : |x| < 1}, and for any i € Z, let

@i(x) == p(x/2") — @(x/2'71).

We then have the spatial Littlewood—Paley decomposition,

o]

YR =1, Y SsD)=1,
(=0

i=—00
where P; localizes to frequency 2/ fori € Z, i.e,
F(Piu) = ¢i(§)u(§),
and

So(D) =Y Pi(D). S;(D)=Pi(D), fori > 0.
i<0

For simplicity of notation, we set

J 00
uj = S;u, ugjzz&u, ”21‘:28"”'
i=0 i=j

2 Ideally here one would like to set 6 = 0, but this is only possible in dimensions three
and higher.
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For each j € N, let Q; denote a partition of R? into cubes of side length
27, and let {x o} denote an associated partition of unity. For a translation-invariant
Sobolev-type space U, set lf U to be the Banach space with associated norm

el = D llxoull)

(e 0eQ;

with the obvious modification for p = oo.

Next we define the /2X* and I>N* spaces, which will be used for the primary
variable A, respectively for the source term in the Schrodinger equation for A
Following [20-22], we first define the X-norm as

_1
lullx =sup sup 272 lull272(0,11x 0)-
1eN Qe€Qy

Here and throughout, L? L4 represents L’ L. To measure the source term, we use
an atomic space N satisfying X = N*. A function a is an atom in N if there is a
j 2 0anda Q € Q; such that a is supported in [0, 1] x Q and

=,

lallL2go.11x0) S 27 2-

Then we define N as linear combinations of the form
f= chak» Z lck] < 00, ay atom,
k k

with norm
Iflly = inf { D olel s f =) e, ax atoms}.
k k

For solutions which are localized to frequency 2/ with j > 0, we will work in
the space

_I
X;=2"2XNL>L?
with norm
I
lullx; =22 llullx + llull oo 2.
One way to assemble the X ; norms is via the X* space
2 _ 2jsy1¢. 02
s = 225 1Sull% -
Jj20

But we will also add the /7 spatial summation on the 2/ scale to X, in order to
obtain the space /7 X ; with norm

1/p

— p
lulliry, = | 2 Ixoully,
QeQ;
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We then define the space I” X* by
2 25y @02
lutlFogs =2 ISl
Jj20
For the solutions of Schrodinger equation in (2.28), we will be working primarily
in I°X°.
We analogously define
N;j=2IN+L'1?

which has norm

Iflly; = inf (AN + 1 20l 2),s
=22 fitfo

and
1 ows = D208 F I -
/20 J
Here we shall be working primarily with [2N¥.

We also note that for any j, we have

_J
sup 27 2 lull212¢0,11x0) = llullx,
0€Q;

hence
/2
lully < 272 lullp 22

This bound will come in handy at several places later on.

For the parabolic system (2.29), itis natural to work in spaces of the form L*° H*.
However, in order to obtain frequency envelope bounds it is more convenient to
slightly strengthen this norm. Precisely, we define the Z?* norm as

1Al S = 11D Sohll3copz + Y 27 (1S53 o -
jz1

Compared to L°° H*, here we just commute the L7° and 1% frequency summation.
For simplicity of notation, we denote Z* := Z%*_ In particular we have

Z° C L™®H".

With these notations, we will seek the solution (&, A) to the parabolic system
(2.29) in the space £* defined by

(h, Alles = Al zogs+2 + [ All zs+1-
Correspondingly, at fixed time we define the space H* as

I, Al = NIDIhll ys+2-0q + [ All o1
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In addition to the above standard norms, for the study of the Schrodinger equa-
tion for A we will also need to control a stronger norm Y**2 for the metrich = g—1I,;
this will be defined in what follows.

First, similarly to the / f X j norms above, we also add the /” spatial summation

on the 2/ scale to Z j» in order to obtain the space [” Z°** with norm

VillFozos = D22 2Pk = D20 PG,
iz i 1
Here we need to decompose the low frequency part, this allows us to obtain a
estimate of & in /2 Z%5*2 in Proposition 5.4. Correspondingly, we will strengthen
the Z%@5*2 norm of h to [> 294512,

More importantly, we will also introduce some additional structure which is
associated to spatial scales larger than the frequency. Precisely, to measure the
portion of 4 which is localized to frequency 2/, this time with j € Z, we decompose
Pjh as an atomic summation of components / ; ; associated to spatial scales 2! with

1 =1jlie.
Pih = Z hji.

1z1jl
Then we define the Y;-norm by
. 1—|j
IPihlly, = inf > 2l 2l poog2-
Pjh:z’i‘j'hj’lpljl

In the decomposition of P;h we may project and assume that all terms are also
localized at frequency 2/. However in the definition of the Y; norms we make no
such assumption.

Assembling together the dyadic pieces in an [?> Besov fashion, we obtain the
Y* space with norm given by

d_gyi- i+
JEL

Then for h-equation in (2.28), we will be working primarily in Y**2, whose norm
is defined by

||]’l||Ys+2 = ”h“lzZad,s+2 + ||]’l||ys+2.

Collecting all the components defined above, for the parabolic system (2.29)
we define the final £° norm as

[, A)llgs = l1Rllys+2 + [[All zs+1.

At fixed time, we can remove the L>° in Y**2 and £, and obtain the function

spaces Yf)+2 and £ respectively. Precisely, we define the Yy; norm corresponding
toY; as
J

. I—1|j
1Pl =, jof > 27l e
J 121 ./J@m
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and obtain the Yj space with norm given by

2 _ 2(4=8)j 425t 1 p .12
Il =D 2%¢ 1P;R 15,
JEZ

Then we obtain the space Y(S)"'2 with norm defined by
1hllyse2 = WD gsso-oy + Ilhllys+2,
and the space £} defined by
IR, Mgy = Inllyg2 + I All s

Finally, to capture only the low frequency information in the Y spaces, we
introduce the Yé” norm, which is used in our main two dimensional result in The-
orem 1.3:

17 e
101310 = IPsohllvonzos + D 2257 Pyl
Jj<0

Next, we define the frequency envelopes as in [20-22] which will be used in
multilinear estimates. Consider a Sobolev-type space U for which we have

o
2 2
luellyy =D NI Skullg-
k=0

A frequency envelope for a function u € U is a positive /?-sequence, {a i}, with
ISjully < a;.

We shall only permit slowly varying frequency envelopes. Thus, we require ag ~
llully and

a; S = ar, j, k=20, 0<dKs— . .
; <28k i k>0,0<38 dj2 (3.2)

The constant § shall be chosen later and only depends on s and the dimension d.
Such frequency envelopes always exist. For example, one may choose

aj =27 ully + max 2~V H ) S|y (3.3)

Since we often use Littlewood—Paley decompositions, the next lemma is a
convenient tool to see that our function spaces are invariant under the action of
some standard classes of multipliers:

Lemma 3.1. Forany Schwartz function f € S, multiplierm(D) with | F ' (m(£)) I
< 00, and translation-invariant Sobolev-type space U, we have

lm(D) flly S NF~ mEN Il fllu-

Finally, we state a Bernstein-type inequality and two estimates.
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Lemma 3.2. (Bernstein-type inequality, Lemma 3.2 [9]) For any j, k € Z with
J+k=2015r<ocandl < q < p < oo, we have

kd(1-1
1Pefllsee S 29PN Pf o
Proposition 3.3. (Algebra property) For any f, g € Yé" we have
1 £8llyge S 1f ygo gl yo- (34)

Proof. We first note that by Bernstein’s inequality we have Y(I)O C L. Then for
the high-low and low-high interactions we can estimate

I1Pj(PjfP<j&llvy; + I1Pj(P<jfPjg)llyy,
S P flive, IP<jgllieoe + I1P<j fllelIPjgllyy; -

For the high-high interactions, we have

47 . —
267057 1p; (D2 PfPig + Poof P2og) i,

0>1>j
S2U4DT (Y IR Py 11+ IPz0f Poogly 1)
0>1>j
S Y 2@ B Pigll e + 2997 1 Pg £l 21 P2ogll 2
0>1>j
< Y0 2GR by flly Pl 4 29 1P f v Il P08 oo
0>1>j

These two bounds imply that
1P<0(f)llyie S 1 f llygolIglyio-
For the high-frequency part P>((fg), we bound its L norm by
IP>o(f&)lILee S NS leelighioe S IS llyellglyie-

To bound its Yo norm, we further decompose it as

P>o(f8) = P>o(P>of - 8) + P>o(P<of - P>08) + P>o(P<0f - P-3,-118)-
The first term is bounded by

I1P>0(Pzo.f - &)y S 1P20 S lveollglizee S ISy llglyie-

The second term is bounded similarly. We bound the last term by

I1P>o(P<of - Pi—3,-118)llveg S I1P<0fllLeellPr—3,-11&llvoo S I yiollgllyto-

This completes the bound for high frequency part, and thus the proof of the propo-
sition. O
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Lemma 3.4. For any Schwartz function f, j € Nand 1 < r < oo, we have
||€lAf||1;L;>°L2 S ||f||1;L2, (3.5)
t
g _nit
I [ e 8s;f sly e S 220 Pl (3.6)
0
Proof. We use the heat kernel
d x2
K(t,x) = @nt) 2e” %

which we decompose with respect to cubes Q € Q ;. Then from the corresponding
decomposition

A=Y oK, x) %y f
QeQ;

we obtain
(A
e Flliszens S UKyt zoopy 112

Since ¢ € [0, 1] and r = 0, we can use the exponential off-diagonal decay for K
on the unit scale to conclude that

S L

||K||11.L[°°L1
J X
and thus (3.5) follows.

For the second bound, we separate the low frequencies and use the kernel Ky
for Soe"=)2 with a similar cube decomposition to estimate

t
t—s)A
I f TS0 f dsllyroerz S IKollgy 11 Nl poor2
0 jtx 0

where the K¢ norm is easily estimates using the rapid kernel decay on the unit scale.
Similarly, for high frequencies j > 0 we use the kernel K ; for § je(’ 94 with
a similar cube decomposition to estimate

t
1—$)A
|| f e TINS; fdsllyprore S UK lpps I1F lppoor2
0 Jjrtx 0
For fixed ¢ we use the exponential symbol decay to obtain
—c2%¢
1Kl Se

and now the time integration yields the desired 272/ decay. This concludes the
proof of (3.6). O
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4. The Initial Data

Our evolution begins at time ¢ = 0, where we need to make a good gauge choice
for the initial submanifold Xy. This has two components,

(i) a good set of coordinates on X(, namely the global harmonic coordinates,
represented via the map F : RY — R9+2,
(i1) a good orthonormal frame in N X, where we will use the Coulomb gauge.

Once this is done, we have the frame in the tangent space and the frame m in
the normal bundle. In turn, as described in Section 2, these generate the metric g,
the second fundamental form XA with trace i and the connection A, all at the initial
time t = 0.

We will first carry out the construction of the global harmonic coordinates, and
use them to prove bounds for the parametrization F and for the metric go = 17+ ho.
Then we introduce the Coulomb gauge, which in turn determines A9 and Ag.

The final objective of this section will be to describe the regularity and size of
(X0, g0, Ap), and thus justify the smallness condition (2.31) for the Schrodinger-
Parabolic system(2.28)—(2.29). The main result of this section is stated below in
Proposition 4.1 for dimensions d = 3 and Proposition 4.2 for dimension 2, respec-
tively.

In order to state the following propositions, we define some notations. Let
F ]Rf — (RI+Z, gra+2) be an immersion with induced metric g(x). For any
change of coordinate y = x + ¢ (x), we denote

F(y) = F(x(3),
and its induced metric by g,5(y) = (Byaﬁ s Oyg F). We also denote its Christoffel
symbol as I" and ﬁ(y) = g(y) — I;. The main results are summarized as follows:

Proposition 4.1. (Harmonic coordinates and initial data in dimensions d = 3) Ler
d=>3 s> % Let F : (Rﬁ, g) — (R42, grd+2) be an immersion with induced
metric g = I + h. Assume that the metric h and the mean curvature H satisfy the
smallness conditions

11Dkl gs+1-04 < €0, [IH|gs = e€o. “4.1)
Then there exists a unique change of coordinates y = x+¢ (x) withlimy_, oo ¢ (x) =
0 and V¢ uniformly small, such that the new coordinates {y1, --- , yq} are global
harmonic coordinates. Moreover, we have the bound
IDI7*V @ ys+1-04 S NIDI7 Rl gst1-04 4.2)
and, in the new coordinates {y1, - - - , Y4}, for the metric and mean curvature we
have
Dy 4Rl 104 (qy) + IH L 153y S €o- (4.3)

In addition, under the harmonic coordinate condition (2.23) for g, respectively the
Coulomb gauge (2.18) for A, we have the following bounds for complex second
fundamental form A, metrich = g — Iy and A:

20 + 1”llysso + 1Al st S €o- (4.4)
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Compared to the above higher dimensions cases, in dimensions 2 we would
work in a smaller function space.

Proposition 4.2. (Harmonic coordinates and initial data in dimension 2) Letd = 2,
s > % and o4 be as in (3.1). Let F - (R?, g) — (R4+2, gra+2) be an immersion
with induced metric g = Iy + h. Assume that the metric h and mean curvature H
satisfy the smallness conditions

D1 hll ys+1-c4 = €0, lhllye = €0, [Hllms < €o. 4.5)

Then there exists a change of coordinates y = x + ¢(x), with V¢ uniformly
small and with limy_, 5o V@ (x) = 0, unique modulo constants, such that the new
coordinates {y1, - - - , yq} are global harmonic coordinates. Moreover, we have the
bound

NDI%V @l yssi-04 S MDI™ Al gys+i-og (4.6)

and, in the new coordinates {y1, - - - , Y4}, for the metric and mean curvature we
have

Dy 1% Rl 124 ayy + Il yio + IHll 125 ay) < €0 (4.7)

In addition, under the harmonic coordinate condition (2.23) for g, respectively the
Coulomb gauge (2.18) for A, we have the following bounds for complex second
fundamental form A, metrich = g — I; and A:

120+ lhllyse2 + 1Al s+ S €o- (4.8)

We remark that the bounds (4.4) respectively (4.8) are the only way the har-
monic/Coulomb gauge condition at # = 0 enters this paper. Later, in the study of
the parabolic system (2.29), we simply assume that the initial data (Ao, ko, Ao)
satisfies the above smallness condition.

Of the three components of the initial data, Ao may be thought of as the funda-
mental one. Indeed, the initial data (go, Ag) for the heat flow (2.29) is determined
by X¢ via the harmonic coordinate condition (2.23) for g, respectively the Coulomb
gauge (2.18) for A, which yield the elliptic equations in Lemmas 2.3 and 2.1. This
was the point of view adopted in our previous paper [9] in high dimension, and it
largely applies here as well. The only exception to this is in two space dimensions,
where we a-priori make an additional low frequency assumption on the metric g,
namely the Yé" bound, which cannot be recovered from the Ay bounds.

4.1. Global Harmonic Coordinates

Here we make a change of coordinates to gain the harmonic coordinates, and
then prove that in the new coordinates, the metric # and mean curvature H are also
small.

Step 1: Solve the ¢ equation and prove the bounds (4.2) and (4.6). To obtain
harmonic coordinates, we start with the bound for metric

IDI7 Rl ys+1-04 < €0 (4.9)
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We make a change of coordinates x 4+ ¢ (x) = y with V¢ small such that the new
coordinates are harmonic. Since the operator A, does not depend on the coordinates,
by (2.23) we have

Ag(x +¢(x)) =0,
which implies
Agpy = g*TY,, (4.10)
and which we write schematically in the form
A¢p = hV>¢ + gVhVe + gVh.

Since the leading order term in the right hand side is Vh, by the assumption on the
metric |D|°h € H*+t179% we will work in the space

{¢ : 11DI" Q]| o0y < 00}

Then by Sobolev embeddings and the smallness of # we can uniquely solve the
equation (4.10) in this space using the contraction principle, obtaining a solution ¢
which satisfies the bound

NDI7 V| ys+1-04 S NIDI7 Rl ys+i-04 < €0 (4.11)

which is exactly (4.2) and (4.6) in Theorem 4.1, respectively Theorem 4.2.
Step 2: Prove the bounds (4.3) and (4.7) for h and H in Sobolev spaces. First
we prove that the desired /# bound holds in the x-coordinates,

DRy G st (qy S DI pyst1-z g (4.12)

By the above change of coordinate and (4.2) we have g—§ = I; +P(x) where P is
an algebraic function of V¢. Hence by algebra and Moser estimates we have

DI Pl yss1-04 S NDI% VIl gyss1-04 S €. (4.13)
Then the desired bound (4.12) follows from the relation
gaﬂ()’(x)) = g;w(x)(rséf + 7)5)(5)5}3 + PE)’

again by using algebra bounds in the same space.

In order to complete the proof of (4.3) and (4.7), we need to be able to transfer
the Sobolev norms from the x to the y coordinates. For this we will apply the
following lemma:

Lemma 4.3. Let the change of coordinates x 4+ ¢ (x) = y be as in Proposition 4.1.
Define the linear operator T as T (f)(y) = f(x(y)) for any function f € Lz(dx).
Then we have

1T D@y S N OlEe @, o €[0,5s+ 1], (4.14)

d
1T oy S 1 @l @ € 10.5): (4.15)
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Proof. The first bound is obtained from (4.13) and (4.2) using the same argument
as in Lemma 8.5 in [9], It remains to prove the second bound (4.15).
By the smallness of ¢ (4.2) we have

IT D 2@y S NFEVT + 0l L20ar)
S A+ MDY =)V I F Ol 200y S IF O L20ax)-
Similarly, by (4.2) and (4.13) we also have

10y T (YN 2@y S NA+P)ox f VT + 0x@ll 2wy S N10x f )Nl L2(00)-

Then by interpolation we obtain (4.15) for« € [0, 1]. This suffices indimensiond =
2. In higher dimension, we inductively increase the range of « by differentiating.
Precisely, for @ > 1 we have

1T goayy = 15T OO e gy
Here
HT () =T +P)oxf)
and, by (4.13),
(T + PYox fll o1y S 105 1l o1 vy
Hence we have reduced the H* bound to the H%~! bound. O
Given this lemma, by (4.12), (4.14) with o = 5 + 1 and (4.15) we obtain
DI Rl ye1-oa ayy S DIl got1-rg 0y

Hence the / bounds in (4.3) and (4.7) follow. Similarly, the H bound is also directly
transferred to the y coordinates by Lemma 4.3.

Step 3: Prove bounds for 3*F in harmonic coordinates. While this bound was
not explicitely stated in Propositions 4.1, 4.2, it will play an important role later in
the proof of the bounds (4.4) and (4.8).

Lemma 4.4. Letd = 2,5 > %, and F : (R?, g) — (R?+2, grd+2) be an immersion
with metric |[|D|%h| ys+1-0s S €0 and mean curvature |H| gs S eo in some
coordinates. Then we have

10%F s < €o. (4.16)
We note that, as a corollary, it follows that we also have the bound
IVAllgs < €. 4.17)

This bound in effect superseeds the h bound in (4.3), (4.7), with one exception,
namely in two dimensions at low frequency.

Another corollary of this is the corresponding bound for the second fundamental
form h, namely

Ihllas < €o. (4.18)
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Proof of Proposition 4.4. By the smallness of | D|%¢ (g — I;) and Sobolev embed-
ding, we have

18P T340y Fllms S (14 [1D1% | o= ) NP1 Bl yssi=ag (19, Fll oo fis)
1/2
S collglys + 1192 Fllms) S eo(1 4 192 F | o).
Then we can bound 32 F by

10°Fllms = IRAF || S IIAF || as
SIAFllms + 1h*P 055 Fllas + 18P Thgdy Fll s
S M| + eo(1+ 182 Fll ze)
S eo(l + 19°F | o),

which implies (4.16), and thus completes the proof of lemma. |

Step 4: Prove the Yé" bound for the metric h in (4.7) in two dimensions. To
transfer the Yé” bounds to /, our starting point is the estimate

I2lly0 < €o
0
Next we show that V¢ satisfies a similar bound,

IVellgi < € (4.19)

Proof of (4.19). We use the ¢-equations (4.10), which have the form
A¢ = Vh +hV>¢p + gVhVe + hVh.

To get (4.19) via the contraction principle it suffices to estimate the right hand side
above in order to prove that

IV@llyio S Illyio + €ollllyso + 1V ly10) + €5
First, we bound the ¥; norm of V¢. For the Vi, we easily have
1P;V="Vhiy, < IPjhly,.

which is acceptable. We will next show how to bound the most umbalanced term
hV?2¢; the rest of the terms are estimated similarly. For the high-low interactions
P;hV2P_;$, by (4.11) we have

IIPjV_l(Pth2P<j¢)|IYO_,- S Pjhlly, IVP<jdliLee S €oll Pikllyy; -
Similarly, for the low-high interactions P- thZP i ¢, by (4.9) we have

||PjV_I(P<th2Pj¢)||Yoj S NP<jhllL=IVPidllyy; < €ollVPlly,,-
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Finally we consider the high-high interactions, »_ I>j P; (PhV? P1¢). Here we use
Bernstein’s inequality to obtain

d_syi - §-1-0)j
2GSV R RV Ry, £ 237 N IR (P Pl o
I>j 1>

S 294N P 2|V P g2
I>j

=8 (i— d_ d
<Y 24U DT P 2 11 DIE PV 2,
I>j

which in view of the bound (4.11) gives

d_ g i— - 1/2 d
(Zz% WYV ‘Pj(Plhvam)n%w) S IIDI R 2]IDI2 Vel 2 S €.
Jj<0 I>j

Secondly, we bound the YoM L norm for the high frequency part P>, V¢. The
L bound follows from the H* bound for ¢ and Sobolev embeddings. It remains
to estimate its Yoo norm. Since the operator P-oV ™!V has the kernel localized to
the unit spatial scale, we have

1P20V ™" Vhlvg S I1P>0llveg-

Here we also only discuss the term hV2¢; the contributions of the other terms are
estimated similarly. We first divide this term as

P5oV ™ (PoghV2$) + PogV™ (Po0h V2 P3od) + P>V~ (PoohV?Pl_3 _11¢).
For the first term, we directly have
1P2oV ™ (Pooh V) vy < P20kl IVl S €0ll Poohll vy
The second term, we further divide it as
P>gV ™ (PoohV? P>¢) = P>gR(P-ohV P>p) + P>oV ™' (VPohV Pxo).
where R is Riesz transform. Then we bound this by
1PV (P<0h V2 P2od)lvey S 1 P<0hllLooll P2oVllvgy < €0ll P2oVbllveo-

Finally, we bound the last term by
12V~ (P<oh V2 Pis i)y S I P<ohtllLelIPi—3,—1 V@ llveg < €oll Pr-3,-11Vellyo-

This concludes the proof of the Yoo N L norm for P>yV¢. m]

The new metric / expressed in the x coordinates has the cubic polynomial form
h = P(h, Vo).
Using the algebra property (3.4) for Y(l)" and (4.19), we conclude that

Ill7: S €o
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It remains to switch this bound to the y coordinates, i.e. show that
Villge = Ilgy (4.20)

where the difficulty is that we need to use a Littlewood—Paley decomposition. We
will circumvent this by using the following representation of Yé” functions:

Lemma 4.5. A function f isin Y(l)o iff it admits a representation

£=Yfi. fieXy

J=0
so that the following norm is finite:

NI = 1 follrrzs + 32 22077 (151, + 27219 £, +274 V21513,
j<0

Further, we have

£ llye ~ (I f = s

J=0

Since by Sobolev embeddings ¢ is small in C?, the triple norms are easily seen
to be equivalent in the x and the y coordinates, therefore the relation (4.20) follows.
It remains to prove the Lemma.

Proof. In one direction, we directly see that the decomposition

f():PzOf’ f]szf? ]<O

yields

A1, = NI

Conversely, if f =Y f 7, then we need to show that

£y, S NG 4.21)

For this we estimate for k < 0

1Pefllvoe S 1Pk follvoe + D N P fillvge
j<0
S 22N follvee + Y27 A iy, + 2721V £l
j<0

Due to the off-diagonal decay, this implies (4.21). O
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4.2. The Initial Data (Ao, hg, Ag)

These are determined by the initial manifold ¥ given a gauge choice, which
consists of choosing (i) a good set of coordinates on X, namely the harmonic
coordinates, and (ii) a good orthonormal frame in N X(, where we will use the
Coulomb gauge.

In the previous subsection we have discussed the construction of harmonic coor-
dinates and proved the Sobolev bound (4.17) for h¢. Here we begin by constructing
a Coulomb frame in the normal bundle. Then we can define A9 and A and directly
prove H* bounds for them.

However, it turns out that the H*® bounds tell only part of the story for /g and
Ao, by treating them as linear objects. Instead, in our chosen gauge both 4 and A
should be seen as quadratic objects, via the equations (2.23), respectively (2.18). In
the last part of the section we use these equations to improve the bounds for both
ho and Ap.

Step 1: The Coulomb frame in N X and the H® bound for ) and A. To obtain
the Coulomb gauge, we choose ¥ constant uniformly transversal to 7 ¥¢; such a v
exists because, by Sobolev embeddings, dy F has a small variation in L°°. Projecting
v on the normal bundle N ¥ and normalizing we obtain a normalized section ¥y
of the normal bundle with the same regularity as d F. Then we choose v, in N X
perpendicular to v;. We obtain the orthonormal frame (vy, V) in N X, which again
has the same regularity and bounds as d, F, namely (see Lemma 4.4)

10Vl S eo. (4.22)
This in particular implies that the associated connection A also satisfies
1Al S €o. (4.23)

Then we rotate the frame to get a Coulomb frame (v1, vy), i.e. where the Coulomb
gauge condition V¥ A, = 0 is satisfied. In our complex notation, this corresponds
to

1)1+i\12=eib(\~)1+l'1~)2), AjIAj—ajb,
where the rotation angle b must solve
Agh = V¥A,.

This is an elliptic equation, where the metric go = Iz + hg satisfies (4.17). Using
the variational formulation at the H' level and then perturbative analysis at higher
regularity, the solution is easily seen to satisfy

0Dl ks S N Allms
It directly follows that v, vy and A also satisfy the bounds in (4.22), (4.23),

l0villgs + IAllas S eo- (4.24)
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Projecting the second fundamental form h and the mean curvature H on the
Coulomb frame as in Section 2.2 we obtain the complex second fundamental form
A and the complex mean curvature . In view of (4.1), (4.5) and (4.18) both of
them have the same regularity,

IAllas + 1 llas S €o-

Step 2: Prove the bounds in (4.4) and (4.8) for the metric h. For this we rely on
the equation (2.24). The main result is as follows:

Lemma 4.6. Letd = 2, s > % and o4 be as in (3.1). Assume that h is a solution
of (2.24) satisfying

IDI% Al gs+1-04 < €0, MIHs = €o.
Then for d = 3 we have
19R1 s+t + MRl ys+2 S €o- (4.25)
Under the additional assumption
1R llye < o, (4.26)
in dimension d = 2 we have
D1 k| ps+2-04 + ||P;0h||Y5+2 < €. 4.27)

Here we remark on the key difference between dimensions two and higher.
In higher dimensions d = 3, h may be seen as the unique small solution for the
equation (2.24). But in two dimensions, we merely use (2.24) to improve the high
frequency bound for /. At low frequency this no longer works, and instead we use
the low frequency bounds on the initial metric &g as an assumption in our main
result. We note that the assumption (4.26) in the two dimensional case could be
avoided, at the expense of a considerably longer proof.

Proof. By (2.24), it suffices to write the equation for /4 in the shorter form
Ah = hV?h + VhVh + A%,
From this and Sobolev embedding, we easily have
1P>o ARl s S DI Rl gss1-0, 1 DI Rl gsva-ag + 10k 1 + 11
< €l P=ol DIl gss2-0 + €3

This implies that

< €o. (4.28)

~

D% R ys+2-04

In dimension three and higher, a similar argument applies in order to improve the
low frequency bound. This argument is already in [9], and we do not repeat it here.
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Next, we bound the ¥ *+2 norm of h. For the low-frequency part, we only need to
consider the higher dimensional case d = 3, as in the case d = 2 the low frequency
bound is assumed in Theorem 1.3. We bound the high-low or low-high interactions
by

—1 2 —2j I—|j 2
IAT Py (P<; 3hVPh)lly, S 272 ) 217U Py(P<; 5sh VP )12
121jl
S Ikl Piklly;
S DIkl gs—oa I Pjhlly,;,

For the high-high interactions P;(V P;hV P;h), we have

1Y AT P (VPR PRIy,
12

< 2721‘( > IR (VPRVER), 2+ Z21*““|\Pj<VchVch>||,;Lz)
lj1212j I>]jl

S Y 29I PR VPRI + Y 2PN P 2|V P2,
1j1212 ) I=1j1

From these two bounds, for d = 3 we obtain

|AT BV 4+ VRV a2 S IIDI Rl yes-ay I lyze2 + 11DI% 1

Hst2-04°

(4.29)
and for d = 2 we obtain

| P2o~ (V2R + VRV R lys2 S DI Al gssa-og I llyseo + I1DIAI 20,

(4.30)

We then bound the contribution of the A source term. For the high-low or
low-high interactions we have

IAT Py (P3P ly; S 272 1P (P AP 12
< 242 Pl s I P 2
For the high-high interactions we have

1Y AT PPy, S Y 29I PR, 4+ Y 2RI Py,
12j lj1212j I>1j1

These two bounds also imply for d = 3
1A 0D e < IRl (4.31)
and ford =2

1 P2oA™ 0)llysez < 12155 (4.32)
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Using (4.28), ||h||Yéo < €o and ||A||gs S €o, by h-equation, (4.29) and (4.31) we
obtain for d = 3
171l yy+2 S colltllyy+2 + €.
and by (4.30) and (4.32) we obtain ford = 2
IPzohllys+> S €ollhllys+2 + &< coll Pohllys+2 + el.
This concludes the proof of the bounds (4.25) and (4.27). |

Step 3: Prove the bound (4.8) for A. This is obtained by (4.24) and the following
proposition. Here we solve the initial data Ap from the elliptic div-curl system
(2.19).

Proposition 4.7. (Initial data Ay) Lerd = 2, s > d/2 and 84 = § ifd = 2 and
84 = 0ifd = 3. Assume that

[Mlas < €0, NIDI™Allgs+1-04 = €0 (4.33)
Then the elliptic system (2.19) for A admits a unique small solution with
DAl gyss1-8 S Al s (4.34)

Moreover, assume that po is an admissible frequency envelope for .. € H*. Then
we have the frequency envelope bounds

ISk DI All 1-54. < €00k (4.35)
In addition, for the linearization of the solution map above we also have the bound:

IIDP8 Al yor1-s, S €o(lIDI%8h] yosi-oy + 82| e), o € (d/2—2, 5],

(4.36)

Proof. Using the definition of covariant derivatives and the harmonic coordinate
condition (2.23) we can rewrite the div-curl system (2.19) for A as

3Ae =0, yAp— Ay = Im(xayig).
Using these equations we derive a second order elliptic equation for A, namely
3,07 Ay = 3,878, Ap — 8,87F (3, Ap — BpAs)
= (38,8770 — 8,87P0,)Ap — 3, IM(hge A7)

Here we have a leading order cancellation in the first term on the right, but we
prefer to keep the divergence structure and rewrite this equation schematically in
the form

AA =93\ + 0(hdA).

This will be well suited in order to solve this equation via the contraction principle.
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Precisely, we define the map A — 7 (A) with 7 (A) satisfying
AT (A) = d(A) + 3(hdA).

so that the solution A may be seen as a fixed point for 7. To use the contraction
principle, it suffices to show that, under the assumption (4.33), this map is Lipschitz
inthe ball {A : |||D]* A ps+1-3; = C||A|l gs} with a small Lipschitz constant. This

would yield the existence and uniqueness of solutions for A-equations and the
bound (4.34).
To establish the contraction property, we consider the linearization of 7,

AST(A) = V(ASL) + V(6hVA + hVEA),
under the assumptions
11D Al yyss1-s4 + NIDI% Bl yssi-oy + 1M1 ms S 0.

Here we denote by dox, ¢ox and pox are admissible frequency envelopes for | D|*§ A
Ho+1=% |DJ9d§h € HOFT179% and §A € HO respectively. Under these assump-
tions we will prove that the above linearization satisfies the bound

ISEIDI ST (Al o154 S €0(ok + ok + ok, (4.37)

If the bound (4.37) is true, then by the contraction principle we immediately get a
unique small solution A to our equations, as well as the linearized bound (4.36).

We can also use (4.37) in order to prove the frequency envelope bounds (4.35).
Indeed, by (3.3) and (4.34) we have

—&k ) —8|j—k )
age = 27K DI% A yss1-s +mj@1x2 U=k DI A gyss1-5
< p—8k DI% A A 2—3lj—kl| . .
S (eoll|DI° Al| gys+1-54 + €ollA]| ) + max (€0aoj + €0poj)
J
< €oaok + €0 Pok-

This implies (4.35) for €q sufficiently small.
It remains to prove the bound (4.37). We have

ISkIDIP 8T (A yos1-80 S I1SkI DI 04 (SAV A + hVEA 4 AN || yyo+1-3, -

Here we only estimate the term A§A; the others are similar. Precisely, when k = 0,
using a Littlewood—Paley decomposition, Bernstein’s inequality and (3.2) we obtain

DI~ 208081 N 2 S Il 21 So8Al 2 + Y 277 (1A411 2277 18211 2
j20
S IAlz2 oo + Z 20797131112 oo
j20

< A & Poo-
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When k£ > 0, we use Bernstein’s inequality to bound the high-low and low-high
interactions by ||A|| gs pok. For the high-high interaction we have

DI85 > " M8A) | goi-a4

1>k
d
S Y 2Dyl 2118 2
1>k
d_ _
S Aagp(0) Y 202071 12270 182412
1>k
d _ d
+ 1o (o) Yy 2 EIEDR G 51227 182y 2
>k
S A Es ok

This concludes the proof of bound (4.37), and completes the proof of the lemma. O

5. Estimates for the Parabolic Equations

Here we consider the solvability of the parabolic system (2.29). For this purpose
we view A € X5 as a parameter, and show that the solution (h, A) € E° exists, it
is small and has a Lipschitz dependence on both the initial data and on A.

Theorem 5.1. (a) Letd = 2,5 > d /2. Assumethat || ho|lys+2 = €, |||D|5dA0||Hs+l—8d
0
< eand |A||2zs < €. Then the parabolic system (2.29)—(2.30) admits a unique
small solution S = (h, A) in €S, with
ISlles < ||SO||£5 + M2 zs- (5.1)

In addition this solution has a Lipschitz dependence on both Sy in £y and X in
12Z5. Moreover, assume that so, and py are admissible frequency envelopes for
(ho, Ag) € E, A € [2Z° respectively, we have the frequency envelope version

ISklles < sok + €px- (5.2)
(b) In addition, for the linearization of the parabolic system (2.29) we have the
bounds
18Sllgs < 18Sollgy + €lldnll2zs, (5.3)
and
16Sllge < 18S0lire + €llAllzo, (5.4)

foro € (% —2,5].

We will do this in two steps. First we prove that this system is solvable in
the larger space £°. Then we improve the space-time bounds for the metric 4 to
the stronger norm Y**+2; the latter will be needed in the study of the Schrédinger
evolution (2.28).
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Lemma 5.2. Let g = I + h. Assume that ||h|| you.5+1 < € fors > d/2 andd 2 2.
Let ¢y and ay be admissible frequency envelopes for h € Z°5tL respectively
A € Z5. Then for any d/2 — 2 < o < s and a linearization operator § we have

18R zoa.o1 S N8R zog.o+1, (5.5)
16(AQ)lIze < 18Allze + [ Allzs 8hll zoa e, (5.6)

and hence we have

1Sk (RNl gogst1 S ks (5.7)
1Sk (Ag)llzs < ax, (5.8)

Proof. Assume that ¢; (o) and ay are admissible frequency envelopes for 8/ €
Z°%4% and A € Z°. Using a Littlewood—Paley decomposition, Bernstein’s in-
equality and the smallness of # we obtain

1Sk (BhM) || yog.041 S €Cr(o + 1) + [18h] yog.04+1 k.
This implies (5.5) and (5.7) immediately. For A we have
ISk(8AM) Iz < €d,
and
ISk (Adm) NIz < arlidhlizoao + 1Al zs k(o).
These give (5.6) and (5.8). |

Now, we begin to solve the parabolic system (2.29) with initial data (2.30) as
follows:

Proposition 5.3. (a) Assume that || (hg, Ao)|l1s < € and ||M||zs < € fors > d/2
and d 2 2. Then the parabolic system (2.29)—(2.30) admits a unique small
solution S = (h, A) in E°, with

ISlles S NSollrs + 1Allzs (5.9

In addition this solution has a Lipschitz dependence on S in H® and A in
Z°. Moreover, assume that sox and py are admissible frequency envelopes for
So € H', A € Z° respectively, then we have the frequency envelope version

ISklles < sox + €px- (5.10)

(b) In addition, for the linearization of the parabolic system (2.29) we have the
bounds

18Sllge < 188 )l + €lldAllzo, (.11

foro € (% —2,5].
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Proof. First, we consider a linear equation and prove a linear estimate. Precisely,
assume that the frequency localized function uy is solution of the linear equation

g — Aug = fi,  ur(0) = uox.

Then by Bernstein’s inequality we have the linear estimates

1d
2 2k 2
7 qp el S = 2% ullps + Nkl 21l fell 22

We cancel one ||ug||;2, then multiply both sides by e”ZZk’

obtain

and integrate in time to

_ 02k _
@ ll2 S e okl 2 + 2721 fe ()| poor2. (5.12)

In order to solve (2.29) with small initial data, it suffices to consider the follow-
ing linearized equations

0;8hy — AShy = N1, 0:8Ar — ASA, = N>,
where the nonlinearities A/; and N> are
N1 = Si(8hV?h + hV?8h + 8hVhVh 4+ gVhV8h + A8)),
No = Sp(hV28A + 8hV2A + VhVSA + VShV A

+ V2h 8A + V28h A + VhVhSA + VhVShA + AVSA
+ 8AVA + ASA(Vh + A) + A2 (V8h + §A)),

with &, A and A satisfying || (7, A)|les < €, ||A]lzs < €. Then we will prove the
bound

[1Sk8Sllgs S Sok + €k + pi) + (sk + p)18Sllgo + 1Al z7),  (5.13)

where Soi, Sk, pr and s are admissible frequency envelopes for §S(0) € HC,
8§ € £9,8) € Z% and S € &£° respectively.

Assuming the bound (5.13) is true, then we can use the contraction mapping
principle to solve the parabolic system (2.29) in the space

{S=h,A) €& 1 |Sllgs = CUISollps + lIrlzs) = 2C¢},

which also implies the bound (5.9).
By the definition of frequency envelopes (3.3) and (5.9), the bound (5.13) with
o = s and § = Id implies

sk < sox + €(sk + pr)-

Thus the bound (5.10) follows. By (5.9), the bound (5.13) also gives (5.11).
We now return to the proof of (5.13). By the energy estimates in (5.12) we have

[Sk8S D llee < I1Sk8Sollre + D17 kNIl oo ro=oa + 1 SkN2 |l oo gro-1-
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The estimates for the nonlinearities are similar, here we only estimate the following
terms.

A. The estimate for the terms hV*8h and 18 in 1. Using a Littlewood—Paley
decomposition we have

1Sk (V28R | ope S 27K Bl ooLoo | V28Rl oo 2
+ Y 27K | oo 2 |8y | oo 2
1<k
+ Z (0 +d/2)(k=D)+(0+d/2+2)l
>k
S DIkl oo gs-eax + 2T |l oo 26k
+ ENIDI Rl oo pys1-og
< ENIDI R oo pyst1-o4

~

il o 211811l oo 2

and
IS8 oome S 27K Ihalliooro I8Ak oo 2 + D 272 0| oo 2 184l o 2
1<k
+ Z o (0+d/2)(k=D)+(o+d/2)!
1>k

Il oo s Bre + prlldhll oo e + Y 22 OED N0 o pare
1>k

Al Loop2 1827l oo 2

N

N

PrliMlizeons + prlldiliLene.

B. The estimate for the terms V2h8A and AV8X in N. The second term is
estimated in the same manner as the above bound for A8\ in Nj. For the first term
V2h§ A we have

1Sk (VZhEA)| 0 g
S DI oo goi-ag 18 Akl oo o+ 27K ¥ il oo 12 IS Al oo a2
1<k
+ Z 2(a+d/2—l)(k—l)+(a+d/2+l)l|
>k

S €+ ckll8All oot + Y 2TV ED R s
>k

1hill oo 218 Atll ooy 2

< Eglk + Ck||8A||LooHU+1 .

~

This concludes the proof of the bound (5.13), and completes the proof of the theo-
rem. ]

We continue with the bound for the 12 Z%$2_norm of the metric /.

Proposition 5.4. Assume that || (ho, Ao)|lns < € and ||Mj2zs < € fors > d /2 and
d = 2. Then the solution h also belongs to 1> Z°? and satisfies the bounds

11l 2 z0a.5+2 S WD holl gs+2-04 + Al 1225 - (5.14)
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Assume that cor and py, are admissible frequency envelopes for |D|% hg € HST2%,
A € [?Z° respectively. Then we have the frequency envelope bounds

I Skhll 2 gog.s+2 S cok + €. (5.15)
Finally, for the linearization of the h-equations we have the bounds
180112 yogs+2 S D148 ol ps+2-04 + €lI8A 1275 (5.16)

Proof of Proposition 5.4. We split the proof into two steps, where we first prove
the appropriate bound for the linear constant coefficient heat flow and then we apply
that bound to solve the nonlinear problem perturbatively.

Step 1. Here we consider the linear equations

0t Pru — APru = Pr f, (5.17)
with Pru localized at frequency 2% for k € Z, and prove that

2kt
I Petelly poer> S NPt g2 + 27 NP fllz poo2 (5.18)

By Duhamel’s formula, we have

t
tA t—s)A
I Petllz poop2 S lle' Prtuolz poe 2 + I / TIPS sl poo 2
0

Then we use (3.5) and (3.6) to bound the above two terms respectively, then we
obtain (5.18).
Step 2. Here it suffices to write the linearized & equation in the form

38h — ASh = 8hV>h + hV?8h 4+ 8hVhVh 4+ gVhV8h 4 18 == N,
and to prove that

k8l 2 70542 S ND|% Skbholl gys+2-04 + €(Cx + Pi)

(5.19)
+ (ck + )8l 2 704542 4 181l 1275,

where &, pr and ¢ are admissible frequency envelopes for §h € 12274512,
8\ €17 and h € 1> 79512 respectively.

If the bound (5.19) is true, then we choose the operator § = Id to obtain (5.14).
Then by (5.19) and (3.3) we also obtain (5.15). The bound (5.19) combined with
(5.14) also implies (5.16).

‘We now continue with the proof of (5.19). By (5.18) we have

I1Sk8h 12 zoas+2 < D17 8okl grs+2-o4 + ISKN 22045

For the nonlinearities, we only estimate hV28h and A8A, the others are estimated
similiarly. Indeed, using a Littlewood—Paley decomposition we have

P28 g oo 2 S WhllLoors2 I PSRN foo2 + 1 Pihllz poo 21V 28R L0 Lo
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d
+ ) 2P 2 | PSR o2
|k| 21>k

442y
+ > 25N o 2 I PSRl oo 2
1> k|

By this estimate and Sobolev embeddings we obtain

1Sk (V28 27005 S DI Al oo prs—ou T + il DI R oo oo -

~

For the term AdA, we also have
2HISk Moo S I3z N8AK N oors + Wkl oo s 1821 2

skn 41
+ 2 2523 gl e 2 18hllp oo 2
>k

S €pk+ PilldAllzzs.
This completes the proof of Proposition 5.4. O

Finally, we carry out the last step in the proof of Theorem 5.1, and establish
bounds for the solutions / in the Y**2 spaces:

Proposition 5.5. Let d = 2, s > d/2. Assume that ||(ho, Ao)|ls S € and
IAll22s < €. Then we have the bound

IRl S lhollyse> + A2 zs- (5.20)

with Lipschitz dependence on the initial data in these topologies. Moreover, assume
that cox and py are admissible frequency envelope for h(0) € Y6+2 and . € 1>Z°,
then we have the frequency envelope version

ISkhllys+2 S cok + €p. (5.21)
In addition, for the linearization of the elliptic system (2.29) we have the bounds
18k llyssa S I8hollys 2 + €183l (5.22)
Proof. Again it suffices to write the 4 equation in the form:
38h — ASh = 8hVh + hV*8h 4 8hVhVh + gVhVh + A8A := N,
and to prove that
18hicllys+> S 18hokllys+2 + €@ + pi) + (e + p)(18hllyss2 + [18411220),
(5.23)

where & and py are admissible frequency envelopes for 84 € Y**2 and 8 € [>Z°
respectively.

If (5.23) is true, then the bound (5.20) is obtained by (5.23) with the operator
& = Id and the bound (5.14). We also obtain (5.21) by (5.23) and (5.15). The bound
(5.23) combined with (5.16) also implies (5.22).
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We now return to prove the bound (5.23). By Duhamel’s formula, (3.5) and
(3.6), we have

t
1Sk 8hllys+2 < e 8hokllys+2 + f e TIRGN dsllyssa.
0

We estimate the first term in the right hand side. For any decomposition P;§4(0) =
le\j\ 8h;1(0), by (3.5) we have

lle"® P;8h(0)|ly; <

< in 211N 28R : 1(0) 11 70072
Pi8h(0)=Y > h,.1(0) Z I Iy =L

1211

< inf 217NSR 10V 1 ;2
Pjsh(0)=zlz|j‘3hj,l(0) I>Z|j| Js l|l|L

— 187 (0) I y,; -

This gives the bound for the first term.

Next, for the nonlinearities, we only estimate the Duhamel contributions of
hV28h and A8 in detail. In order to bound the contribution of term & V28h, we use
the Littlewood—Paley trichotomy to decompose it into three cases:

a) Low-high interactions: P; (P<th2Pj5h). By (3.6), for any decomposition
Pjdh =} ;> ; 8hj; we have

t
— —|ilA—2it
||/0 ITIAP(PL VR Py dslly, = ) 21V P (P RV )y e 2

121jl
o i
S 2Pkl Y 28Rl o2
1211
-
< 2 NIDI b o gys-ou | PSRy,

This implies both the low-frequency part bound

t
I fo (IR Pi(P-jhV? PiSh)ds | ysi2 S €]|So8h]yss2,
j<0

and the high frequency part bound
1
I fo !TIRS (P iV Pdh)ds|lyse2 S €l|8h ]l yssa.

b) The high-low interactions P; (Pth2P<j+0(1)6h) are estimated in the same
manner as the above low-high case, so we omit the computations.

c) High-high interactions: ) ;_ ; P; (P;h V2 Pi8h). This sum can be further de-
composedas ) ;. ; = > |/~ + 2_;>|;)- Thenby (3.6) we bound the contribution
of the first term by

o t
258 ||/ A ST PPV Psh)dsly,
0 . .
[j1>1>]
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d_syi— 2
S 2(2 )J I IZZ - ||P](Pth P[(Sh)”l‘lleocLZ
jI>1>j

A

> 2RI PR o2 PSRN o2
lj1>1>]

S 24D P s,
ljl>1>j

A

Also by (3.6) we bound the contribution of second term by

t
2(%—5)j_+(s+2)]+” [ e(z—s)A § P,(h[VZShl)dS”YJ
0

I>1j]
t
d . . .
< 2(5-8)j +(s+2);t Zzl*m”/ e(lis)APj(hlvz(Shl)dS”[[lLDOLZ
Ny 0
d . . . . .
< 2(3-8)j +(s+2)j 2:21—|./|+d,//2—2j+—%-2l”hl”l%leLzHahl”l‘z.‘LmL2 (5.24)
J J
I>j]

This term is further controlled by

8yt d 1)t
LHS(5.24) 5 21704022070 % " 03 iy i o 2 184 o 2
I>1j]

< 26T |12 oy 541 €0 4 a0 (D 1Al 2 gog.s i1 €}

This concludes the proof of the bound for the contribution of h/V28h. Next we
consider the term AdA. We also split its analysis into three cases:

a) Low-high interactions: P;(P;jAP;8)) and high-low interactions: P;(P;\
P_;8)). These two cases are similar, we only estimate the first term. By (3.6), we
have

t
_ _nit
||/O eUIAP; (P P8 sy, S 27 ||13,~(P<j,\1>j5,\)||l‘1j|LmL2

~

2t
N ”)‘”1225”PJIS)‘”lle‘L”LZ’

which is acceptable.

b) High-high interactions: Zl> i Pi (P - P/6)). This sum can be further de-
composed as ) ;. ; = )=y ; T 2_;>|;|- By (3.6) we bound the contribution of
the first sum by

t
2059 ||f I8N PP P8 ds |y,
0 1jI>1> )

i_ o—
<2670 3 IPj (P P83l o2
1>l

=8~ Arllp2 2[18X 11,2 2
D Wl 2l ey
[j1>1>]

A
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< 2U2DJ7 112 2¢ Po-

Next we bound the contribution of the second sum by

t
d . .
2(5-DI T+ / IR P (s ds iy,
0 1>1j1

N

t
(4-8)j~+(s+2)j* I=1jl (t=s)A p.
2 Zz I e Pj(1831)ds 1 oo 2
1>1]]
< (50 +s+2)j* 1-1jl+dj/2=2j*
<2 > 2 a2
1>1]]
)i +(s+d—1)j+
2d+1=8)j " +(s+3-1)j Z21||Al||112L00L2||8)»1”112L00L2
1>1]]
2 I=DI 2 25 Po + 1a0() 1A 225 B -

L>X[2 ”6)\-[ ||112LocL2

A

N

This concludes the proof of the bound (5.23), and completes the proof of the propo-
sition. o

6. Multilinear and Nonlinear Estimates

This section contains our main multilinear estimates which are needed for the
analysis of the Schrodinger equation in (2.28). We begin with the following low-
high bilinear estimates of VAV A.

Proposition 6.1. Let s > %’, d > 2 and k € N. Suppose that Va(x) < (x)7!,

h € Y52 and Ay € I2X5. Then for —s < o < s we have

IVh<y - Virllpye S min{llallyo2IAelzxs, 1hllyse2llAklzxe ), (6.1)
Ik <k VaViilpye S minfllallyeezAlzxs. 1By IAell2xe}- (6.2)

In addition, if d/2 — 2 < o < s — 1 then we have
IVh<i - Vallpye S min{[[2]l zogos2llAillzs, 1l zogs+2 Akl ze ), (6.3)
andifd/2 —2 < o < s — 2 then we have
I1h < V2 hellzye S Whll gogos2 [ Ak l2xs (6.4)

Proof. (a) The estimate (6.1). This is obtained by a Littlewood—Paley decomposi-
tion and the following estimate

djyoi+ . .
IVPihV Allzy, S 25 Py Illx,  J Sk jEZ, kN,

which has been proved in [9, Lemma 5.1].



10 Page48of 79 Arch. Rational Mech. Anal. (2024) 248:10

(b) The estimate (6.2). Compared to [9, (5.2)], the estimate (6.2) is improved
by decomposing physical space dyadically. By duality, it suffices to prove that
1
I[j = /0 (PthaV)Lk, zx)dt
<29 10g2 + 1DIP; Ry, Ikl x,, J Sk, j €, (6.5)

for any z; € lsz with ||zk||lzX < 1. For any decomposition Pih = Zl>|/| hji,

using the bound |Va(x)| < (x y~!, we consider the two cases |x| = 2! and |x| < 2/
respectively and then obtain

<y /(h,l Mg () Vg, zi)dt
1211 ||Zk|\12 0<11<1

+ Y sup / (hj.1(x) " e (X) Vg, zg)dt
12‘/‘ I\Zk\l,%xkél 0
= Ilj +11j.
By Bernstein’s inequality we bound the first term by

-1
S Yo sup Y0 27 Mhyller | Vaklpe 2zl 22
1z1j1 Ik S o< <i

dj
S D0 D 27l Ikl x
12]j10S1 <1
< 2% 10g(2 + 1j1) Z il el xe.

121jl
The second term is bounded by

-l
Hpp$ Y 27 sup Whjally poe oo I VAN o222k e 212
l2|1| HZk”]l%Xk§l

S Dol e llakllx,
1211

dj/2
S 2972 3 gl g2 el x,
121j1

Finally we take the infimum over the decompositions of P;# to get the bound (6.5),
which in turn implies the estimate (6.2).

c) The estimates (6.3) and (6.4). By duality and Sobolev embedding, for any
Jj < k we have

1PV hicllp e S 28I PRV el 22 S 2 PKIDI% PR oo ggar—og 1 Aacll 1212,

which gives the bound (6.4). We can also obtain the bound (6.3) similarly. This
completes the proof of the lemma. O
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We next prove the remaining bilinear estimates and trilinear estimates.

Proposition 6.2. (Nonlinear estimates) Lets > % andd 2 2. Assume that py, pr,
sk and Sy are admissible frequency envelopes for A € Z°, A € Z°, S € &° and
S € &7 respectively. Then we have

ISk (BMl2ys S selldllzs + pll Bll 2 s (6.6)
ISk(A2 M) ll2ws S sellAllzs 1Ml ze + pell Alls, (6.7)
1Sk 2ns S Prelidls. (6.8)

For —s < 0 < s we have

ISk V(A2 —a VD) llzye S min{Selldlizs, prllhll zog.s+2}, (6.9)
[Sk(Az 4 VD) llzye S min{Selldllzs, pillAllzs+1}, (6.10)

and for —s < o < s — 8 we have

ISk (B l2ye < min{SiliAllzs, Pl Bll 2}, (6.11)
ISk (A2 | 2ye S min{ScllAllzs 1Al ze, prllAll%e), (6.12)
ISk A 2we S SellxlZs. (6.13)

If—s S0 <s—1, then
1Sk (A<k=a VD)l 2yo S PrllAllzo+1- (6.14)

Proof. We first prove (6.9) and (6.10). These two bounds are proved by Holder’s
inequality and Bernstein’s inequality, here we only prove the first bound in detail.
For the high-low case, by duality we have

D IS VAV e S D 27K ISV (VA 22
j<k+C j<k+C

k
S D 20 R a2 VA oo oo
j<k+C

Dk+(d/2+1)j
SO DR ARl Y VRV VT RN
i<k+C

Thenby —s < o < s and (3.2), we can bound this by min{S¢ || A || zs, PrllAll 2 gs+2}-
For the high-high case, when o + d/2 + 1 > 0 we have

D ISV (VA 2o

j>k
S ) 2RIy V)l
J1=j2+0(), 1>k
< Z 2 (0 +14+d/248) (k= j1)+(0+2+d /2+8) ji W lp2r2 1A g Nl oo 2

Ji=ht0). 1>k
< min{Se[[Allzs, pellhllz1.s+2},
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and when o +d/2 + 1 < 0 we have

> ISV V) e
J1=j2+0(),j1>k
< Z 9 (0+14d/2=8)k+(3+1) /) I

~

allzzr2 A, llpeep2
J1=/2+0), j1>k

S min{Sel[Allzs, pellhllz1s+2}-

Next, we prove the bounds (6.6)—(6.8) and (6.11)—(6.13). These are all similar,
so we only prove (6.6) and (6.11) in detail. Indeed, by duality we have

ISk (BM 2o < 27K 1Sk (BAY | 22

Then using the Littlewood—Paley trichotomy we divide this into low-high, high-
low and high-high cases. For the low-high interactions, by Sobolev embeddings we
have for —s £ o <s

27K ISk Bahi) 22 S I1B<kll 22 Ihell o2 S Bl Bll2ggs-

If —s <o <5 —8, weuse L2H for B; = S;B. Then by || B;|| ;250 < 28*D§;
we also have

27MISk (B i) 212 S SkllM zs-

The high-low interactions can be estimated similarly. For the high-high interactions,
by Sobolev embeddings when —d/2 — § < o < s we have

27K Sk (Bl e S Y 200 TR @RI B o A e 2
>k 1>k
< min{Sil|All 2o, prll Bl 25}
and when —s < 0 < —d /2 — § we have

2741 Sk B a2 S 2 PRI B 22 1A e 2
>k 1>k

S 27 min{|| Bll 2o Mz 1Bl 2o 1A ]| 2o }
< min{Sel[Allzs, pell Bll2 s}

These imply the bounds (6.6) and (6.11).
Finally, we prove the bound (6.14). Ifd/2— 148 < 0 < s — 1, by duality and
Sobolev embeddings, we have

IA<Vailizye S 2R IA Ll 2o Ink Nl o2 S Pl All o
Ifo <d/2— 1+ 6, we have
AVl 22 S ) 29T O A Ly 292K g oo 2
0<I<k
< pellAll o

Then the bound (6.14) follows. Hence this completes the proof of the lemma. 0O
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We shall also require the following bounds for commutators.
Proposition 6.3. (Commutator bounds) Ler d = 2 and s > %. Let m(D) be a

multiplier with symbol m € S°. Assume h € Y72, 9, A € L>H® and »; € I°X?,
frequency localized at frequency 2F. If —s < o < s then we have

IVIS<k—sah, m(D)IVarllpye S min{l|2llyos2Aellzxs, hllys+2l1Akll2xo},
(6.15)
LSk, A<k-alVarlzye S min{[[oxAll g2 s 1Akl Lo me
10x All L2 o Ml Lo s }- (6.16)

Proof. This is similar to Proposition 5.3 in [9]. First we estimate (6.15). In [20,
Proposition 3.2], it was shown that

VIS<k-48, m(D)IVSh = L(VS<k-48, VSiA),

where L is a translation invariant operator satisfying

L(f, g)(X)=/f(x+y)g(x+z)ﬁ1(y+z) dydz, melL'.

Given this representation, as we are working in translation-invariant spaces, by
(6.1) the bound (6.15) follows.
Next, for the bound (6.16). Since

1
(St AV = /O / 242k )2 YV A (v — 5302 VA3 443 (x — y) dyds,

By translation-invariance and the similar argument to (6.11), the bound (6.16)
follows. This completes the proof of the lemma. O

7. Local Energy Decay and the Linearized Problem
In this section, we consider a linear Schrodinger equation

i 10,2+ 0y (%P 9p1) + 2i A%0p = F, o

A(0) = Ao,

and, under suitable assumptions on the coefficients, we prove that the solution
satisfies suitable energy and local energy bounds.
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7.1. The Linear Paradifferential Schrodinger Flow

As an intermediate step, here we prove energy and local energy bounds for a
frequency localized linear paradifferential Schrodinger equation

P90k + 00 (85 _,0p0a) + 20 A%, _40uhi = fi. (7.2)
We begin with the energy estimates, which are fairly standard.

Lemma 7.1. (Energy-type estimate) Let d = 2. Assume that L solves the equation
(7.2) with initial data L (0) in the time interval [0, 1]. For a fixed s > %, assume
that 3, A € L>HS, )y € 7 X, and fi = fix + fa with fix € N and fo € L'L%
Then we have

Il T2 S IAROIZ2 + 18 All 2 s 121,
+ 2l v+ Il oo 2 L ol o 2

Proof. For the proof, we refer the readers to Lemma 6.1 in [9]. Here we just replace
the condition A € Z15+! in [9] by the assumption 9, A € L2HS. O

(7.3)

Next, we prove the main result of this section, namely the local energy estimates
for solutions to (7.2).

Proposition 7.2. (Local energy decay) Let d = 2. Assume that the coefficients
h =g — 1z and A in (7.2) satisfy

1B]lys+2 + [[A]ll zs+1 S € (7.4)

for some s > % and € > 0 small. Let Ay be a solution to (7.2) which is localized at
frequency 2*. Then the following estimate holds:

I2ellzx, S Nroklicz + 1 fill2y, - (1.5)

Proof. The proof is closely related to that given in [9,20,21]. However, here the
metric g = I; + h and magnetic potential A will satisfy some parabolic equations,
so we need to modify the assumptions both on 4 and A to match our main results.

As an intermediate step in the proof, we will establish a local energy decay
bound inacube Q € Q; with0 <[ < k:

k—l 2 2
2 ”)\'klleLz([O,l]XQ) 5 ”)\k”LooLZ + ”fk”Nk”)"k”Xk

k4 1A P 5 (7.6)
+ @7 Az £ R lys2) 2l -

The proof of this bound is based on a positive commutator argument using a
well chosen multiplier M. This will be first-order differential operator with smooth
coefficients which are localized at frequency < 1. Precisely, we will use a multiplier
M which is a self-adjoint differential operator having the form

i2X M = a%(x)0y + dqa®(x), (7.7)

with uniform bounds on @ and its derivatives.
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Before proving (7.5), we need the following lemma which is used to dismiss
the (¢ — I) contribution to the commutator [3,g*? dg, M1

Lemma7.3.Letd > 2 and s > % Assume that h € Y12, A € Z'785+! gng

VNS l,%Xk, and let M be as (7.7). Then we have

1
[ 0 05, M 20001 S Wil By, (7.8)
0 = Kk
1
/0 Re(Aik,43a)\k, Mrg)dt <Al g1-s.5+1 ||kk||%(k' (7.9)

Proof of Lemma 7.3. By (7.7) and direct computations, we get
(0,712 35, M] ~ 27X [V(hVa + aVh)V + VhV?a + hV3ial.
Then it suffices to estimate

1 1
2*k/ ((h<;Va +th§k)vxk,wk>dz+2*k/ (VheyVia + ha, V3a)hg, A )dr.
0 - - 0 - -

The firstintegral is estimated by (6.1) and (6.2), while the second integral is bounded
by Sobolev embeddings. Hence, the bound (7.8) follows.

For the second bound (7.9), by (7.7) and integration by parts we rewrite the
left-hand side of (7.9) and bound it by

1 1
Re/O (A% 4Bhi, Mag)dr < 27K /0 /Rd (V) A Ak VAg|dxds
SNVI All 2o 1Ak oo 2
This implies the bound (7.9), and hence completes the proof of the lemma. O

Returning to the proof of (7.6), for the self-adjoint multiplier M we compute

d
T (M Mii) = 2Re{dyhi, M)
= 2Re(idy (g 9p00) — 2A%, 4Bk — ifk, Mig)

= i([—0ag™ 495, MIhi, Ax) + 2Re(—2A4%, 40y hi — ifi, M)

We then use the multiplier M as in [20,21] so that the following three properties
hold:

(1) Boundedness on frequency 2¥ localized functions,
IMull g2 Sl 2.
(2) Boundedness in X,

[Mullx < llullx.
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(3) Positive commutator,

i([=B0g_gdp. M) Z 27 Nul3 o 11,0, = O QT il ey, -

If these three properties hold for u = A, then by (7.9) and (7.4) the bound (7.6)
follows.

We first do this when the Fourier transform of the solution Ay is restricted to a
small angle

supp Ax C {I£] < &) (7.10)

Without loss of generality due to translation invariance, O = {|x;| < 2. =
1,...,d}, and we set m to be a smooth, bounded, increasing function such that
m'(s) = ¢*(s) where ¢ is a Schwartz function localized at frequencies < 1, and
@ ~ 1 for |s| < 1. We rescale m and set m;(s) = m(2~'s). Then, we fix

1
M = @(mz(m)&l + d1my(xy1)).

The properties (1) and (2) are immediate due to the frequency localization of
u = ;i and m; as well as the boundedness of m;. By (7.8) it suffices to consider
the property (3) for the operator

—A = 0,8 05+ 0,0 _,0p.
This yields
i2K[— A, M] = —271"29,02 27 x)d) + O (D),
and hence
i25[=A, M, k) =272l x D)okl 72,0 + OUIilF2,2)
Utilizing our assumption (7.10), it follows that
2@ x DMl 720 S ill=A Mk, A + 2750 (Il132,2)

which yields (3) when combined with (7.8).
We proceed to reduce the problem to the case when (7.10) holds. We let
{6 (@)}9_, be a partition of unity,

0wy =1, wes’ !
j

where 0 (w) is supported in a small angle about the j-th coordinate axis. Then, we
can set Ay, j = O jAr where

Foua=0) Y w@e.o.

k—1<I1<k+1
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We see that
(0 + 0 g™ _40p)hij + 20 A%, 40l
= Ok fi — 0[Ok, j, 87441053k — 20[O%, j, A%, 100 s

By applying M, suitably adapted to the correct coordinate axis, to A, ; and
summing over j, we obtain

k—l1 2
2 ”)"kHLZLZ([O,lJXQ)

d 1
S Ml + > /0 (= Ok, fi, Mg, j)ds
j=1

d
+y / ([Ok.j» 8u8 ™ _43pThk + Ok j. 20 A% _410uhi, My j)ds
j=1

+ @7+ NIDI' Al s + Illyss) ey,
S Il ge + I fellv el + @75 + DI Allzgees + Mllyss2) 12 -
The commutator is done via (6.15) and (6.16). Then (7.6) follows.

Next we use the bound (7.6) to complete the proof of Proposition 7.2. Taking
the supremum in (7.6) over Q € Q; and over /, we obtain

Uil S Ik oo2 + I faklv Akl xg =+ 1L Fll g2 I oo 2
+ @ NI Allgz s + Ihllyss) el
S Ml o2 4 Il Ikl + 1L f2ell3 2

+ @ DI Allzggsss + Ihllyss) ey, -

Combined with (7.3), we get

Ill%, S 1272 + I fielly, + 1712

+ (271{ + |||D|178A||L2HS+8 + ”h”YSJrZ)”)”k”[z,%Xk'

(7.11)

We now finish the proof by incorporating the summation over cubes. We let
{x o} denote a partition via functions which are localized to frequencies < 1 which
are associated to cubes Q of scale M2%. We also assume that |VZXQ| < kM,
[ =1, 2. Thus,

(0, + 08”0 _,0p) x0M + 20 A%, _40u X0
= X0 fic + 108 _40p. X0V +2iA%_4duX0 + Mk
Applying (7.3) to xgAx, we obtain

> lIxo N3 o2
0

S XM O3 + 10 All 2 Y _llxorll,
0 0
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12 12
+(Xixofiy) " (Xixomli,)
o Q

+ 3 38405, xolhe +2A% _4daxo Ml 0.

0
But by (7.4) we have
D VeV, xolrell7ie S D IVE - Vixo - ki + 8V (Vg - 2)l7a
¢ ¢ 5 5 (7.12)
S A+ DR oo got1-a)M 2 Y [ XM oo 2
0
and also
D20 A%, 4Buxo  Mall7ie S L+ MDAl 2gss) M2 xo il ooz
0 o
(7.13)

For M sufficiently large, we can bootstrap the commutator terms, and, after a
straightforward transition to cubes of scale 2k rather than M 2%, we observe that

DMl o2 S 1RO + DI All 2 s Il + Wil I3l -
(7.14)
We now apply (7.11) to x oAk, and then by (7.12) and (7.13) we see that

Y lxorelk, S 1O12 + > lixo flk, + M2 lixorllk,
0 Q0 0

+ @7+ Whllysia + NPT All2gges) Y lxorely, -
0

For M > 1, we have
M~ lE . S IO, + 1 fily, + Q7+ llallyse + DI All 2 g Ak 112
2 ~ L? 12 Ny Y LA .0

By (7.4), for k sufficiently large (depending on M), we may absorb the the last term
in the right-hand side into the left, i.e

Ihel g, S 136 ONZ2 + 1L il
On the other hand, for the remaining bounded range of k, we have
IMx, S Il poor2,
and then (7.14) and (7.4) give
Il S 12 OZ2 + NDI Al 2 prses akly, + 1Lkl el
2 2
< 1ROz + il

which finishes the proof of (7.5). O
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7.2. The Full Linear Problem

Here we use the bounds for the paradifferential equation in the previous sub-
section in order to prove similar bounds for the full equation (7.1).

Proposition 7.4. (Well-posedness) Lets > %, dZ2andh = g — I;. Assume that

the metric g and the magnetic potential A satisfy
llyse2, NIDI P All 2 gsss < 1.

Then the equation (7.1) is well-posed for initial data Ay € H® with —s < o < s,
and we have the estimate

IM2xe S ldollae + 1 Fllzyoe- (7.15)

Proof. The well-posedness follows in a standard fashion from a similar energy
estimate for the adjoint equation. Since the adjoint equation has a similar form,
with similar bounds on the coefficients, such an estimate follows directly from
(7.15). Thus, we now focus on the proof of the bound (7.15). For A solving (7.1),
we see that A solves

[0k + 00 (€5, 0p0a) + 20 A%, _40uhi = Fi + Hy,
Ak(0) = Aok,

where Fj, := S; F and

Hy = —Sida (82, _,0p2) — 0ulSk. 874 _410p2 = 2l Sk, A% 4102
—2i Sk(Agk_4aaA).
If we apply Proposition 7.2 to each of these equations, we see that
12l o S MhoklFre + I Fell o + IHEND o -

We claim that

D IHlaye S (lhllyse + 105 All2g) 1M fayo» for —s So <5, (7.16)
k

Indeed, the bound for the terms in Hj, follows from (6.9), (6.15), (6.16) and (6.10),
respectively. Then by the above two bounds and the smallness of 2 and A, we obtain
the estimate (7.15). |
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7.3. The Linearized Problem
Here we consider the linearized equation

19, A+ 9, (2P3gA) + 20 A%, A = F + G,
{zt + (g3 A) + 2i A%, + a1

A0) = Ao,
where
G = —V(GVL) — 2i A%y A,
and we prove the following:

Proposition7.5. Lets > 2,4 —2 <o <s5s—2d 22andh = g — I; € Y**?,

assume that A is a solution of (7.17), the metric g and A satisfy
llygs+2, DI All 2 st < 1.
Then we have the estimate
IAl2xe S IAolme + 1 Fllpye + (1G] zogo+2 + 1Al gsgo+ ) 1A 2xs . (7.18)
Proof. For A solving (7.17), we see that Ay solves

10 Ak + 0a (80 _,0p A1) +2i A%, 40uAr = Fi + Gy + Hy,
Ar(0) = Ao,

where

Gr = —Sp(V(GVA) — 2i A%y A),
Hi = = Sida (8%, _,0p0) — 0ulSk, 8744197 — 2i[Sk, A% _410u A
—2i Sk(A"ék%aaA).
The proof of (7.18) is similar to that of (7.16). Here it suffices to prove

2 2 2 2 2
D NGk yo S NG asa 1M s + AN s 01 1207 -
k

Indeed, the bound for the terms in G follows from (6.9), (6.4), (6.10) and (6.14).
This completes the proof of the Lemma. O

8. Well-Posedness in the Good Gauge

In this section we use the parabolic results in Section 5, the multilinear estimates
in Section 6 and the linear local energy decay bounds in Section 7 in order to prove
the good gauge formulation of our main result, namely Theorem 2.5.
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8.1. The Iteration Scheme: Uniform Bounds

Here we seek to construct solutions to (2.28) iteratively, based on the scheme

iat)\(n+1) + (g(n)Ol/3 aﬂk(n+1)) + 2iA(n)a3ak(n+l) — F(")7
(8.1)
20D(0) = ho,
with the trivial initialization
2@ =o,
where the nonlinearities F ™" are the following F with (A, h, A) = (A, AW AM)
F = 0,(8""0hap) = V' Vohap + iV Vohap — iVo A hap +irL VpVy +id Ve Vy
+(B + A A7 = Vo A%)hap + ¥ Re(ash)) — Raopsh® — hauhlirf. (8.2)

and S™ = (™ A(™) are the solutions of parabolic system (2.29) with A = A"
and initial data

™0, x) = ho(x), A™(0,x) = Ag(x). (8.3)

We assume that (Ag, /o) is small in H® x Y**2. Due to the above trivial initial-
ization for A9, we also inductively assume that

1A N 2xs £ Cllaoll s, (8.4)

where C is a large constant.
Applying the parabolic estimates (5.1) to (2.29) with A = A" and initial data
(8.3) at each step, we obtain

IS™llgs < lltho, Aoy + 1A ll2zs < I(ho, Ao)llgs + Ihollas S €. (8.5)

In order to estimate A1, we bound the nonlinear terms in F first. In the
computations we would omit the superscript (n). More precisely, for the first three
terms in (8.2), by covariant derivatives (2.2) and V¥ = g*f Fgﬁ we have the form

38" dyhap) — VI Vohap + iV Vyhgp &~ VAVA + VAVhA.

Then the firstterm VAV A is estimated using (6.1) and (6.9), the second term VAV AA
is estimated using (6.7) with its A = Vh. We obtain

IVAVA + VEVRA2ys S IRlyss2 (Mg + 121 G 1] 25
For the fourth to seventh terms in (8.2), we have the expression
— iV A%hp + M,V Vy +idpVeVy + (B + Ag A% = Vo A%)dap
~ (V2h 4+ VA + (Vh + A)?A.
Then these two terms are estimated using (6.6) and (6.7) respectively. We obtain

[(V2h + VAL + (Vh+ A pys S A+ 1SIe) IS les 12125
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For the last three terms in (8.2), by (2.8) we have
Y Re(hashy) — Ruopsh”® — haphhing ~ 1>,
Using (6.13) we obtain
X 2ns S 1A%
Hence, by the above estimates, (8.5) and (8.4) we bound the F™ by
IF PNy S A+ 18P Ie)IS™llgs 12 lpxs S €ollroll s

Now applying at each step the local energy bound (7.15) with o = s we obtain the
estimate

IV D2 S laollas + IF™ans S llhollas + Ceollrollas < Cllxollas,
(8.6)

which closes our induction.

8.2. The Iteration Scheme: Weak Convergence

Here we prove that our iteration scheme converges in the weaker H*~2 topology.
We denote the differences by

ACHD — 04D 00
sSn+h — (g(n+1)7 .A("'H), B(n-i-l)) = S+ _ gm

Then from (8.1) we obtain the system
i AT 49, (g W Yg AT 2j AWy ACHD — ) _ p=D 4 G
A(n+l)(0’ x) =0,
where the nonlinearities G have the form
G™ — _3a(g(n)3ﬂ)\(n)) —2i AMeg 2
By (5.4) we obtain
188 g2 S IA™ |2y (8.7)

Applying (7.18) with o = s — 2 for the A"+ equation we have
IA D aysma SUF® = FO D layse2 + UIG™ 1 zas + 1A 3050 IA™ |25
For the nonlinear terms F™ — F"=1 using (6.3), (6.9), (6.12), (6.11) and (6.13)
we have
IF® = FO D apee S 04 1 S™, S D)) (188 g2 1A, A" D) 2
F 1S, S D) gs |AD [12x5-2).
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Then by (8.7) and the uniform bounds (8.5), (8.6) we bound the right hand side
above by

A" D aysa S A+ 1Sollgg + Iolla)™
A s ol s + (ISollgs + Iroll ) IA™ 2 xs-2]
< NA™ g2

This implies that our iterations A" converge in />X°~2 to some function A. Fur-
thermore, by the uniform bound (8.6) it follows that

IM2xs S 1ol as- (8.8)

Interpolating, it follows that 2 converges to A in [>X*~€ for all ¢ > 0. This allows
us to conclude that the auxiliary functions S™ associated to A" converge to the
functions S associated to X, and also to pass to the limit and conclude that A solves
the (SMCF) equation (2.28). Moreover, we have the bound for &

ISllgs S ISollyse2 + Aol e (8.9)

Thus we have established the existence part of our main theorem.

8.3. Uniqueness via Weak Lipschitz Dependence
Consider the difference of two solutions
(A, 88) = (WD =@ s _ 5O,
The A solves an equation of this form
! i A+ 0, (g PogA) +2i AV 9 A = FV — FP 4 G,
1 2
A0, x) = 25" (x) = A7 (x),
where the nonlinearity G is
G = —3,(G3pr?) — 21 A% 9 2@
By (5.4) we have
165 gs— < ||380”H~"2 + [[All2xs-2.
Applying (7.18) with 0 = s — 2 to the A equation, we obtain the estimate
1Allpxs2 S Aol sz + 1FD = F@llpysz + (1G] zoas + 1Al 305D 1A 2
< Mol g2 + CIOG A s (A, 88) lpxs-2 g2
Then, by the above bound for §S, we further have
H L,
1Al 2y S 180l =2 + CHAG, A s (18Sollps—2 + A N2 xs-2)
Since the initial data A(()l) and k(()z) are sufficiently small, we obtain
IAl2xs2 S Aol s + 18Sollpgs—2- (8.10)

This gives the weak Lipschitz dependence, as well as the uniqueness of solutions
for (2.28).
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8.4. Frequency Envelope Bounds

Here we prove a stronger frequency envelope version of estimate (8.8).

Proposition 8.1. Let . € [?X®, S € E* be small data solution to (2.28)—(2.29),
which satisfies (8.8) and (8.9). Let { pox}, {Sox} be admissible frequency envelopes
for the initial data Ay € H® and Sy € E. Then {por + sox} is also frequency
envelope for (., S) in I>X° x E°.

Proof. Let p; and s; be the admissible frequency envelopes for solution (A, S) €

12X x ES. Applying S to the modified Schrodinger equation in (2.28), we obtain
the paradifferential equation

i0ihk + 00 (80 _,0p0a) + 20 A%, 4 0uhi = Fi + i,
A0, x) = Ag(x),

where

T = =Sk (82 _,0p7) — [Sk. 0ag™_40p11

— 2i[ Sk, A% 100 — 20 SEIAL, 4 duhi],

and S = (h, A) is the solution to the parabolic system (2.29). We estimate Ay = SxA
using Proposition 7.4,

IAkllzxs S pok + I Fillzys + Ikll2ps -
By Proposition 6.2, Lemma 6.1 and Lemma 6.3 we bound the nonlinear terms by
I Fellzns + 1kllzys S A+ 1Sles + Inlzx)™ (ISllgs pic+ sellAllzxs)-
Then by (8.9), (8.8), (5.10) and the smallness of initial data we obtain
Ak ll2xs S pok + €px + €(sok + p) S pok + ok + €k

For metric g = I + h, by (5.2) we also have

ISklles < sok + €px.
From the definition of frequency envelope (3.3), these two bounds imply

Pk + Sk S Pok + Sok-

and conclude the proof. O
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8.5. Continuous Dependence on the Initial Data

Here we show that the map (Lo, Sp) — (A, S) is continuous from H* x £} into
12X x E%. By (5.3), it suffices to prove (1, Sp) — A is continuous from H* x &)
to 12 X%,

Suppose that (A", Sé”)) — (10, So) in H® x E. Denote by (p(()z), s(()z)), re-
spectively (po, sox) the frequency envelopes associated to (A", i), respectively
(10, So), given by (3.3). IF (A", S) = (R0, So) in H* x &} then (pSy, sy —
(pok, Sok) In [2. Then for each € > 0 we can find some N, so that

||p(()”1)>Ne Iz + ||s(()'2N€ 2 < e, forall n.
By Proposition 8.1 we obtain that
123, li2xs S e, forall n, (8.11)

To compare A" with A we use (8.10) for low frequencies and (8.11) for the high
frequencies,

12 = Alzgs S 1S<n. A = Mllzxs + 18>8 AP ll2xs + 1828 A2 xs
< 22V IS, (A = 2) ||y + 26
S 22V (A = A0 g2 + I1S<n. (S5 = So)llggs—2) + 2.

Letting n — oo we obtain

lim sup |2 — AMpys Se.

n—o0

Letting ¢ — 0 we obtain

lim [|]A™ — A f|2gs =0,
n—0

which completes the desired result.

8.6. Higher Regularity

Here we prove that the solution (A, S) satisfies the bound
I Sllxoxer S Mol + 1Solleg, o 2, (8.12)

whenever the right hand side is finite.

The proof of (8.12) is similar to that in [9, Section 7.6]. Here we simply repeat
this process. Differentiating the original Schrodinger equation (2.28), and then
using Proposition 7.4, Lemma 6.1 and Proposition 6.2 we easily obtain

IVAllzxs S VAl + (VA V) l2xs xes |, S)llzys s (14 I S) 2y gs)” -
For the parabolic equations, by (5.3) we obtain
IVSles S IVSollgy + IAllzxs VAN 2xs-

Hence, by (8.8) and (8.9), these imply (8.12) with 0 = s 4 1. Inductively, we can
further obtain (8.12) for any o = s.
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8.7. The Compatibilities Conditions

As part of our derivation of the (SMCF) equations (2.28) for the second fun-
damental form A in the good gauge, coupled with the parabolic system (2.29), we
have seen that the compatibility conditions are described by the equations (2.9),
(2.8), (2.10), (2.12), (2.20) and (2.17). However, our proof of the well-posedness
result for the Schrodinger evolution (2.28) does not apriori guarantee that these
constraints hold. Here we rectify this omission:

Lemma 8.2. (Constraint conditions) Assume that A € C[0,T; H*] solves the
SMCF equation (2.28) coupled with the parabolic system (2.29). Then the rela-
tions (2.9), (2.8), (2.10), (2.12), (2.20) and (2.17) hold.

Proof. To shorten the notations, we define
T,s =Ricys —Ricep,  Ricup = Re(hap¥ — Ao A%),
T} up = Royap — Royap.  Royap :=ReOyproa — hyakop).
Tosy = Varsy = Vihay,
Tl =Fap —Fup,  Fap = VoA — VsAa, Fop = InOLAyp),
T =Foo —Foa,  Fou =0 Aa = VaB, Fou i= Re(id;9) + ImGTy0) V7.

Here 73 and T* are antisymmetric, T!is symmetric and T? inherits all the linear
symmetries of the curvature tensor.

Our goal is to show that all these functions vanish, knowing that they vanish
at the initial time. We will prove this by showing that they solve a coupled linear
homogeneous evolution system of the form

O — ANTP = 22T+ T'VV 4+ VVT! 4 T3VA 4 0VT3,
2 2 2 1
VSTrr)/aﬂ + Vo Tyéaﬂ + VV Tﬁaaﬁ =T,
VOT}0p = VaT)g — VgT)y + T'h,
(0} = ADTs, =0T+ T (VV + 27 + R) + (VAA+ V)T + T? + T
+AV(T 2+ TH+ VvV
(0 — Ag) Ty = Ric T* + VAAT? + VAT?,
5 4 1 446
D =VoT + T A%

Then standard energy estimates show that zero is the only solution for this system.
The formulas for 77 are obtained directly by the equations for A (2.21) and
heat gauge B = V¥ A,,. It remains to derive the system for (7!, --- , T%).

The equation for 7'!. This has the form
B — AT =22T* + T'VV + vVT! + T3VA + VT,

Using the parabolic equations for # we recover the representation of 9; g as

38y = 2Gyy — 2T

- 1 1
wys G =Im(Yay) + EV’LVU + EVUV , (8.13)
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and obtain
1,
Ty = VoGl + VGl — V' Gap — (VaTg + VTV = V' T ). (8.14)
‘We then use the two formulas to write
3tRiCaﬁ = atglemxvﬂ - guvatRﬂ;wa
= (=2G"" +2T""™) Ry’ + g"" (Vud, T, — V,0,TF )
=2T""R,0n? —2G" Ry ?
+ Vo [2VH(GE — TP — VPGl — T )]
= VAIVW(GE = T,P) + Va (G = TP = VE(Grua — Ty
= VAT P 42T Ry + Vo (=2VH TP 4+ VP T 1)
1, 1
+ VH(V TP = VAT
= 2G" Rya” + 2[V, VMIGE = Vo, VP GE — VI (Y, GE — Vo G — VPG e).
By the relation V# T/}V = %Vv T,i’“ , the third term in the right hand side vanishes.
We can also rewrite the fourth term as

Vel P = VPT ) = [VF, VoIT, P = [VF, VAT,

Lo

1, 1
+ Vo VAT P — VPVET)
= RlousT"P 4+ RFops Ty — RMP 5T
— RMP s TP + [Va, VAIT P,
where the last term vanishes. Commuting we compute the fifth and sixth terms as
—2G" Rua” +2[Va, VMIGE = =2G"" Ryon® + 2Rapuyin GP" + 2Rappy G
= —2Ricyy GP".

Hence, from the above three formulas and the representation of G, (8.13), we
rearrange 9,Ric,”? as

dRic,? — A, T)P (1)
= RT' = 2Ricy, G’ — Vo, VPGl + VH(=V, Gl + VoGl + VPG o)
= RT' — (VAVY + V'V Ry
— 2Ricy Im(YAPY) + V(= V, Im(Y2E) + Vo Im(Y25) + VP Im(yr i a))

+[Voa VAV, VE + VPY,) -V, VPVHEY, (I)
1
+ VI Ve (Ve VP 4 VIVe) = Vo (VVE + VIV 4 VAV, Ve + Ve V)l

We write 1] as

I} = —2Ricg, Im(y2F")

+Im(=VARVAYRE _ovAry VAL — yvARvALL
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+ VAEVGYRS + VY TG+ VI AL VAT

+ VARTALY L + VY VAP + VAP YTAIRy + Y VARVAS 1)
= VYT 4+ ¢VT? — 2Ricy, Im(y2#")
+Im(=VAHAYRE + VARG 4 VARV YR g + Y VAR A )

Here the I; term will be cancelled by Ji, J> later modulo {1//VT3, AT, M»T“}.
Using commutators we rearrange /> as

1 1
L= [Vy, VMV, VF + 5V Ve, V. VvP + Ev“[vﬁ, V1V
1
+ Vo [VE, VATV, + zv“[vﬂ, VelVy.
Then by Riemannian curvature and Bianchi identities we have
L= RyuusVoVP + RypupsVHV?P
1
+ EV“(RW,%V‘S + Rpuas Ve 4 RpapsV®) + Vo (Rupus Vo)
= —Ricas V' VP + Rapups VFV? + V¥ (RpuasV?) + Va(Ricgs V7)
= —Ricgs VOV + (Rapps + Rpuas) V"' V® — Vo Rsupu V> — VsRyuapu V°

+ Vg Ricgs V? + Ricgs Vy VO
= —Ricgs VOVP + Rapups (V' V® + VOV,) + Vs Ricgg VP + Ricgs Vo V2,

which gives
L — (VHVY 4 V' VE)RyP = —Ricgs VOV + VOV; Ricyp + Ricgs Vo VO,

This term will be cancelled by J3 modulo {T'VV, VVT!}.

Next, we compute the expression for —Bt/\Ri_(zxﬁ. From the A-equations (2.28)
and the formula (8.13) we have the evolution equation for AJ,

9820 + %(vg}vfta + VAV AT+ T2+ TH +in <% Im(y29) + Vyv“>
—iare (% MW iye) + Vavy) —iVIVAg =0, (8.15)
and the evolution equation for the mean curvature v
105y + VAVATY £ AT + T2+ TH +id Im(ya)) — iV Vg = 0.

Then formﬁ = Re(kglﬁ —Ag I\ﬁ), by the above two formulas we have

9 Rica’ = —Re(@P1f9 +1f0By — AR — Pl

Im(—id 2Ly — 2Liofy +idPAinh + xhiofak)
= 2T+ T? +TH + K1 + Ko + K3 + K4,
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where
K, = Im [ l(VAVA’ﬁ +VABYA)Y + i/\g(% Im(yil) + vyvﬂ)
- zvﬁ( Im(YAya) + Vavy) — iVVVA)JS>1Z],
Ky = [ g(vAvA T +i2y Im(YA9) — szVAlﬂ)]
Ks = [( (VAVAC L vAoylyy 4 u\y(s Im(y2) + V. v‘f)
Y2 (% Im(Yiya) + Vo vy) — ivyv;‘,\g)ig],
Ky = —Im [Xg (%(vg‘v“ + VABYAYY +inY (% Im(yif) + v, Vﬂ)
— P (% Im(Yiy0) + Vo vy) - ivyv;‘,\g)]_
This can be further rearranged as

—— B
—9Ric, =T+ T*+TH+ NI+ h+ .

where Ji, J> and J3 are
Ji = Im [%(vg‘v/*‘ﬂw + VABVAY Y + BVAVACy,
- %(vjv/‘ﬁw + VATYAY)IE %ig(va/"ﬁw + vA*ﬂv;‘w)],
I = % Re(A,¥) Im(yil) — % Re(A"P ) Im(Y2y0) + Re(LfAY) Im(Y27)
- % Re(L ) A0) Im(yi9) + % Re(W 7 A2 Im(Yh, )

3 - 1 _ _
-3 Re(AZAY) Im(yh) + 3 Re(i2A78) Im(Y o),

J3

Re(ALY)Vy VE — Re(WP )V, V) — V7 Re(VALY)
— V' Re(QEVIY)
—Re(W AV, V7 +Re(W7AE)V, V) + V7 Re(VAGAE)
—Re(RIA)Vy VP + Re(AGAP)Vo Vy + VY Re(AG VL),
Then I} + J; + J> will vanish modulo {¢y VT3, AT, A2T*#}. Precisely, we have
L+ J1 = VYT + VT — 2Rice, Im(yAP")

1 - 1 _ -
+Im (EWA’”’ Va WA + S IV VAP e + Y IV, VA T
oy
+ Y VAT + SYIVAZ, vg)]w)

- 1 - 1 _
= VYT + ¢ VT3 — 2Ricy, Im(y2P") + EFHQ Re(yaf) — EF“ﬂ Re(Vhua)
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) - - 1
+ Ric*? Im(YAyq) + Rypas Im(Yrakd) — EWF%.

‘We rewrite J; as

3 - e 1 - —7B by D
Jr = 2 Im(y2P7) Ricyy ) Im(‘p)\ya)/R\lgy +Im(¢AGV)R€7ay.
Then we obtain
L+Ji4+Dh= YT+ 22T + T + %Im(wiw)ﬁ?ﬂ —% Im (¥ 2P7 ) Ricyy
1. . 1. - 1 -
+ 5T Re(Af) — PP Re(Wiya) — S IV I°F,
= YV + 25T + 1.

We can also show that I, — (V#VY + V"V“)R,wwﬂ + J3 vanishes modulo
{T'VV, VVT!'}. This is because J3 can be written as

T3 = Re( LYV, VP —Re( )V, V), — V¥ Re(VALY)
+Re(MEAY)(V, VO = VVy) — VY Re(GEVIY)
—Re(W[ )V, VO +Re(W72E)VyV, + V7V Re(V/ 15 45)
—Re(WGAY)V, VP + Re(R5P) VsV, + VY Re(A VIAE)
— Rice, V' V¥ —Ric”’ V4V, — V'V, Rice’ .
Then we have
Hysv vy K B — I yvyB LyB Y 1, B
L= (V*V' + V'V Ru + 13 = =T, V'VP + TPV, Vv, + VIV, T, P,
This concludes the proof of the 7' -equations. O

The equation for 72. By the second Bianchi identities for the Riemannian curva-
ture and the following equality

véﬁoyaﬁ + Vs, ﬁy&aﬂ + Vy Réaaﬁ
= Re(TBBy,ﬂ)_‘OlU + T830,ot5‘ﬁ}' - T83y,oz)_‘ﬂa - T53a,ﬂ)_‘017 + Tc?y,oz)_‘ﬂtS - Tc?y,ﬂ)_‘ﬂﬁ)’
we have the counterpart of the second Bianchi identities
2 2 2 1
VBTrryozﬂ + VUTySot,B +Vy TSdaﬂ =T,

which combine with the algebraic symmetries of the same tensor to yield an elliptic
system for T2. Precisely, using the above relation we have

voT?

— 1 1 1
}/(1/3 = VaT]/ﬁ - VﬁT)/Dl + T )\.,

which combined with the previous one yields the desired elliptic system, with 7'!
viewed as a source term. O
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The equations for 73. This has the form
(0} = ADTy, = AP+ VYT + TX(VV + 22 + R) + (VA +AV)(T + 77 +T%
+ V(T? 4+ THA.

Recall the A-equations
1 — . i (= .
07y + VAV Apy — (Ricgs 2, +Ricys 435) + Rpoysh™ + = (Fpsny + i)
i ) Iy i 8 Y S0 TA
— 5% [Im(yisy) + 2V, Vs] — 34 [Im(yisp) +2VVs] —iVOViag, = 0.

Applying V(f and V/g‘ to the above Ag, and Ay, -equations respectively, we obtain
the difference

0= [V (107 hpy + VAV 0y ) = VA (10 hay + ViV 0y )|
1= = - i/ .
2 i 8 i 8 s s E)
+[va[- E(R“’f”@ A +Ricys 1))+ Rpoys2?” + E(Fﬂaky +Fyanh)]
L= i ~ i /= -
- V?[ - E(Rlcas )»‘f, + Ricys )\i) + Rm),,;)»"‘3 + E(FM}L‘; + Fyslg)]]
. oy x i X 8o A
+ [Va [* Ekﬁ[lm(l//)usy) +2V, Vsl — Eky[lm(w)‘ﬁﬁ) +2VgVs] — i VOV )»,sy]
A Las ) %) hy e A
~ v} [ — SHIMRsy) + 2V, Vil = SKIm(PAse) +2Va Vsl = iV Aw]]
= I+ 114111

We first compute 7. We commute V! with 3 and V;‘VA’“ to give

1= Gt — ADTy, +i[Vi 0F gy + [V VAVA iy, (In)
—i[VE. 0 hay = [V4. VAV Ay
= (io - A?)To?ﬂ,y
+ 0T, % + Foapy — 107G dr — Fophay

+ [[Var ViIVA#0p, +iFe, VA 0g, + VAH([Vy, V] + iFa)hpy
(12)
— [Vg, VulVA¥ 0y — iFp, VA Ay — VAE([Vg, Vil +iFg) hay |-

For I, by the formulas for 9,I" in (8.14), for G, in (8.13) and for the commutators
[Va, Vg] we have

I = i(VaGys + VyGas — VsGay)Ay — i(VsGys + Vy Gps — VsGpy )M + VT4

+ Tohgy — Tihay + Re(WVAY) — Fug VO)Apy — Re(AGVAY) — Fpo VO )hay
= VT'A+ T hpy — Tihay + I + 112,

where I11, I1» are the terms containing AAVA and VA respectively,
Iy = i(Vy Im(w)_\yé) +V, Im(wiaé) — Vs Im(l//)_kay)))%
— i(VgIm(Yhys) + Vy Im(Pigs) — Vs Im(Phgy )R,
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+Re(hg VAV rgy — Re(AGVAY)Aay,
i
Iy = E[(Vavy + Vy Va)vé)\% + RomyS Vﬁ)\g + Rya(xB Va)‘%]
i
= 5[(V6Vy + Vy V) Vil + Reoys VIAG + Ryaps ViG]
— F(m VU)»/S), + Fﬁo’ VU)W),.

Here, using the expressions for Faﬂ and R Bays» the expression 111 can be rewritten
as

Iy =iV Im(Yhy )My — i Ve Im(Pays)Ay — iVEYFap + VY Rpays.

Using commutators [V, , V] and the Bianchi identities, the /1, expression can be
rewritten as

Iy = iVyVy VsAy + i Ryoas VLG — iV VY, Vs
— iRyops VOAG — Foo VIhgy +FpoVohgy
For I, we use the Riemannian curvature tensor to write
I = RWMVA'B)‘/SV + RauﬂﬁvA'ﬂ)‘ff + RwMVA’M)‘% + iFwVA’M)‘ﬂV
+ VA’M(R(XIL/SB)\?, + Rauyﬁksﬂ + iFau.)\ﬂy)
— Rguus VA0 — Reuas VA2 — Rpuys VAHAS — iFg, VA,
Bupd ay Buoed y Buys a Bu ay
- VA’M(Rﬁ/mB)‘?/ + Rpuyshy + iFpuhay)
= —Rices V*°Xpy + 2Rapups VRS, + 2Rapys VARG + 200 V4 g,
+ VH Rapupshd, + V¥ Rapyshy + iV Faphpy
+ Ricgs VA ey — 2Rpuas VRS, = 2Rp,1ys VA — 2iF, VA 0y,
— V¥ Rppash — V* Rpuysid, — iV Fguay
= 2RaupsT>™ , + (T + T> + THVAN + V(T? + THr + T4,
where the terms in J; have the form ALV as
Ji = VA4, (= Ricys +2iFas) + VA%, (Ricgs —2iF 4s)
+iV*Fy gy — iVFEgyhay
+ 2Rauys VAL + VE Ryyupshd, + V* Rapyshy
— 2Rpuys VA, — VF Rppashd, — VF Rpuyshd,.
We next rewrite the 111 expression as
1= val - SABUM(WAsy) +2V, Vsl = S5 Im(yhsg) +2V5Vs] - iVeig |

i - i - .
— VA = SHm sy +2V, Vsl = 325 Im(¥ise) +2Va Vsl = iV Vi |

i _
= —ETo?ﬁ’a[Im(w,[/kf,) +2V, VO + 111 + 111,
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where
L. ; L A,s z
= =3 Ve Imhsy) = 2 Vi G Im(isg)

i . i .
+ Sha Ve Im(Yisy) + 2 VA (5 Im(h hsa),

I = —iAyVyV, Vs — iV (05 VeVs) — iV (VOViiagy)
+irOVpVy Vs +iVE 00 Vo Vs) + iV (VOVi day).

The 11> + 111, expression vanishes modulo {VVT3, T3VV, )LV(T2 + T4)}.
Precisely, we can further write /115 as

1L = —iTy NgV° +iTgs Va VP —iVOVLTR  +iVOVATS,  (I11)
+ (=23 Ve Vy Vs + 10 VVy Vs — VO Rupyo 13) + VOFaphsy .

Then replacing Rugys, Fap by Raﬂyg and I:’aﬂ respectively, we have

Lo+ 11hi = i RyoasV® — 2 RyopsV® — VO Rapyo§) (J2)
—Foo Vg +Fps V7 hay + VOFapisy

TG s Ve = AT s Ve = VOTog 25) + VO T ghsy
+ [{(AGRy5as VP — A Ryops V® — VP Rupyo)y)
—FooVohgy +Fpe Vohay + VOFopis, |
= AVT? + VT,

where the term J vanishes due to the representations of Ryaag and f‘ag.

Next, we show that the terms I1; + Ji + I + I11; vanish modulo AAT3. We
have

Ly + 111 = =iV)yFes + Vi Rpays + ’Ex;zva Im(Yisy) — %Aivﬁ Im(isy)
= SV 0 Im(Asg) + 3 VA G Im(Pse)).
We rewrite 11 as
1 — . i N
A . S . 1) S ) S
1=V [ — E(Iic/ﬁa X +Ricys 1) + Rpoysr? + 3 (Bpstl, + FW\ﬁ)]
(J3)
1 — _— ~ i~ -
— vg[ - E(ﬁlvcm; X +Ricys 14) + Raoysh™ + 5 (Fush + F,,gxg)]
1 T e 39
= —5@8 —iFys)Top,

] - ~ 1 _ ~
+ Ev;‘ (15,( = Ricgs +iFgs)) — EV'? (1%, (— Ricas +iFas))
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1 E) = e 1 F) = e
+ Exﬁva( — Ricys +iFys) — zxavﬂ( —Ricys +iFys) (Ja)
— Vgléaﬂyg)»ms + Rﬂﬂy3V§A“5 — Iéawgvg‘)ﬂ‘s. (Js)

Hence,

In+11L1L+ 13+ Jy
AL . 1 . -
= iV yFap + VU Rpays + Exgva(—xyw + hyoAY)

1 . - 1 _ _
+ Exgvﬁ(mw — AyorY) + Evg‘ [A5.( = Rsp¥r + Apor§) ]

1 ATl4,6 (7 7
+ EV’B [)ty (}\&xl/f - )\aa)‘«g)]
= iV} YFag + VY Rpays — VI, (Ricgs —iFps) + V420 (Ricys —iFas)

+ VAR Ao hys — VAR haghys — A Re(Va Yrips) + A% Re(Vf Yrias) + 22T,
Since by R and F we also have
Ji+Js = =V, Ricas +VA ¥ hay Ricgs +15 Re(VA Vg5 — Vi ¥has)
— VAR gy + VAT by — iV By + VA5 Fo
+ VY Rupyo + iV YFep + 27T,
Then in the above two formulas all terms cancel except for AT 3. Hence, we obtain

that I1, + Jy + I1 + 111, vanishes modulo AAT?>. This concludes the proof of the
T3-equations. O

The equations for 74. These have the form
(0 — Ag)Tys = — Ricys T°g + Ricgs Ty — Rpaos T>7°
A, 3 3 7
— Re(V GlﬂTjﬁ,g) = V7 Im(@J Topo) + VY Im(T,, ,A%)-
By the A-equations we have
(@ — ApTis = —[Ag. ValAp + [Ag. ValAg — Va(Ricgs A%) + Vp(Rices A°)
+ Vo VoFg, — VgV Fyy — AgFup
— 8 Fop + Vo[ Re(fVAY) — FpsV°] — Vp[Re(AL VAY) — FosV?]
=L+ L+
For the commutator we use the Bianchi identities to compute
= [V7Vs, ValAp + [V Vo, VglAg
V7 (Roaps A’ = RopasA®) = (Roaps — Ropas) V7 A® = R7ags5VP Ag + R g5 V° Ag

= —VRpuosA® — 2Rpaes V7 A® — Ricys V2 Ag + Ricgs VP Agy
= —(Vg Ricys —VaRps)A® — RpaosF° — Ricas (F0g + Vg A®) + Ricgs (F g + Vy A)

—Vp(Ricgs A%) + Vg (Ricgs A®) — RpaosF? — Rices F2 g + Ricgs Fy.
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We commute V,, Vg with V7 and use Vai‘ﬁg + Vﬁf‘ga + Vaf‘aﬂ = 0 to compute
I by

L= RuopyF"° + Ravoy¥) — RpoayF'" — Rgooy FY

B
= Ricys F‘Sﬂ — Ricgs F‘Sa + Rﬁamsl}aa

Then we obtain
I1 + I = —Ricys T4’8l3 + Ricgs T4’8a — RﬂomgT4’08
For I3 we compute 8tl~*“a;3 first.
9 Fup = Im(3heohf — dihpor) + 087" Im(hag Apyt)
By the g-equations and
105, VAVAY —idl Im(Yh, ) — Al VgV, —iAiVyV, —iVY Ve =0
19 hap + Vo Vg —idy Im(Yhyp) —idy VpVy —idgVaVy —iVIV, hep =0,
we have

Im (3 koo h) = — Re(Bhao A — Vi VLYAG) +Im(A] G )(Im(l/f)hya)‘FV V,)

+ Va7 V) — V7 Im(kyUVAkU) + V7 Im(T)y 5 25)

Then we rewrite the expression alf?a,g as

Fup = VaRe(VAYAS) — Vg Re(VAYAD) — Re(VAyY T, T3 s)
+ va(li“yﬂvy) — Vg(F,V,) — VY Im(/\;Tjﬁ o)+ VY Im(T,, %)
= VoFos — VgFoo + VYT + AV T,

Hence, we have

Iz = VyRe(V}YiG) — VgRe(VAYAT) — Re(VATy Tl T)s o)
+ Vo (BT, V) — Vp(F7, V) — V7 Im(A‘;Tulﬂ )+ VY Im(T}, [ 2%)
+ Va[Re(LVAY) — FysVP] — Vg[Re(, VAY) — FosV°]

= —Re(VA “wT )=V Im(AST3, ,) + VY Im(T3

v Tap.o ya.o*5)

This concludes the proof T*-equations. O
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9. The Reconstruction of the Flow

In this last section we close the circle of ideas in this paper, and prove that one
can start from the good gauge solution given by Theorem 2.5, and reconstruct the
flow at the level of d-dimensional embedded submanifolds. For completeness, we
provide here another, more complete statement of our main theorem.

Theorem 9.1. (Small data local well-posedness) Letd = 2 and s > %. Consider

the skew mean curvature flow (1.1) for maps F from R? to the Euclidean space
(RA+2, gra+2) with initial data ¥y which, in some coordinates, has a metric gg
satisfying ||| D|% (g0 — 1a) || ys+1-04 = €0 and mean curvature |[Ho| gs(z5) < €0
In addition, we assume that || gy — Id”yéo < €q in dimension d = 2.

If eg > O is sufficiently small, then there exists a unique solution
F:RY x [0,1] — (Rd+2, 8Rrd+2)

which, when represented in harmonic coordinates at the initial time and heat co-
ordinates dynamically, has regularity

32F, 8,F € C([0, 1]; H*(RY)).
and induced metric and mean curvature
DI%(g — 1a) € C([0, 1]; H**27%([R?), H e C((0, 1]; H*(RY)).
In addition the mean curvature satisfies the bounds
I ll2xs +11C2 Allgs S Mhollzs + llhollyssa-

where A and A are expressed using the Coulomb gauge initially and the heat gauge
dynamically in the normal bundle N'%;.

We prove the theorem in several steps.

9.1. The Moving Frame

Once we have the initial data (hq, Ag, Ag) which is small in H* x H® by
Proposition 4.1 and 4.2, Theorem 2.5 yields the good gauge local solution A, along
with the associated derived variables (%, A). But this does not yet give us the actual
maps F.

Here we undertake the task of reconstructing the frame (F,, m). For this we use
the system consisting of (2.6) and (2.14), viewed as a linear ode. We recall these
equations here:

i du Fp = T g Fy + Re(hapin), ©.0)

ddm = AV F,,
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respectively

& Fy = —Im@L Y — ihg, Vi) + [Im(YAL) + Vo VY 1F,, ©2)
3Pm = —i (@Y —iALVY)F,. '

We start with the frame at time + = 0, which already is known to solve (9.1),
and has the following properties:

(i) Orthogonality, Fy 1 m, (m,m) = 2, (m,m) = 0 and consistency with the
metric gog = (Fu, Fg).
(i) Integrability, 9gFy = 04 Fp.
(iii) Consistency with the second fundamental form and the connection A:

0 Fp-m=hgp,  (Jgm,m)=—2iA,.

Next we extend this frame to times ¢ > 0 by simultaneously solving the pair of
equations (9.1) and (9.2).

9.1.1. The Solvability of (9.1) and (9.2) The system consisting of (9.1) and
(9.2) is overdetermined, and the necessary and sufficient condition for existence of
solutions is provided by Frobenius’ theorem. We now verify these compatibility
conditions in two steps:

(a) Compatibility conditions for the system (9.1) at fixed time. Here, by TOZ2 =0,

Buv
Tjﬁ’y =0, leﬁ = 0 and we have

aa(rgy Fs +Re(Agym)) — a,g(rgy Fs +Re(hgym)) =0,
and
0 (iAgm + A%FJ) —9g(iAgm + A3 F5) =0,

as needed.
(b) Compatibility conditions between the system (9.1) and (9.2). By (9.1), (9.2)
and (8.15) we have

(i Agm + A Fy) — 0y (i Bm + i(8A"’1/f — iA;VV)Fg) =0
and

Ap[— M2 i — irgy VVit) + [Im(YAL) + Vo VV1F, ]
—9II'}, Fy 4+ Re(hgam)] = 0.
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9.1.2. Solving the System (9.1)-(9.2) Locally Starting from the existing frame
at time ¢ = 0, we want to extend it forward in time by solving (9.2), while insuring
that (9.1) remains valid. The difficulty is that we lack the uniform integrability
in time for the coefficients in (9.2). However, in view of the local energy decay
bounds for A and v, we do know that locally we have A € L,ZH H%. ‘We choose a
distinguished coordinate, say x4, and denote the remaining coordinates by x’. Then
in view of Sobolev embeddings we have the local regularity

dreCyLiH ' NLY LiCy

Thus on a “good" x4 slice we have 34 € L?C,s and we can extend our frame
forward in time as a continuous function, with LZZL)‘?? time derivatives and bounded
spatial derivatives.

At fixed time all the coefficients are continuous so we can start from the above
xq4 slice and solve the system (9.1) globally in x, obtaining a global frame (Fy, m)
which is locally Lipschitz in x and continuous in 7. By Frobenius’ theorem, this
solution must also satisfy (9.2) on any good x4 slice, which is a.e. Thus we have
obtained the desired global frame (F,, m) for ¢ € [0, 1].

9.1.3. Propagating the Properties (i)—(iii) Here we show that the properties
(1)—(ii) above also extend to all ¢+ € [0, 1]. The properties (ii) and (iii) follow
directly from the equations (9.1) and (9.2) once the orthogonality conditions in (i)
are verified. We denote

goo = (m,m), gq0 = (Fu.m), gap = (Fu, Fp).

The first step is to propagate (i) forward in time on a good x4 slice. Indeed, by
(9.2) and (8.13) we have

080 = =3 O + iy V) (@00 = 2) = 1 F7Y +iATV7) (8ar — Far)
+ SO+ iay VI m) + (AmQIL) + VoV )0 +i Biao,
3 (goo — 2) = 2Im[(@™ Y —iAG V) a0l
3 (m,m) = —2i B(m, i) — 20 @Y — iA%V")Z,40.
9 (8ap — Zap) = (AMWPAY) + Vo V) (gpy — &py) + MW AY) + VgV (8ay — Gay)
+ M@ Y 8p0 — ihay V7 8p0) — IOV Za0 — ikpy V¥ 8a0)-
Viewed as a linear system of ode’s in time, these equations allow us to propagate
(1) in time, given that it is satisfied at = 0.
It remains to propagate (i) spatially. Using (9.1) we compute
0x880 = Fgﬂgyo + %}\aﬁ (m, m) + %Xa,s (800 —2) + AL (gpy — &py) + i Aadpo,
o (800 — 2) = —2Re(X} §y0),
do (m, i) = —2i Ag(m, i) — 2Re A% 2,
da(8py — 8py) = Tap(8oy — &oy) + T, (8op — &op) + Re(hpagyo + Ayagpo)-

By ode uniqueness and the choice of the initial data, the desired properties (i) for
the frame are indeed propagated spatially.
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9.1.4. The Sobolev Regularity of the Frame Here we show that our frame has
the global regularity

3y (Fy,m) € L°H*,  8;(Fy,m) € L°H*"!.

As a consequence of the property (i), we directly see that (Fy,m) € L.
From (9.1) it then follows that 0, (Fy, m) € L°°. This allows us to differentiate
further in (9.1) and bound higher derivatives of the frame, up to the H* regularity
for oy (Fy, m), which is imposed by A. We can directly estimate this last norm.
Precisely, by (9.1), (2.32) and Sobolev embeddings we have

||axFa||H“ <

~Y
S a1 Fy lpoongs + 1A Es 1Ml oo s

1/2
< co(llgly2 + 119x Full ) + €o(1 + llaxm ]l zs)
<

eo(l + [10x Fullms + l|0xm || ms)

ITFy + hm| s

and

10amllzs S | Am + LFy | 1s
S WAl s lmll peongys + WM Es 1Fy Nl oo s
S oL+ 10x Fallms + 1 0amll ).

These imply the uniform bound

10 Foll s + loxml| s < €o.

9.2. The Moving Manifold %,
Here we propagate the full map F by simply integrating (2.13), i.e.
F(t) = F() + /Ot —Im(ym) + VV F,ds.
Then by (9.1), we have
0 F(t) = 0, F(0) + /(;t —Im(a(ft/fnﬁ —iday VVm) + [Im(yAL) + Vo VY1F,ds,

which is consistent with above definition of F,.

9.3. The (SMCF) Equation for F

Here we establish that F solves (1.1). Using the relation Ayg = 949 F - m we
have

—Im(ym) = —Im(g*’8,85F - (vi +iv2) (v — i)
= (AgF -v)vy — (AgF - o)y
= J(A F): = JH(F).
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This implies that the F solves (1.1).

Data Availability Data sharing not applicable to this article as no datasets were
generated or analysed during the current study.
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