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Local Well-Posedness of the Skew Mean
Curvature Flow for Small Data in d � 2

Dimensions

Jiaxi Huang & Daniel Tataru

Communicated by V. Šverák

Abstract

The skew mean curvature flow is an evolution equation for d dimensional ma-
nifolds embedded in R

d+2 (or more generally, in a Riemannian manifold). It can be
viewed as a Schrödinger analogue of the mean curvature flow, or alternatively as a
quasilinear version of the Schrödinger Map equation. In an earlier paper, the authors
introduced a harmonic/Coulomb gauge formulation of the problem, and used it to
prove small data local well-posedness in dimensions d � 4. In this article, we
prove small data local well-posedness in low-regularity Sobolev spaces for the
skew mean curvature flow in dimension d � 2. This is achieved by introducing a
new, heat gauge formulation of the equations, which turns out to be more robust in
low dimensions.
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1. Introduction

In this article we continue our study of the local well-posedness for the skew
mean curvature flow (SMCF). This is a nonlinear Schrödinger type flow modeling
the evolution of a d dimensional oriented manifold embedded into a fixed oriented
d + 2 dimensional manifold; it can be seen as a Schrödinger analogue of the well
studied mean curvature flow.

In an earlier work [9], we considered the (SMCF) flow in higher dimension
d � 4, and proved local well-posedness for small initial data in low regularity
Sobolev spaces. This was achieved by developing a suitable harmonic/Coulomb
gauge formulation of the equations, which allowed us to reformulate the problem
as a quasilinear Schrödinger evolution.

In this article, we consider the small data local well-posedness for the skew
mean curvature flow in low dimensions d � 2, also for low regularity initial data.
As the earlier harmonic/Coulomb gauge formulation has issues in low dimensions,
here we introduce an alternative heat gauge, which resolves these difficulties.
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1.1. The (SMCF) Equations

Let �d be a d-dimensional oriented manifold, and (N d+2, gN ) be a d + 2-
dimensional oriented Riemannian manifold. Let I = [0, T ] be an interval and
F : I × �d → N be a one parameter family of immersions. This induces a time
dependent Riemannian structure on �d . For each t ∈ I , we denote the submani-
fold by �t = F(t, �), its tangent bundle by T�t , and its normal bundle by N�t

respectively. For an arbitrary vector Z at F we denote by Z⊥ its orthogonal pro-
jection onto N�t . The mean curvature H(F) of �t can be identified naturally with
a section of the normal bundle N�t .

The normal bundle N�t is a rank two vector bundle with a naturally induced
complex structure J (F) which simply rotates a vector in the normal space by
π/2 positively. Namely, for any point y = F(t, x) ∈ �t and any normal vector
ν ∈ Ny�t , we define J (F) ∈ Ny�t as the unique vector with the same length so
that

J (F)ν⊥ν, ω(F∗(e1), F∗(e2), · · · F∗(ed), ν, J (F)ν) > 0,

where ω is the volume form of N and {e1, · · · , ed} is an oriented basis of �d . The
skew mean curvature flow (SMCF) is defined by the initial value problem{

(∂t F)⊥ = J (F)H(F),

F(·, 0) = F0,
(1.1)

which evolves a codimension two submanifold along its binormal direction with a
speed given by its mean curvature.

The (SMCF) was derived both in physics and mathematics. The one-dimensional
(SMCF) in the Euclidean space R

3 is the well-known vortex filament equation
(VFE)

∂tγ = ∂sγ × ∂2
s γ,

where γ is a time-dependent space curve, s is its arc-length parameter and × denotes
the cross product in R

3. The (VFE) was first discovered by Da Rios [4] in 1906 in
the study of the free motion of a vortex filament.

The (SMCF) also arises in the study of asymptotic dynamics of vortices in
the context of superfluidity and superconductivity. For the Gross–Pitaevskii equa-
tion, which models the wave function associated with a Bose–Einstein condensate,
physics evidence indicates that the vortices would evolve along the (SMCF). An
incomplete verification was attempted by Lin [18] for the vortex filaments in three
space dimensions. For higher dimensions, Jerrard [11] proved this conjecture when
the initial singular set is a codimension two sphere with multiplicity one.

The other motivation is that the (SMCF) naturally arises in the study of the
hydrodynamical Euler equation. A singular vortex in a fluid is called a vortex
membrane in higher dimensions if it is supported on a codimension two subset. The
law of locally induced motion of a vortex membrane can be deduced from the Euler
equation by applying the Biot–Savart formula. Shashikanth [23] first investigated
the motion of a vortex membrane in R

4 and showed that it is governed by the two
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dimensional (SMCF), while Khesin [15] then generalized this conclusion to any
dimensional vortex membranes in Euclidean spaces.

From a mathematical standpoint, the (SMCF) equation is a canonical geometric
flow for codimension two submanifolds which can be viewed as the Schrödinger
analogue of the well studied mean curvature flow. In fact, the infinite-dimensional
space of codimension two immersions of a Riemannian manifold admits a gener-
alized Marsden–Weinstein sympletic structure, and hence the Hamiltonian flow of
the volume functional on this space is verified to be the (SMCF). Haller–Vizman
[8] noted this fact where they studied the nonlinear Grassmannians. For a detailed
mathematical derivation of these equations we refer the reader to the article [26,
Section 2.1].

The one dimensional case of this problem has been extensively studied. This is
because the one dimensional (SMCF) flow agrees the classical Schrödinger Map
type equation, provided that one chooses suitable coordinates, i.e. the arclength
parametrization. As such, it exhibits many special properties (e.g. complete inte-
grability) which are absent in higher dimensions. For more details we refer the
reader to the survey article of Vega [27] as well as [1] and [8].

The study of higher dimensional (SMCF), on the other hand, is far less devel-
oped. Song–Sun [26] proved the local existence of (SMCF) with a smooth, compact
oriented surface as the initial data in two dimensions, then Song [25] generalized this
result to compact oriented manifolds for all d � 2 and also proved a corresponding
uniqueness result. Song [24] also proved that the Gauss map of a d dimensional
(SMCF) in R

d+2 satisfies a Schrödinger Map type equation but relative to the
varying metric. More recently, Li [16,17] considered a class of transversal small
pertubations of Euclidean planes under the (SMCF) and proved a global regularity
result for small initial data.

This article is instead concerned with the case when �d = R
d , i.e. where

�t has a trivial topology. We will further restrict to the case when N d+2 is the
Euclidean space R

d+2. Thus, the reader should visualize �t as an asymptotically
flat codimension two submanifold of R

d+2.
Such manifolds � = R

d with d � 4 were already considered in our earlier
work [9], where we proved the local well-posedness for small data in low-regularity
Sobolev spaces. Here we consider instead the lower dimensional case, namely the
dimensions d = 2, 3. A key role in both [9] and in this article was played by our
gauge choices, which are discussed next.

1.2. Gauge Choices for (SMCF)

There are two components for the gauge choice, which are briefly discussed
here and in full detail in Section 2:

(1) The choice of coordinates on I × �.
(2) The choice of an orthonormal frame on I × N�.

Indeed, as written above in (1.1), the (SMCF) equations are independent of the
choice of coordinates in I×�; here we include the time interval I to emphasize that
coordinates may be chosen in a time dependent fashion. The manifold �d simply
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serves to provide a parametrization for the moving manifold �t ; it determines the
topology of �t , but nothing else. Thus, the (SMCF) system written in the form
(1.1) should be seen as a geometric evolution, with a large gauge group, namely
the group of time dependent changes of coordinates in I × �. One may think of
the gauge choice here as having two components, (i) the choice of coordinates at
the initial time, and (ii) the time evolution of the coordinates. One way to describe
the latter choice is to rewrite the equations in the form{

(∂t − V ∂x )F = J (F)H(F),

F(·, 0) = F0,

where the vector field V can be freely chosen, and captures the time evolution of
the coordinates. Indeed, some of the earlier papers [26] and [25] on (SMCF) use
this formulation with V = 0. This would seem to simplify the equations, however
it introduces difficulties at the level of comparing solutions.This is because the
regularity of the map F is no longer determined by the regularity of the second
fundamental form, and instead there is a loss of derivatives which may only be
avoided if the initial data is assumed to have extra regularity. This loss is what
prevents a complete low regularity theory in that approach.

In our earlier work [9] in dimension d � 4, we chose harmonic coordinates
on �, separately at each time. This implicitly fixes V , which may be obtained as
the solution of an appropriate elliptic equation. The same approach could be made
to work in dimension d = 3, if one uses a more careful study of the linearized
equation as in the present paper. Unfortunately this does not seem to work well in
two dimensions, essentially due to a lack of sufficient control on the metric at low
regularity, which is caused by a lack of decay of the fundamental solution for the
Laplacian.

To rectify this issue, in the present paper we use instead a heat gauge, where the
coordinates and implicitely the metric are determined dynamically via a heat flow.
This in particular requires also a good choice of coordinates at the initial time; there,
we fall back to the harmonic coordinates. In dimension three and higher, this is all
that is needed, and in effect both gauge choices, i.e. the heat gauge and the harmonic
gauge, work equally well. However, in two dimensions the harmonic coordinates
fail to yield the needed low frequency decay of the metric. We rectify this by adding
an a-priori low frequency assumption on the metric in suitable coordinates, and then
propagate this in time via the heat gauge.

We now discuss the second component of the gauge choice, namely the or-
thonormal frame in the normal bundle. Such a choice is needed in order to fix the
second fundamental form for �; indeed, the (SMCF) is most naturally interpreted
as a nonlinear Schrödinger evolution for the second fundamental form of �. In our
earlier paper [9] we use the Coulomb gauge. But that seems to no longer be well
behaved in two dimensions, so we replace it again with a heat flow. In this context,
this strategy is reminiscent of the work of the second author and collaborators for
the Chern–Simons–Schrödinger flow in [20].
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1.3. Scaling and Function Spaces

To understand what are the natural thresholds for local well-posedness, it is
interesting to to consider the scaling properties of the solutions. As one might
expect, a clean scaling law is obtained when �d = R

d and N d+2 = R
d+2. Then

we have the following:

Proposition 1.1. (Scale invariance for (SMCF)) Assume that F is a solution of
(1.1) with initial data F(0) = F0, then Fμ(t, x) := μ−1F(μ2t, μx) is a solution
of (1.1) with initial data Fμ(0) = μ−1F0(μx).

The above scaling would suggest the critical Sobolev space for our moving

surfaces �t to be Ḣ
d
2 +1. However, instead of working directly with the surfaces,

it is far more convenient to track the regularity at the level of the curvature H(�t ),

which scales at the level of Ḣ
d
2 −1.

For our main result we will use instead inhomogeneous Sobolev spaces, and it
will suffice to go one derivative above scaling. There is also a low frequency issue,
precisely in two space dimensions where the L2 norm is critical. There we will
need to make a slightly stronger assumption on the low frequency part of the initial
data.

1.4. The Main Result

Our objective in this paper is to establish the local well-posedness of skew mean
curvature flow for small data at low regularity. A key observation is that providing
a rigorous description of fractional Sobolev spaces for functions (tensors) on a
rough manifold is a delicate matter, which a-priori requires both a good choice of
coordinates on the manifold and a good frame on the vector bundle (the normal
bundle in our case). This is done in the next section, where we fix the gauge and
write the equation as a quasilinear Schrödinger evolution in a good gauge. At this
point, we content ourselves with a less precise formulation of the main result.

Theorem 1.2. (Small data local well-posedness in dimensions d � 3) Let d � 3,
s > d

2 and σd = d
2 − δ. Then there exists ε0 > 0 sufficiently small such that, for

all initial data �0 with metric g0 and mean curvature H0 satisfying

‖|D|σd (g0 − Id)‖Hs+1−σd � ε0, ‖H0‖Hs (�0) � ε0, (1.2)

relative to some parametrization of �0, the skew mean curvature flow (1.1) for
maps from R

d to the Euclidean space (Rd+2, gRd+2) is locally well-posed on the
time interval I = [0, 1] in a suitable gauge.

With a slight adjustment, a similar result holds in dimension d = 2.

Theorem 1.3. (Small data local well-posedness in dimension d = 2) Let d = 2,
s > d

2 and σd = d
2 − δ. Then there exists ε0 > 0 sufficiently small such that, for

all initial data �0 with metric g0 and mean curvature H0 satisfying

‖|D|σd (g0 − Id)‖Hs+1−σd � ε0, ‖H0‖Hs (�0) � ε0,
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as well as a low frequency bound for g0

‖g0 − Id‖Y lo
0

< ε0, (1.3)

relative to some parametrization of �0, the skew mean curvature flow (1.1) for
maps from R

d to the Euclidean space (Rd+2, gRd+2) is locally well-posed on the
time interval I = [0, 1] in a suitable gauge.

We continue with some comments on the function spaces in the above theorems:

• For the metric g0, we use the difference g0 − Id in the above statements in order
to emphasize the normalization g0 → Id at infinity.

• In dimension d � 3, the g0 − Id norm in (1.2) only plays a qualitative role,
namely to place us in a regime where, in harmonic coordinates, g0 is uniquely
determined by the mean curvature H0.

• The Y lo
0 norm in (1.3), defined in Section 3, captures low frequency l1 summa-

bility properties for g0 with respect to cube lattice partitions of R
d . Similar

norm appear in our analysis in dimensions d � 3. The main difference is that in
higher dimension, the Y norms of g0 − Id can be estimated in terms of the Hs

norm ofH in harmonic coordinates. In two dimensions, this estimate borderline
fails, so we instead include the Y lo

0 bound in the hypothesis.

Following the spirit of our earlier work [9], in these results we consider rough
data and provide a full, Hadamard style well-posedness result based on a more
modern, frequency envelope approach and using a paradifferential form for both
the full and the linearized equations. For an overview of these ideas we refer the
reader to the expository paper [10]. This is unlike any of the prior results, which
prove only existence and uniqueness for smooth data.

The favourable gauge mentioned in the theorem is defined in the next section
in two steps:

(a) at the initial time, where we proceed as in [9], and use
• Harmonic coordinates on the manifold �0.
• The Coulomb gauge for the orthonormal frame on the normal bundle N�0.

(b) dynamically for t > 0, where we use
• The heat coordinates on the manifolds �t .
• The heat gauge for the orthonormal frame on the normal bundle N�.

One simple example of initial data allowed by our theorem consists of graph
submanifolds with defining functions u1, u2, of the form

�0 = {x, u1(x), u2(x); x ∈ R
d}

Here one may simply take u1 and u2 to be small in Hs+2, with the added low
frequency control in the Y lo

0 space in dimension two. However, the Hs+2 control
is only needed at high frequency, while at low frequency it suffices to have control

only in homogeneous norms Ḣ
d
2 +1−δ with δ > 0. This allows for perturbations

which are not small in any uniform norm.
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Example 1.3.1. (Bump-like sub-manifolds) Let φi , i = 1, 2 be Schwartz functions.
Then for small ε > 0 and δ > 0, the manifold �0 given by the defining functions

u j = ε
d
2 −2+δφ j (εx)

satisfies the hypotheses of our theorem. with ε > 0 sufficiently small. This manifold
is not a small perturbation of the Euclidean plane in low dimension.

Example 1.3.2. (Sub-manifolds with nontrivial asymptotics) For small ε j > 0 and
δ > 0, the manifold �0 given by the defining functions

u j = ε j (1 + x2)1− d
4 −δ

satisfies the hypotheses of our theorem. with ε j > 0 sufficiently small. This mani-
fold is also not a small perturbation of the Euclidean plane.

In the next section we reformulate the (SMCF) equations as a quasilinear
Schrödinger evolution for good scalar complex variable λ, which is exactly the
second fundamental form but represented in the good gauge. There we provide
an alternate formulation of the above result, as a well-posedness result for the λ

equation. In the final section of the paper we close the circle and show that one can
reconstruct the full (SMCF) flow starting from the good variable λ.

Once our problem is rephrased as a nonlinear Schrödinger evolution, one may
compare its study with earlier results on general quasilinear Schrödinger evolu-
tions. This story begins with the classical work of Kenig–Ponce–Vega [12–14],
where local well-posedness is established for more regular and localized data.
Lower regularity results in translation invariant Sobolev spaces were later estab-
lished by Marzuola–Metcalfe–Tataru [20–22]. The local energy decay properties
of the Schrödinger equation, as developed earlier in [2,3,5,6] play a key role in
these results. While here we are using some of the ideas in the above papers, the
present problem is both more complex and exhibits additional structure. Because of
this, new ideas and more work are required in order to close the estimates required
for both the full problem and for its linearization.

1.5. An Overview of the Paper

Our first objective in this article will be to provide a self-contained formulation
of the (SMCF) flow, interpreted as a nonlinear Schrödinger equation for a well
chosen variable. This variable, denoted by λ, represents the second fundamental
form on �t , in complex notation. We remark that in our earlier paper [9] we have
used instead the complex representation ψ of the mean curvature H as the good
variable, and λ was uniquely determined by ψ via an elliptic div-curl system.
However, solving this system in two dimensions is a delicate matter, which is why
here we switch to λ. The slight downside of this strategy is that the components of
λ are not independent, and instead satisfy a set of compatibility conditions which
need to be propagated along the flow.

In addition to the main variable λ, we will use several dependent variables, as
follows:
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• The Riemannian metric g on �t .
• The magnetic potential A, associated to the natural connection on the normal

bundle N�t .

These additional variables will be viewed as uniquely determined by our main
variable λ and initial metric g0 in a dynamical fashion. This is first done at the initial
time by choosing harmonic coordinates on �0, respectively the Coulomb gauge on
N�0. Finally, our dynamical gauge choice also has two components:

(i) The choice of coordinates on �t ; here we use heat coordinates, with suitable
boundary conditions at infinity.

(ii) The choice of the orthonormal frame on N�t ; here we use the heat gauge, again
assuming flatness at infinity.

To begin this analysis, in the next section we describe the gauge choices, so that
by the end we obtain

(a) A nonlinear Schrödinger equation for λ, see (2.28).
(b) A parabolic system (2.29) for the dependent variables S = (g, A), together

with suitable compatibility conditions (constraints).

Setting the stage to solve these equations, in Section 3 we describe the function
spaces for both λ andS. This is done at two levels, first at fixed time, which is needed
in order to track data sets, and then in the space-time setting, which is needed in
order to solve both the heat flows (2.29) and the Schrödinger evolution (2.28). The
fixed time spaces are classical Sobolev spaces, with matched regularities for all
the components. The main space-time norms are the so called local energy spaces
associated to the Schrödinger evolution, as developed in [20–22]. In addition, we
also use parabolic mixed norm spaces, which capture the regularity gain in the heat
flows.

We begin our analysis in Section 4, where we place the initial data in the
harmonic/Coulomb gauge. In higher dimension this analysis was already carried
out in our earlier paper [9]. Thus our emphasis here is on the two dimensional case,
where some additional low frequency issues arise in connection with the Y norms
for the metric g. Compared to our earlier article [9], here we are able to improve
the analysis and relax the low frequency component of the Y norm. This suffices
in dimension three, but is only borderline in dimension two, which is why we add
the low frequency Y bound to the hypothesis of Theorem 1.3.

Next, in Section 5, we consider the solvability of the parabolic system (2.29).
We will do this in two steps. First we prove that this system is solvable in the space
E s . Then we prove space-time bounds for the metric h in local energy spaces; the
latter will be needed in the study of the Schrödinger evolution (2.28).

Finally, we turn our attention to the Schrödinger system (2.28), whose study
may be compared with earlier results on general quasilinear Schrödinger evolutions.
This begins with the classical work of Kenig–Ponce–Vega [12–14], where local
well-posedness is established for more regular and localized data. Lower regularity
results in translation invariant Sobolev spaces were later established by Marzuola–
Metcalfe–Tataru [20–22]. The local energy decay properties of the Schrödinger
equation, as developed earlier in [2,3,5,6] play a key role in these results. Here we
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are following a similar track, though the present problem is both more complex
and exhibits additional structure. Because of this, new ideas and more work are
required in order to close the estimates required for both the full problem and for
its linearization.

We divide our approach in several steps. In Section 6 we establish several
multilinear and nonlinear estimates in our space-time function spaces. These are
then used in Section 7 in order to prove local energy decay bounds first for the
linear paradifferential Schrödinger flow, and then for a full linear Schrödinger flow
associated to the linearization of our main evolution.

The analysis is completed in Section 8, where we combine the linear heat flow
bounds and the linear Schrödinger bounds in order to (i) construct solutions for the
full nonlinear Schrödinger flow, and (ii) to prove the uniqueness and continuous
dependence of the solutions. The solutions are initially constructed without refer-
ence to the constraint equations, but then we prove that the constraints are indeed
satisfied, by propagating them from the initial time.

Last but not least, in the last section we prove that the full set of variables
(λ, g, A) suffice in order to uniquely reconstruct the defining function F for the
evolving surfaces �t , as Hs+2

loc manifolds. More precisely, with respect to the
parametrization provided by our chosen gauge, F has regularity

∂t F, ∂2
x F ∈ C[0, 1; Hs].

2. The Differentiated Equations and the Gauge Choice

The goal of this section is to introduce our main independent variable λ, which
represents the second fundamental form in complex notation, as well as the follow-
ing auxiliary variables: the metric g, the connection coefficients A for the normal
bundle. For λ we start with (1.1) and derive a nonlinear Schödinger type system
(2.28), with coefficients depending onS = (g, A). Under suitable gauge conditions,
the auxiliary variables S are shown to satisfy a parabolic system (2.29), as well as
a natural set of constraints. We conclude the section with a gauge formulation of
our main result, see Theorem 2.5. Here we will introduce the heat coordinates and
heat gauge in detail. For some of the detailed derivations, we refer to section 2 in
[9].

2.1. The Riemannian Metric g and the Second Fundamental Form

Let (�d , g) be a d-dimensional oriented manifold and let (Rd+2, gRd+2) be
(d+2)-dimensional Euclidean space. Let α, β, γ, · · · ∈ {1, 2, · · · , d}. Considering
the immersion F : � → (Rd+2, gRd+2), we obtain the induced metric g in �,

gαβ = ∂xα F · ∂xβ F. (2.1)

We denote the inverse of the matrix gαβ by gαβ , i.e.

gαβ := (gαβ)−1, gαγ g
γβ = δβ

α .
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Let ∇ be the cannonical Levi–Civita connection on � associated with the in-
duced metric g. A direct computation shows that on the Riemannian manifold
(�, g) we have the Christoffel symbols

�
γ
αβ = gγ σ �αβ,σ = gγ σ ∂2

αβF · ∂σ F.

For any tensor T α1···αr
β1···βs dxβ1 ⊗ ...dxβs ⊗ ∂

∂xα1 ⊗ ... ⊗ ∂
∂xαr , we define its covariant

derivative as follows

∇γ T
α1···αr
β1···βs =∂γ T

α1···αr
β1···βs −

s∑
i=1

�σ
γβi

T α1···αr
β1···βi−1σβi+1···βs +

r∑
j=1

�
α j
γ δT

α1···α j−1δα j+1···αr
β1···βs .

(2.2)

Hence, the Laplace–Beltrami operator �g can be written in the form

�g f = tr ∇2 f = gαβ(∂2
αβ f − �

γ
αβ∂γ f ),

for any twice differentiable function f : � → R. The curvature R on the Rieman-
nian manifold (�, g) is given by

Rσ
γαβ = ∂α�σ

βγ − ∂β�σ
αγ + �m

βγ �σ
αm − �m

αγ �σ
βm .

We also have

Rσγαβ = ∂α�βγ,σ − ∂β�αγ,σ + �m
βσ �αγ,m − �m

ασ �βγ,m, (2.3)

and the Ricci curvature

Ricαβ = Rσ
ασβ = gσγ Rγασβ.

Next, we derive the second fundamental form for �. Let ∇̄ be the Levi–Civita
connection in (Rd+2, gRd+2) and let h be the second fundamental form for � as an
embedded manifold. For any vector fields u, v ∈ T∗�, the Gauss relation is

∇̄u F∗v = F∗(∇uv) + h(u, v).

Then we have

hαβ = h(∂α, ∂β) = ∇̄∂α ∂βF − F∗(∇∂α ∂β) = ∂2
αβF − �

γ
αβ∂γ F.

This gives the mean curvature H at F(x),

H = trg h = gαβhαβ = gαβ(∂2
αβF − �

γ
αβ∂γ F) = �gF.

Hence, the F-equation in (1.1) is rewritten as

(∂t F)⊥ = J (F)�gF = J (F)gαβ(∂2
αβF − �

γ
αβ∂γ F).

This equation is still independent of the choice of coordinates in �d .
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2.2. The Complex Structure Equations

Here we introduce a complex structure on the normal bundle N�t . This is
achieved by choosing {ν1, ν2} to be an orthonormal basis of N�t such that

Jν1 = ν2, Jν2 = −ν1.

Such a choice is not unique; in making it we introduce a second component to our
gauge group, namely the group of sections of an SU (1) bundle over I × R

d .
The vectors {F1, · · · , Fd , ν1, ν2} form a frame at each point on the manifold

(�, g), where Fα for α ∈ {1, · · · , d} are defined as

Fα = ∂αF.

We define the tensors καβ, ταβ , the connection coefficients Aα and the temporal
component B of the connection in the normal bundle by

καβ := ∂αFβ · ν1, ταβ := ∂αFβ · ν2, Aα = ∂αν1 · ν2, B = ∂tν1 · ν2.

Then we complexify the normal frame {ν1, ν2} and second fundamental form as

m = ν1 + iν2, λαβ = καβ + iταβ.

Here we can define the complex scalar mean curvature ψ to be

ψ := tr λ = gαβλαβ. (2.4)

Our objective for the rest of this section will be to interpret the (SMCF) equation
as a nonlinear Schrödinger evolution for λ, by making suitable gauge choices. We
remark that the action of sections of the SU (1) bundle is given by

ψ → eiθψ , λ → eiθλ, m → eiθm, Aα → Aα − ∂αθ. (2.5)

for a real valued function θ .
If we differentiate the frame, we obtain a set of structure equations of the

following type

{
∂αFβ = �

γ
αβFγ + Re(λαβm̄),

∂ A
α m = −λγ

α Fγ ,
(2.6)

where ∂ A
α = ∂α + i Aα .
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2.3. The Gauss and Codazzi Relations

The Gauss and Codazzi equations are derived from the equality of second
derivatives ∂α∂βFγ = ∂β∂αFγ for the tangent vectors on the submanifold � and
for the normal vectors respectively. Here we use the Gauss and Codazzi relations to
derive the Riemannian curvature, the first compatibility condition and a symmetry.

By the structure equations (2.6), we get

∂α∂βFγ = (∂α�σ
βγ + �

μ
βγ �σ

αμ − Re(λβγ λ̄σ
α ))Fσ

+ Re[(∂ A
α λβγ + �σ

βγ λασ )m̄]. (2.7)

Then in view of ∂α∂βFγ = ∂β∂αFγ and equating the coefficients of the tangent
vectors, we obtain

∂α�σ
βγ + �

μ
βγ �σ

αμ − ∂β�σ
αγ − �μ

αγ �σ
βμ = Re(λβγ λ̄σ

α − λαγ λ̄σ
β ).

This gives the Riemannian curvature

Rσγαβ = Re(λβγ λ̄ασ − λαγ λ̄βσ ), (2.8)

which is a complex formulation of the Gauss equation. Correspondingly we obtain
the the Ricci curvature

Ricγβ = Re(λγβψ̄ − λγαλ̄α
β). (2.9)

After equating the coefficients of the vector m in (2.7), we obtain

∂ A
α λβγ + �σ

βγ λασ = ∂ A
β λαγ + �σ

αγ λβσ ,

By the definition of covariant derivatives (2.2), we obtain the complex formulation
of the Codazzi equation, namely

∇ A
α λβγ = ∇ A

β λαγ . (2.10)

Next, we use the relation ∂α∂βm = ∂β∂αm in order to derive a compatibility
condition between the connection A in the normal bundle and the second funda-
mental form. Indeed, from ∂α∂βm = ∂β∂αm we obtain the commutation relation

[∂ A
α , ∂ A

β ]m = i(∂αAβ − ∂β Aα)m. (2.11)

By (2.6) we have

∂ A
α ∂ A

β m = −∂ A
α (λ

γ
β Fγ ) = −(∂ A

α λσ
β + λ

γ
β�σ

αγ )Fσ − λ
γ
β Re(λαγ m̄)).

Then multiplying (2.11) by m yields

∂αAβ − ∂β Aα = Im(λγ
α λ̄βγ ).

This gives the compatibility condition for the curvature A,

∇αAβ − ∇β Aα = Im(λγ
α λ̄βγ ), (2.12)

which can be seen as the complex form of the Ricci equations. We remark that,
by equating the coefficients of the tangent vectors in (2.11) , we also obtain the
relation (2.10) again.
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2.4. The Motion of the Frame {F1, · · · , Fd ,m} under (SMCF)

Here we derive the equations of motion for the frame, assuming that the im-
mersion F satisfying (1.1).

We begin by rewriting the SMCF equations in the form

∂t F = J (F)H(F) + V γ Fγ ,

where V γ is a vector field on the manifold �, which in general depends on the
choice of coordinates. By the definition of m and λαβ , the above F-equation is
rewritten as

∂t F = − Im(ψm̄) + V γ Fγ . (2.13)

Then by (2.13), the structure equations (2.6) and the orthogonality relation
m⊥Fα = 0 we obtain the following equations of motion for the frame{

∂t Fα = − Im(∂ A
α ψm̄ − iλαγ V

γ m̄) + [Im(ψλ̄γ
α ) + ∇αV

γ ]Fγ ,

∂B
t m = −i(∂ A,αψ − iλα

γ V
γ )Fα.

(2.14)

where covariant derivative ∂B
t = ∂t + i B and B = 〈∂tν1, ν2〉 is the temporal

component of the connection in the normal bundle.
From this we obtain the evolution equation for the metric g. By the definition

of the induced metric g (2.1) and (2.14) , we have

∂t gαβ = 2 Im(ψλ̄αβ) + ∇αVβ + ∇βVα. (2.15)

So far, the choice of V has been unspecified; it depends on the choice of coordinates
on our manifold as the time varies.

2.5. The Motion of A and λ Under (SMCF)

Here we use the equations of motion for the frame in (2.14) in order to repeat
the computations of Section 2.3 with respect to time differentiation, with the aim
of computing the time derivative of both λ and A. We start from the commutation
relation

[∂B
t , ∂ A

α ]m = i(∂t Aα − ∂αB)m.

In order, for the left-hand side, by (2.6) and (2.14) we have

∂B
t ∂ A

α m = −[∂B
t λσ

α + λγ
α(Im(ψλ̄σ

γ ) + ∇γ V
σ )]Fσ + λγ

α Im(∂ A
γ ψm̄ − iλγσV

σ m̄),

and

∂ A
α ∂B

t m = −i∇ A
α (∂ A,σ ψ − iλσ

γ V
γ )Fσ − i(∂ A,σ ψ − iλσ

γ V
γ ) Re(λαγ m̄).

Then by the above three equalities, equating the coefficients of the tangent vectors
and the normal vector m, we obtain the evolution equation for λ

∂B
t λσ

α + λγ
α(Im(ψλ̄σ

γ ) + ∇γ V
σ ) = i∇ A

α (∂ A,σ ψ − iλσ
γ V

γ ), (2.16)

as well as the compatibility condition (curvature relation)

∂t Aα − ∂αB = Re(λγ
α ∂̄ A

γ ψ̄) − Im(λγ
α λ̄γ σ )V σ . (2.17)
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2.6. The Equations for the Connection A in the Coulomb Gauge and the Heat
Gauge

Here we take the first step towards fixing the gauge, and consider the choice of
the orthonormal frame in N�. Our starting point consists of the curvature relations
(2.12) at fixed time, respectively (2.17) dynamically, together with the gauge group
(2.5). We will fix the gauge in two steps, first in a static, elliptic fashion at the initial
time, and then dynamically, using a heat flow, for later times.

At the initial time t = 0 we obtain an elliptic system for A by imposing the
Coulomb gauge condition

∇αAα = 0. (2.18)

As in [9], this yields

Lemma 2.1. (Div-curl system for A) Under the Coulomb gauge condition (2.18),
the connection A solves

∇αAα = 0, ∇αAβ − ∇β Aα = Im(λγ
α λ̄βγ ). (2.19)

In our previous work [9], the connection coefficients A and B were determined
via the Coulomb gauge condition (2.18) at all times. Instead, in this article we only
enforce the Coulomb gauge condition at the initial time t = 0, while for t > 0
we adopt from [19] a different gauge condition called the parabolic gauge or heat
gauge. This is defined by the relation

∇αAα = B, (2.20)

which in turn yields a parabolic equation for A:

Lemma 2.2. (Parabolic equations for A) Under the heat gauge condition (2.20),
the connection A solves

(∂t − ∇σ ∇σ )Aα = ∇σ Im(λγ
α λ̄σγ ) − Ricαδ A

δ

+ Re(λγ
α∇ A

γ ψ) − Im(λγ
α λ̄γ σ )V σ . (2.21)

Proof. Since by (2.12) we have

∇α∇σ Aσ = [∇α,∇σ ]Aσ + ∇σ (∇αAσ − ∇σ Aα) + ∇σ ∇σ Aα

= − Ricασ Aσ + ∇σ Im(λγ
α λ̄σγ ) + ∇σ ∇σ Aα

Then the equations (2.21) is obtained from (2.17) and the heat gauge (2.20). ��



   10 Page 16 of 79 Arch. Rational Mech. Anal.          (2024) 248:10 

2.7. The Equations for the Metric g in Harmonic Coordinates and Heat
Coordinates

Here we take the next step towards fixing the gauge, by choosing to work in
harmonic coordinates at t = 0 and heat coordinates for t > 0. Precisely, at the
initial time t = 0 we will require the coordinate functions {xα, α = 1, · · · , d} to
be globally Lipschitz solutions of the elliptic equations

�gxα = 0. (2.22)

This determines the coordinates uniquely modulo time dependent affine transfor-
mations. This remaining ambiguity will be removed later on by imposing suitable
boundary conditions at infinity. After this, the only remaining degrees of freedom in
the choice of coordinates at t = 0 will be given by translations and rigid rotations.

Here we interpret the above harmonic coordinate condition at fixed time as an
elliptic equation for the metric g. The equations (2.22) may be expressed in terms
of the Christoffel symbols �, which must satisfy the condition

gαβ�
γ
αβ = 0, for γ = 1, · · · , d. (2.23)

This leads to an equation for the metric g:

Lemma 2.3. (Elliptic equations of g, Lemma 2.4 [9]) In harmonic coordinates, the
metric g satisfies

gαβ∂2
αβgγ σ = [−∂γ g

αβ∂βgασ − ∂σ g
αβ∂βgαγ + ∂γ gαβ∂σ g

αβ ]
+ 2gαβ�σα,ν�

ν
βγ − 2 Re(λγσ ψ̄ − λαγ λ̄α

σ ).
(2.24)

For latter times t > 0 we will introduce the heat gauge, where we require the
coordinate functions {xα, α = 1, · · · , d} to be global Lipschitz solutions of the
heat equations

(∂t − �g − V γ ∂γ )xα = 0.

This can be rewritten as

�gx
γ = −V γ ,

and can also be expressed in terms of the Christoffel symbols �, namely,

gαβ�
γ
αβ = V γ . (2.25)

Once a choice of coordinates is made at the initial time, the coordinates will be
uniquely determined later on by this gauge condition.

With the advection field V fixed via the heat coordinate condition (2.25), we
can derive a parabolic equation for the metric g.

Lemma 2.4. (Parabolic equations for metric g) Under the condition (2.25), the
metric g solves

∂t gμν − gαβ∂2
αβgμν = 2 Ricμν +2 Im(ψλ̄μν) − 2gαβ�μβ,σ �σ

αν

+ ∂μg
αβ�αβ,ν + ∂νg

αβ�αβ,μ.
(2.26)
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Proof. By the relation (2.25) we have

∇μVν = gαβ∂μ�αβ,ν + ∂μg
αβ�αβ,ν − gαβ�σ

μν�αβ,σ

Using the expression for � and for the Riemannian curvature (2.3) we have

gαβ(∂μ�αβ,ν + ∂ν�αβ,μ) = gαβ

[
∂μ

(
∂αgβν − 1

2
∂νgαβ

)
+ ∂ν

(
∂αgβμ − 1

2
∂μgαβ

)]
= gαβ [∂α(∂μgβν + ∂νgβμ − ∂βgμν) − ∂μ(∂νgαβ + ∂αgνβ

− ∂βgαν) + ∂2
αβgμν]

= gαβ [2∂α�μν,β − 2∂μ�αν,β + ∂2
αβgμν]

= 2gαβ(Rβναμ − �νβ,σ �σ
αμ + �αβ,σ �σ

μν) + gαβ∂2
αβgμν.

We then obtain
∇μVν + ∇νVμ = gαβ∂2

αβgμν + 2 Ricμν +∂μg
αβ�αβ,ν + ∂νg

αβ�αβ,μ − 2gαβ�νβ,σ �σ
αμ.

Combined with (2.15), this implies (2.26). ��

2.8. Derivation of the Modified Schrödinger System from SMCF

Here we carry out the last step in our analysis of the equations, and obtain the
main Schrödinger equation which governs the time evolution of λ.

Our starting point is the equations (2.16), which are rewritten as

i∂B
t λαβ + ∇ A

α ∇ A
β ψ − iλγ

α Im(ψλ̄γβ) − iλγ
α∇βVγ − iλγ

β∇αVγ − iV γ ∇ A
γ λαβ = 0,

We use the compatibility conditions (2.4), (2.12) and (2.8) to write the second term
as

∇ A
α ∇ A

β ψ = ∇ A
α ∇ A

σ λσ
β = [∇ A

α ,∇ A
σ ]λσ

β + ∇ A
σ ∇ A,σ λαβ

= Rασσδλ
δ
β + Rασβδλ

σδ + i Im(λαμλ̄μ
σ )λσ

β + ∇ A
σ ∇ A,σ λαβ

= − Ricαδ λδ
β + Rασβδλ

σδ + i Im(λαμλ̄μ
σ )λσ

β + ∇ A
σ ∇ A,σ λαβ

= − Re(λαδψ̄)λδ
β + Re(λσδλ̄αβ − λσβλ̄αδ)λ

σδ + λαμλ̄μ
σ λσ

β + ∇ A
σ ∇ A,σ λαβ

Since
1

2

[ − Re(λαδψ̄)λδ
β − Re(λβδψ̄)λδ

α − iλγ
α Im(ψλ̄γβ) − iλγ

β Im(ψλ̄γα)
] = −ψ Re(λαδλ̄

δ
β),

we obtain the λ-equations

i∂B
t λαβ + ∇ A

σ ∇ A,σ λαβ = iV γ ∇ A
γ λαβ + iλγ

α∇βVγ + iλγ
β∇αVγ + ψ Re(λαδλ̄

δ
β)

− Re(λσδλ̄αβ − λσβλ̄αδ)λ
σδ − λαμλ̄μ

σ λσ
β . (2.27)

In conclusion, under the heat coordinate condition gαβ�
γ
αβ = V γ and heat

gauge condition ∇αAα = B, by (2.27), (2.26) and (2.21), we obtain the covariant
Schrödinger equation for the complex second fundamental form tensor λ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(i∂t + ∇σ ∇σ )λαβ =i(V − 2A)σ ∇σ λαβ − i∇σ A
σ λαβ + iλγ

α∇βVγ + iλγ
β∇αVγ

+ (B + Aσ A
σ − Vσ A

σ )λαβ + ψ Re(λαδλ̄
δ
β)

− Re(λσδλ̄αβ − λσβλ̄αδ)λ
σδ − λαμλ̄μ

σ λσ
β ,

λ(0, x) = λ0(x).

(2.28)
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These equations are fully covariant, and do not depend on the gauge choices made
earlier. On the other hand, our gauge choices imply that the advection field V and
the connection coefficient B are determined by the metric g and connection A via
(2.25), respectively, (2.20). In turn, the metric g and the connection coefficients A
are determined in an parabolic fashion via the following equations

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(∂t − gαβ∂2
αβ)gμν =2 Ricμν +2 Im(ψλ̄μν) − 2gαβ�μβ,σ �σ

αν

+ ∂μg
αβ�αβ,ν + ∂νg

αβ�αβ,μ.

(∂t − ∇σ ∇σ )Aα = −∇σ Im(λγ
α λ̄σγ ) − Ricαδ A

δ + Re(λγ
α∇ A

γ ψ) − Im(λγ
α λ̄γ σ )V σ ,

V γ = gαβ�
γ
αβ, B = ∇α Aα,

(2.29)

with initial data

g(0, x) = g0(x), A(0, x) = A0(x). (2.30)

These are determined at the initial time by choosing harmonic coordinates on �0,
respectively the Coulomb gauge for A.

Fixing the remaining degrees of freedom (i.e. the affine group for the choice of
the coordinates as well as the time dependence of the SU (1) connection) we can
assume that the following conditions hold at infinity in an averaged sense:

g(∞) = Id , A(∞) = 0.

These are needed to insure the unique solvability of the above parabolic equa-
tions in a suitable class of functions. For the metric g it will be useful to use the
representation

g = Id + h

so that h vanishes at infinity.
We have arrived at the main Schrödinger-Parabolic system (2.28)–(2.29), whose

solvability is the primary objective of the rest of the paper. This system is accom-
panied by a family of compatibility conditions as follows:

(i) The Gauss equations (2.8) connecting the curvature R of g and λ.
(ii) The Codazzi equations (2.10) for λ.

(iii) The Ricci equations (2.12) for the curvature of A.
(iv) The compatibility condition (2.17) for the B.

We will solve the system irrespective of these compatibility conditions, but then
show them to be satisfied for small solutions to the nonlinear system (2.28)–(2.29),
by propagating them from the initial time t = 0.

Now we can restate here the small data local well-posedness result for the
(SMCF) system in Theorem 1.2 in terms of the above system:
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Theorem 2.5. (Small data local well-posedness in the good gauge) Let d � 2 and
s > d

2 . Then there exists ε0 > 0 sufficiently small such that, for all initial data
(λ0, h0, A0) satisfying the constraints (2.10), (2.8) and (2.12) and with

‖λ0‖Hs + ‖h0‖Ys+2
0

+ ‖A0‖Hs+1 � ε0, (2.31)

themodifiedSchrödinger system (2.28), coupledwith the parabolic system (2.29) for
(h, A) is locally well-posed in l2Xs ×Es on the time interval I = [0, 1]. Moreover,
the second fundamental form λ, the metric g and the connection coefficients A
satisfy the bounds

‖λ‖l2Xs + ‖(h, A)‖Es � ‖λ0‖Hs + ‖h0‖Ys+2
0

+ ‖A0‖Hs+1 . (2.32)

In addition, the functions (λ, g, A) satisfy the constraints (2.8), (2.10), (2.12) and
(2.17).

Here the solution λ satisfies in particular the expected bounds

‖λ‖C[0,1;Hs ] � ‖λ0‖Hs .

The spaces l2Xs and Es , defined in the next section, contain a more complete de-
scription of the full set of variables λ, h, A, which includes both Sobolev regularity
and local energy bounds.

In the above theorem, by well-posedness we mean a full Hadamard-type well-
posedness, including the following properties:

(i) Existence of solutions λ ∈ C[0, 1; Hs], with the additional regularity proper-
ties (2.32).

(ii) Uniqueness in the same class.
(iii) Continuous dependence of solutions with respect to the initial data in the

strong Hs topology.
(iv) Weak Lipschitz dependence of solutions with respect to the initial data in the

weaker L2 topology.
(v) Energy bounds and propagation of higher regularity.

We conclude this section with several remarks concerning the result in Theo-
rem 2.5:

Remark 2.5.1. (The variable λ vs ψ) In our earlier paper [9] we have worked
with ψ as the main dynamic variable for the Schrödinger flow, and the full second
fundamental form λ was obtained from ψ by solving an elliptic div-curl system
derived from the Codazzi relations (2.10). Here we work directly with λ, because
solving this elliptic system has issues at the L2 level in two1 space dimensions.
The downside is that the components of λ are not independent, and are instead
connected via the compatibility relations (2.10). Thus, these relations will have to
be propagated dynamically.

1 However, in three and higher dimensions one could still work with ψ if desired.



   10 Page 20 of 79 Arch. Rational Mech. Anal.          (2024) 248:10 

Remark 2.5.2. (Initial data sets) The harmonic/Coulomb gauge condition at the
initial time plays no role in Theorem 2.5, where smallness is assumed for both λ0,
h0 and A0. However, it is useful in order to connect Theorem 2.5 with the earlier
statement in Theorems 1.2, 1.3.

3. Function Spaces and Notations

The goal of this section is to define the function spaces where we aim to solve
the (SMCF) system in the good gauge, given by (2.28). Both the spaces and the
notation presented in this section are similar to those introduced in [20–22].

We begin with some constants. Let regularity index s > d/2 and δ > 0 be a
small2 constant satisfying

0 < δ � s − sd .

We then define the constant σd depending on dimensions d as

σd = d/2 − δ. (3.1)

For a function u(t, x) or u(x), let û = Fu and ǔ = F−1u denote the Fourier
transform and inverse Fourier transform in the spatial variable x , respectively. Fix
a smooth radial function ϕ : R

d → [0, 1] supported in {x ∈ R
d : |x | � 2} and

equal to 1 in {x ∈ R
d : |x | � 1}, and for any i ∈ Z, let

ϕi (x) := ϕ(x/2i ) − ϕ(x/2i−1).

We then have the spatial Littlewood–Paley decomposition,

∞∑
i=−∞

Pi (D) = 1,

∞∑
i=0

Si (D) = 1,

where Pi localizes to frequency 2i for i ∈ Z, i.e,

F(Piu) = ϕi (ξ)û(ξ),

and

S0(D) =
∑
i�0

Pi (D), Si (D) = Pi (D), for i > 0.

For simplicity of notation, we set

u j = S ju, u� j =
j∑

i=0

Siu, u� j =
∞∑
i= j

Si u.

2 Ideally here one would like to set δ = 0, but this is only possible in dimensions three
and higher.
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For each j ∈ N, let Q j denote a partition of R
d into cubes of side length

2 j , and let {χQ} denote an associated partition of unity. For a translation-invariant
Sobolev-type space U , set l pj U to be the Banach space with associated norm

‖u‖p
l pj U

=
∑
Q∈Q j

‖χQu‖p
U

with the obvious modification for p = ∞.
Next we define the l2Xs and l2Ns spaces, which will be used for the primary

variable λ, respectively for the source term in the Schrödinger equation for λ.
Following [20–22], we first define the X -norm as

‖u‖X = sup
l∈N

sup
Q∈Ql

2− l
2 ‖u‖L2L2([0,1]×Q).

Here and throughout, L pLq represents L p
t L

q
x . To measure the source term, we use

an atomic space N satisfying X = N∗. A function a is an atom in N if there is a
j � 0 and a Q ∈ Q j such that a is supported in [0, 1] × Q and

‖a‖L2([0,1]×Q) � 2− j
2 .

Then we define N as linear combinations of the form

f =
∑
k

ckak,
∑
k

|ck | < ∞, ak atom,

with norm

‖ f ‖N = inf

{∑
k

|ck | : f =
∑
k

ckak, ak atoms

}
.

For solutions which are localized to frequency 2 j with j � 0, we will work in
the space

X j = 2− j
2 X ∩ L∞L2,

with norm

‖u‖X j = 2
j
2 ‖u‖X + ‖u‖L∞L2 .

One way to assemble the X j norms is via the Xs space

‖u‖2
Xs =

∑
j�0

22 js‖S ju‖2
X j

.

But we will also add the l p spatial summation on the 2 j scale to X j , in order to
obtain the space l pj X j with norm

‖u‖l pj X j
=

⎛
⎝ ∑

Q∈Q j

‖χQu‖p
X j

⎞
⎠

1/p

.
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We then define the space l p Xs by

‖u‖2
l p Xs =

∑
j�0

22 js‖S ju‖2
l pj X j

.

For the solutions of Schrödinger equation in (2.28), we will be working primarily
in l2Xs .

We analogously define

N j = 2
j
2 N + L1L2,

which has norm

‖ f ‖N j = inf
f=2

j
2 f1+ f2

(‖ f1‖N + ‖ f2‖L1L2
)
,

and

‖ f ‖2
l p Ns =

∑
j�0

22 js‖S j f ‖2
l pj N j

.

Here we shall be working primarily with l2Ns .
We also note that for any j , we have

sup
Q∈Q j

2− j
2 ‖u‖L2L2([0,1]×Q) � ‖u‖X ,

hence

‖u‖N � 2 j/2‖u‖l1j L2L2 .

This bound will come in handy at several places later on.
For the parabolic system (2.29), it is natural to work in spaces of the form L∞Hs .

However, in order to obtain frequency envelope bounds it is more convenient to
slightly strengthen this norm. Precisely, we define the Zσ,s norm as

‖h‖2
Zσ,s = ‖|D|σ S0h‖2

L∞L2 +
∑
j�1

22s j‖S j h‖2
L∞L2 .

Compared to L∞Hs , here we just commute the L∞
t and l2 frequency summation.

For simplicity of notation, we denote Zs := Z0,s . In particular we have

Zs ⊂ L∞Hs .

With these notations, we will seek the solution (h, A) to the parabolic system
(2.29) in the space E s defined by

‖(h, A)‖Es = ‖h‖Zσd ,s+2 + ‖A‖Zs+1 .

Correspondingly, at fixed time we define the space Hs as

‖(h, A)‖Hs = ‖|D|σd h‖Hs+2−σd + ‖A‖Hs+1 .
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In addition to the above standard norms, for the study of the Schrödinger equa-
tion forλwe will also need to control a stronger normYs+2 for the metrich = g−Id ;
this will be defined in what follows.

First, similarly to the l pj X j norms above, we also add the l p spatial summation

on the 2 j scale to Z j , in order to obtain the space l p Zσ,s with norm

‖h‖2
l p Zσ,s =

∑
j∈Z

22σ j−+2s j+‖Pjh‖2
l p| j |Z j

=
∑
j∈Z

22σ j−+2s j+‖Pjh‖2
l p| j |L∞L2 .

Here we need to decompose the low frequency part, this allows us to obtain a
estimate of h in l2Zσd ,s+2 in Proposition 5.4. Correspondingly, we will strengthen
the Zσd ,s+2 norm of h to l2Zσd ,s+2.

More importantly, we will also introduce some additional structure which is
associated to spatial scales larger than the frequency. Precisely, to measure the
portion of h which is localized to frequency 2 j , this time with j ∈ Z, we decompose
Pjh as an atomic summation of components h j,l associated to spatial scales 2l with
l � | j |, i.e.

Pjh =
∑
l�| j |

h j,l .

Then we define the Y j -norm by

‖Pjh‖Y j = inf
Pj h=∑

l�| j | h j,l

∑
l�| j |

2l−| j |‖h j,l‖l1l L∞L2 .

In the decomposition of Pjh we may project and assume that all terms are also
localized at frequency 2 j . However in the definition of the Y j norms we make no
such assumption.

Assembling together the dyadic pieces in an l2 Besov fashion, we obtain the
Y s space with norm given by

‖h‖2
Y s =

∑
j∈Z

22( d2 −δ) j−+2s j+‖Pjh‖2
Y j

.

Then for h-equation in (2.28), we will be working primarily in Ys+2, whose norm
is defined by

‖h‖Ys+2 = ‖h‖l2Zσd ,s+2 + ‖h‖Y s+2 .

Collecting all the components defined above, for the parabolic system (2.29)
we define the final Es norm as

‖(h, A)‖Es = ‖h‖Ys+2 + ‖A‖Zs+1 .

At fixed time, we can remove the L∞
t in Ys+2 and Es , and obtain the function

spaces Ys+2
0 and Es

0 respectively. Precisely, we define the Y0 j norm corresponding
to Y j as

‖Pjh‖Y0 j = inf
Pj h=∑

l�| j | h j,l

∑
l�| j |

2l−| j |‖h j,l‖l1l L2 .
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and obtain the Y s
0 space with norm given by

‖h‖2
Y s

0
=

∑
j∈Z

22( d2 −δ) j−+2s j+‖Pjh‖2
Y0 j

.

Then we obtain the space Ys+2
0 with norm defined by

‖h‖Ys+2
0

= ‖|D|σd h‖Hs+2−σd + ‖h‖Y s+2
0

,

and the space Es
0 defined by

‖(h, A)‖Es
0

= ‖h‖Ys+2
0

+ ‖A‖Hs+1 .

Finally, to capture only the low frequency information in the Y s
0 spaces, we

introduce the Y lo
0 norm, which is used in our main two dimensional result in The-

orem 1.3:

‖h‖2
Y lo

0
= ‖P�0h‖Y00∩L∞ +

∑
j<0

22( d2 −δ) j−‖Pjh‖2
Y0 j

.

Next, we define the frequency envelopes as in [20–22] which will be used in
multilinear estimates. Consider a Sobolev-type space U for which we have

‖u‖2
U =

∞∑
k=0

‖Sku‖2
U .

A frequency envelope for a function u ∈ U is a positive l2-sequence, {a j }, with

‖S ju‖U � a j .

We shall only permit slowly varying frequency envelopes. Thus, we require a0 ≈
‖u‖U and

a j � 2δ| j−k|ak, j, k � 0, 0 < δ � s − d/2. (3.2)

The constant δ shall be chosen later and only depends on s and the dimension d.
Such frequency envelopes always exist. For example, one may choose

a j = 2−δ j‖u‖U + max
k

2−δ| j−k|‖Sku‖U . (3.3)

Since we often use Littlewood–Paley decompositions, the next lemma is a
convenient tool to see that our function spaces are invariant under the action of
some standard classes of multipliers:

Lemma 3.1. ForanySchwartz function f ∈ S,multiplierm(D)with‖F−1(m(ξ))‖L1

< ∞, and translation-invariant Sobolev-type space U, we have

‖m(D) f ‖U � ‖F−1(m(ξ))‖L1‖ f ‖U .

Finally, we state a Bernstein-type inequality and two estimates.
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Lemma 3.2. (Bernstein-type inequality, Lemma 3.2 [9]) For any j, k ∈ Z with
j + k � 0, 1 � r < ∞ and 1 � q � p � ∞, we have

‖Pk f ‖lrj L p � 2kd( 1
q − 1

p )‖Pk f ‖lrj Lq .

Proposition 3.3. (Algebra property) For any f, g ∈ Y lo
0 we have

‖ f g‖Y lo
0

� ‖ f ‖Y lo
0

‖g‖Y lo
0

. (3.4)

Proof. We first note that by Bernstein’s inequality we have Y lo
0 ⊂ L∞. Then for

the high-low and low-high interactions we can estimate

‖Pj (Pj f P< j g)‖Y0 j + ‖Pj (P< j f Pj g)‖Y0 j

� ‖Pj f ‖Y0 j ‖P< j g‖L∞ + ‖P< j f ‖L∞‖Pj g‖Y0 j .

For the high-high interactions, we have

2( d2 −δ) j−‖Pj

( ∑
0>l> j

Pl f Pl g + P�0 f P�0g
)
‖Y0 j

� 2(d−δ) j−
( ∑

0>l> j

‖Pj (Pl f Pl g)‖l1| j |L1 + ‖P�0 f P�0g‖l1| j |L1

)

�
∑

0>l> j

2(d−δ)( j−−l)2(d−δ)l‖Pl f ‖L2‖Plg‖L2 + 2(d−δ) j−‖P�0 f ‖L2‖P�0g‖L2

�
∑

0>l> j

2(d−δ)( j−−l)2(d−δ)l‖Pl f ‖Y0 j ‖Plg‖Y0 j + 2(d−δ) j−‖P�0 f ‖Y00‖P�0g‖Y00 .

These two bounds imply that

‖P<0( f g)‖Y lo
0

� ‖ f ‖Y lo
0

‖g‖Y lo
0

.

For the high-frequency part P�0( f g), we bound its L∞ norm by

‖P�0( f g)‖L∞ � ‖ f ‖L∞‖g‖L∞ � ‖ f ‖Y lo
0

‖g‖Y lo
0

.

To bound its Y00 norm, we further decompose it as

P�0( f g) = P�0(P�0 f · g) + P�0(P<0 f · P�0g) + P�0(P<0 f · P[−3,−1]g).

The first term is bounded by

‖P�0(P�0 f · g)‖Y00 � ‖P�0 f ‖Y00‖g‖L∞ � ‖ f ‖Y lo
0

‖g‖Y lo
0

.

The second term is bounded similarly. We bound the last term by

‖P�0(P<0 f · P[−3,−1]g)‖Y00 � ‖P<0 f ‖L∞‖P[−3,−1]g‖Y00 � ‖ f ‖Y lo
0

‖g‖Y lo
0

.

This completes the bound for high frequency part, and thus the proof of the propo-
sition. ��
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Lemma 3.4. For any Schwartz function f , j ∈ N and 1 � r � ∞, we have

‖et� f ‖lrj L∞
t L2 � ‖ f ‖lrj L2 , (3.5)

‖
∫ t

0
e(t−s)�S j f ds‖lrj L∞L2 � 2−2 j+‖S j f ‖lrj L∞L2 . (3.6)

Proof. We use the heat kernel

K (t, x) = (4π t)−
d
2 e− x2

4t

which we decompose with respect to cubes Q ∈ Q j . Then from the corresponding
decomposition

et� f =
∑
Q∈Q j

(χQ(x)K (t, x)) ∗x f

we obtain

‖et� f ‖lrj L∞
t L2 � ‖K‖l1j L∞

t L1
x
‖ f ‖L2

Since t ∈ [0, 1] and r � 0, we can use the exponential off-diagonal decay for K
on the unit scale to conclude that

‖K‖l1j L∞
t L1

x
� 1,

and thus (3.5) follows.
For the second bound, we separate the low frequencies and use the kernel K0

for S0e(t−s)� with a similar cube decomposition to estimate

‖
∫ t

0
e(t−s)�S0 f ds‖lr0L∞L2 � ‖K0‖l1j L1

t,x
‖ f ‖lr0L∞L2

where the K0 norm is easily estimates using the rapid kernel decay on the unit scale.
Similarly, for high frequencies j > 0 we use the kernel K j for S j e(t−s)� with

a similar cube decomposition to estimate

‖
∫ t

0
e(t−s)�S j f ds‖lr0L∞L2 � ‖K j‖l1j L1

t,x
‖ f ‖lr0L∞L2

For fixed t we use the exponential symbol decay to obtain

‖K j‖l1j L1
x

� e−c22 j t ,

and now the time integration yields the desired 2−2 j decay. This concludes the
proof of (3.6). ��
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4. The Initial Data

Our evolution begins at time t = 0, where we need to make a good gauge choice
for the initial submanifold �0. This has two components,

(i) a good set of coordinates on �0, namely the global harmonic coordinates,
represented via the map F : R

d → R
d+2.

(ii) a good orthonormal frame in N�0, where we will use the Coulomb gauge.

Once this is done, we have the frame in the tangent space and the frame m in
the normal bundle. In turn, as described in Section 2, these generate the metric g,
the second fundamental form λ with trace ψ and the connection A, all at the initial
time t = 0.

We will first carry out the construction of the global harmonic coordinates, and
use them to prove bounds for the parametrization F and for the metric g0 = Id +h0.
Then we introduce the Coulomb gauge, which in turn determines λ0 and A0.

The final objective of this section will be to describe the regularity and size of
(λ0, g0, A0), and thus justify the smallness condition (2.31) for the Schrödinger-
Parabolic system(2.28)–(2.29). The main result of this section is stated below in
Proposition 4.1 for dimensions d � 3 and Proposition 4.2 for dimension 2, respec-
tively.

In order to state the following propositions, we define some notations. Let
F : R

d
x → (Rd+2, gRd+2) be an immersion with induced metric g(x). For any

change of coordinate y = x + φ(x), we denote

F̃(y) = F(x(y)),

and its induced metric by g̃αβ(y) = 〈∂yα F̃, ∂yβ F̃〉. We also denote its Christoffel

symbol as �̃ and h̃(y) = g̃(y) − Id . The main results are summarized as follows:

Proposition 4.1. (Harmonic coordinates and initial data in dimensions d � 3) Let
d � 3, s > d

2 . Let F : (Rd
x , g) → (Rd+2, gRd+2) be an immersion with induced

metric g = Id + h. Assume that the metric h and the mean curvature H satisfy the
smallness conditions

‖|D|σd h‖Hs+1−σd � ε0, ‖H‖Hs � ε0. (4.1)

Then there exists a unique changeof coordinates y = x+φ(x)with limx→∞ φ(x) =
0 and ∇φ uniformly small, such that the new coordinates {y1, · · · , yd} are global
harmonic coordinates. Moreover, we have the bound

‖|D|σd∇φ‖Hs+1−σd � ‖|D|σd h‖Hs+1−σd (4.2)

and, in the new coordinates {y1, · · · , yd}, for the metric and mean curvature we
have

‖|Dy |σd h̃‖Hs+1−σd (dy) + ‖H‖Hs (dy) � ε0. (4.3)

In addition, under the harmonic coordinate condition (2.23) for g, respectively the
Coulomb gauge (2.18) for A, we have the following bounds for complex second
fundamental form λ, metric h = g − Id and A:

‖λ‖Hs + ‖h‖Ys+2
0

+ ‖A‖Hs+1 � ε0. (4.4)
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Compared to the above higher dimensions cases, in dimensions 2 we would
work in a smaller function space.

Proposition 4.2. (Harmonic coordinates and initial data in dimension 2) Let d = 2,
s > d

2 , and σd be as in (3.1). Let F : (Rd
x , g) → (Rd+2, gRd+2) be an immersion

with induced metric g = Id + h. Assume that the metric h and mean curvature H
satisfy the smallness conditions

‖|D|σd h‖Hs+1−σd � ε0, ‖h‖Y lo
0

� ε0, ‖H‖Hs � ε0. (4.5)

Then there exists a change of coordinates y = x + φ(x), with ∇φ uniformly
small and with limx→∞ ∇φ(x) = 0, unique modulo constants, such that the new
coordinates {y1, · · · , yd} are global harmonic coordinates. Moreover, we have the
bound

‖|D|σd∇φ‖Hs+1−σd � ‖|D|σd h‖Hs+1−σd , (4.6)

and, in the new coordinates {y1, · · · , yd}, for the metric and mean curvature we
have

‖|Dy |σd h̃‖Hs+1−σd (dy) + ‖h̃‖Y lo
0

+ ‖H‖Hs (dy) � ε0 . (4.7)

In addition, under the harmonic coordinate condition (2.23) for g, respectively the
Coulomb gauge (2.18) for A, we have the following bounds for complex second
fundamental form λ, metric h = g − Id and A:

‖λ‖Hs + ‖h‖Ys+2
0

+ ‖A‖Hs+1 � ε0. (4.8)

We remark that the bounds (4.4) respectively (4.8) are the only way the har-
monic/Coulomb gauge condition at t = 0 enters this paper. Later, in the study of
the parabolic system (2.29), we simply assume that the initial data (λ0, h0, A0)

satisfies the above smallness condition.
Of the three components of the initial data, λ0 may be thought of as the funda-

mental one. Indeed, the initial data (g0, A0) for the heat flow (2.29) is determined
by λ0 via the harmonic coordinate condition (2.23) for g, respectively the Coulomb
gauge (2.18) for A, which yield the elliptic equations in Lemmas 2.3 and 2.1. This
was the point of view adopted in our previous paper [9] in high dimension, and it
largely applies here as well. The only exception to this is in two space dimensions,
where we a-priori make an additional low frequency assumption on the metric g,
namely the Y lo

0 bound, which cannot be recovered from the λ0 bounds.

4.1. Global Harmonic Coordinates

Here we make a change of coordinates to gain the harmonic coordinates, and
then prove that in the new coordinates, the metric h and mean curvature H are also
small.

Step 1: Solve the φ equation and prove the bounds (4.2) and (4.6). To obtain
harmonic coordinates, we start with the bound for metric

‖|D|σd h‖Hs+1−σd � ε0. (4.9)
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We make a change of coordinates x + φ(x) = y with ∇φ small such that the new
coordinates are harmonic. Since the operator�g does not depend on the coordinates,
by (2.23) we have

�g(x + φ(x)) = 0,

which implies

�gφγ = gαβ�
γ
αβ, (4.10)

and which we write schematically in the form

�φ = h∇2φ + g∇h∇φ + g∇h.

Since the leading order term in the right hand side is ∇h, by the assumption on the
metric |D|σd h ∈ Hs+1−σd we will work in the space

{φ : ‖|D|1+σdφ‖Hs+1−σd < ∞}
Then by Sobolev embeddings and the smallness of h we can uniquely solve the
equation (4.10) in this space using the contraction principle, obtaining a solution φ

which satisfies the bound

‖|D|σd∇φ‖Hs+1−σd � ‖|D|σd h‖Hs+1−σd � ε0. (4.11)

which is exactly (4.2) and (4.6) in Theorem 4.1, respectively Theorem 4.2.
Step 2: Prove the bounds (4.3) and (4.7) for h̃ and H in Sobolev spaces. First

we prove that the desired h̃ bound holds in the x-coordinates,

‖|Dx |σd h̃(y(x))‖Hs+1−σd (dx) � ‖|D|σd h‖Hs+1−σd (dx). (4.12)

By the above change of coordinate and (4.2) we have ∂x
∂y = Id + P(x) where P is

an algebraic function of ∇φ. Hence by algebra and Moser estimates we have

‖|D|σdP‖Hs+1−σd � ‖|D|σd∇φ‖Hs+1−σd � ε0. (4.13)

Then the desired bound (4.12) follows from the relation

g̃αβ(y(x)) = gμν(x)(δ
μ
α + Pμ

α )(δν
β + Pν

β),

again by using algebra bounds in the same space.
In order to complete the proof of (4.3) and (4.7), we need to be able to transfer

the Sobolev norms from the x to the y coordinates. For this we will apply the
following lemma:

Lemma 4.3. Let the change of coordinates x +φ(x) = y be as in Proposition 4.1.
Define the linear operator T as T ( f )(y) = f (x(y)) for any function f ∈ L2(dx).
Then we have

‖T ( f )(y)‖Hσ (dy) � ‖ f (x)‖Hσ (dx), σ ∈ [0, s + 1], (4.14)

‖T ( f )(y)‖Ḣα(dy) � ‖ f (x)‖Ḣα(dx), α ∈ [0,
d

2
). (4.15)
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Proof. The first bound is obtained from (4.13) and (4.2) using the same argument
as in Lemma 8.5 in [9], It remains to prove the second bound (4.15).

By the smallness of φ (4.2) we have

‖T ( f )(y)‖L2(dy) � ‖ f (x)
√
I + ∂xφ‖L2(dx)

� (1 + ‖|D|1+σd‖Hs−σd )N‖ f (x)‖L2(dx) � ‖ f (x)‖L2(dx).

Similarly, by (4.2) and (4.13) we also have

‖∂yT ( f )(y)‖L2(dy) � ‖(1 + P)∂x f (x)
√
I + ∂xφ‖L2(dx) � ‖∂x f (x)‖L2(dx).

Then by interpolation we obtain (4.15) forα ∈ [0, 1]. This suffices in dimensiond =
2. In higher dimension, we inductively increase the range of α by differentiating.
Precisely, for α > 1 we have

‖T ( f )(y)‖Ḣα(dy) = ‖∂yT ( f )(y)‖Ḣα−1(dy)

Here

∂yT ( f )(y) = T ((I + P)∂x f )

and, by (4.13),

‖(I + P)∂x f ‖Ḣα−1(dx) � ‖∂x f ‖Ḣα−1(dx)

Hence we have reduced the Ḣα bound to the Ḣα−1 bound. ��
Given this lemma, by (4.12), (4.14) with σ = s + 1 and (4.15) we obtain

‖|D|σd h̃‖Hs+1−σd (dy) � ‖|D|σd h‖Hs+1−σd (dx)

Hence the h̃ bounds in (4.3) and (4.7) follow. Similarly, the H bound is also directly
transferred to the y coordinates by Lemma 4.3.

Step 3: Prove bounds for ∂2F in harmonic coordinates. While this bound was
not explicitely stated in Propositions 4.1, 4.2, it will play an important role later in
the proof of the bounds (4.4) and (4.8).

Lemma 4.4. Let d � 2, s > d
2 , and F : (Rd , g) → (Rd+2, gRd+2) be an immersion

with metric ‖|D|σd h‖Hs+1−σd � ε0 and mean curvature ‖H‖Hs � ε0 in some
coordinates. Then we have

‖∂2F‖Hs � ε0. (4.16)

We note that, as a corollary, it follows that we also have the bound

‖∇ h̃‖Hs � ε0. (4.17)

This bound in effect superseeds the h̃ bound in (4.3), (4.7), with one exception,
namely in two dimensions at low frequency.

Another corollary of this is the corresponding bound for the second fundamental
form h, namely

‖h‖Hs � ε0. (4.18)
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Proof of Proposition 4.4. By the smallness of |D|σd (g− Id) and Sobolev embed-
ding, we have

‖gαβ�
γ
αβ∂γ F‖Hs � (1 + ‖|D|σd h‖Hs+1−σd )‖|D|σd h‖Hs+1−σd (‖∂γ F‖L∞∩Ḣ s )

� ε0(‖g‖1/2
L∞ + ‖∂2F‖Hs ) � ε0(1 + ‖∂2F‖Hs ).

Then we can bound ∂2F by

‖∂2F‖Hs = ‖R�F‖Hs � ‖�F‖Hs

� ‖�gF‖Hs + ‖hαβ∂2
αβF‖Hs + ‖gαβ�

γ
αβ∂γ F‖Hs

� ‖H‖Hs + ε0(1 + ‖∂2F‖Hs )

� ε0(1 + ‖∂2F‖Hs ),

which implies (4.16), and thus completes the proof of lemma. ��
Step 4: Prove the Y lo

0 bound for the metric h in (4.7) in two dimensions. To
transfer the Y lo

0 bounds to h̃, our starting point is the estimate

‖h‖Y lo
0

� ε0

Next we show that ∇φ satisfies a similar bound,

‖∇φ‖Ỹ lo
0

� ε0 (4.19)

Proof of (4.19). We use the φ-equations (4.10), which have the form

�φ = ∇h + h∇2φ + g∇h∇φ + h∇h.

To get (4.19) via the contraction principle it suffices to estimate the right hand side
above in order to prove that

‖∇φ‖Y lo
0

� ‖h‖Y lo
0

+ ε0(‖h‖Y lo
0

+ ‖∇φ‖Y lo
0

) + ε2
0

First, we bound the Y j norm of ∇φ. For the ∇h, we easily have

‖Pj∇−1∇h‖Y j � ‖Pjh‖Y j ,

which is acceptable. We will next show how to bound the most umbalanced term
h∇2φ; the rest of the terms are estimated similarly. For the high-low interactions
Pjh∇2P< jφ, by (4.11) we have

‖Pj∇−1(Pjh∇2P< jφ)‖Y0 j � ‖Pjh‖Y0 j ‖∇P< jφ‖L∞ � ε0‖Pjh‖Y0 j .

Similarly, for the low-high interactions P< j h∇2Pjφ, by (4.9) we have

‖Pj∇−1(P< j h∇2Pjφ)‖Y0 j � ‖P< j h‖L∞‖∇Pjφ‖Y0 j � ε0‖∇Pjφ‖Y0 j .
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Finally we consider the high-high interactions,
∑

l> j Pj (Plh∇2Plφ). Here we use
Bernstein’s inequality to obtain

2( d2 −δ) j‖
∑
l> j

∇−1Pj (Plh∇2Plφ)‖Y0 j � 2( d2 −1−δ) j
∑
l> j

‖Pj (Plh∇2Plφ)‖l1| j |L2

� 2(d−1−δ) j
∑
l> j

‖Plh‖L2‖∇2Plφ‖L2

�
∑
l> j

2(d−1−δ)( j−l)‖|D| d2 −δPlh‖L2‖|D| d2 Pl∇φ‖L2 ,

which in view of the bound (4.11) gives( ∑
j<0

22( d2 −δ) j−‖
∑
l> j

∇−1Pj (Plh∇2Plφ)‖2
Y0 j

)1/2
� ‖|D|σd h‖L2‖|D| d2 ∇φ‖L2 � ε2

0 .

Secondly, we bound theY00∩L∞ norm for the high frequency part P�0∇φ. The
L∞ bound follows from the Hs bound for φ and Sobolev embeddings. It remains
to estimate its Y00 norm. Since the operator P>0∇−1∇ has the kernel localized to
the unit spatial scale, we have

‖P�0∇−1∇h‖Y00 � ‖P�0‖Y00 .

Here we also only discuss the term h∇2φ; the contributions of the other terms are
estimated similarly. We first divide this term as

P�0∇−1(P�0h∇2φ) + P�0∇−1(P<0h∇2P�0φ) + P�0∇−1(P<0h∇2P[−3,−1]φ).

For the first term, we directly have

‖P�0∇−1(P�0h∇2φ)‖Y00 � ‖P�0h‖Y00‖∇2φ‖L∞ � ε0‖P�0h‖Y00 .

The second term, we further divide it as

P�0∇−1(P<0h∇2P�0φ) = P�0R(P<0h∇P�0φ) + P�0∇−1(∇P<0h∇P�0φ),

where R is Riesz transform. Then we bound this by

‖P�0∇−1(P<0h∇2P�0φ)‖Y00 � ‖P<0h‖L∞‖P�0∇φ‖Y00 � ε0‖P�0∇φ‖Y00 .

Finally, we bound the last term by

‖P�0∇−1(P<0h∇2P[−3,−1]φ)‖Y00 � ‖P<0h‖L∞‖P[−3,−1]∇φ‖Y00 � ε0‖P[−3,−1]∇φ‖Y lo
0

.

This concludes the proof of the Y00 ∩ L∞ norm for P�0∇φ. ��
The new metric h̃ expressed in the x coordinates has the cubic polynomial form

h̃ = P(h,∇φ).

Using the algebra property (3.4) for Y lo
0 and (4.19), we conclude that

‖h̃‖Ỹ x
0

� ε0
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It remains to switch this bound to the y coordinates, i.e. show that

‖h̃‖Ỹ x
0

≈ ‖h̃‖Ỹ y
0

(4.20)

where the difficulty is that we need to use a Littlewood–Paley decomposition. We
will circumvent this by using the following representation of Y lo

0 functions:

Lemma 4.5. A function f is in Y lo
0 iff it admits a representation

f =
∑
j�0

f j , f j ∈ Y0 j

so that the following norm is finite:

|||( f j )|||2 = ‖ f0‖Y00∩L∞ +
∑
j<0

22(1−δ) j
(
‖ f j‖2

Y0 j
+ 2−2 j‖∇ f j‖2

Y0 j
+ 2−4 j‖∇2 f j‖2

Y0 j

)

Further, we have

‖ f ‖Y lo
0

≈ inf{|||( f j )||||; f =
∑
j�0

f j }

Since by Sobolev embeddings φ is small in C2, the triple norms are easily seen
to be equivalent in the x and the y coordinates, therefore the relation (4.20) follows.
It remains to prove the Lemma.

Proof. In one direction, we directly see that the decomposition

f0 = P�0 f, f j = Pj f, j < 0

yields

‖ f ‖Ỹ0
≈ |||( f j )|||

Conversely, if f = ∑
f j , then we need to show that

‖ f ‖Ỹ0
� |||( f j )||| (4.21)

For this we estimate for k < 0

‖Pk f ‖Y0k � ‖Pk f0‖Y0k +
∑
j<0

‖Pk f j‖Y0k

� 2k‖ f0‖Y00 +
∑
j<0

2−| j−k|(‖ f j‖Y j + 2−2 j‖∇2 f j‖Y j )

Due to the off-diagonal decay, this implies (4.21). ��
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4.2. The Initial Data (λ0, h0, A0)

These are determined by the initial manifold �0 given a gauge choice, which
consists of choosing (i) a good set of coordinates on �0, namely the harmonic
coordinates, and (ii) a good orthonormal frame in N�0, where we will use the
Coulomb gauge.

In the previous subsection we have discussed the construction of harmonic coor-
dinates and proved the Sobolev bound (4.17) for h0. Here we begin by constructing
a Coulomb frame in the normal bundle. Then we can define λ0 and A0 and directly
prove Hs bounds for them.

However, it turns out that the Hs bounds tell only part of the story for h0 and
A0, by treating them as linear objects. Instead, in our chosen gauge both h0 and A0
should be seen as quadratic objects, via the equations (2.23), respectively (2.18). In
the last part of the section we use these equations to improve the bounds for both
h0 and A0.

Step 1: The Coulomb frame in N�0 and the Hs bound for λ and A. To obtain
the Coulomb gauge, we choose ν̃ constant uniformly transversal to T�0; such a ν̃

exists because, by Sobolev embeddings, ∂x F has a small variation in L∞. Projecting
ν̃ on the normal bundle N�0 and normalizing we obtain a normalized section ν̃1
of the normal bundle with the same regularity as ∂F . Then we choose ν̃2 in N�0
perpendicular to ν̃1. We obtain the orthonormal frame (ν̃1, ν̃2) in N�0, which again
has the same regularity and bounds as ∂x F , namely (see Lemma 4.4)

‖∂ν̃ j‖Hs � ε0. (4.22)

This in particular implies that the associated connection Ã also satisfies

‖ Ã‖Hs � ε0. (4.23)

Then we rotate the frame to get a Coulomb frame (ν1, ν2), i.e. where the Coulomb
gauge condition ∇αAα = 0 is satisfied. In our complex notation, this corresponds
to

ν1 + iν2 = eib(ν̃1 + i ν̃2), A j = Ã j − ∂ j b,

where the rotation angle b must solve

�gb = ∇α Ãα.

This is an elliptic equation, where the metric g0 = Id + h0 satisfies (4.17). Using
the variational formulation at the H1 level and then perturbative analysis at higher
regularity, the solution is easily seen to satisfy

‖∂b‖Hs � ‖A‖Hs

It directly follows that ν1, ν2 and A also satisfy the bounds in (4.22), (4.23),

‖∂ν j‖Hs + ‖A‖Hs � ε0. (4.24)
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Projecting the second fundamental form h and the mean curvature H on the
Coulomb frame as in Section 2.2 we obtain the complex second fundamental form
λ and the complex mean curvature ψ . In view of (4.1), (4.5) and (4.18) both of
them have the same regularity,

‖λ‖Hs + ‖ψ‖Hs � ε0.

Step 2: Prove the bounds in (4.4) and (4.8) for the metric h. For this we rely on
the equation (2.24). The main result is as follows:

Lemma 4.6. Let d � 2, s > d
2 and σd be as in (3.1). Assume that h is a solution

of (2.24) satisfying

‖|D|σd h‖Hs+1−σd � ε0, ‖λ‖Hs � ε0.

Then for d � 3 we have

‖∂h‖Hs+1 + ‖h‖Y s+2
0

� ε0. (4.25)

Under the additional assumption

‖h‖Y lo
0

� ε0, (4.26)

in dimension d = 2 we have

‖|D|σd h‖Hs+2−σd + ‖P�0h‖Y s+2
0

� ε0. (4.27)

Here we remark on the key difference between dimensions two and higher.
In higher dimensions d � 3, h may be seen as the unique small solution for the
equation (2.24). But in two dimensions, we merely use (2.24) to improve the high
frequency bound for h. At low frequency this no longer works, and instead we use
the low frequency bounds on the initial metric h0 as an assumption in our main
result. We note that the assumption (4.26) in the two dimensional case could be
avoided, at the expense of a considerably longer proof.

Proof. By (2.24), it suffices to write the equation for h in the shorter form

�h = h∇2h + ∇h∇h + λ2.

From this and Sobolev embedding, we easily have

‖P�0�h‖Hs � ‖|D|σd h‖Hs+1−σd ‖|D|σd h‖Hs+2−σd + ‖∂xh‖2
Hs + ‖λ‖2

Hs

� ε0‖P�0|D|σd h‖Hs+2−σd + ε2
0 .

This implies that

‖|D|σd h‖Hs+2−σd � ε0. (4.28)

In dimension three and higher, a similar argument applies in order to improve the
low frequency bound. This argument is already in [9], and we do not repeat it here.
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Next, we bound the Y s+2
0 norm of h. For the low-frequency part, we only need to

consider the higher dimensional case d � 3, as in the case d = 2 the low frequency
bound is assumed in Theorem 1.3. We bound the high-low or low-high interactions
by

‖�−1Pj (P� j−3h∇2h)‖Y j � 2−2 j
∑
l�| j |

2l−| j |‖Pj (P� j−3h∇2h j,l)‖l1l L2

� ‖h‖L∞‖Pjh‖Y j

� ‖|D|σd h‖Hs−σd ‖Pjh‖Y j ,

For the high-high interactions Pj (∇Plh∇Plh), we have

‖
∑
l� j

�−1Pj (∇Plh∇Plh)‖Y j

� 2−2 j
( ∑

| j |�l� j

‖Pj (∇Plh∇Plh)‖l1| j |L2 +
∑
l>| j |

2l−| j |‖Pj (∇Plh∇Plh)‖l1l L2

)

�
∑

| j |�l� j

2(d/2−2) j‖∇Plh‖L2‖∇Plh‖L2 +
∑
l>| j |

2(d/2−2) j2l−| j |‖∇Plh‖L2‖∇Plh‖L2 ,

From these two bounds, for d � 3 we obtain

‖�−1(h∇2h + ∇h∇h)‖Y s+2
0

� ‖|D|σd h‖Hs+2−σd ‖h‖Y s+2
0

+ ‖|D|σd h‖2
Hs+2−σd

,

(4.29)

and for d = 2 we obtain

‖P�0�
−1(h∇2h + ∇h∇h)‖Y s+2

0
� ‖|D|σd h‖Hs+2−σd ‖h‖Y s+2

0
+ ‖|D|σd h‖2

Hs+2−σd
.

(4.30)

We then bound the contribution of the λ2 source term. For the high-low or
low-high interactions we have

‖�−1Pj (P< jλPjλ)‖Y j � 2−2 j‖Pj (P< jλPjλ)‖l1| j |L2

� 2d j
−/2−2 j‖P< jλ‖Hs‖Pjλ‖L2 ,

For the high-high interactions we have

‖
∑
l� j

�−1Pj (PlλPlλ)‖Y j �
∑

| j |�l� j

2(d/2−2) j‖Plλ‖2
L2 +

∑
l>| j |

2(d/2−2) j2l−| j |‖Plλ‖2
L2 .

These two bounds also imply for d � 3

‖�−1(λ2)‖Y s+2
0

� ‖λ‖2
Hs , (4.31)

and for d = 2

‖P�0�
−1(λ2)‖Y s+2

0
� ‖λ‖2

Hs . (4.32)



Arch. Rational Mech. Anal.          (2024) 248:10 Page 37 of 79    10 

Using (4.28), ‖h‖Y lo
0

� ε0 and ‖λ‖Hs � ε0, by h-equation, (4.29) and (4.31) we

obtain for d � 3

‖h‖Y s+2
0

� ε0‖h‖Y s+2
0

+ ε2
0 .

and by (4.30) and (4.32) we obtain for d = 2

‖P�0h‖Y s+2
0

� ε0‖h‖Y s+2
0

+ ε2
0 � ε0‖P�0h‖Y s+2

0
+ ε2

0 .

This concludes the proof of the bounds (4.25) and (4.27). ��
Step 3: Prove the bound (4.8) for A. This is obtained by (4.24) and the following

proposition. Here we solve the initial data A0 from the elliptic div-curl system
(2.19).

Proposition 4.7. (Initial data A0) Let d � 2, s > d/2 and δd = δ if d = 2 and
δd = 0 if d � 3. Assume that

‖λ‖Hs � ε0, ‖|D|σd h‖Hs+1−σd � ε0 (4.33)

Then the elliptic system (2.19) for A admits a unique small solution with

‖|D|δd A‖Hs+1−δd � ‖λ‖Hs . (4.34)

Moreover, assume that p0k is an admissible frequency envelope for λ ∈ Hs. Then
we have the frequency envelope bounds

‖Sk |D|δd A‖Hs+1−δd � ε0 p0k . (4.35)

In addition, for the linearization of the solution map above we also have the bound:

‖|D|δd δA‖Hσ+1−δd � ε0(‖|D|σd δh‖Hσ+1−σd + ‖δλ‖Hσ ), σ ∈ (d/2 − 2, s].
(4.36)

Proof. Using the definition of covariant derivatives and the harmonic coordinate
condition (2.23) we can rewrite the div-curl system (2.19) for A as

∂αAα = 0, ∂αAβ − ∂β Aα = Im(λαγ λ̄
γ
β ).

Using these equations we derive a second order elliptic equation for A, namely

∂γ ∂γ Aα = ∂γ g
γβ∂αAβ − ∂γ g

γβ(∂αAβ − ∂β Aα)

= (∂γ g
γβ∂α − ∂αg

γβ∂γ )Aβ − ∂γ Im(λασ λ̄γ σ )

Here we have a leading order cancellation in the first term on the right, but we
prefer to keep the divergence structure and rewrite this equation schematically in
the form

�A = ∂(λ2) + ∂(h∂A).

This will be well suited in order to solve this equation via the contraction principle.
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Precisely, we define the map A → T (A) with T (A) satisfying

�T (A) = ∂(λ2) + ∂(h∂A).

so that the solution A may be seen as a fixed point for T . To use the contraction
principle, it suffices to show that, under the assumption (4.33), this map is Lipschitz
in the ball {A : ‖|D|δd A‖Hs+1−δd � C‖λ‖Hs } with a small Lipschitz constant. This
would yield the existence and uniqueness of solutions for A-equations and the
bound (4.34).

To establish the contraction property, we consider the linearization of T ,

�δT (A) = ∇(λδλ) + ∇(δh∇A + h∇δA),

under the assumptions

‖|D|δd A‖Hs+1−δd + ‖|D|σd h‖Hs+1−σd + ‖λ‖Hs � ε0.

Here we denote by ã0k , c̃0k and p̃0k are admissible frequency envelopes for |D|δd δA ∈
Hσ+1−δd , |D|σd δh ∈ Hσ+1−σd and δλ ∈ Hσ respectively. Under these assump-
tions we will prove that the above linearization satisfies the bound

‖Sk |D|δd δT (A)‖Hσ+1−δd � ε0(ã0k + c̃0k + p̃0k), (4.37)

If the bound (4.37) is true, then by the contraction principle we immediately get a
unique small solution A to our equations, as well as the linearized bound (4.36).

We can also use (4.37) in order to prove the frequency envelope bounds (4.35).
Indeed, by (3.3) and (4.34) we have

a0k = 2−δk‖|D|δd A‖Hs+1−δd + max
j

2−δ| j−k|‖S j |D|δd A‖Hs+1−δd

� 2−δk(ε0‖|D|δd A‖Hs+1−δd + ε0‖λ‖Hs ) + max
j

2−δ| j−k|(ε0a0 j + ε0 p0 j )

� ε0a0k + ε0 p0k .

This implies (4.35) for ε0 sufficiently small.
It remains to prove the bound (4.37). We have

‖Sk |D|δd δT (A)‖Hσ+1−δd � ‖Sk |D|−1+δd (δh∇A + h∇δA + λδλ)‖Hσ+1−δd .

Here we only estimate the term λδλ; the others are similar. Precisely, when k = 0,
using a Littlewood–Paley decomposition, Bernstein’s inequality and (3.2) we obtain

‖|D|−1+δd S0(λδλ)‖L2 � ‖λ‖L2‖S0δλ‖L2 +
∑
j�0

2−σ j‖λ j‖L2 2σ j‖δλ j‖L2

� ‖λ‖L2 p̃00 +
∑
j�0

2(δ−σ) j‖λ j‖L2 p̃00

� ‖λ‖Hs p̃00.
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When k > 0, we use Bernstein’s inequality to bound the high-low and low-high
interactions by ‖λ‖Hs p̃0k . For the high-high interaction we have

‖|D|−1+δd Sk(
∑
l>k

λlδλl)‖Hσ+1−δd

�
∑
l>k

2(σ+ d
2 )k‖λl‖L2‖δλl‖L2

� 1�−d/2(σ )
∑
l>k

2(σ+ d
2 −δ)k2(δ−σ)l‖λl‖L2 2σ l‖δλl‖L2

+ 1>−d/2(σ )
∑
l>k

2(σ+ d
2 +δ)(k−l)2( d2 +δ)l‖λl‖L2 2σ l‖δλl‖L2

� ‖λ‖Hs p̃0k .

This concludes the proof of bound (4.37), and completes the proof of the lemma. ��

5. Estimates for the Parabolic Equations

Here we consider the solvability of the parabolic system (2.29). For this purpose
we view λ ∈ l2Xs as a parameter, and show that the solution (h, A) ∈ Es exists, it
is small and has a Lipschitz dependence on both the initial data and on λ.

Theorem 5.1. (a) Let d � 2, s > d/2. Assume that‖h0‖Ys+2
0

� ε,‖|D|δd A0‖Hs+1−δd

� ε and ‖λ‖l2Zs � ε. Then the parabolic system (2.29)–(2.30) admits a unique
small solution S = (h, A) in Es , with

‖S‖Es � ‖S0‖Es
0
+ ‖λ‖l2Zs . (5.1)

In addition this solution has a Lipschitz dependence on both S0 in Es
0 and λ in

l2Zs. Moreover, assume that s0k and pk are admissible frequency envelopes for
(h0, A0) ∈ Es

0, λ ∈ l2Zs respectively, we have the frequency envelope version

‖Sk‖Es � s0k + εpk . (5.2)

(b) In addition, for the linearization of the parabolic system (2.29) we have the
bounds

‖δS‖Es � ‖δS0‖Es
0
+ ε‖δλ‖l2Zs , (5.3)

and

‖δS‖Eσ � ‖δS0‖Hσ + ε‖δλ‖Zσ , (5.4)

for σ ∈ ( d2 − 2, s].
We will do this in two steps. First we prove that this system is solvable in

the larger space E s . Then we improve the space-time bounds for the metric h to
the stronger norm Ys+2; the latter will be needed in the study of the Schrödinger
evolution (2.28).
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Lemma 5.2. Let g = Id + h. Assume that ‖h‖Zσd ,s+1 � ε for s > d/2 and d � 2.
Let ck and ak be admissible frequency envelopes for h ∈ Zσd ,s+1, respectively
A ∈ Zs. Then for any d/2 − 2 < σ � s and a linearization operator δ we have

‖δ(hg)‖Zσd ,σ+1 � ‖δh‖Zσd ,σ+1, (5.5)

‖δ(Ag)‖Zσ � ‖δA‖Zσ + ‖A‖Zs‖δh‖Zσd ,σ , (5.6)

and hence we have

‖Sk(hg)‖Zσd ,s+1 � ck, (5.7)

‖Sk(Ag)‖Zs � ak, (5.8)

Proof. Assume that c̃k(σ ) and ãk are admissible frequency envelopes for δh ∈
Zσd ,σ and δA ∈ Zσ . Using a Littlewood–Paley decomposition, Bernstein’s in-
equality and the smallness of h we obtain

‖Sk(δhh)‖Zσd ,σ+1 � εc̃k(σ + 1) + ‖δh‖Zσd ,σ+1ck .

This implies (5.5) and (5.7) immediately. For A we have

‖Sk(δAh)‖Zσ � εãk,

and

‖Sk(Aδh)‖Zσ � ak‖δh‖Zσd ,σ + ‖A‖Zs c̃k(σ ).

These give (5.6) and (5.8). ��
Now, we begin to solve the parabolic system (2.29) with initial data (2.30) as

follows:

Proposition 5.3. (a) Assume that ‖(h0, A0)‖Hs � ε and ‖λ‖Zs � ε for s > d/2
and d � 2. Then the parabolic system (2.29)–(2.30) admits a unique small
solution S = (h, A) in Es , with

‖S‖Es � ‖S0‖Hs + ‖λ‖Zs . (5.9)

In addition this solution has a Lipschitz dependence on S0 in Hs and λ in
Zs . Moreover, assume that s0k and pk are admissible frequency envelopes for
S0 ∈ Hs , λ ∈ Zs respectively, then we have the frequency envelope version

‖Sk‖Es � s0k + εpk . (5.10)

(b) In addition, for the linearization of the parabolic system (2.29) we have the
bounds

‖δS‖Eσ � ‖δS(0)‖Hσ + ε‖δλ‖Zσ , (5.11)

for σ ∈ ( d2 − 2, s].
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Proof. First, we consider a linear equation and prove a linear estimate. Precisely,
assume that the frequency localized function uk is solution of the linear equation

∂t uk − �uk = fk, uk(0) = u0k .

Then by Bernstein’s inequality we have the linear estimates

1

2

d

dt
‖uk‖2

L2 � − c22k‖uk‖2
L2 + ‖uk‖L2‖ fk‖L2 .

We cancel one ‖uk‖L2 , then multiply both sides by ec22k t and integrate in time to
obtain

‖uk(t)‖L2 � e−c22k t‖u0k‖L2 + 2−2k‖ fk(s)‖L∞L2 . (5.12)

In order to solve (2.29) with small initial data, it suffices to consider the follow-
ing linearized equations

∂tδhk − �δhk = N1, ∂tδAk − �δAk = N2,

where the nonlinearities N1 and N2 are

N1 = Sk(δh∇2h + h∇2δh + δh∇h∇h + g∇h∇δh + λδλ),

N2 = Sk(h∇2δA + δh∇2A + ∇h∇δA + ∇δh∇A

+ ∇2h δA + ∇2δh A + ∇h∇hδA + ∇h∇δhA + λ∇δλ

+ δλ∇λ + λδλ(∇h + A) + λ2(∇δh + δA)),

with h, A and λ satisfying ‖(h, A)‖Es � ε, ‖λ‖Zs � ε. Then we will prove the
bound

‖SkδS‖Eσ � s̃0k + ε(s̃k + p̃k) + (sk + pk)(‖δS‖Eσ + ‖δλ‖Zσ ), (5.13)

where s̃0k , s̃k , p̃k and sk are admissible frequency envelopes for δS(0) ∈ Hσ ,
δS ∈ Eσ , δλ ∈ Zσ and S ∈ E s respectively.

Assuming the bound (5.13) is true, then we can use the contraction mapping
principle to solve the parabolic system (2.29) in the space{

S = (h, A) ∈ E s : ‖S‖Es � C(‖S0‖Hs + ‖λ‖Zs ) � 2Cε
}
,

which also implies the bound (5.9).
By the definition of frequency envelopes (3.3) and (5.9), the bound (5.13) with

σ = s and δ = I d implies

sk � s0k + ε(sk + pk).

Thus the bound (5.10) follows. By (5.9), the bound (5.13) also gives (5.11).
We now return to the proof of (5.13). By the energy estimates in (5.12) we have

‖SkδS(t)‖Eσ � ‖SkδS0‖Hσ + ‖|D|σd SkN1‖L∞Hσ−σd + ‖SkN2‖L∞Hσ−1 .
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The estimates for the nonlinearities are similar, here we only estimate the following
terms.

A. The estimate for the terms h∇2δh and λδλ inN1. Using a Littlewood–Paley
decomposition we have

‖Sk(h∇2δh)‖L∞Hσ � 2σk‖h�k‖L∞L∞‖∇2δhk‖L∞L2

+
∑
l�k

2σk+(d/2+2)l‖hk‖L∞L2‖δhl‖L∞L2

+
∑
l>k

2(σ+d/2)(k−l)+(σ+d/2+2)l‖hl‖L∞L2‖δhl‖L∞L2

� ‖|D|σd h‖L∞Hs−σd c̃k + 2sk+2δk‖hk‖L∞L2 c̃k
+ c̃k‖|D|σd h‖L∞Hs+1−σd

� c̃k‖|D|σd h‖L∞Hs+1−σd ,

and

‖Sk(λδλ)‖L∞Hσ � 2σk‖λ�k‖L∞L∞‖δλk‖L∞L2 +
∑
l�k

2σk+dl/2‖λk‖L∞L2‖δλl‖L∞L2

+
∑
l>k

2(σ+d/2)(k−l)+(σ+d/2)l‖λl‖L∞L2‖δλl‖L∞L2

� ‖λ‖L∞Hs p̃k + pk‖δλ‖L∞Hσ +
∑
l>k

2(σ+d/2−δ)(k−l)‖λl‖L∞Hd/2 p̃k

� p̃k‖λ‖L∞Hs + pk‖δλ‖L∞Hσ .

B. The estimate for the terms ∇2hδA and λ∇δλ in N2. The second term is
estimated in the same manner as the above bound for λδλ in N1. For the first term
∇2hδA we have

‖Sk(∇2hδA)‖L∞Hσ−1

� ‖|D|σd h‖L∞Hs+1−σd ‖δAk‖L∞Hσ +
∑
l�k

2σk+k‖hk‖L∞L2‖δAl‖L∞Hd/2

+
∑
l>k

2(σ+d/2−1)(k−l)+(σ+d/2+1)l‖hl‖L∞L2‖δAl‖L∞L2

� εãk + ck‖δA‖L∞Hσ+1 +
∑
l>k

2(σ+d/2−1)(k−l)‖hl‖L∞Hd/2+δ ãk

� εãk + ck‖δA‖L∞Hσ+1 .

This concludes the proof of the bound (5.13), and completes the proof of the theo-
rem. ��

We continue with the bound for the l2Zσd ,s+2-norm of the metric h.

Proposition 5.4. Assume that ‖(h0, A0)‖Hs � ε and ‖λ‖l2Zs � ε for s > d/2 and
d � 2. Then the solution h also belongs to l2Zs+2 and satisfies the bounds

‖h‖l2Zσd ,s+2 � ‖|D|σd h0‖Hs+2−σd + ‖λ‖l2Zs . (5.14)
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Assume that c0k and pk areadmissible frequency envelopes for |D|σd h0 ∈ Hs+2−σd ,
λ ∈ l2Zs respectively. Then we have the frequency envelope bounds

‖Skh‖l2Zσd ,s+2 � c0k + εpk . (5.15)

Finally, for the linearization of the h-equations we have the bounds

‖δh‖l2Zσd ,s+2 � ‖|D|σd δh0‖Hs+2−σd + ε‖δλ‖l2Zs . (5.16)

Proof of Proposition 5.4. We split the proof into two steps, where we first prove
the appropriate bound for the linear constant coefficient heat flow and then we apply
that bound to solve the nonlinear problem perturbatively.

Step 1. Here we consider the linear equations

∂t Pku − �Pku = Pk f, (5.17)

with Pku localized at frequency 2k for k ∈ Z, and prove that

‖Pku‖l2|k|L∞L2 � ‖Pku(0)‖L2 + 2−2k+‖Pk f ‖l2|k|L∞L2 . (5.18)

By Duhamel’s formula, we have

‖Pku‖l2|k|L∞L2 � ‖et�Pku0‖l2|k|L∞L2 + ‖
∫ t

0
e(t−s)�Pk f ds‖l2|k|L∞L2 .

Then we use (3.5) and (3.6) to bound the above two terms respectively, then we
obtain (5.18).

Step 2. Here it suffices to write the linearized h equation in the form

∂tδh − �δh = δh∇2h + h∇2δh + δh∇h∇h + g∇h∇δh + λδλ := N ,

and to prove that

‖Skδh‖l2Zσd ,s+2 � ‖|D|σd Skδh0‖Hs+2−σd + ε(c̃k + p̃k)

+ (ck + pk)(‖δh‖l2Zσd ,s+2 + ‖δλ‖l2Zs ),
(5.19)

where c̃k, p̃k and ck are admissible frequency envelopes for δh ∈ l2Zσd ,s+2,
δλ ∈ l2Zs and h ∈ l2Zσd ,s+2 respectively.

If the bound (5.19) is true, then we choose the operator δ = I d to obtain (5.14).
Then by (5.19) and (3.3) we also obtain (5.15). The bound (5.19) combined with
(5.14) also implies (5.16).

We now continue with the proof of (5.19). By (5.18) we have

‖Skδh‖l2Zσd ,s+2 � ‖|D|σd δh0k‖Hs+2−σd + ‖SkN‖l2Zσd ,s .

For the nonlinearities, we only estimate h∇2δh and λδλ, the others are estimated
similiarly. Indeed, using a Littlewood–Paley decomposition we have

‖Pk(h∇2δh)‖l2|k|L∞L2 � ‖h‖L∞L∞ 22k‖Pkδh‖l2|k|L∞L2 + ‖Pkh‖l2|k|L∞L2‖∇2δh‖L∞L∞
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+
∑

|k|�l>k

2
d
2 k+2l‖Plh‖L∞L2‖Plδh‖l2l L∞L2

+
∑
l>|k|

2( d2 +2)l‖Plh‖L∞L2‖Plδh‖l2l L∞L2 .

By this estimate and Sobolev embeddings we obtain

‖Sk(h∇2δh)‖l2Zσd ,s � ‖|D|σd h‖L∞Hs−σd c̃k + ck‖|D|σd h‖L∞Hs+2−σd .

For the term λδλ, we also have

2sk‖Sk(λδλ)‖l2k L∞L2 � ‖λ‖l2Zs‖δλk‖L∞Hs + ‖λk‖l2k L∞Hs‖δλ‖Zs

+
∑
l>k

2sk2
d
2 l‖λl‖L∞L2‖δλl‖l2l L∞L2

� ε p̃k + pk‖δλ‖l2Zs .

This completes the proof of Proposition 5.4. ��
Finally, we carry out the last step in the proof of Theorem 5.1, and establish

bounds for the solutions h in the Y s+2 spaces:

Proposition 5.5. Let d � 2, s > d/2. Assume that ‖(h0, A0)‖Hs � ε and
‖λ‖l2Zs � ε. Then we have the bound

‖h‖Y s+2 � ‖h0‖Ys+2
0

+ ‖λ‖l2Zs . (5.20)

with Lipschitz dependence on the initial data in these topologies. Moreover, assume
that c0k and pk are admissible frequency envelope for h(0) ∈ Ys+2

0 and λ ∈ l2Zs,
then we have the frequency envelope version

‖Skh‖Y s+2 � c0k + εpk . (5.21)

In addition, for the linearization of the elliptic system (2.29) we have the bounds

‖δh‖Y s+2 � ‖δh0‖Ys+2
0

+ ε‖δλ‖l2Zs . (5.22)

Proof. Again it suffices to write the h equation in the form:

∂tδh − �δh = δh∇2h + h∇2δh + δh∇h∇h + g∇h∇δh + λδλ := N ,

and to prove that

‖δhk‖Y s+2 � ‖δh0k‖Y s+2
0

+ ε(c̃k + p̃k) + (ck + pk)(‖δh‖Ys+2 + ‖δλ‖l2Zs ),

(5.23)

where c̃k and p̃k are admissible frequency envelopes for δh ∈ Ys+2 and δλ ∈ l2Zs

respectively.
If (5.23) is true, then the bound (5.20) is obtained by (5.23) with the operator

δ = I d and the bound (5.14). We also obtain (5.21) by (5.23) and (5.15). The bound
(5.23) combined with (5.16) also implies (5.22).
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We now return to prove the bound (5.23). By Duhamel’s formula, (3.5) and
(3.6), we have

‖Skδh‖Y s+2 � ‖et�δh0k‖Y s+2 + ‖
∫ t

0
e(t−s)�SkN ds‖Y s+2 .

We estimate the first term in the right hand side. For any decomposition Pjδh(0) =∑
l�| j | δh j,l(0), by (3.5) we have

‖et�Pjδh(0)‖Y j � inf
Pj δh(0)=∑

l�| j | h j,l (0)

∑
l�| j |

2l−| j |‖et�δh j,l(0)‖l1|l|L∞L2

� inf
Pj δh(0)=∑

l�| j | δh j,l (0)

∑
l�| j |

2l−| j |‖δh j,l(0)‖l1|l|L2

= ‖δh(0)‖Y0 j .

This gives the bound for the first term.
Next, for the nonlinearities, we only estimate the Duhamel contributions of

h∇2δh and λδλ in detail. In order to bound the contribution of term h∇2δh, we use
the Littlewood–Paley trichotomy to decompose it into three cases:

a) Low-high interactions: Pj (P< j h∇2Pjδh). By (3.6), for any decomposition
Pjδh = ∑

l�| j | δh j,l we have

‖
∫ t

0
e(t−s)�Pj (P< j h∇2Pjδh)ds‖Y j =

∑
l�| j |

2l−| j |2−2 j+‖Pj (P< j h∇2δh j,l)‖l1l L∞L2

� 22 j−2 j+‖P< j h‖L∞L∞
∑
l�| j |

2l−| j |‖δh j,l‖l1l L∞L2

� 22 j−2 j+‖|D|σd h‖L∞Hs−σd ‖Pjδh‖Y j .

This implies both the low-frequency part bound

‖
∫ t

0
e(t−s)�

∑
j�0

Pj (P< j h∇2Pjδh)ds‖Y s+2 � ε‖S0δh‖Y s+2 ,

and the high frequency part bound

‖
∫ t

0
e(t−s)�S j (P< j h∇2Pjδh)ds‖Y s+2 � ε‖δh j‖Y s+2 .

b) The high-low interactions Pj (Pjh∇2P< j+O(1)δh) are estimated in the same
manner as the above low-high case, so we omit the computations.

c) High-high interactions:
∑

l> j Pj (Plh∇2Plδh). This sum can be further de-
composed as

∑
l> j = ∑

| j |>l> j +
∑

l�| j |. Then by (3.6) we bound the contribution
of the first term by

2( d2 −δ) j−‖
∫ t

0
e(t−s)�

∑
| j |>l> j

Pj (Plh∇2Plδh)ds‖Y j
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� 2( d2 −δ) j− ∑
| j |>l> j

‖Pj (Plh∇2Plδh)‖l1| j |L∞L2

�
∑

| j |>l> j

2(d−δ)( j−l)+(d+2−δ)l‖Plh‖l2| j |L∞L2‖Plδh‖l2| j |L∞L2

�
∑

| j |>l> j

2(d−δ)( j−l)‖Plh‖l2Zσd ,s c̃0.

Also by (3.6) we bound the contribution of second term by

2( d2 −δ) j−+(s+2) j+‖
∫ t

0
e(t−s)�

∑
l>| j |

Pj (hl∇2δhl)ds‖Y j

� 2( d2 −δ) j−+(s+2) j+ ∑
l>| j |

2l−| j |‖
∫ t

0
e(t−s)�Pj (hl∇2δhl)ds‖l1l L∞L2

� 2( d2 −δ) j−+(s+2) j+ ∑
l>| j |

2l−| j |+d j/2−2 j++2l‖hl‖l2| j |L∞L2‖δhl‖l2| j |L∞L2 (5.24)

This term is further controlled by

LHS(5.24) � 2(d+1−δ) j−+(s+ d
2 −1) j+ ∑

l>| j |
23l‖hl‖l2l L∞L2‖δhl‖l2l L∞L2

� 2(d+1−δ) j−‖h‖l2Zσd ,s+1 c̃0 + 1>0( j)‖h‖l2Zσd ,s+1 c̃ j .

This concludes the proof of the bound for the contribution of h∇2δh. Next we
consider the term λδλ. We also split its analysis into three cases:

a) Low-high interactions: Pj (P< jλPjδλ) and high-low interactions: Pj (Pjλ

P< jδλ). These two cases are similar, we only estimate the first term. By (3.6), we
have

‖
∫ t

0
e(t−s)�Pj (P< jλPjδλ)ds‖Y j � 2−2 j+‖Pj (P< jλPjδλ)‖l1| j |L∞L2

� 2−2 j+‖λ‖l2Zs‖Pjδλ‖l2| j |L∞L2 ,

which is acceptable.
b) High-high interactions:

∑
l> j Pj (Plλ · Plδλ). This sum can be further de-

composed as
∑

l> j = ∑
| j |>l> j +

∑
l�| j |. By (3.6) we bound the contribution of

the first sum by

2( d2 −δ) j−‖
∫ t

0
e(t−s)�

∑
| j |>l> j

Pj (Plλ · Plδλ)ds‖Y j

� 2( d2 −δ) j− ∑
| j |>l> j

‖Pj (Plλ · Plδλ)‖l1| j |L∞L2

� 2(d−δ) j− ∑
| j |>l> j

‖λl‖l2| j |L∞L2‖δλl‖l2| j |L∞L2
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� 2(d−2δ) j−‖λ‖l2Zs p̃0.

Next we bound the contribution of the second sum by

2( d2 −δ) j−+(s+2) j+‖
∫ t

0
e(t−s)�

∑
l>| j |

Pj (λlδλl)ds‖Y j

� 2( d2 −δ) j−+(s+2) j+ ∑
l>| j |

2l−| j |‖
∫ t

0
e(t−s)�Pj (λlδλl)ds‖l1l L∞L2

� 2( d2 −δ) j−+(s+2) j+ ∑
l>| j |

2l−| j |+d j/2−2 j+‖λl‖l2l L∞L2‖δλl‖l2l L∞L2

� 2(d+1−δ) j−+(s+ d
2 −1) j+ ∑

l>| j |
2l‖λl‖l2l L∞L2‖δλl‖l2l L∞L2

� 2(d+1−δ) j−‖λ‖l2Zs p̃0 + 1>0( j)‖λ‖l2Zs p̃ j .

This concludes the proof of the bound (5.23), and completes the proof of the propo-
sition. ��

6. Multilinear and Nonlinear Estimates

This section contains our main multilinear estimates which are needed for the
analysis of the Schrödinger equation in (2.28). We begin with the following low-
high bilinear estimates of ∇h∇λ.

Proposition 6.1. Let s > d
2 , d � 2 and k ∈ N. Suppose that ∇a(x) � 〈x〉−1,

h ∈ Y s+2 and λk ∈ l2Xs. Then for −s � σ � s we have

‖∇h�k · ∇λk‖l2Nσ � min{‖h‖Y σ+2‖λk‖l2Xs , ‖h‖Y s+2‖λk‖l2Xσ }, (6.1)

‖h�k∇a∇λk‖l2Nσ � min{‖h‖Y σ+2‖λk‖l2Xs , ‖h‖Y s+2‖λk‖l2Xσ }. (6.2)

In addition, if d/2 − 2 < σ � s − 1 then we have

‖∇h�k · ∇λk‖l2Nσ � min{‖h‖Zσd ,σ+2‖λk‖Zs , ‖h‖Zσd ,s+2‖λk‖Zσ }, (6.3)

and if d/2 − 2 < σ � s − 2 then we have

‖h�k∇2λk‖l2Nσ � ‖h‖Zσd ,σ+2‖λk‖l2Xs . (6.4)

Proof. (a) The estimate (6.1). This is obtained by a Littlewood–Paley decomposi-
tion and the following estimate

‖∇Pjh∇λk‖l2k Nk
� 2

d
2 j+2 j+‖Pjh‖Y j ‖λk‖Xk , j � k, j ∈ Z, k ∈ N,

which has been proved in [9, Lemma 5.1].
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(b) The estimate (6.2). Compared to [9, (5.2)], the estimate (6.2) is improved
by decomposing physical space dyadically. By duality, it suffices to prove that

I I j =
∫ 1

0
〈Pjh∇a∇λk, zk〉dt

� 2d j/2 log(2 + | j |)‖Pjh‖Y j ‖λk‖Xk , j � k, j ∈ Z, (6.5)

for any zk ∈ l2k Xk with ‖zk‖l2k Xk
� 1. For any decomposition Pjh = ∑

l�| j | h j,l ,

using the bound |∇a(x)| � 〈x〉−1, we consider the two cases |x | � 2l and |x | < 2l

respectively and then obtain

I I j �
∑
l�| j |

sup
‖zk‖l2k Xk�1

∑
0�l1�l

∫ 1

0
〈h j,l〈x〉−11[2l1−1,2l1 ](x)∇λk, zk〉dt

+
∑
l�| j |

sup
‖zk‖l2k Xk�1

∫ 1

0
〈h j,l〈x〉−11>2l (x)∇λk, zk〉dt

= I I j1 + I I j2.

By Bernstein’s inequality we bound the first term by

I I j1 �
∑
l�| j |

sup
‖zk‖l2k Xk�1

∑
0�l1�l

2−l1‖h j,l‖L∞L∞‖∇λk‖l∞l1 L2L2‖zk‖l∞l1 L2L2

�
∑
l�| j |

∑
0�l1�l

2
d j
2 ‖h j,l‖L∞L2‖λk‖Xk

� 2d j/2 log(2 + | j |)
∑
l�| j |

|l|
| j | ‖h j,l‖l1l L∞L2‖λk‖Xk .

The second term is bounded by

I I j2 �
∑
l�| j |

2−l sup
‖zk‖l2k Xk�1

‖h j,l‖l1l L∞L∞‖∇λk‖l∞l L2L2‖zk‖l∞l L2L2

�
∑
l�| j |

‖h j,l‖l1l L∞L∞‖λk‖Xk

� 2d j/2
∑
l�| j |

‖h j,l‖l1l L∞L2‖λk‖Xk .

Finally we take the infimum over the decompositions of Pjh to get the bound (6.5),
which in turn implies the estimate (6.2).

c) The estimates (6.3) and (6.4). By duality and Sobolev embedding, for any
j < k we have

‖Pjh∇2λk‖l2Nσ � 2σk‖Pjh∇2λk‖L2L2 � 2(σ+2)k‖|D|σd Pj h‖L∞Hd/2−σd ‖λk‖L2L2 ,

which gives the bound (6.4). We can also obtain the bound (6.3) similarly. This
completes the proof of the lemma. ��
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We next prove the remaining bilinear estimates and trilinear estimates.

Proposition 6.2. (Nonlinear estimates) Let s > d
2 and d � 2. Assume that pk, p̃k ,

sk and s̃k are admissible frequency envelopes for λ ∈ Zs, λ ∈ Zσ , S ∈ E s and
S ∈ Eσ respectively. Then we have

‖Sk(Bλ)‖l2Ns � sk‖λ‖Zs + pk‖B‖L2Hs , (6.6)

‖Sk(A2λ)‖l2Ns � sk‖A‖Zs‖λ‖Zs + pk‖A‖2
Zs , (6.7)

‖Sk(λ3)‖l2Ns � pk‖λ‖2
Zs . (6.8)

For −s � σ � s we have

‖Sk∇(h�k−4∇λ)‖l2Nσ � min{s̃k‖λ‖Zs , p̃k‖h‖Zσd ,s+2}, (6.9)

‖Sk(A�k−4∇λ)‖l2Nσ � min{s̃k‖λ‖Zs , p̃k‖A‖Zs+1}, (6.10)

and for −s � σ � s − δ we have

‖Sk(Bλ)‖l2Nσ � min{s̃k‖λ‖Zs , p̃k‖B‖L2Hs }, (6.11)

‖Sk(A2λ)‖l2Nσ � min{s̃k‖A‖Zs‖λ‖Zs , p̃k‖A‖2
Zs }, (6.12)

‖Sk(λ3)‖l2Nσ � s̃k‖λ‖2
Zs . (6.13)

If −s � σ � s − 1, then

‖Sk(A<k−4∇λ)‖l2Nσ � pk‖A‖Zσ+1 . (6.14)

Proof. We first prove (6.9) and (6.10). These two bounds are proved by Hölder’s
inequality and Bernstein’s inequality, here we only prove the first bound in detail.
For the high-low case, by duality we have∑

j�k+C

‖Sk∇(hk∇λ j )‖l2Nσ �
∑

j�k+C

2σk‖Sk∇(hk∇λ j )‖L2L2

�
∑

j�k+C

2(σ+1)k‖hk‖L2L2‖∇λ j‖L∞L∞

�
∑

j�k+C

2(σ+1)k+(d/2+1) j‖hk‖L2L2‖λ j‖L∞L2 .

Then by −s � σ � s and (3.2), we can bound this by min{s̃k‖λ‖Zs , p̃k‖h‖L2Hs+2}.
For the high-high case, when σ + d/2 + 1 > 0 we have∑

j>k

‖Sk∇(h j∇λ j )‖l2Nσ

�
∑

j1= j2+O(1), j1>k

2(σ+1)k+dk/2‖Sk(h j1∇λ j2)‖L2L1

�
∑

j1= j2+O(1), j1>k

2(σ+1+d/2+δ)(k− j1)+(σ+2+d/2+δ) j1‖h j1‖L2L2‖λ j2‖L∞L2

� min{s̃k‖λ‖Zs , p̃k‖h‖Z1,s+2},
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and when σ + d/2 + 1 � 0 we have∑
j1= j2+O(1), j1>k

‖Sk∇(h j1∇λ j2)‖l2Nσ

�
∑

j1= j2+O(1), j1>k

2(σ+1+d/2−δ)k+(δ+1) j1‖h j1‖L2L2‖λ j2‖L∞L2

� min{s̃k‖λ‖Zs , p̃k‖h‖Z1,s+2}.
Next, we prove the bounds (6.6)–(6.8) and (6.11)–(6.13). These are all similar,

so we only prove (6.6) and (6.11) in detail. Indeed, by duality we have

‖Sk(Bλ)‖l2Nσ � 2σk‖Sk(Bλ)‖L2L2 .

Then using the Littlewood–Paley trichotomy we divide this into low-high, high-
low and high-high cases. For the low-high interactions, by Sobolev embeddings we
have for −s � σ � s

2σk‖Sk(B<kλk)‖L2L2 � ‖B<k‖L2L∞2σk‖λk‖L∞L2 � p̃k‖B‖L2Hs .

If −s � σ � s − δ, we use L2Hσ for Bl = Sl B. Then by ‖Bl‖L2Hσ � 2δ(k−l)s̃k
we also have

2σk‖Sk(B<kλk)‖L2L2 � s̃k‖λ‖Zs .

The high-low interactions can be estimated similarly. For the high-high interactions,
by Sobolev embeddings when −d/2 − δ � σ � s we have

2σk‖
∑
l>k

Sk(Blλl)‖L2L2 �
∑
l>k

2(σ+d/2+2δ)(k−l)2(σ+d/2+2δ)l‖Bl‖L2L2‖λl‖L∞L2

� min{s̃k‖λ‖Zs , p̃k‖B‖L2Hs },
and when −s � σ < −d/2 − δ we have

2σk‖
∑
l>k

Sk(Blλl)‖L2L2 �
∑
l>k

2(σ+d/2)k‖Bl‖L2L2‖λl‖L∞L2

� 2−δk min{‖B‖L2Hσ ‖λ‖Z−σ , ‖B‖L2H−σ ‖λ‖Zσ }
� min{s̃k‖λ‖Zs , p̃k‖B‖L2Hs },

These imply the bounds (6.6) and (6.11).
Finally, we prove the bound (6.14). If d/2 − 1 + δ � σ � s − 1, by duality and

Sobolev embeddings, we have

‖A<k∇λk‖l2Nσ � 2(σ+1)k‖A<k‖L2L∞‖λk‖L∞L2 � pk‖A‖Zσ+1 .

If σ < d/2 − 1 + δ, we have

2σk‖A<k∇λk‖L2L2 �
∑

0�l<k

2(d/2−1−σ+2δ)(l−k)‖A‖L2Hσ+1 2(d/2+2δ)k‖λk‖L∞L2

� pk‖A‖Zσ+1 .

Then the bound (6.14) follows. Hence this completes the proof of the lemma. ��
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We shall also require the following bounds for commutators.

Proposition 6.3. (Commutator bounds) Let d � 2 and s > d
2 . Let m(D) be a

multiplier with symbol m ∈ S0. Assume h ∈ Y s+2, ∂x A ∈ L2Hs and λk ∈ l2Xs,
frequency localized at frequency 2k . If −s � σ � s then we have

‖∇[S<k−4h,m(D)]∇λk‖l2Nσ � min{‖h‖Y σ+2‖λk‖l2Xs , ‖h‖Y s+2‖λk‖l2Xσ },
(6.15)

‖[Sk, A<k−4]∇λk‖l2Nσ � min{‖∂x A‖L2Hs‖λk‖L∞Hσ ,

‖∂x A‖L2Hσ ‖λk‖L∞Hs }. (6.16)

Proof. This is similar to Proposition 5.3 in [9]. First we estimate (6.15). In [20,
Proposition 3.2], it was shown that

∇[S<k−4g,m(D)]∇Skλ = L(∇S<k−4g,∇Skλ),

where L is a translation invariant operator satisfying

L( f, g)(x) =
∫

f (x + y)g(x + z)m̃(y + z) dydz, m̃ ∈ L1.

Given this representation, as we are working in translation-invariant spaces, by
(6.1) the bound (6.15) follows.

Next, for the bound (6.16). Since

[Sk, A<k]∇λ =
∫ 1

0

∫
2kd ϕ̌(2k y)2k y∇A<k(x − sy)2−k∇λ[k−3,k+3](x − y) dyds,

By translation-invariance and the similar argument to (6.11), the bound (6.16)
follows. This completes the proof of the lemma. ��

7. Local Energy Decay and the Linearized Problem

In this section, we consider a linear Schrödinger equation

{
i∂tλ + ∂α(gαβ∂βλ) + 2i Aα∂αλ = F,

λ(0) = λ0,
(7.1)

and, under suitable assumptions on the coefficients, we prove that the solution
satisfies suitable energy and local energy bounds.
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7.1. The Linear Paradifferential Schrödinger Flow

As an intermediate step, here we prove energy and local energy bounds for a
frequency localized linear paradifferential Schrödinger equation

i∂tλk + ∂α(gαβ
<k−4∂βλk) + 2i Aα

<k−4∂αλk = fk . (7.2)

We begin with the energy estimates, which are fairly standard.

Lemma 7.1. (Energy-type estimate) Let d � 2. Assume that λk solves the equation
(7.2) with initial data λk(0) in the time interval [0, 1]. For a fixed s > d

2 , assume
that ∂x A ∈ L2Hs, λk ∈ l2k Xk, and fk = f1k + f2k with f1k ∈ N and f2k ∈ L1L2.
Then we have

‖λk‖2
L∞
t L2

x
� ‖λk(0)‖2

L2 + ‖∂x A‖L2Hs‖λk‖2
Xk

+ ‖λk‖Xk‖ f1k‖Nk + ‖λk‖L∞L2‖ f2k‖L1L2 .
(7.3)

Proof. For the proof, we refer the readers to Lemma 6.1 in [9]. Here we just replace
the condition A ∈ Z1,s+1 in [9] by the assumption ∂x A ∈ L2Hs . ��

Next, we prove the main result of this section, namely the local energy estimates
for solutions to (7.2).

Proposition 7.2. (Local energy decay) Let d � 2. Assume that the coefficients
h = g − Id and A in (7.2) satisfy

‖h‖Ys+2 + ‖A‖Zs+1 � ε (7.4)

for some s > d
2 and ε > 0 small. Let λk be a solution to (7.2) which is localized at

frequency 2k . Then the following estimate holds:

‖λk‖l2k Xk
� ‖λ0k‖L2 + ‖ fk‖l2k Nk

. (7.5)

Proof. The proof is closely related to that given in [9,20,21]. However, here the
metric g = Id + h and magnetic potential A will satisfy some parabolic equations,
so we need to modify the assumptions both on h and A to match our main results.

As an intermediate step in the proof, we will establish a local energy decay
bound in a cube Q ∈ Ql with 0 � l � k:

2k−l‖λk‖2
L2L2([0,1]×Q)

� ‖λk‖2
L∞L2 + ‖ fk‖Nk‖λk‖Xk

+ (2−k + ‖A‖Z1−δ,s+1 + ‖h‖Ys+2)‖λk‖2
l2k Xk

.
(7.6)

The proof of this bound is based on a positive commutator argument using a
well chosen multiplierM. This will be first-order differential operator with smooth
coefficients which are localized at frequency � 1. Precisely, we will use a multiplier
M which is a self-adjoint differential operator having the form

i2kM = aα(x)∂α + ∂αa
α(x), (7.7)

with uniform bounds on a and its derivatives.



Arch. Rational Mech. Anal.          (2024) 248:10 Page 53 of 79    10 

Before proving (7.5), we need the following lemma which is used to dismiss
the (g − I ) contribution to the commutator [∂αgαβ∂β,M]:

Lemma 7.3. Let d � 2 and s > d
2 . Assume that h ∈ Ys+2, A ∈ Z1−δ,s+1 and

λ ∈ l2k Xk, and letM be as (7.7). Then we have

∫ 1

0
〈[∂αh

αβ

�k
∂β,M]λk, λk〉dt � ‖h‖Ys+2‖λk‖2

l2k Xk
, (7.8)

∫ 1

0
Re〈Aα

<k−4∂αλk,Mλk〉dt � ‖A‖Z1−δ,s+1‖λk‖2
Xk

. (7.9)

Proof of Lemma 7.3. By (7.7) and direct computations, we get

[∂αh
αβ∂β,M] ≈ 2−k[∇(h∇a + a∇h)∇ + ∇h∇2a + h∇3a].

Then it suffices to estimate

2−k
∫ 1

0
〈(h�k∇a + a∇h�k)∇λk , ∇λk〉dt + 2−k

∫ 1

0
〈(∇h�k∇2a + h�k∇3a)λk , λk〉dt.

The first integral is estimated by (6.1) and (6.2), while the second integral is bounded
by Sobolev embeddings. Hence, the bound (7.8) follows.

For the second bound (7.9), by (7.7) and integration by parts we rewrite the
left-hand side of (7.9) and bound it by

Re
∫ 1

0
〈Aα

<k−4∂αλk,Mλk〉dt � 2−k
∫ 1

0

∫
Rd

|〈∇〉A<kλk∇λk |dxdt

� ‖|∇|1−δA‖L2Hs+δ‖λk‖2
L∞L2 .

This implies the bound (7.9), and hence completes the proof of the lemma. ��
Returning to the proof of (7.6), for the self-adjoint multiplier M we compute

d

dt
〈λk,Mλk〉 = 2 Re〈∂tλk,Mλk〉

= 2 Re〈i∂α(gαβ
<k−4∂βλk) − 2Aα

<k−4∂αλk − i fk,Mλk〉
= i〈[−∂αg

αβ
<k−4∂β,M]λk, λk〉 + 2 Re〈−2Aα

<k−4∂αλk − i fk,Mλk〉
We then use the multiplier M as in [20,21] so that the following three properties
hold:

(1) Boundedness on frequency 2k localized functions,

‖Mu‖L2
x

� ‖u‖L2
x
.

(2) Boundedness in X ,

‖Mu‖X � ‖u‖X .
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(3) Positive commutator,

i〈[−∂αg
αβ
<k−4∂β,M]u, u〉 � 2k−l‖u‖2

L2
t,x ([0,1]×Q)

−O(2−k+‖h‖Ys+2)‖u‖2
l2k Xk

.

If these three properties hold for u = λk , then by (7.9) and (7.4) the bound (7.6)
follows.

We first do this when the Fourier transform of the solution λk is restricted to a
small angle

supp λ̂k ⊂ {|ξ | � ξ1}. (7.10)

Without loss of generality due to translation invariance, Q = {|x j | � 2l : j =
1, . . . , d}, and we set m to be a smooth, bounded, increasing function such that
m′(s) = ϕ2(s) where ϕ is a Schwartz function localized at frequencies � 1, and
ϕ ≈ 1 for |s| � 1. We rescale m and set ml(s) = m(2−l s). Then, we fix

M = 1

i2k
(ml(x1)∂1 + ∂1ml(x1)).

The properties (1) and (2) are immediate due to the frequency localization of
u = λk and ml as well as the boundedness of ml . By (7.8) it suffices to consider
the property (3) for the operator

−� = −∂αg
αβ
<k−4∂β + ∂αh

αβ
<k−4∂β.

This yields

i2k[−�,M] = −2−l+2∂1ϕ
2(2−l x1)∂1 + O(1),

and hence

i2k〈[−�,M]λk, λk〉 = 2−l+2‖ϕ(2−l x1)∂1λk‖2
L2L2 + O(‖λk‖2

L2L2)

Utilizing our assumption (7.10), it follows that

2k−l‖ϕ(2−l x1)λk‖2
L2L2 � i〈[−�,M]λk, λk〉 + 2−kO(‖λk‖2

L2L2)

which yields (3) when combined with (7.8).
We proceed to reduce the problem to the case when (7.10) holds. We let

{θ j (ω)}dj=1 be a partition of unity,

∑
j

θ j (ω) = 1, ω ∈ S
d−1,

where θ j (ω) is supported in a small angle about the j-th coordinate axis. Then, we
can set λk, j = �k, jλk where

F�k, jλ = θ j (
ξ

|ξ | )
∑

k−1�l�k+1

ϕl(ξ )̂λ(t, ξ).
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We see that

(i∂t + ∂αg
αβ
<k−4∂β)λk, j + 2i Aα

<k−4∂αλk, j

= �k, j fk − ∂α[�k, j , g
αβ
<k−4]∂βλk − 2i[�k, j , A

α
�k−4]∂αλk .

By applying M, suitably adapted to the correct coordinate axis, to λk, j and
summing over j , we obtain

2k−l‖λk‖2
L2L2([0,1]×Q)

� ‖λk‖2
L∞L2 +

d∑
j=1

∫ 1

0
〈−�k, j fk ,Mλk, j 〉ds

+
d∑
j=1

∫
〈[�k, j , ∂αg

αβ
<k−4∂β ]λk + [�k, j , 2i Aα

<k−4]∂αλk ,Mλk, j 〉ds

+ (2−k + ‖|D|1−δ A‖L2Hs+δ + ‖h‖Ys+2 )‖λk‖2
l2k Xk

� ‖λk‖2
L∞L2 + ‖ fk‖Nk ‖λk‖Xk + (2−k + ‖|D|1−δ A‖L2Hs+δ + ‖h‖Ys+2 )‖λk‖2

l2k Xk
.

The commutator is done via (6.15) and (6.16). Then (7.6) follows.
Next we use the bound (7.6) to complete the proof of Proposition 7.2. Taking

the supremum in (7.6) over Q ∈ Ql and over l, we obtain

2k‖λk‖2
X � ‖λk‖2

L∞L2 + ‖ f1k‖Nk‖λk‖Xk + ‖ f2k‖L1L2‖λk‖L∞L2

+ (2−k + ‖|D|1−δA‖L2Hs+δ + ‖h‖Ys+2)‖λk‖2
l2k Xk

� ‖λk‖2
L∞L2 + ‖ f1k‖Nk‖λk‖Xk + ‖ f2k‖2

L1L2

+ (2−k + ‖|D|1−δA‖L2Hs+δ + ‖h‖Ys+2)‖λk‖2
l2k Xk

.

Combined with (7.3), we get

‖λk‖2
Xk

� ‖λk(0)‖2
L2 + ‖ f1k‖2

Nk
+ ‖ f2k‖2

L1L2

+ (2−k + ‖|D|1−δA‖L2Hs+δ + ‖h‖Ys+2)‖λk‖2
l2k Xk

.
(7.11)

We now finish the proof by incorporating the summation over cubes. We let
{χQ} denote a partition via functions which are localized to frequencies � 1 which
are associated to cubes Q of scale M2k . We also assume that |∇lχQ | � (2kM)−l ,
l = 1, 2. Thus,

(i∂t + ∂αg
αβ
<k−4∂β)χQλk + 2i Aα

<k−4∂αχQλk

= χQ fk + [∂αg
αβ
<k−4∂β, χQ]λk + 2i Aα

<k−4∂αχQ · λk

Applying (7.3) to χQλk , we obtain∑
Q

‖χQλk‖2
L∞L2

�
∑
Q

‖χQλk(0)‖2
L2 + ‖∂x A‖L2Hs

∑
Q

‖χQλk‖2
Xk
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+
( ∑

Q

‖χQ fk‖2
Nk

)1/2( ∑
Q

‖χQλk‖2
Xk

)1/2

+
∑
Q

‖[∂αg
αβ
<k−4∂β, χQ]λk + 2i Aα

<k−4∂αχQ · λk‖2
L1L2 .

But by (7.4) we have∑
Q

‖[∇g∇, χQ]λk‖2
L1L2 �

∑
Q

‖∇g · ∇χQ · λk + g∇(∇χQ · λk)‖2
L1L2

� (1 + ‖|D|σd h‖L∞Hs+1−σd )M−2
∑
Q

‖χQλk‖2
L∞L2 ,

(7.12)

and also∑
Q

‖2i Aα
<k−4∂αχQ · λk‖2

L1L2 � (1 + ‖|D|1−δA‖L2Hs+δ )M−2
∑
Q

‖χQλk‖2
L∞L2 .

(7.13)

For M sufficiently large, we can bootstrap the commutator terms, and, after a
straightforward transition to cubes of scale 2k rather than M2k , we observe that

‖λk‖2
l2k L

∞L2 � ‖λk(0)‖2
L2 + ‖|D|1−δA‖L2Hs+δ‖λk‖2

l2k Xk
+ ‖ fk‖l2k Nk

‖λk‖l2k Xk
.

(7.14)

We now apply (7.11) to χQλk , and then by (7.12) and (7.13) we see that∑
Q

‖χQλk‖2
Xk

� ‖λk(0)‖2
L2 +

∑
Q

‖χQ fk‖2
Nk

+ M−2
∑
Q

‖χQλk‖2
Xk

+ (2−k + ‖h‖Ys+2 + ‖|D|1−δA‖L2Hs+δ )
∑
Q

‖χQλk‖2
l2k Xk

.

For M � 1, we have

M−d‖λk‖2
l2k Xk

� ‖λk(0)‖2
L2 + ‖ fk‖2

l2k Nk
+ (2−k + ‖h‖Ys+2 + ‖|D|1−δ A‖L2Hs+δ )‖λk‖2

l2k Xk
.

By (7.4), for k sufficiently large (depending on M), we may absorb the the last term
in the right-hand side into the left, i.e

‖λk‖2
l2k Xk

� ‖λk(0)‖2
L2 + ‖ fk‖2

l2k Nk
.

On the other hand, for the remaining bounded range of k, we have

‖λ‖Xk � ‖λ‖L∞L2 ,

and then (7.14) and (7.4) give

‖λk‖2
l2k Xk

� ‖λk(0)‖2
L2 + ‖|D|1−δA‖L2Hs+δ‖λk‖2

l2k Xk
+ ‖ fk‖l2k Nk

‖λk‖l2k Xk

� ‖λk(0)‖2
L2 + ‖ fk‖2

l2k Nk
,

which finishes the proof of (7.5). ��
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7.2. The Full Linear Problem

Here we use the bounds for the paradifferential equation in the previous sub-
section in order to prove similar bounds for the full equation (7.1).

Proposition 7.4. (Well-posedness) Let s > d
2 , d � 2 and h = g− Id . Assume that

the metric g and the magnetic potential A satisfy

‖h‖Ys+2 , ‖|D|1−δA‖L2Hs+δ � 1.

Then the equation (7.1) is well-posed for initial data λ0 ∈ Hσ with −s � σ � s,
and we have the estimate

‖λ‖l2Xσ � ‖λ0‖Hσ + ‖F‖l2Nσ . (7.15)

Proof. The well-posedness follows in a standard fashion from a similar energy
estimate for the adjoint equation. Since the adjoint equation has a similar form,
with similar bounds on the coefficients, such an estimate follows directly from
(7.15). Thus, we now focus on the proof of the bound (7.15). For λ solving (7.1),
we see that λk solves

{
i∂tλk + ∂α(gαβ

<k−4∂βλk) + 2i Aα
<k−4∂αλk = Fk + Hk,

λk(0) = λ0k,

where Fk := Sk F and

Hk : = −Sk∂α(gαβ

�k−4
∂βλ) − ∂α[Sk, gαβ

<k−4]∂βλ − 2i[Sk, Aα
<k−4]∂αλ

− 2i Sk(A
α
�k−4∂αλ).

If we apply Proposition 7.2 to each of these equations, we see that

‖λk‖2
l2Xσ � ‖λ0k‖2

Hσ + ‖Fk‖2
l2Nσ + ‖Hk‖2

l2Nσ .

We claim that

∑
k

‖Hk‖2
l2Nσ � (‖h‖Ys+2 + ‖∂x A‖L2Hs )2‖λ‖2

l2Xσ , for − s � σ � s. (7.16)

Indeed, the bound for the terms in Hk follows from (6.9), (6.15), (6.16) and (6.10),
respectively. Then by the above two bounds and the smallness of h and A, we obtain
the estimate (7.15). ��



   10 Page 58 of 79 Arch. Rational Mech. Anal.          (2024) 248:10 

7.3. The Linearized Problem

Here we consider the linearized equation{
i∂t� + ∂α(gαβ∂β�) + 2i Aα∂α� = F + G,

�(0) = �0,
(7.17)

where

G = −∇(G∇λ) − 2iAα∂αλ,

and we prove the following:

Proposition 7.5. Let s > d
2 ,

d
2 − 2 < σ � s − 2, d � 2 and h = g − Id ∈ Ys+2,

assume that � is a solution of (7.17), the metric g and A satisfy

‖h‖Ys+2 , ‖|D|1−δA‖L2Hs+δ � 1.

Then we have the estimate

‖�‖l2Xσ � ‖�0‖Hσ + ‖F‖l2Nσ + (‖G‖Zσd ,σ+2 + ‖A‖Z δd ,σ+1)‖λ‖l2Xs . (7.18)

Proof. For � solving (7.17), we see that �k solves{
i∂t�k + ∂α(gαβ

<k−4∂β�k) + 2i Aα
<k−4∂α�k = Fk + Gk + Hk,

�k(0) = �0k,

where

Gk = −Sk(∇(G∇λ) − 2iAα∂αλ),

Hk = −Sk∂α(gαβ

�k−4
∂β�) − ∂α[Sk, gαβ

<k−4]∂β� − 2i[Sk, Aα
<k−4]∂α�

− 2i Sk(A
α
�k−4∂α�).

The proof of (7.18) is similar to that of (7.16). Here it suffices to prove∑
k

‖Gk‖2
l2Nσ � ‖G‖2

Zσd ,σ+2‖λ‖2
l2Xs + ‖A‖2

Z δd ,σ+1‖λ‖2
l2Xs .

Indeed, the bound for the terms in Gk follows from (6.9), (6.4), (6.10) and (6.14).
This completes the proof of the Lemma. ��

8. Well-Posedness in the Good Gauge

In this section we use the parabolic results in Section 5, the multilinear estimates
in Section 6 and the linear local energy decay bounds in Section 7 in order to prove
the good gauge formulation of our main result, namely Theorem 2.5.
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8.1. The Iteration Scheme: Uniform Bounds

Here we seek to construct solutions to (2.28) iteratively, based on the scheme{
i∂tλ

(n+1) + ∂α(g(n)αβ∂βλ(n+1)) + 2i A(n)α∂αλ(n+1) = F (n),

λ(n+1)(0) = λ0,
(8.1)

with the trivial initialization

λ(0) = 0,

where the nonlinearities F (n) are the following F with (λ, h, A) = (λ(n), h(n), A(n))

F = ∂μ(gμν∂νλαβ) − ∇σ ∇σ λαβ + iV σ ∇σ λαβ − i∇σ A
σ λαβ + iλγ

α∇βVγ + iλγ
β∇αVγ

+(B + Aσ A
σ − Vσ A

σ )λαβ + ψ Re(λαδλ̄
δ
β) − Rασβδλ

σδ − λαμλ̄μ
σ λσ

β , (8.2)

and S(n) = (h(n), A(n)) are the solutions of parabolic system (2.29) with λ = λ(n)

and initial data

h(n)(0, x) = h0(x), A(n)(0, x) = A0(x). (8.3)

We assume that (λ0, h0) is small in Hs ×Ys+2. Due to the above trivial initial-
ization for λ(0), we also inductively assume that

‖λ(n)‖l2Xs � C‖λ0‖Hs , (8.4)

where C is a large constant.
Applying the parabolic estimates (5.1) to (2.29) with λ = λ(n) and initial data

(8.3) at each step, we obtain

‖S(n)‖Es � ‖(h0, A0)‖Es
0
+ ‖λ(n)‖l2Zs � ‖(h0, A0)‖Es

0
+ ‖λ0‖Hs � ε0. (8.5)

In order to estimate λ(n+1), we bound the nonlinear terms in F (n) first. In the
computations we would omit the superscript (n). More precisely, for the first three
terms in (8.2), by covariant derivatives (2.2) and V γ = gαβ�

γ
αβ we have the form

∂μ(gμν∂νλαβ) − ∇σ ∇σ λαβ + iV σ ∇σ λαβ ≈ ∇h∇λ + ∇h∇hλ.

Then the first term ∇h∇λ is estimated using (6.1) and (6.9), the second term ∇h∇hλ

is estimated using (6.7) with its A = ∇h. We obtain

‖∇h∇λ + ∇h∇hλ‖l2Ns � ‖h‖Ys+2‖λ‖l2Xs + ‖h‖2
Zs+1‖λ‖Zs .

For the fourth to seventh terms in (8.2), we have the expression

− i∇σ A
σ λαβ + iλγ

α∇βVγ + iλγ
β∇αVγ + (B + Aσ A

σ − Vσ A
σ )λαβ

≈ (∇2h + ∇A)λ + (∇h + A)2λ.

Then these two terms are estimated using (6.6) and (6.7) respectively. We obtain

‖(∇2h + ∇A)λ + (∇h + A)2λ‖l2Ns � (1 + ‖S‖Es )‖S‖Es‖λ‖Zs .
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For the last three terms in (8.2), by (2.8) we have

ψ Re(λαδλ̄
δ
β) − Rασβδλ

σδ − λαμλ̄μ
σ λσ

β ≈ λ3.

Using (6.13) we obtain

‖λ3‖l2Ns � ‖λ‖3
Zs .

Hence, by the above estimates, (8.5) and (8.4) we bound the F (n) by

‖F (n)‖l2Ns � (1 + ‖S(n)‖Es )‖S(n)‖Es‖λ(n)‖l2Xs � ε0‖λ0‖Hs .

Now applying at each step the local energy bound (7.15) with σ = s we obtain the
estimate

‖λ(n+1)‖l2Xs � ‖λ0‖Hs + ‖F (n)‖l2Ns � ‖λ0‖Hs + Cε0‖λ0‖Hs � C‖λ0‖Hs ,

(8.6)

which closes our induction.

8.2. The Iteration Scheme: Weak Convergence

Here we prove that our iteration scheme converges in the weaker Hs−2 topology.
We denote the differences by

�(n+1) = λ(n+1) − λ(n),

δS(n+1) = (G(n+1),A(n+1),B(n+1)) = S(n+1) − S(n)

Then from (8.1) we obtain the system{
i∂t�

(n+1) + ∂α(g(n)αβ∂β�(n+1)) + 2i A(n)α∂α�(n+1) = F (n) − F (n−1) + G(n),

�(n+1)(0, x) = 0,

where the nonlinearities G(n) have the form

G(n) = −∂α(G(n)∂βλ(n)) − 2iA(n)α∂αλ(n),

By (5.4) we obtain

‖δS(n)‖Es−2 � ‖�(n)‖l2Xs−2 . (8.7)

Applying (7.18) with σ = s − 2 for the �(n+1) equation we have

‖�(n+1)‖l2Xs−2 � ‖F (n) − F (n−1)‖l2Ns−2 + (‖G(n)‖Zσd ,s + ‖A(n)‖Z δd ,s−1 )‖λ(n)‖l2Xs .

For the nonlinear terms F (n) − F (n−1), using (6.3), (6.9), (6.12), (6.11) and (6.13)
we have

‖F (n) − F (n−1)‖l2Ns−2 � (1 + ‖(S(n),S(n−1))‖Es )N
(‖δS(n)‖Es−2‖(λ(n), λ(n−1))‖l2Xs

+ ‖(S(n),S(n−1))‖Es ‖�(n)‖l2Xs−2
)
.
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Then by (8.7) and the uniform bounds (8.5), (8.6) we bound the right hand side
above by

‖�(n+1)‖l2Xs−2 � (1 + ‖S0‖Es
0
+ ‖λ0‖Hs )N

· [‖�(n)‖l2Xs−2‖λ0‖Hs + (‖S0‖Es
0
+ ‖λ0‖Hs )‖�(n)‖l2Xs−2

]
� ‖�(n)‖l2Xs−2 .

This implies that our iterations λ(n) converge in l2Xs−2 to some function λ. Fur-
thermore, by the uniform bound (8.6) it follows that

‖λ‖l2Xs � ‖λ0‖Hs . (8.8)

Interpolating, it follows that λ(n) converges to λ in l2Xs−ε for all ε > 0. This allows
us to conclude that the auxiliary functions S(n) associated to λ(n) converge to the
functions S associated to λ, and also to pass to the limit and conclude that λ solves
the (SMCF) equation (2.28). Moreover, we have the bound for S

‖S‖Es � ‖S0‖Ys+2
0

+ ‖λ0‖Hs . (8.9)

Thus we have established the existence part of our main theorem.

8.3. Uniqueness via Weak Lipschitz Dependence

Consider the difference of two solutions

(�, δS) = (λ(1) − λ(2),S(1) − S(2)).

The � solves an equation of this form{
i∂t� + ∂α(g(1)αβ∂β�) + 2i A(1)α∂α� = F (1) − F (2) + G,

�(0, x) = λ
(1)
0 (x) − λ

(2)
0 (x),

where the nonlinearity G is

G = −∂α(G∂βλ(2)) − 2iAα∂αλ(2).

By (5.4) we have

‖δS‖Es−2 � ‖δS0‖Hs−2 + ‖�‖l2Xs−2 .

Applying (7.18) with σ = s − 2 to the � equation, we obtain the estimate
‖�‖l2Xs−2 � ‖�0‖Hs−2 + ‖F (1) − F (2)‖l2Ns−2 + (‖G‖Zσd ,s + ‖A‖Z δd ,s−1 )‖λ(2)‖l2Xs

� ‖�0‖Hs−2 + C‖(λ(1)
0 , λ

(2)
0 )‖Hs ‖(�, δS)‖l2Xs−2×Es−2 .

Then, by the above bound for δS, we further have

‖�‖l2Xs−2 � ‖�0‖Hs−2 + C‖(λ(1)
0 , λ

(2)
0 )‖Hs (‖δS0‖Hs−2 + ‖�‖l2Xs−2)

Since the initial data λ
(1)
0 and λ

(2)
0 are sufficiently small, we obtain

‖�‖l2Xs−2 � ‖�0‖Hs−2 + ‖δS0‖Hs−2 . (8.10)

This gives the weak Lipschitz dependence, as well as the uniqueness of solutions
for (2.28).
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8.4. Frequency Envelope Bounds

Here we prove a stronger frequency envelope version of estimate (8.8).

Proposition 8.1. Let λ ∈ l2Xs, S ∈ Es be small data solution to (2.28)–(2.29),
which satisfies (8.8) and (8.9). Let {p0k}, {s0k} be admissible frequency envelopes
for the initial data λ0 ∈ Hs and S0 ∈ Es

0. Then {p0k + s0k} is also frequency
envelope for (λ,S) in l2Xs × Es .

Proof. Let pk and sk be the admissible frequency envelopes for solution (λ,S) ∈
l2Xs × Es . Applying Sk to the modified Schrödinger equation in (2.28), we obtain
the paradifferential equation

{
i∂tλk + ∂α(gαβ

<k−4∂βλk) + 2i Aα
<k−4∂αλk = Fk + Jk,

λ(0, x) = λ0(x),

where

Jk = −Sk∂α(gαβ

�k−4
∂βλ) − [Sk, ∂αg

αβ
<k−4∂β ]λ

− 2i[Sk, Aα
<k−4]∂αλ − 2i Sk[Aα

�k−4∂αλk],

andS = (h, A) is the solution to the parabolic system (2.29). We estimate λk = Skλ
using Proposition 7.4,

‖λk‖l2Xs � p0k + ‖Fk‖l2Ns + ‖Jk‖l2Ns .

By Proposition 6.2, Lemma 6.1 and Lemma 6.3 we bound the nonlinear terms by

‖Fk‖l2Ns + ‖Jk‖l2Ns � (1 + ‖S‖Es + ‖λ‖l2Xs )N (‖S‖Es pk + sk‖λ‖l2Xs ).

Then by (8.9), (8.8), (5.10) and the smallness of initial data we obtain

‖λk‖l2Xs � p0k + εpk + ε(s0k + pk) � p0k + s0k + εpk .

For metric g = Id + h, by (5.2) we also have

‖Sk‖Es � s0k + εpk .

From the definition of frequency envelope (3.3), these two bounds imply

pk + sk � p0k + s0k .

and conclude the proof. ��
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8.5. Continuous Dependence on the Initial Data

Here we show that the map (λ0,S0) → (λ,S) is continuous from Hs ×Es
0 into

l2Xs ×Es . By (5.3), it suffices to prove (λ0,S0) → λ is continuous from Hs ×Es
0

to l2Xs .
Suppose that (λ

(n)
0 ,S(n)

0 ) → (λ0,S0) in Hs × Es
0. Denote by (p(n)

0k , s(n)
0k ), re-

spectively (p0k, s0k) the frequency envelopes associated to (λ
(n)
0 ,S(n)

0 ), respectively

(λ0,S0), given by (3.3). If (λ
(n)
0 ,S(n)

0 ) → (λ0,S0) in Hs ×Es
0 then (p(n)

0k , s(n)
0k ) →

(p0k, s0k) in l2. Then for each ε > 0 we can find some Nε so that

‖p(n)
0,>Nε

‖l2 + ‖s(n)
0,>Nε

‖l2 � ε, for all n.

By Proposition 8.1 we obtain that

‖λ(n)
>Nε

‖l2Xs � ε, for all n. (8.11)

To compare λ(n) with λ we use (8.10) for low frequencies and (8.11) for the high
frequencies,

‖λ(n) − λ‖l2Xs � ‖S<Nε (λ
(n) − λ)‖l2Xs + ‖S>Nε λ

(n)‖l2Xs + ‖S>Nε λ‖l2Xs

� 22Nε‖S<Nε (λ
(n) − λ)‖l2Xs−2 + 2ε

� 22Nε (‖S<Nε (λ
(n)
0 − λ0)‖Hs−2 + ‖S<Nε (S

(n)
0 − S0)‖Hs−2) + 2ε.

Letting n → ∞ we obtain

lim sup
n→∞

‖λ(n) − λ‖l2Xs � ε.

Letting ε → 0 we obtain

lim
n→0

‖λ(n) − λ‖l2Xs = 0,

which completes the desired result.

8.6. Higher Regularity

Here we prove that the solution (λ,S) satisfies the bound

‖(λ,S)‖l2Xσ ×Eσ � ‖λ0‖Hσ + ‖S0‖Eσ
0
, σ � s, (8.12)

whenever the right hand side is finite.
The proof of (8.12) is similar to that in [9, Section 7.6]. Here we simply repeat

this process. Differentiating the original Schrödinger equation (2.28), and then
using Proposition 7.4, Lemma 6.1 and Proposition 6.2 we easily obtain

‖∇λ‖l2Xs � ‖∇λ0‖Hs + ‖(∇λ, ∇S)‖l2Xs×Es ‖(λ,S)‖l2Xs×Es (1 + ‖(λ,S)‖l2Xs×Es )N .

For the parabolic equations, by (5.3) we obtain

‖∇S‖Es � ‖∇S0‖Es
0
+ ‖λ‖l2Xs‖∇λ‖l2Xs .

Hence, by (8.8) and (8.9), these imply (8.12) with σ = s + 1. Inductively, we can
further obtain (8.12) for any σ � s.
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8.7. The Compatibilities Conditions

As part of our derivation of the (SMCF) equations (2.28) for the second fun-
damental form λ in the good gauge, coupled with the parabolic system (2.29), we
have seen that the compatibility conditions are described by the equations (2.9),
(2.8), (2.10), (2.12), (2.20) and (2.17). However, our proof of the well-posedness
result for the Schrödinger evolution (2.28) does not apriori guarantee that these
constraints hold. Here we rectify this omission:

Lemma 8.2. (Constraint conditions) Assume that λ ∈ C[0, T ; Hs] solves the
SMCF equation (2.28) coupled with the parabolic system (2.29). Then the rela-
tions (2.9), (2.8), (2.10), (2.12), (2.20) and (2.17) hold.

Proof. To shorten the notations, we define

T 1
αβ = Ricαβ − R̃icαβ, R̃icαβ := Re(λαβψ̄ − λασ λ̄σ

β),

T 2
σγαβ = Rσγαβ − R̃σγαβ, R̃σγαβ := Re(λγβ λ̄σα − λγαλ̄σβ),

T 3
αβ,γ = ∇ A

α λβγ − ∇ A
β λαγ ,

T 4
αβ = Fαβ − F̃αβ, Fαβ := ∇α Aβ − ∇β Aα, F̃αβ := Im(λγ

α λ̄γβ),

T 5
α = F0α − F̃0α, F0α := ∂t Aα − ∇αB, F̃0α := Re(λγ

α ∂̄ A
γ ψ̄) + Im(λγ

α λ̄γ σ )V σ .

Here T 3 and T 4 are antisymmetric, T 1 is symmetric and T 2 inherits all the linear
symmetries of the curvature tensor.

Our goal is to show that all these functions vanish, knowing that they vanish
at the initial time. We will prove this by showing that they solve a coupled linear
homogeneous evolution system of the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∂t − �g)T
1,β
α = λ2T 4 + T 1∇V + V∇T 1 + T 3∇λ + λ∇T 3,

∇δT
2
σγαβ + ∇σ T

2
γ δαβ + ∇γ T

2
δσαβ = T 1λ,

∇σ T 2
σγαβ = ∇αT

1
γβ − ∇βT

1
γα + T 1λ,

(i∂B
t − �A

g )T 3
αβ,γ = λT 5 + T 3(∇V + λ2 + R) + (∇ Aλ + λV )(T 1 + T 2 + T 4)

+ λ∇(T 2 + T 4) + V∇T 3

(∂t − �g)T
4
αβ = Ric T 4 + ∇ AλT 3 + VλT 3,

T 5
α = ∇σ T 4

σα + T 1
αδ A

δ.

Then standard energy estimates show that zero is the only solution for this system.
The formulas for T 5 are obtained directly by the equations for A (2.21) and

heat gauge B = ∇αAα . It remains to derive the system for (T 1, · · · , T 4).

The equation for T 1. This has the form

(∂t − �g)T
1,β
α = λ2T 4 + T 1∇V + V∇T 1 + T 3∇λ + λ∇T 3.

Using the parabolic equations for h we recover the representation of ∂t g as

∂t gμν = 2Gμν − 2T 1
μν, Gμν := Im(ψλ̄μν) + 1

2
∇μVν + 1

2
∇νVμ, (8.13)
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and obtain

∂t�
γ
αβ = ∇αG

γ
β + ∇βG

γ
α − ∇γ Gαβ − (∇αT

1,γ
β + ∇βT

1,γ
α − ∇γ T 1

αβ). (8.14)

We then use the two formulas to write

∂tRicα
β = ∂t g

μνRμαν
β − gμν∂t R

β
μνα

= (−2Gμν + 2T 1,μν)Rμαν
β + gμν(∇α∂t�

β
μν − ∇ν∂t�

β
μα)

= 2T 1,μν Rμαν
β − 2Gμν Rμαν

β

+ ∇α[2∇μ(Gβ
μ − T 1,β

μ ) − ∇β(Gμ
μ − T 1,μ

μ )]
− ∇μ[∇μ(Gβ

α − T 1,β
α ) + ∇α(Gβ

μ − T 1,β
μ ) − ∇β(Gμα − T 1

μα)]
= ∇μ∇μT

1,β
α + 2T 1,μν Rμαν

β + ∇α(−2∇μT 1,β
μ + ∇βT 1,μ

μ )

+ ∇μ(∇αT
1,β
μ − ∇βT 1

μα)

− 2GμνRμαν
β + 2[∇α, ∇μ]Gβ

μ − ∇α∇βGμ
μ − ∇μ(∇μG

β
α − ∇αG

β
μ − ∇βGμα).

By the relation ∇μT 1
μν = 1

2∇νT
1,μ
μ , the third term in the right hand side vanishes.

We can also rewrite the fourth term as

∇μ(∇αT
1,β
μ − ∇βT 1

μα) = [∇μ, ∇α]T 1,β
μ − [∇μ, ∇β ]T 1

μα + ∇α∇μT 1,β
μ − ∇β∇μT 1

μα

= Rμ
αμδT

1,δβ + Rμ
αβδT

1,δ
μ − Rμβ

μδT
1,δ
α

− Rμβ
αδT

1,δ
μ + [∇α, ∇β ]T 1,μ

μ ,

where the last term vanishes. Commuting we compute the fifth and sixth terms as

−2GμνRμαν
β + 2[∇α,∇μ]Gβ

μ = −2GμνRμαν
β + 2RαμμνG

βν + 2RαμβνG
μν

= −2 Ricαν G
βν.

Hence, from the above three formulas and the representation of Gμν (8.13), we
rearrange ∂tRicα

β as

∂tRicα
β − �gT

1,β
α (I1)

= RT 1 − 2 Ricαν G
βν − ∇α∇βGμ

μ + ∇μ(−∇μG
β
α + ∇αG

β
μ + ∇βGμα)

= RT 1 − (∇μV ν + ∇νVμ)Rμαν
β

− 2 Ricαν Im(ψλ̄βν) + ∇μ(−∇μ Im(ψλ̄β
α) + ∇α Im(ψλ̄β

μ) + ∇β Im(ψλ̄μα))

+ [∇α∇μ(∇μV
β + ∇βVμ) − ∇α∇β∇μVμ (I2)

+ 1

2
∇μ[−∇μ(∇αV

β + ∇βVα) − ∇α(∇μV
β + ∇βVμ) + ∇β(∇μVα + ∇αVμ)]].

We write I1 as

I1 = −2 Ricαν Im(ψλ̄βν)

+ Im(−∇ A,μ∇ A
μ ψλ̄β

α − 2∇ A,μψ∇ A
μ λ

β
α − ψ∇ A,μ∇ A

μ λ
β
α
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+ ∇ A,μ∇ A
α ψλ̄β

μ + ∇ A,μψ∇ A
α λ

β
μ + ∇ A

α ψ∇ A,μλ
β
μ + ψ∇ A,μ∇ A

α λ
β
μ

+ ∇ A,μ∇ A,βψλ̄μα + ∇ A,μψ∇ A,βλμα + ∇ A,βψ∇ A,μλμα + ψ∇ A,μ∇ A,βλμα)

= ∇ψT 3 + ψ∇T 3 − 2 Ricαν Im(ψλ̄βν)

+ Im(−∇ A,μ∇ A
μ ψλ̄β

α + ∇ A,μ∇ A
α ψλ̄β

μ + ∇ A,μ∇ A,βψλ̄μα + ψ∇ A,μ∇ A,βλμα)

Here the I1 term will be cancelled by J1, J2 later modulo {ψ∇T 3, λλT 1, λλT 4}.
Using commutators we rearrange I2 as

I2 = [∇α,∇μ]∇μV
β + 1

2
∇μ[∇α,∇μ]V β + 1

2
∇μ[∇β,∇μ]Vα

+ ∇α[∇μ,∇β ]Vμ + 1

2
∇μ[∇β,∇α]Vμ.

Then by Riemannian curvature and Bianchi identities we have

I2 = Rαμμδ∇δV β + Rαμβδ∇μV δ

+ 1

2
∇μ(RαμβδV

δ + RβμαδV
δ + RβαμδV

δ) + ∇α(RμβμδV
δ)

= − Ricαδ ∇δV β + Rαμβδ∇μV δ + ∇μ(RβμαδV
δ) + ∇α(Ricβδ V

δ)

= − Ricαδ ∇δV β + (Rαμβδ + Rβμαδ)∇μV δ − ∇αRδμβμV
δ − ∇δRμαβμV

δ

+ ∇α Ricβδ V
δ + Ricβδ ∇αV

δ

= − Ricαδ ∇δV β + Rαμβδ(∇μV δ + ∇δVμ) + ∇δ Ricαβ V δ + Ricβδ ∇αV
δ,

which gives

I2 − (∇μV ν + ∇νVμ)Rμαν
β = − Ricαδ ∇δV β + V δ∇δ Ricαβ + Ricβδ ∇αV

δ.

This term will be cancelled by J3 modulo {T 1∇V, V∇T 1}.
Next, we compute the expression for −∂t R̃icα

β
. From the λ-equations (2.28)

and the formula (8.13) we have the evolution equation for λσ
α

i∂B
t λσ

α + 1

2
(∇ A

α ∇ A,σ + ∇ A,σ ∇ A
α )ψ + λ(T 1 + T 2 + T 4) + iλγ

α

(
3

2
Im(ψλ̄σ

γ ) + ∇γ V
σ

)

−iλγσ

(
1

2
Im(ψλ̄γα) + ∇αVγ

)
− iV γ ∇ A

γ λσ
α = 0, (8.15)

and the evolution equation for the mean curvature ψ

i∂B
t ψ + ∇ A

σ ∇ A,σ ψ + λ(T 1 + T 2 + T 4) + iλγ
σ Im(ψλ̄σ

γ ) − iV γ ∇ A
γ ψ = 0.

Then for R̃icα

β = Re(λβ
αψ̄ − λσ

α λ̄
β
σ ), by the above two formulas we have

−∂t R̃icα

β = − Re(∂B
t λβ

αψ̄ + λβ
α∂B

t ψ − ∂B
t λμ

α λ̄β
μ − λμ

α∂B
t λ

β
μ)

= Im(−i∂B
t λβ

αψ̄ − λ̄β
α i∂

B
t ψ + i∂B

t λμ
α λ̄β

μ + λ̄μ
α i∂

B
t λβ

μ)

= λ2(T 1 + T 2 + T 4) + K1 + K2 + K3 + K4,
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where

K1 = Im
[(1

2
(∇ A

α ∇ A,β + ∇ A,β∇ A
α )ψ + iλγ

α

(3

2
Im(ψλ̄β

γ ) + ∇γ V
β
)

− iλγβ
(1

2
Im(ψλ̄γα) + ∇αVγ

)
− iV γ ∇ A

γ λβ
α

)
ψ̄

]
,

K2 = Im
[
λ̄β

α

(
∇ A

σ ∇ A,σ ψ + iλγ
σ Im(ψλ̄σ

γ ) − iV γ ∇ A
γ ψ

)]
,

K3 = − Im
[(1

2
(∇ A

α ∇ A,σ + ∇ A,σ ∇ A
α )ψ + iλγ

α

(3

2
Im(ψλ̄σ

γ ) + ∇γ V
σ
)

− iλγσ
(1

2
Im(ψλ̄γα) + ∇αVγ

)
− iV γ ∇ A

γ λσ
α

)
λ̄β

σ

]
,

K4 = − Im
[
λ̄σ

α

(1

2
(∇ A

σ ∇ A,β + ∇ A,β∇ A
σ )ψ + iλγ

σ

(3

2
Im(ψλ̄β

γ ) + ∇γ V
β
)

− iλγβ
(1

2
Im(ψλ̄γ σ ) + ∇σVγ

)
− iV γ ∇ A

γ λβ
σ

)]
.

This can be further rearranged as

−∂t R̃icα

β = λ2(T 1 + T 2 + T 4) + J1 + J2 + J3,

where J1, J2 and J3 are

J1 = Im
[1

2
(∇ A

α ∇ A,βψ + ∇ A,β∇ A
α ψ)ψ̄ + λ̄β

α∇ A
σ ∇ A,σ ψ

− 1

2
(∇ A

α ∇ A,σ ψ + ∇ A,σ ∇ A
α ψ)λ̄β

σ − 1

2
λ̄σ

α (∇ A
σ ∇ A,βψ + ∇ A,β∇ A

σ ψ)
]
,

J2 = 3

2
Re(λγ

α ψ̄) Im(ψλ̄β
γ ) − 1

2
Re(λγβψ̄) Im(ψλ̄γα) + Re(λ̄β

αλγ
σ ) Im(ψλ̄σ

γ )

− 3

2
Re(λγ

α λ̄β
σ ) Im(ψλ̄σ

γ ) + 1

2
Re(λγσ λ̄β

σ ) Im(ψλ̄γα)

− 3

2
Re(λ̄σ

αλγ
σ ) Im(ψλ̄β

γ ) + 1

2
Re(λ̄σ

αλγβ) Im(ψλ̄γ σ ),

J3 = Re(λγ
α ψ̄)∇γ V

β − Re(λγβψ̄)∇αVγ − V γ Re(∇ A
γ λβ

αψ̄)

− V γ Re(λ̄β
α∇ A

γ ψ)

− Re(λγ
α λ̄β

σ )∇γ V
σ + Re(λγσ λ̄β

σ )∇αVγ + V γ Re(∇ A
γ λσ

α λ̄β
σ )

− Re(λ̄σ
αλγ

σ )∇γ V
β + Re(λ̄σ

αλγβ)∇σVγ + V γ Re(λ̄σ
α∇ A

γ λβ
σ ).

Then I1 + J1 + J2 will vanish modulo {ψ∇T 3, λ2T 1, λ2T 4}. Precisely, we have

I1 + J1 = ∇ψT 3 + ψ∇T 3 − 2 Ricαν Im(ψλ̄βν)

+ Im

(
1

2
[∇ A,μ, ∇ A

α ]ψλ̄β
μ + 1

2
[∇ A,μ, ∇ A,β ]ψλ̄μα + ψ[∇ A,μ, ∇ A,β ]λμα

+ ψ∇ A,βT 3 μ
μα, + 1

2
ψ[∇ A,β , ∇ A

α ]ψ
)

= ∇ψT 3 + ψ∇T 3 − 2 Ricαν Im(ψλ̄βν) + 1

2
Fμ

α Re(ψλ̄β
μ) − 1

2
Fμβ Re(ψλ̄μα)
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+ Ricμβ Im(ψλ̄μα) + Rμβαδ Im(ψλ̄μδ) − 1

2
|ψ |2Fβ

α.

We rewrite J2 as

J2 = 3

2
Im(ψλ̄βγ )̃ Ricαγ −1

2
Im(ψλ̄γα)̃ Ric

γβ + Im(ψλ̄σγ )R̃β
σαγ .

Then we obtain

I1 + J1 + J2 = ψ∇T 3 + λ2(T 1 + T 4) + 1

2
Im(ψλ̄γα)̃ Ric

γβ −1

2
Im(ψλ̄βγ )̃ Ricαγ

+ 1

2
F̃μ

α Re(ψλ̄β
μ) − 1

2
F̃μβ Re(ψλ̄μα) − 1

2
|ψ |2F̃β

α

= ψ∇T 3 + λ2(T 1 + T 4).

We can also show that I2 − (∇μV ν + ∇νVμ)Rμαν
β + J3 vanishes modulo

{T 1∇V, V∇T 1}. This is because J3 can be written as

J3 = Re(λγ
α ψ̄)∇γ V

β − Re(λγβψ̄)∇αVγ − V γ Re(∇ A
γ λβ

αψ̄)

+ Re(λ̄β
αλγ

σ )(∇γ V
σ − ∇σVγ ) − V γ Re(λ̄β

α∇ A
γ ψ)

− Re(λγ
α λ̄β

σ )∇γ V
σ + Re(λγσ λ̄β

σ )∇αVγ + V γ Re(∇ A
γ λσ

α λ̄β
σ )

− Re(λ̄σ
αλγ

σ )∇γ V
β + Re(λ̄σ

αλγβ)∇σVγ + V γ Re(λ̄σ
α∇ A

γ λβ
σ )

= R̃icαγ ∇γ V β − R̃ic
γβ ∇αVγ − V γ ∇γ R̃icα

β
.

Then we have

I2 − (∇μV ν + ∇νVμ)Rμαν
β + J3 = −T 1

αγ ∇γ V β + T 1,γβ∇αVγ + V γ ∇γ T
1, β
α .

This concludes the proof of the T 1-equations. ��
The equation for T 2. By the second Bianchi identities for the Riemannian curva-
ture and the following equality

∇δ R̃σγαβ + ∇σ R̃γ δαβ + ∇γ R̃δσαβ

= Re(T 3
δγ,β λ̄ασ + T 3

δσ,αλ̄βγ − T 3
δγ,αλ̄βσ − T 3

δσ,β λ̄αγ + T 3
σγ,αλ̄βδ − T 3

σγ,β λ̄αδ),

we have the counterpart of the second Bianchi identities

∇δT
2
σγαβ + ∇σ T

2
γ δαβ + ∇γ T

2
δσαβ = T 1λ,

which combine with the algebraic symmetries of the same tensor to yield an elliptic
system for T 2. Precisely, using the above relation we have

∇σ T 2
σγαβ = ∇αT

1
γβ − ∇βT

1
γα + T 1λ,

which combined with the previous one yields the desired elliptic system, with T 1

viewed as a source term. ��
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The equations for T 3. This has the form

(i∂B
t − �A

g )T 3
αβ,γ = λT 5 + V∇T 3 + T 3(∇V + λ2 + R) + (∇ Aλ + λV )(T 1 + T 2 + T 4)

+ ∇(T 2 + T 4)λ.

Recall the λ-equations

i∂B
t λβγ + ∇ A

μ ∇ A,μλβγ − 1

2

(̃
Ricβδ λδ

γ + R̃icγ δ λδ
β

)
+ R̃βσγ δλ

σδ + i

2

(
F̃βδλ

δ
γ + F̃γ δλ

δ
β

)
− i

2
λδ

β

[
Im(ψλ̄δγ ) + 2∇γ Vδ

] − i

2
λδ

γ

[
Im(ψλ̄δβ) + 2∇βVδ

] − iV δ∇ A
δ λβγ = 0.

Applying ∇ A
α and ∇ A

β to the above λβγ and λαγ -equations respectively, we obtain
the difference

0 =
[
∇ A

α

(
i∂B

t λβγ + ∇ A
μ ∇ A,μλβγ

)
− ∇ A

β

(
i∂B

t λαγ + ∇ A
μ ∇ A,μλαγ

)]
+

[
∇ A

α

[
− 1

2

(̃
Ricβδ λδ

γ + R̃icγ δ λδ
β

)
+ R̃βσγ δλ

σδ + i

2

(
F̃βδλ

δ
γ + F̃γ δλ

δ
β

)]
− ∇ A

β

[
− 1

2

(̃
Ricαδ λδ

γ + R̃icγ δ λδ
α

)
+ R̃ασγ δλ

σδ + i

2

(
F̃αδλ

δ
γ + F̃γ δλ

δ
α

)]]
+

[
∇ A

α

[
− i

2
λδ

β [Im(ψλ̄δγ ) + 2∇γ Vδ] − i

2
λδ

γ [Im(ψλ̄δβ) + 2∇βVδ] − iV δ∇ A
δ λβγ

]
− ∇ A

β

[
− i

2
λδ

α[Im(ψλ̄δγ ) + 2∇γ Vδ] − i

2
λδ

γ [Im(ψλ̄δα) + 2∇αVδ] − iV δ∇ A
δ λαγ

]]
:= I + I I + I I I.

We first compute I . We commute ∇ A
α with ∂B

t and ∇ A
μ ∇ A,μ to give

I = (i∂t − �A
g )T 3

αβ,γ + i
[∇ A

α , ∂B
t

]
λβγ +

[
∇ A

α ,∇ A
μ ∇ A,μ

]
λβγ (I1)

− i
[∇ A

β , ∂B
t

]
λαγ − [∇ A

β ,∇ A
μ ∇ A,μ

]
λαγ

= (
i∂t − �A

g

)
T 3

αβ,γ

+ i∂t�
σ
αγ λβσ + F0αλβγ − i∂t�

σ
βγ λασ − F0βλαγ

+ [[∇α,∇μ]∇ A,μλβγ + iFαμ∇ A,μλβγ + ∇ A,μ([∇α,∇μ] + iFαμ)λβγ

(I2)

− [∇β,∇μ]∇ A,μλαγ − iFβμ∇ A,μλαγ − ∇ A,μ([∇β,∇μ] + iFβμ)λαγ

]
.

For I1, by the formulas for ∂t� in (8.14), for Gμν in (8.13) and for the commutators
[∇α,∇β ] we have

I1 = i(∇αGγ δ + ∇γ Gαδ − ∇δGαγ )λδ
β − i(∇βGγ δ + ∇γ Gβδ − ∇δGβγ )λδ

α + ∇T 1λ

+ T 5
α λβγ − T 5

β λαγ + (Re(λσ
α∇ A

σ ψ) − F̃ασ V
σ )λβγ − (Re(λσ

β∇ A
σ ψ) − F̃βσ V

σ )λαγ

= ∇T 1λ + T 5
α λβγ − T 5

β λαγ + I11 + I12,

where I11, I12 are the terms containing λλ∇λ and Vλ respectively,

I11 := i(∇α Im(ψλ̄γ δ) + ∇γ Im(ψλ̄αδ) − ∇δ Im(ψλ̄αγ ))λδ
β

− i(∇β Im(ψλ̄γ δ) + ∇γ Im(ψλ̄βδ) − ∇δ Im(ψλ̄βγ ))λδ
α



   10 Page 70 of 79 Arch. Rational Mech. Anal.          (2024) 248:10 

+ Re(λσ
α∇ A

σ ψ)λβγ − Re(λσ
β∇ A

σ ψ)λαγ ,

I12 := i

2

[
(∇α∇γ + ∇γ ∇α)Vδλ

δ
β + Rασγ δV

δλσ
β + Rγ σαδV

δλσ
β

]
− i

2

[
(∇β∇γ + ∇γ ∇β)Vδλ

δ
α + Rβσγ δV

δλσ
α + Rγ σβδV

δλσ
α

]
− F̃ασV

σ λβγ + F̃βσV
σ λαγ .

Here, using the expressions for F̃αβ and R̃βαγ δ , the expression I11 can be rewritten
as

I11 = i∇α Im(ψλ̄γ δ)λ
δ
β − i∇β Im(ψλ̄γ δ)λ

δ
α − i∇ A

γ ψF̃αβ + ∇ A
δ ψ R̃βαγ δ,

Using commutators [∇γ ,∇α] and the Bianchi identities, the I12 expression can be
rewritten as

I12 = i∇α∇γ Vδλ
δ
β + i Rγ σαδV

δλσ
β − i∇β∇γ Vδλ

δ
α

− i Rγ σβδV
δλσ

α − F̃ασV
σ λβγ + F̃βσV

σ λαγ

For I2, we use the Riemannian curvature tensor to write

I2 = Rαμμδ∇ A,δλβγ + Rαμβδ∇ A,μλδ
γ + Rαμγ δ∇ A,μλδ

β + iFαμ∇ A,μλβγ

+ ∇ A,μ(Rαμβδλ
δ
γ + Rαμγ δλ

δ
β + iFαμλβγ )

− Rβμμδ∇ A,δλαγ − Rβμαδ∇ A,μλδ
γ − Rβμγ δ∇ A,μλδ

α − iFβμ∇ A,μλαγ

− ∇ A,μ(Rβμαδλ
δ
γ + Rβμγ δλ

δ
α + iFβμλαγ )

= − Ricαδ ∇ A,δλβγ + 2Rαμβδ∇ A,μλδ
γ + 2Rαμγ δ∇ A,μλδ

β + 2iFαμ∇ A,μλβγ

+ ∇μRαμβδλ
δ
γ + ∇μRαμγ δλ

δ
β + i∇μFαμλβγ

+ Ricβδ ∇ A,δλαγ − 2Rβμαδ∇ A,μλδ
γ − 2Rβμγ δ∇ A,μλδ

α − 2iFβμ∇ A,μλαγ

− ∇μRβμαδλ
δ
γ − ∇μRβμγ δλ

δ
α − i∇μFβμλαγ

= 2RαμβδT
3,μδ

,γ + (T 1 + T 2 + T 4)∇ Aλ + ∇(T 2 + T 4)λ + J1,

where the terms in J1 have the form λλ∇λ as

J1 = ∇ A,δλβγ (− R̃icαδ +2i F̃αδ) + ∇ A,δλαγ (̃Ricβδ −2i F̃βδ)

+ i∇μF̃αμλβγ − i∇μF̃βμλαγ

+ 2R̃αμγ δ∇ A,μλδ
β + ∇μ R̃αμβδλ

δ
γ + ∇μ R̃αμγ δλ

δ
β

− 2R̃βμγ δ∇ A,μλδ
α − ∇μ R̃βμαδλ

δ
γ − ∇μ R̃βμγ δλ

δ
α.

We next rewrite the I I I expression as

I I I = ∇ A
α

[
− i

2
λδ

β [Im(ψλ̄δγ ) + 2∇γ Vδ] − i

2
λδ

γ [Im(ψλ̄δβ) + 2∇βVδ] − iV δ∇ A
δ λβγ

]
− ∇ A

β

[
− i

2
λδ

α[Im(ψλ̄δγ ) + 2∇γ Vδ] − i

2
λδ

γ [Im(ψλ̄δα) + 2∇αVδ] − iV δ∇ A
δ λαγ

]
= − i

2
T 3

αβ,δ[Im(ψλ̄δ
γ ) + 2∇γ V

δ] + I I I1 + I I I2,



Arch. Rational Mech. Anal.          (2024) 248:10 Page 71 of 79    10 

where

I I I1 := − i

2
λδ

β∇α Im(ψλ̄δγ ) − i

2
∇ A

α (λδ
γ Im(ψλ̄δβ))

+ i

2
λδ

α∇β Im(ψλ̄δγ ) + i

2
∇ A

β (λδ
γ Im(ψλ̄δα)),

I I I2 := −iλδ
β∇α∇γ Vδ − i∇ A

α (λδ
γ ∇βVδ) − i∇ A

α (V δ∇ A
δ λβγ )

+ iλδ
α∇β∇γ Vδ + i∇ A

β (λδ
γ ∇αVδ) + i∇ A

β (V δ∇ A
δ λαγ ).

The I12 + I I I2 expression vanishes modulo {V∇T 3, T 3∇V, λV (T 2 + T 4)}.
Precisely, we can further write I I I2 as

I I I2 = −iT 3
αδ,γ ∇βV

δ + iT 3
βδ,γ ∇αV

δ − iV δ∇ A
α T 3

δβ,γ + iV δ∇ A
β T 3

δα,γ (I I I21)

+ i(−λδ
β∇α∇γ Vδ + λδ

α∇β∇γ Vδ − V δRαβγσ λσ
δ ) + V δFαβλδγ .

Then replacing Rαβγ δ , Fαβ by R̃αβγ δ and F̃αβ respectively, we have

I12 + I I I21 = i(λσ
β Rγ σαδV

δ − λσ
α Rγ σβδV

δ − V δRαβγσ λσ
δ ) (J2)

− F̃ασV
σ λβγ + F̃βσV

σ λαγ + V δFαβλδγ

= i(λσ
βT

2
γ σαδV

δ − λσ
αT

2
γ σβδV

δ − V δT 2
αβγσ λσ

δ ) + V δT 4
αβλδγ

+ [
i(λσ

β R̃γ σαδV
δ − λσ

α R̃γ σβδV
δ − V δ R̃αβγσ λσ

δ )

− F̃ασV
σ λβγ + F̃βσV

σ λαγ + V δF̃αβλδγ

]
= λVT 2 + λVT 4,

where the term J2 vanishes due to the representations of R̃γ σαδ and F̃ασ .
Next, we show that the terms I11 + J1 + I I + I I I1 vanish modulo λλT 3. We

have

I11 + I I I1 = −i∇ A
γ ψF̃αβ + ∇ A

δ ψ R̃βαγ δ + i

2
λδ

β∇α Im(ψλ̄δγ ) − i

2
λδ

α∇β Im(ψλ̄δγ )

− i

2
∇ A

α (λδ
γ Im(ψλ̄δβ)) + i

2
∇ A

β (λδ
γ Im(ψλ̄δα)).

We rewrite I I as

I I = ∇ A
α

[
− 1

2

(̃
Ricβδ λδ

γ + R̃icγ δ λδ
β

) + R̃βσγ δλ
σδ + i

2

(
F̃βδλ

δ
γ + F̃γ δλ

δ
β

)]
(J3)

− ∇ A
β

[
− 1

2

(̃
Ricαδ λδ

γ + R̃icγ δ λδ
α

) + R̃ασγ δλ
σδ + i

2

(
F̃αδλ

δ
γ + F̃γ δλ

δ
α

)]
= −1

2

(̃
Ricγ δ −i F̃γ δ

)
T 3

αβ,

δ

+ 1

2
∇ A

α

(
λδ

γ

( − R̃icβδ +i F̃βδ

)) − 1

2
∇ A

β

(
λδ

γ

( − R̃icαδ +i F̃αδ

))
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+ 1

2
λδ

β∇α

( − R̃icγ δ +i F̃γ δ

) − 1

2
λδ

α∇β

( − R̃icγ δ +i F̃γ δ

)
(J4)

− ∇σ R̃αβγ δλ
σδ + R̃βμγ δ∇ A

α λμδ − R̃αμγ δ∇ A
β λμδ. (J5)

Hence,

I11 + I I I1 + J3 + J4

= −i∇ A
γ ψF̃αβ + ∇ A

δ ψ R̃βαγ δ + 1

2
λδ

β∇α(−λγ δψ̄ + λγσ λ̄σ
δ )

+ 1

2
λδ

α∇β(λγ δψ̄ − λγσ λ̄σ
δ ) + 1

2
∇ A

α

[
λδ

γ

( − λ̄δβψ + λβσ λ̄σ
δ

)]
+ 1

2
∇ A

β

[
λδ

γ

(
λ̄δαψ − λασ λ̄σ

δ

)]
= −i∇ A

γ ψF̃αβ + ∇ A
δ ψ R̃βαγ δ − ∇ A

α λδ
γ

(̃
Ricβδ −i F̃βδ

) + ∇ A
β λδ

γ

(̃
Ricαδ −i F̃αδ

)
+ ∇ A

α λσδλβσ λγ δ − ∇ A
β λσδλασ λγ δ − λδ

γ Re(∇ A
α ψλ̄βδ) + λδ

γ Re(∇ A
β ψλ̄αδ) + λ2T 3.

Since by R̃ and F̃ we also have

J1 + J5 = −∇ A,δλβγ R̃icαδ +∇ A,δλαγ R̃icβδ +λδ
γ Re(∇ A

α ψλ̄βδ − ∇ A
β ψλ̄αδ)

− ∇ A
α λμσ λμβλσγ + ∇ A

β λμσ λμαλσγ − i∇ A,δλαγ F̃βδ + i∇ A,δλβγ F̃αδ

+ ∇ A,σ ψ R̃αβγσ + i∇ A
γ ψF̃αβ + λ2T 3.

Then in the above two formulas all terms cancel except for λλT 3. Hence, we obtain
that I11 + J1 + I I + I I I1 vanishes modulo λλT 3. This concludes the proof of the
T 3-equations. ��
The equations for T 4. These have the form

(∂t − �g)T
4
αβ = − Ricαδ T

4,δ
β + Ricβδ T

4,δ
α − RβασδT

2,σδ

− Re(∇ A,σ ψT 3
αβ,σ ) − V γ Im(λσ

γ T
3
αβ,σ ) + V γ Im(T 3

γα,σ λ̄σ
β ).

By the A-equations we have

(∂t − �g)T
4
αβ = −[�g, ∇α]Aβ + [�g, ∇β ]Aα − ∇α

(̃
Ricβδ A

δ
) + ∇β

(̃
Ricαδ A

δ
)

+ ∇α∇σ F̃βσ − ∇β∇σ F̃ασ − �gF̃αβ

− ∂t F̃αβ + ∇α

[
Re(λγ

β∇ A
γ ψ) − F̃βδV

δ
] − ∇β

[
Re(λγ

α∇ A
γ ψ) − F̃αδV

δ
]

:= I1 + I2 + I3.

For the commutator we use the Bianchi identities to compute

− [∇σ ∇σ ,∇α]Aβ + [∇σ ∇σ ,∇β ]Aα

= −∇σ (Rσαβδ A
δ − Rσβαδ A

δ) − (Rσαβδ − Rσβαδ)∇σ Aδ − Rσ
ασδ∇δ Aβ + Rσ

βσδ∇δ Aα

= −∇σ Rβασδ A
δ − 2Rβασδ∇σ Aδ − Ricαδ ∇δ Aβ + Ricβδ ∇δ Aα

= −(∇β Ricαδ −∇αRβδ)A
δ − RβασδFσδ − Ricαδ(Fδ

β + ∇β A
δ) + Ricβδ(Fδ

α + ∇α A
δ)

= −∇β(Ricαδ A
δ) + ∇α(Ricβδ A

δ) − RβασδFσδ − Ricαδ Fδ
β + Ricβδ Fδ

α.
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We commute ∇α, ∇β with ∇σ and use ∇αF̃βσ +∇β F̃σα +∇σ F̃αβ = 0 to compute
I2 by

I2 = Rασβγ F̃γ σ + Rασσγ F̃
γ
β − Rβσαγ F̃γ σ − Rβσσγ F̃ γ

α

= Ricαδ F̃δ
β − Ricβδ F̃δ

α + RβασδF̃σδ.

Then we obtain

I1 + I2 = − Ricαδ T
4,δ

β + Ricβδ T
4,δ

α − RβασδT
4,σδ

For I3 we compute ∂t F̃αβ first.

∂t F̃αβ = Im(∂tλασ λ̄σ
β − ∂tλβσ λ̄σ

α ) + ∂t g
σμ Im(λασ λ̄βμ)

By the g-equations and

i∂B
t λαβ + ∇ A

α ∇ A
β ψ − iλγ

α Im(ψλ̄γβ) − iλγ
α∇βVγ − iλγ

β∇αVγ − iV γ ∇ A
γ λαβ = 0,

we have

Im(∂tλασ λ̄σ
β ) = − Re(Bλασ λ̄σ

β − ∇ A
α ∇ A

σ ψλ̄σ
β ) + Im(λγ

α λ̄σ
β )(Im(ψλ̄γ σ ) + ∇σVγ )

+ ∇α(F̃γ
βVγ ) − V γ Im(λγσ ∇ A

α λσ
β ) + V γ Im(T 1

γα,σ λ̄σ
β )

Then we rewrite the expression ∂t F̃αβ as

∂t F̃αβ = ∇α Re(∇ A
σ ψλ̄σ

β ) − ∇β Re(∇ A
σ ψλ̄σ

α ) − Re(∇ A,σ ψT 3
αβ,σ )

+ ∇α(F̃γ
βVγ ) − ∇β(F̃γ

αVγ ) − V γ Im(λσ
γ T

3
αβ,σ ) + V γ Im(T 3

γα,σ λ̄σ
β )

= ∇αF̃0β − ∇β F̃0α + ∇ψT 3 + λVT 3.

Hence, we have

I3 = ∇α Re(∇ A
σ ψλ̄σ

β ) − ∇β Re(∇ A
σ ψλ̄σ

α ) − Re(∇ A,σ ψT 1
αβ,σ )

+ ∇α(F̃γ
βVγ ) − ∇β(F̃γ

αVγ ) − V γ Im(λσ
γ T

1
αβ,σ ) + V γ Im(T 3

γα,σ λ̄σ
β )

+ ∇α[Re(λγ
β∇ A

γ ψ) − F̃βδV
δ] − ∇β [Re(λγ

α∇ A
γ ψ) − F̃αδV

δ]
= − Re(∇ A,σ ψT 3

αβ,σ ) − V γ Im(λσ
γ T

3
αβ,σ ) + V γ Im(T 3

γα,σ λ̄σ
β )

This concludes the proof T 4-equations. ��
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9. The Reconstruction of the Flow

In this last section we close the circle of ideas in this paper, and prove that one
can start from the good gauge solution given by Theorem 2.5, and reconstruct the
flow at the level of d-dimensional embedded submanifolds. For completeness, we
provide here another, more complete statement of our main theorem.

Theorem 9.1. (Small data local well-posedness) Let d � 2 and s > d
2 . Consider

the skew mean curvature flow (1.1) for maps F from R
d to the Euclidean space

(Rd+2, gRd+2) with initial data �0 which, in some coordinates, has a metric g0
satisfying ‖|D|σd (g0 − Id)‖Hs+1−σd � ε0 and mean curvature ‖H0‖Hs (�0) � ε0.
In addition, we assume that ‖g0 − Id‖Y lo

0
� ε0 in dimension d = 2.

If ε0 > 0 is sufficiently small, then there exists a unique solution

F : R
d × [0, 1] → (Rd+2, gRd+2)

which, when represented in harmonic coordinates at the initial time and heat co-
ordinates dynamically, has regularity

∂2
x F, ∂t F ∈ C([0, 1]; Hs(Rd)).

and induced metric and mean curvature

|D|σd (g − Id) ∈ C([0, 1]; Hs+2−σd (Rd)), H ∈ C([0, 1]; Hs(Rd)).

In addition the mean curvature satisfies the bounds

‖λ‖l2Xs + ‖(h, A)‖Es � ‖λ0‖Hs + ‖h0‖Ys+2
0

.

where λ and A are expressed using the Coulomb gauge initially and the heat gauge
dynamically in the normal bundle N�t .

We prove the theorem in several steps.

9.1. The Moving Frame

Once we have the initial data (h0, A0, λ0) which is small in Hs × Hs by
Proposition 4.1 and 4.2, Theorem 2.5 yields the good gauge local solution λ, along
with the associated derived variables (h, A). But this does not yet give us the actual
maps F .

Here we undertake the task of reconstructing the frame (Fα,m). For this we use
the system consisting of (2.6) and (2.14), viewed as a linear ode. We recall these
equations here: {

∂αFβ = �
γ
αβFγ + Re(λαβm̄),

∂ A
α m = −λγ

α Fγ ,
(9.1)
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respectively

{
∂t Fα = − Im(∂ A

α ψm̄ − iλαγ V
γ m̄) + [Im(ψλ̄γ

α ) + ∇αV
γ ]Fγ ,

∂B
t m = −i(∂ A,αψ − iλα

γ V
γ )Fα.

(9.2)

We start with the frame at time t = 0, which already is known to solve (9.1),
and has the following properties:

(i) Orthogonality, Fα ⊥ m, 〈m,m〉 = 2, 〈m, m̄〉 = 0 and consistency with the
metric gαβ = 〈Fα, Fβ〉.

(ii) Integrability, ∂βFα = ∂αFβ .
(iii) Consistency with the second fundamental form and the connection A:

∂αFβ · m = λαβ, 〈∂αm,m〉 = −2i Aα.

Next we extend this frame to times t > 0 by simultaneously solving the pair of
equations (9.1) and (9.2).

9.1.1. The Solvability of (9.1) and (9.2) The system consisting of (9.1) and
(9.2) is overdetermined, and the necessary and sufficient condition for existence of
solutions is provided by Frobenius’ theorem. We now verify these compatibility
conditions in two steps:

(a) Compatibility conditions for the system (9.1) at fixed time. Here, by T 2
αβμν = 0,

T 3
αβ,γ = 0, T 4

αβ = 0 and we have

∂α(�σ
βγ Fσ + Re(λβγ m̄)) − ∂β(�σ

αγ Fσ + Re(λαγ m̄)) = 0,

and

∂α(i Aβm + λσ
β Fσ ) − ∂β(i Aαm + λσ

α Fσ ) = 0,

as needed.
(b) Compatibility conditions between the system (9.1) and (9.2). By (9.1), (9.2)

and (8.15) we have

∂t (i Aαm + λσ
α Fσ ) − ∂α(i Bm + i(∂ A,σ ψ − iλσ

γ V
γ )Fσ ) = 0

and

∂β [− Im(∂ A
α ψm̄ − iλαγ V

γ m̄) + [Im(ψλ̄γ
α) + ∇αV

γ ]Fγ ]
−∂t [�γ

βαFγ + Re(λβαm̄)] = 0.
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9.1.2. Solving the System (9.1)–(9.2) Locally Starting from the existing frame
at time t = 0, we want to extend it forward in time by solving (9.2), while insuring
that (9.1) remains valid. The difficulty is that we lack the uniform integrability
in time for the coefficients in (9.2). However, in view of the local energy decay

bounds for λ and ψ , we do know that locally we have λ ∈ L2
t H

s+ 1
2 . We choose a

distinguished coordinate, say xd , and denote the remaining coordinates by x ′. Then
in view of Sobolev embeddings we have the local regularity

∂λ ∈ Cxd L
2
t H

s−1
x ′ ∩ L2

xd L
2
t Cx ′

Thus on a “good" xd slice we have ∂λ ∈ L2
t Cx ′ and we can extend our frame

forward in time as a continuous function, with L2
t L

∞
x ′ time derivatives and bounded

spatial derivatives.
At fixed time all the coefficients are continuous so we can start from the above

xd slice and solve the system (9.1) globally in x , obtaining a global frame (Fα,m)

which is locally Lipschitz in x and continuous in t . By Frobenius’ theorem, this
solution must also satisfy (9.2) on any good xd slice, which is a.e. Thus we have
obtained the desired global frame (Fα,m) for t ∈ [0, 1].
9.1.3. Propagating the Properties (i)–(iii) Here we show that the properties
(i)–(iii) above also extend to all t ∈ [0, 1]. The properties (ii) and (iii) follow
directly from the equations (9.1) and (9.2) once the orthogonality conditions in (i)
are verified. We denote

g̃00 = 〈m,m〉, g̃α0 = 〈Fα,m〉, g̃αβ = 〈Fα, Fβ〉.
The first step is to propagate (i) forward in time on a good xd slice. Indeed, by

(9.2) and (8.13) we have

∂t g̃α0 = − i

2
(∂ A

α ψ + i λ̄αγ V
γ )(g̃00 − 2) − i(∂ A,σ ψ + i λ̄σ

γ V
γ )(gασ − g̃ασ )

+ i

2
(∂ A

α ψ + iλαγ V
γ )〈m̄,m〉 + (Im(ψλ̄γ

α ) + ∇αV
γ )g̃γ 0 + i Bg̃α0,

∂t (g̃00 − 2) = 2 Im[(∂ A,αψ − iλα
γ V

γ )g̃α0],
∂t 〈m, m̄〉 = −2i B〈m, m̄〉 − 2i(∂ A,αψ − iλα

γ V
γ ) ¯̃gα0,

∂t (gαβ − g̃αβ) = (Im(ψλ̄γ
α ) + ∇αV

γ )(gβγ − g̃βγ ) + (Im(ψλ̄
γ
β ) + ∇βV

γ )(gαγ − g̃αγ )

+ Im(∂ A
α ψ g̃β0 − iλαγ V

γ g̃β0) − Im(∂ A
β ψ ¯̃gα0 − iλβγ V

γ ¯̃gα0).

Viewed as a linear system of ode’s in time, these equations allow us to propagate
(i) in time, given that it is satisfied at t = 0.

It remains to propagate (i) spatially. Using (9.1) we compute

∂α g̃β0 = �
γ
αβ g̃γ 0 + 1

2
λαβ 〈m̄,m〉 + 1

2
λ̄αβ(g̃00 − 2) + λ̄γ

α (gβγ − g̃βγ ) + i Aα g̃β0,

∂α(g̃00 − 2) = −2 Re(λγ
α g̃γ 0),

∂α〈m, m̄〉 = −2i Aα〈m, m̄〉 − 2 Re λγ
α

¯̃gγ 0,

∂α(gβγ − g̃βγ ) = �σ
αβ(gσγ − g̃σγ ) + �σ

αγ (gσβ − g̃σβ) + Re(λ̄βα g̃γ 0 + λ̄γ α g̃β0).

By ode uniqueness and the choice of the initial data, the desired properties (i) for
the frame are indeed propagated spatially.
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9.1.4. The Sobolev Regularity of the Frame Here we show that our frame has
the global regularity

∂x (Fα,m) ∈ L∞Hs, ∂t (Fα,m) ∈ L∞Hs−1.

As a consequence of the property (i), we directly see that (Fα,m) ∈ L∞.
From (9.1) it then follows that ∂x (Fα,m) ∈ L∞. This allows us to differentiate
further in (9.1) and bound higher derivatives of the frame, up to the Hs regularity
for ∂x (Fα,m), which is imposed by λ. We can directly estimate this last norm.
Precisely, by (9.1), (2.32) and Sobolev embeddings we have

‖∂x Fα‖Hs � ‖�Fγ + λm‖Hs

� ‖�‖Hs‖Fγ ‖L∞∩Ḣ s + ‖λ‖Hs‖m‖L∞∩Ḣ s

� ε0(‖g‖1/2
L∞ + ‖∂x Fα‖Hs ) + ε0(1 + ‖∂xm‖Hs )

� ε0(1 + ‖∂x Fα‖Hs + ‖∂xm‖Hs )

and

‖∂αm‖Hs � ‖Am + λFγ ‖Hs

� ‖A‖Hs‖m‖L∞∩Ḣ s + ‖λ‖Hs‖Fγ ‖L∞∩Ḣ s

� ε0(1 + ‖∂x Fα‖Hs + ‖∂αm‖Hs ).

These imply the uniform bound

‖∂x Fα‖Hs + ‖∂xm‖Hs � ε0.

9.2. The Moving Manifold �t

Here we propagate the full map F by simply integrating (2.13), i.e.

F(t) = F(0) +
∫ t

0
− Im(ψm̄) + V γ Fγ ds.

Then by (9.1), we have

∂αF(t) = ∂αF(0) +
∫ t

0
− Im(∂ A

α ψm̄ − iλαγ V
γ m̄) + [Im(ψλ̄γ

α ) + ∇αV
γ ]Fγ ds,

which is consistent with above definition of Fα .

9.3. The (SMCF) Equation for F

Here we establish that F solves (1.1). Using the relation λαβ = ∂α∂βF · m we
have

− Im(ψm̄) = − Im(gαβ∂α∂βF · (ν1 + iν2) (ν1 − iν2))

= (�gF · ν1)ν2 − (�gF · ν2)ν1

= J (�gF)⊥ = JH(F).
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This implies that the F solves (1.1).
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