
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Towards Data Efficiency on Model-Based Reinforcement Learning: Model Confidence and
Representation

Permalink
https://escholarship.org/uc/item/0121p992

Author
Nagata, Takashi

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0121p992
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Towards Data Efficiency on Model-Based Reinforcement Learning:
Model Confidence and Representation

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computer Science

by

Takashi Nagata

Dissertation Committee:
Professor Emre O. Neftci, Chair

Professor Nikil D. Dutt
Professor Roy Fox

2022

Chapter 3 c© 2022 IEEE
All other materials c© 2022 Takashi Nagata

DEDICATION

To my family

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES v

LIST OF TABLES ix

LIST OF ALGORITHMS x

ACKNOWLEDGMENTS xi

VITA xiii

ABSTRACT OF THE DISSERTATION xv

1 Introduction 1

2 Background 7
2.1 Reinforcement Learning . 7

2.1.1 Deep Reinforcement Learning . 9
2.1.2 Markov Decision Process . 11
2.1.3 Rewards and Episodes . 11
2.1.4 Exploration-Exploitation Trade-off 13
2.1.5 Temporal Difference and Value Optimization 14
2.1.6 Policy Optimization . 15
2.1.7 Proximal Policy Optimization . 16

2.2 Model-Based Reinforcement Learning . 17
2.2.1 Dyna . 20

2.3 Uncertainty in Deep Learning . 22
2.4 Representation Learning . 23

2.4.1 Generative Models . 25
2.4.2 Disentanglement . 31
2.4.3 Representation Learning in Reinforcement Learning 31

3 Confidence Based Model Integration 33
3.1 Introduction . 33
3.2 Methods . 35

3.2.1 Model-Based Reinforcement Learning and Dyna 36
3.2.2 Model Uncertainty Estimation Using MC-Dropout 38

iii

3.2.3 Models . 39
3.2.4 Model Quality Aware Integration . 40

3.3 Experiments and Results . 42
3.3.1 Dyna-PPO with Confidence Interval Checking 42
3.3.2 Continuous Control Problems . 45
3.3.3 Ablation Study . 51

3.4 Discussion . 51

4 Disentangled State Representation for Reinforcement Learning 53
4.1 Introduction . 53
4.2 Methods . 56

4.2.1 VAE/GAN . 56
4.2.2 Evaluation of Representations . 59

4.3 Experiments and Results . 62
4.3.1 Qualitative Evaluation . 62
4.3.2 Quantitative Evaluation . 66

4.4 Conclusion . 73

5 Future Directions 75
5.1 Uncertainty-based Adaptive learning . 75
5.2 Generalizing RL agents with Data Augmentation using Models 80

6 Conclusion 84

Bibliography 86

iv

LIST OF FIGURES

Page

1.1 Project scopes. The first project is a model-based RL, where the models are
learned and used to optimize agents’ behavior policy. In particular, we in-
vestigate how to handle uncertainty in models. The second project is about
representation learning. The method representing the input data is a criti-
cal problem in machine learning and can significantly impact the RL agents’
performance. We propose using the architecture consisting of Variational Au-
toencoder and Generative Adversarial Network, called VAE/GAN, and show-
ing its effectiveness from a task performance and disentanglement point of
view. The research projects share the motivation to improve sample efficiency. 6

2.1 Reinforcement Learning Sequence. The agent takes an action based on the
observed state. The environment state changes based on the action (e.g., the
agent’s position, joint angles, velocity, or a view changes), which is a new
observation for the agent, and the environment also provides the agent with a
scalar reward. The agent decides the next action given a new observation, and
this process continues. Rewards give the agent cues on whether a taken action
was good or not, and the agent tries to learn behaviors, which maximizes the
total cumulative rewards. The figure is modified from [Sutton and Barto, 2018]. 8

2.2 RL Taxonomy. At the top level, the tree branches based on whether the
method is model-free or model-based. The model-free family consists of Q-
learning and the policy gradient method. There are two distinctions in the
model-based branch: whether the model is given or the model needs to be
learned. 10

2.3 Actor-Critic architecture. The network consists of an actor and a critic. Given
the newly observed state and reward, the critic calculate the difference be-
tween the realized value of the state/action and the estimated value of the
state, and feedback it to the actor. 16

2.4 Model-based RL architecture. The model is used for planning. In accordance
with [Sutton and Barto, 2018], ’planning’ here refers to ”any computational
process that takes a model as input and produces or improves a policy for
interacting with the modeled environment” 18

v

2.5 Different approaches to learn models. The figures are adapted from [Lesort
et al., 2018] with some modifications. (a) learns the representation of a state
by reconstructing. (b) predicts the next representation of the state given the
current state and the action. (c) predicts what action was taken by comparing
the current state and the observed next state. 19

2.6 Dyna Architecture. The agent learns its policy in a model-free way. Along
with this direct learning path, the agent learns the models of the environment
on the fly based on experiences and uses the model to generate simulated
transitions to extend experiences for the training. 21

2.7 Visualization of learned representations by Variational Autoencoder using
MNIST data set. The dimension of latent space is 2 in this example, and
the horizontal and vertical axis corresponds to a value of the first and second
dimensions in the latent space. For example, a vector [-0.7228127, 3.0308518]
in the latent space is character ’1’, or [2.7340467, 1.6926069] corresponds to
the character ’0’. These vectors are the representation in the latent space, and
the objective of the representation learning is to acquire this mapping from
the original data space to the latent space. 24

2.8 Example of learned representation, which is factorized and useful for multi-
ple tasks sharing some factors. Task A, B, and C shares some factors (red
circles) in the representation. Thus, the intermediate representation can be
transferred, and it does not need to be learned for each task. Adapted from
[Bengio et al., 2012] c©2012 IEEE. 25

2.9 VAE Architecture. The network consists of a probabilistic encoder qφ(z|x)
and a probabilistic decoder pθ(z|x). The encoder outputs a set of parameters
for the Gaussian distribution, and a latent vector z is generated based on
those parameters using the reparameterization trick so that it can perform
backpropagation. The decoder then reconstructs the input. Training objective
is to minimize the reconstruction loss and the KL-divergence between qφ(z|x)
and pθ(z|x). 27

2.10 Deep generative models taxonomy adapted from [Goodfellow, 2017]. There
are two broad classes: 1. Explicit density models, where a density function
needs to be defined, and 2. Implicit density models that do not require such
functions. GAN is in the latter family as it does not require defining a density
function. 29

2.11 Comparison of the generated image characteristics between MSE and adver-
sarial loss. Since the MSE losses consider all possible samples, it dent to
generate blurry images. On the other hand, the adversarial losses only re-
quire one specific sample to consider, which makes the generated samples
look sharper. The image adapted from [Lotter et al., 2015]. 30

3.1 Decoder Architecture of the State Transition Model. The decoder has a
dropout layer, and the output is stochastic instead of the point estimate.
Thus, performing inference multiple times for each input enables prediction
variance calculation. 41

vi

3.2 Examples of empirical distributions of values (observations) in some dimen-
sions of states in the Hopper environment used to train the model. The agent
collects N data steps in each epoch, and confidence intervals are calculated
based on this distribution. 42

3.3 Dyna-PPO with Model Confidence Aware Integration. 45
3.4 Tasks evaluated. Left: Pendulum. For the pendulum environment, the goal is

to swing up the pendulum and keep that position as long as possible. Middle:
Hopper. The goal is to keep making a one-legged robot hop forward. Right:
Swimmer. The goal is to make a three-link robot swim forward as fast as
possible. Each environment provides the agent with 3, 11, and 8-dimensional
continuous observations, respectively. 46

3.5 Comparison of PPO, Dyna-PPO learning curves with 128 model steps, and
Dyna-PPO with 128 model steps with quality checking. Plots show training
performance (rewards) over the number of collected episodes, and each line is
a mean performance over random seeds. 47

3.6 Comparison between our method without confidence interval checking (gray)
and our proposed method with confidence interval checking (purple). 14.94%
performance improvement averaged throughout the epochs in 5 different runs.
Hopper environment is used in this experiment. 48

3.7 State transition model network details. 49

4.1 Example of disentangled representation. The learned representation in this
example is a 4-dimensional vector, and each dimension corresponds to car
position, rotation, acceleration, and road angle, respectively. 56

4.2 VAE/GAN network architecture. Input data is fed into the encoder first.
The encoder outputs parameters for a Gaussian distribution (µ and σ), and a
latent vector z is drawn from the distribution parameterized by them. Instead
of a decoder in the standard VAE architecture, the generator generates data
x′ in VAE/GAN. The generated data is then fed into the discriminator along
with the original input x. The discriminator determines whether an input is
real or fake. 58

4.3 CarRacing-v0 environment in OpenAI Gym. The car (agent) location is fixed
to the center bottom, and the scene changes based on the agent’s actions.
There are some indicators in the black area at the bottom. From left to right:
true speed, four ABS sensors, steering wheel position, gyroscope. 63

4.4 Reconstructed image comparison. Top four rows are original input images and
the bottom four rows are reconstructions for each. Both VAE and VAE/GAN
reconstruct images equally well. 64

4.5 Latent vector mapped on 2D plane using t-SNE. The left figure (VAE/GAN)
has some clear clusters with similar images. Based on this observation, we
conjecture that the VAE/GAN embedding could benefit RL agents. 65

4.6 Some other examples of t-SNE projection of VAE/GAN embedding. There
are several clusters in these examples as well. 65

4.7 Experimental setup for the downstream task. 66

vii

4.8 VAE/GAN network details. K, S, and P are kernel size, strides, and padding,
respectively. 67

4.9 Performance comparison using PPO. The blue line is the PPO on the latent
vector generated by VAE and the red line is on the latent vector generated by
VAE/GAN. Values are the average of three runs with different random seeds. 69

4.10 Classifier-based disentanglement metric proposed in [Higgins et al., 2017a].
The figure is adapted from the paper. 71

4.11 Metric score with 300 epochs of training. A classifier is an multi-layer percep-
tron with two linear layers. 72

5.1 Bandit machine experiment with reward structure flipping. Initially, two ban-
dit machines have a reward probability of 0.8 and 0.2, respectively (left). After
some iterations, the reward probability is changed to 0.2 and 0.8, respectively
(right). 78

5.2 Bandit machine experiment results. The plots show the probability of se-
lecting machine A, which initially has a reward probability of 0.8, and it is
updated to 0.2 in the second half of the experiment. ’Static’ refers to the
agent with a constant learning rate. On the other hand, ’Dynamic’ corre-
sponds to the agent with a dynamic learning rate update mechanism. Both
eventually get close to the optimal probability, but the dynamic mechanism
helps to adapt the situation quickly. 80

5.3 Comparison of different learning rates. Run multiple experiments with dif-
ferent learning rates from 0.001 to 0.005 and the dynamic learning rate. The
dynamic scheme gets close to 0.8 first, and after the reward structure change
(1,500 iterations), it also reaches the updated value fastest. 81

5.4 Examples of generated images with random latent vectors. 82
5.5 Forward prediction experiment. The first row is the frames of next observa-

tions (ground truth), the second row is the reconstructions from the predicted
z′ given the current observations, which we call ẑ′, and the third row is recon-
structed images from latent code z′ of next observations, encoded using the
real observations. Based on this experiment, we can qualitatively conclude
that the forward prediction model predicts z′ well. 83

viii

LIST OF TABLES

Page

3.1 Performance improvements . 46
3.2 Hyperparameters used in Dyna-PPO. Dyna-PPO has two groups of param-

eters; parameters for PPO (from Horizon to λ in the table) and those for
MC-dropout (dropout rate and the number of iterations). Values are deter-
mined empirically based on the original paper Schulman et al. [2017]. 50

4.1 Hyperparameters used in VAE/GAN training for CarRacing environment.
Values are determined empirically. 68

ix

LIST OF ALGORITHMS

Page
1 Dyna-PPO with simulation confidence . 44
2 VAE/GAN Training . 59

x

ACKNOWLEDGMENTS

First and foremost I would like to thank my advisor Professor Emre Neftci for his guidance,
continuous support, and endless patience during my PhD journey. I also sincerely thank
my dissertation committee, Professor Nikil Dutt and Professor Roy Fox. I would also like
to thank Professor Jeff Krichmar and Professor Aaron Bornstein for serving on my PhD
candidacy committee and for constructive feedback on my research ideas. In addition, I
would like to thank Dr. Tsutomu Kumazawa for mentoring me.

My dissertation is based upon work supported by Intel Corporation and the National Science
Foundation (NSF) under grant 1652159. I sincerely thank these funding sources that made
my PhD studies possible.

I also owe my thanks to the following people and/or organizations.

The Neuromorphic Machine Intelligence Lab (NMI). Dan Barsever, Tim Hin Wai Lui, Ken-
neth Stewart, Nick Alonso, and Yue Yin. I would express my special appreciation to Jinwei
Xing, my research fellow and co-author, separately. I am lucky to have you in my PhD
journey. Your positive attitude and grit always inspired and encouraged me.

Old NMI folks. Dr. Georgios Detorakis, Travis Bartley, Andrew Hansen, Armaan Saini, Dr.
Jordan Rashid, and Roman Parise. I enjoyed working with you. I miss our random chatting
a lot.

Past and current members of the Cognitive Anteater Robotics Laboratory (CARL) and Dutt
Research Group.

Amazon - Global Learning & Development and Visual Search & AR for my summer intern-
ships.

Colleagues at Hewlett-Packard Japan and Amazon Web Services Japan for their friendship
and inspiration.

Other grad students at UCI for making my graduate school life much fun.

Professor Munehiro Takimoto and Professor Yasushi Kambayashi, my former advisor and
co-author, respectively for always welcoming and encouraging me.

My family for always caring me and supporting my decision.

Finally, I would like to thank my wife and best friend, Yuki Nagata, for always being by my
side, encouraging me, and sharing the journey. I am truly blessed to have you in my life.

Portions of Chapter 3 are reprinted with the permission from Takashi Nagata, Jinwei Xing,
Tsutomu Kumazawa, and Emre Neftci. Uncertainty Aware Model Integration on Reinforce-
ment Learning. To appear in the 2022 IEEE International Joint Conference on Neural

xi

Networks (IJCNN).

xii

VITA

Takashi Nagata

EDUCATION

Doctor of Philosophy in Computer Science 2022
University of California, Irvine Irvine, California

Master of Science in Information Science 2010
Tokyo University of Science Tokyo, Japan

Bachelor of Science in Information Science 2008
Tokyo University of Science Tokyo, Japan

RESEARCH EXPERIENCE

Graduate Student Researcher 2017–2022
University of California, Irvine Irvine, California

TEACHING EXPERIENCE

TA for CS178 Machine Learning & Data Mining Fall 2019/2020
University of California, Irvine Irvine, California

TA for ICS32 Programming with Software Libraries Fall 2018/Winter 2019
University of California, Irvine Irvine, California

Reader for CS132 Computer Networks Spring 2018
University of California, Irvine Irvine, California

Reader for ICS45J Programming in Java Winter 2018
University of California, Irvine Irvine, California

Reader for CS244 Introduction to Embedded Systems Fall 2017
University of California, Irvine Irvine, California

xiii

Book Chapters

• Nagata T., Takimoto M., Kambayashi Y. (2013) Cooperatively Searching Objects
Based on Mobile Agents. In: Nguyen N.T. (eds) Transactions on Computational Col-
lective Intelligence XI. Lecture Notes in Computer Science, vol 8065. Springer, Berlin,
Heidelberg.

Conference Papers

• Nagata, T., Xing, J., Kumazawa, T., & Neftci, E.O. (2022). Uncertainty Aware Model
Integration on Reinforcement Learning. IEEE International Joint Conference on Neu-
ral Networks (IJCNN),Padua, Italy.

• Xing, J., Nagata, T., Chen, K., Zou, X., Neftci, E.O., & Krichmar, J.L. (2021). Do-
main Adaptation In Reinforcement Learning Via Latent Unified State Representation.
Proceedings of the AAAI Conference on Artificial Intelligence, 35(12):10452–10459,
May 2021.

• Nagata, T., Takimoto, M., & Kambayashi, Y. (2009). Suppressing the Total Costs of
Executing Tasks Using Mobile Agents. 2009 42nd Hawaii International Conference on
System Sciences, 1-10.

xiv

ABSTRACT OF THE DISSERTATION

Towards Data Efficiency on Model-Based Reinforcement Learning:
Model Confidence and Representation

By

Takashi Nagata

Doctor of Philosophy in Computer Science

University of California, Irvine, 2022

Professor Emre O. Neftci, Chair

Humans can develop their internal model of the external world and use it for decision mak-

ing. Reinforcement Learning (RL) is an optimization method to maximize the expected

total reward on sequential decision-making problems. RL is divided into two approaches: a

model-free approach directly learns optimal behaviors given the data, whereas a model-based

approach builds the model of the environment and utilizes it for decision making. Although

the Model-based approach is intuitive and appealing, it has several challenges to overcome,

such as the model’s inaccuracy or determining the effective model architecture. These chal-

lenges limit practical applications of the model-based RL. In this thesis, we first discuss how

to integrate the model uncertainty into model-based RL and propose methods to use them.

We apply the Monte Carlo dropout technique to the state transition model to estimate uncer-

tainty. Our approach enables the algorithm to use model simulations effectively by filtering

the simulation given the model uncertainty. We show that this scheme achieves speed-up of

agents’ policy learning in contrast to conventional ways to use model simulations without

considering the uncertainty. In model-based RL, model architecture is another critical fac-

tor to consider. In this context, we then investigate variants of the Variational Autoencoder

(VAE) and Generative Adversarial Networks (GANs), and then evaluate the combination of

them, VAE/GAN, as the agents’ state representation learning (SRL) methods. Acquiring a

xv

compact and efficient representation of the world for control is essential to help model-based

RL agents overcome the curse of dimensionality. We evaluate the VAE/GAN architecture

qualitatively and quantitatively, and show that the RL agent that learns a policy over the

VAE/GAN embedding outperforms the one with the VAE embedding. We further discuss

VAE/GAN and disentanglement. Taken together, the presented method and models provide

the RL agent architecture to achieve better sample efficiency.

xvi

Chapter 1

Introduction

“I seem to have been only like a boy

playing on the seashore, and diverting

myself in now and then finding a

smoother pebble or a prettier shell than

ordinary, whilst the great ocean of

truth lay all undiscovered before me.”

— Isaac Newton

Some animals are believed to learn helpful representations and use them to determine the

action [Tolman, 1948, Fast and Blaisdell, 2011, Fast et al., 2016, Blaisdell, 2019]. Humans

develop the mental model of the world, which is the reflections of one’s understanding of

the world, called the “mental model” [Ha and Schmidhuber, 2018], and cognitive models in

their brains throughout their experiences and can understand the world or plan behaviors

using this model [Tani, 2016, Lake et al., 2016]. The model refers to any representation

humans can consult with to determine their actions or predict how the environment reacts

to their actions, and thus how rewarding the particular action is in the situation. This en-

ables humans to leverage our knowledge from past experiences or even the knowledge we

1

have not directly experienced and make complicated decision-making efficiently. Artificial

Intelligence (AI) agent research aims to develop machines capable of thinking and acting

like humans do. We have seen significant advancements in AI agent developments in recent

years. Many practical applications, such as face recognition, automatic translation, or even

autonomous driving systems in certain use cases have been deployed into our society and

benefited people. Nevertheless, artificial systems require massive computation, are typically

good at a particular task, and are not easily transferable to other domains. The brain’s

efficiency remains out of reach in many ways. Machine learning is one of the sub-fields of the

broad AI research literature. It is typically divided into three different paradigms: supervised

learning, unsupervised learning, and reinforcement learning. Although outstanding contri-

butions have been made by the supervised learning approach in the past decade, supervised

learning generally requires labeling and is notoriously data-intensive. It requires a high cost

to prepare the data with correct labels, which is typically achieved by human efforts that

are sometimes done with crowdsourcing. Unsupervised learning aims to find patterns in the

data and cluster them, to acquire distributions from which the data is generated, or learns to

project the input data onto another space, which is typically less dimensions compared to the

original input space. Instead of learning from the data collected beforehand, reinforcement

learning provides a unique way to train an artificial agent, either virtual or physical, to solve

tasks by collecting the data from interactions with the environment. Although it avoids

human labeling costs, the agents need to collect a large amount of data, which consists of a

set: an state of the environment, agent’s action, a scalar reward, and a next state. The data

collection is achieved by agent’s interaction with the environment, and consuming time and

money. This characteristic is one of the critical challenges of reinforcement learning: sample

inefficiency and the common motivation underlying this dissertation is how to improve sam-

ple efficiency in RL. In general, to improve sample efficiency, there are several approaches.

The first approach is to think about more sophisticated exploration strategies, including

intrinsic motivation [Burda et al., 2018a, Baranes and Oudeyer, 2013], where the agent gets

2

an incentive to explore states with high prediction errors. Typically this is achieved by

assigning the reward to do so. Alternatively, noise injection (for problems with continuous

state space) is another approach that forcefully perturbs the agent’s action [Fortunato et al.,

2017, Plappert et al., 2017] instead of the simple ε-greedy exploration. Second, leveraging

a teacher signal or supervision, which enables agents to learn a policy adaptively, such as

curriculum learning [Bengio et al., 2009] where the agent starts learning in a simple task and

gradually advances to the more complicated final task, or imitation learning where the ex-

pert knowledge is given and the agent learns the initial policy in supervised way[Ross et al.,

2011]. Provide the agent with human guidance, which is called Human-in-the-loop RL, is

one of the possible solutions as well. The third group, in which this dissertation belongs,

focuses on the environment and ways to perceive the environment, including model-based

RL and representation learning.

Model-based reinforcement learning (RL) is known to be sample efficient, in combination

with function approximation techniques to acquire approximated models of environments.

However, it is practically impossible in many scenarios to learn a fully accurate model of

the world. Thus, consideration of the uncertainty of the model is a critical problem to avoid

catastrophic consequences, such as the agent behaving dangerously in states where it gets

overly confident due to the lack of experience. Yet, a clear solution is still missed. Although

humans can cast doubt as a reaction to their mental simulations [Hamrick et al., 2015], it is

challenging to build such functionality into the machines. In this dissertation, we first develop

a method to bridge the gap between these two. Our method is based on Dyna architecture,

which combines model-free learning with model learning, and uses the learned model to

speed-up policy learning by model-based simulations. The core contribution of our approach

is that the method uses Monte Carlo dropout (MC-dropout) [Gal and Ghahramani, 2016]

in the agent’s state transition model to calculate prediction variance and use it to measure

the uncertainty.

3

We then focus on the representation of the environment. In Chapter 3, we tackle the sample

efficiency problem from the model-based RL perspective and propose a Dyna architecture

with a mechanism to mitigate this negative effect by using the confidence of the state tran-

sition model, which is calculated using MC-dropout. Recently, the rise of deep learning

motivates the combination of RL agents with larger-scale approximate models using Neural

Networks (NN). In environments, sensory input to the agent or observations, such as a

sequence of RGB video frames, corresponds to state space. Even for reinforcement learning

tasks with such huge state space, policies with deep network architecture show successful

results that score higher than humans in video games or robotic manipulations. However,

again, this comes with the cost of a sample inefficiency: the massive amount of agents’ in-

teraction with the environment. For tasks with such a huge state space, getting benefits

by applying model-based RL techniques such as Dyna is difficult even with NNs, unlike toy

tasks with a smaller state space (e.g., grid world search). We can imagine situations in which

even minor changes of some pixels are recognized as different states. In that case, it takes a

very long time to acquire enough data to train the model due to the size of the state space.

In such cases, the impact of incorporating information from inaccurate models becomes more

apparent as many states are unseen for the model before generating a simulation.

Chapter 4 focuses on the representation learning aspect to tackle the above challenge. Rep-

resentation learning methods using a dimensional compression technique such as an Au-

toencoder have been widely studied [Hinton and Salakhutdinov, 2006, Vincent et al., 2008,

2010]. We propose a method to encode images into low-dimensional hidden vectors as a

preliminary step to model learning instead of directly handling the input image sequences.

Specifically, we investigate the disentanglement when compressing dimensions and propose a

method to obtain more disentangled representations, which is beneficial for the agents that

use the encoded vectors to learn more efficiently. In this study, we test the hypothesis of

the effectiveness of disentanglement by comparing the performance of reinforcement learning

agents trained with the codes generated by a trained dimensional compressor. Although re-

4

cent advances of available computational resources enables us to utilize deep neural networks

[LeCun et al., 2015], which can learn helpful representations of high-dimensional inputs, it

is not efficient or practical for RL agents to take a raw input in large state space such as

RGB image frame. For this reason, representation learning [Bengio et al., 2012, Lesort et al.,

2018], which provides a way to encode states into compact representations, has been a key

to handling rich visual inputs effectively. In Chapter 4, we introduce VAE/GAN, which

combines Variational Autoencoder (VAE) [Kingma and Welling, 2013] and Generative Ad-

versarial Networks (GAN) [Goodfellow et al., 2014], as a vision module for an RL agent. The

scopes of these projects are shown in the Figure 1.1 We discuss potential future directions

based on our findings and the current state-of-the-art in Chapter 5.

5

Figure 1.1: Project scopes. The first project is a model-based RL, where the models are
learned and used to optimize agents’ behavior policy. In particular, we investigate how to
handle uncertainty in models. The second project is about representation learning. The
method representing the input data is a critical problem in machine learning and can sig-
nificantly impact the RL agents’ performance. We propose using the architecture consisting
of Variational Autoencoder and Generative Adversarial Network, called VAE/GAN, and
showing its effectiveness from a task performance and disentanglement point of view. The
research projects share the motivation to improve sample efficiency.

6

Chapter 2

Background

2.1 Reinforcement Learning

Reinforcement Learning (RL) is a sub-field of machine learning which considers a sequential

decision-making problem [Sutton and Barto, 2018]. Unlike in supervised learning, there is

no explicit target or label in RL problems. Instead, an entity that makes a decision called an

agent learns optimal behavior to achieve a goal. The problem consists of an agent, an envi-

ronment, states, and reward. The mathematical formulation called Markov Decision Process

(MDP) is introduced in section 2.1.2 to formalize RL problems. The agent takes action at

each time step in a state, observes a new state, and receives a reward, given a combination of

the state and the action. The agent can update its behavior based on the acquired reward to

achieve the optimal action sequences. In this context, ’optimal’ corresponds to maximizing

its cumulative reward throughout the task. There are two different formalizations of tasks

regarding the length of a task: one is called an episodic or finite horizon task and the other

is continuous or infinite horizon task. In episodic tasks, there is a set of states where the task

terminates, called terminal states. For example, in a video game, the agent hit by an enemy

7

Figure 2.1: Reinforcement Learning Sequence. The agent takes an action based on the
observed state. The environment state changes based on the action (e.g., the agent’s position,
joint angles, velocity, or a view changes), which is a new observation for the agent, and the
environment also provides the agent with a scalar reward. The agent decides the next action
given a new observation, and this process continues. Rewards give the agent cues on whether
a taken action was good or not, and the agent tries to learn behaviors, which maximizes the
total cumulative rewards. The figure is modified from [Sutton and Barto, 2018].

or reaches a goal terminates the task, returning it to an initial state. On the other hand,

continuous or infinite horizon tasks, which do not have terminal states, last forever. In this

case, we consider ’discounting’ future rewards, which makes the task mathematically easy to

handle. RL works in different kinds of applications such as games [Mnih et al., 2015, Silver

et al., 2016, 2017, Schrittwieser et al., 2020], optimal control [Lazic et al., 2018], robotics

[OpenAI et al., 2018, Rudin et al., 2021], recommender systems [Chen et al., 2019], trans-

portation systems [Wang et al., 2018], or financial applications such as portfolio optimization

[Wang et al., 2021]. Optimal control problems and RL have strong connections. In fact, the

terms in RL correspond to the terms in control: agent/controller, environment/system, and

action/control signal.

As shown in Figure 2.2, there are two high-level classifications of RL algorithms: model-

free RL and model-based RL. In a model-free setting, the agent directly interacts with

an environment to collect data. Further, the model-free family can be divided into two

approaches: 1. Value-based methods, such as Q-learning [Watkins and Dayan, 1992], and

8

2. Policy-based methods such as REINFORCE [Williams, 1992]. The value-based approach

learns the values of states or the value of actions at each state and determines the behavior

based on them. On the other hand, a policy-based agent learns the policy which determines

the action taken in each state. The Actor-Critic method combines the value function and

policy optimization approaches. The actor optimizes its policy while a value estimation from

a critic assesses the actor’s actions. Model-based RL, another one of the two classifications

of RL, considers state dynamics of the environment using a model to select actions. Model-

based RL is one of the main topics of this dissertation, and we discuss the details of the

model-based RL in later sections.

2.1.1 Deep Reinforcement Learning

The impressive success of the deep convolutional neural network on the ImageNet LSVRC-

2010 task ignited a surge of “deep learning” research in many areas, with the recent extremely

powerful computational resources such as GPUs[Krizhevsky et al., 2012]. The layers of

neurons acquire abstracted and localized representations of an image [LeCun et al., 2015].

In reinforcement learning research, deep networks have also been applied and showed great

success [Silver et al., 2016, Berner et al., 2019, Vinyals et al., 2019]. Such networks with

several layers play a role in approximating several factors in RL, such as 1. an agent’s

policy, 2. the value of states, or 3. environmental dynamics. It was challenging to train

an agent directly in high-dimensional input spaces like sequential image frames. However,

deep convolutional networks showed their ability to learn a helpful representation from input

data directly and became a key factor that led to the great success of the Deep Q-network

(DQN) in the Atari retro game suite [Bellemare et al., 2012, Mnih et al., 2015]. These games

have large state spaces (e.g., an RGB image with the size of 84× 84× 3), and it used to be

intractable or not practical to train the agent with a limited capacity. Further, an agent called

AlphaGo, that plays the game of Go[Silver et al., 2016] drew wide attention. AlphaGo uses

9

Figure 2.2: RL Taxonomy. At the top level, the tree branches based on whether the method
is model-free or model-based. The model-free family consists of Q-learning and the policy
gradient method. There are two distinctions in the model-based branch: whether the model
is given or the model needs to be learned.

two deep neural networks. The first is a policy network to determine moves. The training

process of this network consists of two phases, the first one is a supervised learning using

expert human moves, and then the network is trained in games against itself called self-play.

The second network is a value network, which evaluates board positions. Several handy

benchmarking platforms, including classic games, retro video games, or physical simulation

environments, became available and boosted RL developments in recent years [Bellemare

et al., 2012, Brockman et al., 2016, Tassa et al., 2018, Todorov et al., 2012].

DQN has its basis in Q-learning [Watkins and Dayan, 1992], which belongs to one of the two

families of RL algorithms: model-free RL. Model-free methods learn values of input space

directly from trial and error to determine the optimal action sequence instead of considering

how the system’s dynamics work. Model-free methods scale to large applications well. The

actor-critic methods has been also developed and succeeded in Deep RL in the benchmarking

environment mentioned above [Mnih et al., 2016].

10

2.1.2 Markov Decision Process

The Markov Decision Process (MDP) is a formalization of sequential decision making. An

MDP is defined by a tuple (S,A,P ,R), where S is a set of states (continuous or discrete),

which is a quantitative representation of the environment, A is a set of actions (continuous

or discrete), P is a dynamics function p : S × A × S × R → [0, 1], and R is the reward

R ∈ R. The agent interacts with the environment by taking an action At ∈ A at time step

t in a state St ∈ S. A and S are either discrete or continuous and can be vectors depending

on environments and tasks. As a consequence of the selected action, the agent gets feedback

from the environment in the form of a new observation St+1 and a scalar reward Rt ∈ R. The

state transition over an MDP given a selected action is determined by a function depending

on the environment P . The MDP assumes that all the past information is included in the

current state, and a transition to the next state s′ only depends on the current state s and

an action to take a, which is called the Markov property. Thus, the optimal decision is based

only on the current state and not on the agent’s interactions in the past.

2.1.3 Rewards and Episodes

The reward provides the agent with the value of the action taken and works as a feedback

signal to the agent. The goal is to maximize its cumulative reward from time step t and

defined as follows:

Gt = Rt + γRt+1 + ...+ γKRt+K =
K∑
k=0

γkRt+k (2.1)

where γ is a discount factor and 0 ≤ γ ≤ 1 and K is the total number of steps. If the

total number of steps is finite as in Eq. 2.1, it is called an episodic task, on the other hand,

if K is infinite, it is called continuing task. If γ = 0, the agent only considers maximizing

11

the immediate one-step reward. On the other hand, if γ = 1, it is possible that the agent

exploits a small reward endlessly, which does not lead to the terminal states. Eq. 2.1 holds

in either case when 0 < γ < 1 because the power of γ eventually gets close to zero, and the

sum of discounted rewards converges. The expected value of a one-step immediate reward

is defined as

E[Rt|St−1 = s, At−1 = a] =
∑
r∈R

r
∑
s′∈S

p(s′, r|s, a) (2.2)

where p is a state transition probability from state s to s′ ∈ S given the action a: p(st+1|st, at)

and r is the observed reward r ∈ R. The state-value function representing the value of each

state (expected cumulative reward from the given state) is defined as vπ(s) = Eπ[Gt|St =

s] = Eπ[
∑T

k=0 γ
kRt+k+1|St = s], for all s ∈ S. Similarly, the action-value function, which

represents the value of taking an action a at a state s, is defined as qπ(s, a) = Eπ[Gt|St =

s, At = a] = Eπ[
∑T

k=0 γ
kRt+k+1|St = s, At = a]. Given the dynamics of the environment and

the reward function, the optimal solution is computed by applying the following recursive

relationship known as the Bellman equation:

vπ(s) = Eπ[Gt|St = s]

= Eπ[Rt + γGt+1|St = s]

= Rt + Eπ[γGt+1|St = s]

= Rt + vπ(st+1)

(2.3)

This recursive relationship holds for qπ as well, and also, it can be written as follows by using

the optimal state-value function v∗(s)
.
= max

π
vπ(s):

q∗(s, a)
.
= max

π
qπ(s, a)

= E[rt + γv∗(st+1)|s = st, a = at]

(2.4)

12

Further, we define the Bellman optimality equation for v and q as follows:

v∗(s) = max
a∈A(s)

qπ∗(s, a)

= max
a

∑
s′,r

p(s′, r|s, a)[r + γv∗(s
′)]

(2.5)

q∗(s, a) = E[Rt+1 + γmax
a′

q∗(s
′, a′)]

=
∑
s′,r

p(s′, r|s, a)[r + γmax
a′

q∗(s
′, a′)]

(2.6)

Based on the Bellman equation, RL agents iteratively update the value function, and once the

iteration converges, the optimal solution is given by greedily traversing the states. Although

solving the Bellman optimality equation gives us the optimal policy, it is typically impossible

to solve it directly because we do not know the exact dynamics of an environment, or it is

computationally hard to look ahead to every possible combination of state and action to the

goal. Thus, we need an approximated solution.

2.1.4 Exploration-Exploitation Trade-off

To approximate the values of states or state-action values for each state, the agent needs

to try different actions and collect experiences. When selecting actions, the agent faces the

dilemma of whether it should exploit the current knowledge or explore something else if it

works well. This is an essential question in RL called “exploration-exploitation trade-off”,

and an effective exploration strategy has been one of the active research themes. Classical

approaches include ε-greedy, where the agent takes a random action with the probability

ε, or a random noise injection approach in continuous action spaces to perturb selected

actions [Fortunato et al., 2017] or parameter [Plappert et al., 2017] to forcefully have the

agent perform random actions. This approach includes some variants such as decaying ε-

13

greedy, where the exploration probability ε decay and eventually converges to a very small

constant. The agent explores a lot in the early stage of the learning and will be more

greedy towards the end of the episodes. Count-based approaches are also proposed [Tang

et al., 2017, Bellemare et al., 2016, Ostrovski et al., 2017]. In addition, curiosity (or intrinsic

motivation)-driven exploration is also an active study area [Pathak et al., 2017, Burda et al.,

2018a, Zheng et al., 2018]. In those cases, agents are built with some internal driver, which

leads them to explore. For example, it can be the novelty of observed states, preference

for unexplored actions, or entropy. In the projects proposed in Chapters 3 and 4, we use

the classical ε-greedy approach for our agent’s exploration strategy. We further discuss the

other strategies in Chapter 5 as a future direction. [Burda et al., 2018b, Ecoffet et al., 2019,

Houthooft et al., 2016]

2.1.5 Temporal Difference and Value Optimization

Temporal-difference (TD) is defined as follows using reward and action-values of the current

state and the next state:

TD = r + γmaxa′ Q(s′a′)−Q(s, a) (2.7)

This tells us the difference of the estimated value of taking the action a at the state s;

Q(s, a), and the summation of the realized reward value r plus the discounted value of the

estimated next action-value of taking action a′ in state s′; r+γmaxa′ Q(s′a′). This difference

corresponds to the estimation error, and by using this quantity, Q-learning updates the

estimate as

Q(s, a)← Q(s, a) + α(r + γmaxa′ Q(s′a′)−Q(s, a)) (2.8)

14

where α is a step-size. Updating the values based on the Eq. 2.8 while collecting experiences

with an exploration strategy eventually leads the agent to convergence if “an infinite number

of episodes for each starting state and action” is obtained [Watkins and Dayan, 1992]. There

are number of RL algorithms based on Q-learning have been proposed [Hasselt, 2010, Wang

et al., 2015, Nair et al., 2015, Kapturowski et al., 2019].

2.1.6 Policy Optimization

Instead of learning the state-value or action-value function introduced above, it is possible

to learn the optimal behavior directly. This family learns a policy, π(At|St), which is the

probability of At while in the state St. Agents do not need to look up the values of states

but compute the probability distribution of the actions and draw one. We approximate this

function with parameters θ, and the function is πθ. Our problem is a parameter learning

problem given the objective function J(θ) = vπθ(s0), which corresponds to the cumulative

reward by following the policy πθ starting from the initial state. The parameter is updated

based on the gradient. Thus, the update rule is written as θnew = θold + α∇Jθold, where α

is a step size, and methods based on this approach are called policy gradient methods. One

of the pioneering works in this approach is the REINFORCE algorithm [Williams, 1992].

Practically, the policy gradient theorem provides us with the analytical way to compute the

derivative of J(θ) and the parameter update rule above is written as follows:

θt+1=̇θt + αGt
∇π(At|St,θt)
π(At|St,θt)

(2.9)

where the effect of the policy change on the state distribution needs not be considered [Sutton

et al., 2000, Sutton and Barto, 2018]. Gt in the Eq. 2.9 can be Gt − b(St), where b(St) is

called a baseline, which can be any function as long as the function does not depend on the

selected actions. One way is Gt− V̂ (st), which calculates the difference between the realized

15

Figure 2.3: Actor-Critic architecture. The network consists of an actor and a critic. Given
the newly observed state and reward, the critic calculate the difference between the realized
value of the state/action and the estimated value of the state, and feedback it to the actor.

value of rewards and the estimate of the value at the state St. A method that combines

value-based iteration and policy optimization is called actor-critic [Sutton and Barto, 2018,

Mnih et al., 2016] (Figure. 2.3).

2.1.7 Proximal Policy Optimization

In Chapter 3 and 4, we use Proximal Policy Optimization (PPO) [Schulman et al., 2017],

which is a policy gradient method, and it works in an actor-critic manner. A drawback

of the policy gradient method is that the parameter update can be too large and re-

sult in performance degradation, or conversely, the update is too small and take longer

to converge. Trust Region Policy Optimization (TRPO) [Schulman et al., 2015] is a pol-

icy gradient method that maximizes the following surrogate objective with the constraint:

16

argmax
θ

L(θold, θ) s.t.DKL(θ||θold) ≤ δ where

L(θold, θ) = Es,a∼πθold

[
πθ(a|s)
πθold(a|s)

Aπθold (s, a)

]
(2.10)

and Aπθold (s, a) is the advantage function that is πθold (s, a) = Qπ(s, a) − Vπ(s). DKL is the

Kullback–Leibler (KL) divergence.

DKL (πθ(·|s)||πθold(·|s)) (2.11)

The KL term avoids the new policy changing too much compared to the old policy. However,

TRPO approximates the update, and the analytical solution requires Hessian-vector of the

KL term, which is computationally expensive. PPO intends to reduce computation cost

by replacing the KL constraints for parameter update with a clipping operation, and the

objective function is defined as follows:

LCLIP (θ) = Ê
[

min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)
]

(2.12)

where rt(θ) is the probability ratio πθ(a|s)
πθold (a|s)

, which is used in the TRPO as well.

2.2 Model-Based Reinforcement Learning

If an RL agent has a model of the environment, there are many different ways of using it.

The agent can learn the policy from the model, explore efficiently or build an ”intrinsic

motivation,” or counterfactual reasoning based on the acquired model is possible. Here, we

focus on one of the drawbacks of the RL framework: sample inefficiency, which means the

training process requires a large amount of data, and thus it requires a considerable cost to

collect data (e.g. a robot destroys itself by entering a dangerous path). One intuitive solution

17

Figure 2.4: Model-based RL architecture. The model is used for planning. In accordance
with [Sutton and Barto, 2018], ’planning’ here refers to ”any computational process that
takes a model as input and produces or improves a policy for interacting with the modeled
environment”

is to make the agent utilize some kinds of knowledge representation of the environment

such as transition dynamics, and model-based RL has been studied to overcome the sample

efficiency challenge. In model-based learning, the model is used to accelerate the agent’s

learning process by simulating the world dynamics. However, an accurate model is key to

take full benefit of model-based RL [Gu et al., 2016] and generating accurate models is the

challenging problem that needs to be solved. Although it is possible to define a model by

hand for very small problems, it is not practical to build a model by hand for a larger scale

problem. In addition, in typical RL setups, the agent assumes no prior knowledge and needs

to learn the environment dynamics model in the first place. Thus, approximation techniques

such as neural networks are widely adapted and have been an active area of research [Ha

and Schmidhuber, 2018, Kaiser et al., 2019]. There are several different kinds of models.

Following Lesort et al. [Lesort et al., 2018], we introduce three different categories of the

models here (Figure. 2.5).

18

Figure 2.5: Different approaches to learn models. The figures are adapted from [Lesort et al.,
2018] with some modifications. (a) learns the representation of a state by reconstructing.
(b) predicts the next representation of the state given the current state and the action. (c)
predicts what action was taken by comparing the current state and the observed next state.

Representation Model This model learns to encode inputs into latent code, typically a

smaller dimension than the original input, and reconstruct the original input from the latent

code. The model is trained by minimizing the reconstruction error. The most common

example is autoencoder, and we discuss this objective later in this chapter.

Forward Model This learns the forward dynamics of the input states. Given the current

state and action, the model predicts the next representation and minimizes the difference

between the prediction and the observation.

Inverse Model This type of model predicts an action instead of the state. The input for

this model is the current state (or state representation) and the next state. Then, the model

predicts what the action was, which results in the forward dynamics from st to st+1.

One of the showcases of a combination of different models is World Models [Ha and Schmid-

19

huber, 2018]. In this architecture, they first train a representation model of the environment

using VAE. Once the representation model, which they call the vision module, is trained,

a forward model using recurrent neural network (RNN) is learned. Input for the forward

model is the encoded vectors from the representation model instead of the raw inputs. Af-

ter those two models, they train a simple Multi-layer perceptron (MLP) controller with an

evolutionary algorithm. World models successfully show that the agent can be trained en-

tirely from the simulated environment using a car racing game and a first-person shooting

game. Model-based RL for Atari [Kaiser et al., 2019] introduced Simulated Policy Learn-

ing (SimPLe), which outperforms state-of-the-art model-free algorithms at that time with

a restriction of a budget to 100K time steps (”corresponding to about two hours of play

time” according to the authors, which sounds very reasonable considering a human player’s

game play learning). Given that most of the model-free methods typically require more

than millions of time steps, this is the significant reduction of the required budget. Their

approach alternates model-free learning and the model-learning. This style was pioneered

by Dyna, which we will talk about in the next section. World models in [Ha and Schmid-

huber, 2018] trains the models once using the collected data, which is collected by running

a random policy, but SimPLe iterates policy learning and the model learning similar to the

Dyna architecture we describe next in 2.2.1.

2.2.1 Dyna

Dyna [Sutton, 1991] integrates model-free learning and model-based learning approaches as

shown in Fig. 2.6. The agent learns its policy in a model-free way. Along with this direct

learning path, the agent learns the model of the environment on the fly based on experiences.

This distinguished Dyna from typical model-based approaches where one assumes complete

knowledge of the environment dynamics, or the model is pre-trained. The agent uses the

model to generate simulated transitions while it is trained. This boosts the agent’s policy

20

Figure 2.6: Dyna Architecture. The agent learns its policy in a model-free way. Along with
this direct learning path, the agent learns the models of the environment on the fly based
on experiences and uses the model to generate simulated transitions to extend experiences
for the training.

learning speed by putting additional inputs for the policy. This is attractive, especially in

a situation where physical interactions come at a cost, e.g., robotic navigation [Hayamizu

et al., 2021] or dialogue agents [Peng et al., 2018].

In some model-based approaches, which train models prior to agent training, random rollouts

is the typical approach to collect the data to train the model. However, these random rollouts

can miss many possible states because the random actions can not lead the agent to as many

states as possible. Dyna is an attractive approach for this reason as well since the architecture

performs model learning as well while collecting data with the improved policy, which leads

the agent to novel states. We will discuss this from a continual learning perspective in the

Chapter 5.

21

2.3 Uncertainty in Deep Learning

As more deep learning-based real-world applications emerge, it is essential to know how un-

certain predictions are for some fields, especially where erroneous interpretations of results

lead subjects to fatal consequences such as medical diagnosis or self-driving vehicle to an

accident. However, estimating the uncertainty of a deep neural network output is a notori-

ously difficult problem [Gal, 2016, Gawlikowski et al., 2021]. What standard deep learning

provides us are point estimates of model parameters and deterministic predictions from the

learned model.

Bayesian approaches offer methods to compute a posterior distribution p(θ|D), which ex-

presses the distribution of the parameters of the network θ given data set D and enables

us to evaluate the uncertainty in parameters [Bishop, 2006]. The entropy of this p(θ|D)

encodes the model uncertainty but is intractable. Bayesian Neural Network (BNN) is one

approach to approximate this [Blundell et al., 2015]. In BNNs, parameters are themselves

random variables conforming to given probability distributions, and the inference process

is stochastic instead of the point estimates with the constant parameters. However, these

approaches introduce additional computational costs as we need to marginalize across all

the possible parameters to compute the posterior distribution, which is intractable. Gal et

al. [Gal and Ghahramani, 2016] showed that a neural network, which has dropout layers

[Srivastava et al., 2014] before every weight layer, provides a way to measure uncertainty in

predictions numerically by doing dropout both training and inference time.

There are different types of uncertainty in model-based reinforcement learning, and we dis-

cuss two of them here: uncertainty derived from environmental stochasticity and uncertainty

related to model learning. These are called aleatoric and epistemic, respectively [Gal, 2016,

Hüllermeier and Waegeman, 2019].

22

Aleatoric Uncertainty This represents stochasticity in a system including sensor, and

a likelihood p(D|θ) in the Bayes rule captures this uncertainty. Since it comes from the

underlying system, the level of uncertainty will remain the same even when the model gets

unlimited data for training.

Epistemic Uncertainty Epistemic uncertainty captures uncertainty caused by a lack of

knowledge or data, which can be reduced by adding more data or unexplored information.

Given this definition, epistemic is the one related to our model parameters. A posterior

p(θ|D) encodes this uncertainty as its variance, which gets smaller if we can obtain infinite

data.

Aleatoric and epistemic uncertainty is related to the RL tasks. The environment has stochas-

ticity, and there is inherent aleatoric uncertainty in the agent’s observations. The agent needs

to reduce epistemic uncertainty by exploring and collecting as many experiences.

2.4 Representation Learning

In deep learning, learning input data representation is a critical area of study. How the

learned data are represented significantly affects the performances of tasks [Bengio et al.,

2012, LeCun et al., 2015], and many different methods have been proposed. ’Representation’

here includes several things, such as the choice of network model architecture, an assumed

data prior, or transformations. All these factors and the hierarchy of linear and non-linear

transformations contribute to eventually acquiring the useful representations. Figure 2.7 is a

visualization of learned representations of hand-written digit data [LeCun and Cortes, 2010]

in 2D space. The original data is a 28× 28 grayscaled image data, and those data is repre-

sented with 2D vectors. We hope to acquire “good” representations. A good representation

has the following characteristics. It is easy for a classifier to separate the input data in a

23

Figure 2.7: Visualization of learned representations by Variational Autoencoder using
MNIST data set. The dimension of latent space is 2 in this example, and the horizontal
and vertical axis corresponds to a value of the first and second dimensions in the latent
space. For example, a vector [-0.7228127, 3.0308518] in the latent space is character ’1’, or
[2.7340467, 1.6926069] corresponds to the character ’0’. These vectors are the representa-
tion in the latent space, and the objective of the representation learning is to acquire this
mapping from the original data space to the latent space.

24

Figure 2.8: Example of learned representation, which is factorized and useful for multiple
tasks sharing some factors. Task A, B, and C shares some factors (red circles) in the repre-
sentation. Thus, the intermediate representation can be transferred, and it does not need to
be learned for each task. Adapted from [Bengio et al., 2012] c©2012 IEEE.

transformed feature space. Further, it can be used in several different tasks sharing some

properties. Since it factorizes the underlying data generative factor, it provides explainability

or generalizability (Figure 2.8).

2.4.1 Generative Models

In machine learning, the two main approaches are discriminative and generative models. The

discriminative model determines the class’s posterior probability given the data: p(Ck|x)

where Ck means the k-th class. On the other hand, the generative models’ approach is to

model a distribution of the data given training samples: P (x|Ck). This model can generate

new data by sampling from the learned distribution. There are several approaches to learn

generative models as shown in Figure 2.10. First, whether the model requires explicit den-

sity function or not is the important distinction. If the function is intractable, variational

approximation or approximation using Monte Carlo are the approach to learn the model.

25

On the other hand, there is the implicit density branch, where the density function is not

explicitly specified. GAN, which is discussed in Section (2.4.1) falls into this category.

Variational Autoencoder

Variational autoencoder is a generative model proposed in [Kingma and Welling, 2013]. This

network learns a representation of the input data in an unsupervised way and has a similar

architecture to autoencoder. During the training, it reconstructs input data and map them

to a compact representation called latent vector. We assume that the data set X = {x(i)}Ni=1

with N i.i.d data points is generated from some underlying data generation rule, and a

variable z is involved in that process, which corresponds to the latent vector. The network

consists of a probabilistic encoder qφ(z|x) and a probabilistic decoder pθ(x|z). φ and θ are

parameters of the encoder and the decoder, respectively. The encoder infers a latent vector

z given the input data x. On the other hand, the decoder generates a data point x given

the corresponding latent vector z. Both pθ and qφ produce a distribution. We assume that

the prior distribution of z is an isotropic multivariate Gaussian pθ(z) = N (z; 0, I). The

distribution of the encoder is a Gaussian as well: pθ(z|x) = N (z|µ, σ2) where parameters

µ and σ are determined by a function (e.g. a neural network) given an input (Figure 2.9).

The training loss consists of a reconstruction loss and Kullback–Leibler divergence between

pθ(z|x) and qφ(z|x). In recent studies, Variational Autoencoder (VAE) and its variants are

often employed to learn a compact representation of visual input [van Hoof et al., 2016, Ha

and Schmidhuber, 2018, Hafner et al., 2019]. The Variational Autoencoder consists of the

encoder and the decoder. Given an input, the encoder predicts the parameters for Gaussian

distribution with mean µ and variance σ2. Given those parameters, a latent vector z is

drawn from the Gaussian distribution, and the decoder reconstructs the input based on

that latent vector. However, the sampling process stops the gradient propagation, and the

backpropagation can not be used. VAE avoids this issue by the reparameterization trick.

26

Figure 2.9: VAE Architecture. The network consists of a probabilistic encoder qφ(z|x) and
a probabilistic decoder pθ(z|x). The encoder outputs a set of parameters for the Gaussian
distribution, and a latent vector z is generated based on those parameters using the repa-
rameterization trick so that it can perform backpropagation. The decoder then reconstructs
the input. Training objective is to minimize the reconstruction loss and the KL-divergence
between qφ(z|x) and pθ(z|x).

Instead of sampling z ∼ N(µ, σ2), computing z = µ + σ2 × ε makes gradient calculation

possible, thus, the loss is backpropagated.

What we’d like to solve p(Z|X) which is a posterior of the model parameter θ given the col-

lected data X where we assume that each data point xi is i.i.d. Instead of the point estimate

methods using maximum likelihood or maximum posterior (MAP) estimation, a probability

distribution of θ given the data X can be calculated using the Bayes rule: p(Z|X) = p(X|Z)·p(Z)
p(X)

which tells us posterior ∝ likelihood × prior. The Bayesian approach has several benefits

over the point estimation; for example, it is robust to overfitting or provides uncertainty

measure. However, the posterior p(Z|X) is intractable. To handle this issue, introducing a

tractable approximated distribution q(Z) ∼ p(Z|X) is the core idea of the variational bayes.

27

Given the parameter θ, the evidence, which corresponds to the likelihood of the data x is

ln p(x; θ) = ln
∑
z

p(x, z; θ)

= ln
∑
z

q(z)
p(x, z; θ)

q(z)

= lnEZ∼q

[p(x,Z; θ)

q(Z)

]
≥ EZ∼q

[
ln
p(x,Z)

q(z)

]
= L(q)

(2.13)

where the lower bound of the evidence L(q) is called Evidence Lower Bound (ELBO). Thus,

the objective of the variational bayes is to maximize the ELBO. Further, Kullback-Leibler

divergence (KL divergence) between q(z) and p(z|X) is written as equation 2.14, and our

objective is to minimize the KL divergence of q(z) and p(z|X).

KL[q(z)|p(z|X)] =
∑

q(z) ln
q(z)

p(z|X)

=
∑

q(z) ln
p(X)q(z)

p(X, z)

=
∑

q(z) ln p(X)−
∑

q(z) ln
p(X, z)

q(z)

= ln p(X)− L(q)

(2.14)

Generative Adversarial Networks

The GAN is a generative model which consists of two networks called the generator G

and the discriminator D. These networks are parameterized by θg and θd, respectively. The

generator produces new data x = G(z), where z is drawn from a prior distribution z ∼ p(z) =

N (z; 0, I). The discriminator is a binary classifier, and it classifies whether the input data

is real data or fake. The generator aims to minimize the probability of the synthesized data

being detected as a fake. On the other hand, the discriminator’s objective is to maximize the

28

Figure 2.10: Deep generative models taxonomy adapted from [Goodfellow, 2017]. There are
two broad classes: 1. Explicit density models, where a density function needs to be defined,
and 2. Implicit density models that do not require such functions. GAN is in the latter
family as it does not require defining a density function.

29

Figure 2.11: Comparison of the generated image characteristics between MSE and adversarial
loss. Since the MSE losses consider all possible samples, it dent to generate blurry images.
On the other hand, the adversarial losses only require one specific sample to consider, which
makes the generated samples look sharper. The image adapted from [Lotter et al., 2015].

accuracy of classification. Together, the objective is written as a minimax game as follows:

min
G

max
D

V (D,G) = Ex∼pdata(x) [logD(x)] + Ez∼pz(z) [log(1−D(G(z)))] (2.15)

where D(x) corresponds to the correct classification rate, and 1−D(G(z)) means the prob-

ability of the generator successfully fooling the discriminator. GAN is unique that it does

not require to explicitly specify a density function pmodel(x; θ) (Figure 2.10). Regarding the

generated image quality, one distinction of GANs from VAE is that the GANs generate

sharper images than VAE. This is because the squared loss in VAE considers the average of

all possible samples and makes the generated image blurry (Figure 2.11).

30

2.4.2 Disentanglement

Disentanglement has been studied as one of the beneficial properties of a good representation.

The idea of disentangled representation is that latent units of the representation are well-

factorized, and each factor is less sensitive to the others [Bengio et al., 2012]. For instance,

images have different factors such as lighting, scale, angle, or objects in the images have

several properties, such as object material and shape. In human face images, a person’s

hair color, whether a person is wearing glasses or not, or facial expressions are examples of

high-level properties. The data consists of combinations of these factors. These disentangled

properties makes it possible to manipulate the generated data [Higgins et al., 2017a, Li and

Mandt, 2018].

2.4.3 Representation Learning in Reinforcement Learning

Learning a compact and effective representation of the input space (e.g., RGB image frames),

which express the state of the environment well, is critical for RL agents because policy learn-

ing will suffer from the curse of dimensionality. Although the combination of neural networks

with deep layers and RL algorithms has shown the success of end-to-end learning in high-

dimensional observations domains such as video games [Mnih et al., 2015, Silver et al., 2016,

Mnih et al., 2016], the learned representation is strongly tied with the policy learning, and it

is brittle to change of input. As an alternative approach to representation learning connected

to policy learning, which is affected by reward signals, unsupervised representation learning

approaches have emerged, commonly using VAE [van Hoof et al., 2016, Ha and Schmidhuber,

2018, Hafner et al., 2019]. The characteristics of a good state representation described in

[Lesort et al., 2018] are as follows: 1) the representation should have Markov property, which

means the current state includes all the past information and is informative enough for an

agent for decision-making. 2) The representation is expressive enough to have actual values

31

of states. 3) Generalizable to similar but not identical unseen states. Last but not least,

4) the representation dimension should be low for efficient estimation. Also, we hypothesize

that the disentanglement of the representation will beneficial for the RL agent as well [Hig-

gins et al., 2017a, Bengio et al., 2012, Ridgeway, 2016]. Representation learning methods

relying on pixel level reconstruction do not have strong incentive to disentangled represen-

tation. [Higgins et al., 2017b] proposed DARLA (DisentAngled Representation Learning

Agent), which has its vision module consists of the β-VAE, in which the hyperparameter β

works to weigh disentanglement, and the denoising autoencoder [Vincent et al., 2010] with a

modification of the VAE loss. [Anand et al., 2019] introduced mutual information to learn

state representations so that the learned representation disentangles distinct features well.

32

Chapter 3

Confidence Based Model Integration

3.1 Introduction

The recent extraordinary success of model-free reinforcement learning (RL) techniques has

demonstrated its capability for various types of problems such as board games, video games,

or robotic manipulation [Mnih et al., 2015, Silver et al., 2017, OpenAI et al., 2018]. However,

model-free learning requires huge amounts of interaction with the environment, making it

sample inefficient. On the other hand, model-based RL is known to overcome the sample

efficiency challenge. In model-based learning, the model is used to accelerate the agent’s

learning process by simulating the world dynamics. However, an accurate model is key to

take full benefit of model-based RL [Gu et al., 2016] and generating accurate models is

a challenging problem that needs to be solved. The agent assumes no prior knowledge in

typical RL setups and needs to learn the environment dynamics model. Thus, approximation

techniques such as neural networks are widely adopted and have been an active area of

research [Ha and Schmidhuber, 2018, Kaiser et al., 2019]. There is often insufficient prior

data to train the model in an actual situation, which causes problems such as inaccurate

33

predictions or situations where the model needs to simulate states that fall outside the

training data distribution. Under such a situation, one of the promising solutions is to build

an agent that also learns the model.

Dyna (Section 2.2.1) was proposed as an architecture that integrates both model-free and

model-based reinforcement learning [Sutton, 1991]. In this architecture, the agent learns

a policy in a model-free way by directly interacting with the environment. At the same

time, the agent learns a state transition dynamics of the environment using real experiences.

The agent uses the learned model to simulate a trajectory and updates its policy based

on both real experiences and simulated trajectories. It is known that the model greatly

accelerates the agent’s learning process, provided it is accurate [Miller et al., 1995]. The

Dyna architecture has been studied in different types of tasks, from simple tabular problems

to complex problems with large state spaces. In the latter case, recent advanced model-free

methods have been employed [Peng et al., 2018, Angermueller et al., 2020]. However, the

architecture inherits the challenge of making the model accurate enough to optimize the

agent’s policy. Oftentimes the learned model is inexact and can be detrimental to learning

[Gu et al., 2016]. In this chapter, we propose a simple yet effective strategy to utilize the

model while mitigating undesired outcomes from the inaccurate model simulations. We

use the model’s uncertainty (or how much the model is confident about each prediction)

as a metric. This requires a model or technique that is capable of estimating uncertainty.

We take a Bayesian inference approach that enables us to assess uncertainty quantitatively.

Our approach uses Monte Carlo dropout (MC-dropout) [Gal and Ghahramani, 2016]. For

each input, the model makes N predictions. If the prediction variance is beyond the given

confidence interval of a given percentile, it is deemed incorrect and the simulation is rejected.

We assume independent Gaussian distributions for the values of each dimension of states,

therefore the same for the model simulations. Thus the confidence intervals can be estimated.

The agent uses the generated samples if the model’s prediction variance from each simulation

is in the calculated confidence interval. On the other hand, the agent should not put a

34

high value on the simulation where variance is out of the confidence interval and cause

the degradation of policy learning. This mechanism works as a gate to determine whether

the model simulations are used, and we expect the model to improve performance at early

stages. To the best of our knowledge, the integration of model uncertainty estimation based

on MC-dropout into Dyna-style architecture and filtering the simulation is novel.

We evaluated the proposed approach on robotic control tasks using the MuJoCo simulator

[Todorov et al., 2012]. We tested our approach with Proximal Policy Optimization (PPO)

[Schulman et al., 2017] for policy optimization, combined with Dyna style architecture which

we call Dyna-PPO.

This chapter is based on previously published work:

Nagata, T., Xing, J., Kumazawa, T., & Neftci, E.O. (2022). “Uncertainty Aware Model

Integration on Reinforcement Learning”. In Proceedings of the IEEE International Joint

Conference on Neural Networks (IJCNN).

Portions are reprinted with permission, c©2022 IEEE.

3.2 Methods

In the Dyna architecture, the agent collects real experiences and uses them not only to

improve its value function and the policy but also to improve the model. In this section,

first, we review model-based RL and uncertainty in deep learning. Then, explain our method

to model the dynamics of the environment and the reward structure. Finally, we introduce

our strategy to integrate those models into the Dyna-PPO algorithm.

35

3.2.1 Model-Based Reinforcement Learning and Dyna

The model refers to some kind of representation by which an agent can get information about

the world. There are several types of models such as state transition models: p(s′|s, a) and

reward models: p(r|s, a). They are used to predict the next state s′ or the immediate reward

r given the current state s and the action a. The state transition models can be a density

estimation problem, and the reward models are a regression problem. If the state space is

small, e.g., a 9 × 6 grid [Sutton and Barto, 2018] world, a table of transition probabilities

(tabular model) is sufficient to make a prediction based on the collected data. When the

state space is large or continuous, tabular approaches are impractical or impossible. In this

case, a function approximator, such as a neural network, can be used [Hafner et al., 2019] to

map the inputs, the current state s ∈ Rds and the action a ∈ Rda , to the next state s′ ∈ Rds ,

where ds and da correspond to the dimension of states and the dimension of actions for each.

In model-based RL, the model can be used in different ways. One approach is to generate one-

step samples ŝt+1 ∼ p(ŝt+1|st, at) and use them for the training of the agent’s policy. Another

approach is to perform multi-step simulations. There, a model is used to look ahead several

steps. Further, this can be used to simulate multiple different trajectories starting from the

current state st, and the agent utilizes that information for planning. Monte-Carlo Tree

Search (MCTS) is one popular approaches of this family [Coulom, 2007, Silver et al., 2017].

In all cases, the model offers sample efficiency for an agent compared to model-free learning

approaches because the agent can use trajectories simulated by the model to optimize its

policy rather than through interactions with the environment. Our approach corresponds to

the multi-step simulation approach to generate simulated trajectories from sampled states,

but it does not build a tree for planning as in MCTS.

Dyna integrates model-free learning and model-based learning approaches as shown in Figure

2.6. The agent learns its policy in a model-free way. Along with this direct learning path, the

36

agent learns the model of the environment on the fly based on experience. This distinguishes

Dyna from typical model-based approaches where one assumes complete knowledge of the

environment dynamics, or the model is pre-trained. The agent uses the model to generate

simulated transitions while it is trained. This boosts the agent’s policy learning speed by

putting additional inputs for the policy. This is attractive for situations where physical

interactions come at a large cost, e.g., robotic navigation Hayamizu et al. [2021] or dialogue

agents Peng et al. [2018]. Although the model can increase the agent’s learning speed, this is

the case only when the model is sufficiently accurate. An incorrect model causes performance

degradation due to policy updates on inaccurate simulations. Thus guaranteeing the model’s

accuracy is a heavily studied topic. One of the approaches is the ensemble-based method, in

which several models are used to make predictions to utilize the model better [Chua et al.,

2018]. [Angermueller et al., 2020] fits their models to the available data after each iteration

and evaluates the accuracy of each model by the coefficient of determination (R2). Those

models, of which the R2 is greater than a hyperparameter τ , are qualified, and their ensembles

are used. If there is no qualified model, the agent skips the model-based learning step in the

current iteration to mitigate its negative effect. Ensemble methods require significantly more

computations and parameters. This paper derives from a similar motivation: how we can best

utilize our model-based approach while mitigating possible situations where the model works

negatively. To evaluate the model to determine the reliability, we apply a dropout-based

uncertainty measurement[Gal and Ghahramani, 2016], which requires fewer parameters and

computation compared to ensemble methods. MC-dropout applies the dropout technique at

inference time as well as training time. Thus, the predictions are stochastic, which enables

prediction variance calculation. We further discuss MC-dropout in the next section. We

propose using the prediction variance to determine whether the simulated experiences should

be used for policy updates or discarded.

37

3.2.2 Model Uncertainty Estimation Using MC-Dropout

There are two types of uncertainty in model-based reinforcement learning: uncertainty de-

rived from environmental stochasticity and uncertainty related to model learning. These

are called aleatoric and epistemic, respectively [Chua et al., 2018]. Epistemic uncertainty

can be further divided into two different classes of uncertainty. The first class is caused by

insufficient exploration of the environment, while the other is caused by correlations in the

experiences. In this project, we focus on epistemic uncertainty due to the model’s inaccuracy.

Estimating the uncertainty of a deep neural network output is a notoriously difficult prob-

lem. Bayesian approaches offer methods to compute a posterior distribution p(θ|D), which

expresses the distribution of the parameters of the network θ given data set D. The entropy

of this p(θ|D) encodes the model uncertainty but is intractable. The Bayesian Neural Net-

work (BNN) is one approach to approximate this [Blundell et al., 2015]. In BNN, parameters

are random variables conforming to given probability distributions, and the inference process

is stochastic instead of the point estimates with the constant parameters. However, these

approaches introduce additional computational costs as it requires marginalizing across all

the possible parameters to compute the posterior distribution, which is intractable. Instead

of directly solving the intractable calculation, we approximate the distribution with another

distribution qφ and think of minimizing the KL-divergence between the posterior distribu-

tion and qφ. Treating this minimization problem as the maximization problem of ELBO

(2.4.1) provides us the approximated solution, which is called variational inference. Gal

et al. [Gal and Ghahramani, 2016] showed that a neural network equipped with dropout

layers before every weight layer, provides a way to measure uncertainty in predictions nu-

merically. Dropout is an effective technique to achieve the better generalizability of a neural

network. Internally, the dropout corresponds to train sub-models by randomly dropping

some units in a network. Following the Bernoulli distribution Bern(pi), some units are

randomly blanked out. [Gal and Ghahramani, 2016] showed that the loss for the dropout

38

Ldropout = 1
N

∑N
i=1E(yi, ŷi) + λ

∑L
i=1(||θ||22 + ||bi||22) corresponds to the posterior of θ in vari-

ational inference. The usual way to utilize dropouts is to apply them at training time. In

their method, dropout layers are also applied to inference time, which makes predictions

stochastic, and thus the variance of multiple forward passes are available. They developed

the theoretical framework to relate this with the approximation of Bayesian inference to

Gaussian processes. They also showed that uncertainty estimates provide an RL agent with

information to determine whether to exploit the current knowledge or to explore further.

There, a function to approximate action-value function (Q-function) with dropout layers

combined with Thompson sampling was shown to improve an RL agents’ learning efficiency

and convergence compared to an epsilon greedy approach. Their contribution is on the

policy learning part. On the other hand, our main target is to evaluate the learned state

transition dynamics model. In our method, the model iterates N predictions for each input

and makes a prediction by averaging those predictions with different network connections.

This approach is similar to ensemble-like inference, with the difference that a single neural

network is used rather than an ensemble of models. We use pi = 0.5 in fully-connected layers

in the state transition model.

3.2.3 Models

Our method uses three different models: the state transition model, the reward model, and

the termination prediction model. The state transition model approximates the dynamical

system underlying the environment. Given the simulated state transition, the reward model

predicts a reward based on the transition, and the termination prediction model classifies

whether the next state is a terminal state or not. The termination prediction model is

necessary to stop trajectory rollout and assign rewards accordingly.

39

State Transition Models We use an Encoder-Decoder architecture, in particular, a Vari-

ational Autoencoder [Kingma and Welling, 2013] for our state transition model. Here, a

current state s ∈ Rds and an action a ∈ Rda are inputs for the state transition model and

the model predicts the next state s′ ∈ Rds . We assume that the values follow independent

Gaussian distributions for each dimension of states. The encoder predicts the parameters for

a Gaussian distribution with mean µ and variance σ2: N (µ, σ2) = 1√
2πσ

exp
(
−1

2

(
x−µ
σ

)2)
.

The parameters are determined for each dimension of the input. Thus, both µ and σ are

the vectors of Rds respectively. Instead of reconstructing the input, the decoder is trained

to predict the next state. The decoder has a dropout layer and is used for both training

and testing (Figure 3.1). For each input, a model performs the forward operation I times

and the final prediction is the average of those predictions: ŝt+1 = 1
I

∑I
i=1 fi(Rds+da). This

corresponds to MC-Dropout, which provides a variance of prediction for each input.

Reward Model and Termination Prediction Model These two models are conven-

tional (none autoencoder) feedforward networks. The reward model is a regressor to predict

the reward value, and the termination prediction model is a classifier to predict whether the

state transition leads the agent to the terminal state or not. The reward model (rt ∼ p(r|s, a))

has 4 layers, whereas termination prediction model (p(s+)) where s+ ∈ S is the terminal

state has 2 layers. Each layer is followed by ReLU activation function.

3.2.4 Model Quality Aware Integration

All three models are trained while the agent collects data interacting with the environment.

When updating the agent’s weight, the agent makes the model predict state transitions from

states randomly selected from the stored data. Starting from the randomly selected state,

the simulation is continued until it reaches the terminal state. We iteratively run this process

to get N simulated steps. Those simulated transitions 〈st, at, r̂t, ŝt+1〉 are used along with

40

Figure 3.1: Decoder Architecture of the State Transition Model. The decoder has a dropout
layer, and the output is stochastic instead of the point estimate. Thus, performing inference
multiple times for each input enables prediction variance calculation.

41

Figure 3.2: Examples of empirical distributions of values (observations) in some dimensions
of states in the Hopper environment used to train the model. The agent collects N data
steps in each epoch, and confidence intervals are calculated based on this distribution.

the real (observed) data to learn the policy. In our method, we assume that values in each

dimension of states follow a Gaussian distribution, and we calculate the empirical mean and

the variance of the real data as Fig. 3.2. Based on the distribution with the empirical

mean and variance, the confidence intervals of ±σ,±2σ,±3σ centered on the empirical mean

are determined. We verify whether each simulated transition falls into the interval. If the

predicted state drifts off from the interval, it is rejected.

3.3 Experiments and Results

3.3.1 Dyna-PPO with Confidence Interval Checking

As a baseline algorithm to implement a Dyna-style model-free and model-based hybrid algo-

rithm, we use PPO [Schulman et al., 2017] for our model-free algorithm. We selected PPO

as it is a widely used algorithm, but any other on-policy algorithm would be suitable. As

described in Section 2.1.7, PPO is a policy gradient algorithm that optimizes a surrogate

loss, which clips a probability ratio of policy parameters before and after the update within

42

[1− ε, 1 + ε] so that the updated policy will not drastically change. The actions are chosen

from a normal distribution. The parameters for the distribution, µp and σp, are determined

by parametric function approximators given the state as follows: µp, σp = Pθ(s) where P is a

policy of the agent parameterized by θ and then an action is drawn from a Gaussian distri-

bution parameterized by them: a ∼ N (µp, σ
2
p). The entire process is described in Algorithm

1.

As a whole, the Dyna-PPO with confidence interval checking works as follows: first, the agent

interacts with the environment to collect T steps of real experiences. Then, to assess the

model’s prediction quality in the next step, we calculate the empirical distribution of states

using that data. In addition, all three models are trained on that data. The state transition

model p(st+1|st, at) minimizes the reconstruction error between the predicted next state ŝt+1

and the observed next state st+1 under the penalty of KL(p‖q), where q is the distribution of

simulated states and p is the empirical data distribution. The objective function for both the

reward and the termination prediction models is a mean squared error between a predicted

reward and the observed reward, and a classification error of termination state, respectively.

Finally, generate N steps of simulated experience 〈st, at, r̂t, ŝt+1〉 from the three models. An

initial state is randomly selected from the data, and simulated transitions are computed from

the initial state. Once it reaches the terminal state, an initial state is randomly selected again,

and simulations are generated until the total number reaches N . The generated simulations

are evaluated during this phase based on the confidence interval calculated from the empirical

distribution. We use the ±σ confidence interval to evaluate predictions made by the model.

If any value of a simulated state is outside that interval, the simulation is rejected, and the

model simulates the transition again. In case the model generates such poor simulations

multiple times, the model simulation step is skipped altogether in that iteration. The whole

process is illustrated in the Figure 3.3.

43

Algorithm 1 Dyna-PPO with simulation confidence

1: Initialize Hyperparameters [lr, γ, N, I]
2: Initialize πθ(s) and models [p(s, a), r(s, a)]
3: for epoch=1:M do
4: Initialize empty dataset D ← []
5: // Collect Data
6: while time step t < 2048 do
7: st ← current state
8: at ← πθ(st)
9: Collect Dt ← 〈st, at, rt, st+1〉
10: end while
11: Calculate µ, σ ∈ Rds

12: // Model Learning
13: Fit models on D
14: // Generate simulations using the model
15: for n=1:N do
16: st ← current state
17: at ← policy(st)
18: for i=1:I do
19: ŝ

(i)
t+1 ∼ p(st, at)

20: end for
21: µ̂← 1

I

∑
i ŝ

(i)
t+1

22: r̂t ← r(st, at)
23: if −σ < µ̂ < σ then
24: D ← D ∪ {〈st, at, r̂t, ŝt+1〉}
25: end if
26: end for
27: Update policy πθ on D
28: θ ← θupdated
29: end for

44

Figure 3.3: Dyna-PPO with Model Confidence Aware Integration.

3.3.2 Continuous Control Problems

We evaluate our approach on three different environments (Pendulum, Hopper and Swimmer)

available in OpenAI Gym [Brockman et al., 2016]. All are control tasks with continuous state

space and action space.

The evaluation criterion is the mean reward of different runs with random seeds. This

experiment evaluates three different algorithms’ performance: straight Dyna-PPO (no model

steps), Dyna-PPO with model steps, and Dyna-PPO with confidence-based adjustments as

described above. The number of model steps is 128. We evaluated 16, 32, 64, 128, and

256 model steps and empirically determined the value. We found that adding further model

simulations does not necessarily improve the performance, and it is also a trade-off with the

computation requirements.

45

Figure 3.4: Tasks evaluated. Left: Pendulum. For the pendulum environment, the goal is
to swing up the pendulum and keep that position as long as possible. Middle: Hopper. The
goal is to keep making a one-legged robot hop forward. Right: Swimmer. The goal is to
make a three-link robot swim forward as fast as possible. Each environment provides the
agent with 3, 11, and 8-dimensional continuous observations, respectively.

Fig. 3.5 shows the performance results across all tasks. The graph shows that having a model

lifts the performance throughout the iterations as we expect. Further, the performance of the

Dyna-PPO with confidence interval checking outperforms the one without that mechanism.

As the training proceeds, all three converge to a similar performance, which we expected

for two reasons. First, the number of observations becomes sufficiently large by the time

of convergence of baseline models. Second, as the model quality improves, it becomes less

frequent that the generated simulation falls outside of the confidence interval of an empirical

distribution. Thus, the effect of having the confidence checking mechanism becomes smaller.

Performance improvements are summarized in the table below: The reported improvements

Performance improvement (%) over the baseline
Pendulum Hopper Swimmer

Model simulations 2.89 17.54 -4.44
+Confidence interval 12.28 31.84 2.42

Table 3.1: Performance improvements

are calculated as the average improvement ratio for all data points. 1
E

∑
RM−RB
RB

where RM

is a cumulative reward in an epoch of the Dyna-PPO agent with model simulations, and RB

is the cumulated reward of the baseline (straight PPO). The table shows that the confidence

interval-based approach outperforms both straight PPO and the standard Dyna approach.

46

Figure 3.5: Comparison of PPO, Dyna-PPO learning curves with 128 model steps, and
Dyna-PPO with 128 model steps with quality checking. Plots show training performance
(rewards) over the number of collected episodes, and each line is a mean performance over
random seeds.

In the Swimmer environment, the standard Dyna approach lags compared to the baseline

approach, but confidence interval checking makes it outperform with respect to the baseline.

Hyperparameters we used in the experiments are shown in the following table:

47

Figure 3.6: Comparison between our method without confidence interval checking (gray)
and our proposed method with confidence interval checking (purple). 14.94% performance
improvement averaged throughout the epochs in 5 different runs. Hopper environment is
used in this experiment.

48

Figure 3.7: State transition model network details.

49

Hyperparameter Value

Horizon (T) 2048 Number of data to collect before the

policy update.

Minibatch size for policy training 16 Number of training samples over

which parameter update for the pol-

icy is performed.

Minibatch size for model training 128 Number of training samples over

which parameter update for model

learning is performed.

Learning rate for the Actor/Critic 3× 10−4 The learning rate used by Adam op-

timizer.

Discount (γ) 0.99 A discounting weight to compute the

advantage.

Hidden size 100 The number of dimension for hidden

layer (same for all models)

Generalized Advantage Estimation (λ) 0.98 Hyperparameter fro GAE ranging

from 0 to 1.

Clipping parameter (ε) 0.2 This value is used to keep the prob-

ability ratio rt in PPO policy update

within the range of [1− ε, 1 + ε]

Dropout rate 0.5 The ratio of randomly dropped nodes.

This value is used for both training

and inference.

MC dropout iteration 20 Inference is repeated this number so

that the variance can be calculated.

Table 3.2: Hyperparameters used in Dyna-PPO. Dyna-PPO has two groups of parameters;
parameters for PPO (from Horizon to λ in the table) and those for MC-dropout (dropout
rate and the number of iterations). Values are determined empirically based on the original
paper Schulman et al. [2017].

50

3.3.3 Ablation Study

To validate the effectiveness of our confidence-based approach, we conduct an ablation study

here. We run Dyna-PPO with and without confidence interval check. We hypothesize that

the absence of our confidence check mechanism deteriorates the reward acquired by the agent

because our check mechanism filters inaccurate simulations based on the confidence intervals.

Fig. 3.6 is the plot of acquired reward with adaptive Dyna-PPO with (purple) and without

(gray) confidence interval check in the Hopper environment. We use the same set of random

seeds for each run to ensure that the only difference in these two experiments is the existence

of the checking mechanism of simulations. This result successfully shows the effectiveness of

our approach as the cumulative reward of Dyna-PPO with confidence interval check (purple)

outperforms.

3.4 Discussion

We propose a simple yet effective way to improve model-based reinforcement learning per-

formance by utilizing the confidence interval of data distributions which is empirically deter-

mined. We assume that values for each dimension in states follow a Gaussian distribution.

This is reasonable given that the distribution of the agent’s observations through the interac-

tions can be approximated with Gaussian distribution. We utilize a convenient mathematical

property of the Gaussian, which is the confidence interval, to our method. On the other hand,

utilizing numerical evaluation of uncertainty in our models [Maddox et al., 2019, Loquercio

et al., 2020] possibly is a more broadly applicable approach. In the case of using variance

as an uncertainty measure, how to normalize a value without hand-tuning for each task is

one of the key future directions we plan, given that variance can have many different ranges

for each. Another future direction is to investigate our method in environments where the

underlying dynamics, such as the state transition dynamics or the reward structure, changes

51

over time - adaptively adjusting whether using models or not makes the agent more robust to

such environments. Although the standard Dyna-style architecture can eventually adapt to

those environmental changes, the performance could sharply drop until the model re-learns

the environment dynamics. We believe that discarding model simulations when simulations

drift off from confident intervals leads model-based RL to work towards continual learning

problems because it temporally avoids taking those simulations from the model before the

change of the dynamics until the model is re-trained.

52

Chapter 4

Disentangled State Representation for

Reinforcement Learning

4.1 Introduction

In deep learning, learning input data representation is a critical research area. How the

learned data are represented significantly affects the performances of tasks [Bengio et al.,

2012, Lesort et al., 2018], and many different methods have been proposed. In Reinforcement

Learning (RL), inputs for an agent can be image frames such as video game screens [Mnih

et al., 2015, Johnson et al., 2016, Kempka et al., 2016] or camera observations of a robot

[OpenAI et al., 2018, van Hoof et al., 2016]. In such a case, agents have convolutional

neural network layers to process RGB images before a feedforward network and learn the

optimal behavior. In this architecture, the convolutional and the linear layers are strongly

tied together in optimization. Recent works propose to learn a state representation using

unsupervised methods first to represent input states in a low-dimensional space and learn the

optimal behavior on top of that latent space [Ha and Schmidhuber, 2018, Hafner et al., 2019,

53

Higgins et al., 2017b]. The learned representation consists of some underlying disentangled

factors, which are common among the tasks, and it can be transferred to a new task with

the same or similar input space. Since the representation and the agent’s behavior policy

are separately learned, what the agent needs to do in a new task is to re-train a policy on

top of the existing learned representation instead of learning the entire network layers again.

Further, the policy network’s input has smaller dimensions than the original inputs (e.g.,

images), and the learning process can be quicker.

In recent studies, Variational Autoencoder (VAE, Section 2.4.1) [Kingma and Welling, 2013]

and its variants are often employed to learn a compact representation of visual input [van

Hoof et al., 2016, Ha and Schmidhuber, 2018, Hafner et al., 2019]. Variational Autoencoder

consists of the encoder and the decoder. Given an input, the encoder predicts the parameters

for Gaussian distribution with mean µ and variance σ2. Given those parameters, a latent

vector z is drawn from the Gaussian distribution, and the decoder reconstructs the input

based on that latent vector. However, the sampling process stops the gradient propagation,

and the backpropagation can not be used. VAE avoids this issue by the reparameterization

trick. Instead of sampling z ∼ N (µ, σ2), computing z = µ+σ2×ε makes gradient calculation

possible, thus, the loss is backpropagated. GANs, another generative modeling method,

which has been actively studied recently, also learn data representations [Chen et al., 2016,

Karras et al., 2019]. Because of its adversarial loss, GANs generate sharper images compared

to VAE [Goodfellow, 2017]. In addition, GAN is unique that it does not require any explicit

density function for its training. However, the GAN has some disadvantages, such as training

instability or a unique problem called mode collapse. Among those characteristics, the

most important difference between VAE and GAN is that GAN does not learn the latent

distribution. The combination of these two, called VAE/GAN, was proposed [Larsen et al.,

2016]. This has several unique properties, which we discuss in the following section, and our

method adopts VAE/GAN as the representation learning method for our RL agent.

54

There are several different ways of evaluating the learned representations in the represen-

tation learning literature, and it is not always as straightforward as accuracy in supervised

learning problems. One intuitive approach is to use the performance of downstream tasks

based on the idea that the good representation is the one by which the downstream task

is easier to perform [Goodfellow et al., 2016, Higgins et al., 2017b]. For instance, the rein-

forcement learning agents’ performance uses projected embeddings instead of raw inputs. In

this paper, we also use this approach for the evaluation metric. Though it sounds natural

to use downstream tasks for evaluation purposes, it is worth noting that there are several

disadvantages to this approach, especially in RL. First, it requires high costs to run RL

agents. Second, it is directly affected by uncertainty in RL agents’ performance due to im-

plementation details, hyperparameter selection, or even stochasticity in different runs [Lesort

et al., 2018]. As another direction, disentanglement has been studied as one of the beneficial

properties of a good representation. The idea of disentangled representation is that latent

units of the representation are well-factorized, and each factor is less sensitive to the others

[Bengio et al., 2012]. Figure 4.1 is the illustration of the idea of disentanglement. Here,

the input is a video game frame from the car racing game, and the learned representation

is a 4-dimensional vector. If, for instance, the first dimension of the vector expresses the

car’s position, the second dimension describes rotation, the third dimension corresponds to

acceleration, and the last dimension is related to the road angle, respectively, this learned

representation is well-disentangled. The data consists of combinations of these factors. These

disentangled properties makes it possible to manipulate the generated data [Higgins et al.,

2017a, Li and Mandt, 2018]. Disentanglement has been considered to benefit different tasks

and studied [Ridgeway, 2016, Bengio et al., 2012], however, the lack of measurements for this

disentanglement has been a challenge, and some methods were proposed, such as a classifier-

based approach in β-VAE [Higgins et al., 2017a] or an information-theoretic approach in

β-TCVAE (Total Correlation Variational Autoencoder) [Chen et al., 2018]. However, they

assume that the ground factor of the data is available [Liu et al., 2015, Matthey et al., 2017],

55

Figure 4.1: Example of disentangled representation. The learned representation in this
example is a 4-dimensional vector, and each dimension corresponds to car position, rotation,
acceleration, and road angle, respectively.

which is not a realistic assumption in many cases. InfoGAN, another information-theoretic

approach, learns disentangled representations in an unsupervised way, but the evaluation is

non-numeric, in which they vary only one latent factor and observe the corresponding change

of a generated image [Chen et al., 2016]. Yet, the benefits of having a disentangled represen-

tation for an RL agent is not clear. In this paper, we evaluate our representation learning

methods from the RL agent’s performance point of view and disentanglement properties.

4.2 Methods

4.2.1 VAE/GAN

Although VAE shows the remarkable capability to learn data-generative factors, it computes

element-wise loss, which is not convenient for some applications. For example, in control

tasks where the input is image frames, a slight perturbation of a pixel typically does not

matter for the objective (e.g., grasping a glass) but affects the loss. In the first place, it is

computationally heavy. [Larsen et al., 2016] proposed to use a similarity metric to mitigate

56

this problem. They use a discriminator for this purpose. As shown in the previous section,

the discriminator’s task is to distinct real and fake images. The output of the network can be

used to determine how similar the generated images are. [Higgins et al., 2017b] replaces the

reconstruction loss in the VAE objective with Eqφ(z|x) ‖J(x̂)− J(x)‖22 where x̂ ∼ pθ(x|z) and

J ∈ RW×H×C → RN that maps the high-dimensional features into low-dimensional space

of N deriving from the same motivation. They uses a pre-trained denoising autoencoder

[Vincent et al., 2010] as the function J , and compare the z for the input x̂ and x. We adopt

the discriminator for our similarity measurement scheme but also use the latter idea as

feature matching, which is described later in this section. Anther benefit of this architecture

is the generated image quality. VAE works well to capture latent vector z, however, since

there are many possible images considered for next states, an image generated by this family

typically blurry. On the other hand, GANs are good to produce sharper images as the

generator needs to generate a realistic one particular image for each instead of considering

every possible images to minimize mean squared error. GANs architecture, however, the

generator in particular has one drawback which is that the network doesn’t have any way to

learn z itself. z is sampled from a normal distribution randomly. Because of these missing

points in each of VAE and GAN, we apply a model similar to VAE/GAN architecture as a

part of the agent’s vision. In this architecture, the generator plays a role of the decoder for

VAE. The benefits of this architecture is two fold: 1)this generates more clear image than

VAE, and 2)this has a latent vector z captures a real input instead of drawing a sample

from a normal distribution. Further, they found that VAE/GAN can disentangle factors

underlying the data. [Radford et al., 2016] also indicated that the latent space learned by

GANs factorize some factors in it.

There are some drawbacks for VAE/GAN as well. First, computational costs are higher than

GAN or VAE as it combines two of them. Second, GAN’s training instability needs to be

considered. Further, ”No ground truth factor needed” can be a drawback, to put it the other

way around because this limit the interpretability of the learnt latent representation. In our

57

Figure 4.2: VAE/GAN network architecture. Input data is fed into the encoder first. The
encoder outputs parameters for a Gaussian distribution (µ and σ), and a latent vector z is
drawn from the distribution parameterized by them. Instead of a decoder in the standard
VAE architecture, the generator generates data x′ in VAE/GAN. The generated data is then
fed into the discriminator along with the original input x. The discriminator determines
whether an input is real or fake.

network, ”feature matching” is used to mitigate GAN’s training instability [Salimans et al.,

2016]. This technique is improve the generator’s image generation quality by feeding x and x̂

into the discriminator and minimizing mean squared errors between outputs of intermediate

layer’s output as possible instead of the outputs itself. This direct the generator to generate

an image of which the discriminator shows similar output patterns in its intermediate layer.

We found that this also works for ”mode collapse” problem. In this regard, our loss function

is changed as follows:

∥∥Ex∼pdataf(X)− Ez∼pz(z)f(G(z))
∥∥2
2

(4.1)

where f(x) denote activation on an intermediate layer of the discriminator. Not only the

instability but also the technique help to reduce computational costs by not having pixel-

wise comparison. The training of VAE/GAN is two-folds: VAE training and GAN training.

VAE training phase is the same as the original proposal [Kingma and Welling, 2013] with

Gaussian prior. In this phase, the discriminator tries to classify whether the input is the

original X or the reconstruction X̂. The loss is a squared loss of activation patterns of the

58

layers, which leads the discriminator to be activated the same for actual data and generated

data.

−(y log(p) + (1− y) log(1− p)) (4.2)

The whole training process is described in Algorithm 2.

Algorithm 2 VAE/GAN Training

1: initialize model parameters for θEnc, θDec, θDis
2: while Training do
3: get input batch X from replay buffer
4: Z ← Enc(X)
5: compute KL-divergence
6: X̂ ← Dec(Z)
7: compare layer activation pattern in the discriminator for X and X̂
8: Z ∼ N(0, 1)
9: X̂ ← Dec(Z)
10: compute discriminator loss
11: compute generator loss using feature matching
12: update parameters
13: end while

4.2.2 Evaluation of Representations

A unique challenge of representation learning in combination with downstream tasks is eval-

uating learned representations. In classification tasks, for example, a network is evaluated

numerically using a misclassification rate. Simply assess the representation from the synthe-

sized data, in particular, visual quality for image inputs, does not necessarily reflect our aim

well.

Downstream Task Performance One intuitive approach is to use the performance of the

downstream task itself as the evaluation metric for the representations. For example, if an RL

agents’ with a particular representation performs better than that with other representation,

59

that specific representation is better. However, in representation learning, in particular, it

is challenging to evaluate the learned representation itself.

Disentanglement Measurement One possible approach to evaluate representations is

to consider disentanglement. As a factorized representation, which means each factor in the

latent representation is only sensitive to changes in a generative factor, which corresponds

to the factor, while it would not for the changes of changes in other data generative factors

[Bengio et al., 2012, Higgins et al., 2017a]. There are several approaches proposed to evaluate

disentanglement in learned representations along with different network architectures. One

of the early work, which is based on GANs, is InfoGAN Chen et al. [2016]. GAN’s objective

is defined as min-max game shown in Equation 2.15, and InfoGAN proposed to modify the

game formulation as

min
G

max
D

VI(D,G) = V (D,G)− λI(c;G(z, c)) (4.3)

where c is the latent code, which corresponds to the structured latent factors in the data

distribution. Using the mutual information I(X;Y), which measures how much information

the Y provides in terms of X, the proposed method adds a term I(c;G(z, c)). λ is a hyper-

parameter to control the weight for that mutual information term. Their evaluation method

is an example of qualitative evaluation of representations. The idea is that projecting the

code onto data space while changing a factor one by one and observing the generated data

provides how each factor in the latent code corresponds to some factors in the data. They

used MNIST, 3D Faces [Paysan et al., 2009], and 3D Chairs images [Aubry et al., 2014] for

these experiments and showed that manipulation in the latent code results in the change

of the corresponding factor in the images. On the other hand, there are several VAE-based

approaches have been proposed. β-VAE [Higgins et al., 2017a] added a hypterparameter β

60

as a weight for the KL term in VAE loss as follows:

L = Eqφ(z|x)[log pθ(x|z)]− βKL(qφ(z|x)||p(z)) (4.4)

where p(z). β constrains how much the loss imposes on latent factors to be statistically

independent [Burgess et al., 2018]. This corresponds to the standard VAE when β = 1.

Since the method is based on VAE, it is more stable than InfoGAN to train. They proposed

a linear classifier-based approach to evaluate the representation from the disentanglement

point of view. It fixes one of the generative factors and randomly samples all others. The

goal of the classifier is to predict the index y of the generative factor that was kept fixed. To

conduct the experiments, they also created a data set called dSprites [Matthey et al., 2017],

where the data is generated based on color, shape, scale, rotation, x and y positions, which

enables us to control generated data and fixed factors for each shape, thus, true labels for

the classifier as mentioned above are provided. However, β-VAE has a trade-off between the

reconstruction quality and disentanglement. The reconstructed image quality is worse when

a larger β is specified, although it leads the learned representation to be disentangled. Thus,

it tends to generate blurry images when β increases. Based on the β-VAE, [Kim and Mnih,

2018] proposed FactorVAE, which mitigates the drawback of the β-VAE. They use Total

Correlation (TC) [Watanabe, 1960], KL(q(z)||q(z)) where q(z) =
∏

j q(zj), as a penalty to

the VAE objective. TC measures the independence of each factor by computing the KL

divergence between a product of each distribution and the joint distribution of them. In

their study, they also proposed a metric for their representation based on the classifier-based

approach in [Higgins et al., 2017a].

Further, on top of β-VAE approach, the information theoretic approach to evaluate disen-

tanglement was proposed in [Chen et al., 2018] called Mutual Information Gap (MIG).

We first evaluate VAE/GAN with the dSprites dataset [Matthey et al., 2017]. Then, RL

61

task’s performance is evaluated. By showing these two, we can relate the disentangled

representation helps the RL agent to improve its performance.

4.3 Experiments and Results

We evaluate our method using a car racing game environment from OpenAI Gym [Brockman

et al., 2016]. In this environment, the car position on the screen is fixed to the bottom center,

and the environment changes over time with the agent’s action. The action is a 3-dimensional

continuous vector, each of which corresponds to steering, where -1 equals to fully left, and

+1 is fully right, acceleration, and breaking. Observation is RGB images of size (96, 96,

3). Other information, such as true speed, ABS sensor reading, steering wheel position, and

gyroscope value, is shown at the bottom left. However, it is not provided as observed values

and needs to be read and processed separately from the frames. As a preprocessing, these

frames are resized to (64, 64, 3) in our experiments. Further, the additional information

described above is not used in our experiments; thus, the agent learns the policy only from

image frames of the track. The reward of -0.1 is given every frame, and +1,000/N is given

for every track tile the agent visits, where N is the total number of tiles in the track. In

addition, if the agent drifts off for a certain amount, a -100 reward is given, and the game is

terminated as the agent died.

4.3.1 Qualitative Evaluation

We first generate 2,000 rollouts using a random policy and train VAE and VAE/GAN using

that data in unsupervised way. The figure 4.4 compares generated images using VAE (left)

and VAE/GAN (right) after 200 epochs of training. Although the adversarial loss provides

sharp reconstruction [Goodfellow, 2017], both VAE and VAE/GAN generate qualitatively

62

Figure 4.3: CarRacing-v0 environment in OpenAI Gym. The car (agent) location is fixed
to the center bottom, and the scene changes based on the agent’s actions. There are some
indicators in the black area at the bottom. From left to right: true speed, four ABS sensors,
steering wheel position, gyroscope.

63

Figure 4.4: Reconstructed image comparison. Top four rows are original input images and
the bottom four rows are reconstructions for each. Both VAE and VAE/GAN reconstruct
images equally well.

equivalent images for this 2D game environment.

To confirm how the latent vectors are expressed, we project them onto a 2D surface using

t-SNE [van der Maaten and Hinton, 2008]. The figure 4.5 shows the results. Left is the result

of VAE, and the right is VAE/GAN. The VAE/GAN’s result shows some clear clusters, such

as corner images at the bottom left cluster or straight courses at the upper left part in the

biggest cluster. Some other examples are shown in the figure 4.6. Although both VAE and

VAE/GAN generate good images, the projection shows that the learned latent representa-

tions are quite different. We hypothesize that RL agents benefit from this separation in the

latent space. In addition to the visual inspections in this section, we confirm the hypotheses

numerically in the next section using several different approaches.

64

Figure 4.5: Latent vector mapped on 2D plane using t-SNE. The left figure (VAE/GAN)
has some clear clusters with similar images. Based on this observation, we conjecture that
the VAE/GAN embedding could benefit RL agents.

Figure 4.6: Some other examples of t-SNE projection of VAE/GAN embedding. There are
several clusters in these examples as well.

65

Figure 4.7: Experimental setup for the downstream task.

4.3.2 Quantitative Evaluation

Several approaches have been proposed to evaluate representations [Lesort et al., 2018]. Here,

we first evaluate our representation by a downstream task performance. Then, conduct some

experiments using disentanglement measures and discuss the results.

Task Performance

In the previous section, VAE and VAE/GAN are trained using the collected images. To

confirm how effective those representations are for RL agents, we train the RL agent using

those representations. Instead of row pixel inputs, the agent observe the latent vector of

input images, and learns a policy based on them. z is 16-dimensional vectors in this ex-

periment. In this experiment, four consecutive inputs are concatenated and form one input

for the agent as shown in Figure 4.7. For policy learning, we use Proximal Policy Opti-

mization [Schulman et al., 2017]. For our experiment, we stacked four consecutive frames.

This technique is known as ”frame stacking” and is widely used in game-playing RL agent

research. Stacked frames give an agent useful information, such as the head-direction of the

agent itself in the CarRacing environment. A selected action is repeated eight times in our

setting. The network consists of convolutional networks followed by batch normalization

[Ioffe and Szegedy, 2015] and ReLU [Nair and Hinton, 2010]. Details are in Figure 4.8 and

hyperparameters used in the experiments are in Table 4.1.

66

Figure 4.8: VAE/GAN network details. K, S, and P are kernel size, strides, and padding,
respectively.

67

Hyperparameter Value

Latent dimension 16 Number of latent code (z) dimension.

Input screen size 64 Resize the screen size to 64 in the

experiments from the original screen

size of 94.

Minibatch size for VEA/GAN training 100 Number of training samples over

which VAE/GAN parameter update

is performed.

Learning rate 1× 10−4 The learning rate used in the experi-

ments. The number is the same for all

three networks: Encoder, Generator,

and the Discriminator.

Learning rate for the policy learning 1× 10−3 Learning rate for policy learning.

Discount (γ) 0.99 A discounting weight to compute the

advantage.

Horizon (T) 2000 Number of data to collect before the

policy update.

Minibatch size for policy training 128 Number of training samples over

which parameter update for the pol-

icy is performed.

Action repeat 8 Number to repeat the agent’s action.

Image stacking 4 The number of sequential frames for

the agent’s input.

Clipping parameter (ε) 0.1 This value is used to keep the prob-

ability ratio rt in PPO policy update

within the range of [1− ε, 1 + ε]

Table 4.1: Hyperparameters used in VAE/GAN training for CarRacing environment. Values
are determined empirically.

68

Figure 4.9: Performance comparison using PPO. The blue line is the PPO on the latent
vector generated by VAE and the red line is on the latent vector generated by VAE/GAN.
Values are the average of three runs with different random seeds.

Figure 4.9 shows the experimental results. We conducted three different runs for each with

different random seeds and plot their average. The result indicates that the RL agent learns

its policy using VAE/GAN encoding outperforms the one with VAE encoding. Although

the performance of state-of-the-art RL agents in the CarRacing game environment can be

much better, the result is a positive indicator as a comparison of VAE and VAE/GAN

representations.

69

Disentanglement Measure

In addition to the task performance, we conduct experiments from the disentanglement point

of view. We evaluate VAE/GAN using a classifier-based method proposed in [Higgins et al.,

2017a]. However, it requires that the data generative factors be known beforehand, which is

unavailable for our tasks. Thus, we train VAE and VAE/GAN on dSprites data set Matthey

et al. [2017] and compare the performance. First, we generate data while fixing one factor and

randomizing others. The data is fed into the encoder and latent codes are generated. Then,

difference between pairs of encoded vectors are calculated, and we calculate the average of

those differences, which is the input for the classifier. The classifier’s task is to determine

which factor is fixed for that data generation process (Figure 4.10).

We implemented a simple multi-layer perceptron with two linear layers, followed by a ReLU

activation layer for each and a softmax layer for the output. Figure 4.11 shows the classifica-

tion error (cross-entropy) transition throughout the 300 epochs of training. The metric value

has randomness as it is affected by the data generation and the classifier training procedure.

Thus, the value is an average of 10 runs with different random seeds. The graph shows that

the VAE outperforms VAE/GAN, which contradicts our assumption given that VAE/GAN

outperforms VAE in task performance. We conjecture the reason for this results for several

reasons. First, Larsen et al., evaluated their representation qualitatively in CelebA data set

[Liu et al., 2015], but it is not clear whether the reconstructed image space correlated to the

latent space. Indeed, it is know that the reconstruction quality trade-off with the disentan-

glement as shown in [Higgins et al., 2017a]. Thus, the relationship between factors in image

spaces and the latent space dimensions is further needs to be investigated. Secondly, there

are mismatches between several different metrics [Zaidi et al., 2020]. Thus, it is possible

that the representation which shows a good performance in one metric performs poorly for

another metric. Further, the data set for task performance and disentanglement evaluation

are different as the metric requires data generative factors to compute it. There is no de

70

Figure 4.10: Classifier-based disentanglement metric proposed in [Higgins et al., 2017a]. The
figure is adapted from the paper.

71

Figure 4.11: Metric score with 300 epochs of training. A classifier is an multi-layer perceptron
with two linear layers.

72

facto standard to measure disentanglement in the field, and each research comes with a set

of new representation learning method and metric, which is best suitable to capture the

benefit of the representation. In such situation, there is a claim that challenges the idea of

unsupervised learning of disentangled representations and ignited active discussions about

whether it is possible to learn disentangled representations in an unsupervised way or not

(or it is possible only when it comes with strong assumptions) [Locatello et al., 2018, Horan

et al., 2021]. Given the area’s current situation, further development of our understanding of

the disentanglement and its metrics is necessary to fairly assess existing and newly proposed

methods. In addition, searching for the effects of varying weights for each factor in the loss

functions is another thing to analyze. As β-VAE puts the weight β to the KL-divergence

term and shows that it changes the disentanglement capability of the model, detailed anal-

yses for VAE/GAN from the loss function perspective are also a critical step for further

understanding.

4.4 Conclusion

In this project, we investigated VAE/GAN as the RL agents’ visual processing module and

showed its potential benefit based on the car racing game’s task performance. In addition, we

evaluated the learned representation from the disentanglement point of view, and our results

depicted some disparity between the downstream task performance and the disentanglement.

Further, we surveyed the current situation of disentanglement metric research and highlighted

issues in the field. Although it has been believed that the factors of the learned disentangled

representation are beneficial when two or more tasks have common properties such as scaling,

orientation, or even more specific factors like road or car, understanding what we measure

in reality and developing the common methodology for evaluation, instead of the current

”one metric per each proposal” is necessary. On top of it, one direction that needs to be

73

evaluated is the transfer learning performance of the disentangled representation in RL tasks.

We evaluated our approach using the 2D car racing simulation game, of which the original

image quality is coarse and low. Testing the VAE/GAN-based RL agent in richer input

image tasks is another interesting direction. GANs typically generate more realistic images

and can benefit the agent to augment the data, as we discuss in the future directions chapter.

74

Chapter 5

Future Directions

In this chapter, we discuss future directions. Aside from the main projects that introduced

in the previous chapters, we investigated some other research projects. Some preliminary

experiments are discussed, along with the future directions.

5.1 Uncertainty-based Adaptive learning

When we consider real-world applications, RL agents’ tasks may not be limited to a single

task with a limited length of episodes, such as navigation in a constantly changing environ-

ment. For example, Sutton introduced the Blocking Maze and Shortcut Maze experiment in

[Sutton and Barto, 2018], where the position of walls changes and the shortest path changes

at some point of iterations. The agent needs to update its policy in this environment to

catch up with the latest situation. This can happen indefinitely in real-world scenarios due

to road constructions, big events, or parked cars blocking the learned shortest path. Effective

exploration strategies are required to quickly adapt such environmental changes. Dyna-Q+

[Sutton and Barto, 2018] is one of the classical approaches to making an agent, which can

75

quickly catch up with changes in the environmental dynamics by encouraging the agent to

test state-action pairs that have not been tried for a while. Although this exploration strat-

egy could eventually update the optimal actions, it is not sample-efficient. The agent needs

to execute it, especially suppose that the change happens after the learning rate converges

to a tiny constant. In that case, the agent must take that exploratory action many times

until the value catches up with the latest situation. From this perspective, we focus on the

learning rate and discuss the complementary solution for the challenge above. In Chapter 3,

we proposed the RL agent architecture, which uses the uncertainty of models to determine

whether the agent should rely on the model simulations or not. We investigate an approach

to use the uncertainty to make our RL agent update its learning rate, and promote faster

learning when the learned behavior needs to adapt to the environmental changes. In Dyna-

Q+, for instance, the learning rate is typically decreased over the iterations, making it slow

for RL agents to adjust their behavior to the new environmental dynamics even when it

encounters a novel state.

There are several approaches regarding the learning rate update. Simple decaying is one

classical approach, which works for stationary environments, but does not suit our tasks here.

In addition, those methods require tuning in hyperparameters, such as an initial rate or a

total number of steps by the learning rate converging to a fixed constant. Typically they are

determined empirically. Another approach is the adaptive strategies such as the incremental

delta bar delta (IDBD), temporal coherence learning (TCL), or Autostep [Sutton, 1992,

Mahmood et al., 2012, Beal and Smith, 1999, Dabney and Barto, 2012].

The uncertainty-based approach has potential to making continual learning more efficient

with the dynamic learning rate update. The idea is dynamically to adjust a learning rate

using uncertainty. For example, the agent adjusts its learning rate as follows using the

76

entropy of action probability:

lr = base lr + (entropy of action probability − const)× uncertainty weight (5.1)

where base lr and uncertainty weight are constant positive real variables. Here, we inter-

pret the entropy of action probability distribution as the uncertainty. We conduct simple

experiments using this learning rate update scheme and present the preliminary results be-

low.

Two Bandit Machines Problem To show how the proposed learning rate adjustment

works, we think about the problem of two bandit machines here. In this experiment, we

consider two bandit machines, called A and B, with different initial reward probabilities

0.8 and 0.2 respectively. The agent action is to select one of them, and the objective is to

maximize the expected total reward in a given number of iterations. After some iterations,

1,500 iterations in our initial experiment, the reward probabilities of each machine are flipped

to 0.2 and 0.8; thus, the agent’s optimal behavior must be changed. We expect that the

adaptive learning rate scheme will help in two directions. First, the agent’s action probability

distribution is less peaky because it has not learned much yet, and a high entropy value

increases the learning rate. Second, assume that the action probability distribution looks

peaky in some states where a specific action leads the agent to the goal. When the reward

structure change after the agent has learned the optimal behavior in the previous reward

structure, the agent face situations where the optimal behavior is not optimal, and action

probability become less peaky as the policy is updated. In this situation, the learning

rate gradually increases, which accelerates the agent’s adaptation speed. We compared the

results using a Q-learning agent with and without a dynamic learning rate update scheme.

The figure 5.2 is the plot of the probability to select machine A. ’Static’ results from a

fixed constant learning rate approach and ’Dynamic’ is for the dynamic learning rate update

77

Figure 5.1: Bandit machine experiment with reward structure flipping. Initially, two bandit
machines have a reward probability of 0.8 and 0.2, respectively (left). After some iterations,
the reward probability is changed to 0.2 and 0.8, respectively (right).

78

approach. Starting from the reward probability of 0.8, the reward structure change to

0.2 for selecting machine A after 1,500 iterations. We see two observations here: 1. the

Dynamic scheme reaches closer to 0.8 in the first half, and 2. the Dynamic scheme also

gets closer to 0.2 faster than the Static in the last half of the experiment after the reward

probability is swapped. The result indicates that dynamically updating the learning rate

based on the action probability entropy makes the agent quickly adaptable to environmental

change. To confirm that the results mentioned above are not caused by the learning rate

of the static approach, we tested multiple learning rates ranging from 0.001 to 0.005 and

compared them with the dynamic learning rate update mechanism. Figure 5.3 shows that

the dynamic learning rate mechanism outperforms the static approach of any tested learning

rate. This simple experiment shows the potential of this dynamic learning rate approach in

environments where the agents keep working for a long time and adapt to the environmental

change over time as quickly as possible. It is an interesting direction to develop a method

for large-scale and more complicated tasks and evaluate it. RL agents with such capability

will benefit the real-world applications stated above.

79

Figure 5.2: Bandit machine experiment results. The plots show the probability of selecting
machine A, which initially has a reward probability of 0.8, and it is updated to 0.2 in the
second half of the experiment. ’Static’ refers to the agent with a constant learning rate. On
the other hand, ’Dynamic’ corresponds to the agent with a dynamic learning rate update
mechanism. Both eventually get close to the optimal probability, but the dynamic mechanism
helps to adapt the situation quickly.

One issue that needs to be addressed is that the uncertainty in the action selection itself does

not capture aleatoric uncertainty. The agent needs to consider both to assess the uncertainty

more precisely.

5.2 Generalizing RL agents with Data Augmentation

using Models

Data augmentation is a widely used technique in computer vision, and recently it has been

studied to apply to other domains such as natural language processing [Shorten and Khosh-

80

Figure 5.3: Comparison of different learning rates. Run multiple experiments with different
learning rates from 0.001 to 0.005 and the dynamic learning rate. The dynamic scheme gets
close to 0.8 first, and after the reward structure change (1,500 iterations), it also reaches the
updated value fastest.

goftaar, 2019, Feng et al., 2021] and built into popular libraries [Abadi et al., 2016, Paszke

et al., 2019, Wu et al., 2019]. It is known that augmenting a data set with some trans-

formations, such as rotating, scaling, cropping, flipping vertically or horizontally, changing

luminary, or adding some noise, improves the generalizability of a model, and leads the

model to better testing performance. Not only for the generalizability, but it is also useful

to simply add more data when it is hard to acquire a large amount of data. Generative

models have been considered to be helpful for this purpose as it synthesizes new data from

a learned distribution [Kingma et al., 2014, Sandfort et al., 2019, Sundaram and Hulkund,

2021]. Effectiveness of data augmentation in RL has also studied [Yarats et al., 2021].

In the VAE/GAN project, we proposed to use the combination of VAE and GANs to serve as

the vision module for the RL agent. From the image generation point of view, this architec-

ture has two benefits: 1. the generated images tend to be sharper than the reconstructions

from VAE, and 2. it has the encoder, which the original GAN architecture does not have.

81

Figure 5.4: Examples of generated images with random latent vectors.

With these two benefits, one future direction of research is to perform data augmentation

using VAE/GAN. For example, figure 5.4 is a sample of generated images. GAN itself can

be used for this purpose, however, as stated before, it does not have encoder instead use

the normal distribution to generate a latent code z. Further analyses about whether the

assumption of the normal distribution prior limits the acquired representation capacity or

not, and the benefits of having learned latent distribution is an important path to study.

We hope that this direction is extended with the forward prediction model. As a prelimi-

nary analysis, we implemented a forward prediction model using a recurrent neural network

(RNN). This network takes a sequence of latent vector zt, zt+1, ..., zt+n, and predict the next

state’s latent vector zt+n+1. Figure 5.5 is an example of the original input frames (the first

row), reconstructed images of predicted z (the second row), and the reconstruction of z,

which is encoded by the encoder (the third row). The comparison of images in the second

and third-row shows that the forward prediction model predicts the next observation’s latent

vector well. It enables us to augment the data with more control; for example, it allows us

to generate trajectories we would like the agent to learn instead of independent frames.

82

Figure 5.5: Forward prediction experiment. The first row is the frames of next observations
(ground truth), the second row is the reconstructions from the predicted z′ given the current
observations, which we call ẑ′, and the third row is reconstructed images from latent code
z′ of next observations, encoded using the real observations. Based on this experiment, we
can qualitatively conclude that the forward prediction model predicts z′ well.

83

Chapter 6

Conclusion

Reinforcement learning provides us with autonomy as it does not require labeled data sets,

which has a great potential to develop diverse real-world machine learning applications.

However, it requires a large amount of interaction to collect data, and model-based RL is

a solution to this sample inefficiency. Motivated to solve the sample inefficiency challenge,

this dissertation presents the following two research directions from the model perspective

in RL:

• How should RL agents better utilize models to train their policy under the condition

that the models are threatened to be wrong because of insufficient training or data.

• What neural network architecture can serve as a representation model for the RL

agents.

Chapter 3 proposed a novel training method of RL agent, which leverages the uncertainty

estimation using MC-dropout in Dyna. We demonstrated that filtering less confident model

simulations improved the agent’s performance in the early phase of its training. This result

suggests that considering model uncertainty makes an RL agent require less interaction with

84

the environment, thus the agent is sample efficient. Chapter 4 proposed using VAE/GAN

as the vision module for the agent. We analyzed VAE/GAN from RL task performance and

disentanglement perspective. Our result shows that the RL agent that learns a policy over

the VAE/GAN embedding outperforms the agent with the VAE embedding as its vision

module. Although we expected that the network learns disentangled representation from

our qualitative evaluation using t-SNE that shows clusters on a 2D surface, we concluded

qualitatively, based on the classifier-based metric proposed in [Higgins et al., 2017a], that

the network did not learn disentangled representation. Along with the experimental results,

we highlighted the discussion that the existing disentanglement measures do not match

each other. They may perform well in specific tasks and data sets but do not match the

RL task performance. Further study about the disentanglement and RL task performance

correlation is necessary. The bandit machines experiments in Chapter 5 discussed the benefit

of dynamically adjusting learning rates. It speeds up the RL agent’s policy update in the

environments where the environment changes and the learned behavior needs to be updated.

The data augmentation discussed in Chapter 5 aims to mitigate the high cost of collect

data in RL. We hope the directions we propose help to develop sample efficient RL agent

that requires fewer interactions with the environment and computational costs, which can

be deployed in practical applications.

85

Bibliography

Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur,
Josh Levenberg, Rajat Monga, Sherry Moore, Derek Gordon Murray, Benoit Steiner,
Paul A. Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang
Zhang. Tensorflow: A system for large-scale machine learning. In OSDI, volume 16, pages
265–283, 2016.

Ankesh Anand, Evan Racah, Sherjil Ozair, Yoshua Bengio, Marc-Alexandre Côté, and R. De-
von Hjelm. Unsupervised state representation learning in Atari. CoRR, abs/1906.08226,
2019. URL http://arxiv.org/abs/1906.08226.

Christof Angermueller, David Dohan, David Belanger, Ramya Deshpande, Kevin Murphy,
and Lucy J. Colwell. Model-based reinforcement learning for biological sequence design.
In ICLR, 2020.

Mathieu Aubry, Daniel Maturana, Alexei Efros, Bryan Russell, and Josef Sivic. Seeing 3d
chairs: exemplar part-based 2d-3d alignment using a large dataset of cad models. In
CVPR, 2014.

Adrien Baranes and Pierre-Yves Oudeyer. Active learning of inverse models with intrinsically
motivated goal exploration in robots. CoRR, abs/1301.4862, 2013. URL http://arxiv.

org/abs/1301.4862.

Donald F. Beal and Martin C. Smith. Temporal coherence and prediction decay in TD
learning. In Thomas Dean, editor, IJCAI, pages 564–569. Morgan Kaufmann, 1999.
ISBN 1-55860-613-0. URL http://dblp.uni-trier.de/db/conf/ijcai/ijcai99.html#

BealS99.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Sax-
ton, and Remi Munos. Unifying count-based exploration and intrinsic motiva-
tion. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, edi-
tors, Advances in Neural Information Processing Systems, volume 29. Curran As-
sociates, Inc., 2016. URL https://proceedings.neurips.cc/paper/2016/file/

afda332245e2af431fb7b672a68b659d-Paper.pdf.

Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning
environment: An evaluation platform for general agents. CoRR, abs/1207.4708, 2012.
URL http://arxiv.org/abs/1207.4708.

86

http://arxiv.org/abs/1906.08226
http://arxiv.org/abs/1301.4862
http://arxiv.org/abs/1301.4862
http://dblp.uni-trier.de/db/conf/ijcai/ijcai99.html#BealS99
http://dblp.uni-trier.de/db/conf/ijcai/ijcai99.html#BealS99
https://proceedings.neurips.cc/paper/2016/file/afda332245e2af431fb7b672a68b659d-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/afda332245e2af431fb7b672a68b659d-Paper.pdf
http://arxiv.org/abs/1207.4708

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learn-
ing. In ICML ’09, 2009.

Yoshua Bengio, Aaron C. Courville, and Pascal Vincent. Unsupervised feature learning
and deep learning: A review and new perspectives. CoRR, abs/1206.5538, 2012. URL
http://arxiv.org/abs/1206.5538.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemyslaw Debiak,
Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Christopher Hesse,
Rafal Józefowicz, Scott Gray, Catherine Olsson, Jakub Pachocki, Michael Petrov, Hen-
rique Pondé de Oliveira Pinto, Jonathan Raiman, Tim Salimans, Jeremy Schlatter, Jonas
Schneider, Szymon Sidor, Ilya Sutskever, Jie Tang, Filip Wolski, and Susan Zhang. Dota
2 with large scale deep reinforcement learning. CoRR, abs/1912.06680, 2019. URL
http://arxiv.org/abs/1912.06680.

Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science
and Statistics). Springer-Verlag, Berlin, Heidelberg, 2006. ISBN 0387310738.

Aaron P. Blaisdell. Mental imagery in animals: Learning, memory, and decision-making in
the face of missing information. Learning & Behavior, pages 1–24, 2019.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncer-
tainty in neural network. In ICML, 2015.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie
Tang, and Wojciech Zaremba. OpenAI Gym. CoRR, abs/1606.01540, 2016. URL http:

//arxiv.org/abs/1606.01540.

Yuri Burda, Harrison Edwards, Deepak Pathak, Amos J. Storkey, Trevor Darrell, and
Alexei A. Efros. Large-scale study of curiosity-driven learning. CoRR, abs/1808.04355,
2018a. URL http://arxiv.org/abs/1808.04355.

Yuri Burda, Harrison Edwards, Amos J. Storkey, and Oleg Klimov. Exploration by random
network distillation. CoRR, abs/1810.12894, 2018b. URL http://arxiv.org/abs/1810.

12894.

Christopher P. Burgess, Irina Higgins, Arka Pal, Löıc Matthey, Nicholas Watters, Guillaume
Desjardins, and Alexander Lerchner. Understanding disentangling in β-VAE. ArXiv,
abs/1804.03599, 2018.

Minmin Chen, Alex Beutel, Paul Covington, Sagar Jain, Francois Belletti, and Ed H. Chi.
Top-k off-policy correction for a reinforce recommender system. Proceedings of the Twelfth
ACM International Conference on Web Search and Data Mining, 2019.

Tian Qi Chen, Xuechen Li, Roger B. Grosse, and David Duvenaud. Isolating sources of
disentanglement in variational autoencoders. CoRR, abs/1802.04942, 2018. URL http:

//arxiv.org/abs/1802.04942.

87

http://arxiv.org/abs/1206.5538
http://arxiv.org/abs/1912.06680
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1808.04355
http://arxiv.org/abs/1810.12894
http://arxiv.org/abs/1810.12894
http://arxiv.org/abs/1802.04942
http://arxiv.org/abs/1802.04942

Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel.
Infogan: Interpretable representation learning by information maximizing generative ad-
versarial nets. CoRR, abs/1606.03657, 2016. URL http://arxiv.org/abs/1606.03657.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforce-
ment learning in a handful of trials using probabilistic dynamics models. In NeurIPS,
2018.

Rémi Coulom. Efficient selectivity and backup operators in Monte-Carlo Tree Search. In
H. Jaap van den Herik, Paolo Ciancarini, and H. H. L. M. (Jeroen) Donkers, editors,
Computers and Games, pages 72–83, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.
ISBN 978-3-540-75538-8.

Will Dabney and Andrew G. Barto. Adaptive step-size for online temporal difference learn-
ing. In AAAI, 2012.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O. Stanley, and Jeff Clune. Go-
explore: a new approach for hard-exploration problems. CoRR, abs/1901.10995, 2019.
URL http://arxiv.org/abs/1901.10995.

Cynthia D Fast and Aaron P. Blaisdell. Rats are sensitive to ambiguity. Psychonomic
Bulletin & Review, 18:1230–1237, 2011.

Cynthia D Fast, Traci Biedermann, and Aaron P. Blaisdell. Imagine that! Cue-evoked
representations guide rat behavior during ambiguous situations. Journal of Experimental
Psychology. Animal Learning and Cognition, 42 2:200–11, 2016.

Steven Y. Feng, Varun Gangal, Jason Wei, Sarath Chandar, Soroush Vosoughi, Teruko
Mitamura, and Eduard H. Hovy. A survey of data augmentation approaches for NLP.
CoRR, abs/2105.03075, 2021. URL https://arxiv.org/abs/2105.03075.

Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Ian Osband, Alex
Graves, Vlad Mnih, Rémi Munos, Demis Hassabis, Olivier Pietquin, Charles Blundell,
and Shane Legg. Noisy networks for exploration. CoRR, abs/1706.10295, 2017. URL
http://arxiv.org/abs/1706.10295.

Yarin Gal. Uncertainty in Deep Learning. PhD thesis, University of Cambridge, 2016.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing
model uncertainty in deep learning. In Maria Florina Balcan and Kilian Q. Weinberger,
editors, Proceedings of The 33rd International Conference on Machine Learning, volume 48
of Proceedings of Machine Learning Research, pages 1050–1059, New York, New York,
USA, 20–22 Jun 2016. PMLR. URL https://proceedings.mlr.press/v48/gal16.html.

Jakob Gawlikowski, Cedrique Rovile Njieutcheu Tassi, Mohsin Ali, Jongseo Lee, Matthias
Humt, Jianxiang Feng, Anna M. Kruspe, Rudolph Triebel, Peter Jung, Ribana Roscher,
M. Shahzad, Wen Yang, Richard Bamler, and Xiaoxiang Zhu. A survey of uncertainty in
deep neural networks. ArXiv, abs/2107.03342, 2021.

88

http://arxiv.org/abs/1606.03657
http://arxiv.org/abs/1901.10995
https://arxiv.org/abs/2105.03075
http://arxiv.org/abs/1706.10295
https://proceedings.mlr.press/v48/gal16.html

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative Adversarial Nets. Corrosion,
page iii, 2014. ISSN 03787753. doi: 10.1016/B978-0-408-00109-0.50001-8. URL
https://papers.nips.cc/paper/5423-generative-adversarial-nets{%}0Ahttp:

//doi.wiley.com/10.1002/9781118472507.fmatter{%}0Ahttp://linkinghub.

elsevier.com/retrieve/pii/B9780408001090500018.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

Ian J. Goodfellow. NIPS 2016 tutorial: Generative Adversarial Networks. CoRR,
abs/1701.00160, 2017. URL http://arxiv.org/abs/1701.00160.

Shixiang Gu, Timothy P. Lillicrap, Ilya Sutskever, and Sergey Levine. Continuous deep
Q-learning with model-based acceleration. CoRR, abs/1603.00748, 2016. URL http:

//arxiv.org/abs/1603.00748.

David Ha and Jürgen Schmidhuber. World Models. CoRR, abs/1803.10122, 2018. URL
http://arxiv.org/abs/1803.10122.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee,
and James Davidson. Learning latent dynamics for planning from pixels. In Kamalika
Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International Con-
ference on Machine Learning, volume 97 of Proceedings of Machine Learning Research,
pages 2555–2565. PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.press/v97/

hafner19a.html.

Jessica B. Hamrick, Kevin A. Smith, Thomas L. Griffiths, and Edward Vul. Think again?
The amount of mental simulation tracks uncertainty in the outcome. Cognitive Science,
2015.

Hado Hasselt. Double Q-learning. In J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel,
and A. Culotta, editors, Advances in Neural Information Processing Systems, volume 23.
Curran Associates, Inc., 2010. URL https://proceedings.neurips.cc/paper/2010/

file/091d584fced301b442654dd8c23b3fc9-Paper.pdf.

Yohei Hayamizu, Saeid Amiri, Kishan Chandan, Keiki Takadama, and Shiqi Zhang. Guiding
robot exploration in reinforcement learning via automated planning. Proceedings of the
International Conference on Automated Planning and Scheduling, 31(1):625–633, May
2021. URL https://ojs.aaai.org/index.php/ICAPS/article/view/16011.

Irina Higgins, Löıc Matthey, Arka Pal, Christopher P. Burgess, Xavier Glorot, Matthew M.
Botvinick, Shakir Mohamed, and Alexander Lerchner. β-VAE: Learning basic visual con-
cepts with a constrained variational framework. In ICLR, 2017a.

Irina Higgins, Arka Pal, Andrei Rusu, Loic Matthey, Christopher Burgess, Alexander Pritzel,
Matthew Botvinick, Charles Blundell, and Alexander Lerchner. DARLA: Improving zero-
shot transfer in reinforcement learning. In Doina Precup and Yee Whye Teh, editors,

89

https://papers.nips.cc/paper/5423-generative-adversarial-nets{%}0Ahttp://doi.wiley.com/10.1002/9781118472507.fmatter{%}0Ahttp://linkinghub.elsevier.com/retrieve/pii/B9780408001090500018
https://papers.nips.cc/paper/5423-generative-adversarial-nets{%}0Ahttp://doi.wiley.com/10.1002/9781118472507.fmatter{%}0Ahttp://linkinghub.elsevier.com/retrieve/pii/B9780408001090500018
https://papers.nips.cc/paper/5423-generative-adversarial-nets{%}0Ahttp://doi.wiley.com/10.1002/9781118472507.fmatter{%}0Ahttp://linkinghub.elsevier.com/retrieve/pii/B9780408001090500018
http://www.deeplearningbook.org
http://arxiv.org/abs/1701.00160
http://arxiv.org/abs/1603.00748
http://arxiv.org/abs/1603.00748
http://arxiv.org/abs/1803.10122
https://proceedings.mlr.press/v97/hafner19a.html
https://proceedings.mlr.press/v97/hafner19a.html
https://proceedings.neurips.cc/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf
https://proceedings.neurips.cc/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf
https://ojs.aaai.org/index.php/ICAPS/article/view/16011

Proceedings of the 34th International Conference on Machine Learning, volume 70 of Pro-
ceedings of Machine Learning Research, pages 1480–1490. PMLR, 06–11 Aug 2017b. URL
https://proceedings.mlr.press/v70/higgins17a.html.

G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural
networks. Science, 313(5786):504–507, 2006. doi: 10.1126/science.1127647. URL https:

//www.science.org/doi/abs/10.1126/science.1127647.

Daniella Horan, Eitan Richardson, and Yair Weiss. When is unsupervised disentanglement
possible? In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman
Vaughan, editors, Advances in Neural Information Processing Systems, volume 34, pages
5150–5161. Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/

paper/2021/file/29586cb449c90e249f1f09a0a4ee245a-Paper.pdf.

Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and P. Abbeel. Vime:
Variational information maximizing exploration. In NIPS, 2016.

Eyke Hüllermeier and Willem Waegeman. Aleatoric and epistemic uncertainty in machine
learning: A tutorial introduction. CoRR, abs/1910.09457, 2019. URL http://arxiv.

org/abs/1910.09457.

Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating deep network training
by reducing internal covariate shift. In Francis Bach and David Blei, editors, Proceedings
of the 32nd International Conference on Machine Learning, volume 37 of Proceedings of
Machine Learning Research, pages 448–456, Lille, France, 07–09 July 2015. PMLR. URL
https://proceedings.mlr.press/v37/ioffe15.html.

Matthew Johnson, Katja Hofmann, Tm Hutton, David Bignell, and Katja Hofmann. The
malmo platform for artificial intelligence experimentation. In 25th International Joint Con-
ference on Artificial Intelligence (IJCAI-16). AAAI - Association for the Advancement of
Artificial Intelligence, July 2016. URL https://www.microsoft.com/en-us/research/

publication/malmo-platform-artificial-intelligence-experimentation/.

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H. Campbell,
Konrad Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine,
Ryan Sepassi, George Tucker, and Henryk Michalewski. Model-based reinforcement learn-
ing for atari. CoRR, abs/1903.00374, 2019. URL http://arxiv.org/abs/1903.00374.

Steven Kapturowski, Georg Ostrovski, Will Dabney, John Quan, and Remi Munos. Recurrent
experience replay in distributed reinforcement learning. In International Conference on
Learning Representations, 2019. URL https://openreview.net/forum?id=r1lyTjAqYX.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for gen-
erative adversarial networks. In 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 4396–4405, 2019. doi: 10.1109/CVPR.2019.00453.

Michal Kempka, Marek Wydmuch, Grzegorz Runc, Jakub Toczek, and Wojciech Jaśkowski.
Vizdoom: A Doom-based AI research platform for visual reinforcement learning. 2016
IEEE Conference on Computational Intelligence and Games (CIG), pages 1–8, 2016.

90

https://proceedings.mlr.press/v70/higgins17a.html
https://www.science.org/doi/abs/10.1126/science.1127647
https://www.science.org/doi/abs/10.1126/science.1127647
https://proceedings.neurips.cc/paper/2021/file/29586cb449c90e249f1f09a0a4ee245a-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/29586cb449c90e249f1f09a0a4ee245a-Paper.pdf
http://arxiv.org/abs/1910.09457
http://arxiv.org/abs/1910.09457
https://proceedings.mlr.press/v37/ioffe15.html
https://www.microsoft.com/en-us/research/publication/malmo-platform-artificial-intelligence-experimentation/
https://www.microsoft.com/en-us/research/publication/malmo-platform-artificial-intelligence-experimentation/
http://arxiv.org/abs/1903.00374
https://openreview.net/forum?id=r1lyTjAqYX

Hyunjik Kim and Andriy Mnih. Disentangling by factorising. In Jennifer Dy and Andreas
Krause, editors, Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pages 2649–2658. PMLR, 10–15
July 2018. URL https://proceedings.mlr.press/v80/kim18b.html.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2013. URL http:

//arxiv.org/abs/1312.6114.

Diederik P. Kingma, Danilo Jimenez Rezende, Shakir Mohamed, and Max Welling. Semi-
supervised learning with deep generative models. CoRR, abs/1406.5298, 2014. URL
http://arxiv.org/abs/1406.5298.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems, volume 25. Cur-
ran Associates, Inc., 2012. URL https://proceedings.neurips.cc/paper/2012/file/

c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

Brenden M. Lake, Tomer David Ullman, Joshua B. Tenenbaum, and Samuel J. Gershman.
Building machines that learn and think like people. Behavioral and Brain Sciences, 40,
2016.

Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, Hugo Larochelle, and Ole Winther.
Autoencoding beyond pixels using a learned similarity metric. 33rd International Confer-
ence on Machine Learning, ICML 2016, 4:2341–2349, 2016.

Nevena Lazic, Craig Boutilier, Tyler Lu, Eehern Wong, Binz Roy, MK Ryu, and
Greg Imwalle. Data center cooling using model-predictive control. In S. Ben-
gio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, ed-
itors, Advances in Neural Information Processing Systems, volume 31. Curran As-
sociates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/file/

059fdcd96baeb75112f09fa1dcc740cc-Paper.pdf.

Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010. URL http:

//yann.lecun.com/exdb/mnist/.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–
444, 2015. doi: 10.1038/nature14539. URL https://doi.org/10.1038/nature14539.

Timothée Lesort, Natalia Dı́az-Rodŕıguez, Jean Franois Goudou, and David Filliat. State
representation learning for control: An overview. Neural Networks, 108:379–392, 2018.
ISSN 18792782. doi: 10.1016/j.neunet.2018.07.006.

Yingzhen Li and Stephan Mandt. A deep generative model for disentangled representations of
sequential data. CoRR, abs/1803.02991, 2018. URL http://arxiv.org/abs/1803.02991.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the
wild. In Proceedings of International Conference on Computer Vision (ICCV), December
2015.

91

https://proceedings.mlr.press/v80/kim18b.html
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1406.5298
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/059fdcd96baeb75112f09fa1dcc740cc-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/059fdcd96baeb75112f09fa1dcc740cc-Paper.pdf
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1038/nature14539
http://arxiv.org/abs/1803.02991

Francesco Locatello, Stefan Bauer, Mario Lucic, Sylvain Gelly, Bernhard Schölkopf, and
Olivier Bachem. Challenging common assumptions in the unsupervised learning of dis-
entangled representations. CoRR, abs/1811.12359, 2018. URL http://arxiv.org/abs/

1811.12359.

Antonio Loquercio, Mattia Segu, and Davide Scaramuzza. A general framework for uncer-
tainty estimation in deep learning. IEEE Robotics and Automation Letters, 5:3153–3160,
2020.

William Lotter, Gabriel Kreiman, and David D. Cox. Unsupervised learning of visual
structure using predictive generative networks. CoRR, abs/1511.06380, 2015. URL
http://arxiv.org/abs/1511.06380.

Wesley Maddox, Timur Garipov, Pavel Izmailov, Dmitry P. Vetrov, and Andrew Gordon Wil-
son. A simple baseline for bayesian uncertainty in deep learning. CoRR, abs/1902.02476,
2019. URL http://arxiv.org/abs/1902.02476.

Ashique Rupam Mahmood, Richard S. Sutton, Thomas Degris, and Patrick M. Pilarski.
Tuning-free step-size adaptation. In 2012 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 2121–2124, 2012. doi: 10.1109/ICASSP.
2012.6288330.

Loic Matthey, Irina Higgins, Demis Hassabis, and Alexander Lerchner. dSprites: Disentan-
glement testing sprites dataset. https://github.com/deepmind/dsprites-dataset/, 2017.

W. T. Miller, R. S. Sutton, and P. J. Werbos. First Results with Dyna, an Integrated
Architecture for Learning, Planning and Reacting, pages 179–189. 1995.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig
Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Ku-
maran, Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control through
deep reinforcement learning. Nature, 518(7540):529–533, February 2015. ISSN 00280836.
URL http://dx.doi.org/10.1038/nature14236.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lill-
icrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for
deep reinforcement learning. In Maria Florina Balcan and Kilian Q. Weinberger, editors,
Proceedings of The 33rd International Conference on Machine Learning, volume 48 of
Proceedings of Machine Learning Research, pages 1928–1937, New York, New York, USA,
20–22 Jun 2016. PMLR. URL https://proceedings.mlr.press/v48/mniha16.html.

Arun Nair, Praveen Srinivasan, Sam Blackwell, Cagdas Alcicek, Rory Fearon, Alessan-
dro De Maria, Vedavyas Panneershelvam, Mustafa Suleyman, Charles Beattie, Stig Pe-
tersen, Shane Legg, Volodymyr Mnih, Koray Kavukcuoglu, and David Silver. Massively
parallel methods for deep reinforcement learning. CoRR, abs/1507.04296, 2015. URL
http://arxiv.org/abs/1507.04296.

92

http://arxiv.org/abs/1811.12359
http://arxiv.org/abs/1811.12359
http://arxiv.org/abs/1511.06380
http://arxiv.org/abs/1902.02476
http://dx.doi.org/10.1038/nature14236
https://proceedings.mlr.press/v48/mniha16.html
http://arxiv.org/abs/1507.04296

Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted Boltzmann
machines. In ICML, 2010.

OpenAI, Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Józefowicz, Bob Mc-
Grew, Jakub W. Pachocki, Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn
Powell, Alex Ray, Jonas Schneider, Szymon Sidor, Josh Tobin, Peter Welinder, Lil-
ian Weng, and Wojciech Zaremba. Learning dexterous in-hand manipulation. CoRR,
abs/1808.00177, 2018. URL http://arxiv.org/abs/1808.00177.

Georg Ostrovski, Marc G. Bellemare, Aäron van den Oord, and Rémi Munos. Count-based
exploration with neural density models. CoRR, abs/1703.01310, 2017. URL http://

arxiv.org/abs/1703.01310.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, An-
dreas Köpf, Edward Z. Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chil-
amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An
imperative style, high-performance deep learning library. CoRR, abs/1912.01703, 2019.
URL http://arxiv.org/abs/1912.01703.

Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-driven ex-
ploration by self-supervised prediction. In Doina Precup and Yee Whye Teh, editors,
Proceedings of the 34th International Conference on Machine Learning, volume 70 of Pro-
ceedings of Machine Learning Research, pages 2778–2787. PMLR, 06–11 Aug 2017. URL
https://proceedings.mlr.press/v70/pathak17a.html.

Pascal Paysan, Reinhard Knothe, Brian Amberg, Sami Romdhani, and Thomas Vetter. A
3D face model for pose and illumination invariant face recognition. In 2009 Sixth IEEE
International Conference on Advanced Video and Signal Based Surveillance, pages 296–
301, 2009. doi: 10.1109/AVSS.2009.58.

Baolin Peng, Xiujun Li, Jianfeng Gao, Jingjing Liu, and Kam-Fai Wong. Deep Dyna-Q:
Integrating planning for task-completion dialogue policy learning. In Proceedings of the
56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 2182–2192, Melbourne, Australia, 2018. Association for Computational
Linguistics. doi: 10.18653/v1/P18-1203. URL https://aclanthology.org/P18-1203.

Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor, Richard Y. Chen,
Xi Chen, Tamim Asfour, Pieter Abbeel, and Marcin Andrychowicz. Parameter space noise
for exploration. CoRR, abs/1706.01905, 2017. URL http://arxiv.org/abs/1706.01905.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning
with deep convolutional generative adversarial networks. In Yoshua Bengio and Yann
LeCun, editors, 4th International Conference on Learning Representations, ICLR 2016,
San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016. URL http:

//arxiv.org/abs/1511.06434.

93

http://arxiv.org/abs/1808.00177
http://arxiv.org/abs/1703.01310
http://arxiv.org/abs/1703.01310
http://arxiv.org/abs/1912.01703
https://proceedings.mlr.press/v70/pathak17a.html
https://aclanthology.org/P18-1203
http://arxiv.org/abs/1706.01905
http://arxiv.org/abs/1511.06434
http://arxiv.org/abs/1511.06434

Karl Ridgeway. A survey of inductive biases for factorial representation-learning. ArXiv,
abs/1612.05299, 2016.

Stéphane Ross, Geoffrey J. Gordon, and J. Andrew Bagnell. A reduction of imitation learning
and structured prediction to no-regret online learning. In AISTATS, 2011.

Nikita Rudin, David Hoeller, Philipp Reist, and Marco Hutter. Learning to walk in minutes
using massively parallel deep reinforcement learning. CoRR, abs/2109.11978, 2021. URL
https://arxiv.org/abs/2109.11978.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, Xi Chen,
and Xi Chen. Improved techniques for training GANs. In D. D. Lee, M. Sugiyama, U. V.
Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing
Systems 29, pages 2234–2242. Curran Associates, Inc., 2016. URL http://papers.nips.

cc/paper/6125-improved-techniques-for-training-gans.pdf.

Veit Sandfort, Ke Yan, Perry Pickhardt, and Ronald Summers. Data augmentation using
generative adversarial networks (CycleGAN) to improve generalizability in CT segmenta-
tion tasks. Scientific Reports, 9, 11 2019. doi: 10.1038/s41598-019-52737-x.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, L. Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, Timothy P.
Lillicrap, and David Silver. Mastering Atari, Go, Chess and Shogi by planning with a
learned model. Nature, 588 7839:604–609, 2020.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust
Region Policy Optimization. In Francis Bach and David Blei, editors, Proceedings of
the 32nd International Conference on Machine Learning, volume 37 of Proceedings of
Machine Learning Research, pages 1889–1897, Lille, France, 07–09 July 2015. PMLR.
URL https://proceedings.mlr.press/v37/schulman15.html.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
Policy Optimization algorithms. CoRR, abs/1707.06347, 2017. URL http://arxiv.org/

abs/1707.06347.

Connor Shorten and Taghi M. Khoshgoftaar. A survey on image data augmentation for deep
learning. Journal of Big Data, 6(1):1–48, 2019.

D. Silver, Julian Schrittwieser, K. Simonyan, Ioannis Antonoglou, Aja Huang, A. Guez,
T. Hubert, L. Baker, Matthew Lai, A. Bolton, Yutian Chen, T. Lillicrap, Fan Hui, L. Sifre,
George van den Driessche, T. Graepel, and Demis Hassabis. Mastering the game of Go
without human knowledge. Nature, 550:354–359, 2017.

David Silver, Aja Huang, Christopher J. Maddison, Arthur Guez, Laurent Sifre, George
van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc
Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever,
Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Has-
sabis. Mastering the game of Go with deep neural networks and tree search. Nature,

94

https://arxiv.org/abs/2109.11978
http://papers.nips.cc/paper/6125-improved-techniques-for-training-gans.pdf
http://papers.nips.cc/paper/6125-improved-techniques-for-training-gans.pdf
https://proceedings.mlr.press/v37/schulman15.html
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347

529:484–503, 2016. URL http://www.nature.com/nature/journal/v529/n7587/full/

nature16961.html.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Dropout: A simple way to prevent neural networks from overfitting. Journal of
Machine Learning Research, 15(56):1929–1958, 2014. URL http://jmlr.org/papers/

v15/srivastava14a.html.

Shobhita Sundaram and Neha Hulkund. GAN-based data augmentation for chest X-ray
classification, 2021. URL https://arxiv.org/abs/2107.02970.

Richard S. Sutton. Dyna, an integrated architecture for learning, planning, and reacting.
SIGART Bull., 2(4):160–163, 1991. ISSN 0163-5719. doi: 10.1145/122344.122377. URL
http://doi.acm.org/10.1145/122344.122377.

Richard S. Sutton. Adapting bias by gradient descent: An incremental version of Delta-Bar-
Delta. In AAAI, 1992.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The
MIT Press, Cambridge, MA, USA, 2018. ISBN 0262039249.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gra-
dient methods for reinforcement learning with function approximation. In S. Solla,
T. Leen, and K. Müller, editors, Advances in Neural Information Processing Systems, vol-
ume 12. MIT Press, 2000. URL https://proceedings.neurips.cc/paper/1999/file/

464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf.

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen, Yan
Duan, John Schulman, Filip DeTurck, and Pieter Abbeel. #exploration: A study
of count-based exploration for deep reinforcement learning. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, ed-
itors, Advances in Neural Information Processing Systems, volume 30. Curran As-
sociates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/

3a20f62a0af1aa152670bab3c602feed-Paper.pdf.

Jun Tani. Exploring Robotic Minds: Actions, Symbols, and Consciousness as Self-Organizing
Dynamic Phenomena. Oxford University Press, Inc., USA, 1st edition, 2016. ISBN
0190281065.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas,
David Budden, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy P. Lillicrap,
and Martin A. Riedmiller. DeepMind control suite. CoRR, abs/1801.00690, 2018. URL
http://arxiv.org/abs/1801.00690.

E. Todorov, T. Erez, and Y. Tassa. MuJoCo: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
5026–5033, 2012. doi: 10.1109/IROS.2012.6386109.

95

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://arxiv.org/abs/2107.02970
http://doi.acm.org/10.1145/122344.122377
https://proceedings.neurips.cc/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3a20f62a0af1aa152670bab3c602feed-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3a20f62a0af1aa152670bab3c602feed-Paper.pdf
http://arxiv.org/abs/1801.00690

Edward C. Tolman. Cognitive maps in rats and men. Psychological Review, 55(4):189–208,
1948. ISSN 19391471. doi: 10.1037/h0061626.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of
Machine Learning Research, 9(86):2579–2605, 2008. URL http://jmlr.org/papers/v9/

vandermaaten08a.html.

Herke van Hoof, Nutan Chen, Maximilian Karl, Patrick van der Smagt, and Jan Peters.
Stable reinforcement learning with autoencoders for tactile and visual data. In 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
3928–3934, 2016. doi: 10.1109/IROS.2016.7759578.

Pascal Vincent, H. Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting
and composing robust features with denoising autoencoders. In ICML ’08, 2008.

Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-Antoine Man-
zagol. Stacked denoising autoencoders: Learning useful representations in a deep network
with a local denoising criterion. Journal of Machine Learning Research, 11(110):3371–
3408, 2010. URL http://jmlr.org/papers/v11/vincent10a.html.

Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew Dudzik,
Junyoung Chung, David H. Choi, Richard Powell, Timo Ewalds, Petko Georgiev, Jun-
hyuk Oh, Dan Horgan, Manuel Kroiss, Ivo Danihelka, Aja Huang, L. Sifre, Trevor Cai,
John P. Agapiou, Max Jaderberg, Alexander Sasha Vezhnevets, Rémi Leblond, Tobias
Pohlen, Valentin Dalibard, David Budden, Yury Sulsky, James Molloy, Tom Le Paine,
Caglar Gulcehre, Ziyun Wang, Tobias Pfaff, Yuhuai Wu, Roman Ring, Dani Yogatama,
Dario Wünsch, Katrina McKinney, Oliver Smith, Tom Schaul, Timothy P. Lillicrap, Ko-
ray Kavukcuoglu, Demis Hassabis, Chris Apps, and David Silver. Grandmaster level in
StarCraft ii using multi-agent reinforcement learning. Nature, pages 1–5, 2019.

Zhaodong Wang, Zhiwei Qin, Xiaocheng Tang, Jieping Ye, and Hongtu Zhu. Deep rein-
forcement learning with knowledge transfer for online rides order dispatching. In 2018
IEEE International Conference on Data Mining (ICDM), pages 617–626, 2018. doi:
10.1109/ICDM.2018.00077.

Zhicheng Wang, Biwei Huang, Shikui Tu, Kun Zhang, and Lei Xu. DeepTrader: A deep re-
inforcement learning approach for risk-return balanced portfolio management with market
conditions embedding. In AAAI, 2021.

Ziyu Wang, Nando de Freitas, and Marc Lanctot. Dueling network architectures for deep
reinforcement learning. CoRR, abs/1511.06581, 2015. URL http://arxiv.org/abs/

1511.06581.

Satosi Watanabe. Information theoretical analysis of multivariate correlation. IBM Journal
of Research and Development, 4(1):66–82, 1960. doi: 10.1147/rd.41.0066.

Christopher J. C. H. Watkins and Peter Dayan. Q-learning. In Machine Learning, pages
279–292, 1992.

96

http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v11/vincent10a.html
http://arxiv.org/abs/1511.06581
http://arxiv.org/abs/1511.06581

R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine Learning, 8:229–256, 1992.

Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick. Detec-
tron2. https://github.com/facebookresearch/detectron2, 2019.

Denis Yarats, Ilya Kostrikov, and Rob Fergus. Image augmentation is all you need: Regu-
larizing deep reinforcement learning from pixels. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=GY6-6sTvGaf.

Julian Zaidi, Jonathan Boilard, Ghyslain Gagnon, and Marc-André Carbonneau. Measuring
disentanglement: A review of metrics. CoRR, abs/2012.09276, 2020. URL https://

arxiv.org/abs/2012.09276.

Zeyu Zheng, Junhyuk Oh, and Satinder Singh. On learning intrinsic rewards for policy
gradient methods. CoRR, abs/1804.06459, 2018. URL http://arxiv.org/abs/1804.

06459.

97

https://github.com/facebookresearch/detectron2
https://openreview.net/forum?id=GY6-6sTvGaf
https://arxiv.org/abs/2012.09276
https://arxiv.org/abs/2012.09276
http://arxiv.org/abs/1804.06459
http://arxiv.org/abs/1804.06459

	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ALGORITHMS
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	Introduction
	Background
	Reinforcement Learning
	Deep Reinforcement Learning
	Markov Decision Process
	Rewards and Episodes
	Exploration-Exploitation Trade-off
	Temporal Difference and Value Optimization
	Policy Optimization
	Proximal Policy Optimization

	Model-Based Reinforcement Learning
	Dyna

	Uncertainty in Deep Learning
	Representation Learning
	Generative Models
	Disentanglement
	Representation Learning in Reinforcement Learning

	Confidence Based Model Integration
	Introduction
	Methods
	Model-Based Reinforcement Learning and Dyna
	Model Uncertainty Estimation Using MC-Dropout
	Models
	Model Quality Aware Integration

	Experiments and Results
	Dyna-PPO with Confidence Interval Checking
	Continuous Control Problems
	Ablation Study

	Discussion

	Disentangled State Representation for Reinforcement Learning
	Introduction
	Methods
	VAE/GAN
	Evaluation of Representations

	Experiments and Results
	Qualitative Evaluation
	Quantitative Evaluation

	Conclusion

	Future Directions
	Uncertainty-based Adaptive learning
	Generalizing RL agents with Data Augmentation using Models

	Conclusion
	Bibliography

