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WATER RESOURCES RESEARCH, VOL. 21, NO. 5, PAGES 631-641, MAY 1985

Quadratib Model for Reservoir Management:
Application to the Central Valley Project

MIGUEL A. MARINO AND HUGO A. LoAICIGA

Department of Land, Air, and Water Resources and Department of Civil Engineering
University of California, Davis

A quadratic optimization model is applied to a large-scale reservoir system to obtain operation
schedules. The model has the minimum possible dimensionality, treats spillage and penstock releases as
decision variables and takes advantage of system-dependent features to reduce the size of the decision
space. An efficient and stable quadratic programming active set algorithm is used to solve for the optimal
release policies. The stability and convergence of the solution algorithm are ensured by the factorization
of the reduced Hessian matrix and the accurate computation of the Lagrange multipliers. The quadratic
model is compared with a simplified linear model and it is found that optimal release schedules are
robust to the choice of model, both yielding an increase of nearly 27% in the total annual energy
production with respect to conventional operation procedures, although the quadratic model is more
flexible and of general applicability. The adequate fulfillment of other system functions such as flood
control and water supply is guaranteed via constraints on storage and spillage variables.

INTRODUCTION

This paper is devoted to the development and application of
a reservoir optimization model that yields monthly release
policies. It constitutes a generalization of the models devel-
oped in the work by Marifio and Loaiciga [this issue] and the
generalization consists of (1) capability to handle nonlinear
energy generation rates in the objective function (maximiza-
tion of system annual energy generation); (2) inclusion of non-
linear constraints, in particular those related to restriction on
the magnitude of spillway discharges; (3) modeling of spillage
(a decision variable that introduces considerable augmen-
tation in the decision space) as a nonlinear function of storage,
subject to the hydraulic properties of reservoir spillways; (4)
introduction of nonlinear net loss functions (evaporation plus
seepage plus direct rainfall) to replace linear net loss functions;
and (5) exploitation of the presence of relatively small reser-
voirs downstream of larger ones (regulating reservoirs) by per-
forming a (matrix) partition of the mathematical structure of
the model that reduces the dimensionality of the state (stor-
age) space by the number of existing regulating reservoirs.

The presence of two sets of decision variables (penstock
releases and spillages) implies that the decision space dimen-
sionality exceeds that of the state (storage) space, a situation
leading to substantial difficulties in nonlinear optimization
problems. This paper develops a methodology that makes
possible to solve for spillages and penstock releases and derive
their corresponding storage sequence in a stable and efficient
manner. Furthermore, it is shown that it is possible to com-
pute the decision and state variables by solving two-stage
problems which are of minimum dimensionality, resulting in
the most efficient way (both from storage and computational
standpoints) to derive penstock release, spillage, and storage
policies for reservoir operation problems.

The overall philosophy of the optimization scheme rests on
the certainty equivalence controller principle (CEC) discussed
in the work by Marifio and Loaiciga [this issue], which implies
the use of the model in a real-time fashion. In essence, at every
beginning of period (e.g., month), a forecast of inflows is made
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by a suitable model. Those forecasts are then treated as deter-
ministic inputs, and a multistage deterministic problem is
solved for the remaining of the reservoir operation horizon.
The computed release policy is followed for the current period.
As inflow forecasts deviate from actual realizations, new (up-
dated) forecasts are computed, and a revised future release
policy is developed on the basis of the observed state (storage)
of the system and updated forecasts.

The multistage deterministic problem is decomposed into a
sequence of two-stage quadratic problems that are solved one
at a time. The solution of the two-stage problems, which, in
general, have an indefinite reduced (or projected) Hessian
matrix, is implemented in a stable manner guaranteeing accu-
rate computation of the optimal release policies via a gener-
alized active set method for quadratic problems. The active set
method factorizes the reduced Hessian matrix and the null
space of the constraint set, resulting in an accurate and fast
convergence to the solution of the two-stage problems. The
decomposition of the multistage problem into a sequence of
two-stage problems is done within the framework of the pro-
gressive optimality algorithm (POA) [Howson and Sancho,
1975; Turgeon, 1981], leading to low storage requirements in
the multipurpose reservoir application discussed below.

Some remarks on the approach followed in this paper are of
importance. (1) Inflow forecasts are computed by a multi-
variate autogressive (AR) model, whose coefficients are esti-
mated via maximum likelihood [Marific and Loaiciga, 1983].
A unique feature of the maximum likelihood parameter esti-
mation is that it permits to perform statistical tests on the
structure of the model, i.c., on the order of the AR model, on
the time invariance of the model parameters, and on the inde-
pendence between streamflow realizations at different sites.

- Application of the AR model for streamflow forecasting yield-

ed forecasted values within +10% of actual values for the
rivers in the Northern California Central Valley Project
(NCVP). Statistical tests showed that the AR model of order 1
was adequate and that the streamflows were crosscorrelated,
justifying the use of a multivariate model. (2) The reservoir
operation horizon consists of 12 months, corresponding to a
water year (October 1 to September 30). (3) The optimization
model, as applied to the NCVP, has as objective function the
maximization of the energy generated during each year. Since
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Fig. 1. Schematic representation of NCVP diversions (R), net losses (e), releases through penstocks (u), spills (r), and
streamflows (y).

the NCVP power is sold as peaking capacity energy, there
does not exist price differentials for different months, and
hence maximizing total energy generation is equivalent to
maximizing its dollar value. Also, the NCVP management
aims at maximizing its cash revenues accruing from power
sales while operating the system so as to provide adequate
fulfillment of other functions by satisfying contractual agree-
ments and specified ranges for storages and releases (e.g., for
recreational or fisheries needs). Thus the multiple functions of
the NCVP system are handled in the optimization model by
obtaining a release schedule that maximizes energy revenues,
while providing adequate service for other purposes via con-
straints on releases and storages. (4) The mathematical devel-
opments are in matrix notation. This notation is desirable to
handle the multiunit nature of the NCVP and becomes essen-
tial in characterizing and solving the two-stage quadratic
problems. The notation also is convenient for decoupling the
system in order to reduce its dimensionality as shown below.

The objectives of this paper are (1) to develop all the nu-
merical expressions to be used in the optimization model, fol-
lowing the general formulation of Marifio and Loaiciga [this
issue], and to obtain, analyze, and compare the results with
those obtained with a simpler linear model [ Marifio and Loai-
ciga, this issue]; and (2) to describe an efficient algorithm to
solve the sequence of two-stage quadratic problems, leading to
the computation of spillage, penstock release, and storage
policies of a multireservoir system (NCVP). The two-stage
problems are solved in the most efficient way by an adequate
reduction of their dimensionality.

SYSTEM AND PROBLEM DESCRIPTION

The system under analysis, the NCVP, is composed of the
following reservoirs: (1) Clair Engle, (2) Lewiston, (3) Whis-

keytown, (4) Shasta, (5) Keswick, (6) Folsom, (7) Natoma, (8)
New Melones, and (9) Tullock. Figure 1 shows a schematic
representation of the NCVP system and the points at which
accretions and/or diversions occur. Adopting a 1-year plan-
ning horizon with monthly decisions, the following variables
are defined

where

u, n-dimensional decision vector of penstock releases at the
beginning of month ¢; its components are u,’, where i
refers to the ith reservoir;

r, n-dimensional decision vector of spillages at the beginning
of month ¢; its components are r,’;

X, n-dimensional state vector of storages at the beginning of
month ¢; its components are x,’.

The time index ¢t goes fromt=1tot=N+1=13, and nis
the number of reservoirs in the system (n = 9 in the NCVP).

The continuity equation for the NCVP system for months ¢
andt + 1is

X+1 =X+ 1w+ 1,8+ 2z 1)

in which I'; and T", are lower triangular matrices that contain
the topological arrangement of the system [Marifio and Loai-
ciga, this issue], and

z,=y,—¢,—R, V3]

where y,, e,, and R, are the forecast inflow, net loss, and diver-
sion vectors, respectively. There exist constraints on storages,
penstock releases, spillages, and in the total release (u, + r,),
which are discussed in the appendix.

The objective function is given by
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12
maximize Y E, 3
e=1

where E, is the total system power generation during month ¢,
and for which an expression in terms of the variables x,, u,
and r, will be developed. It is shown below that when posing
(3) subject to the continuity equation (1) and other constraints
as a sequence of two-stage problems, a quadratic program-
ming (QP) two-stage problem must be solved at time ¢ which
is completely specified in terms of the storages only. The pres-
ence of spillage and releases implies the existence of more
decision (2n) than state variables (n), which leads to complex
numerical problems in any solution algorithm of the (nonlin-
ear) optimization problem (e.g., in QP problems the Hessian
matrix is singular), unless the decision space is appropriately
reduced to be of size n. In this paper, such reduction is
achieved via equality constraints on spillages as shown below.
Upon solution of the optimization problem in terms of stor-
ages, spillages can be recovered from the equality constraints
so that the system managers know how much of the total
release is spillage and how much is penstock release. An im-
portant contribution of this paper is the development of an
approach that permits to compute both optimal spillage and
penstock releases simultaneously, and the introduction of a
numerically stable algorithm for the solution of the two-stage
problems, without which such a solution would not be possi-
ble.

ELEMENTS OF THE UPTIMIZATION MODEL

This section develops the necessary equations to arrive at
the basic mathematical structure of the two-stage problems.
Net losses, spillages, and energy equations are developed next.

Net Losses

Net losses consist of the net of evaporation, seepage, and
direct rainfall. They are considered only for the major reser-
voirs (Clair Engle, Shasta, Folsom, and New Melones) because
the smaller (constant storage or regulating) reservoirs have a
small areal extent, and NCVP monthly operation records
from 1960 to 1983 show that net losses are essentially zero.
The following relations were developed from net loss data
versus storages.

Clair Engle

e,! = 3.33c,' + 0.0078¢,*x,* @
Shasta

et = 3.99¢,* + 0.0061c,*x,* )]
Folsom

e,5 = 2.67¢,® + 0.0094¢,x, 5 (6)
New Melones

e.® = 291c,® + 0.0088¢,*x,® @)

where in (4) ¢,! denotes the net loss for month ¢ in kilo acre
foot (KAF); c,! is a net loss coefficient [Marifio and Loaiciga,
1983] in feet per month, and x,! represents average storage
during month ¢. The notation is similarly defined for (5)(7).

Spillages
Spillway discharges are modeled by equations of the form
r = &b’ — dp's' @)

in which r,’ is the discharge during month ¢ at reservoir i (in
kilo acre feet); & and n' are coefficients determined from hy-
draulic properties of the ith spillway; h,' is (average) water
surface elevation during month ¢ at reservoir i (in feet); d' is
spillway crest elevation at reservoir i (in feet above mean sea
level); and & =0 when h' < d’ and 6 =1 when h'> d’ To
develop spillway discharge equations, use was made of spill-
way discharge tables and curves, provided by the Central
Valley Operations Office of the U.S. Bureau of Reclamation.
Exponential interpolation of the spillway discharge tables and
curves yielded the following equations (flows are in cubic feet
per second (cfs) and elevations are in feet above mean sea
level).
Trinity (at Clair Engle reservoir)

r,t = 781(h,t — 2370)*-2°

, ©)
r? =984%

in which r? is the adjusted regression correlation coeflicient.

Lewiston
r? = 412(h, — 1871)%-626
(10)
r’ =99.8%
Whiskeytown
r3 = 992(h,3 — 1208)*-52
(1
r-=9s./%
Shasta
r* = 314(h,* — 1039)*-6
(12)
r? =99.9%
Keswick
r,3 = 720(h,° — 547)°-436
(13)
r2=99.2%
Folsom
1,8 = 242(h,® — 420)0456
(14)
r* =99.9%
Nimbus
r’7 = 437(h,7 — 110 0.317
(15)
r2 =99.9%
New Melones
r.® = 420(h,% — 1088)-5°
' t (16)
r? = 99.6%
Tullock
r® = 750(h,° — 495)%-478
(17

rt =950%

Equations (9)17) need to be (1) converted from cubic feet per
second to acre feet/month before they can be used in the
development that follows and (2) expressed in terms of storage
because the optimization is expressed in terms of storage
rather than elevation as shown below.

Elevation versus storage data were analyzed to determine
appropriate elevation-storage functions. The interval of in-
terest is for the range of elevations above the spillway crest,
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otherwise the spillage would be zero, which means that only
the shape of the elevation versus storage at high stages is of
concern. Fortunately, from the perspective of numerical sim-
plicity, the elevation-storage plots were nearly straight lines
for all but low elevations. This behavior was determined to
exist in the major reservoirs (Clair Engle, Shasta, Folsom, and
New Melones) for which the elevation-storage curves were
needed. A similar pattern holds for the smaller (regulating)
reservoirs, but for those the interest is in a single elevation
because the storage is held constant and there is no need for
elevation-storage curves. The following linear functions were
developed for the four major reservoirs (elevations h,’ are in
feet above mean sea level and storages x,’ are in kilo acre [eet):
Clair Engle

h' = 2142 + 0.0971x,"

(18)
7'2 =97.2%

in which r? is the adjusted regression correlation coeflicient.

Shasta
h* = 871 + 0.0444x,* 19)
r2 =99.3%
Folsom
hS = 364 + 0.101x,5
(20)
r? =99.5%
New Melones
h® = 860 + 0.0945x,®
21

r? =99.5%

Elevations in feet abave mean sea level corresponding to con-
stant storages at Lewiston, Whiskeytown, Keswick, Natoma,
and Tullock (x,2 = 14.7, x,> = 241, x,5 = 23.8, x,” = 8.8, and
x,? = 57.0 KAF, respectivély) are 1901.1, 1210.0, 587.4, 125.1,
and 501.6 feet, respectively. Upon substitution of the
elevation-storage equations for the larger reservoirs and of the
fixed elevations for the smaller (regulating) reservoirs into (9)-
(17), and after a subsequent first-order Taylor expansion, the
expression for spillage at the ith reservoir (i =1, 4, 6, 8) be-
comes

RE-TANY LN 22

in which the coefficients & and d,’ have rather long algebraic
expressions and will not be written out to conserve space.
Both &, and d,’ depend on an initial guess of the storage value
x,} about which the Taylor expansion was made. This first
guess is automatically taken care of by the POA (see below),
requiring a repeated solution of each two-stage QP problem
as explained below. Notice also that spillway discharge func-
tions for the regulating reservoirs (equations (10), (11), (13),
(15), and (17)) need not be linearized because storage in those
reservoirs is constant. The constancy of storage in the regulat-
ing reservoirs follows from their relative small size and has
been observed in practice and in the results of a linear opti-
mization model applied by Marifio and Loaiciga [this issue].
In (22), only the beginning of period x,’ is shown; however, the
spillage equations are actually based on average storage for
period ¢, %, = (x,' + x,.,')/2. Since in the two-stage QP prob-
lems of the POA the ending storage x,. .’ is fixed [Howson
and Sancho, 1975], it is a known quantity which is part of the

expressions for ¢ and d,’ in (22). Equation (22) plays a funda-
mental role in the optimization model for it reduces the di-
mensionality of the decision space by linking spillages to stor-
ages and provides the required relation to recover spillage
values upon solution for the x,’.

The previously developed equations for net losses and spill-
ages (equations (47), (10), (11), (13), (15), (17), and (22) for
i=1, 4, 6, 8) are substituted into the continuity equation (1).
Before doing this substitution, (1) is partitioned into vector
components containing variables related to the major reser-
voirs (i = 1, 4, 6, 8) and those related to the regulating reser-
voirs (i = 2, 3, 5, 7,9). For example, x,” = (x,(V7: x,®7) = (x,7,
x* x5 x5 x.2 x3, x5, x,7, x,°). Similar partitions hold for
u, I,, and z, in (1). Clearly, the matrices I'y and I', in (1) need
to be reordered conformally to maintain the appropriate link
between the different vector components. It can be shown that
I'; and T, remain lower triangular matrices after the vector
reordering (this reduces in approximately one half the number
of computations in the solution algorithm). The reordered
continuity equation (1) becomes (letting x, = k, to denote
constant storages):

X 41" _ x, ! + ! 0 u,V
k Lk | YR PPL !,'(2)
1-“2 0 rt(l) z,(l)
2
+[r212 PPl [ R A * A @)

Equation (23) shows that since the releases are functions of
storages, it is possible to solve for the penstock release vector
u, in (23) in terms of an unknown vector x,'" whose dimen-
sionality is equal to only the number of nonregulating reser-
voirs, i.c., equal to four in the NCVP, since x,.,,V is fixed in
the POA and k is known and constant. By substituting’ the
loss and spillage equations into (23), and solving [or u,, it can
be shown that

Hu‘“ 0 Xpi g
u = t+1 +1 k
Hy, H,,
M,.* 0 (1) (1)
- [ “t t:| [x'_:l - I:w’(z):l (24)
M, ' M, k W,

in which matrices H;'*' and M} (i, j = 1, 2) and vectors w,"
and w,? follow from straightforward but lengthy algebraic
operations performed on (23). A similar equation can be devel-
oped for u,_, by analogous operation on the continuity equa-
tion for month r — 1. Equation (24) and a similar expression
for u,_,, together with the energy equations to be developed
next, are used to form the two-stage subproblems.

Energy Generation Rates

Mariiio and Loaiciga [this issue] introduced a method to
estimate the NCVP system energy production by developing
energy production rate functions for each reservoir in mega-
watt hour per kilo acre foot (MWh/KAF). The energy pro-
duced in MWh during period ¢ at reservoir i (E,%) is obtained
by multiplying the energy generation rate (¢, in MWh/KAF)
by the penstock release (u,, in KAF). It was found that for J.
F. Carr power plant, Keswick, and Nimbus, linear functions
are adequate, as is illustrated in Figure 2 for J. F. Carr power
plant. The shape of the energy rates for other reservoirs indi-
cated the suitability of a quadratic polynomial as shown in
Figure 3, which depicts the energy rate as a functjon of storage
for New Melones power plant. The following relations for the
energy rates were obtained:
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Fig. 2. J. F. Carr power plant gross generation curve.

Trinity (at Clair Engle Lake)
&l =133.0 + 0.228%,' — 0468 x 107 4(x,!)?

r? =99.3% @)
Judge Francis Carr
&2 = 606.3 — 0.254x,3
(26)
r? = 99.8%
Spring Creek
E3 =4450 + 0.738x,3 — 1.10 x 107 3(x,%)?
r? =99.8% @
Shasta
&* =169.0 + 0.107%,* — 0.115 x 107%(%,*)?
r? =99.6% @9
Keswick
&5 =803+ 0.6x,°
r? = 958% @)
Folsom
£° = 1710 + 0.265%,° — 0.130 x 107 3(x,%)?
r? =98.7% (o)
Nimbus
&7 =263+ 0.80x,”
r? =91.0% G1)
New Melones
&8 =169.0 + 0.275%,8 — 0479 x 107 4(x,®)? -
r? = 98.6% G2
Tullock
£° =634 + 1.020x,° — 1.37 x 107 3(x,%)? )
r?2 = 99.9%

In (25), &,! is the energy rate in MWh/KAF for Trinity power
plant at Clair Engle Lake, X, is the average reservoir storage
in kilo acre feet during any month ¢, and r? is the adjusted
regression correlation coefficient. Other terms in (26)—(33) are
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Fig. 3. New Melones power plant gross generation curve.

defined similarly. In (26) the energy rate depends on the stor-
age of the downstream Whiskeytown reservoir. That stems
from the fact that the storage at Lewiston is fixed and the
energy gradient line from the intake of Clear Creek tunnel
(connecting Lewiston and Whiskeytown reservoirs) to its dis-
charging point (at Whiskeytown) is determined by the reser-
voir elevation at Whiskeytown (Figure 1). Due to the larger
size of Whiskeytown as compared to Lewiston (241 and 14.7
KAF, respectively), it is likely that (slight) changes in eleva-
tions would occur at Whiskeytown and those changes would
determine the differential head at J. F. Carr power plant and
consequently its energy production rate. In fact, that is the
case and it explains the negative slope in (26), which is consis-
tent with Figure 2. Because Whiskeytown acts as a regulating
reservoir, then for all practical purposes the storage at Whis-
keytown (x,%) can be assumed fixed and equal in the average
storage (x,%). That is the reason for using x,3, rather than x,3,
in (26) and (27). Also, due to the regulating nature of Keswick,
Lake Natoma (where Nimbus power plant is located), and
Tullock, the (fixed) storages equal the average storages and
thus the overbar has been omitted in (29), (31), and (33). It is
clear that the approach followed herein handles a combi-
nation of linear and nonlinear energy rate functions. Notice
that the storage at Lewiston has no role in the expression for
energy rates (i.e., x,> is used in equations (26) and (27)), yet it
must be included in the continuity equation.

To set up the system energy production rate in matrix form,
the quadratic energy rates are linearized. By performing a
first-order Taylor series expansion about a guessed value for
x,', the energy generation rate becomes

& ~ai+bix] i=1,4,68 (34)

in which the coefficients 4,' and b,' depend on the initial
guessed value for x,’ (which is fixed, as was explained earlier
while discussing the spillage equations), and whose lengthy
expressions have been omitted due to space limitations. Clear-
ly, no linearization is needed for linear energy rates, since the
energy rate equations (e.g., equations (26), (29), and (31)) are
already in the desired form given in (34).

The discussion on energy rates is completed by providing
the vector-matrix expression of the energy rates for months ¢
and ¢ — 1 that are needed in the two-stage problems. Ex-
pressing the energy rates in forms similar to (34) for the entire
NCVP system yields

ﬁt*(l) B“*! 0 x'(1)
ét:‘ 4% + 0 Bzz* k*

(35)
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in which the system constraints is contained in the appendix. Notice
4507 _ (a1, 44 45 49 (36) that t‘he continuity (?quation is imbedded in (24) and has been
t R substituted already in (41). Moreover, the development of the
a*T = (g%, @3, 4%, 47, 8°) energy generation rates £, for all i, based on actual gener-
ation records, eliminates the need for nonlinear constraints on
= (606.3, 4450, 80.3, 26.3, 63.4) 37 power production. From the general developments given for
B,,* = diag (5,1, b,%, b,%, b,%) (38)  alternative linear and quadratic problems [Marifio and Loai-

B,,* = diag (—0.254, 0.738 — 1.10 x 10~ x,?, 0.60, 0.80,
1.020 — 1.37 x 1073x,%) 39
k*" = (x'3, xtsa xrs’ x|7’ x'9) (40)

The double appearance of superscript 3 in (40) follows from
the use of x,? in (26) and (27).

SOLUTION OF TWO-STAGE PROBLEMS

The objective function for the two-stage QP problems is
readily available by using (24) to represent u, and a similar
expression (with the time index shifted by —1) for u,_,, ie.,

max E, + E,_{=8Te,+&_,Tu,_,
— k¥ + g x4 x,OTHA D (@41)
in which
k* = [4*®T 4 k*TB,,*]
[Hpp' % @ + Hyp' 'k — My, 'k — 0@
+ Hy'k— My i = My, ki —w, ]
+ [A*OT(H  1x, O — W)
—5:—1*(1)T(M11'—1x1—1(1) +w,_, "] 42)
q*T = —a*VTM, " — (@*3T + k*TB,," (M, + H,,"
+ %, V7B, MH, YT — WOTB ¥+ &, *OTH, ¢
— %X, OT(B MM, Y —w, WTB T 43)

H:*=Bl1*"1H11'_BnﬂMu' 44)

where 4,*%, 4*®, B,,*, B,,*, and k* have been defined in
(36)-(40), and x,_,'" and x,,,? are fixed in the two-stage
problems. Notice that (41) is written in terms of x,'" only, i,
the solution to the two-stage problems is in terms of the non-
regulating storage vector x, only, of dimension four in this
application. Had the formulation of the two-stage problems
been expressed in terms of x,, r,, and u,, the total number of
unknowns would have been 27 [Marifio and Loaiciga, this
issue] for each two-stage QP problem.

The two-stage QP problem is fully specified by subjecting
storages, penstock releases, spillages, and total releases to a set
of (linear) constraints. As was stated in the introduction, con-
straints play two important roles in this study: (1) enforce
feasibility due to physical and/or technical features in the
system and (2) guarantee that functions other than power gen-
eration are adequately fulfilled, by introducing suitable con-
straints on penstock releases, spillages, and storages so as to
satisfy contractual agreements and regulations related to flood
control, wildlife and fisheries requirements, water quality, etc.
Maririo and Loaiciga [1983] provided an extensive description
of quantitative data on constraints imposed on the NCVP. It
is clear that constraints on penstock releases and spillages can
be expressed as constraints on storages by using (24) and the
spillage equations (18)-(22), so that all the constraints can, in
fact, be expressed in terms of x,'). A qualitative description of

ciga, this issue], it follows that the two-stage problems can be
expressed as (dropping the constant term k,*)
maximize F(x) = q.*Tx,¥ +  x, "TH**x, ) (45)

x,(1)

subject to
A*x, M <b* (46)

in which the matrix of (linear) constraints 4,* and the right-
hand side vector b,* are mathematical expressions of the con-
straints listed in the appendix, and for convenience, H** =
2H*.

The sequential solution procedure to obtain monthly re-
lease schedules can be summarized as follows (for notational
clarity, the superscript 1 on storages is dropped).

1. The initial and final states x; and x,, are fixed. The
subindex I can take values 1 through 11, depending on the
month for which the future release policy is being computed.
Forecast flows for the remaining 13-I months within the cur-
rent water year and develop an initial feasible state trajectory
{x,*}, in which the time index is initialized at ¢ = I, the coun-
ter k for the sweep iterations (from ¢t = I to t = 12) is set equal
to 1, and the counter ! for the iterations within each two-stage
problem is set equal to zero.

2. Construct the QP problem given by (45)+46), in which
linearizations are made about x,(x,® = x, for I = 0 only).

3. Solve the QP problem and denote the solution by x,*. If
x.* does not satisfy a convergence test, then set [ =1 + 1, set
x, = x,* and go to step 2. If x,* = x,*, set k=k + 1 and
x,® = x,*, increase the time index by one, set [ = 0, and go to
step 2. Repeat steps 2 and 3 until a complete iteration sweep is
performed (¢t = I to ¢t = 12). This ends the kth iteration.

4. Perform a convergence test for t=1, I +1,---, 12. If
convergence is attained, go to step 5. Otherwise, set k = k + 1,
1 =0, and go to step 2.

5. Apply the optimal computed policy for current month
I. At the beginning of next month, set I =1 + 1, and go to
step 1.

A few remarks concerning the solution method are war-
ranted. (1) In step 1, the fixed state x, is specified. It is equal to
the beginning of month storages for the nonregulating reser-
voirs. The final state x,, is also fixed. From previous oper-
ational experience, a value of x,; ranging from one half to two
thirds of reservoir capacity was found to be appropriate (the
value can be updated every month if deemed convenient). In
this study a value of x,; = 7/12 of reservoir capacity was
adopted. (2) Initial policies are determined by a trial-and-error
procedure that is based on past experience with NCVP oper-
ations [Maririo and Loaiciga, 1983]. (3) The bulk of the com-
putations resides in step 3 of the solution procedure of the QP
problem. In effect, the existence of an efficient, stable way to
carry out step 3 practically implies the successful computation
of the release policies.

The solution algorithm for the QP problems is briefly
sketched next and consists of a generalized version of the
active set method [Fletcher, 1981]. The generalization consists
of making the algorithm capable of solving an indefinite QP
problem (i.e., matrix H,** having negative and positive eigen-
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MARINO AND LOAICIGA: QUADRATIC MODEL FOR RESERVOIR MANAGEMENT 637
TABLE 1. Optimal Release Policy, 1979-1980 (Policy 1)
Clair Engle Lewiston Whiskeytown Shasta Keswick
Month Spill Penstock Spill Penstock Spill Penstock Spill Penstock Spill Penstock
Oct. 99 26 73 5 77 300 50 327
Nov. 102 26 76 5 87 300 50 337
Dec. 89 26 63 5 76 664 50 690
Jan, 89 26 63 5 105 786 50 841
Feb. 89 26 63 5 168 786 110 844
Mar. 91 26 65 5 121 11 875 220 787
Apr. 92 26 66 5 93 78 394 50 515
May 209 26 183 5 192 56 495 50 693
June 209 26 183 5 190 14 436 50 590
July 209 26 183 5 186 680 50 816
Aug. 180 26 154 5 157 600 50 707
Sept. 100 26 74 5 78 353 50 381
Folsom Natoma New Melones Tullock Delta
Total
Month  Spill Penstock Spill  Penstock Spill Penstock  Spill Penstock  Release
Oct. 20 170 19 168 157 55 102 721
Nov. 300 19 278 159 55 104 843
Dec. 300 19 278 199 110 89 1236
Jan. 476 184 289 218 110 108 1582
Feb. 70 406 184 289 213 110 103 1640
Mar. 156 34 184 313 205 110 95 1709
Apr. 45 305 62 285 217 110 107 1129
May 45 355 124 273 213 110 103 1353
June 23 277 33 264 211 110 101 1148
July 22 222 19 222 210 110 100 1317
Aug. 10 Lt 1y 13 ZW 11v W 114y
Sept. 14 277 19 269 150 55 95 869

Releases are in kilo acre feet (1 KAF = 1.233 x 10° m?). Total annual Delta releases = 14,697 KAF.
Entries are the optimal implemented spillage and penstock releases at the beginning of each month.
Total NCVP annual energy production corresponding to the optimal release policy = 7.764 x 10°®

MWh.

values), which is the case in this study. In particular, positive
definite QP problems are automatically handled as a subcase.
Other QP procedures such as complementary pivoting and
Lemke’s algorithm fail for indefinite problems. When solving a
QP linearly constrained problem, at any iteration j of the
active set method, a feasible point x with a corresponding
matrix of active or binding constraints 4*¢ and right-hand
side b*Y are available. It is required to obtain a vector p¥
such that x@ + p¥ is the minimum of F(x) subject to the
constraints A*YxY = b*P (notice that the subindex ¢ is
dropped also to ease the notation). Substitution of x¥ 4 p¥
into (45) yields the following equality-constrained quadratic

problem for pY,
maximize 4 pPTH**p? + pPT(H**x? + q%)

p?

“7)

subject to

A*U’pm =0 (48)
By virtue of (48), vector p*’ can be written in terms of a basis
of the null space of 4*YT, which is denoted by the matrix Z%

[Fletcher, 1981], ie., p¥ = ZWY, and then (47){48) can be
written equivalently as the unconstrained problem

maximize {—= vI(ZOTH**ZM)y + vTZOT(H**xD + ¢*)}
v
49
The solution v¥ to (49) can be written as the solution to the
equations

(ZU)TH**ZU))VU) = —Z‘”T(H**x‘” + q*) (50)

from which p% of (47)(48) is recovered by

pU) = ZUy® (51)
The vector pY becomes a direction of search leading to a new
iterate xU* 1, In this study, problem (50) is solved by com-
puting the LDLT factors [Stewart, 1973] of the reduced Hess-
ian matrix ZOTH**Z¥, which allows a check for the positive
definiteness of ZWTH**Z where L denotes a lower triangu-
lar matrix with unit diagonal elements, and D is a diagonal
matrix. Further steps in the solution of the QP problem com-
pute consecutive iterates x*, x?, «--, x®, where n is a finite
integer, by using xVY* 1 = x@ + ap¥, where « is a step length
determined by the geometry of the constraint step. Lagrange
multipliers play an important role at each iteration because
they determine the constraints that form the active set and
whether the convergence to a solution is reached. To warrant
accurate and stable estimates of Lagrange multipliers, their
computation in this study has been accomplished by a stable
QR factorization [Stewart, 1973] of the matrices A*Y7T, as is
proposed in the work by Fletcher [1981]. The initial x‘,
A*D and b*V peeded to start the active set iterations are
computed by the method of Fletcher [1981]. It is important to
use the factorizations LDLT and QR named earlier. Other-
wise, error propagation in the computations will lead to incor-
rect results in testing the convergence of the active set iter-
ations and the positive definiteness of ZPTH**ZY, which in-
volve the eigenvalues of ZOTH**ZY and the values of the
Lagrange multipliers, leading to a breakdown of the active set
algorithm. Furthermore, the use of such factorizations allows
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638 MARINO AND LOAICIGA: QUADRATIC MODEL FOR RESERVOIR MANAGEMENT

TABLE 2. Optimal Release Policy, 1979-1980 (Policy 2)

Clair Engle Lewiston Whiskeytown Shasta Keswick
Month Spill Penstock Spill Penstock Spill Penstock Spill Penstock Spill Penstock
Oct. 190 26 164 5 168 300 25 443
Nov. 190 26 164 5 175 338 50 463
Dec. 170 26 144 5 157 688 50 795
Jan. 100 26 74 5 116 728 50 794
Feb. 100 26 74 5 179 812 220 71
Mar. 100 26 74 5 130 876 220 786
Apr. 95 26 69 5 96 78 370 50 494
May 170 26 144 5 153 57 319 50 479
June 110 26 84 5 91 35 465 50 541
July 125 26 99 5 102 700 50 752
Aug. 109 26 84 5 87 602 25 664
Sept. 99 26 73 5 77 460 25 512
Folsom Natoma New Melones Tullock Delta
Total
Month  Spill  Penstock Spill Penstock Spill  Penstock Spill Penstock Release
Oct. 18 204 19 200 157 55 102 844
Nov. 290 19 268 159 55 104 959
Dec. 295 19 273 199 110 89 1336
Jan. 476 184 289 218 110 108 1535
Feb. 52 424 184 289 213 110 103 1677
Mar. 150 310 184 273 205 110 95 1668
Apr. 79 381 62 395 217 110 107 1218
May 45 275 125 192 213 110 103 1059
June 22 268 30 257 211 110 101 1089
July 22 278 19 278 210 110 100 1309
Aug. 19 161 19 158 200 110 90 1066
Sept. 15 238 19 231 150 55 95 937

Releases are in kilo acre feet (1 KAF = 1.233 x 10° m?). Total annual Delta releases = 14,697 KAF.
Entries are the optimal implemented spillage and penstock releases at the beginning of each month.
Total NCVP annual energy production corresponding to the optimal release policy = 7.772 x 10°

MWh.

us to update the factors L, D, Q, and R from one iteration to
another rather than to compute them ab initio, resulting in
substantial savings in the computations. Also, the triangularity
of matrices I';;!, I';,3 T,,!, and T,,2 (see equation (23))
reduces the number of computations necessary to solve the
two-stage problems (45)-(46) by approximately one half.

ANALYSIS OF RESULTS

By using the method outlined in the preceding section, re-
lease policies for the NCVP were computed for 1979-1980, a
water year with average inflow conditions (total yearly inflow
equaled 13,936 KAF). After deriving two initial release poli-
cies the model was run to determine if both policies yielded
the same performance, as measured by the total annual system
energy generated. Derivation of the initial policies (1 and 2)
was accomplished by a trial-and-error procedure on the basis
of past operation experience and with the assistance of the
NCVP managing staff. Tables 1 and 2 show optimal releases
corresponding to initial policies 1 and 2, respectively. These
tables also show that substantial spillages occur in the regulat-
ing reservoirs (Lewiston, Keswick, Natoma, and Tullock; at
Whiskeytown, spillages are slightly greater than the down-
stream water requirements of 3 KAF/month). The major res-
ervoirs pass most of their total release through penstocks, with
the exception of (high inflow) March. Optimal policies 1 and 2
in Tables 1 and 2 are clearly different except for the subsystem
New Melones-Tullock where initial policies 1 and 2 yielded
the same optimal release and state sequences (state or storage
sequences have been omitted to conserve space). Both solu-

tions ! and 2 yielded the same volume of Delta releases as
specified in Tables 1 and 2 (annual total Delta re-
lease = 14,697 KAF). The total annual energy production is
almost the same for policies 1 and 2, 7.764 x 10° and 7.772
x 10 MWh, respectively. For all practical purposes, it can be
claimed that the two alternative optimal policies produce a
comparable performance as measured by energy production.
Table 3 summarizes the results obtained from the linear model
[Marifio and Loaiciga, this issue], the actual operations, and
the quadratic model of this paper. The linear model results in
larger Delta releases (14,773 KAF) than those obtained with
the quadratic model (14,697 KAF, for both policies 1 and 2)
and also in larger annual energy production (8.077 x 108
MWh as compared to 7.764 x 10° and 7.772 x 10° MWh for
the two optimal policies of the quadratic model).

Figure 4 shows that the state trajectories at Shasta for the
different models. It is evident that quadratic policies 1 and 2
follow a pattern similar to the linear policy but, overall, main-
tain a lower storage elevation. That is explained by the fact
that when spillages are functions of storage, there is a penalty
for achieving higher levels because the spilled (nonenergy pro-
ducing) water increases exponentially with the differential of
reservoir elevation minus spillway crest elevation. It can be
expected that penstock releases will increase (in the quadratic
model) to keep reservoir levels from reaching such high eleva-
tions. Because energy production is linear in the penstock
release (recall that E, = &,"u,), it would follow that the qua-
dratic model is more likely to generate more energy than the
linear model; however, it was stated earlier that the linear
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MARINO AND LOAICIGA: QUADRATIC MODEL FOR RESERVOIR MANAGEMENT 639
TABLE 3. Actual and Maximized Energy Production for 1979-1980
Trinity Power Plant Judge Francis Carr Spring Creek
at Clair Engle Power Plant Power Plant
Month  Actual Linear Quad.1 Quad.2 Actual Linear Quad.1 Quad.2 Actual Linear Quad.1 Quad.2
Oct. 304 73.9 374 71.1 36.8 1124 398 98.8 423 1112 430 93.9
Nov. 9.6 71.2 394 68.9 48 1124 43.1 98.8 19.5 1152 49.7 97.8
Dec. 17.1 614 333 60.0 154 98.5 343 86.8 19.2 101.3 425 87.8
Jan. 6.2 29.7 338 356 .- 419 343 446 239 95.5 58.7 64.8
Feb. 17.7 311 349 372 34 419 343 44.6 553 87.0 939 100.1
Mar. 734 322 363 38.2 78.2 419 354 446 99.5 50.0 67.6 727
Apr. 449 329 370 36.8 535 419 36.0 41.6 547 56.6 520 53.7
May 212 33.7 84.6 66.6 21.2 419 99.8 86.8 18.6 46.5 107.3 855
June 51.5 75.3 84.2 431 552 101.2 99.8 50.6 59.6 102.2 106.2 50.9
July 54.3 394 829 48.8 572 4.7 99.8 59.7 572 45.7 104.0 572
Aug. 75.7 376 69.6 419 872 429 84.0 50.6 859 440 878 48.1
Sept. 71.1 36.5 385 373 84.7 442 414 40 88.6 45.7 44.7 43.0
Total 473.1 555.1 611.8 585.7 497.6 765.9 681.9 7514 623.3 901.0 857.5 855.2
E,/E, 0.58 0.77 0.81 0.65 0.73 0.66 0.69 0.73 0.73
Shasta Power Plant Keswick Power Plant Folsom Power Plant
Month  Actual Linear Quad.1 Quad.2 Actual Linear Quad.1 Quad.2 Actual Linear Quad.1 Quad.2
Oct. 76.5 112.1 116.2 116.2 19.0 470 309 419 317 53.5 48.6 579
Nov. 89.6 126.2 116.2 130.7 20.7 513 321 438 413 719 80.1 763
Dec. 111.1 2513 254.5 253.9 232 81.6 65.3 752 372 71.3 713 69.0
Jan. 2374 266.9 302.5 2792 476 81.6 79.5 75.1 107.0 1184 1272 126.0
Feb. 209.9 310.7 316.3 326.4 392 81.6 79.8 729 84.3 139.9 122.7 127.8
Mar. 2283 3237 358.3 358.3 49.9 81.6 744 74.3 130.0 147.2 104.8 94.7
API. 1129 120.1 102V 1518 290 31.3 48./ 46./ 99.8 126.3 93.2 116.2
May 1644 128.8 203.8 1314 337 36.2 65.5 453 820 131.0 108.6 84.0
June 2129 129.5 178.3 190.6 473 45.5 558 51.2 66.6 76.4 84.7 819
July 2379 307.5 273.1 281.0 52.2 710 712 71.1 844 63.4 65.6 844
Aug. 165.7 3102 2328 2322 43.6 81.6 669 62.7 356 93.5 533 48.1
Sept. 86.8 289.0 131.8 1729 293 81.6 36.0 484 40.5 86.8 83.5 694
Total 19334  2682.2 2646.0 2625.6 4347 7845 712.2 708.7 8464 1185.5 10455 1035.8
E,/E, 0.72 0.73 0.74 0.55 061 0.61 0.71 0.81 0.82

Values are in 10° MWh. Power plant was not in operation where no values are shown. E, is actual energy production, E,, is maximized
energy production. Quads 1 and 2 denote a quadratic model using initial policies 1 and 2, respectively.

TABLE 3. (Continued)
Nimbus Power Plant New Melones
at Lake Natoma Power Plant
Month Actual Linear Quad. 1 Quad. 2 Actual Linear Quad. 1 Quad. 2
Oct. 4.6 6.4 5.6 6.7 71.6 75.0 75.0
Nov. 47 100 9.3 89 704 73.2 73.2
Dec. 4.7 100 9.3 9.1 e 68.1 87.6 87.6
Jan. 8.7 100 9.6 9.6 19.6 81.9 94.4 94.4
Feb. 6.7 100 9.6 9.6 23.6 92.1 9.1 9%4.1
Mar. 10.6 100 104 9.1 478 909 90.3 90.3
Apr. 9.7 1.7 9.5 132 55.8 90.4 92.1 92.1
May 9.1 8.2 9.1 6.4 39.5 85.8 87.5 87.5
June 7.6 7.8 8.8 86 233 844 84.6 84.6
July 9.7 6.5 74 9.3 385 80.9 79.1 79.1
Aug, 43 100 5.8 5.3 221 749 66.3 66.3
Sept. 4.6 10.0 90 1.7 9.0 64.8 41.7 41.7
Total 849 106.5 1034 103.5 279.2 956.5 966.0 966.0
E,/E,, 0.80 0.82 0.82 029 0.29 029

Valuqs are 10° MWh. Power plant was not in operation where no values are shown. E, is actual energy production, E,, is maximized energy
production. Quads 1 and 2 denote a quadratic model using initial policies 1 and 2, respectively.

model resulted in a greater energy production level than the
quadratic model. The resolution of the contradiction es-
tablished by this argument and the observed results (which
indicate more energy from the linear model) lies in the fact

that energy production is a quadratic function of storages and
that offsets the effect of the higher penstock release, for in the
linear case the storages are greater. In the more realistic qua-
dratic model, the trade-off between higher elevations and
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Fig. 4. Operation of Shasta reservoir, water year 1979-1980.

smaller releases is more complex than in the linear case
[Mariiio and Loaiciga, this issue]. It can be observed in Table
3 that values of E,/E,, (actual over maximized annual energy
ratios) are higher for the quadratic model than for the linear
model. The overall E,/E,, ratio for policy 1 of the quadratic
model is 5.2/7.764 = 0.67, slightly larger than the 0.64 ob-
tained with the linear model [Marifio and Loaiciga, this issue],
implying that a potential increase of up to 27% over energy
actually produced could be achieved by using release policies
from the quadratic model. A 27% increase will be about 1.4
x 10® MWh per year with average inflow conditions.

The similar forms of the state trajectories shown in Figure 4
for the linear and quadratic models can be explained by notic-
ing that high inflow forecasts result in a drawdown of reser-
voirs in December, mainly by routing large volumes of water
through penstocks. Reservoir elevations are relatively steady
throughout the winter so that the trade-off between elevation
and discharge is optimal in the sense that for given conditions,
the total energy would be maximized. The volume of water
released during the summer (4,967 KAF in May to August),
obtained from the quadratic model policy (Table 1), is larger
than the agricultural requirements (2,698 KAF in May to
August). This points to the feasibility of extending agricultural
activities in the Sacramento-San Joaquin Valley. Finally, at
the expense of a moderate increase in the complexity of the
quadratic model, both in its formulation and solution, it ap-
pears that the quadratic model should be preferred over the
linear model due to the closer representation to the actual
system that it commands.

CONCLUSIONS

The application of the quadratic optimization model and its
comparison with a linear model developed earlier by the au-
thors lead to the following conclusions.

1. Both models lead to a potential increase in the annual
energy generation, as was demonstrated for a water year of
average streamflow conditions. The quadratic model imple-
mented in this paper yielded a potential increase of 27% in the
total annual energy production for the NCVP case study.

2. The quadratic model showed that the Sacramento-San
Joaquin Valley agricultural water deliveries can be increased
by adopting the optimal release policies. This suggests the
possibility of expanding irrigated areas, providing better
leaching of agricultural fields, and improving conjunctive
management of surface and groundwater reservoirs.

3. Although the release policies computed by the quadrat-
ic and linear models were similar in this study, there are rea-
sons for preferring the quadratic model. First, the quadratic

model leads to problems of lower dimensionality (fewer de-
cision variables) and provides a closer representation of the
physical features of the system, particularly with regard to
nonlinearities in the objective function and constraints.
Second, because of its capability to incorporate spillages ex-
plicitly, the quadratic model can handle a reservoir system of
more complicated configuration and complex mass balance
(continuity) equation.

APPENDIX

The constraints considered in the two-stage problems (45)-
(46) are as [ollows.
Constraints on total releases for month ¢,

w+r=W, (Al)

in which W, is a maximum permissible total release vector.
Constraints on maximum penstock releases for month ¢,

u = U, ex (A2)

in which U, ., is maximum permissible penstock vector.
Constraints on minimum penstock releases for month ¢,

u=U (A3)

where U, ;. is minimum permissible penstock release vector.
Constraints on water requirements for month ¢ and any
demand point k,

t, min

¢*"(u, + 1) 2 DX, Vk (A9)

where ¢,* is a vector representing a linear combination of total
releases that add up to satisfy a minimum demand at control
point k, D,

Constraints on spillages for month ¢,

=R, (A5)

in which R, is a vector of maximum spillages.
Constraints on maximum and minimum storages for month ¢,

X, = X,, max (A6)
xt ; xt, min (A7)

in which X, ... and X, .;, are maximum and minimum per-
missible storage vectors.

In addition to constraints (A1)}{A7), there is an analogous
set of constraints for month ¢ — 1. Substitution of (23)}{(24)
into (A1)HA7) and into the analogous constraints for month
t — 1, and after some algebraic operations, yields the con-
straint matrix 4,* and the right-hand side vector b,* in (46).
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