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WATER RESOURCES RESEARCH, VOL. 21, NO.5, PAGES 631-641, MAY 1985 

Quadratic Model for Reservoir Management: 
Application to the Central Valley Project 

MIGUEL A. MARINO AND HuGO A. LOAICIGA 

Department of Land, Air, and Water Resources and Department of Civil Engineering 
University of California, Davis 

A quadratic optimization model is applied to a large-scale reservoir system to obtain operation 
schedules. The model has the minimum possible dimensionality, treats spillage and penstock releases as 
decision variables and takes advantage of system-dependent features to reduce the size of the decision 
space. An efficient and stable quadratic programming active set algorithm is used to solve for the optimal 
release policies. The stability and convergence of the solution algorithm are ensured by the factorization 
of the reduced Hessian matrix and the accurate computation of the Lagrange multipliers. The quadratic 
model is compared with a simplified linear model and it is found that optimal release schedules are 
robust to the choice of model, both yielding an increase of nearly 27% in the total annual energy 
production with respect to conventional operation procedures, although the quadratic model is more 
flexible and of general applicability. The adequate fulfillment of other system functions such as flood 
control and water supply is guaranteed via constraints on storage and spillage variables. 

INTRODUCTION 

This paper is devoted to the development and application of 
a reservoir optimization model that yields monthly release 
policies. It constitutes a generalization of the models devel­
oped in the work by Marino and Loaiciga [this issue] and the 
generalization consists of (1) capability to handle nonlinear 
energy generation rates in the objective function (maximiza­
tion of system annual energy generation); (2) inclusion of non­
linear constraints, in particular those related to restriction on 
the magnitude of spillway discharges; (3) modeling of spillage 
(a decision variable that intr~duces considerable augmen­
tation in the decision space) as a nonlinear function of storage, 
subject to the hydraulic properties of reservoir spillways; (4) 
introduction of nonlinear net loss functions (evaporation plus 
seepage plus direct rainfall) to replace linear net loss functions; 
and (5) exploitation of the presence of relatively small reser­
voirs downstream of larger ones (regulating reservoirs) by per­
forming a (matrix) partition of the mathematical structure of 
the model that reduces the dimensionality of the state (stor­
age) space by the number of existing regulating reservoirs. 

The presence of two sets of decision variables (penstock 
releases and spillages) implies that the decision space dimen­
sionality exceeds that of the state (storage) space, a situation 
leading to substantial difficulties in nonlinear optimization 
problems. This paper develops a methodology that makes 
possible to solve for spillages and penstock releases and derive 
their corresponding storage sequence in a stable and efficient 
manner. Furthermore, it is shown that it is possible to com­
pute the decision and state variables by solving two-stage 
problems which are of minimum dimensionality, resulting in 
the most efficient way (both from storage and computational 
standpoints) to derive penstock release, spillage, and storage 
policies for reservoir operation problems. 

The overall philosophy of the optimization scheme rests on 
the certainty equivalence controller principle (CEC) discussed 
in the work by Marino and Loaiciga [this issue], which implies 
the use of the model in a real-time fashion. In essence, at every 
beginning of period (e.g., month), a forecast of inflows is made 
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by a suitable model. Those forecasts are then treated as deter­
ministic inputs, and a multistage deterministic problem is 
solved for the remaining of the reservoir operation horizon. 
The computed release policy is followed for the current period. 
As inflow forecasts deviate from actual realizations, new (up­
dated) forecasts are computed, and a revised future release 
policy is developed on the basis of the observed state (storage) 
of the system and updated forecasts. 

The multistage deterministic problem is decomposed into a 
sequence of two-stage quadratic problems that are solved one 
at a time. The solution of the two-stage problems, which, in 
general, have an indefinite reduced (or projected) Hessian 
matrix, is implemented in a stable manner guaranteeing accu­
rate computation of the optimal release policies via a gener­
alized active set method for quadratic problems. The active set 
method factorizes the reduced Hessian matrix and the null 
space of the constraint set, resulting in an accurate and fast 
convergence to the solution of the two-stage problems. The 
decomposition of the multistage problem into a sequence of 
two-stage problems is done within the framework of the pro­
gressive optimality algorithm (POA) [Howson and Sancho, 
1975; Turgeon, 1981], leading to low storage requirements in 
the multipurpose reservoir application discussed below. 

Some remarks on the approach followed in this paper are of 
importance. (1) Inflow forecasts are computed by a multi­
variate autogressive (AR) model, whose coefficients are esti­
mated via maximum likelihood [Marino and Loaiciga, 1983]. 
A unique feature of the maximum likelihood parameter esti­
mation is that it permits to perform statistical tests on the 
structure of the model, i.e., on the order of the AR model, on 
the time invariance of the model parameters, and on the inde­
pendence between streamflow realizations at different sites. 
Application of the AR model for streamflow forecasting yield­
ed forecasted values within ± 10% of actual values for the 
rivers in the Northern California Central Valley Project 
(NCVP). Statistical tests showed that the AR model of order 1 
was adequate and that the streamflows were crosscorrelated, 
justifying the use of a multivariate model. (2) The reservoir 
operation horizon consists of 12 months, corresponding to a 
water year (October 1 to September 30). (3) The optimization 
model, as applied to the NCVP, has as objective function the 
maximization of the energy generated during each year. Since 
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Fig. 1. Schematic representation of NCVP diversions (R), net losses (e), releases through penstocks (u), spills (r), and 
streamflows (y). 

the NCVP power is sold as peaking capacity energy, there 
does not exist price differentials for different months, and 
hence maximizing total energy generation is equivalent to 
maximizing its dollar value. Also, the NCVP management 
aims at maximizing its cash revenues accruing from power 
sales while operating the system so as to provide adequate 
fulfillment of other functions by satisfying contractual agree- 
ments and specified ranges for storages and releases (e.g., for 
recreational or fisheries needs). Thus the multiple functions of 
the NCVP system are handled in the optimization model by 
obtaining a release schedule that maximizes energy revenues, 
while providing adequate service for other purposes via con- 
straints on releases and storages. (4) The mathematical devel- 
opments are in matrix notation. This notation is desirable to 
handle the multiunit nature of the NCVP and becomes essen- 

tial in characterizing and solving the two-stage quadratic 
problems. The notation also is convenient for decoupling the 
system in order to reduce its dimensionality as shown below. 

The objectives of this paper are (1) to develop all the nu- 
merical expressions to be used in the optimization model, fol- 
lowing the general formulation of Mariho and Loaiciga [this 
issue], and to obtain, analyze, and compare the results with 
those obtained with a simpler linear model [Mariho and Loai- 
ciga, this issue]; and (2) to describe an efficient algorithm to 
solve the sequence of two-stage quadratic problems, leading to 
the computation of spillage, penstock release, and storage 
policies of a multireservoir system (NCVP). The two-stage 
problems are solved in the most efficient way by an adequate 
reduction of their dimensionality. 

SYSTEM AND PROBLEM DESCRIPTION 

The system under analysis, the NCVP, is composed of the 
following reservoirs: (1) Clair Engle, (2) Lewiston, (3) Whis- 

keytown, (4) Shasta, (5) Keswick, (6) Folsom, (7) Natoma, (8) 
New Melones, and (9) Tullock. Figure 1 shows a schematic 
representation of the NCVP system and the points at which 
accretions and/or diversions occur. Adopting a 1-year plan- 
ning horizon with monthly decisi9ns, the following variables 
are defined 

where 

ut n-dimensional decision vector of penstock releases at the 
beginning of month t; its components are ut •, where i 
refers to the ith reservoir; 

r, n-dimensional decision vector of spillages at the beginning 
of month t; its components are rti; 

x, n-dimensional state vector of storages at the beginning of 
month t; its components are x• i. 

The time index t goes from t = 1 to t = N + 1 = 13, and n is 
the number of reservoirs in the system (n - 9 in the NCVP). 

The continuity equation for the NCVP system for months t 
and t + 1 is 

Xt+ 1 = Xt + I"lUt + I"2rt + zt (]_) 

in which Fx and F2 are lower triangular matrices that contain 
the topological arrangement of the system [Marino and Loai- 
ciga, this issue], and 

z,- y,- et- Rt (2) 

where yt, e,, and R• are the forecast inflow, net loss, and diver- 
sion vectors, respectively. There exist constraints on storages, 
penstock releases, spillages, and in the total release (u, + r,), 
which are discussed in the appendix. 

The objective function is given by 
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12 

maximize • E, (3) 
t=l 

where E t is the total system power generation during month t, 
and for which an expression in terms of the variables x,, 
and r, will be developed. It is shown below that when posing 
(3) subject to the continuity equation (1) and other constraints 
as a sequence of two-stage problems, a quadratic program- 
ming (QP) two-stage problem must be solved at time t which 
is completely specified in terms of the storages only. The pres- 
ence of spillage and releases implies the existence of more 
decision (2n) than state variables (n), which leads to complex 
numerical problems in any solution algorithm of the (nonlin- 
ear) optimization problem (e.g., in QP problems the Hessian 
matrix is singular), unless the decision space is appropriately 
reduced to be of size n. In this paper, such reduction is 
achieved via equality constraints on spillages as shown below. 
Upon solution of the optimization problem in terms of stor- 
ages, spillages can be recovered from the equality constraints 
so that the system managers know how much of the total 
release is spillage and how much is penstock release. An im- 
portant contribution of this paper is the development of an 
approach that permits to compute both optimal spillage and 
penstock releases simultaneously, and the introduction of a 
numerically stable algorithm for the solution of the two-stage 
problems, without which such a solution would not be possi- 
ble. 

•LEMENTS OF THE L/PTiMiZATiON œViODEL 

This section develops the necessary equations to arrive at 
the basic mathematical structure of the two-stage problems. 
Net losses, spillages, and energy equations are developed next. 

Net Losses 

Net losses consist of the net of evaporation, seepage, and 
direct rainfall. They are considered only for the major reser- 
voirs (Clair Engle, Shasta, Folsom, and New Melones) because 
the smaller (constant storage or regulating) reservoirs have a 
small areal extent, and NCVP monthly operation records 
from 1960 to 1983 show that net losses are essentially zero. 
The following relations were developed from net loss data 
versus storages. 

Clair Engle 

Shasta 

Folsom 

New Melones 

-1 et 1 = 3.33Ct 1 + O.0078ctlxt (4) 

et`* = 3.99ct`* + O.0061ct`*•t`* (5) 

et 6 = 2.67ct 6 + O.0094ct6•t 6 (6) 

et 8 -- 2.91ct 8 + O.0088ct8•t 8 (7) 

where in (4) et 1 denotes the net loss for month t in kilo acre 
foot (KAF); ct • is a net loss coefficient [Marino and Loaiciga, 
1983] in feet per month, and • represents average storage 
during month t. The notation is similarly defined for (5)-(7). 

Spillages 

Spillway discharges are modeled by equations of the form 

rti = •i(hti'-- di)r]i6 i (8) 

in which r, i is the discharge during month t at reservoir i (in 
kilo acre feet); • and r/i are coefficients determined from hy- 
draulic properties of the ith spillway; h, i is (average) water 
surface elevation during month t at reservoir i (in feet); d i is 
spillway crest elevation at reservoir i (in feet above mean sea 
level); and 6•= 0 when hti• d • and 6 = 1 when h,i> d •. To 
develop spillway discharge equations, use was made of spill- 
way discharge tables and curves, provided by the Central 
Valley Operations Office of the U.S. Bureau of Reclamation. 
Exponential interpolation of the spillway discharge tables and 
curves yielded the following equations (flows are in cubic feet 
per second (cfs) and elevations are in feet above mean sea 
level). 

Trinity (at Clair Engle reservoir) 

rt 1 = 781(ht • -- 2370) •-29 
(9) 

r 2 = 98.4% 

in which r 2 is the adjusted regression correlation coefficient. 

Lewiston 

rt 2 = 412(ht 2 - 1871) 0.626 

r 2 = 99.8% 
(lO) 

Whiskeytown 

rt 3 = 992(ht 3 

r" -- 

_ 1208) 1.52 

Shasta 

314(ht`* - 1039) TM 
(12) 

99.9% 

Keswick 

rt 5 = 720(ht •-- 547) 0"*36 
(13) 

r 2 = 99.2% 

Folsom 

rt 6 = 242(ht 6 -- 420) 0.466 
(14) 

r 2 -- 99.9% 

Nimbus 

New Melones 

rt 7 -- 437(ht 7 

r 2 = 99.9% 

- 110) 0'3 x 7 

r, 8 = 420(h, 8 - 1088) x.ss 
r 2 = 99.6% 

(15) 

(16) 

Tullock 

rt9 = 750(ht9 - 495)ø'`*78 (17) 
r 2 = 95.0% 

Equations (9)-(17) need to be (1) converted from cubic feet per 
second to acre feet/month before they can be used in the 
development that follows and (2) expressed in terms of storage 
because the optimization is expressed in terms of storage 
rather than elevation as shown below. 

Elevation versus storage data were analyzed to determine 
appropriate elevation-storage functions. The interval of in- 
terest is for the range of elevations above the spillway crest, 

 19447973, 1985, 5, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/W

R
021i005p00631 by U

niversity O
f C

alifornia, W
iley O

nline L
ibrary on [30/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



634 MARI•IO AND LOAICIGA' QUADRATIC MODEL FOR RESERVOIR MANAGEMENT 

otherwise the spillage would be zero, which means that only 
the shape of the elevation versus storage at high stages is of 
concern. Fortunately, from the perspective of numerical sim- 
plicity, the elevation-storage plots were nearly straight lines 
for all but low elevations. This behavior was determined to 

exist in the major reservoirs (Clair Engle, Shasta, Folsom, and 
New Melones) for which the elevation-storage curves were 
needed. A similar pattern holds for the smaller (regulating) 
reservoirs, but for those the interest is in a single elevation 
because the storage is held constant and there is no need for 
elevation-storage curves. The following linear functions were 
developed for the four major reservoirs (elevations ht i are in 
feet above mean sea level and storages xt i are in kilo acre feet): 

Clair Engle 

h, • = 2142 + 0.0971x• 1 
(18) 

r • = 97.2% 

in which r • is the adjusted regression correlation coefficient. 

Shasta 

Folsom 

New Melones 

871 + 0.0444xt ½ 
(19) 

99.3 % 

ht 6 = 364 + 0.101xt 6 
(20) 

r 2 -- 99.5% 

h, 8 = 860 + 0.0945xt 8 (21) 
r 2 = 99.5% 

Elevations in feet above mean sea level corresponding to con- 
stant storages at Lewiston, Whiskeytown, Keswick, Natoma, 
and Tullock (xt 2 = 14.7, xt 3 = 241, xt s = 23.8, x, ? = 8.8, and 
xt 9 = 57.0 KAF, respectively) are 1901.1, 1210.0, 587.4, 125.1, 
and 501.6 feet, respectively. Upon substitution of the 
elevation-storage equations for the larger reservoirs and of the 
fixed elevations for the smaller (regulating) reservoirs into (9)- 
(17), and after a subsequent first-order Taylor expansion, the 
expression for spillage at the ith reservoir (i- 1, 4, 6, 8) be- 
comes 

r, • • t?,' + d, ix, • (22) 

in which the coefficients d• * and dt • have rather long algebraic 
expressions and will not be written out to conserve space. 

^ ß 

Both c[ and d• • depend on an initial guess of the storage value 
x• • about which the Taylor expansion was made. This first 
guess is automatically taken care of by the POA (see below), 
requiring a repeated solution of each two-stage QP problem 
as explained below. Notice also that spillway discharge func- 
tions for the regulating reservoirs (equations (10), (11), (13), 
(15), and (17)) need not be linearized because storage in those 
reservoirs is constant. The constancy of storage in the regulat- 
ing reservoirs follows from their relative small size and has 
been observed in practice and in the results of a linear opti- 
mization model applied by Mari•o and Loaiciga [this issue]. 
In (22), only the beginning of period x• i is shown; however, the 
spillage equations are actually based on average storage for 
period t, •t• - (xt • + x•+ •)/2. Since in the two-stage QP prob- 
lems of the POA the ending storage x•+ •* is fixed [Howson 
and Sancho, 1975], it is a known quantity which is part of the 

expressions for c• • and d, i in (22). Equation (22) plays a funda- 
mental role in the optimization model for it reduces the di- 
mensionality of the decision space by linking spillages to stor- 
ages and provides the required relation to recover spillage 
values upon solution for the 

The previously developed equations for net losses and spill- 
ages (equations (4)-(7), (10), (11), (13), (15), (17), and (22) for 
i = 1, 4, 6, 8) are substituted into the continuity equation (1). 
Before doing this substitution, (1) is partitioned into vector 
components containing variables related to the major reser- 
voirs (i = 1, 4, 6, 8) and those related to the regulating reser- 
voirs (i = 2, 3, 5, 7, 9). For example, Xt T = (Xt(•)T: Xt (2)T) '-' (Xt 1, 
xt ½, xt 6, xtS: xt 2, xt 3, xt •, xt ?, xt9). Similar partitions hold for 
ut, rt, and zt in (1). Clearly, the matrices F• and ['2 in (1) need 
to be reordered conformally to maintain the appropriate link 
between the different vector components. It can be shown that 
F• and F2 remain lower triangular matrices after the vector 
reordering (this reduces in approximately one half the number 
of computations in the solution algorithm). The reordered 
continuity equation (1) becomes (letting xt(2)= [, to denote 
constant storages)' 

(1)] [ 1 o ]Fu,<l, ] Fll 

1 r2 2 , Lu?)j + F2 • 
F• 

+ ['212 ['22 2 /r?)/ 
FZt(1) 

+ Lz?) j (23) 
Equation (23) shows that since the releases are functions of 
storages, it is possible to solve for the penstock release vector 
ut in (23) in terms of an unknown vector x, (1) whose dimen- 
sionality is equal to only the number of nonregulating reser- 
voirs, i.e., equal to four in the NCVP, since x,+ •(•) is fixed in 
the POA and [ is known and constant. By substitutin•g the 
loss and spillage equations into (23), and solving for u,, it can 
be shown that 

Ut LH21t+ 1 H22t+ 1 

0][x4] LM2• , M22t - Lw,(2) j (24) 
in which matrices Hu •+ t and Mu • (i, j = 1, 2) and vectors wt (1) 
and w, (2) follow from straightforward but lengthy algebraic 
operations performed on (23). A similar equation can be devel- 
oped for ut_ 1 by analogous operation on the continuity equa- 
tion for month t- 1. Equation (24) and a similar expression 
for ut_ 1, together with the energy equations to be developed 
next, are used to form the two-stage subproblems. 

Energy Generation Rates 

Mari•o and Loaiciga [this issue] introduced a method to 
estimate the NCVP system energy proOuction by developing 
energy production rate functions for each reservoir in mega- 
watt hour per kilo acre foot (MWh/KAF). The energy pro- 
duced in MWh during period t at reservoir i (E, •) is obtained 
by multiplying the energy generation rate (•,•, in MWh/KAF) 
by the penstock release (u, •, in KAF). It was found that for J. 
F. Carr power plant, K eswick, and Nimbus, linear functions 
are adequate, as is illustrated in Figure 2 for J. F. Carr power 
plant. The shape of the energy rates for other reservoirs indi- 
cated the suitability of a quadratic polynomial as shown in 
Figure 3, which depicts the energy rate as a function of storage 
for New Melones power plant. The following relations for the 
energy rates were obtained: 
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Fig. 2. J. F. Carr power plant gross generation curve. 

Trinity (at Clair Engle Lake) 

~/ = 133.0 + 0.228x,1 - 0.468 x 1O- 4(x,1)2 

r2 = 99.3% 

Judge Francis Carr 

~t 2 = 606.3 - 0.254Xt 
3 

r2 = 99.8% 

Spring Creek 

Shasta 

Keswick 

~/ = 445.0 + 0.738xt
3 - 1.10 x 1O- 3(x/)2 

r2 = 99.8% 

~t4 = 169.0 + 0.107x/ - 0.115 x 1O-4(x/)2 

r2 = 99.6% 

~t 5 = 80.3 + 0.6Xt 5 

r2 = 95.8% 

~/ = 171.0 + 0.265X/ - 0.130 x 10 - 3(X/)2 

r2 = 98.7% 

~t 7 = 26.3 + 0.80Xt 7 

r2 = 91.0% 

~,s = 169.0 + 0.275Xt 8 - 0.479 X 1O- 4 (Xt 8)2 

r2 = 98.6% 

~t9 = 63.4 + 1.020x/ - 1.37 X 1O- 3(x t
9 )2 

r2 = 99.9% 

(25) 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 

In (25), ~t 1 is the energy rate in MWh/KAF for Trinity power 
plant at Clair Engle Lake, xt 1 is the average reservoir storage 
in kilo acre feet during any month t, and r2 is the adjusted 
regression correlation coefficient. Other terms in (26)--(33) are 

3000 

2500 

" " 
~ 2000 
<t 
0:: 

~ 
(f) 

0:: 
(5 
> 
0:: 
w 
(f) 
W 
0:: 

1500 

1000 

500 

~00~1~----300~~----4~00~---~5~00~---~6oo 

AVERAGE PLANT ENERGY OUTPUT (Kwh/all 

Fig. 3. New Melones power plant gross generation curve. 

defined similarly. In (26) the energy rate depends on the stor­
age of the downstream Whiskeytown reservoir. That stems 
from the fact that the storage at Lewiston is fixed and the 
energy gradient line from the intake of Clear Creek tunnel 
(connecting Lewiston and Whiskeytown reservoirs) to its dis­
charging point (at Whiskeytown) is determined by the reser­
voir elevation at Whiskeytown (Figure 1). Due to the larger 
size of Whiskeytown as compared to Lewiston (241 and 14.7 
KAF, respectively), it is likely that (slight) changes in eleva­
tions would occur at Whiskeytown and those changes would 
determine the differential head at J. F. Carr power plant and 
consequently its energy production rate. In fact, that is the 
case and it explains the negative slope in (26), which is consis­
tent with Figure 2. Because Whiskeytown acts as a regulating 
reservoir, then for all practical purposes the storage at Whis­
keytown (x t 3) can be assumed fixed and equal in the average 
storage (Xt 3). That is the reason for using xt 3, rather than xt 3, 
in (26) and (27). Also, due to the regulating nature of Keswick, 
Lake Natoma (where Nimbus power plant is located), and 
Tullock, the (fixed) storages equal the average storages and 
thus tl~e overbar has been omitted in (29), (31), and (33). It is 
clear that the approach followed herein handles a combi­
nation of linear and nonlinear energy rate functions. Notice 
that the storage at Lewiston has no role in the expression for 
energy rates (i.e., x t 

3 is \.1sed in equations (26) and (27», yet' it 
must be included in the continuity equation. 

To set up the system energy production rate in matrix form, 
the quadratic energy rates are linearized. By performing a 
first-order Taylor series expansion about a guessed value for 
x/, the energy generation rate becomes 

~/ ~ a/ + 6/x/ j = 1,4, 6, 8 (34) 

in which the coefficients a/ and 6/ depend on the initial 
guessed value for X t i (which is fixed, as was explained earlier 
while discussing the spillage equations), and whose lengthy 
expressions have been omitted due to space limitations. Clear­
ly, no lInearization is needed for linear energy rates, since the 
energy rate equations (e.g., equations (26), (29), and (31» are 
already in the desired form given in (34). 

The discussion on energy rates is completed by providing 
the vector-matrix expression of the energy rates for months t 
and t - 1 that are needed in the two-stage problems. Ex­
pressing the energy rates in forms similar to (34) for the entire 
NCVP system yields . 

= [8/*(1)J [Bu*t 0 ][Xt(llJ 
~t. i*(2) + 0 B22* k* (35) 
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636 MARI•IO AND LOAICIGA' QUADP. ATIC MODEL FOR RESERVOIR MANAGEMENT 

in which 

•t,(1)T (•tl, ^ 4 dr6, titS) (36) = a t , 

c,*(2)r = (,•2, d3, ,•5, d7, ,•9) 

= (606.3, 445.0, 80.3, 26.3, 63.4) (37) 

,t diag (/3,•,/3,'•,/3,6 /;is) (38) Bll = , 

Bzz* = diag (-0.254, 0.738 - 1.10 x 10-3x•3, 0.60, 0.80, 
1.020- 1.37 x 10-3xt 9) (39) 

Xt 3, Xt 5, Xt 7, k* r = (x, 3, x, 9) (40) 

The double appearance of superscript 3 in (40) follows from 
the use of x, 3 in (26) and (27). 

SOLUTION OF Two-STAGE PROBLEMS 

The objective function for the two-stage QP problems is 
readily available by using (24) to represent ut and a similar 
expression (with the time index shifted by - 1) for ut-•, i.e., 

max E• + Et-x = •trut + •t-1Tilt - 1 

--- kt* -3- qt*Txt (1) -}- Xt(!)rHt*xt(1) (41) 

in which 

kt, = [fi,(2)T + k,TB22,] 
t+ (x) t+ •[ _ [H21 lxt+ 1 + H22 M22 -- •t (2) 

• t- • (•) • (2)] + H22 t[ m21 xt-1 -- M22 t- [--wt-1 
•+ • (•) •t(•)) + [•t*(•)r(Hxx xt+x -- 

*(x)r(M• •-• (x) + •,_•(•))] (42) -- •t- • • Xt- • 

-- 1 + k*TB22*)(M21 + H21 

(1)T(B 1 ,till t+l)t •t(1)Tg ,t ,(1)TH1 +xt+l 1 1 -- ll +fit-1 

(1)T(B 1 *'- 1M1 '- 1)t (1)TB 1 *•- 1 (43) • X•-I 1 1 • Wt-1 

,t-ill1 • B ,t Mt t (44) It* = Bll 1 • 11 

,t, B22, and k* have been defined in where fi,*(a), •,(2), Bxx , 
(a) and (a) are fixed in the two-stage (36)-(40), and xt- • xt + • 

problems. Notice that (41) is written in terms of xt (•) only, i.e., 
the solution to the two-stage problems is in terms of the non- 
regulating storage vector xt (•) only, of dimension four in this 
application. Had the formulation of the two-stage problems 
been expressed in terms of xt, rt, and ut, the total number of 
unknowns would have been 27 [Marifio and Loaiciga, this 
issue] for each two-stage QP problem. 

The two-stage QP problem is fully specified by subjecting 
storages, penstock releases, spillages, and total releases to a set 
of (linear) constraints. As was stated in the introduction, con- 
straints play two important roles in this study' (1) enforce 
feasibility due to physical and/or technical features in the 
system and (2) guarantee that functions other than power gen- 
eration are adequately fulfilled, by introducing suitable con- 
straints on penstock releases, spillages, and storages so as to 
satisfy contractual agreements and regulations related to flood 
control, wildlife and fisheries requirements, water quality, etc. 
Mari•o and Loaiciga [1983] provided an extensive description 
of quantitative data on constraints imposed on the NCVP. It 
is clear that constraints on penstock releases and spillages can 
be expressed as constraints on storages by using (24) and the 
spillage equations (18)-(22), so that all the constraints can, in 
fact, be expressed in terms of xt (•). A qualitative description of 

the system constraints is contained in the appendix. Notice 
that the continuity equation is imbedded in (24) and has been 
substituted already in (41). Moreover, the development of the 
energy generation rates •t i, for all i, based on actual gener- 
ation records, eliminates the need for nonlinear constraints on 
power production. From the general developments given for 
alternative linear and quadratic problems [Mariho and Loai- 
ciga, this issue], it follows that the two-stage problems can be 
expressed as (dropping the constant term kt*) 

maximize F(xt) = qt*Txt (1) + « Xt(1)THt**Xt(1) 
Xt (1) 

(45) 

subject to 

A,*x, (•) < bt* (46) 

in which the matrix of (linear) constraints At* and the right- 
hand side vector bt* are mathematical expressions of the con- 
straints listed in the appendix, and for convenience, Ht** = 
2Ht*. 

The sequential solution procedure to obtain monthly re- 
lease schedules can be summarized as follows (for notational 
clarity, the superscript 1 on storages is dropped). 

1. The initial and final states x• and x•3 are fixed. The 
subindex I can take values 1 through 11, depending on the 
month for which the future release policy is being computed. 
Forecast flows for the remaining 13-1 months within the cur- 
rent water year and develop an initial feasible state trajectory 
{xt(k)), in which the time index is initialized at t = I, the coun- 
ter k for the sweep iterations (from t = I to t = 12) is set equal 
to 1, and the counter I for the iterations within each two-stage 
problem is set equal to zero. 

2. Construct the QP problem given by (45)-(46), in which 
linearizations are made about xt(l)(xt (l) = Xt (k) for l = 0 only). 

3. Solve the QP problem and denote the solution by xt*. If 
xt* does not satisfy a convergence test, then set l = l + 1, set 
xt (t)= xt*, and go to step 2. If xt* g xt (t), set k = k + 1 and 
xt (•) = xt*, increase the time index by one, set l = 0, and go to 
step 2. Repeat steps 2 and 3 until a complete iteration sweep is 
performed (t = ! to t = 12). This ends the kth iteration. 

4. Perform a convergence test for t = I, I + 1, --., 12. If 
convergence is attained, go to step 5. Otherwise, set k = k + 1, 
! = 0, and go to step 2. 

5. Apply the optimal computed policy for current month 
I. At the beginning of next month, set I = I + 1, and go to 
step 1. 

A few remarks concerning the solution method are war- 
ranted. (1) In step 1, the fixed state x• is specified. It is equal to 
the beginning of month storages for the nonregulating reser- 
voirs. The final state x x3 is also fixed. From previous oper- 
ational experience, a value of x• 3 ranging from one half to two 
thirds of reservoir capacity was found to be appropriate (the 
value can be updated every month if deemed convenient). In 
this study a value of x•3- 7/12 of reservoir capacity was 
adopted. (2) Initial policies are determined by a trial-and-error 
procedure that is based on past experience with NCVP oper- 
ations [Mariho and Loaiciga, 1983]. (3) The bulk of the com- 
putations resides in step 3 of the solution procedure of the QP 
problem. In effect, the existence of an efficient, stable way to 
carry out step 3 practically implies the successful computation 
of the release policies. 

The solution algorithm for the QP problems is briefly 
sketched next and consists of a generalized version of the 
active set method [Fletcher, 1981]. The generalization consists 
of making the algorithm capable of solving an indefinite QP 
problem (i.e., matrix Ht** having negative and positive eigen- 
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MARIgIO AND LOAICIGA: QUADRATIC MODEL FOR RESERVOIR MANAGEMENT 637 

TABLE 1. Optimal Release Policy, 1979-1980 (Policy 1) 

Clair Engle Lewiston Whiskeytown Shasta 

Month Spill Penstock Spill Penstock Spill Penstock Spill Penstock 

Keswick 

Spill Penstock 

Oct. 99 26 73 5 77 300 50 327 
Nov. 102 26 76 5 87 300 50 337 
Dec. 89 26 63 5 76 664 50 690 
Jan. 89 26 63 5 105 786 50 841 
Feb. 89 26 63 5 168 786 110 844 
Mar. 91 26 65 5 121 11 875 220 787 

Apr. 92 26 66 5 93 78 394 50 515 
May 209 26 183 5 192 56 495 50 693 
June 209 26 183 5 190 14 436 50 590 

July 209 26 183 5 186 680 50 816 
Aug. 180 26 154 5 157 600 50 707 
Sept. 100 26 74 5 78 353 50 381 

Folsom Natoma New Melones Tullock 

Month Spill Penstock Spill Penstock Spill Penstock Spill Penstock 

Delta 

Total 

Release 

Oct. 20 170 19 168 157 55 102 721 
Nov. 300 19 278 159 55 104 843 
Dec. 300 19 278 199 110 89 1236 
Jan. 476 184 289 218 110 108 1582 

Feb. 70 406 184 289 213 110 103 1640 
Mar. 156 344 184 313 205 110 95 1709 

Apr. 45 305 62 285 217 110 107 1129 
May 45 355 124 273 213 110 103 1353 
June 23 277 33 264 211 110 101 1148 

July 22 222 19 222 210 110 100 1317 
•ug. i o ' ' ' iy i / 3 zL• i iU •U i i49 
Sept. 14 • 19 269 150 55 95 869 
Releases are in kilo acre feet (1 KAF = 1.233 x 106 m3). Total annual Delta releases = 14,697 KAF. 

Entries are the optimal implemented spillage and penstock releases at the beginning of each month. 
Total NCVP annual energy production corresponding to the optimal release policy = 7.764 x 10 6 
MWh. 

values), which is the case in this study. In particular, positive 
definite QP problems are automatically handled as a subcase. 
Other QP procedures such as complementary pivoting and 
Lemke's algorithm fail for indefinite problems. When solving a 
QP linearly constrained problem, at any iteration j of the 
active set method, a feasible point x t/> with a corresponding 
matrix of active or binding constraints A *t/> and right-hand 
side b *t/> are available. It is required to obtain a vector 
such that xø•+ pt/> is the minimum of F(x) subject to the 
constraints A*t/>xt/>= b *t/> (notice that the subindex t is 
dropped also to ease the notation). Substitution of xt/>+ 
into (45) yields the following equality-constrained quadratic 
problem for 

maximize « pCi>TH**pt/> + pti>T(H**xCi> + q*) (47) 

subject to 

A*t/¾t/> = 0 (48) 

By virtue of (48), vector pt/> can be written in terms of a basis 
of the null space of A*t/>T, which is denoted by the matrix Z 
[Fletcher, 1981], i.e., pt/>= Zt/>v t/>, and then (47)-(48) can be 
written equivalently as the unconstrained problem 

maximize { <--•-5-> vT(zt/>TH**Zt/)V + vTzt/>T(H**x t/> + q*)} 
vU) 

(49) 

The solution v t/> to (49) can be written as the solution to the 
equations 

(Zt/>rH**Zt/>)vt/> = - Zt/>r(H**x t/> + q*) (50) 

from which pt/> of (47)-(48) is recovered by 

pt/> = Zt/>v t/> (51) 

The vector pt/> becomes a direction of search leading to a new 
iterate x t/+ •>. In this study, problem (50) is solved by com- 
puting the LDL r factors [Stewart, 1973] of the reduced Hess- 
ian matrix Zt/>rH**Z t/>, which allows a check for the positive 
definiteness of Z(s>rH**Zt/>, where L denotes a lower triangu- 
lar matrix with unit diagonal elements, and D is a diagonal 
matrix. Further steps in the solution of the QP problem com- 
pute consecutive iterates x {•>, x (2>, ..., x (n>, where n is a finite 
integer, by using x ø+ •) = x t/) + •pt/>, where • is a step length 
determined by the geometry of the constraint step. Lagrange 
multipliers play an important role at each iteration because 
they determine the constraints that form the active set and 
whether the convergence to a solution is reached. To warrant 
accurate and stable estimates of Lagrange multipliers, their 
computation in this study has been accomplished by a stable 
QR factorization [Stewart, 1973] of the matrices A *t/)r, as is 
proposed in the work by Fletcher [1981]. The initial x (x), 
A *(x), and b *(•) needed to start the active set iterations are 
computed by the method of Fletcher [1981]. It is important to 
use the factorizations LDL r and QR named earlier. Other- 
wise, error propagation in the computations will lead to incor- 
rect results in testing the convergence of the active set iter- 
ations and the positive definiteness of Zt/>rH**Z t/>, which in- 
volve the eigenvalues of z(J>TH**Zt/> and the values of the 
Lagrange multipliers, leading to a breakdown of the active set 
algorithm. Furthermore, the use of such factorizations allows 
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638 MARI•IO AND LOAICIGA.' QUADRATIC MODEL FOR RESERVOIR MANAGEMENT 

TABLE 2. Optimal Release Policy, 1979-1980 (Policy 2) 

Clair Engle Lewiston Whiskeytown Shasta 

Month Spill Penstock Spill Penstock Spill Penstock Spill Penstock 

Keswick 

Spill Penstock 

Oct. 190 26 164 5 168 300 25 443 
Nov. 190 26 164 5 175 338 50 463 
Dec. 170 26 144 5 157 688 50 795 
Jan. 100 26 74 5 116 728 50 794 
Feb. 100 26 74 5 179 812 220 771 
Mar. 100 26 74 5 130 876 220 786 

Apr. 95 26 69 5 96 78 370 50 494 
May 170 26 144 5 153 57 319 50 479 
June 110 26 84 5 91 35 465 50 541 

July 125 26 99 5 102 700 50 752 
Aug. 109 26 84 5 87 602 25 664 
Sept. 99 26 73 5 77 460 25 512 

Folsom Natoma New Melones Tullock 

Month Spill Penstock Spill Penstock Spill Penstock Spill Penstock 

Delta 

Total 

Release 

Oct. 18 204 19 200 157 55 102 844 
Nov. 290 19 268 159 55 104 959 
Dec. 295 19 273 199 110 89 1336 
Jan. 476 184 289 218 110 108 1535 
Feb. 52 424 184 289 213 110 103 1677 
Mar. 150 310 184 273 205 110 95 1668 

Apr. 79 381 62 395 217 110 107 1218 
May 45 275 125 192 213 110 103 1059 
June 22 268 30 257 211 110 101 1089 

July 22 278 19 278 210 110 100 1309 
Aug. 19 161 19 158 200 110 90 1066 
Sept. 15 238 19 231 150 55 95 937 

Releases are in kilo acre feet (1 KAF = 1.233 x 106 m3). Total annual Delta releases = 14,697 KAF. 
Entries are the optimal implemented spillage and penstock releases at the beginning of each month. 
Total NCVP annual energy production corresponding to the optimal release policy = 7.772 x 10 6 
MWh. 

us to update the factors L, D, Q, and R from one iteration to 
another rather than to compute them ab initio, resulting in 
substantial savings in the computations. Also, the triangularity 
of matrices Fx• •, F• 2, F2e x, and Fee e (see equation (23)) 
reduces the number of computations necessary to solve the 
two-stage problems (45)-(46) by approximately one half. 

ANALYSIS OF RESULTS 

By using the method outlined in the preceding section, re- 
lease policies for the NCVP were computed for 1979-1980, a 
water year with average inflow conditions (total yearly inflow 
equaled 13,936 KAF). After deriving two initial release poli- 
cies the model was run to determine if both policies yielded 
the same performance, as measured by the total annual system 
energy generated. Derivation of the initial policies (1 and 2) 
was accomplished by a trial-and-error procedure on the basis 
of past operation experience and with the assistance of the 
NCVP managing staff. Tables 1 and 2 show optimal releases 
corresponding to initial policies 1 and 2, respectively. These 
tables also show that substantial spillages occur in the regulat- 
ing reservoirs (Lewiston, Keswick, Natoma, and Tullock; at 
Whiskeytown, spillages are slightly greater than the down- 
stream water requirements of 3 KAF/month). The major res- 
ervoirs pass most of their total release through penstocks, with 
the exception of (high inflow) March. Optimal policies 1 and 2 
in Tables 1 and 2 are clearly different except for the subsystem 
New Melones-Tullock where initial policies 1 and 2 yielded 
the same optimal release and state sequences (state or storage 
sequences have been omitted to conserve space). Both solu- 

tions 1 and 2 yielded the same volume of Delta releases as 
specified in Tables 1 and 2 (annual total Delta re- 
lease-- 14,697 KAF). The total annual energy production is 
almost the same for policies 1 and 2, 7.764 x 106 and 7.772 
x 106 MWh, respectively. For all practical purposes, it can be 

claimed that the two alternative optimal policies produce a 
comparable performance as measured by energy production. 
Table 3 summarizes the results obtained from the linear model 

[Marino and Loaiciga, this issue], the actual operations, and 
the quadratic model of this paper. The linear model results in 
larger Delta releases (14,773 KAF) than those obtained with 
the quadratic model (14,697 KAF, for both policies 1 and 2) 
and also in larger annual energy production (8.077 x 106 
MWh as compared to 7.764 x 106 and 7.772 x 106 MWh for 
the two optimal policies of the quadratic model). 

Figure 4 shows that the state trajectories at Shasta for the 
different models. It is evident that quadratic policies 1 and 2 
follow a pattern similar to the linear policy but, overall, main- 
tain a lower storage elevation. That is explained by the fact 
that when spillages are functions of storage, there is a penalty 
for achieving higher levels because the spilled (nonenergy pro- 
ducing) water increases exponentially with the differential of 
reservoir elevation minus spillway crest elevation. It can be 
expected that penstock releases will increase (in the quadratic 
model) to keep reservoir levels from reaching such high eleva- 
tions. Because energy production is linear in the penstock 
release (recall that Et = •,tru,), it would follow that the qua- 
dratic model is more likely to generate more energy than the 
linear model; however, it was stated earlier that the linear 
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MARIlqO AND LOAICIGA: QUADRATIC MODEL FOR RESERVOIR MANAGEMENT 639 

TABLE 3. Actual and Maximized Energy Production for 1979-1980 

Trinity Power Plant Judge Francis Carr Spring Creek 
at Clair Engle Power Plant/ Power Plant 

Month Actual Linear Quad. 1 Quad. 2 Actual Linear Quad. 1 Quad. 2 Actual Linear Quad. 1 Quad. 2 

Oct. 30.4 73.9 37.4 71.1 36.8 112.4 39.8 98.8 42.3 111.2 43.0 93.9 
Nov. 9.6 71.2 39.4 68.9 4.8 112.4 43.1 98.8 19.5 115.2 49.7 97.8 

Dec. 17.1 61.4 33.3 60.0 15.4 98.5 34.3 86.8 19.2 101.3 42.5 87.8 
Jan. 6.2 29.7 33.8 35.6 ... 41.9 34.3 44.6 23.9 95.5 58.7 64.8 
Feb. 17.7 31.1 34.9 37.2 3.4 41.9 34.3 44.6 55.3 87.0 93.9 100.1 
Mar. 73.4 32.2 36.3 38.2 78.2 41.9 35.4 44.6 99.5 50.0 67.6 72.7 

Apr. 44.9 32.9 37.0 36.8 53.5 41.9 36.0 41.6 54.7 56.6 52.0 53.7 
May 21.2 33.7 84.6 66.6 21.2 41.9 99.8 86.8 18.6 46.5 107.3 85.5 
June 51.5 75.3 84.2 43.1 55.2 101.2 99.8 50.6 59.6 102.2 106.2 50.9 

July 54.3 39.4 82.9 48.8 57.2 44.7 99.8 59.7 57.2 45.7 104.0 57.2 
Aug. 75.7 37.6 69.6 41.9 87.2 42.9 84.0 50.6 85.9 44.0 87.8 48.1 
Sept. 71.1 36.5 38.5 37.3 84.7 44.2 41.4 44.0 88.6 45.7 44.7 43.0 
Total 473.1 555.1 611.8 585.7 497.6 765.9 681.9 751.4 623.3 901.0 857.5 855.2 

Ea/E,, , 0.58 0.77 0.81 0.65 0.73 0.66 0.69 0.73 0.73 

Shasta Power Plant Keswick Power Plant Folsom Power Plant 

Month Actual Linear Quad. 1 Quad. 2 Actual Linear Quad. 1 Quad. 2 Actual Linear Quad. 1 Quad. 2 

Oct. 76.5 112.1 116.2 116.2 19.0 47.0 30.9 41.9 37.7 53.5 48.6 57.9 
Nov. 89.6 126.2 116.2 130.7 20.7 51.3 32.1 43.8 41.3 77.9 80.1 76.3 
Dec. 111.1 251.3 254.5 253.9 23.2 81.6 65.3 75.2 37.2 71.3 71.3 69.0 
Jan. 237.4 266.9 302.5 279.2 47.6 81.6 79.5 75.1 107.0 118.4 127.2 126.0 
Feb. 209.9 310.7 316.3 326.4 39.2 81.6 79.8 72.9 84.3 139.9 122.7 127.8 
Mar. 228.3 323.7 358.3 358.3 49.9 81.6 74.4 74.3 130.0 147.2 104.8 94.7 

-'•I-"- _• _•z.• _•/_o._• ,•oz.u i•.i.• z'•.U j/.j 4•. / 40. / 99.8 126.3 93.2 i 16.2 
May 164.4 128.8 203.8 131.4 33.7 36.2 65.5 45.3 82.0 131.0 108.6 84.0 
June 212.9 129.5 178.3 190.6 47.3 45.5 55.8 51.2 66.6 76.4 84.7 81.9 

July 237.9 307.5 273.1 281.0 52.2 77.0 77.2 71.1 84.4 63.4 65.6 84.4 
Aug. 165.7 310.2 232.8 232.2 43.6 81.6 66.9 62.7 35.6 93.5 53.3 48.1 
Sept. 86.8 289.0 131.8 172.9 29.3 81.6 36.0 48.4 40.5 86.8 83.5 69.4 
Total 1933.4 2682.2 2646.0 2625.6 434.7 784.5 712.2 708.7 846.4 1185.5 1045.5 1035.8 

E,•/E m 0.72 0.73 0.74 0.55 0.61 0.61 0.71 0.81 0.82 

Values are in 103 MWh. Power plant was not in operation where no values are shown. E, is actual energy production, E m is maximized 
energy production. Quads 1 and 2 denote a quadratic model using initial policies 1 and 2, respectively. 

TABLE 3. (Continued) 

Nimbus Power Plant New Melones 
at Lake Natoma Power Plant 

Month Actual Linear Quad. 1 Quad. 2 Actual Linear Quad. 1 Quad. 2 

Oct. 4.6 6.4 5.6 6.7 --. 71.6 75.0 75.0 
Nov. 4.7 10.0 9.3 8.9 .-. 70.4 73.2 73.2 
Dec. 4.7 10.0 9.3 9.1 ... 68.1 87.6 87.6 
Jan. 8.7 10.0 9.6 9.6 19.6 81.9 94.4 94.4 
Feb. 6.7 10.0 9.6 9.6 23.6 92.1 94.1 94.1 
Mar. 10.6 10.0 10.4 9.1 47.8 90.9 90.3 90.3 

Apr. 9.7 7.7 9.5 13.2 55.8 90.4 92.1 92.1 
May 9.1 8.2 9.1 6.4 39.5 85.8 87.5 87.5 
June 7.6 7.8 8.8 8.6 23.3 84.4 84.6 84.6 

July 9.7 6.5 7.4 9.3 38.5 80.9 79.1 79.1 
Aug. 4.3 10.0 5.8 5.3 22.1 74.9 66.3 66.3 
Sept. 4.6 10.0 9.0 7.7 9.0 64.8 41.7 41.7 

Total 84.9 106.5 103.4 103.5 279.2 956.5 966.0 966.0 

E •/E,, 0.80 0.82 0.82 0.29 0.29 0.29 

Values are 10 3 MWh. Power plant was not in operation where no values are shown. E, is actual energy production, E m is maximized energy 
production. Quads 1 and 2 denote a quadratic model using initial policies 1 and 2, respectively. 

model resulted in a greater energy production level than the 
quadratic model. The resolution of the contradiction es- 
tablished by this argument and the observed results (which 
indicate more energy from the linear model) lies in the fact 

that energy production is a quadratic function of storages and 
that offsets the effect of the higher penstock release, for in the 
linear case the storages are greater. In the more realistic qua- 
dratic model, the trade-off between higher elevations and 
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640 MARIgIO AND LOAICIGA: QUADRATIC MODEL FOR RESERVOIR MANAGEMENT 
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Fig. 4. Operation of Shasta reservoir, water year 1979-1980. 

smaller releases is more complex than in the linear case 
l-Marino and Loaiciga, this issue]. It can be observed in Table 
3 that values of Ea/Em (actual over maximized annual energy 
ratios) are higher for the quadratic model than for the linear 
model. The overall Ea/E m ratio for policy 1 of the quadratic 
model is 5.2/7.764 = 0.67, slightly larger than the 0.64 ob- 
tained with the linear model •Mari•o and Loaiciga, this issue], 
implying that a potential increase of up to 27% over energy 
actually produced could be achieved by using release policies 
from the quadratic model. A 27% increase will be about 1.4 
x 10 6 MWh per year with average inflow conditions. 

The similar forms of the state trajectories shown in Figure 4 
for the linear and quadratic models can be explained by notic- 
ing that high inflow forecasts result in a drawdown of reser- 
voirs in December, mainly by routing large volumes of water 
through penstocks. Reservoir elevations are relatively steady 
throughout the winter so that the trade-off between elevation 
and discharge is optimal in the sense that for given conditions, 
the total energy would be maximized. The volume of water 
released during the summer (4,967 KAF in May to August), 
obtained from the quadratic model policy (Table 1), is larger 
than the agricultural requirements (2,698 KAF in May to 
August). This points to the feasibility of extending agricultural 
activities in the Sacramento-San Joaquin Valley. Finally, at 
the expense of a moderate increase in the complexity of the 
quadratic model, both in its formulation and solution, it ap- 
pears that the quadratic model should be preferred over the 
linear model due to the closer representation to the actual 
system that it commands. 

CONCLUSIONS 

The application of the quadratic optimization model and its 
comparison with a linear model developed earlier by the au- 
thors lead to the following conclusions. 

1. Both models lead to a potential increase in the annual 
energy generation, as was demonstrated for a water year of 
average streamflow conditions. The quadratic model imple- 
mented in this paper yielded a potential increase of 27% in the 
total annual energy production for the NCVP case study. 

2. The quadratic model showed that the Sacramento-San 
Joaquin Valley agricultural water deliveries can be increased 
by adopting the optimal release policies. This suggests the 
possibility of expanding irrigated areas, providing better 
leaching of agricultural fields, and improving conjunctive 
management of surface and groundwater reservoirs. 

3. Although the release policies computed by the quadrat- 
ic and linear models were similar in this study, there are rea- 
sons for preferring the quadratic model. First, the quadratic 

model l•ads to problems of lower dimensionality (fewer de- 
cision variables) and provides a closer representation of the 
physical features of the system, particularly with regard to 
nonlinearities in the objective function and constraints. 
Second, because of its capability to incorporate spillages ex- 
plicitly, the quadratic model can handle a reservoir system of 
more complicated configuration and complex mass balance 
(continuity) equation. 

APPENDIX 

The constraints considered in the two-stage problems (45• 
(46) are as follows. 
Constraints on total releases for month t, 

u, + r, _< W, (A1) 

in which Wt is a maximum permissible total release vector. 
Constraints on maximum penstock releases for month t, 

U, =• U t .... (A2) 

in which U, .... is maximum permissible penstock vector. 
Constraints on minimum penstock releases for month t, 

U! • Ut, min (A3) 

where Ut, min is minimum permissible penstock release vector. 
Constraints on water requirements for month t and any 
demand point k, 

ctkT(u! + rt) => Dt •, 'v'k (A4) 

where c• k is a vector representing a linear combination of total 
releases that add up to satisfy a minimum demand at control 
point k, Dt •. 
Constraints on spillages for month t, 

r, =< R, (AS) 

in which Rt is a vector of maximum spillages. 
Constraints on maximum and minimum storages for month t, 

Xt • Xt .... (AC) 

X, • Xt, min (A7) 

in which X• .... and Xt, mi , are maximum and minimum per- 
missible storage vectors. 

In addition to constraints (A1)-(A7), there is an analogous 
set of constraints for month t- 1. Substitution of (23)-(24) 
into (A1)-(A7) and into the analogous constraints for month 
t- 1, and after some algebraic operations, yields the con- 
straint matrix At* and the right-hand side vector b•* in (46). 
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