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Abstract

Essays in Health Economics

by

Juan Pablo Atal Chomali

Doctor of Philosophy in Economics

University of California, Berkeley

Professor Emmanuel Saez, Co-Chair

Professor Benjamin Handel, Co-Chair

These essays study how private incentives affect the functioning of three dimensions of
health care markets: health insurance, prescription drugs, and the delivery of health care by
physicians.

In the first chapter, I study the workings of long term health insurance, a form of contracts
with the potential to efficiently insure individuals against reclassification risk, but at the
expense of other limitations like provider lock-in. I empirically investigate the workings of
long-term guaranteed-renewable contracts, which are subject to this tradeoff. Individuals are
shielded against premium increases and coverage denial as long as they stay with their initial
contract, but those that become higher risk are subject to premium increases or coverage
denials upon switching, potentially leaving them locked-in with their original network of
providers. I provide the first empirical evidence on the importance of this phenomenon
using administrative panel data from the universe of the private health insurance market in
Chile, where competing insurers offer guaranteed-renewable plans. I fit a structural model
to yearly plan choices, and am able to jointly estimate evolving preferences for different
insurance companies and supply-side underwriting in the form of premium risk-rating and
coverage denial. To quantify the welfare effects of lock-in, I compare simulated choices under
the current rules to those in a counterfactual scenario with no underwriting. The results show
that consumers would be willing to pay around 13 percent more in yearly premiums to avoid
lock-in. Finally, I study a counterfactual scenario where guaranteed-renewable contracts are
replaced with community-rated spot contracts, and I find only minor general-equilibrium
effects on premiums and on the allocation of individuals across insurers. I argue that these
small effects are the result of large levels of preference heterogeneity uncorrelated to risk.

In the second chapter, David Silver and I study worker interactions among the medi-
cal staff in the emergency department. Using rich administrative case-level data from two
hospital-based emergency departments, we start by documenting peer effects among physi-
cians. We find that physicians are 1.5 percent faster when working with peers who are 10
percent faster. We devise a test for random patient-physician assignment and we provide a
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number of tests to discern the mechanisms underlying these spillovers. The evidence points
to spillovers that are driven primarily by faster peers responding negatively to working with
slower peers. Utilization of shared resources accounts for little of the spillover, and event-
study evidence points to spillovers that come into effect as soon as slower peers begin their
shifts.

In the third chapter, José Ignacio Cuesta, Morten Sæthre and I study regulations to
pharmaceutical laboratories in the form of bioequivalence (BE) requirements – the most
prevalent tool used in developed economies to ensure the effectiveness of generic drugs allowed
in the market. The main goal is to empirically investigate how the market reacts to BE
requirements, and the consequences in prices, market shares, and product availability for
branded and generic drugs. In particular, this study is an early exploration of the experience
of Chile, where BE requirements were adopted for 172 molecules, leading to the BE approval
of 642 generic drugs between March 2009 and March 2015. We show that the introduction
of the requirements lead to a significant increase in BE approvals and in the share of BE
drugs in the market. However, prices and market shares of other competing drugs were not
significantly affected during the period we analyze. Other outcomes, like number of products,
and market concentration are also found to be unaffected.
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Chapter 1

Lock-in in Dynamic Health Insurance
Contracts : Evidence from Chile

1.1 Introduction

When health insurance contracts are of limited duration, changes in health status might
lead to substantial increases in premiums or subsequent coverage denial.1 Ensuring afford-
able coverage for individuals reclassified by the market into a higher risk group was among
the most important goals of the Affordable Care Act (ACA). The ACA eliminates barri-
ers to purchasing insurance faced by sick individuals by prohibiting all forms of differential
pricing or coverage denial based on preexisting conditions.2 However, ruling out this type
of discrimination (known as ”community rating”) leads more costly individuals to sort into
more comprehensive plans, which in turn prices out lower risk individuals (Akerlof, 1970,
Handel, Hendel, and Whinston, 2015a). The ACA tackles this adverse-selection problem by
making the purchase of health insurance mandatory –one of the most controversial aspects
of the regulation.3

In theory, an unregulated marketplace with properly designed long-term contracts can
also deliver protection against reclassification risk without adverse selection. In particular,
Pauly, Kunreuther, and Hirth (1995) show that long-term individual agreements with guar-
anteed renewability can provide full insurance against medical expenses and reclassification
risk. By paying a premium higher than what they would otherwise pay under a short-term
contract, individuals acquire the guarantee of affordable coverage in the future, regardless
of any potential negative health shocks. However, if individuals leave their long-term con-
tract to buy another in the spot market, they lose that guarantee and must pay premiums
according to their current health status. This financial incentive to remain in the long-term

1Hendren, 2013 cites that between 2007 and 2009, prior to the implementation of the Affordable Care
Act, one in seven applications to the four largest insurance companies in the US non-group market were
rejected. See Hendren’s paper for the theoretical rationale for coverage denial.

2Under the ACA premiums can only be adjusted by age and geographic location
3The individual mandate requires that most individuals obtain health insurance or pay a tax penalty
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contract potentially leaves participants inefficiently tied to their original plan and/or health
service provider. For the remainder of this paper, I will use the term ”locked-in” to refer to
an individual who would prefer to switch provider networks if the offers she faced across in-
surers were not differentially risk-rated, but is unable (due to coverage denial) or unwilling to
do so given the discrepancy between the premium she pays under her guaranteed renewable
contract and those faced in the spot market.

This paper quantifies the inefficiency from insurer lock-in generated by guaranteed re-
newable contracts. Consider an individual that enters a contract with a narrow network of
providers while healthy, but later develops a chronic condition (such as cancer) that would
be better treated in a specialty clinic outside the network. Absent reclassification in the spot
market, the individual would switch to a contract with a more appropriate network. In the
presence of reclassification, however, the individual might find it prohibitively expensive to
switch, and might even be denied coverage outside of her current contract. An individual
who does not switch because of this underwriting is effectively locked-in with her network,
generating a welfare loss.

Although health insurance contracts in most markets are short term, there are a couple
of practical experiences of markets with guaranteed-renewable (GR) arrangements. Prior
to the ACA, GR contracts were particularly common in the US individual health insurance
market, and were required by the federal Health Insurance Portability and Accountability Act
(HIPAA) of 1996 (Herring and Pauly (2006), Pauly and Herring (1999)). However, lack of
regulation with respect to the evolution of non-price features made these contracts generally
unappealing to sick customers (Handel, Hendel, and Whinston, 2015b). GR contracts are
also present in the German private health insurance market (Hofmann and Browne (2013)).

Proponents of guaranteed renewability have recognized that the inability of riskier indi-
viduals to switch insurers is potentially welfare-reducing (Patel and Pauly (2002)). However,
quantifying its importance is empirically challenging, and requires individual-level panel data
on health insurance purchases and claims, with the ability to observe individuals after they
switch insurers. This paper, which is the first to my knowledge to quantify the welfare effects
of lock-in, takes advantage of a unique panel data set from the universe of the private health
insurance market in Chile in which contracts are guaranteed-renewable. The data contains
individualized claim records for all enrollees (and their dependents) in each of the private
health insurance companies that operate in Chile. Importantly, the claims data contains
detailed procedure codes and identifiers of each health service provider.

It is a priori plausible that valuations over private insurance companies in Chile differ
across individuals, and that individual’s preferences may change over time, as they develop
specific health conditions. Four stylized facts from the data support this idea. First, individ-
uals enrolled in different insurance companies access different heath care providers. Second,
networks differ in the extent to which they give access to different providers for different
types of claims. For example, two networks can have similar providers for routine claims
but different providers for cancer-related procedures.4 Third, switching companies strongly

4For instance providers labeled as ”P1”, ”P5” and ”P11” in the data are the major three providers for
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predicts seeing a new health care provider : the probability that the same individual sees
a new health care provider after switching insurance company increases by around 40% the
month after switching. Fourth, high-risk switchers generally switch to different companies
than low-risk switchers.

Individuals’s valuations for these companies are also likely to change as individuals move
geographically. The market share of each of these companies varies substantially across
geographical regions, and is strongly correlated with the presence of in-network providers
(details in section 4.1).

In order to show why welfare-reducing lock-in could occur in this market, I begin by
developing a simple two-period model of guaranteed-renewable contracts with evolving pref-
erence heterogeneity. This model will also allow me to identify the data objects needed to
empirically assess the magnitude of this inefficiency. The shape and evolution of preferences
for companies over time will determine the share of individuals that would eventually switch
companies absent reclassification. The extent of premium risk-rating and coverage denial in
the spot market, and the path of health expenditures over an individual’s lifetime determine
the share of potential switchers that are effectively locked-in.

I then show that the main features of guaranteed-renewable contracts are present in the
Chilean private insurance market, and provide reduced-form evidence of lower switching
rates among the highest risk individuals. This result is implied by the theory of guaranteed-
renewable contracts, since healthier individuals are not subject to coverage denial or premium
increases due to risk-rating in the spot market, and thus are not constrained in switching
insurance contracts.

In order to quantify the welfare losses resulting from lock-in, I use a structural model that
jointly estimates plan choices and underwriting in the spot market. The model incorporates
heterogeneous and evolving preferences for firms that are correlated with health status and
geographic location. Individuals also evaluate the potential benefits of switching plans by the
degree of overlap between their current provider network and that of the alternative offers
they face. I account for guaranteed-renewability by allowing the plan that an individual
chooses in year t to always be available to that individual in year t + 1 regardless of any
changes in health status. However, individuals also receive risk-rated offers in the spot market
each year. I estimate the level of risk-rating in the spot market by empirically linking each
plan’s characteristics to the health risks of those who switch into that plan. The arrival rate
of offers from competing insurers in the spot market depends on an individual’s preexisting
conditions, consistent with the possibility that insurance companies may deny coverage based
on these conditions. Finally, the model also allows for ”choice inconsistencies” (à la Jackson
Abaluck and Gruber, 2011) and ”inertia” –two well-known behavioral biases affecting health
insurance purchase (see e.g., Handel, 2013 and Jason Abaluck and Gruber, 2013). Inertia

routine claims for insurance companies ”A” and ”B”, with an accumulated share of approximately 40%
routine claims in each company. For cancer-related treatment, another provider ”P4” is the most frequent
provider for company B with a share of 33 percent, although P4 represents only 9 percent of those claims
in Company A (These numbers were computed using the claims data for the providers in the Metropolitan
Region of Santiago during 2011.).
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is potentially an important factor in choice persistence in this market where search costs
are likely to be high. In the spirit of Ching, Erdem, and Keane, 2009 and Grubb and
Osborne, 2015, I model inertia as inattention that restricts the choices that individuals
actually consider in each period. Finally, I estimate age and gender specific health transition
matrices that allow me to simulate the path of health expenditures over an individual’s
lifetime.

I estimate the parameters of the structural model by adapting the Geweke-Hajivassiliou-
Keane (GHK) simulator (Keane, 1993; Keane, 1994, Hajivassiliou, McFadden, and Ruud,
1996, and J. Geweke and Keane, 2001) to an environment where, as a result of guaranteed
renewability, the evolution of options available in each period is dependent on the choices
made in the preceding periods, and where the first period choice is not necessarily observed
(left-censored choices). To quantify the welfare loss resulting from lock-in, I use the estimated
parameters of the model along with the estimated risk profiles to simulate the path of choices
over time. Then, I compare predicted choices under the current underwriting rules against
a counterfactual scenario in which coverage denial based on preexisting conditions is banned
and there is no premium risk rating in the spot market (as recently regulated by the ACA)

The results suggest that around 5% of individuals end up locked-in with their insurance
company, but an individual on average would be willing to pay 13% of the average yearly
premium to avoid the possibility of this lock-in. Locked-in individuals would be willing
to pay on average 2.5 times the premium to switch plans. I find that most of the lock-in
is due to coverage denial based on preexisting conditions, and only mildly caused by spot
premiums which have been adjusted to reflect current health status. The results depend
mostly on the estimated level of coverage denial in the spot market. My estimates suggest
that one in five individuals with a preexisting condition is denied coverage in the spot market.
Next, I investigate potential market unraveling following endogenous sorting across insurance
companies if a community rating policy were adopted. I simulate a counterfactual situation
without underwriting in the spot market, but allowing for the overall level of premiums in
each company to be adjusted in order to maintain profits per enrollee at their current level. In
this counterfactual scenario, guaranteed-renewable contracts are replaced with community-
rated spot contracts, but premiums are adjusted at the insurer level to reflect the changes in
each insurer’s risk pool. I find only minor general-equilibrium effects on prices and allocation
of individuals across insurers.

I use the estimated parameters to interpret these findings and to shed light on how dif-
ferent aspects of preference heterogeneity affect the desirability of guaranteed-renewability.
Although time-varying preferences generate lock-in, preferences that are persistent over time
have the opposite effect, showing another margin of interaction between preference hetero-
geneity and health insurance design (Bundorf, Levin, and Mahoney, 2012 and Geruso, 2013).
I use the stylized model of Einav and Finkelstein, 2011 to formalize this insight: in this static
setting, preference heterogeneity within health status reduces the share of high-risk individ-
uals willing to enroll in a contract, compared to a situation in which health status and
preferences are perfectly correlated. This limits the mechanical effects of banning cover-
age denial and the resulting adverse selection, as the share of risky individuals that enroll
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when allowed is smaller than in the case in which health status is the only determinant of
preferences.5

This paper is related to two strands of literature. First, it draws from the theoretical
literature of pricing in one-sided commitment contracts with adverse selection. It highlights
the advantage of ”time consistent” contracts suggested by Cochrane, 1995, which eliminate
reclassification risk and ensure access to health insurance for sick people through a severance
payment payable after the diagnosis of a long-term illness. Time-consistent contracts are
fully portable (and thus do not generate lock-in), but at the expense of potentially large
up-front borrowing (Handel, Hendel, and Whinston, 2015b). By quantifying the presence
of lock-in and resulting welfare loss, this paper puts in perspective the advantages of time
consistent contracts relative to guaranteed-renewability in relation to their portability.

Second, the paper contributes to the sparse empirical literature on the dynamics of
health insurance contracts. Koch, 2011 and Handel, Hendel, and Whinston, 2015a focus
on the tradeoff between adverse selection and reclassification risk by analyzing consecutive
short-term marketplaces, like the ACA. Instead, I focus on long-run guaranteed renewable
arrangements. These contracts have been empirically studied by Herring and Pauly, 2006
and Marquis et al., 2006, who demonstrate that the relationship between premiums and
health claims shows the patterns predicted by the theory in the individual US market for
health insurance. Handel, Hendel, and Whinston, 2015b study the welfare implications of
the financial aspects of different long-term arrangements. In particular, they quantify the
welfare loss resulting from the inability to effectively smooth consumption which is implied
by front-loading vis-à-vis other market arrangements in a setting with imperfect capital mar-
kets. Instead, my focus is on lock-in due to evolving preference heterogeneity, assuming away
capital market imperfections. Also, Crocker and Moran, 2003 show that employment-based
health insurance can facilitate the existence of long-term contracts even in the absence of
front-loading. Adverse selection is reduced since healthy individuals would have to switch
jobs to drop their health insurance contract and buy another that does not cross-subsidize
the riskier.

Relatedly, Hendel and Lizzeri, 2003 provide evidence of front-loading in life-insurance
contracts, and show that more front-loading is associated with higher retention rates (less
”lapsation”) which allows for the retention of a healthier risk pool. Finkelstein, McGarry,
and Sufi, 2005 focus on the long-term care insurance market, and show that lower risk
individuals are most likely to leave the contracts. This selective lapsation generates dynamic
inefficiencies, as individuals who stay in the contract have to pay a premium consistent with
dynamic adverse selection, which undermines the protection against reclassification risk.
This paper contributes to this line of research by providing further evidence of selective
switching, and explicitly using data on both supply and demand for health insurance to
estimate how it relates to welfare.

5Studies that find high levels of market unravelling produced by community rating generally analyze en-
vironments in which insurance contracts are purely a financial product (e.g., Handel, Hendel, and Whinston,
2015a).
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Finally, this paper is also related to Pardo and Schott, 2012; Pardo and Schott, 2013 who
use survey data to analyze enrollment decisions across the private and public sector in Chile,
and the role of preexisting conditions in these decisions. Their results, complementary to
this paper, suggest that few individuals would switch sectors if restrictions on preexisting
conditions were eliminated. They argue that most of the sorting across sectors can be
explained by heavy asymmetries in the premium structure, since the public sector offers
important cross-subsidies for families, women, and low-income users. This paper focuses
instead in lock-in within the private sector, which permits me to estimate heterogeneity in
preferences for insurance companies with the same structure of financial incentives. Also, I
have access to detailed administrative claims data which permit good assessment of health
conditions and to study the general-equilibrium effects of counterfactual policies.

The remainder of the paper is organized as follows. Section 1.2 intuitively explains the
working of guaranteed-renewable contracts and the sources of welfare loss implied by these
contracts when preferences vary over time. In section 1.3, I provide an overview of the
main institutional details of the Chilean health insurance system. Section 1.4 describes the
data and provides reduced-form evidence to support the idea that preferences for Chilean
private health insurance companies are heterogeneous and evolve over time. Section 1.5
presents empirical evidence that the main features of guaranteed-renewability are present
in the Chilean market, making it a suitable environment for empirical analysis. I also
provide reduced form evidence of the link between health risk and switching rates across
companies. Section 1.6 presents a structural model of plan choice that incorporates the
main features of guaranteed-renewability and underwriting in the spot market. Section
1.7 discusses the parameter estimates, quantifies lock-in and its welfare implications, and
simulates a counterfactual policy with community rating. Section 1.8 concludes.

1.2 Economics of guaranteed-renewable contracts and

welfare consequences of lock-in

In this section, I use a simple model with two firms and two periods to highlight the main
welfare consequences of lock-in in markets with guaranteed renewable contracts. In start with
a simple adaptation of the seminal work on guaranteed renewability by Pauly, Kunreuther,
and Hirth, 1995 that assumes no preference heterogeneity (section 1.2), and then incorporate
the features that generate lock-in (section 1.2).

No preference heterogeneity

There are two periods and two health types (L,H), with corresponding probability of an
adverse health event pL or pH > pL. An adverse event entails a monetary loss equal to C. In
period t = 1 everyone is of type L. Individuals become type H in period t = 2 if they have
a negative health event in period one, otherwise they stay type L. Importantly, there is one
side-commitment (i.e., individuals cannot be forced to stay in the contract in period two) and
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symmetric information between insurers and consumers (such that all insurers can observe
the resolution of uncertainty regarding the period-2 status). Individuals are risk-averse, and
there is no discount rate.6

In this setting, Pauly, Kunreuther, and Hirth (1995) show that a competitive marketplace
can offer long-term contracts that provide full insurance against medical expenditures and
against reclassification risk. In period one, insurers will sell contracts to healthy individuals
at a premium that is equal to the expected value of their period-two claims, and guarantee the
renewability at a premium equal to the expected value of their period-1 claims. That is, the
sequence of premiums (PGR

t=1 , P
GR
t=2) offered in t = 1 is front-loaded: PGR

t=1 = pLC(1+(pH−pL))
and PGR

t=2 = pLC < PGR
t=1 .

Insurance companies selling these guaranteed-renewable contracts can provide full cov-
erage each period and break-even in expectation, since the price in period one covers the
expected loss in period two and the price in period two covers the expected loss in period one.
Although several premium profiles would make the firms break-even, this particular profile
also complies with no-lapsation constraints. The lack of consumer commitment requires that,
in every state in the second period, the consumers prefer to stay in the long-term contract
rather than switching to a competing insurance company. In fact, individuals receive offers
for short-term (spot) contracts in period two. Because of perfect competition, these contracts
are offered at a premium that is equal to period-two expected claims conditional on each
individual’s updated type. Formally, spot contracts are offered in period t = 2 for individual
i at P SPOT

i,t=2 = piC ≥ PGR
t=2 . With prices (PGR

t=1 , P
GR
t=2), all individuals (and in particular the

healthy) have incentives to purchase the long-term contract in period one and remain in the
contract in period two, since spot contracts in period two are (weakly) more expensive.

The above results explain why guaranteed-renewable contracts attain the first-best al-
location when there is one-sided commitment, and non-binding borrowing constraints.7 In
the absence of non-financial plan characteristics, individuals do not switch in equilibrium,
effectively eliminating reclassification and adverse selection. In the next section I extend this
model by incorporating evolving preference heterogeneity.

Evolving preference heterogeneity

As already suggested by Patel and Pauly, 2002, guaranteed renewable contracts are not
perfect

”[...] since some high risk individuals could find themselves locked in with an
insurance they have come to dislike” (Patel and Pauly, 2002, pp. 289, emphasis
added).

6A more general theoretical analysis is provided by Krueger and Uhlig, 2006. In particular they show
that the relative discount rates between the principal (insurance company) and the agent (individual) is
crucial in determining the level of insurance for the agent in the long run.

7When it is costly for individual to pay this front-loaded set of premiums, long-term contracts provide
only imperfect insurance against reclassification risk (Hendel and Lizzeri (2003)) and Handel, Hendel, and
Whinston (2015b)
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Those individuals that become high risk are reclassified in the spot market, and would
be required to pay a potentially much higher premium if they were to switch insurers.

To formalize Patel and Pauly’s observation I extend the previous model by allowing for
preferences for insurers that are heterogeneous across the population, and are permitted to
change from period one to period two. In this extension, there are two firms, A and B. Each
firm offers a guaranteed-renewable contract in period t = 1 (when everyone is healthy) and
risk-rated (type-specific) spot contracts in t = 2. Contracts are distinguished only by the
premium and the firm that offers them (all other characteristics are the same).

Panel (a) of Figure 1.1 shows the distribution of the relative willingness to pay for firm
A in the population in each period. The y-axis represents the willingness to pay in period
one, and the x -axis the willingness to pay in period two. Evolving preference heterogeneity
is represented by an imperfect (although positive) correlation between the willingness to pay
in each period, leading to an ellipsoidal shape oriented to the north-east.

I assume that preferences and the competition environment are such that the price (and
marginal costs) in period one and period two of the guaranteed renewable contract are
the same for both firms. This simplification is not essential but it facilitates the graphical
analysis. Also, I assume individuals do not take into account the uncertainty about period-
two taste shocks in their period-one decision, or that the distribution of taste shocks in
period two is such the optimal strategy in period one corresponds to the optimal strategy of
a myopic individual. 8

Under these assumptions, individuals in the two upper quadrants choose firm A in period
one. Because of guaranteed-renewability, those individuals have the option of staying with
firm A in period two by paying a premium equal to the expected cost of type-L individuals
(expected loss from period one), regardless of their health status.

The offer that enrollees in A get from B in period two depends on their health status.
Panel (a) of Figure1.1 represents the case of type-L individuals (healthy enrollees), who are
also offered a spot contract in firm B at the same price as the price they pay in period two
under the long-term contract in A. Absent any choice frictions (like search or switching costs),
healthy individuals in the left quadrant will choose firm A in period two, whereas those in
the right quadrant will choose firm B. By the same argument, each quadrant representing
two-period preferences also represents the choices of health individuals. Since marginal costs
are the same, it follows that healthy individuals are efficiently allocated across companies.

Consider now those individuals who had an adverse health event in period one and
therefore are reclassified as type H (risky) in period two, as represented in Panel (b) of
Figure 1.1. These individuals pay an extra premium ∆P to switch across companies, equal
to difference between the premium of the spot contract for the risky and the guaranteed-
renewable contract, ∆P = (pH − pL)C. In the figure, the distance between the dashed lines
and the x-axis corresponds to this difference.

Risky individuals in the upper left quadrant chose firm A in period one and would switch

8This could happen for instance if individuals are fully myopic or if the distribution of taste shocks in
period 2 is symmetric around zero. I will return to discuss the plausibility of this assumption in Section 6.
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to firm B in period two if they were charged the guaranteed-renewable price in both firms.
However, as shown in the figure, a share of those individuals will stay with firm A even they
prefer firm B in period two, since they are not willing to pay the extra premium to switch.
The dashed area of the left-upper quadrant represents these individuals, who I define as
being ”locked-in to firm A”. Similarly, individuals represented by the dashed area in the
lower-right quadrant are ”locked-in to firm B”: they chose B in period one and would have
switched to firm A had they been charged the same price in both companies.

As it is typically done in the literature of guaranteed-renewable contracts, I have assumed
an environment in which health type is revealed over time symmetrically to all market
participants. In this case, a firm and a risk-averse agent will always be willing to trade at
a premium equal to the expected cost, regardless of the risk type. However, Hendren, 2013
shows that failures to this assumption (i.e., when applicants to an insurance contract hold
private information) can explain enrollment denial. Another potential reason for coverage
denial, and also potentially relevant for this paper - is firm’s inability to fully risk-rate their
plans through legal impediments or menu costs. I analyze the effect of denying enrollment
on lock-in in Panel (c).9 In that case, all individuals in the upper left and bottom-right
quadrant cannot switch away from the firm they picked in period one even if it would be
efficient for them to do so.

In this simple analysis, the degree of inefficiency produced by lock-in depends on the
following factors: First, it is contingent on the shape of preference heterogeneity dynamics,
as depicted by the shape of the shaded area in Figure 1.1. It also depends on the share
of individuals who are subject to reclassification (i.e those for which the relevant situation
is described in panel (b) of Figure 1.1), and the extra premium they pay upon switching,
∆P . Finally, inefficiency resulting from lock-in depends on the share of individuals who are
denied coverage if they were willing to switch, as represented by the share of individuals in
situation described by panel (c) of Figure 1.1. In section 1.6 I describe the main empirical
framework to quantify these objects in the data.

The existence of welfare losses in guaranteed-renewable contracts is at odds with previous
theoretical analysis that has shown that they achieve pareto-optimality. That analysis makes
the strong assumption of no preference heterogeneity for providers, so it abstracts from
any non-financial motive to switch plans over time. This is also true if preferences are
heterogeneous but constant over time, as would be the case when the shaded area of Figure
1.1 shrinks to a line, as shown in panel (d) of Figure 1.1. In that case, there are no individuals
willing to switch companies over time and thus no possibility of lock-in.

9See Cabral, 2015 for dynamic inefficiencies caused by dynamic asymmetric information.
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1.3 Institutional framework

The Chilean health-care system is divided into a public and private system.10 The public
regime, FONASA, is a pay-as-you-go system financed by the contributions of affiliates and
public resources. The private sector –operated by a group of insurance companies known as
”Instituciones de Salud Previsional” or ISAPRES –is a regulated health insurance market.11

FONASA covers more than two thirds of the population (about 11 million people), while
ISAPRES covers around 17 percent. The remainder of the population is presumed to be
affiliated with special healthcare systems such as those of the Armed Forces or to not have
any coverage at all (Bitran, Escobar, and Gassibe (2010)).

Workers and retirees have the obligation to contribute 7 percent of their wages to the
public system, or to buy a plan that costs at least 7% of their wages in the private system.12

The two systems differ in many respects, including provider access, premiums, coinsurance
structure, insurer payment caps, exclusions, and quality. Affiliates of FONASA are classified
into four groups based on wages and family composition. These groups determine copayment
for each service (which ranges from 0-20 percent), but otherwise benefits are unrelated to
income. Unlike the private sector, there are no exclusions based on preexisting conditions,
nor pricing based on age or gender, and there is no additional contribution for dependents.
As a consequence, the private sector serves the richer, healthier, and younger portion of the
population (Pardo and Schott, 2012).

The private health insurance market is comprised of 13 ISAPRES, which are classified
into two groups: six “open” (available to all workers) and seven “closed” (available only to
workers in certain industries). Open ISAPRES account for almost 95 percent of the private
market. When workers enroll in a health insurance contract under an ISAPRE, they must
immediately select a specific plan. Contracts in the private sector are, for the most part,
individual arrangements between the insured and the insurance company. The contracts are
yearly, although those who have already been enrolled for one year may switch to another
ISAPRE or to the public sector at any time.

The monthly premium P is a combination of a base price PB and a risk-rating factor r
so that

P = PB × r (1.1)

where r is a gender-specific and discontinuous (step) function of age.
Several features of the plan determine the base price PB. A plan has two main coverage

features: coinsurance rates (one for inpatient care and another for outpatient care) and
coverage caps (insurer payment caps). Every plan assigns the insurer a per-service payment
cap, and these caps apply to each visit. Coinsurance rates and the insurer payment caps

10The details of the Chilean health care system have already been described elsewhere, in particular
Duarte (2012) and Dague and Palmucci, 2015. I draw from those papers heavily in this section.

11 From this point forward, I will refer to a private insurer that is part of this group as an ”ISAPRE”,
and the group of insurers collectively as ”ISAPRES”.

12With a cap of 186 USD per month
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remain constant across visits and do not accumulate over time. For any particular claim, a
person pays her coinsurance rate until the amount that the insurance company contributes
reaches the cap for that service. After hitting the cap, the patient pays the rest. The basic
formula to determine the copay is therefore:

copay = price−minimum([price× (1− coinsurance)], cap)

Base prices are indexed to inflation, and adjustments to the base price in real terms can
be made once a year. Three months before the end of the contract year, ISAPRES must
inform the regulator of their projected price increases for the year. Each company must
also inform their clients about these increases, justify their reasons for the changes and offer
alternative contracts to their clients that maintain monthly premiums but that often imply
lower coverage.

A couple of features of the market restrict the extent to which private firms can risk-rate
their plans. First, base prices are set at the plan (and not the individual) level. Also, since a
major reform to the system in May 2005 –the ”ley larga de ISAPRES” –each firm can have
at most two r functions. However, there is a large number of plans in the market (around 52
thousand with active enrollees and around 18 thousand actually offered in the market at a
given point in time), so the effective number of insureds per plan is fairly small (on average
28). A large share of plans has only one insured (40 % as of January of 2011). Although
the spirit of the regulation is not to allow risk-rating through the base price, I evaluate this
issue empirically.

The ”ley larga” introduced a major restriction that limits the extent of reclassification
of individuals already in a contract: the price increase of each particular plan j in ISAPRE
k cannot be higher than 1.3 times the average price increase of all plans of ISAPRE k.13

Formally,

∆%Pjk ≤ 1.3×∆%Pk (1.2)

where ∆%Pjk is the percentage change in the base price of plan j in ISAPRE k and

∆%Pk is the average price increase for all plans in ISAPRE k.
As shown in section 4, rule (1.2) effectively limits the variation in price increases and

therefore the extent of reclassification risk.

Preexisting Conditions Each new potential insured has to fill a “Health Declaration”
before signing a new contract with a private firm. The companies are allowed to deny
coverage of any preexisting condition during the first 18 months of enrollment, or even to
reject the prospective enrollee altogether. Although there is no available data on the extent to
which ISAPRES deny coverage, anecdotal evidence and conversations with industry actors
suggests that this is a regular practice. Note that preexisting conditions are relevant for

13There is a small share of plans (5%) that are not subject to this rule. In the empirical part I use only
the sample of plans for which this rule applies
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switching across ISAPRES or into an ISAPRE from the public sector, but not within a
given ISAPRE.14

Networks Individuals have access to different types of plans with respect to the provider
network. ”Preferred-provider” plans are tied to a specific network, although enrollees can
use providers outside of their insurers network at a higher price (similar to PPO in the US).
Individuals can also choose - at a higher premium - plans with an unrestricted network of
providers. Under these ”free choice” plans, coverage is not tied to the use of a particular
clinic or health care system, similar to a traditional fee for service indemnity plan in the
United States. Companies also offer a small share of ”closed network” plans, where enrollees
can only use the services of the plan providers or must pay full price (the equivalent of the
U.S. HMO).

1.4 Data

I have access to an administrative dataset containing the universe of insureds in the private
market for the period 2009-2012. This dataset is sent by ISAPRES to the regulatory agency
(Superintendencia de Salud) and was made available through a research partnership. The
data contains the stock of policyholders each month (around 1.5 million per month), including
basic demographics (age, gender, number of dependents, district of residency), wage (capped
to the contribution limit) and plan choice. I have access to the universe of claims in each
month for each individual and his or her dependents. Claim information includes total
cost, insurer cost, copayment, provider identification and geographical location, and a claim
(procedure) code. The data also includes biannual information on the stock of all ”active”
plans in the market, which is updated in January and July. Active plans are defined as those
that are either currently sold in that month or that have been discontinued but are still held
at least by one enrollee. The information on the plans include the company, premiums, the
adjustment factor f , and the date at which the plan was introduced in the market. I provide
the main descriptive statistics of the data in section 6.5 when I describe the construction of
the data for estimation.

Provider differentiation and provider switching

In this section I provide empirical evidence suggesting that the valuation for private insurance
companies in Chile differ across individuals, and that individual’s preferences change over
time, in particular as they develop specific health conditions and as they move geographically.
This evidence supports the notion that evolving preference heterogeneity –the main driver

14Other important characteristics of the plans are : a) Capitation scheme: Plans can either be capitated
or not, b) Maternity-related expenses: Some plans do not have coverage for maternity-related expenses.
Policyholders can opt for these plans and pay a lower premium.
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of lock-in –is likely to be important in the context analyzed in this paper, and motivates the
remainder of the paper.

First, enrollees to health insurance companies that are subject to this study access dif-
ferent networks, particularly for some types of conditions. To illustrate this fact with a
concrete example, in Table 1.1 I list the most frequent providers of cancer treatment for each
of the six companies and the shares of cancer-related claims of each company treated by
these providers in the Metropolitan region of Santiago15. For each company, the list includes
the largest cancer treatment providers in descending order up to the point where providers
jointly account for 80 % of the treatment or more. I also include, for each provider in each
company, the share of claims related to other procedures. Companies are labeled as A, B,
.., F and providers as P1, P2, ..., P16.

Although there are some discrepancies across companies, a few common patterns emerge
from this table: First, cancer-treatment procedures are concentrated in a handful of providers:
more than 80% of the claims are treated by 5-7 providers, depending on the company. These
are most likely big hospitals with a high degree of complexity. While these hospitals treat an
important share of cancer-related procedures, their participation in treating other types of
claims is on average significantly smaller. The cumulative share of other procedures treated
by these providers is fairly small in some of the companies (12 % percent in company F and
10 % in company D), although higher in companies C and E (58% and 41 % respectively).

The relative importance of each provider varies across insurance companies and depends
on the type of claim. Consider for instance the case of companies E and F , and how they are
linked to providers P7 and P4. Provider P7 is the main provider seen by patients enrolled in
a plan under E for cancer-related procedures: 55 percent of such procedures are performed
by provider P7 (along with 14 % of other types of procedures). Provider P7 is, however, an
infrequent destination of enrollees in company F : it treats 5 % of cancer-related claims and
3 % of non-cancer claims. Most of the cancer claims of enrollees from company F (56 %)
are treated by another provider, P4, that does not treat a significant share of other types of
claims in F , nor a significant share of claims of enrollees in E. Thus, differences between
P7 and P4 are likely to be especially relevant in shaping the preferences over companies E
over F for individuals in need of cancer treatment. However, a healthy individual comparing
these two companies upon entering a contract might not consider her taste for P4, since she
is unlikely to utilize it unless she develops cancer.

This table suggests that the provider networks vary across insurance companies, and that
network differences are specific to the nature of the treatment. However, it does not rule
out that individuals sort perfectly across insurance companies in relation to their contingent
preferences for a given network.

In practice, though, individuals do switch companies. Do individuals that switch com-
panies also switch providers? I answer this question by constructing a monthly panel data
sample of individuals from 2009-2012, and follow their enrollment as well as the providers

15This region corresponds to nearly 2/3 of the Chilean private market. These figures were computed using
all the claims data from 2011
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they see. This dataset contains a 10% random sample of enrollees in companies A-E by
january 2009 (including enrollees in the entire country). For reasons I explain later, I ex-
clude enrollees from company F .16 To evaluate whether individuals that switch companies
also switch providers, I run an event-study specification, where the event corresponds to
an insurance-company switch, and the outcome of interest is whether the individual sees a
provider she hasn’t seen before.17 Specifically, I run:

newproviderit =
∑
k

βkD
k
it + ψt + θi + εit (1.3)

where newproviderit is a dummy variable equal to 1 if t is the first time that individual i sees
the provider seen in month t. Since the records of provider utilization are left-censored in
january 2009, I construct the variable newproviderit using the entire time span but estimate
the parameters only on data from the years 2011 and 2012.18 In ψt I include month-year
time dummies, θi is an individual effect, and εit is an error term.

The Dk
it are a series of ”event-time” dummies that equal one when an individual switches

company k periods away. Formally,

Dk
it = 1(t− si = k)

where si is the month individual i switched.
The βk coefficients represent the time path of the probability of seeing a new provider

relative to event of switching insurance company. 19 I estimate equation 1.3 by ordinary
least squares and I normalize β−1 = 0, since the inclusion of individual fixed-effects make
the D’s perfectly collinear. I also place the following endpoint restrictions:

βk =

{
β̄ if k ≥ 7

β if k ≤ −6

Figure 1.2 plots the estimated βk coefficients from a regression of the form given in
Equation 1.3, where the dependent variable is the dummy for new provider, with the cor-
responding 95% percent cluster-robust confidence intervals. The results show a significant
increase in the probability of seeing a new provider after switching insurance companies.
From a baseline probability of 35%, the probability increases by 13 percentage points the
month after switching. The probability of seeing a new provider continues to be higher than
the baseline for 5 months after switching, after which it stabilizes to its pre-switching level.
This result emphasizes that individuals do switch companies, and when they switch, they

16Since an individual may see more than one provider in a month, I use the provider with the largest
amount of claims in the month per individual.

17This specification follows closely Kline, 2012.
18Although this issue should be largely addressed with the time dummies, the results are robust to running

OLS only on the 2012 data.
19For simplicity, I drop all the observations after an individual switches companies for a second time

during the period, which corresponds to about 4 % of observations.
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do see different providers. This is evidence against the simplifying assumptions that make
guaranteed-renewable contracts ”perfect”, which require no heterogeneity across companies
or stable preferences for them over time.

As another piece of reduced-form evidence showing that lock-in with a given insurer is
potentially important, I show that destination companies among switchers are different across
individuals with different pre-switching health status. That is, high-risk switchers generally
switch to different companies than those preferred by the low-risk when they switch. First,
I show this evidence by calculating differences by health status in the net flows into each
company. I define net flow into company k as the difference between the number of people
switching into k and the number of people switching out of k, as a share of total switchers.
The net flows for the monthly panel sample are in Table 1.2. For instance, during the
sample period, healthy individuals switch in net out of company B, with a net flow of -8.5
% . On the other hand, individuals with preexisting conditions disproportionately switch
into company B, with a net flow of 6.1 %. Differences in net flows across health status
are statistically significant for all companies except for company A. As an additional test, I
show in Table A.1 the results of estimating a multinomial logit on the sample of switchers for
the probability of choosing each of the companies, as a function of health status and other
demographics. Several specifications robustly show that pre-switching health condition is a
statistically significant determinant of the destination company.

Finally, the data shows that geographical location is also a potentially important de-
terminant of individual valuation’s for each company. Chile is split in 346 districts, which
belong to one of 53 provinces, which in turn belong to one of 15 regions. Panel (a) of Fig-
ure 1.3 plots the market share of the 6 open ISAPRES by region for the 10 largest regions
in terms of number of insureds. For instance, while company 1 has around 20 percent of
the market share in the largest region, it has only 10 percent of the market in the second
largest. In panel (b) I show the market shares of each company also varies substantially
across districts of region 1 (Metropolitan Area). Company 1 has a market share of around
30 percent in the largest district, 18 percent in the second largest and around 12 percent
in the third largest. Overall, these pictures suggests that there are substantial differences
across districts in the relative valuation for difference insurance companies. To understand
the variation of preferences across geographic in section A.2 I show that market shares at
the district level are positively correlated with the presence of in-network providers in each
district. The presence of an in-network provider in the district is associated with a 12 higher
market share.

1.5 Empirical evidence on guaranteed renewability

In this section I show evidence that the main features of guaranteed-renewable contracts are
present in the Chilean health plans. The findings in this section motivate the remainder of
the paper that estimates the welfare consequences of these contracts using a structural choice
model. In particular I show evidence that 1) there is low reclassification for individuals who
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remain in their contract, 2) premiums are front-loaded, and 3) individuals buy contracts in a
”spot market”. In the estimation section, I also show that premiums in the spot market are
correlated with an individual’s previous health expenditures even after controlling for plan
generosity.

Reclassification risk Private firms are not permitted to unilaterally cancel an individual’s
contract. Moreover, they cannot change the contract’s characteristics. However, in principle,
they could effectively force out an enrollee by a large enough increase in her premium. The
rule described by equation 1.2) aims to eliminate this possibility, by constraining the variance
of price increases: the price increase of a single plan cannot exceed 1.3 times the average
price increase in the corresponding company.

There are many ways in which ISAPRES could effectively comply with this constraint.
To show how this constraint works in practice, in Figure 1.4 I show histograms with the
distribution across plans of yearly (real) price increases (in percentage points) for the period
2010/2011, which is representative of the pattern for all years in the sample.20 Although
there are many possible ways to comply with 1.2, Figure 1.4 shows that in practice companies
pick only a handful of price increases to apply to most of the contracts. This practice limits
the correlation between individual health shocks and individual price increases, which implies
very limited reclassification.

Front-loading I show evidence of front-loading by looking at the evolution of premiums
relative to health claims for individuals who stay with their insurance company. Let hit be
the total claims (insurer cost) in period t of individual i, and Pit the corresponding premium.
I show that the ratio ratit = hit/Pit is increasing in t.21 This test is equivalent to Hendel
and Lizzeri, 2003’s, who report that the ratio of yearly premium to probability of death
in the life insurance market shows a decreasing pattern over time. Similarly, Marquis et
al., 2006 show evidence of front-loading in California’s individual market by showing that
among longer-term enrollees, families that include an adult who contracts a chronic medical
condition after enrolling in the individual market pay less than families with a chronically
ill adult at enrollment.

Still, decreasing markups is a strong test of front-loading, as even in its the presence,
markups could increase over time if individuals display enough inertia (as is often the case
in health insurance markets, see e.g., Handel, 2013 and Jackson Abaluck and Gruber, 2011;

20In the interest of space, I do not show the distribution for other years, but they are available upon
request

21As Herring and Pauly, 2006 argue, front-loading does not necessarily imply a decreasing premium
schedule. Premiums can increase only to reflect the increase in the spot price of the healthy individuals.
Instead, front-loading means that the (expected) markup decreases as individuals stay in the contract. Since
the theory predicts full insurance, there is no distinction between total cost and insurer cost. However, since
individuals that stay in the same contract keep their coverage rates, the distinction is not relevant for testing
the dynamics of either one relative to premiums. The results of Table 1.3 are robust to using total cost
instead of insurance costs.
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Jason Abaluck and Gruber, 2013). In markets with consumer inertia, firms are expected to
use an ”invest-then-harvest” pattern for prices, i.e., start charging a low price and increase
it over time (Farrell and Klemperer, 2007).22 In the context of one-sided commitment,
guaranteed renewable contracts combined with an ”invest-then-harvest” strategy do not
imply unambiguous price patterns. Intuitively, inertia relaxes the no-lapsing constraint that
is needed to incentivize the healthier to stay. Therefore, firms can charge in period two a
price that is above the actuarially fair premium for the healthy type. This increased revenue
in period two is passed on to the first period in the form of lower premiums.23 Moreover,
the evidence I provide is limited to the first 4 years of enrollment.

I test the hypothesis of increasing markups using the monthly panel of the sampled
individuals enrolled in January 2009 and followed until December 2012.

As is common in health expenditures data, hit (and therefore ratit) has a significant zero
mass and is heavily skewed. In this setting, the use of generalized linear models (GLM) has
become popular to deal with the undesirable properties of standard OLS methods or two-
part models.24 I estimate the model using the method of generalized estimating equations
(GEE), which extends GLM to take into account potential within-individual correlation
(Blough, Madden, and Hornbrook, 1999 and Nedler, 1989). I specify a log link and gamma
distribution with an AR(1) process. In a first specification I estimate

log(E(ratit)) = α + β × Tit (1.4)

with rit ∼ Γ. I also investigate whether the parameter β varies across age groups by inter-
acting Tit with three age groups (as of January 2009) ; 20-35, 36-45, and 45+ :

log(E(ratit)) =
∑
g

1(agegroupi = g)(αg + βg × Tit) (1.5)

The parameter estimate pooling age groups is β̂ = .078(0.007) corresponding to a
marginal effect of an extra year enrolled of .050(0.005). The results allowing different slopes
for each age group, in the second column of Table 1.3, indicate that the slope of ratit is not
statistically different across groups.

Overall, these results indicate that markups decrease over time as individuals stay en-
rolled in the same plan, as suggested by the theory of guaranteed renewable contracts.

Spot markets One key aspect of markets with guaranteed-renewability is that consumers
buy contracts in a spot market, where contracts are tailored to their risk. I argue that in
the Chilean market environment this spot market exists.

Plans are constantly created. Between January 2009 and December 2011, ISAPRES
created on average more than 5400 plans per year. The constant creation of plans allows

22Indeed, Ericson, 2012 shows that premiums in Medicare Part D plans follow this pattern.
23Thus, a test for invest-then-harvest pricing strategies in the context of guaranteed renewability would

look for the presence of potential savings that healthy enrollees would make conditional on switching
24See Buntin and Zalavsky, 2004 for a review of the methods handling skewed health care cost.
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ISAPRES to potentially have plans with slightly different features but different coverage
rates and premiums.

A couple of features of this market support the notion that insureds are not free to
shop across all the plans, and their choice set is restricted to the offers made by insurance
companies to them. First, there is no centralized resource where price quotes are available
from all the plans offered by different companies. Survey data on plan choice in this market
shows that around 70 % of individuals chose among a few options offered by a sales agent
(Criteria Research, 2008).

The dynamics of plan purchase are also consistent with the existence of an active spot
market. To show how the purchase of plans relate to the date at which plans launched in
the market, I split plans into different ”plan cohorts”, defined as a function of the date when
they were created. In particular, I split plan into 6 different groups: group 1 contains all
plans created before July 2007, group 2, plans created between July 2007 and June 2008,
and so on, until group 6, which contains plans created between July 2011 and June 2012.

In Figure 1.5 I show the share of switchers in date t that switch to plans of each cohort.
This exercise is conducted for the same random sample of enrollees in January 2009. It shows,
for instance, that almost 90% of individuals who switched in January 2009, did so to plans
created between july 2007 and june 2008 and almost 10% switched to plans created after
July 2008 (a negligible share of individuals switched to older plans). The pattern is repeated
over time: the majority of switchers in a given moment in time switch only to relatively new
plans. Figure 1.6 shows a similar pattern for switchers within insurance companies.

Switching and health status

It is expected in GR contracts that switching rates will be decreasing in health expendi-
tures. To test this hypothesis, I estimate a proportional hazard model for the probability of
switching companies using the monthly panel of individuals enrolled in January 2009.25

I identify individuals with a preexisting condition using the claims data. The data con-
tains a detailed procedure code that I link to medical conditions that are typically considered
by ISAPRES as preexisting conditions.26 In Table 1.4 I show a list of the six conditions con-
sidered, as well as their prevalence in the data (column 2). As shown in Table 1.4, the
prevalence rates compare well with self-reported prevalence rates derived from survey data
shown and shown in column (1).27

I estimate a proportional Cox model for the hazard rate of switching companies, λit, as
a function of a set of covariates Xit

25In the subsample of individuals for whom I observe a complete spell within an insurance company in
the period.

26For instance “Simple vascular access for hemodialysis” is considered to indicate Renal Insufficiency.
27I use the 2009 wave of Social Protection Survey, which is a nationally representative survey on a variety

of issues related to social protection. This survey asks individuals if they were diagnosed with a variety
of conditions, as well as health insurance enrollment. More information in http://www.previsionsocial.

gob.cl/subprev/?pageid=7185
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λit = λ0t × exp(βXit) (1.6)

where λ0t is a time-specific baseline hazard rate The results are found in Table 1.5, for
different specifications. In Column (1) I only include a dummy for preexisting conditions,
which is equal to 1 for every period after the first realization of a procedure related to con-
ditions listed in Table 1.4, 1(preexit > 0). The estimated hazard ratio is 0.74, indicating
that individuals with preexisting conditions are 26% less likely to switch companies. Column
(2) shows that this result is robust to including a quadratic term on age and a dummy for
gender. In Column (3) I add controls for contemporary measures of healthcare utilization.
I compute three-month moving averages of health expenditures and create a) the logged
amount of spending on preexisting conditions, 1(hpreexit > 0) × log(hpreexit ), and b) an in-
dicator for any health expenditure 1(hit > 0) and its interaction with the logged value of
all health expenditures 1(hit > 0) × log(hit). The results reflect interesting patterns: the
presence of a preexisting condition is strongly (negatively) correlated with switching rates
even after controlling for the amount of contemporary expenditures. Total expenditures on
preexisting conditions among individuals with preexisting conditions are slightly correlated
with switching rates. On the contrary, other types of health expenditures only have an effect
in the extensive margin : positive health expenditures do not predict lower switching rates,
but among those with positive expenditures, higher total expenditures does predict lower
switching. I interpret these results as reflecting that higher health care utilization does in
general cause lower switching rates, but that preexisting conditions cause lower switching
rates beyond the increased expenditures they produce. This is consistent with a model in
which individuals who have claims do not want to switch companies (so as not to lose their
provider) and/or higher expenditures imply higher prices in the spot market, but also that
insurance companies also limit the extent to which individuals with preexisting conditions
are able to switch. I will incorporate all these possibilities into the structural analysis in the
next section.

1.6 Structural estimates

The reduced form evidence revealed differences in switching rates across health groups. In
this section I turn to a structural model to jointly estimate the demand-side decision to
enroll in a plan and the supply side plan offers from insurance companies depending on
health status. The structural model allows me to quantify the welfare consequences of lock-
in and simulate counterfactual scenarios, at the cost of several modeling assumptions.

Discrete Choice Model

The demand-side of the model –plan enrollment given a choice menu –follows mainly Jackson
Abaluck and Gruber, 2011, who provide the micro-foundations that allow to conveniently
specify utility as a linear function of plan’s characteristics, and at the same time incorporate
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realistic departures from full optimization under full information. In addition, I incorporate
heterogeneous and time-varying preferences for plans, which is the fundamental source of
lock-in.

Individuals face different money lotteries and maximize flow expected utility. Let OOP jk
it

be out-of-pocket costs for individual i in period t under plan j of company k. E
(
OOP jk

it

)
and V ar

(
OOP jk

it

)
are a function of the individual’s health risk and the financial characteris-

tics of plans (copays and caps). Assuming CARA utility with risk-aversion parameter γ and
normally-distributed cost process, Jackson Abaluck and Gruber (2011) show that an individ-
ual’s utility for plan (j, k) in period t, U j,k

i,t can be approximated by (ignoring heterogeneity
in non-financial characteristics across plans):

U jk
it ' −P

jk
it − E

(
OOP jk

it

)
− γ

2
V ar

(
OOP jk

it

)
(1.7)

Equation 1.7 implies three main restrictions to the parameters governing utility, namely
(1) a one dollar decrease in premiums is equivalent to a one dollar decrease in expected
out-of-pocket expenses, (2) a γ/2 dollar increase in premiums is equivalent to a one dollar
increase in the variance of out-of-pocket expenditures, where γ is the risk-aversion parameter,
and (3) financial characteristics of plans should not matter beyond their effect on the mean
and variance of out-of-pocket expenditures.28

Following Jackson Abaluck and Gruber (2011), I use a more flexible alternative that
allows for “choice inconsistencies” by relaxing the above restrictions on the parameters.

U jk
it = −β0P jk

it − β1E
(
OOP jk

it

)
− β2V ar

(
OOP jk

it

)
+ λf jk (1.8)

where f jk are the financial characteristics of the plans. I also allow for individual-specific
tastes for each insurance company (”brand intercepts”, Berry, 1996). These intercepts,
which I denote by αjkit , capture consumer heterogeneity in tastes for each firm based on
factors that are unobserved. These include individual-specific heterogeneity over tastes for
the provider network of each company, among other factors that make an insurance company
more attractive to an individual but are not directly observed in the data. By including other
observable dimensions of heterogeneity in plans, Xjk

it , and idiosyncratic taste shocks, ujkit , the
final demand specification is:

U jk
it = αkit − β0P

jk
it − β1E

(
OOP jk

it

)
− β2V ar

(
OOP jk

it

)
+ δXjk

it + λf jk + ukit (1.9)

In general, the brand intercepts αkit are aimed to capture unobserved attributes for which
people have heterogeneous tastes that are constant over time (Keane, 2013). It is particularly
important to incorporate these factors when analyzing lock-in because stable preference

28Jackson Abaluck and Gruber (2011) and Jason Abaluck and Gruber (2013) show that all of these
restrictions are violated in the market of Medicare Part D.
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heterogeneity for ISAPRES decreases the extent to which individuals would like to switch
over time. However, I also allow these intercepts to vary deterministically as a function
of time-varying covariates Zit, in order to capture potential sources of lock-in associated
with changes in these observables. In particular, I allow health expenditures and individual
geographic location to be included in Zit, so that preferences for different firms are allowed
to depend on an individual’s region of residency and risk profile. These brand intercepts αkit
are assumed to be normally-distributed, with

αkit ∼ N (αk0 +
S∑
s=1

λksZits, (σ
k)2)

where λks is the differential valuation for company k after a one-unit increase in the charac-
teristic Zts.

The idiosyncratic taste shocks ujkit are assumed to arise from unobserved attributes of
plans for which people have heterogeneous tastes that vary over time Keane, 1997. This
interpretation motivates an AR(1) specification (Keane, 2013). I allow for autocorrelation
within insurance companies as well as autocorrelation within plan, such that ujkit = κ2u

jk
it−1 +√

1− κ2vjkit and uj
′k
it = κ1u

jk
it−1 +

√
1− κ1vj

′k
it with vjkit ∼ N (0, 1) and vj

′k
it ∼ N (0, 1).

In Xjk
it I include an individual-specific measure of the utility derived from the provider

network of the plan. I assume that the utility of having a plan with a restricted network of
providers instead of an unrestricted network is given by −βRN . When switching plans from
a restricted network-plan (j, k) to a restricted network (j′, k′), I assume that the disutility
of doing so, denoted by ψ, is proportional to a ”provider-distance” measure d (to be defined
in more detail in the following section)

ψ
(
N j′k
it−1′ , N

jk
it

)
= −βRN1(RN jk

it )− βd1(RN jk
it )× 1(RN j′k′

it−1)× djk,j
′k′

The term βRN captures the disutility of having a restricted provider network, whereas βd
captures the extra disutility of switching to a plan that has a different provider network
than the source plan. Finally, I allow for variation in the coefficients βRN and βd as a
function of health status, to capture the fact that the ”distance” across providers could
matter differentially for individuals with different levels of utilization of care. Specifically, I
allow βRN,it = βRN0 + δRN × log (1 + hti) and βd,it = βd0 + δd × log (1 + hti).

Forward-looking behavior

This demand model abstracts away from forward-looking behavior. Forward-looking gen-
erates an option value that may affect current choices, since they affect the set of feasible
future choices. Specifying a dynamic demand model would require to specify individual’s
perceptions about the distribution of their future preference shocks, supply-side behavior
regarding reclassification, and discount rates.29

29The complexity of choice in health-insurance as well as the evidence showing choice inconsistencies
in this market is arguably a main reason why most recent papers estimating health insurance demand in
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I mostly worry about individuals that predict being locked-in because of high future
health expenditures decide on their insurance company accordingly. As a reduced-form test
for this behavior, I look at active enrollment decisions (choice of ISAPRE) in 2009 and how
they correlate with future health expenditures in 2010 and 2011 controlling for current health
expenditures using a multinomial logit with score skit = βXi + γ0log(1 + hi,t) + γ1log(1 +
hi,t+1) + γ2log(1 + hi,t+2) + βXk. I cannot reject the null that γ1 = 0 and γ2=0 (see Table
A.4).

Construction of key explanatory variables

Some of the key variables that enter in the demand model described above are not directly
observed in the data. In this section I briefly explain how I construct each of them.

Financial characteristics: effective coverage rate Plan-specific coverage rates are
only partially observable in the dataset. Plans typically specify outpatient and inpatient
copayment rates as well as per-service caps that can depend on the provider and the specific
service. Since I only have access to a general copayment rate for outpatient and inpatient
rate, I calculate an ”effective coverage rate” c (or “actuarial value”), as the share of health
care costs that a health plan effectively covers using the claims data. Specifically, for each
plan I calculate c as the sum of all copayments and divide by total claims (insurer cost +
copayment):

cp = 1−
∑

i∈Ip
∑

s∈Si
Copaymentis∑

i∈Ip
∑

s∈Si
(Copaymentis + InsurerCostis)

where Ip is the set of individuals i enrolled in plan p
and Si is the set of claims of individual i. For plans with a restricted provider network, I

calculate a different coverage rate for in-network providers (cp,in) and out-network providers
(cp,out). In the choice model, I estimate the weight w that individuals put on each coverage
rate. Specifically, financial characteristics of the plan enter as

f = βc × (1(RN = 0)× cp + 1(RN = 1)× (w × cp,in + (1− w)× cp,out))

Out-of-pocket expenditures I use a rational-expectations assumptions to model out-of-
pocket expenditures for each individual in each plan (see e.g Jackson Abaluck and Gruber
(2011) and Handel (2013)). Under this assumption, individuals predict their future health
shocks based on current information available. For new enrollees, I calculate the mean
and variance of health expenditures within each decile for the year following enrollment,

dynamic settings do not incorporate forward-looking behavior (e.g., Handel, 2013 or Jason Abaluck and
Gruber, 2013). A recent literature uses Medicare part D dynamic pricing incentives to estimate discount
factors and myopia in drug purchases, and finds strong levels of myopia (see e.g., Dalton, Gowrisankaran,
and Town, 2015, Jason Abaluck, Gruber, and Swanson, 2015)
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conditional on 10 deciles of health expenditures during the month of enrollment, within
gender and 5-year age bins. For incumbents, I calculate the mean and variance in year t
conditioning on health expenditures during year t− 1.30

Network - distance across plans Claims data allow me to determine the set of in-
network providers for a given plan, as each claim identifies the provider and whether it
corresponds to an in-network or an out-of-network claim. Let N jk be the set of in-network
providers for plan j in company k. I define the ”distance” between two RN plans, in terms
of their provider networks, as the number of providers that are in (j, k) and (j′, k′) over the
number of providers that are in (j, k) or in (j′, k′). Formally,

d
(
N jk, N j′k′

)
≡ 1−

∣∣N jk
⋂
N j′k′

∣∣
|N jk

⋃
N j′k′|

The measure d is equal to 1 when all the plans in the network of (j, k) are also in the
network of (j′, k′). On the contrary, if there are no plans in the network of both plans, d
is equal to 0. In to visualize the outcome of this exercise, Figure 1.7 graphs each plan in
a Euclidean two-dimensional space, where the coordinates have been calculated to reflect
pairwise distances across plans.31

The average d across distinct plans in the sample is 3.1%, but there is substantial variation
in the data, both within and across insurance companies. The company with the least
diversified network is company F with an average d within its plans of 20%, while the
company with the most diversified network is company C with an average d of only 3%.
Although generally plans within the same company are closer to each other than plans
across companies, companies 3 and 5 have similar networks. The variation of d within and
across companies allows me to identify the role of the provider network separately from
individual-specific brand-related tastes for insurance companies.

Choice sets

As suggested by the survey evidence regarding plan choice in Criteria Research, 2008, the
large number of plans and the impossibility of searching across all potential plans in the
market means that, for most individuals, the choice set is de facto restricted to the menu
offered by the sale agents. In this scenario, allowing individuals to choose among all plans
available in the market is unlikely to recover consistent demand parameters. I handle this
problem by explicitly restricting each individual’s choice set before estimating demand.

First, I form each choice set to comply with the guaranteed-renewable environment. As
such, the plan chosen by individual i in year t is always available to individual i in t+ 1 at
the corresponding guaranteed price. On top of their guaranteed-renewable plan, individuals

30I do not observe cohort “0” expenditures in 2008 to predict their claims in 2009. However, since for this
cohort I only estimate choices in 2010 and 2011 conditional on the choices in 2009, this is not problematic.

31The representation is only determined up to location, rotations and reflections.
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receive offers in the spot market that depend on their observable characteristics D. The
vector D includes age and gender to account for risk-rating through the f function, and
wage, to comply with the 7 % rule. I also allow potential offers to depend on an individual’s
geographic location and family composition.

Offers received in the spot market are subject to underwriting. By including age and
gender in D, I account for risk-rating through the r risk-rating function. In order to allow
for potential risk-rating through the base price PB, I also include in D the overall health
status, captured by individual’s health expenditure quintile between t − 1 and t, hit. The
extent to which firms are able to discriminate through the base price is an empirical question,
but the myriad of plans available and constantly created suggest that this possibly cannot
be ruled out ex-ante.

I allow coverage denial as a second form of underwriting, to account for the possibility
that individuals with preexisting conditions are not offered plans from other firms in the spot
market because of their health declaration. Specifically, incumbent individuals enrolled in
company k receive spot offers from other companies k′ 6= k with a probability that depends
on whether the individual has a preexisting condition, denoted ρs(1(Preexit). In particular,
I parametrize ρs as:

ρs (1(Preexit) = 2× (1− Φ(θs × 1(Preexit))

The parameter θs, to be estimated, captures the degree of dependency of offer rates on
the presence preexisting conditions. The offer rate is equal to 1 (plans are offered to anyone
regardless of preexisting conditions) when θs is equal to 0, and it decreases as θs increases. In
the interest of reducing the number of parameters to be estimated, this specification makes
two simplifying assumptions. First, ρs is not permitted to depend on the insurance company,
even if there might be differences in the underwriting procedures across these firms. Also,
I estimate a single parameter for all preexisting conditions, although I expect that some
conditions classified as preexisting, like depression, entail lower levels of coverage denial
compared to conditions like cancer that are more expensive to treat. As such, ρs reflects the
average offer rate across ISAPRES for the average individual with a preexisting condition.

I summarize the supply behavior of each company k as an ”offer-policy”,

Mk (D, h,1(Preexit)) =
{
P k
(
Xk,D, h

)
,Xk (D, h) , ρs ((Preexit))

}
(1.10)

The offer policy is a function that maps demographics and health status to the charac-
teristics of offers in the spot market. In each period t, an incumbent individual is confronted
with an offer from each company k complying with the corresponding offer policy, and the
guaranteed renewable plan, MGR

it . The argument ρs(Preexit) is meant to capture that an
individual enrolled in company k receives spot offers from companies k′ 6= k with probability
ρs.

Finally, the model allows for inertia, which is a widely-documented phenomenon in health
insurance purchase (see for instance Handel (2013) and Jason Abaluck and Gruber (2013)).
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In this market, inertia is potentially important considering the large number of plans avail-
able. Therefore, I model inertia as arising from ”inattention”, such that individuals may
not necessarily see all the choices in their potential choice set when deciding to renew their
plan. Arguably, other reasons besides inattention (or search costs) might cause inertia, such
as habit formation, learning, or real switching costs (like hassle costs of paperwork involved)
(see Handel, 2013). In practice, it is empirically difficult to disentangle among alternative
explanations without direct measures of these costs or strong assumptions. In practice, I
model inertia as the probability of making an active choice in every period after the first en-
rollment period, similar to Grubb and Osborne (2015) and Ching, Erdem, and Keane, 2009.
Specifically, in every period after the first, individuals actively choose between guaranteed-
renewable plans and the spot offer received from their insurance company with probability
ρw. Also, among those that actively choose within their insurance company, some also search
across all other insurance companies with probability ρa.32 This specification of inertia thus
operates through the plans that individuals consider in their choice set. In one of the spec-
ifications I allow ρw and ρa to depend on the individual’s potential savings for switching in
terms of premiums, ∆P , so that ρw = ρw0 + ρwsav ×∆P and ρa = ρa0 + ρasav ×∆P . I also allow
ρa to depend on age, so that ρa = ρa0 + ρa × (age/age− 1), where age is the average age in
the sample.

Putting together the supply and demand features, I have a probabilistic choice set model
for incumbent individuals. In period t = 1, an entrant individual makes an active choice
considering offers from all the companies. However, in every period t > 1, an individual
previously enrolled in plan j of company k will have a choice set that matches one of three
mutually exclusive possibilities C1

it, C
2
it, or C3

it:

• C1
it = M j1

it ∪M
j2
it ... ∪M

jK
it ∪MGR

it : guaranteed renewable contract and spot contracts
within and across insurance companies. This happens if the individual searches within
and across insurance companies and is offered a plan in each. All new clients are
assumed to have this choice set when they pick a plan for the first time.

• C2
it = M

jkt−1

it ∪ MGR
it guaranteed renewable contract and spot contract within their

insurance company. This occurs if the individual (a) searches only within her insurance
company or (b) searches within and across insurance companies but is not offered a
plan in the other companies.

• C3
it = MGR

it : only guaranteed renewable contract.

Let Ci be the set of all potential choice sequences and Cs
i an element of Ci.

33 Since
the probability of a given choice sequence depends on the choice set Ci drawn by the
individual, the overall choice probability is

32This is equivalent to assuming that individuals have infinite search cost with probability ρw and ρa for
switching within and across, respectively.

33For instance, an individual entering the market in 2009 and observed in 2009, 2010 and 2011 has 9
potential choice set sequences; the combination of the 3 options listed above in 2010 and the same 3 options
in 2011.
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Pr (di) =
∑
C

Pr (d|Ci = Cs
i )Pr (Ci = Cs

i ) (1.11)

Identification

Here I discuss identification of the key parameters of the model. A common identification
issue in choice models in panel data is how to disentangle between the roles of state de-
pendence from autocorrelation. I do so with functional form assumptions and exclusion
restrictions that leverage time-varying covariates. Autocorrelation, modeled as an AR(1)
process, implies that the probability of repeating a choice that has small observed utility
decreases over time. The main exclusion restriction that allows more robust identification
is that lagged premiums do not affect current utility. In the absence of state dependence, a
transitory change in premiums causes at most a transitory change in the outcome, while in
the presence of state dependence a transitory shock has a persistent effect in the outcome
(see Hyslop, 1999).

Another identification issue is separately identifying preference heterogeneity from state
dependence. In this setting, individual-specific plan characteristics help to identify preference
heterogeneity using the cross sectional data because of the presence of alternative-specific
premiums and coverage rates (that vary within insurance companies which is the level at
which I allow unobserved preference heterogeneity). Also, the covariate-specific brand inter-
cepts are identified from the presence of different plans in a given firm and individual-specific
prices. Still, I also impose a parametric model as it is typically done to identify state depen-
dence from preference heterogeneity Keane, 1997. In this paper, I model state dependence
by assuming that individuals choose actively with a probability that is constant over time (or
depends deterministically on age and potential savings) as in Grubb and Osborne, 2015. The
preference parameters that enter in the flow utility are identified from the choices of individu-
als who enter the market (see e.g., Handel (2013)), under the assumption that unobservables
are uncorrelated with premiums and characteristics.

The inertia parameters ρw and ρa are identified by the switching rates of healthy individ-
uals within firms and across firms. The parameter governing offer rates θ is identified based
on the assumption that inertia does not depend on having a preexisting condition, which is
the key identification assumption of the model. If individuals become more aware about their
plans and their incentives to search increase after acquiring a preexisting condition, the θ
would be negatively biased. On the other hand, if individuals with preexisting conditions are
discouraged to search because they correctly predict lower offer rates, θ would be positively
biased. I discuss the sensitivity of the results to the estimated θ.

As is common in these models, incumbent individuals are assumed to have the same
preferences as individuals who are new entrants to the market, so that inertia is identified
from differences in choice between observationally equivalent incumbents and new entrants.
Although covariates of incumbent individuals do differ from new individuals entering the
market, empirically there is a substantial degree of overlap. In particular, I show the kernel
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density estimates of age for incumbents and new entrants (by pooling all new entrants across
years) in Figure 1.8.

Finally, δRN and δd are identified from the gradient in switching rates across health
expenditures and plan distances, using the variation in network distances within and across
insurance companies.

To set the level of utility, I normalize the intercept α5
it = 0 in equation (1.9). Normalizing

the scale requires normalizing the variance of one the composite error terms, which I achieve
by setting σ4 = 0, so that var(ε4) = 1.

Construction of estimation sample and descriptive statistics

I construct a yearly panel, where the year t is defined to begin in September of each corre-
sponding calendar year. I define three cohorts of “new clients” that enter the system between
October of t− 1 and September of year t for years t = 2009, 2010, 2011.34

From a universe of approximately 1.5 million enrollees, there are approximately 120
thousand new enrollees each year. I perform a few sample restrictions among the new
clients: I keep only individuals that have individual plans, with contracts under ”open”
ISAPRES (so enrollment is not limited to specific industries), and whose plans are subject
to the standard pricing regime, which correspond to around 100 thousand of new enrollees
per year. I only keep individuals older than 25 and younger than the corresponding legal
retirement age (60 for females and 65 for males) leaving around 70 thousand new enrollees
each year. Besides these sample restrictions, I drop observations with invalid or missing
wages, or plan characteristics. Due to miscoded plan identifiers that resulted in difficulties
in matching plans to their characteristics for one of the 6 insurance companies included in
the analytical dataset, individuals buying their first plan with that company are eliminated
from the sample. 35

To the universe of new clients described above, I add a 10% random sample of incumbent
clients as of September 2009 who are followed until 2011. I label these as ”cohort 0”. Cohort
0 is subject to the same sample restrictions detailed above. I also drop those that enrolled
in the system before july 2005, before the major law (”ley larga described in section 1.3)
substantially changed the pricing rules of plans. The inclusion of cohort 0 permits a richer and
more representative support on the health expenditures distribution. However, as explained
in Section A.4, choices of cohort 0 in 2009 cannot be estimated with an autocorrelated

34For each individual, I the date when she entered into a contract with her current insurer, but the date
when she entered the overall system. I identify individuals that enter the system for the first time in period
t, as those that entered a contract with a firm in t and cannot be found contributing to the system in any
earlier period. This method yields a cohort in 2009 that is substantially larger than those of 2010 and 2011.
Since there are no structural reasons for this to be the case, I use a matching technique to get a subsample
of cohort 2009 of the same size as of cohort 2010 with similar demographic distribution.

35Individuals switching to that company, or to other plans not considered in the sample are treated as
”leaving the sample”
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error structure. The likelihood of the choices of cohort 0 in 2010 and 2011 are estimated
conditional on their choices in 2009

The final sample consists of approximately 313,000 individual-year pairs. The main
demographic characteristics are summarized in Table 1.6.

Around 60% of the individuals in the sample are men, and the average age is 34 years
old. Almost two-thirds of individuals live in Santiago. In the estimation sample, between
13 and 20 percent of individuals have a preexisting condition, depending on the cohort and
year. Cohort 0 is older, has higher wages, and a higher share of individuals with preexisting
conditions. On average, around 80 percent of individuals remain in the same plan from t
to t+ 1 and around 13 percent of individual switch within the same insurance company, so
that on average 7 percent switch across insurance company from year to year.

The panel dataset contains plan choices for each individual in the estimation sample.
Each individual has one (potential) spot offer from each insurance company, with the ex-
ception of those living in seven (out of fifteen) ”special regions”, where insurer ”C” has a
negligible market share. Individuals living in one of these regions are assumed to receive
offers only from the other 4 companies.36 Also, the guaranteed-renewable plan is always in
the choice set of incumbent individuals. The main characteristics of the plans in the choice
set are described in the Table 1.7

Spot offers made to each individual in the sample are constructed by assigning to each
individual, in each period, a plan within the set of plans to which an individual with her
same characteristics D switched during a window of 12 months. In practice, I assign a spot
offer to each individual from each insurance company by finding an exact match on gender,
age, region, and health expenditure quintiles, and a nearest-neighbor match on wage, where
the neighbor of individual i is found among those individuals with weakly higher wages, to
be consistent with the ”7% rule”.

With the sample of spot offers I can evaluate empirically the presence of risk-rating
via spot prices. I do so with the OLS estimates of log of premium on health expenditure
quintiles, after controlling for demographics and for plan’s characteristics as in the following
specification,

log
(
P jk
it

)
= αj + βhhit + βDDit + βXX

jk
it + εjkit (1.12)

where hit are health expenditures quintiles during year t− 1, Xit are plan characteristics
besides premium, and Dit is the set of demographic characteristics.

Column 1 of Table 1.8 shows the results of a specification in which only plan character-
istics are added as controls: insurer dummies, effective coverage, quality, and a dummy for
unrestricted network. The fit of this model is only 20%, and the restricted network coefficient
has the incorrect sign. When age category and gender interactions are included, the fit of
the model increases substantially, and the unrestricted network coefficient has the expected
sign. This reflects the risk-adjustment on age and gender though the r function. Column (3)

36regions 1-4,11,12, and 15
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includes health expenditure quintile dummies, and shows an increasing relationship between
health expenditures in the previous period, suggesting some moderate level of risk-rating via
spot prices: individuals in the highest quintile of health expenditures pay on average 9.0%
more in premiums for plans with equivalent characteristics. I will incorporate this empirical
level of risk-rating when simulating choice sets under the current scenario.

Estimation Procedure

I estimate the model using the Geweke-Hajivassiliou-Keane (GHK) multivariate normal sim-
ulator (J. Geweke and Keane, 2001, Keane, 1993; Keane, 1994, and Hajivassiliou, McFadden,
and Ruud, 1996). GHK is convenient over standard accept/reject simulators since it requires
the simulation of choice probabilities only for the chosen sequence. The algorithm consists
of drawing the composite errors for each of the alternatives in each period from a normal
distribution that is consistent with the chosen sequence. GHK permits the incorporation of
cross-sectional correlation (present because an individual in period t might face two offers
from the company she picked in t − 1) and time-series correlation (because of the AR(1)
structure of the error term). The details of this procedure are in section A.4, but a few
important modifications to the standard procedure are worth mentioning here. First, the
guaranteed-renewability of contracts makes the choice set in a given period dependent on
past choices. In particular, the company chosen in period t defines the company of the
guaranteed-renewable contract in period t + 1 and therefore the correlation of its random
components with those of each spot contracts. In practice, this makes the structure of the
variance-covariance matrix of the composite error term αi + uit to be individual-specific.
Also, the standard GHK procedure assumes that the econometrician observes the entire
choice sequence. In order to incorporate ”cohort 0” into the analysis (those incumbents
individuals in the first period), I adapt the algorithm to allow for a truncation in the ob-
served past choices. In section A.4 I show that a simple extension to the standard procedure,
writing the likelihood for the choices in 2010 and 2011 conditional on the observed choice in
2009, allows for the use of the information provided by the choices of this cohort.37. Finally,
in order to incorporate random choice sets, I jointly simulate the choice set and the error
terms. In each repetition of the simulation, I simulate a choice set sequence and then the set
of random normal terms. I use standard maximization techniques with R = 200 repetitions.

37This solution is in the same spirit of Wooldridge, 2005’s solution to the initial conditions problem in
dynamic panels. However, in this case, the problem arises from the guaranteed-renewability environment
that makes individual-specific covariance matrices in year t to depend on the choices in year t− 1.
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1.7 Results

Parameter Estimates

Table 1.9 lists the estimates for the main parameters of the model for three different specifi-
cations. The first specification, in Column (1), restricts ρa = ρw = ρs = 1, so that the choice
set the individual confronts is always the full set of potential choices. Column (2) shows
the results of a specification in which ρa, ρw, and ρs are estimated. The third specification
allows ρa and ρw to depend on potential savings from search, and ρa to also depend on age.

The price coefficient is between -0.25 and -0.18 depending on the specification. This
implies a premium elasticity that is lower than what has been found in previous work.38

However, a likelihood-ratio test strongly rejects the first specification where the price elas-
ticity is the smallest.

The estimated probability of searching within is ρ̂w0 = 0.43, and a probability of search-
ing across (conditional on searching within) is estimated to be ρ̂a0 = 0.80. Lower potential
savings in the spot market decrease the probability of searching, but the result is not eco-
nomically meaningful: the estimated probability of searching is higher by 1 percentage point
for an individual with no potential savings than for an individual with the average (negative)
potential savings.

To interpret the rest of the demand coefficients I calculate the marginal effects using
simulation. I simulate the market shares for each company across four groups defined by
health status and geographic region: healthy individuals v.s. individuals with preexisting
conditions, and Santiago v.s. other regions. The effect of health status on preferences, as
estimated in the model, results from by comparing the predicted market shares in column
(a) to those in column (b). This effect varies across firms. The effect is larger for company
D that is predicted to have a 12.3 market share among the risky in Santiago compared to
8.8 among the healthy in Santiago. The effect is the smallest in company E where both
market shares differ by less than 1 percentage point. Since the model does not allow for
interaction in the Z variables (health status and region), the pattern described above also
holds for market shares in other regions. On the other hand, market shares are predicted to
vary significantly across regions, particularly for company D that has a market share around
30 percentage points larger in regions different than Santiago.

On the supply side, the average individual with a preexisting condition is offered a con-
tract with probability ρs = 0.82, which implies that on average one in five individuals with
preexisting conditions is denied coverage in the spot market.

38Jackson Abaluck and Gruber, 2011 find an elasticity close to -1. I estimated the model using the control
function approach of Petrin and Train, 2009 , with a ”marginal cost” instrument derived from the average
covered expenditures for individuals in the plan. The price coefficient is not altered significantly in the IV
models, and since I am not confident that the exclusion restriction is satisfied, I continue to estimate the
model without an instrument
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Health status by age

Along with the structural parameters estimated above, a key input for quantifying lock-in is
the share of individuals subject to underwriting in the spot market. In this section I explain
my empirical approach to simulate the evolution health status over and individual’s lifetime,
to determine the type of offers they receive in the spot market.

As stated in Section 1.10, offer policies map an individual’s health status (as well as
other demographics) to a potentially offered premium and plan characteristics, as well as a
coverage decision. Specifically, I have modeled throughout that premiums and characteristics
depend on 5 health expenditure quintiles, and the coverage decision depends on the presence
of a preexisting condition. Therefore, the supply response is determined by 10 different and
mutually exclusive states for status, corresponding to the combination of 5 different health
expenditure quintiles and a preexisting condition indicator.

I estimate the probability of being in each of the 10 states during an individual’s lifetime
by assuming that the health process is a Markov Chain with transition probabilities that
depend on age and gender. For each age and gender, I use the actual transition rates across
the 10 states as estimates of the transition probabilities. I calculate a separate transition
matrix for each age and gender. Then, I use each of these age-gender specific 10 by 10
transition matrices for simulating health paths from age 25 until retirement (60 for females
and 65 for males).39.

Tables 1.11 and 1.12, present, as an example, the transition matrices at age 25 for females
and males respectively, and tables 1.13 and 1.14, the corresponding transition matrices at
age 55. States 1 to 5 correspond to 5 quintiles of health expenditures with no preexisting
conditions, with states 6 to 10 corresponding to 5 quintiles of health expenditures but with
preexisting conditions. On-diagonal entries reflect persistence in health status. For instance,
the first element in Table 1.11 shows that 41 % of 25 year-old females that are in the
healthiest group are expected to remain in that category at age 26. States 6-10 (with
preexisting conditions) represent only a small share of cases at age 25, and the vast majority
transition to states 1-5 (without preexisting conditions) in the next period. On the other
hand, persistence at the sickest states is high at age 55 : 40 % of females and 48 of males in
the sickest state at age 55 are expected to remain in state 10 at age 56.

The most important outcome from these tables is the predicted share of individuals with
preexisting conditions at each age. To assess the accuracy of this procedure in forecasting
the prevalence of such conditions over time, Figure 1.9 compares the empirical share of males
and females with preexisting conditions by age (full line), and the simulated share of males
and females with preexisting conditions (dashed line). Overall, this procedure achieves a
good fit. Males start with a prevalence of preexisting condition of around 6% at age 25.
The prevalence among men rises to around 50 % by the age of 65. The prevalence among
females at 25 is slightly higher than for males, starting at around 13 %, but it increases less
steeply than for males. At age 60, I estimate that around 38 % of females have a preexisting

39Handel, Hendel, and Whinston, 2015b take a similar approach
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condition.40 Note that total health expenditures enter in the demand model, in particular
in individual’s valuation for each company. Total health expenditures are also simulated
non-parametrically, by drawing a random number from the empirical distribution of health
expenditures conditional on each state.

Lock-in

With simulated health expenditures, the estimated level of underwriting, and the estimated
preferences, I can now quantity the share of individuals locked-in because underwriting in
the spot market. I use the estimated preferences and underwriting rules, to simulate the
choices of individuals over their lifetime. Each individual’s health status, which impacts
their preference and potential choices, are simulated with the methodology described in the
previous section.

Formally, let Ki (Θit,M, Hit) = {k1, k2, ..., kT} be the sequence of companies chosen by
individual i under the current offer policy M, preference parameters Θit, and health-status
process Hit. Let M′ be a different policy and K ′i (Θit,M

′, Hit) = {k′1, k′2, ..., k′T}. I define an
individual’s willingness to pay for policy M’ over policy M in period t as wit:

wit (M′,M,Θit, Hit) ≡ max

(
u
k′t
it + βPP

k −
(
uktit + βPP

k′
)

βP
, 0

)
(1.13)

The willingness to pay wit can be interpreted as the dollar amount that makes agent i
indifferent between her current policy M and paying wit for receiving offers from policy M′.
I quantify this object by simulating Ki and K ′i for a representative sample of individuals
that enter in the market at 25 years old and stay for 35 years.

To quantify lock-in, I calculate the willingness to pay for an offer policyM′ that eliminates
risk-rating in the spot market, so that a) premium risk-rating is eliminated and b) coverage
denial is eliminated. In this exercise I assume away any potential changes to the overall
level of premiums associated with the new policy M′. In that sense, calculating wit does not
answer a full welfare analysis question, but it is instructive to calculate how much a single
individual would be willing to pay to eliminate her underwriting while keeping everyone
else’s. I return to the question of full welfare analysis in general equilibrium in the next
section, when I allow prices to adjust to the new policy.

The simulation procedure to recover Ki for a given offer policy M is as follows:

1. Set t = 0 and set Di0 = (age0, gender0, region0) equal to the empirical Di for individ-
uals entering in the market at age 25 in 2009.

2. Draw Hit = (hit, P reexit) and Zit from the empirical (joint) distribution FH(Dit) and
each zi ∈ Zi from the empirical distribution Fz(Di)

40In the interest of space I do not show this comparison for all 10 states, but they all show a good fit.
These figures are available upon request
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3. Construct the choice menu by drawing offers from each company, Mik ∈Mk(Dit, hit, P reexit),
by

a) Drawing Xk(Dit, hit, P reexit) from the empirical distribution of spot offers in each
company and

b) calculating spot prices using the estimates of spot prices from equation 1.12.

4. If t > 0, add ki,t−1 to the choice menu.

5. Draw ujkit and choice kit for each i among her choice menu.

6. Update Dit and return to step 2.

The left Y-axis of Figure 1.10 shows the share of individuals with positive willingness
to pay for the policy described above over the current policy. I also include the average
willingness to pay in the right Y-axis.

Individuals with wit > 0 are those locked-in to their plans: they are enrolled in plan k
under policy M but would be enrolled in plan k′ 6= k under an alternative policy M′ that
bans underwriting. The share of locked-in individual reaches around 5 percent after 35 years
and is increasing over time, as preexisting conditions become more prevalent. On average,
an individual would be willing to pay around 13 % of the current average premium for policy
M′.

I use the estimated parameters of the model to shed light on the relative importance
of the two potential sources of underwriting in the market: coverage denial and premium
risk-rating. To calculate the level of lock-in produced only by risk-rating of premiums, I
simulate the share of individuals with wti > 0 and willingness to pay for a policy M′′ where
everyone gets risk-rated offers. In practice, I leave the current level of risk rating but use
ρs = 1, to shut down the coverage-denial mechanism. The purpose of this exercise is only to
describe the relative importance of both sources of lock-in rather than answering a general-
equilibrium question, so I leave the level of risk-rating at the original parameter estimates.
The result of this simulation is shown in the blue dashed line in Figure 1.12. I find that
most of the lock is due to preexisting conditions: the simulations predict that less than one
percent of individuals would be locked-in if I set ρs = 1 while keeping risk-rating in spot
premiums.

Thus, the level of lock-in results is mostly sensitive to the estimated coverage denial rates
rather than the level of premium risk-rating. My estimates indicate that 1 in 5 individuals
with preexisting conditions are denied coverage in the spot market. Since around 50 % of
males and 40 % of females are expected to end-up with a preexisting condition by age 60,
mechanically, the share of individuals facing coverage denial in the spot market is 10 % of
males and around 8% for females.

To show how higher coverage-denial rates translate into higher lock-in, I simulate the
economy assuming that everyone with a preexisting condition is denied coverage in the spot
market, that is by setting now ρs = 1. The results are in the black dashed line in Figure
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1.12. Under this alternative assumption, the share of locked-in individuals would be around
16 % at the age of 60.

Repricing effects

The share of locked-in individuals calculated in the previous section do not necessarily corre-
spond to the share of switchers if policy M′ is implemented. Mechanically, 5 % of individuals
would switch if prices of plans remain fixed at their original level. However, the prices of con-
tracts are expected to change in response to those switchers, creating a general-equilibrium
effect in the allocation. Prices of contracts to which individuals with preexisting conditions
switch are expected to increase, decreasing the share of those who would effectively want to
switch, and also potentially generating the result that some healthy individuals would want
to switch out of those contracts.

Predicting price responses to policy M′ would require that I specify and estimate a full
supply model, which is outside of the scope of this paper. Instead, I make use of simple
supply-side assumptions that allow me to use the already estimated parameters to quantify
these effects. I find the equilibrium under M′ by assuming that the average markup per
enrollee of each company does not change after the policy. This simulates, for instance, a
scenario in which all extra payments made by enrollees in the counterfactual scenario go to a
common pool that is distributed to each company accordingly (so there is ”risk-adjustment”
relative to the original policy). Also, I assume that the change in markup at the company
level is compensated with a uniform price increase of all plans at the company.

Formally, let At(M,Θ), the I×K allocation matrix whose element At (i, k,M,Θ) is equal
to 1 if individual i is enrolled in company k in period t and 0 otherwise, given policy M and
demand parameters Θ. Let J (k) be the collection of plans of firm k. The average markup
in period t of company k under allocation At is given by

µtk (At|Θ,M) =

∑N
i=1

∑
j∈J(k)At (i, k|M,Θ)×

(
P jk
it (M)− ck(hit, Xjk

it )
)

∑N
i=1

∑
j∈J(k)At (i, k)

I define an allocation A′t as an equilibrium allocation under a counterfactual offer policy
M′ if

1. Markups are equal to current markups

µtk (A′t|Θ,M′) = µtk (At|Θ,M)

2. Individuals choose company/plan optimally given Θ and M′, so that for all plans
j̃, k̃ ∈M′

At(i, j, k|Θ,M′) = 1(U jk
it > U j̃k̃

it )
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The difference between the share of locked-in individuals and the share of switchers under
the equilibrium allocation quantifies the general equilibrium effect of the policy. I calculate
the equilibrium allocation using the following algorithm:

1. Set t = 0

2. Set r = 0, P
jk,(r)
it = P jk

it and A
(r)
t = At, i.e., start with prices and allocations under

current offer policy M.

3. Simulate A
(r+1)
t given offer policy M′, and prices P

(r)
ik .

4. Construct δ(r) = |A(r+1)
t −A

(r)
t | where || is a norm. If δ(r) < ε: stop. Else,

a) calculate

∆µ
k,(r)
t ≡

∑N
i=1

∑
j∈J(k)A

(r+1)
t ×

(
P
jk,(r)
it − hit

)
∑N

i=1

∑
j∈J(k)At

−

∑N
i=1

∑
j∈J(k)A

(r)
t ×

(
P
jk,(r)
it − hit

)
∑N

i=1

∑
j∈J(k)At

b) update prices P
(r+1)
ik = P

(r)
ik + ∆µ

k,(r)
t

c) go back to step (2) with r + 1→ r

Figure 1.12 compares the share of locked-in individuals under M to the share of individ-
uals that would switch under policy M′, after prices adjust. The results show that both are
almost indistinguishable.

Preference heterogeneity, lock-in, and adverse selection

A recent literature has focused on the interaction between preference heterogeneity and regu-
lation in static health insurance contracts (Einav and Finkelstein, 2011, Bundorf, Levin, and
Mahoney, 2012 and Geruso, 2013). In guaranteed-renewable contracts, preference hetero-
geneity plays two opposing roles in determining the level of lock-in. As discussed in Section
1.2, evolving preference heterogeneity is the main source of lock-in. On the other hand, when
preferences are stable, individuals are less prone to lock-in in the guaranteed-renewable en-
vironment, since it reduces the share of individuals for whom reclassification in the spot
market is relevant.

The general equilibrium effects of transitioning to community rating also depend on
preference heterogeneity.41 In the situation analyzed in this paper, preference heterogeneity

41As an example, Einav and Finkelstein, 2011 show that if risk-aversion is negatively correlated with
health risk, a uniform pricing may induce advantageous selection. Contrary to the standard model of health
insurance markets, health insurance is more valuable for healthier individuals.
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over companies may arise from several reasons uncorrelated to health expenditures. I discuss
this issue in more detail using static framework of Einav and Finkelstein, 2011, where I
analyze the impact of stable preference heterogeneity in both the mechanical and general
equilibrium effect of banning underwriting.

As in Bundorf, Levin, and Mahoney, 2012, an individual’s relative valuation for insurance
is given by u(h, ε) where h ∈ [0,∞) is health risk and ε ∈ (−∞,∞) summarizes other
determinants of valuation that are orthogonal to h, with E(ε) = 0. The presence of ε in
the utility function is intended to capture preference heterogeneity. The degree of preference
heterogeneity is captured by ∂u/∂ε, which is assumed to be weakly positive. I assume that
there is adverse-selection, so that ∂u/∂h > 0. Here h is private information, in the sense
that firms cannot price based on h.

Preference heterogeneity within health status decreases the average cost at any price, as
show in panel (a) of Figure 1.13. Intuitively, starting with a situation in which everyone is
enrolled in a plan, the marginal enrollees that would drop out of the contracts after a price
increase are unambiguously the healthiest if preferences are perfectly correlated with health
status (so that the healthiest are those that have the lowest valuation for the contract). On
the contrary, with preference heterogeneity, some marginal enrollees are high-risk individuals
with low valuation for the plan because of reasons uncorrelated to health (I provide a simple
formal proof in section A.4).

The competitive equilibrium is found at the intersection of the demand curve and the re-
spective average cost curve (AC). For a given demand curve, higher preference heterogeneity
will therefore imply lower premiums and a higher number of enrollees in equilibrium. 42 As
shown in the shaded area in panel (b), the standard marginal cost curve (depicted by MC1)
is replaced by a marginal cost correspondence (MC2), to reflect the heterogeneous costs of
the marginal enrollees43

Assume that preexisting conditions take the form of denying coverage to anyone with
MC > c∗. The share of individuals who are locked-in corresponds to the number of indi-
viduals with preexisting conditions who are not allowed to enroll in the plan if preexisting
conditions are introduced, but that would otherwise enroll. The mechanical effect is repre-
sented by a leftward shift of the demand curve of a magnitude that is equal to the number of

42Even if the demand and the cost curve are tightly linked in insurance markets, the degree of this linkage
depends on the degree of preference heterogeneity. Thus, two different utility functions, with different degrees
of preference heterogeneity, can yield the same demand curve and different average cost curves. For instance
u1 = h + ε and u2 = 2h with h ∼ U [0, 1] and ε ∼ U [0, 1] produce the same demand curve but different AC
curves.

43This figure provides an explanation complementary to Bundorf, Levin, and Mahoney, 2012’s to why
preference heterogeneity makes a uniform price policy inefficient at any price. Any price above Ph does not
produce the efficient outcome because a lower price would generate marginal enrollees who have a marginal
cost below their willingness to pay. On the other hand, any price below Pl is also inefficient because
increasing the price will make individuals who have a marginal cost above their willingness to pay opt out of
the contract. Moreover, all prices between Pl and Ph do not yield the efficient outcome either, since under
these prices there are some individuals who are inefficiently enrolled in the plan and some inefficiently not
enrolled.
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individuals with preexisting conditions who would have bought the plan at any price. Panel
(b) of Figure 1.13 shows that preference heterogeneity decreases the share of such individu-
als, and therefore produces a smaller leftward shift in demand when preexisting conditions
are introduced. Panel (c) shows the leftward shift in demand, represented by the new de-
mand curve D′, in the case of no preference heterogeneity. Panel (d), shows a smaller shift,
corresponding to the case with heterogeneity. The mechanical effect is represented by the de-
crease in quantity from the original equilibrium Q∗ to the new quantity Qmec, corresponding
to the new curve and the original average cost curve (AC). The ”GE” effect is represented
by a movement along the new demand curve, toward its intersection with the new AC curve
(AC’).

In my empirical model, stable preference heterogeneity is captured by the terms αi0,
σk, and the autocorrelation terms κ1 and κ2. When these terms are higher (in an absolute
value sense for αi0), individuals are predicted to switch less during their lifetime, even in the
absence of underwriting.

To shed light on the importance of stable preference heterogeneity in reducing lock-in, I
simulate the economy assuming that αi0 = 0 and κ1 = 0 and κ2 = 0 instead of the estimated
parameters. The results are in the red dashed line of Figure 1.12, which shows the share
of locked-in individuals under these new assumptions, for the case of ρs = 1. The share of
locked-in individual increases from 16 percent to 19 percent at age 60.

1.8 Conclusions

This paper contributes to the literature with an empirical evaluation long-term health in-
surance contracts. Specifically, I evaluate the workings of guaranteed-renewable contracts
in the Chilean private health insurance market, where individuals potentially receive offers
from different health insurance companies.

Theoretically, guaranteed-renewable contracts have the potential to fully eliminate ad-
verse selection and reclassification risk as long as individuals do not have incentives to switch
across these companies for non-financial reasons. However, in reality, contracts have non-
financial characteristics –like the provider network –which vary across companies. Individuals
switch every year –7 % on average in the Chilean market –but switching rates are signif-
icantly higher among the healthier. Sick individuals that come to dislike their insurance
company but cannot switch because of the financial incentives imbedded in these contracts
suffer a welfare loss.

I estimate that the welfare loss resulting from lock-in in Chile reaches around 13% of
the yearly premium by the time individuals reach age 60. Around 5% of individuals are
locked-in to their insurer at this point, although 60% of individuals experience a lock-in
event in their lifetime. The estimated incidence of lock-in depends crucially on the rate at
which individuals with preexisting conditions are denied coverage in the spot market, which
I estimate to be around 20 %. Small levels of lock-in also imply minor general-equilibrium
effects upon transitioning to a community rating scheme.
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Even if the presence of lock-in in this particular market is relatively small, the degree of
lock-in in long-term arrangements is an empirical question that depends on context-specific
levels of differentiation across insurers as well as the evolution of preferences over time. This
paper provides a systematic way of empirically evaluating this issue in other markets.

This paper does not deal explicitly with a few important aspects of guaranteed-renewability.
First, despite incorporating behavioral biases in estimating demand, I do not study in detail
the consequences of consumer mistakes in the evaluation of guaranteed-renewability. How-
ever, the problem of lock-in adds an important layer to the design of health insurance markets
with behavioral agents. Arguably, the lack of portability of contracts is more problematic
when individuals cannot forecast their future preferences or needs.44 Relatedly, individuals
suffer more from lock-in if it is difficult to make a good initial choice before a learning pe-
riod. Although there is a great deal of consensus that individuals have difficulties in choosing
plans, there is limited empirical evidence on whether they learn over time.45

Finally, when evaluating the desirability of long-term contracts that generate lock-in,
it is important to incorporate other margins of response in the supply that might be not
contractible at the start.46 In health insurance markets, insurance companies generally
revise the terms of their agreements with providers (Shepard, 2015). In fact, in April 2015,
two of the companies analyzed in this paper went through negotiations with a group of
providers that resulted in major changes in their networks. Changes in provider networks
have important consequences for individuals who face underwriting. It is an open question
to study the dynamic relationship between insurance companies and providers when the
demand is subject to long-term contracts with lock-in.

44As Pauly and Herring, 1999 warn, the lock-in should ”induce more care in the initial choice [...]”.
45Ketcham et al., 2012 and Jason Abaluck and Gruber, 2013 evaluate learning in Medicare Part D
46See Farrell and Shapiro, 1989 for a theoretical analysis of long-term contracts with switching costs and

unenforceable quality.
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Table 1.1: Share of claims by provider and type in each company

Firm Provider Share Claims Ratio Firm Provider Share Claims Ratio
cancer other cancer other

(c) (o) (c/o) (c) (o) (c/o)

A P1 0.42 0.07 6.0 B P4 0.33 0.01 40.0
A P2 0.18 0.01 17.4 B P1 0.25 0.11 2.2
A P3 0.10 0.00 28.3 B P6 0.19 0.00 48.9
A P4 0.09 0.00 43.9 B P5 0.04 0.15 0.3
A P5 0.06 0.16 0.4
A Cum. 0.85 0.24 B Cum. 0.81 0.27
C P7 0.29 0.04 6.9 D P4 0.54 0.01 43.6
C P5 0.18 0.21 0.8 D P12 0.21 0.07 2.8
C P8 0.15 0.11 1.4 D P13 0.04 0.00 1541.7
C P9 0.09 0.00 23.7 D P2 0.03 0.01 3.7
C P10 0.07 0.04 2 .0
C P11 0.06 0.17 0.3
C Cum. 0.84 0.58 D Cum. 0.82 0.10
E P7 0.55 0.14 3.8 F P4 0.56 0.01 91.1
E P9 0.09 0.01 15.2 F P7 0.05 0.03 1.7
E P10 0.09 0.05 1.7 F P14 0.05 0.06 0.9
E P8 0.05 0.16 0.3 F P6 0.05 0.00 37.3
E P5 0.04 0.08 0.5 F P13 0.04 0.00 288.1

F P15 0.03 0.01 4.7
F P16 0.03 0.01 2.1

E Cum. 0.82 0.44 F Cum. 0.81 0.12

Note: This table shows, for each company, the share of claims related to cancer and to other all
other (non-chronic) health conditions, for all claims in 2011. For instance, 42% of cancer-related
claims of individuals enrolled in company A where treated by provider P1. That provider treated
7% of the ”other” claims for enrollees in the same company.
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Table 1.2: Net flow depending on health status

Firm (hpreexit = 0 (hpreexit = 1) Difference
A −2.6% −1.6% 1.0%
B −8.5% 6.1% −14.7%∗∗∗

C 4.8% 0.9% 3.8%∗∗∗

D −2.2% −5.1% 2.9%∗∗∗

E 8.6% −0.4% 9.0%∗∗∗

N obs. 13482 3461

Note: Table shows the net flow (entry − exit) to each company among switchers, as a share of
total switchers, for individuals with preexisting conditions and without preexisting conditions, for
a sample of enrollees in January 2009 and followed until December 2012
***: Difference is significant at the 95% confidence level.

Table 1.3: Front-loading evidence

(a) (b)
Parameter Marginal Parameter Marginal
Estimate Effect Estimate Effect

Tit 0.078*** 0.05***
(0.007) (0.005)

Tit × (age ≤ 35) 0.077*** 0.05
(0.009) (0.006)

Tit × (35 < age ≤ 45) 0.066*** 0.043
(0.013) (0.008)

Tit × (45 < age ≤ 60) 0.091*** 0.058
(0.016) (0.01)

N obs 1,185,346 1,185,346
N groups 45,212 45,212

Note: This graph shows GLM estimates of equation (1.4) to show the increasing relationship
between tenure in a plan Tit and the ratio between total claims and premium, rit = hit/Pit, on a
4-year monthly panel of enrollees by January 2009. Panel (a) pools all age groups. Panel (b) shows
the results by interacting tenure with 3 age groups.
Standard errors in parentheses, clustered at the individual level.
* p<0.10, ** p<0.05, *** p<0.01
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Table 1.4: Prevalence of preexisting conditions

Prevalence Patients with related
self reported procedure in ISAPRES
in SPS [%] claims dataset [%]

Diabetes 4 8
Depression and

Chronic Psyc. Disorder 5 7
Arthritis 3 3

Hypertension
and cardiovascular diseases 10 7

Cancer 1 1
Chronic Renal Insufficiency 1 0.1

Note: This table shows the prevalence of the 6 major preexisting conditions. It compares the
prevalence found in the ISAPRES dataset of this paper, using the procedure claims associated with
each condition to the self-reported prevalence in the Social Protection Survey of 2009.



CHAPTER 1. LOCK-IN IN DYNAMIC HEALTH INSURANCE 42

Table 1.5: Cox proportional hazard model estimates

(1) (2) (3)
1(hpreexit > 0) 0.743*** 0.776*** 0.850***

(0.039) (0.041) (0.047)

age 1.017 1.025
(0.024) (0.025)

age2 1.000 1.000
(0.000) (0.000)

gender 1.277*** 1.263***
(0.065) (0.065)

1(hpreexit > 0)× log(hpreexit ) 1.057*
(0.034)

1(hit > 0) 0.948
(0.048)

1(hit > 0)× log(hit) 0.872***
(0.018)

N 165409 165409 155668

Exponentiated coefficients; Standard errors in parentheses

* p¡0.10, ** p¡0.05, *** p¡0.01

Note: This table shows the estimates of a proportional cox hazard model for the event of switching
company, as a function of preexisting conditions and other demographics. Exponentiated coeffi-
cients.
Standard errors in parentheses, clustered at the individual level. * p<0.10, ** p<0.05, *** p<0.01
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Table 1.8: Spot prices as a function of plan’s and individuals’ characteristics

(1) (2) (3)
cp 0.402*** 2.047*** 2.037***

(0.082) (0.074) (0.074)
Free Network -0.052* 0.178*** 0.178***

(0.028) (0.023) (0.023)
log(waget) 0.227*** 0.222***

(0.009) (0.009)
hit−1 = 2 0.007***

(0.003)
hit−1 = 3 0.030***

(0.003)
hit−1 = 4 0.059***

(0.004)
hit−1 = 5 0.088***

(0.005)
Year fixed effect Yes Yes Yes
ISAPRE fixed effect Yes Yes Yes
age x gender fixed effects No Yes Yes

N 320190 320190 320190
R2 0.216 0.735 0.738

Notes : OLS estimates of equation 1.12, that quantifies the correlation between log of price and
plan and individual characteristics. The sample of plans correspond to ”spot” plans.
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Table 1.9: Parameter estimates

Spec. 1 Spec. 2 Spec. 3

point s.e. point s.e. point s.e.
estimate estimate estimate

βP -0.18 (0.016) -0.26 (0.027) -0.22 (0.026)
βc 0.57 (0.075) 0.82 (0.119) 0.79 (0.116)
µA -0.37 (0.078) -0.23 (0.069) -0.22 (0.066)
µB 0.05 (0.044) 0.05 (0.064) 0.05 (0.056)
µC -1.00 (0.094) -1.15 (0.258) -1.16 (0.513)
µD 0.47 (0.039) 0.49 (0.041) 0.49 (0.041)

log(σA) -0.28 (0.146) -0.77 (0.283) -0.79 (0.272)
log(σB) -2.27 (0.774) -2.25 (2.564) -2.25 (2.643)
log(σC) -0.99 (0.62) -0.75 (0.783) -0.71 (1.54)

ρw0 0.43 (0.025) 0.42 (0.024)
ρa0 0.76 (0.077) 0.80 (0.074)
ρs 0.83 (0.083) 0.82 (0.08)
κ1 0.73 (0.015) 0.56 (0.067) 0.58 (0.042)
κ2 1.00 (0.001) 0.88 (0.037) 0.86 (0.031)

Axstgo -0.12 (0.062) -0.14 (0.06) -0.15 (0.06)
Axhealth -0.13 (0.044) -0.14 (0.067) -0.15 (0.067)

Bxstgo -0.19 (0.052) -0.19 (0.057) -0.20 (0.056)
Bxhealth -0.11 (0.037) -0.08 (0.058) -0.08 (0.058)

Cxstgo -0.06 (0.076) 0.08 (0.099) 0.07 (0.058)
Cxhealth -0.12 (0.063) -0.22 (0.109) -0.21 (0.085)

Dxstgo -1.26 (0.053) -1.38 (0.058) -1.38 (0.057)
Dxhealth 0.10 (0.038) 0.30 (0.055) 0.30 (0.054)

ρaage -0.16 (0.355) -0.18 (0.388)
ρsavings 0.22 (0.047)
Log L -15637.70 -14554.40 -14490.90

N 84507.00 84507.00 84507.00

Notes: Table shows the parameter estimates of the structural model for three different specifications
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Table 1.10: Predicted market shares as a function of time-varying observables

Healthy Risky
A 21.5 19.5
B 23.5 22.5

Santiago C 7.9 6.5
D 8.8 12.3
E 38.3 39.2
A 15.9 13.4
B 18.8 16.4

Other Regions C 3.9 3.0
D 37.9 44.7
E 23.5 22.4

Notes :This table shows the predicted market shares for healthy v/s risky and Santiago v/s Other
regions based on the structural estimates

Table 1.11: Health status transition from one year to the next, females at age 25

st/st+1 1 2 3 4 5 6 7 8 9 10
1 0.41 0.29 0.13 0.05 0.04 0.00 0.02 0.03 0.01 0.01
2 0.18 0.33 0.21 0.09 0.09 0.00 0.02 0.04 0.02 0.02
3 0.08 0.24 0.24 0.15 0.16 0.00 0.02 0.04 0.04 0.04
4 0.05 0.15 0.19 0.19 0.23 0.00 0.01 0.03 0.05 0.08
5 0.06 0.17 0.22 0.22 0.19 0.00 0.01 0.03 0.05 0.06
6 0.23 0.32 0.10 0.06 0.00 0.00 0.13 0.10 0.06 0.00
7 0.14 0.28 0.18 0.07 0.06 0.00 0.09 0.07 0.07 0.04
8 0.11 0.20 0.19 0.11 0.09 0.00 0.04 0.11 0.09 0.06
9 0.03 0.09 0.15 0.12 0.14 0.00 0.03 0.11 0.15 0.18

10 0.04 0.09 0.14 0.18 0.16 0.00 0.01 0.05 0.14 0.19

Notes: Table show the shares of women that are in state st+1 at age 26 among those that were in
state st at age 25.
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Table 1.12: Health status transition from one year to the next, males at age 25

st/st+1 1 2 3 4 5 6 7 8 9 10
1 0.65 0.20 0.07 0.03 0.03 0.00 0.01 0.01 0.01 0.00
2 0.33 0.31 0.16 0.08 0.06 0.00 0.02 0.02 0.01 0.01
3 0.18 0.27 0.22 0.14 0.12 0.00 0.01 0.03 0.02 0.02
4 0.13 0.19 0.21 0.21 0.16 0.00 0.01 0.03 0.03 0.03
5 0.17 0.20 0.20 0.16 0.19 0.00 0.01 0.01 0.03 0.04
6 0.48 0.21 0.08 0.00 0.06 0.02 0.06 0.05 0.05 0.00
7 0.35 0.24 0.11 0.04 0.05 0.01 0.11 0.05 0.02 0.01
8 0.16 0.24 0.17 0.10 0.07 0.00 0.04 0.09 0.09 0.04
9 0.07 0.14 0.15 0.12 0.11 0.00 0.03 0.09 0.17 0.11

10 0.07 0.09 0.14 0.13 0.15 0.00 0.03 0.06 0.13 0.22

Notes: Table show the shares of men that are in state st+1 at age 26 among those that were in
state st at age 25.

Table 1.13: Health status transition from one year to the next, females at age 55

st/st+1 1 2 3 4 5 6 7 8 9 10
1 0.42 0.24 0.13 0.05 0.02 0.00 0.04 0.05 0.03 0.02
2 0.17 0.29 0.21 0.09 0.05 0.00 0.04 0.07 0.05 0.03
3 0.09 0.22 0.23 0.15 0.07 0.00 0.03 0.07 0.09 0.05
4 0.05 0.10 0.21 0.23 0.14 0.00 0.01 0.05 0.12 0.10
5 0.05 0.11 0.16 0.20 0.20 0.00 0.01 0.04 0.10 0.15
6 0.28 0.05 0.13 0.03 0.03 0.08 0.23 0.18 0.03 0.00
7 0.14 0.17 0.10 0.05 0.04 0.01 0.17 0.17 0.10 0.05
8 0.05 0.10 0.13 0.09 0.04 0.01 0.08 0.22 0.21 0.08
9 0.02 0.05 0.10 0.10 0.06 0.00 0.03 0.13 0.31 0.20

10 0.02 0.05 0.05 0.08 0.09 0.00 0.02 0.07 0.21 0.41

Notes: Table show the shares of women that are in state st+1 at age 56 among those that were in
state st at age 25.
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Table 1.14: Health status transition from one year to the next, males at age 55

st/st+1 1 2 3 4 5 6 7 8 9 10
1 0.56 0.19 0.08 0.03 0.03 0.00 0.03 0.03 0.02 0.03
2 0.22 0.28 0.18 0.09 0.06 0.00 0.04 0.06 0.04 0.03
3 0.10 0.19 0.22 0.16 0.09 0.00 0.02 0.06 0.08 0.07
4 0.06 0.10 0.15 0.22 0.17 0.00 0.01 0.04 0.12 0.13
5 0.05 0.07 0.11 0.17 0.26 0.00 0.01 0.03 0.10 0.20
6 0.19 0.20 0.07 0.02 0.01 0.07 0.16 0.18 0.07 0.02
7 0.16 0.16 0.07 0.04 0.02 0.02 0.20 0.17 0.10 0.07
8 0.06 0.10 0.11 0.07 0.04 0.01 0.10 0.21 0.18 0.13
9 0.02 0.04 0.08 0.10 0.07 0.00 0.02 0.11 0.31 0.25

10 0.02 0.02 0.04 0.08 0.13 0.00 0.01 0.05 0.17 0.48

Notes: Table show the shares of women that are in state st+1 at age 56 among those that were in
state st at age 55.
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Figure 1.1: Allocation with evolving preference heterogeneity and guaranteed-renewability

(a) Allocation of healthy individuals
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(b) Allocation of risky individuals
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(c) Allocation of risky individuals
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(d) Stable preference heterogeneity
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Notes: The figures show the allocation across firms in two time periods, of individuals that have
heterogeneous and time-varying preferences for two companies A and B. Panel (a) shows that
the allocation of healthy individuals is efficient since in both periods the price they pay in each
company is the same. Panel (b) and (c) show that some risky individuals inefficiently stay with
their company because they are reclassified in the spot market, either through higher premiums or
coverage denial. Panel (d) shows that there are no inefficiencies when preferences are stable over
time.
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Figure 1.2: Probability of seeing a new provider

−
.0

5
0

.0
5

.1
.1

5

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7
Months since switching

Notes: Figure plots the estimated coefficients from an event-study regression of the form given in
equation 1.3. The dependent variable is a dummy indicator for seeing a new health service provider
and time zero is the month of switching company. The bands around the point estimates are 95%
cluster-robust confidence intervals (clustered at the individual level. The probability of seen a new
health service provider after switching company is about 13 percentage points above the baseline
the month after switching ISAPRE.

Figure 1.3: Market shares by geographic location
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Notes: Panel (a) shows the market share of each ISAPRE in the 10 biggest regions of Chile. Panel
(b) shows the market share of each ISAPRE in the 10 biggest district of the Santiago region
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Figure 1.4: Premium change by insurance company and year

Company A

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

P
e
rc

e
n
t

0 1 2 3 4 5 6 7 8 9
Yearly premium Change (%)

Company B

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

P
e
rc

e
n
t

0 1 2 3 4 5 6 7 8 9
Yearly premium Change (%)

Company C

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

P
e
rc

e
n
t

0 1 2 3 4 5 6 7 8 9
Yearly premium Change (%)

Company D
0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

P
e
rc

e
n
t

0 1 2 3 4 5 6 7 8 9
Yearly premium Change (%)

Company E

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

P
e
rc

e
n
t

0 1 2 3 4 5 6 7 8 9
Yearly premium Change (%)

Company F

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

P
e
rc

e
n
t

0 1 2 3 4 5 6 7 8 9
Yearly premium Change (%)

Notes: This figure shows the histogram of yearly price increases from 2010 to 2011 for each of the
six ISAPREs in this study. It shows the practical workings of the ”1.3” rule” described in the text
that limits the variance of premium increases of contracts.
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Figure 1.5: Cohort of destination plan among switchers across Isapres, by month
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Note: Figure shows the share of switchers across Isapres by cohort of the destination plan at each
point in time.
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Figure 1.6: Cohort of destination plan among switchers within Isapres, by month
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point in time.
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Figure 1.7: Provider distance across plans
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plans with the same network. Colors represent different ISAPRES. 10 % subsample of plans
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Figure 1.8: Age distribution of new and incumbent clients
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Notes: Kernel density estimate of age distribution among ”cohort 0” and new enrollees



CHAPTER 1. LOCK-IN IN DYNAMIC HEALTH INSURANCE 57

Figure 1.9: Predicted and actual prevalence of preexisting conditions
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Notes: This graph shows the real and simulated probability of having a preexisting condition. The
left panel corresponds to females and the right panel to males.
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Figure 1.10: Share of individuals with wti > 0 and average wit
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Notes: The full line (left Y axis) shows the share of individuals with wit, as defined by equation 1.13
using the simulation method described in the text, representing the simulated share of individuals
that would have picked a different company if preexisting conditions and risk-rating were banned.
The dashed line (right Y axis) shows the average wit
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Figure 1.11: Share of locked-in individuals under different parameters
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Notes: This figure shows the sensitivity of the lock-in result to the parameter estimates. The main
results are represented by the full black line, that reproduces the result shown in figure 9. The
dashed blue line represents the result assuming no coverage denial, and only assuming premium
risk-rating. The black dashed line represents the results in the case of full coverage denial, so that
all individuals with preexisting conditions are denied coverage in the spot market. Finally, the
red dashed line shows the result with full coverage denial and assuming that there is no stable
preference heterogeneity
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Figure 1.12: Simulated difference in switching rates between current policy and counterfac-
tual policy
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Notes: Figure shows the simulated switching rates of the counterfactual policy that bans preexisting
conditions and underwritting relative to the simulated switching rates under current policy. Full
line corresponds to switching rates across insurance companies and dashed line to switching rates
within company.



CHAPTER 1. LOCK-IN IN DYNAMIC HEALTH INSURANCE 61

Figure 1.13: Equilibrium effects of banning preexisting conditions with preference hetero-
geneity

(a) Average Cost Curves (b) Margina Cost

(c) Introducing Preexisting Conditions, No Prefer-
ence Heterogeneity

(d) ntroducing Preexisting Conditions, With Prefer-
ence Heterogeneity

Notes: Panel (a) shows average cost curves for the case of no preference heterogeneity within
risk (AC1) and for the case of preference heterogeneity within risk (AC2). Panel (b) shows the
respective marginal cost curve (MC1) and marginal cost correspondence (MC2). Panel (c) shows
the mechanical effect and general-equilibrium effect of introducing preexisting conditions in the
case of no preference heterogeneity. Panel (d) performs the same exercise in the case of preference
heterogeneity.
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Chapter 2

Peer Effects in the Emergency
Department

2.1 Introduction

Workplaces commonly feature workers interacting to jointly produce output. An important
question for the optimal organization of these workplaces is how peer interaction influences
the productivity of individual workers. Theory is ambiguous on this question: on the one
hand, if workers produce output in teams, a moral hazard problem arises in which individuals
have an incentive to shirk; on the other hand, workers may motivate one another to provide
higher effort (or, on the contrary, drag others down).1

Recent findings suggest that productivity spillovers operate in a variety of settings. Mas
and Moretti (2009) find substantial productivity responses of grocery store cashiers to the
introduction of a highly productive peer. Similarly, Falk and Ichino (2006) find that univer-
sity students tasked with stuffing envelopes are more productive when working in the same
room with a productive peer. Fruit pickers are less productive when they work in fields
with their friends (Bandiera, Barankay, and Rasul, 2010).2 These studies feature low-skilled
workplaces, in which the social incentives of workers are thought to be stronger than in high-
skilled workplaces. To this point, Guryan, Kroft, and Notowidigdo (2009) find no evidence
of peer effects in random groupings of professional golfers.

In this paper, we add to the literature by documenting substantial productivity spillovers
in a high-skilled, high-stakes occupation – physicians working in the emergency department
(ED). The nature of clinical shift work in the ED lends itself to answering the question of
how peers influence each other’s productivity. Each patient is assigned to one and only one
physician, who is primarily responsible for directing the care of that patient. In this sense,

1For a theoretical discussion, see Kandel and Lazear (1992).
2Other studies examine longer-run effects of coworkers on their peers’ productivity, see for instance

Jackson and Bruegmann, 2009. These studies use identification strategies based on more permanent changes
in a worker’s peer group, and identify parameters associated with long-term learning and human capital
spillovers, rather than the transitory effects studied here.
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production in the ED is physician-specific, but the load of work (demand) is shared across
all physicians. The ED is a setting in which problems of free-riding may arise if incentives
are not placed on individual productivity, but it is also a setting in which workers may be
under various forms of peer pressure to keep up with demand.

We use data from two hospitals, one midsize hospital in the US and one larger private
hospital in Chile. Our first finding is that productivity across physicians in each hospital
is highly dispersed. This finding is in line with the vast literature in health economics
that documents large productivity differences at both the individual and aggregate levels
(Chandra and Staiger, 2007; Skinner and Staiger, 2009; Baicker and Chandra, 2004). Next,
using variation in one’s coworkers within a given shift, we find that working with a peer
who is 10 percent more productive increases worker productivity by 1.5 percent. There is no
spillover onto quality of care, consistent with physicians having some slack in their working
up patients. This is plausible in the ED, where physicians typically have some discretion in
the pace at which they alternate between their patients. To put this estimate in context, we
calculate that replacing a physician from the 25th percentile of the productivity distribution
with one from the 75th percentile for a twelve-hour shift would allow each coworker to care
for one more patient in her shift. Physicians in our sample see an average of 15-20 patients
per shift, so we view this as a large effect, in terms of keeping waiting times down and freeing
up labor resources to handle higher-intensity cases.

This finding holds across the two hospitals despite their differences in organizational
structure – notably that one hospital pays a bonus based on patients seen, whereas the
other pays a flat hourly wage. Spillovers are observed only within physicians likely to see
similar cases. Our estimated spillover is not driven by mechanical complementarities between
workers, such as those arising from patient selection or from resource constraints. Finally,
we find that in the US hospital in our sample, more productive workers are influenced more
by their coworkers, and that most of the spillover is generated by working with a coworker
in the lowest tercile of the productivity distribution. In the Chilean hospital, however,
we find little evidence of heterogeneity in the spillover effect. This heterogeneity (or lack
thereof) has implications for the optimal sorting of workers to shifts. If the goal were to
maximize output, diversification of workers within shifts may actually be a bad idea, but if
the emergency department cares about flows and preventing congestion, then they may still
want to diversify shifts, so as not to have their least productive workers congesting the ED
and leaving it unprepared in the event of an influx of high-acuity patients.

This paper makes several contributions. First, our setting is one in which worker pro-
ductivity has substantive externalities. Emergency department overcrowding in the United
States has garnered national attention in recent years. The Institute of Medicine issued a
report in 2007 describing hospital-based emergency care as “at the breaking point” (Institute
of Medicine, 2007). Recent evidence suggests that overcrowding of EDs is associated with
reduced health care quality and patient safety (Fee et al., 2007; Hoot and Aronsky, 2008).
Emergency physicians face increasing demands on their time within the hospital, and their
ability to maintain high productivity throughout a shift is an important determinant of ED
congestion.
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We also contribute methodologically to the empirical literature on peer effects. Our
basic empirical approach is similar to that of Mas and Moretti (2009), which uses within-
shift changes in a worker’s peer group to identify productivity responses to the introduction
of a highly productive peer. However, our setting has a few key advantages that allow us
to rule out more mechanical peer effects. The first concern is that the tasks assigned to a
worker depend on the productivity of his peers. In our case, this amounts to physicians being
assigned different types of cases when working with more or less productive peers. To address
this concern, we devise a test of patient-physician assignment. We find that patients in each
hospital are sorted to physicians primarily based on physicians’ relative caseloads, similar
to a queueing system. Most importantly, patient observable characteristics do not predict
to which physician a patient is assigned at the time that patient arrives at the emergency
department.

One potential confounder of previous estimates of peer effects in the workplace is that
high- and low-productivity workers could differentially use shared resources in such a way
that working with a low-productivity peer limits a worker’s access to this resource, decreasing
her productivity. We directly address whether resource constraints contribute to productivity
spillovers by examining whether contemporaneous procedural utilization by slower peers
accounts for the estimated spillover. For example, if less productive physicians tend to utilize
more CT scans and x-rays, other physicians working at the same time as this physician will
be slowed down simply because they will have to wait to access the imaging resources. We
find that contemporaneous resource utilization of other physicians significantly slows down
physicians. Nonetheless, our spillover estimates are robust to flexibly controlling for this
resource utilization.

The bulk of our evidence suggests that peer effects play an important role in the emer-
gency department, despite the workforce being highly trained and, in one hospital, compen-
sated partly based on productivity.

2.2 Medical literature and context

In addition to adding to our economic understanding of workplace productivity, documenting
the extent of peer effects and how they operate in the ED has significant implications for
policy, patient care, and costs in the US healthcare system. Hospital costs in the US make
up 30% of healthcare expenditures and physicians another 20% (Hartman et al., 2013);
increasing efficiency of the hospital, most importantly the efficiency of the workforce within
the hospital, promises to have large cost-savings and large external benefits to patients. In
the ED, which is the point of entry to the healthcare system for many, efficiency is crucial
to patient care. Overcrowding is one of the largest policy concerns facing emergency care
(Institute of Medicine, 2007). Crowding has become more and more common over the past 20
years, as demand for ED services has risen, while the number of EDs operating has declined
without any substantive increase in ED scale.

Since the 1986 enactment of the Emergency Medical Treatment and Active Labor Act
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(EMTALA), EDs have been required by law to perform a medical screening on any patients
arriving at the ED to determine need for care. Health care providers, including hospitals
and physicians, point to EMTALA as one of the main reasons for the increase in demand
for medical services and the decreasing financial viability and closure of many EDs from the
mid 1990s to 2006 (Delia and Cantor, 2009).

Other long-term changes in the nature of ED caseloads have contributed to the need for
efficient practices. Caseloads are quite mixed in most hospitals, and range from providing
basic, time-insensitive care to those who cannot afford primary care and use the ED as their
de facto primary care provider, to providing timely care to patients with acute, traumatic
conditions, e.g., heart failure, major trauma from car accidents or gunshots, or severe stroke.
Workloads for emergency physicians can be quite demanding and tend to fluctuate from one
day to the next. The skills to work under stressful and unpredictable environments, and to
manage multiple patients simultaneously are necessary for successful delivery of emergency
care. Nevertheless, we find that physicians vary substantially in their efficiency; within
each hospital in our sample, the most efficient physicians are 40-50 percent more efficient in
patient care than the least efficient physicians. This illuminates the importance not only of
the quantity of staffing that allows EDs to run efficiently, but also the mixture and abilities
of the staff. On the intensive margin, physicians may be inefficient, but may be able to
increase their effort when under substantial pressure to do so. This is not enough to keep
an ED running smoothly, however, as large fluctuations in demand require staff to be in
command of the patient load at all times.

Unsurprisingly, clinical staffing of EDs has been cited as a key factor in the process of
keeping up with patient demand, and is likely more important than constraints on physical
space within the ED (Institute of Medicine, 2007). Bed and labor constraints in the inpatient
setting of the hospital (e.g., the intensive care unit) also contribute to crowding of the ED.
To provide these various types of care efficiently, EDs need staff, especially physicians, who
are capable of keeping up with ever-fluctuating demand for services.

2.3 Data

Description

We use emergency room discharge data from two hospitals in our analysis. The first hospital
(subsequently Hospital A) is a mid-size, non-profit urban hospital with about 40,000 emer-
gency visits per year. We observe all emergency department discharges for Hospital A from
November 2011 until early January 2013, regardless of whether the patient was discharged
to home or admitted to the hospital. The emergency department has 25 beds, and the larger
hospital in which the ED is nested has over 400 beds. Within these discharge records, we
observe patient arrival time, patient complaint, patient gender, patient age, mode of arrival,
disposition of discharge, and time of discharge. We also have administrative billing data
which details primary diagnosis, charges, and CPT procedural coding used for billing.
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Hospital A’s patient mix is quite poor, and relies on public insurance. Medicaid is the
primary insurer for roughly a third of the patients, while Medicare accounts for over a fifth
of cases. Roughly 14% of cases report self-pay, i.e., no insurance, and the remaining share
of cases are insured privately (see Table 2.1).

For 16 hours each day, Hospital A has two physicians on duty in the ED. During the early
morning hours (1am to 9am), one physician staffs the ED. Figure 2.1 illustrates the typical
shifts physicians work at Hospital A. The eleven emergency physicians at this hospital are not
employees of the hospital, but all are partners of the same physician group. Physicians are
compensated on a competitive hourly wage, and profit-sharing by the group is proportional
to the share of total clinical hours worked. Compensation for clinical work thus boils down
to hourly compensation with minimal additional incentives on quality or quantity of care.3

The physician group also employs four physician assistants as midlevels who independently
care for many of the least complicated cases that arrive at the hospital. The hospital employs
the remaining labor, including nurses and technicians. When a patient arrives at Hospital
A, details about the patient’s case – time of arrival, severity, primary complaint, and other
characteristics – are written on a public board in the center of the ED, and the patient waits
for a physician to sign on to her case. Once a physician signs on to see a patient, the time
a physician has signed on and the identity of the physician are documented on the central
board.

Physicians working at Hospital A have all worked in the physician group for at least four
years by the start of our sample. The oldest physicians have worked with the group for over
25 years and have practiced emergency medicine for their entire careers, while the younger
physicians graduated from US medical schools roughly 10 years ago. Half of the physicians
are female.

The second hospital (henceforth Hospital B) for which we have obtained discharge data
is a large private urban hospital in Chile with roughly 80,000 emergency room visits per
year. Patients at this hospital are mostly privately insured and come from the upper tail of
the income distribution. Physicians from four specialties staff the emergency room at any
given time.

Hospital B is amongst the two largest, highest-quality private hospitals in Chile. It was
accredited by the Joint Commission International Accreditation in 2007 and 2010, and be-
longs to the network of partners of Johns Hopkins. The entire hospital has about 3000
employees, including 700 doctors. We observe 92 physicians staffing the emergency depart-
ment over the course of fifteen months. Hospital B has a 24-hour emergency room with

3A formalization of the pay for physician i working hiy hours in year y is :

Wiy = hiywy +
hiy∑11
j=1 hjy

Πy

where Πy is the group’s profits in year y, which depend on physician productivity, but also on a host of
other revenue and cost determinants, such as patient mix, the billing department’s efficiency in collecting
revenues.
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44 beds. A typical day shift includes a surgeon (who acts as the head of the shift), four
internists, four pediatricians and two traumatologists. A typical night shift includes one
surgeon, two pediatricians, two internists, and one traumatologist. Figure 2.2 provides a
graphical depiction of the shifts at Hospital B.

In Chile, becoming a physician qualified to work in an ED entails five years of undergrad-
uate coursework, two years of internship, and finally three years of specialization. Physicians
mostly enter the ED after completing their specialization. The mean age in our sample is
36 years, and the average tenure is 20 months. Almost 90 percent of the physicians that see
patients in the ED work at Hospital B only as ED physicians and are not part of the staff.
In our sample the average physician works 7 shifts a month. Physicians who are not part of
the staff complement their work at Hospital B with ED duties and/or private consultation
at other hospitals. Staff physicians, on the other hand, have private offices in the Hospital
and are stakeholders. Promotion to staff is rare and competitive. Only one or two physicians
per year are promoted to a staff-level position.

The labor market for ED physicians in Chile is highly competitive and salaries are high.
ER doctors at Hospital B receive a flat monthly salary of roughly US$6,000, plus a perfor-
mance bonus at the end of the year of up to one month’s salary.4 Performance is measured
in terms of number of patients seen, complaints received, and an evaluation by the head of
the ED.

The high competition for ED physicians creates substantial turnover of the physicians
working at Hospital B. Out of the 92 doctors in our dataset, 30 entered the hospital during
the 15 months of our sample (October 2011-December 2012). Table 2.2 summarizes the main
characteristics of Hospital B’s emergency department physicians.

Despite differences in patient characteristics, patient flows at either hospital are quite
similar. However, Hospital B has a median length of stay of each patient that is much lower
than in Hospital A. Much of this difference is likely explained by differences in the types of
care and the characteristics of patients in the two settings. In Hospital A, median throughput
is just over 2 hours, and in Hospital B, median throughput is about 70 minutes. A median
throughput of 2 hours is normal for US hospitals. Hospital B is a private, for-profit hospital
with direct motivation to limit patients’ waiting times. This likely influences Hospital B’s
median throughput times, whereas Hospital A is a non-profit with the majority of their
revenues coming from public insurance. There is quite a bit of variation across specialties
in Hospital B, which is unsurprising given the differences in patient pools treated by each
specialty. These descriptives are shown in Figures 2.3 and 2.4.

Sources of variation

In order to identify the effect of coworker ability on own productivity, a few conditions need
to hold.

4Mean monthly income for salaried workers in Chile in 2011 was USD 710.
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1. The assignment of shifts and coworkers must be uncorrelated with omitted factors that
directly influence productivity.

2. Additionally, if one is interested in a form of peer effects that operate through social
incentives, then assignment of patients to physicians within coworker pairs/groups
needs to be uncorrelated with other factors that influence productivity. For example,
unobservably more difficult patients may be sorted to the best physician on duty,
inducing a mechanical peer effect.

From a policy perspective, this latter concern is less notable, because if one is interested in
the optimal design of shifts, the spillover parameter of interest would incorporate both the
spillover operating through peer pressure and the spillover operating through shifts in the
nature of work for each individual. Nonetheless, to address the second concern, we condition
on patient observables and on physician caseloads in all of our empirical analyses. We also
present evidence that the assignment mechanisms in either hospital do not match patients
to physicians based on any observable information except for the physicians’ caseloads upon
the arrival of the patient - so it is typically the least busy physician who is responsible for
the next patient who walks in the door, regardless of that patient’s characteristics or chief
complaint. We examine the plausibility of these assumptions in this section.

Physician scheduling

Importantly, physicians in both settings are assigned to shifts well in advance, and with
little room for switching shifts. We observe physicians working with a variety of peer groups
throughout our samples. Physicians schedules are set at least two months in advance of any
given shift at each hospital.

At Hospital A, physicians are expected to be flexible in their scheduling, and to work
different days of the week, and different shifts of each day.5 This contributes to the fact that
we observe each physician pair working together quite regularly throughout the sample.

Table 2.3 shows the number of patients that each physician cares for when paired with
any of the possible set of coworkers. There are substantial numbers of patients taken care of
in most of the pairs, and by each physician within each pair. Physicians are ranked in this
chart based on their estimated efficiency. The bottom right corner of the table indicates the
number of patients cared for by pairs of very inefficient physicians, for example. One can
also compare mirror elements of this table across the main diagonal to see whether a pair’s
caseload loads more heavily on one physician than on another. Indeed, from inspection of
these elements, one can see that when there is imbalance in the efficiency of physicians on
duty, the more efficient physician, who takes care of cases more quickly on average, provides
care for more patients than the less efficient physician. When physicians are relatively close

5One caveat is that not all physicians work night shifts at Hospital A. Night shifts contribute little to
the analysis, however, because half of the night shift is spent in single coverage. In the analysis, we control
for hour-by-day of week effects, so that the spillover is estimated within an hour of the day, and only on
cases in which peers were presently working in the ED.
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in terms of estimated efficiency, they see similar caseloads when working together. This is
one way in which the spillover effects may be thought to operate - more work is incurred by
the faster of the physicians in any given pairing. To adjust for the fact that faster physicians
see more cases than their slower counterparts, we include non-parametric controls for a
physician’s caseload when seeing a patient.6 7

Physicians’ caseloads are also largely a function of the number of patients available to
see. We abstract from number of patients seen as the measure of output from hereon because
of this concern.

It is highly atypical for either hospital to change the shift scheduling, or to call in extra
(potentially more productive) physicians, when unexpectedly high demand periods occur.
In this sense, there is little concern that variation in peer groups is being driven by demand.

Patient arrivals

There does not seem to be systematic assignment of patients to physicians based on physician
productivity in either hospital. Patient characteristics, including age, sex, and complaint, are
not major factors in determining assignment of patients to physicians. Instead, how much
work a physician currently has and how much work his coworkers have (in terms of number
of patients that have previously arrived) plays the most substantial role in determining
patient-physician matching. This can be seen prominently in Figure 2.5, which plots the
p-values from F-tests of joint significance of the labeled variables in within-pair regressions
of physician identity on patient characteristics and the characteristics of each of the two
physicians currently working at the ED, in particular their current caseloads. This test is
easiest to implement in Hospital A, where physicians work in pairs and where we observe
patient’s characteristcs. We estimate models for cases within each physician pair of the form:

1[physicianc = i] = f(α +Xcβ + γRelativeCensusi + εc)

where the identity of the physician assigned to the case is regressed on patient characteristics
and the physician pair’s relative census, defined as the ratio of the number of patients under
care of physician i to the total number of patients under care by physician i and physician j,
the other physician in the pair. We report estimates from linear probability models, although
results look similar for logit regressions as well.

Under the null hypothesis that patients are equally likely to be assigned to either physi-
cian, conditional on that physician’s current workload, the stacked p-values of the F-test of
joint significance from each pair should resemble a uniform distribution. Visually, the only
factors that appear to matter for patient assignment are the “Census” factors, which are

6Physicians are seeing at most X other patients during a given case, so we include dummies for seeing
1,2,..X other patients in the regressions.

7If physicians always held constant the number of cases under their names, the skew of the distribution
of patients across physicians would be mechanical. Physicians have some say over the number of beds they
are using at any given time, so slower physicians could theoretically see just as many patients, but occupy
more bed-hours over the course of a shift.
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comprised of two continuous variables, one for each physician’s caseload when the reference
patient arrives at the ED at Hospital A. The assignment mechanism seems to operate as
expected – whomever is less busy signs on to the next patient, with little influence of the
characteristics of those patients on the assignment.

Preliminary results for Hospital B, in which we estimate multinomial logit regressions
within each team to test the assignment mechanism. We find that the main driver of assign-
ment in Hospital B is also relative census, defined as the share of current patients under the
care of each physician at the time the reference patient enters the ED. The main explana-
tory variable included in this regression, aside from relative caseload, is an interaction of the
physician’s estimated fixed effect with the triage severity rating of the patient. This tests
whether more severe patients are sorted to physicians differentially by physician productiv-
ity. The p-values from the F-tests in Hospital B across teams of physicians are plotted in
the second half of Figure 2.5.

The productivity spillovers of peers that we document are thus unlikely to be driven by
selection of coworkers or of patients.

2.4 Econometric framework

Our primary measure of productivity is throughput, defined as the time between a patient
arriving in the emergency department’s waiting room and that patient’s discharge from the
emergency department. We focus on throughput for several reasons. First, it is a readily
observable measure of productivity in most emergency room discharge data, and it is used
widely in the literature on the operation of EDs.8 Second, physician throughput contributes
to waiting times, patient satisfaction, and the responsiveness of the ED to inflows of patients.
Keeping up with demand is one of the largest challenges facing EDs (Institute of Medicine,
2007), and throughput is one of the most important factors in doing so. We acknowledge the
fact that quality measures are particularly important as well in the context of medical care,
and we address concerns that decreased throughput, while having positive externalities on
the set of other patients, may have negative effects on the patient whose care is sped up.

For the bulk of our results, we use an empirical strategy common in the literature on
workplace peer effects (Mas and Moretti, 2009; Bandiera, Barankay, and Rasul, 2010). Be-
cause the productivity data in our samples are high frequency, we can precisely estimate an
individual worker’s average productivity, net of patient, ED, and coworker characteristics by
estimating a fixed effects regression. We then map these estimates of an individual’s produc-
tivity to each individual when she serves in the role of a coworker. In a second regression,
we use the estimated fixed effects mapped to the coworker as righthand-side variables in
explaining variations in a physician’s productivity.

8Beginning in 2014, CMS will begin using throughput in its outpatient payment updates for the public
reporting system (AHRQ 2011)
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To formalize this framework, assume that throughput yc of a given case c is a function of
case characteristics Xc, a physician’s fixed level of productivity θi, time fixed-effects γt and
the identities of other physicians currently working in the ED:

yc = α +Xcψ + θi(c) + γt(c) + Pi(c)(θ1, θ2, ..., θi−1, θi+1, ..., θk) + εc

In this form, c indexes the case, which has a number of characteristics, including a physician
i assigned to case c, i(c). Pi(c)() is the effect of the fixed productivity of a physician’s current
peer group on her own productivity (relative to her fixed productivity). P is written as if
it may vary across physicians. In the first step of the estimation, we replace Pi(c)() with a
set of dummies, where each dummy is unique to the set of identities in the peer group. In
Hospital A, this amounts to including an indicator for which physician is coworking with
physician i(c), while in Hospital B, the coworker group comprised of workers W1 and W2 is
associated with its own dummy, and the coworker group consisting of workers W1, W2 and
W3, for example, is associated with a separate, mutually exclusive dummy variable. The
point of this first regression is to retrieve estimates of θi, the physician fixed effects purged
of the influence of her peers.

In the second step of this regression analysis, we replace Pi(c)() with β 1
Ncow

∑
θ̂−i(c), the

average fixed effect of physician i’s coworkers who are on duty while physician i is taking
care of patient c.9 The estimating equation is:

yc = α +Xcψ + θi(c) + γt(c) + β

∑
θ̂−i(c)
Ncow

+ εc (2.1)

This linear-in-means assumption is a functional form that is standard in the literature on
peer effects. In Hospital A, the estimated fixed effect of one’s coworker is the average fixed
effect. In Hospital B, more information is lost by collapsing coworker characteristics down
to their mean efficiency, but we opt for this functional form for the sake of comparison to
other studies.

2.5 Results

We begin by presenting results of the baseline regression specification for Hospital A, using
log(throughput) as the outcome variable in both steps of the analysis. Columns (1)-(3) of
Table 2.4 present evidence of productivity spillovers with increasingly large sets of control
variables. Each of these columns use variation in a physician’s peer group arising within
an hour of the day and day of the week, and within a month. This amounts to comparing
a physician’s average throughput when working with different coworkers on, for example,

9We have experimented with Bayesian shrinkage techniques when including the estimated fixed effects
as regressors, and doing so does not affect our results. Bayesian shrinkage hardly alters our estimated fixed
effects, because our within-physician sample sizes are quite large and our estimated physician fixed effects
are precise.
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different Tuesdays, in the same hour of the day. We include increasingly large sets of controls,
and in column (3), we include all patient observables (complaint, age bin, gender, mode of
arrival, disposition of discharge) and time-varying physician and ED observables (physician
caseload, patients in and arriving to the ED). Including the physician caseload is particularly
important as slow coworkers could slow down the physician because they might generate a
higher caseload to her.

The point estimate of the productivity spillover is remarkably stable across these specifi-
cations, and is precisely estimated. We estimate that having a peer who is 10 percent more
efficient over the course of the sample induces a physician to provide contemporaneous care
that is 1.8% faster. The magnitude is similar, and slightly larger, than previous studies.10

Column (4) of Table 2.4 explores a different source of identification – within-day variation
in one’s coworker group. In this specification, we include a dummy for each calendar date
in the sample, so that the identifying variation in peer groups is arising through changes
in one’s peers within a given day. The result for the productivity spillover is similar, at
1.43%. The estimate is quite robust to a number of alternative specifications not presented
here, including leaving out any patients who are admitted, exchanging the main independent
variable with a dummy for whether your coworker has an above median fixed effect.

Remarkably, the baseline estimates of spillovers in Hospital B are quite similar, despite
the differences in organization and operation from Hospital A. In Column (1) of Table 2.5 we
present the results of estimating 2.1 for the entirety of Hospital B, using a similar specification
to the one used for Hospital A. The same specification is estimated by each specialty within
Hospital B in columns (1), (3) and (5) of Table 2.6. In each table, the peer group on each case
is the set of physicians active during the case within the specialty other than the physician
assigned to the case. We construct the peer group this way primarily because the design
of Hospital B is such that physicians primarily interact with other physicians in the same
specialty.11

The estimated magnitude of these spillovers is in line with previous studies of workplace
spillovers (Mas and Moretti, 2009; Falk and Ichino, 2006). In the emergency department,
efficiency spillovers of this magnitude could have potentially large impacts on the operation
of the workplace.

The dataset for Hospital B allows us to control for the number of procedures. In principle,
slower coworkers might also be those prescribing more procedures that would slow down the
case of the rest of physicians. We address this concern by incorporating the number of
procedures of the cases seen by other physicians of the same speciality that haven’t been
discharged at the time of check-in. We also incorporate the number of procedures of the
case an additional control. The results are in Column (2) and (3) of Table 2.5 and Columns
(2), (4) and (6) of Table 2.6. The point estimate of the peer effect decreases to 0.167, but
it is still economically and statistically significant. Breaking down by specialty reveals that

10Mas & Moretti find that having a peer group that is 10% more productive increases own productivity
by 1.6 percent. Falk & Ichino estimate the effect at 1.4 percent.

11In later specifications, we consider the spillovers occurring across specialties within Hospital B.
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the point estimate decreases for all specialties and it not longer statistically significant for
internists.

The prevalence of ED overcrowding is in no small part a function of individual pro-
ductivity. The estimated distributions of efficiency measures in each hospital (and within
specialties in Hospital B) have wide ranges; the fastest physicians are on average 40-50 per-
cent faster than the slowest physicians, with no evidence of lower quality care.12 One simple
interpretation of our spillover estimates is that physicians who are on the bottom end of
this distribution are not only slowing down the flow of work in the ED through their own
patient care. These physicians are also generating slowdowns for the patients under the
supervision of other on-duty physicians. Of course another interpretation is that the fastest
of the physicians generate larger efficiency gains than would be implied by their estimated
efficiency measures, through mechanisms such as monitoring, peer pressure, or motivation.
In the next section, we explore the possible mechanisms underlying the spillovers we have
documented.

How do the spillovers we estimate arise? These spillovers could arise due to peer pressure
as in Mas and Moretti’s study of cashiers, where less productive workers incur a disutility
from being further below the prevailing effort norm, especially when peers can generate this
disutility through monitoring. Alternatively, motivation to work harder in the presence of
more productive peers may explain why physicians work faster when their peers are faster.
Physicians could be influenced by their coworkers through knowledge spillovers. Finally,
physicians could be complements in production, so that the marginal effort of one physician
is more valuable when working with certain other physicians.

We present a number of tests to differentiate between or rule out the many stories that
could lead to a physician working more efficiently when around more efficient peers in this
section.

Congestion of shared resources

A mechanical way in which one worker’s productivity could influence the productivity of
others is through utilization of shared resources. If less productive peers perform tests and
procedures that are more resource-intensive, and if these resources are shared and scarce,
then surrounding physicians would be unable to access these resources as quickly and may
be slowed down as a result. This is one form of productivity spillovers that relies only on
the production technology. Ex ante, this may an important mechanism through which the
spillovers we estimate arise.

To test for this channel, we include as a regressor the number of procedural orders by
other physicians at the time a physician begins with the current patient. The orders we
observe in the Chilean data are primarily for imaging – x-rays and CT scans; these are truly
a scarce resource, as the emergency department has only a few machines that perform these

12In later tables, we show that quality measures such as readmissions seem not to vary with physician
speed.
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tasks. If the spillover we estimate is generated by congestion effects that are stronger when
a physician works with slower, resource-congesting peers, then conditional on the current
utilization of resources by a physician’s peers, the spillover parameter should attenuate to
0. This is not the case. We find a modest degree of attenuation of the spillover parameters
across specialties in Hospital B when we additionally include the procedural orders of other
physicians of the same specialty in the regressions in Table 2.6. The spillover estimate is most
attenuated for internists; the estimate drops from .152 to .089. For pediatricians, the estimate
drops from .176 to .135, and for traumatologists, the spillover parameter actually increases
slightly from .243 to .265. As expected, other physicians’ procedural orders are estimated to
slow down patient care. The coefficients on others’ procedural orders are precisely estimated;
an additional 5 procedural orders on other patients when the current patient arrives slows
down her care by .65 to 2.4 percent. This channel may explain some of the productivity
spillover among internists in the Chilean hospital, but little to none in other specialties.

Differential responses

The spillover of a coworker’s productivity onto one’s own productivity may have a few types
of heterogeneity. First, some physicians may be more or less likely to respond to their peers.
A more efficient physicians may be unaffected by her peers if the spillover is being driven by
peer pressure from faster physicians onto slower physicians. Alternatively, if a less efficient
physician is unreceptive to peer pressure, then her effort will not vary with whether her peers
are high or low productivity. Another type of heterogeneity lies in the spillover generated
by different types of workers.

One model of social interaction that may help clarify why there could be differential
responses is one of inequity aversion (Fehr and Schmidt, 1999) – in which agents have a
disutility associated with putting in more or less effort than their peers. If there is an
asymmetry in how much disutility is generated by putting in some effort amount greater
than one’s peer compared to putting in the same amount less effort than one’s peer, then
one should see differential responses of physicians to different types of peers. In particular,
if physicians have greater distaste for being the higher effort peer than for being the lower
effort peer, less productive peers will tend to bring down a physician’s effort more than
more productive peers will bring up a physician’s effort and thus efficiency. This is only one
model for thinking about these differential effects, and we only try to clarify some ways in
which differential responses to peers may be driven by behavioral mechanisms other than
peer pressure.

Here we present the results of estimating Equation 2.1 with interaction terms to capture
these forms of heterogeneity. In Table 2.9, we find that faster physicians are more susceptible
to influence from their peers productivity than slower physicians, i.e., the interaction term
in Column (1) on whether the reference physician is faster than median with her coworker’s
productivity has a positive and significant coefficient. Other forms of heterogeneity, as esti-
mated in the subsequent columns show little evidence for differential effectiveness. However,
in Table 2.10, we estimate the efficiency of fast, median, and slow physicians when working
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with physicians of who are themselves fast, median, or slow. The spillovers become quite
evident by inspection of this table, and it becomes clear that most if not all of the response
to one’s peers are being generated by working with the slowest peers in Hospital A.13

We estimate similar models in Hospital B, the results of which are presented in Tables
2.11 and 2.12. The results of these interaction models in Hospital B do not seem to support
any large differences in the incidence of spillovers across physicians. All types of workers
respond positively to their peer group’s productivity. These results do not support one
of the primary findings of Mas & Moretti (2009), that spillovers are mostly onto the less
productive workers and are generated primarily by the most productive workers. As such,
the mechanism for the spillover in the ED is unlikely to be the result of peer pressure through
monitoring of slower physicians by faster physicians.

Considering the evidence from both hospitals, it does not appear that more productive
peers are generating the spillover. If anything, in Hospital A, the effect is driven primarily
by the slower physicians.

Knowledge spillovers and expertise

Another potential mechanism that could generate spillovers across both the high and low
productivity physicians is a model with comparative advantage. If some physicians specialize
in certain types of patients, they may lend their expertise to other physicians who encounter
patients of those types. In Hospital A, this is more likely to happen, as physicians are
responsible for caring for all types of patients, whereas in Hospital B, physicians explicitly
specialize and only accept cases that fall under their realm of expertise.

A rough test of whether spillovers in efficiency are driven by physicians sharing expertise
on a particular case is to estimate patient-type-specific throughput for each physician and to
estimate spillovers for each patient-type. These tests are underpowered in our sample, but
we present the results in Table 2.13 for completeness. In short, physicians do not seem to
be specialists; patient-type-specific fixed effects for physicians are all highly correlated with
one another. Physicians seem to be either fast or slow on all types of cases. Formalizing this
section is a goal of future research.

Contagious enthusiasm or malaise

Spillovers may operate because the composition of entire groups of workers may create an
atmosphere of hard work or malaise. If this were the mechanism through which spillovers
operated, then one would expect the average efficiency of the entire set of physicians working
in the hospital to generate spillovers. The structure of the workplace in Hospital B is
such that physicians in separate specialties see one another and interact in the hallways
of the ED, but their workloads are distinct. This provides a compelling research design

13We cannot separately identify whether physicians are slowed down by the slow or sped up by others,
rather we can only identify the relative effects.
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to test for the presence of spillovers operating through contagious enthusiasm or malaise.
Spillovers should operate across specialties. In Table 2.14, we estimate models in which
we allow for the spillover onto physicians in one specialty to be a linear combination of
the average productivity of coworkers in the same specialty and the average productivity of
coworkers in all other specialties. We find that spillovers across specialties are insignificant
and quite small relative to the spillovers operating within specialty. In the case of internists
cross-specialty spillovers are estimated to be negative. Spillovers are arising mostly through
whom physicians are most directly interacting with, those with whom they share a common
workload and common experience.

Spillovers across the shift

The evidence provided so far does not point to any one particular mechanism generating the
observed spillovers. Another approach to discerning how these effects are arising is through
direct investigation of changes in coworker. In the following section, we present preliminary
evidence using an event-study design to gain more insight.

Is the slowdown from working with a slower peer immediate, or is it something that
only manifests over the course of the shift? If the effect sets in gradually, then one might
think that the effect is coming about through a slowdown of the emergency room resulting
from the new slower physician’s procedural orders. If instead the effect is immediate and
persistent, the spillover is more likely generated through some form of social interaction,
rather than shared resources (e.g., CT scanners, x-rays, nurses) being slowly backlogged by
orders from the new slower physician. Additionally, if backlogging of resources is generating
the slowdown, it should persist into the future after the slow physician has been replaced by
a faster physician.14

To this end, we present evidence of the timing of the spillover effect, as evidenced by a set
of event studies. We focus on Hospital A because shifts there overlap imperfectly, allowing
us to examine throughput responses to discrete changes in the efficiency of your coworker.
We estimate models of the form:

yc = α +Xcψ + θi(c) + γt(c) +
5∑

s=−5

βs∆θ̂−i,c+s + εc (2.2)

That is, we calculate changes in a physician’s peer group’s fixed productivity over the course
of her shift, and we regress her throughput on a case on the usual set of controls, and on
lags and leads of changes in her coworker productivity. The parameters of interest in this
equation are the set of βs, which index the patient of interest, relative to the case on which

14Our first piece of indirect evidence addressing the timing of the effect is from Column (4) of Table 2.4,
which shows that variation in a physician’s peers within a calendar day is still associated with a spillover.
Since some of the shift overlaps are not that long in Hospital A, one would not expect the physician working
the second morning shift to be affected much by the physician working the evening shift if indeed the effect
is cumulative. However, the spillovers are estimated to be just slightly smaller within day.
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a physician has a new coworker (s = 0). In Figure 2.6 we present results from this exercise
in two ways. In the first panel of Figure 2.6, we plot the basic estimates of 2.2, which
demonstrate an immediate, persistent effect of new coworkers on a physician’s productivity
throughout the rest of the shift.15 In the second panel, we examine how this effect varies
when looking only at the entry of new slower physicians to the shift. The visual evidence is
striking. There appears to be a large anticipatory effect of having a new slower coworker.
Physicians provide speediest care to the patients they care for just before the entry of a new
slower coworker. Once the slower coworker begins a shift, the reference physician slows down
care for future patients considerably. This is inconsistent with explanations of the spillover
operating through overuse of shared resources. Instead, this reaction may indicate that
slowdowns are partly generated by transitions and reorganization of work upon the entry of
new physicians. However, the event study is not simply examining the impact of switching
coworkers; instead it provides an estimate of the impact of switching to slower coworkers,
as the plotted estimates are regression coefficients on changes in estimated coworker fixed
effects from the first-step regression.

2.6 Conclusions

Unlike most of the previous evidence in the literature, this paper documents peer effects
in a high-skilled and high-stakes profession. In particular, we show important peer-effects
among physicians in the emergency department. If management were to replace a physician
from the 25th percentile of the estimated productivity distribution with one at the 75th
percentile for a 12-hour shift, other physicians would be each able to see an additional
patient. Our findings are surprisingly similar across two different institutional settings with
different payment incentives.

Our data allows us to discard several alternative explanations that would mechanically
generate spurious peer-effects. We devise a test for non-random patient-physician assign-
ment, to rule out the possibility that productive physicians are assigned more complex cases
when working with low-productivity peers. We find that cases are distributed across physi-
cians as a function of their caseload, and that patient’s characteristics do not predict to
which physician they are assigned. On the other hand, we do not find evidence that slow
physicians decrease the productivity of their peers through an increase in utilization of scarce
resources. The data analyzed in this paper provides fruitful avenues which we plan to explore
in future research. An important feature of emergency department care is the hierarchical
interaction between physicians, who largely order and interpret tests, and nurses, who are
primarily responsible for carrying out a physician’s orders. The hospitals in our data both
feature quasi-random assignment of physicians and nurses to cases, making it possible for
us to assess empirically the importance of these hierarchical relationships in the workplace.

15Evidence not shown here suggests that physician throughput does not vary much across the shift, and
physicians may in fact speed up slightly through the shift, so the effect shown here is not one due to tiring
of physicians across the shift.



CHAPTER 2. PEER EFFECTS IN THE EMERGENCY DEPARTMENT 79

Given high rates of turnover of physicians in Hospital B, we can also assess the degree to
which learning to work together matters for speed, spending, and outcomes, net of overall
on-the-job learning.

Table 2.1: Payer mix at Hospital A

Insurance Type
Medicaid 33.1
Medicare 21.0
Private 30.2
Uninsured 15.8
Total 100.0

Notes: Share cases by payer, at Hospital A

Table 2.2: Physician characteristics at Hospital B, October 2012

N mean standard deviation min max
Gender (1 if male) 93 0.61 0.49
Age (in years) 92 37.4 6.02 28 54
Tenure (in months) 93 20.6 26.8 0 125

Notes: This table shows descriptive statistics of physician characteristics for Hospital B. Tenure
is as of October 2011
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Table 2.3: Frequency of interaction of pairs, ranked by physician efficiency

FE/FE -0.186 -0.175 0 0.006 0.028 0.058 0.069 0.222 0.236 0.283 0.323
-0.186 0 337 425 428 435 403 399 267 292 115 357
-0.175 341 0 153 249 268 246 178 192 232 24 269

0 415 192 0 315 211 191 427 299 364 61 392
0.006 344 251 247 0 342 122 259 172 177 61 261
0.028 445 284 204 390 0 123 156 193 221 17 373
0.058 326 212 152 124 118 0 110 96 127 15 237
0.069 515 224 496 337 186 147 0 287 177 44 282
0.222 198 138 201 165 146 105 182 0 116 30 176
0.236 234 203 347 169 179 138 151 146 0 54 309
0.283 68 13 47 52 14 13 32 29 38 0 20
0.323 287 206 318 258 298 226 200 207 285 16 0

Notes: This table shows the number of patients that each physician cares for when paired with
any of the possible set of coworkers. Physicians are ranked in this chart based on their fixed effect
in throughput regressions. Larger FE indicate slower physicians
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Table 2.5: Estimated spillovers in Hospital B

(1) (2) (3)
log(throughput) log(throughput) log(throughput)

Average Perm. Prod 0.204*** 0.170*** 0.167***
of Coworkers (0.0364) (0.0412) (0.0407)

Number of 0.0144*** 0.00701** -0.000233
Coworkers (0.00429) (0.00339) (0.00330)

proc other 0.00148***
(0.000247)

procedures No Yes Yes
Observations 67468 67468 67468
R2 0.153 0.466 0.467

Notes: All specifications include day-of-week-hour and month dummies severity, time elapsed
during the shift and total number of patients under care of physican when the patient arrives.
proc other is the number of procedures of other cases not discharged at the time of check-in of
the focal case, seen by other physicians of the same specialty. Standard errors in parentheses, *
p<0.10, ** p<0.05, *** p<0.01
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Table 2.7: Quality of care, Hospital A

Readmits within 14 days Readmits for UTI
same complaint within 14 days

log(throughput) 0.0000617 0.000104
(0.00187) (0.000643)

θi 0.00275 0.000564
(0.00769) (0.00215)

Hour-by-day-of-week effects Yes Yes Yes Yes
Month effects Yes Yes Yes Yes
Other controls Yes Yes Yes Yes
Mean of dep. var 0.03 0.03 0.00 0.00
Adjusted R2 0.036 0.036 0.007 0.007
N cases 23307 23307 23307 23307

Notes: Controls same as basline specifications. Worker fixed effects included in columns (1) and
(3) Robust standard errors in parentheses, * p<0.10, ** p<0.05, *** p<0.01

Table 2.8: Quality of care, Hospital B

Readmitted within 14 days
(1) (2) (3)

θi 0.0177* 0.0169* 0.0133
(0.00894) (0.00922) (0.00904)

Specialty Dummies Yes Yes Yes

Time Dummies No Yes Yes

Severity Dummies No Yes Yes

Coworker group effects No No Yes
N 81809 81809 68206
Adjusted R2 0.00372 0.00623 0.0378

Notes: Controls same as basline specifications. Worker fixed effects included in columns (1) and
(3) Robust standard errors in parentheses, * p<0.10, ** p<0.05, *** p<0.01
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Table 2.9: Heterogeneity in spillover by worker and coworker type, Hospital A

(1) (2) (3)
Diff. responsiveness Diff. influence Interaction

b/se b/se b/se
θcoworker 0.113*** 0.211*** 0.196***

(0.024) (0.059) (0.027)
θcow × I{θphysfast} 0.129***

(0.033)
θcow × I{θcowfast} -0.096

(0.080)
I{thetacowfast} -0.002

(0.010)
θcow × θphys -0.285*

(0.135)
Hour-by-day-of-week effects Yes Yes Yes
Month effects Yes Yes Yes
Other controls Yes Yes Yes
Adj. R-squared 0.419 0.419 0.419
N cases 23307 23307 23307

Notes: Standard errors clustered at the physician level. All specifications include physician fixed
effects. Other controls same as final column in previous table * p<0.10, ** p<0.05, *** p<0.01
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Table 2.10: Throughput by pair type, Hospital A

(1) (2)
Fast/slow Fast/med/slow

b/se b/se
fastfast2type -0.268***

(0.058)
fastslow2type -0.214***

(0.066)
slowfast2type -0.045***

(0.012)
fastfast3type -0.372***

(0.039)
fastmed3type -0.393***

(0.050)
fastslow3type -0.328***

(0.043)
medfast3type -0.249***

(0.024)
medmed3type -0.260***

(0.026)
medslow3type -0.188***

(0.027)
slowfast3type -0.033*

(0.017)
slowmed3type -0.022

(0.024)
Hour-by-day-of-week effects Yes Yes
Month effects Yes Yes
Other controls Yes Yes
Adj. R2 0.401 0.415
N cases 23307 23307

Notes: Standard errors clustered at the physician level. * p<0.10, ** p<0.05, *** p<0.01
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Table 2.11: Heterogeneity in spillover by worker and coworker type, Hospital B

(1) (2)
Diff. responsiveness Interaction

Internists

θcoworker 0.158*** 0.115
(0.051) (0.102)

θcow × I{θphysfast} -0.046
(0.095)

θcow × θphys 0.218
(0.488)

Adj. R-squared 0.294 0.294
N cases 29052 29052

Pediatricians

θcoworker 0.210** 0.284***
(0.077) (0.057)

θcow × I{θphysfast} 0.042
(0.114)

θcow × θphys 1.271***
(0.366)

Adj. R-squared 0.373 0.373
N cases 27544 27544

Traumatologists

θcoworker 0.330*** 0.359***
(0.062) (0.088)

θcow × I{θphysfast} -0.068
(0.137)

θcow × θphys -0.451
(0.735)

Adj. R-squared 0.233 0.233
N cases 8468 8468

Notes: Includes Hour-by-day-of-week effects, Month effects, Physician fixed effects and all controls
from previous table included. Standard errors in parenthesis, * p<0.10, ** p<0.05, *** p<0.01
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Table 2.12: Heterogeneity in spillover by worker type, Hospital B

(1) (2) (3)
Internists Pediatricians Traumatologists

θ̄−i × I(fastworker) 0.143 0.197 0.204
(0.121) (0.131) (0.126)

θ̄−i × I(medianworker) 0.139 0.210** 0.399***
(0.098) (0.082) (0.046)

θ̄−i × I(slowworker) 0.151*** 0.336*** 0.249
(0.042) (0.069) (0.152)

Hour-by-day-of-week effects Yes Yes Yes
Month effects Yes Yes Yes
Other controls Yes Yes Yes
Adj. R2 0.294 0.373 0.233
N cases 29052 27544 8468

Notes: Standard errors clustered at the physician level. Physician fixed effects and all controls
from previous table included. * p<0.10, ** p<0.05, *** p<0.01
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Table 2.14: Spillovers across specialties, Hospital B

(1) (2) (3)
Internists Pediatricians Traumatologists

b/se b/se b/se
θ̄samespecialty 0.106** 0.238*** 0.293***

(0.047) (0.074) (0.061)
θ̄otherspecialties -0.049 0.060 0.071

(0.046) (0.070) (0.097)
Hour-by-day-of-week effects Yes Yes Yes
Month effects Yes Yes Yes
Other controls Yes Yes Yes
Adj. R-squared 0.296 0.372 0.233
N cases 28424 27413 8457

Notes: Standard errors clustered at the physician level. * p<0.10, ** p<0.05, *** p<0.01

Figure 2.1: Shifts in Hospital A

Notes: Shift ours in Hospital A

Figure 2.2: Shifts in Hospital B

Notes: Shift ours in Hospital B
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Figure 2.3: Throughput and arrivals in Hospital A

(a) Arrivals by time of the day (b) Throughput in minutes

Notes: Arrivals by hour of the day and throughput (in minutes) for Hospital A

Figure 2.4: Throughput and arrivals in Hospital B

(a) Arrivals by time of the day
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Figure 2.5: Explanatory variables of assignment

(a) Hospital A
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Figure 2.6: Event study evidence of spillovers
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Chapter 3

Quality regulation and competition:
Evidence from a pharmaceutical
policy reform in Chile

with José Ignacio Cuesta and Morten Sæthre

3.1 Introduction

Developing economies are some of the fastest-growing markets for pharmaceutical companies
nowadays. However, not much is known about their workings. These markets are char-
acterized by relatively weak intellectual property protection and quality regulations, with
potentially far-reaching consequences for the competitive environment faced by innovators
and health outcomes of patients.

The most prevalent means that regulatory agencies in developed economies use to ensure
the effectiveness of orally-administered generic drugs is the requirement of bioequivalence
(BE). In short, a generic drug is bioequivalent to its originator counterpart – the reference
drug– when its rate and extent of absorption does not show a significant difference from
the rate and extent of absorption of the reference drug when administered under the same
conditions (David et al., 2013).1 BE became the primary requirement for the approval of
generic drugs in the U.S. after the passage of the Waxman-Hatch Act in 1984, with the goal
of simplifying the application process and fostering the entry of generics. Before 1984, the
approval process for generic drugs was costly and lengthy, as it required the submission of
preclinical (animal) and clinical (human) data to establish safety and effectiveness (NDA) or
enough scientific literature to support the safety and efficacy of a generic drug (paper NDA)
– which was generally not made available by the originator company. Currently, many

1Bioequivalence does not apply to topical medications, vaccines, or any other type of drugs that are not
orally administered.
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OECD countries either allow, encourage or require substitution of innovators for cheaper
bioequivalent products (OECD, 2000).

Although BE requirements were originally implemented in the developed world to foster
the entry of generics, they have been recently adopted by low and middle income countries
as the primary tool for testing the effectiveness of the drugs allowed in their markets.

Quality regulations are in principle desirable in markets with asymmetric information.
This is notably the case of the pharmaceutical market, since consumers generally do not have
the means to determine the quality of the products at the time of purchase. However, the
effectiveness of BE regulations will ultimately depend on the strategic responses of firms to
them. In particular, BE requirements will only be successful if laboratories decide to invest in
often expensive in vivo tests. However, a laboratory producing a socially desirable drug may
decide not to undertake the tests if its private costs exceed its private benefits, which may
decrease the availability of desirable generic options and, moreover, decrease competition.

A separate competitive effect might arise if consumers and/or doctors are at least some-
what informed about potential differences in treatment quality between generic products
which are not bioequivalent and the originator product. In this case, firms might find it op-
timal to have different levels of quality, to reduce substitution between the firm’s product and
the products of other firms, which could allow more firms to be active in the market. If we
view bioequivalence as imposing a minimum required quality, profits could be reduced at all
quality levels, which could potentially induce exit. If exit happens due to such mechanisms,
it can potentially lead to less product variety and higher prices after the regulation.

The main goal of this paper is to empirically investigate the consequences of BE require-
ments on market outcomes and product availability. In particular, this paper is an early
exploration of the effect of imposing a BE regulation for the case of Chile, a country that
recently adopted BE requirements for a list of 172 molecules, leading to the BE approval of
642 generic drugs between March 2009 and March 2015.

We combine data from the national drug registry and IMS to study how the introduction
of BE requirements lead to the introduction of BE drugs in the market, and what are the
ultimate consequences of the entry of BE drugs on overall market prices, and on the prices
and market shares of reference, branded, and generic drugs.

First, we show strong evidence supporting the notion that BE requirements generated
a substantial increase in the BE approval in this market. We document that drugs which
are registered for the first time are more likely to have BE approval in the period following
the announcement of the requirement — i.e., approaching the regulatory set deadline for
approved BE status — as well as after the deadline has expired (even though drugs without
approval to a large extent still obtain registration for marketing in all cases). We also
document that drugs registered before the announcement also obtain BE in a similar pattern
as first-time registrations.

Then, we turn to the data on sales and prices available in IMS for the period January 2011
to March 2015, to study how the entry of BE in the market affected prices, market shares,
and competition. We study outcomes at the molecule-month level and focus primarily on
(the log of) average price per gram, (the log of) sales in grams, and the number and relative
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concentration of firms selling the molecule. We also disaggregate these outcomes by different
types of drugs –reference, branded and unbranded– within each molecule.

Our baseline specification controls for molecule fixed effects and month fixed effects, and
relies primarily on exploiting the difference in the timing of BE requirements across molecules
as instruments for the introduction of BE drugs.

We do not find significant price changes for molecules facing BE entry, neither at the
aggregate level, nor when looking at the reference, branded, and generic markets separately.
Our results also show that the relative market share of these different types of drugs are
not significantly affected by the entry of BE drugs. Finally, market concentration at the
laboratory level also remains unaffected. These results are in stark contrast with the fears
that BE requirements would lead to less availability of generic drugs and an increase in
prices, as well as with the claims that BE drugs would increase competition and decrease
the price of innovator drugs.

Our lack of effects is not uncommon to the literature analyzing the interaction between
branded and generic drugs when the innovator goes off-patent, which shows disagreement
on whether generic entry has an impact in affecting prices of branded drugs (see Grabowski
et al., 2006 and Knittel and Huckfeldt, 2012 for two reviews of this literature).

The inconclusiveness of the empirical evidence is consistent with the ambiguity of the
theoretical predictions. Although branded drugs face higher degree of competition after
patent expiration, they also target a more inelastic part of the demand curve (Frank and
Salkever, 1992). Moreover, empirical evidence for the U.S. shows that the potential effects
of increased competition following generic entry are partially offset by changes in marketing
and advertisement (Caves et al., 1991; Lichtenberg and Duflos, 2009; Lakdawalla, Philipson,
and Wang, 2006; Knittel and Huckfeldt, 2012). On the other hand, BE requirements increase
the production cost of generics, which may be passed on to consumers in the form of higher
prices.

This paper is closely related to Balmaceda, Espinoza, and Diaz (2015), which is, to our
knowledge, the only empirical evaluation of the BE requirements in Chile. The authors use a
a differences-in-differences strategy to estimate a reduced-form effect of the BE requirements
on drug prices, and find heterogeneous effects across different drugs, even within the same
molecule. In this paper we complement their evidence in several ways: First, our main
dependent variable is the number of BE drugs with the corresponding molecule in the market,
which is instrumented by the deadlines of the BE requirements. Also, we look at overall
market effects as well as the effect on different subsegments within the same molecule. This
strategy provides interpretable coefficient in terms of market competition. Also, instead or
relying on parallel-trend assumptions, our identifying assumption is that the timing and
deadlines of the BE requirements are not correlated with price trends.
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3.2 Pharmaceutical market and quality regulation in

Chile

Institutional framework

Compared to OECD standards, chileans spend a relatively low share (0.9 percent) of their
GDP on pharmaceuticals (OECD, 2013). However, pharmaceutical spending accounts for
more than half of all out-of-pocket health expenditures in the country (Cid and Prieto, 2012).

Overall, survey evidence shows that 33.4% of individuals paid their prescription drugs
fully out-of-pocket (Ministerio de Salud, 2013). The level of financial coverage for prescrip-
tion drugs depends mostly on whether the individual opts to enroll in the public insurance
system (FONASA) or to buy a health insurance plan in the private sector, and on the specific
disease to be treated.2 FONASA enrollees who opt to receive health care within the network
of public providers face copayment rates that depend on socio-economic variables, although
outpatient claims are free of charge, including prescription drugs.3 FONASA enrollees who
instead opt for receiving care in a private hospitals pay procedure-specific prices negotiated
between FONASA and each provider.4

Insurance plans in the private system do not generally include coverage for prescription
drugs.

Three large pharmacy chains account for more 90% of the chilean pharmaceutical retail
market (Ministerio de Salud, 2013). Unlike in the US, direct advertisement of prescription
drugs is prohibited in Chile, although there is ample evidence of a strong role of drug repre-
sentatives from laboratories marketing their products with doctors. Also, laboratories and
pharmacies have been found to provide (illegal) incentives to the retail sales agents. These
chains are vertically integrated with laboratories, and a fraction of their sales correspond to
own-brand drugs.5.

Bioequivalence regulation in Chile

Bioequivalence is a standard request for drug commercialization in most high income coun-
tries (Balmaceda, Espinoza, and Diaz, 2015). BE is established in order to demonstrate
therapeutic equivalence between the generic (test) drug product and corresponding refer-
ence drug. In particular, two products are considered bioequivalent when the rate and
extent of absorption of the test drug do not show a significant difference from the rate and
extent of absorption of the reference drug when administered at the same molar dose of the
therapeutic ingredient under similar experimental conditions (David et al., 2013). According

2For a more detailed description of the health insurance market in Chile, see Duarte (2012).
3For a set of 80 prioritized diseases, the total level of copayment is capped
4With the exception of the pharmacological treatment of a list of 8 ‘high-cost’ diseases, for which there

is full coverage.
5see http://tinyurl.com/jjggenz, http://tinyurl.com/jxlu698 and http://tinyurl.com/

hq5xq5e
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to the FDA, therapeutically equivalent drugs can be substituted with the full expectation
that the substituted product will produce the same safety effect and safety profile as the
originally prescribed (reference) product (Food and Drug Administration, 2016).

In Chile, BE requirements were put in place because of the low perceived quality of
generic drugs. The stated goal of the BE regulation was to increase generic quality, increase
competition, and reduce prices. Before the BE requirements, quality standards required
following guidelines of International Pharmacopeia books, which do not ensure therapeutic
efficiency.

Generally, BE is determined through in vivo clinical studies for one specific presentation
of a given drug, and then in vitro studies are performed for other presentations of the same
drug. BE approvals of imported drugs are generally validated in Chile if they were done in
places considered by the Public Health Institute (Instituto de Salud Pública, ISP) to have
high quality certifications, like Canada, the U.S. and Europe, among others. BE is given ad
eternum for a given formula and production technology. A change in any of these dimensions
will imply that the manufacturer will require a new proof of bioequivalence.

In 2005, the Chilean Ministry of Health (MINSAL) published a list of molecules that
were subject to BE. However, it wasn’t until 2009 that the ISP established the technical
norms for the realization of these studies (Balmaceda, Espinoza, and Diaz, 2015).

BE requirements have rolled out step-wise since then: requirements for different groups of
molecules have been established at different points in time through a set of law decrees. After
the passage of each decree, all new drugs containing the corresponding molecules need to
show proof of BE before been awarded a sales permit by the ISP. Each decree also specifies
the deadline for BE testing among those drugs that are already registered with the ISP.
However, the slow uptake and capacity constraints of laboratories forced the regulator to
extend the original deadlines in all decrees. For instance, the first list of 12 molecules was
published in June 2009. The deadline for proof of BE among registered drugs was set to July
2009. However, the deadline was extended twice, and was finally set for December 2013. In
section 3.3, we describe these for all molecules in more detail.

Still, enforcement of the deadlines is weak, since it is determined by limited enforcement
capabilities of the ISP. According to industry experts, the low auditing capabilities of ISP
make deadlines not being fully binding. However, BE requirements do become binding every
time a drug has to renew its registry with the ISP, which happens every 5 years. Therefore, in
practical terms, the BE requirement binds, for the most part, at the time when the registry
expires.
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3.3 Data and descriptive statistics

Data sources

We use three main sources of data. First, we the universe of registered drugs in Chile for all
molecules under BE requirements.6 The data used in this version of the paper corresponds to
all registered drugs by May 2015. For each registered drug, the dataset provides information
on manufacturer (laboratory), date when drug was first licensed in Chile, date of last license
approval and date of next license approval.7 It also includes information on the drug dosage,
its presentation (e.g., tablet, capsule, and injectable, among others), and its marketing status
(prescription, over-the-counter or discontinued). We combine this data with the list of drugs
that obtained BE approval up to May 2015. This list contains 642 drugs together with the
date at which they obtained BE approval, the corresponding reference product, and which
treatment the drug is intended for.

Finally, we use data from IMS Chile, which contains detailed information on monthly
prices and sales for drugs in Chile for the period between January 2011 to March 2015.8 IMS
Chile collects data from wholesale transactions between distributors and pharmacies.9 The
dataset reports variables aggregated across small groups of counties.10 In terms of products,
the dataset provides information for each product available from each laboratory in each of
its available dosage and presentations for all reference and branded drugs. For unbranded
drugs, however, the dataset aggregates the information at the dosage and presentation level
and thus does not identifies laboratories.

A key aspect in constructing the dataset we use in this paper was to be able to match
products in the IMS dataset to license and BE information in ISP datasets. We were able
to match 95% of reference and branded drugs in the IMS data to a license registry in ISP.11

This allows us to provide a precise picture of the evolution of the incidence of BE for each
molecule in our sample.

6These data are available at http://registrosanitario.ispch.gob.cl/.
7The renewal data corresponds to exactly 5 years after the date of last license approval, or 5 years after

the date first licensed if the drug was first licensed less than 5 years ago.
8We were granted confidential access to this data as part of a research agreement with Servicio Nacional

del Consumidor (SERNAC).
9Drug prices are corrected in two dimensions. First, we adjust them for inflation and measured in 2013

Chilean pesos. The adjustment uses a measure of health CPI available at the National Institute of Statistics
(Instituto Nacional de Estad́ıstica, INE). Second, we adjust for the fact that different presentations have
different amounts of the drug. This adjustment is done by calculating prices per gram of the product.

10This version of the paper restricts the sample to a limited set of counties where the quality of the data
is the highest. Concretely, these counties are Huechuraba, Colina, Quilicura and Renca, all of which are
located in the capital city, Santiago. These counties represent 8% of the population in the region, and have
an average poverty rate of 10.85%, close to the region’s average of 11.5%. Future versions of the paper will
include additional counties in the analysis.

11Since different package sizes of the same drug do not require different license registry, the same registry
may correspond to different products in the IMS data



CHAPTER 3. QUALITY REGULATION AND COMPETITION 100

Defining product types

Throughout the rest of the paper, define different types of drugs in the data. Concretely,
we distinguish between reference, branded and unbranded products. Reference products are
the innovator product within each molecule. Branded products (often referred as ‘branded
generics’) are non-innovators that adopt a fantasy name, and are often packaged in ways
visually as attractive as innovator drugs. For the most part, bioequivalent drugs correspond
to unbranded generics that get (or enter the market with) bioequivalence approval. Finally,
unbranded drugs (or ‘unbranded generics’) are generic drugs that are sold under the name
of the molecule.

Descriptive statistics on drug licensing

Before we assess the effect of the regulation on market outcomes, we document how the
reform affected the number of bioequivalent and non-bioequivalent product specifications
in the market. As mentioned, the BE requirements were announced at different times for
different molecules, with different deadlines applying. Furthermore, the deadlines were often
extended, particularly for the molecules which were planned to be put under regulation at
earlier dates.

These differences in timing of the reform are documented in Table 3.1. The table shows
that molecules can be classified into 7 different groups based on the timing of their first
BE requirement and subsequent deadline extensions. For instance, group 1 corresponds to
the set of molecules that have the first BE requirement announced in January 28 2011, and
deadline in February 16 of the same year. All drugs in this group had their deadline extended
twice, to July 6, 2012 and then to December 31, 2013, through decrees announced in June 1,
2012 and June 7, 2013, respectively. Groups 2-7 of molecules all had different combinations
of initial announcements and subsequent extensions.

In Table 3.2, we report the number of unique molecules, defined by ATC (Anatomical
Therapeutic Chemical) codes, and number of unique specifications which have been regis-
tered for marketing for each of these 7 groups. In addition, we report the number of drugs
with BE approval as of March 2015, as well as the number of drugs which have voluntarily
suspended their marketing license at that time. For instance, group 1 is comprised by 28
different molecules and 749 unique drugs. By March 2015, 189 had BE approval and 120
had suspended their marketing license.

In the following, we take the announcement of the reform as being given by the first
announcement for the molecule of the drug, as shown in Table 3.1, while the deadline is
taken to be the last deadline reported.

In Figure 3.1, we show the number of specifications which register for the first time—
either obtaining or not obtaining BE approval—in time windows around the date of an-
nouncement and the date of the deadline. The time scale is in days relative to these events
(i.e., normalized to zero at the time of the event). The drugs included in these graphs is the
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set of drugs registering for a first-time marketing license at most one year before announce-
ment and later.

The bars show the actual number of registering specifications in each group (bioequivalent
and non-bioequivalent), such that the total number of specifications registering in a given
time window is given by the sum of the height of the two overlapping bars. In both panels,
it is apparent that the majority of drugs which are registered did not get BE approval within
the time period of our data. From the upper panel, we see that the proportion of first-time
registering drugs becoming bioequivalent increases sharply after the announcement. The
marked drop in the total number of registered drugs towards the end of the period after
announcement is due to reaching the end of our sample window for many of the drugs,
the announcement of the regulation happens much later than for other drugs. From the
bottom panel, we see that the proportion of bioequivalent drugs increases as we approach
the deadline, and also after the deadline has passed – though this is not obvious just from
inspection of the graph.

In Figure 3.2, we show the timing of BE approval against the time of entry, relative to
the announcement of the reform (in the left-hand panel) and the deadline (in the right-hand
panel), respectively. This figure only covers drugs which obtained approval of bioequivalence
at some point before March 2015. Each dot represents a BE approval, and their placement
in the x-axis, relative to the dashed line, corresponds to the time difference between their
registration with the ISP and the (first) announcement of BE requirement for their molecule.
Dots to the the right of the dashed line correspond to drugs that register for a marketing
license for the first time after the BE requirement was put in place. Approvals along the 45
degree line correspond to drugs that register at the same time as they provide documentation
of bioequivalence to the ISP. Entries above the 45 degree line correspond to approvals which
happens after the drug is registered with the ISP. The vertical distance between the 45 degree
line and each dot is therefore the time-lag between entry and approval.

In the left-hand panel, we see that there is initially a substantial number of drugs ob-
taining approval with a noticeable time-lag compared to their entry date, while for drugs
entering more than 1.5 years after announcement, virtually all obtain approval simultane-
ously with their marketing license. In the right-hand panel, which compares the entry date
and approval date of each drug with the date of the deadline, there’s no obvious pattern in
the number of drugs or length of period between entry and approval as one approaches the
deadline. On the other hand, after the deadline has passed all drugs which at some point in
our sample obtain bioequivalence approval get this at the same time as they enter.

Analogously to the previous plot, Figure 3.3 shows number of BE approvals within time
windows around announcement and deadline, for drugs registered at least 1 year earlier than
the announcement – i.e., the drugs which first registered for a marketing license earlier than
the drugs covered in Figures 3.2. From the upper panel, we see that the announcement
does not immediately lead to existing specifications obtaining BE approval, though the
number increases sharply about 1.5 years after the announcement – similar to the pattern
found for first-time registering drugs. The bottom panel suggests that approaching and
passing the deadline is more strongly related to a higher number of BE approvals for existing
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specifications.

Descriptive statistics on market outcomes

By matching the IMS dataset to information ISP sources, we constructed a balanced monthly
panel dataset for the period between January, 2011 and March, 2015. The resulting dataset
covers 181 molecules, including all molecules are subject to BE requirements within our sam-
ple period.12 The dataset contains 3, 018 unique products, defined as a unique combination
of product name, dosage, and presentation. These products are provided by 79 different
laboratories.

Importantly, not all products in the panel are sold every period. For instance, 59.3% of
the products register positive sales across the sample and 83.9% are considered to be active.13

Monthly prices are recorded for all products in periods with positive sales, although 9.4 %
of prices are missing.14

Table 3.3 displays basic descriptives statistics for the IMS data. On average, reference
products are priced at around twice the mean product in the market, while the price of
branded products is close to the mean price and unbranded products are remarkably cheaper.
The highest market share is captured by branded drugs, with an average market share of
56 %, followed by generics with a market share of 25 % and reference drugs with 19%. The
remaining 2% corresponds to the market share of bioequivalents. However, the market share
of BE has increased substantially with the introduction of BE requirements, from only 0.2%
in 2011, to 6.7% in 2015 – an increase of more than 30 times (not shown in the table).

The average market has almost 14 products and 5 laboratories actively participating in
it. As expected, the number of products and laboratories is remarkably larger in the branded
segment than in the reference and the unbranded segment.15

3.4 The effects of quality regulation on market

outcomes

In this section, we study the effects of bioequivalence on a variety of market outcomes.
Following Duggan, Garthwaite, and Goyal (2016), we treat each molecule as a different
market. We estimate the effects of the entry of bioequivalent products to markets on a range
of outcomes, including prices and market shares, among others.

12We also include the set of molecules that Balmaceda, Espinoza, and Diaz (2015) use as a control group,
although our main specification does not consider these in the estimation

13We consider a product as being active in a given period if it register sales in any period before and in
any period after it.

14Although we observe prices for all products with positive sales, we are not always able to measure the
amount of grams in a product, which implies that we cannot measure price per gram in those cases.

15This comes partly from the data limitations in terms of identifying unbranded products.
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For this empirical application, we exploit the panel structure of the data to control for
permanent differences across markets and for common shocks to all markets using fixed
effects. Moreover, building on our results in section 3.3 we utilize the differential timing of
the reform rollout in order to propose an instrumental variables strategy with which to deal
with the potential endogeneity of market-level incidence of bioequivalence, our treatment
variable.

Our first outcome of interest is the evolution of market prices. We expect the introduction
of BE drugs in a given market to affect prices in several ways. First, there is a direct (or
‘mechanical’) effect of introducing a new drug in the average market price, by changing the
composition of the market. On the other hand, the introduction of BE drugs potentially
increases competition with branded and generics, with consequences in prices and market
shares of competitors.

In order to shed light on the effects along those different margins, the following section
presents a decomposition of the evolution of aggregate market prices of a given molecule,
into components that reflect price increases holding shares constant, and changes in market
shares, including the impact of entry and exit of drugs.16

A decomposition of prices

Let the market price Pmt be defined as a weighted average of the prices of all products in
the market, where weights wit are given by the market share of the products in the market:

Pmt ≡
∑
i

witPit

Each product i in the market can be classified in one of four possible product types, denoted
by k ∈ K = {reference, branded, bioequivalent, unbranded}. We can then rewrite Pmt as:

Pmt =
∑
k

∑
i∈k

witPit

=
∑
k

wkt
∑
i∈k

w̃itPit

≡
∑
k

wktP̃kt

where wkt is simply the market share of segment k, defined as wkt ≡
∑

ik salesit∑
isalesit

and w̃it = wit

wkt
,

such that P̃kt is simply a weighted average of product prices in segment k.

16Similar decompositions have been extensively used in the literature of productivity dynamics using
plant-level data. See for instance Foster, Haltiwanger, and Krizan (2011).
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Denote by ∆Pmt ≡ Pmt+1−Pmt the change in market price between t and t+ 1. We can
write this change as:

∆Pmt =

[ ∑
k∈entry

wkt+1

(
P̃kt+1 − P̄mt

)
−
∑
k∈exit

wkt

(
P̃kt − P̄mt

)]
+
∑
k∈stay

∆wkt

(
P̃kt − P̄mt

)
+
∑
k∈stay

wkt∆P̃kt +
∑
k∈stay

∆wkt∆P̃kt

≡ ∆PEX
mt + ∆PRW

mt + ∆P PC
mt + ∆PCS

mt

where P̄mt indicates the average of the market price over t and t + 1. This decomposition
separates the change in the average market price in four additive components. The first
component, ∆PEX

mt , captures price changes at the market level produced by the entry and
exit of a given type in the market. For instance, this component will be different than zero
when BE drugs enter the market, in which case ∆PEX

mt will be equal to average price of BE at
the time of entry (relative to the average market price), times the share of sales in the market
corresponding to BE drugs. The second component, ∆PRW

mt , measures the contribution of
changes in the market shares of different types on the change in the average market price.
This component is positive when relatively expensive drugs increase their market share. The
third component, ∆P PC

mt , measures the contribution of the actual price changes of each type
to the change in the average market price. Finally, the last component ∆PCS

mt captures the
correlation between the changes in prices and the changes in market shares. For instance,
this term will be negative whenever types that have a price increase betwen periods are also
the types that loose market share between periods.

Adding up period-by-period price changes between the initial period (t = 0), and an
arbitrary period t, the market price at period t can be written as a function of the initial
market price Pm0 and all future (decomposed) price changes, as:

Pmt = Pm0 +
t−1∑
s=0

∆PEX
ms +

t−1∑
s=0

∆PRW
ms +

t−1∑
s=0

∆P PC
ms +

t−1∑
s=0

∆PCS
ms (3.1)

To understand the price evolution at the micro-level within each type, we further decom-
pose the change in average segment prices ∆P̃kt in a similar way into four components, as
follows:

∆P̃kt =

[ ∑
i∈k,entry

w̃it+1

(
Pit+1 − P̄kt

)
−
∑

i∈k,exit

w̃it
(
Pit − P̄kt

)]
+
∑

i∈k,stay

∆w̃it
(
Pit − P̄kt

)
+
∑

i∈k,stay

w̃it∆Pit +
∑

i∈k,stay

∆w̃it∆Pit

≡ ∆P̃EX
kt + ∆P̃RW

kt + ∆P̃ PC
kt + +∆P̃CS

kt
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Using this decomposition, we can rewrite the average price for type k at any period t as:

P̃kt = P̃k0 +
t−1∑
s=0

∆P̃EX
ks +

t−1∑
s=0

∆P̃RW
ks +

t−1∑
s=0

∆P̃ PC
ks +

t−1∑
s=0

∆P̃CS
ks (3.2)

where each term has the same interpretation as in equation 3.1, but in terms of the contri-
bution of each component to average segment prices.

Below, we illustrate how this decomposition operates in practice and the insights it
provides using a case utilize a case study. Next, we introduce our empirical strategy with
which we attempt to formally measure the role of the entry of bioequivalents in explaining
the different components of price evolutions for all markets.

An example decomposition: the case of Metformin

In this section, we illustrate the workings of the proposed decompositions for the case of
Metformin, the molecule with the highest revenue in our sample.17 In January 2011, 75%
of total revenue in this market corresponded to reference drugs, while branded and generics
accounted for 19% and 6% of the revenue respectively. Figure 3.4 shows the evolution of Pm
as well as Pk for each of the four type for drugs containing this molecule.

In this particular market, bioequivalent drugs entered at the end of 2012. The entry of
bioequivalents changes, by definition, the composition of this market, with potential imme-
diate consequences on the average price. However, as seen in Figure 3.4, bioequivalents enter
at a price that is similar to the average price in the market, and therefore the average price
does not change substantially at the entry of the BE type. Still, the figure also highlights that
BE products potentially played a direct role in decreasing the average price in the months
following their first entry, as their average price falls below the price average price. Finally,
the figure highlights substantial heterogeneity both in the level and evolution of prices across
different groups. Although the average price in this market increases by only 3.4% during
the period, branded drugs had a 80% increase, while generics had a 25% decrease.

Figure 3.5 shows the result of the decomposition of equation 3.1 for Metformin. The
line denoted by P reproduces the overall average price of Figure 3.4, and corresponds to the
average market price Pmt.

The decomposition provides insights to explain the 3% price increase in the average
price of this molecule. First, PPC is almost always positive and upward sloping, meaning
that incumbent types generally increase their prices in the period. On the other hand the
component PRW is large and negative starting in mid 2013, which means that relatively
expensive types (reference and/or branded) loose substantial market share in the period.
PEX is only different than zero starting in September 2012, when BE drugs enter this market
for the first time. Although PEX > 0, its magnitude is very small, reflecting that the price
of BE drugs at the time of their introduction is not much larger than the average market

17Metformin is a drug mainly used to treat patients with insuline resistance and type-2 diabetes
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price, and that their market share at their introduction is not large enough to substantially
affect the average price.

Figure 3.6 shows the result of the decomposition in equation 3.2 for the four types of
drugs in the the Metformin market. The series denoted by P in each panel represent Pk, the
average price of each type, and reproduce those shown in Figure 3.4. These figures allow to
shed light on how the decomposition suggested in equation 3.2 helps explaining the patterns
behind the average price increase in each type. For instance, Panel (a) shows that the price
increase among reference drugs is explained mostly by a price increase among incumbent
drugs and also by an increasing market share of the most expensive drugs in the market.
On the other hand, Panel (b) shows that the main reason behind the strong price increase
of branded drugs in this market is the increased market share of the most expensive drugs,
as well as an increase in the price of each drug. Moreover, changes in market shares are
negatively correlated with price changes over the period, which contributes to a cumulative
price decrease of more than 20 percent. As expected, Panel (c) highlights that while new BE
drugs enter this market, most of the changes in prices within the BE type are due to changes
in composition rather than changes in the prices of incumbent drugs. The opposite is true
starting at the beginning of 2014, when the number of BE drugs in this market stabilizes to 14
drugs. Finally, Panel (d) shows that most of the changes within the unbranded segment are
caused by changes in the prices of incumbent drugs rather than changes in the composition
of this type.

Empirical strategy

This section describes the econometric approach we use to study the effects of BE regulation
on prices and other market-level outcomes.

For a given market-level outcome ymt in market m at month t, the main specification we
study is:

ymt = βBEmt +X ′mtγ + αm + δt + εmt (3.3)

where BEmt is a measure of bioequivalence incidence. The coefficient of interest is β, which
measures the effect of bioequivalence on the outcomes of interest. Additionally, we include
a vector of market level control variables, Xmt, and two sets of fixed effects: αm are market
fixed effects that control for permanent differences across markets that may be correlated
with BEmt, and δt are time fixed effects that control for shocks common to all markets in a
given period of time. The identifying assumption in this specification would be that there
are no market-level trends that could be driving the entry of BE products across markets.

We are mostly worried that bioequivalence incidence could be correlated with unobserv-
able shocks to market level outcomes. This would be the case, for instance, if laboratories
decide to perform BE tests based on future market unobservables that increase prices, biasing
the OLS estimate of β on equation 3.3 upwards.

In order to address this potential endogeneity, we propose an instrumental variable ap-
proach. Section 3.3 provided abundant evidence pointing towards the timing of the policy
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rollout being a key driver of entry of BE products in the market. Importantly, the timing of
the policy differs across markets. We argue that such feature provides exogenous variation
across markets and time that induced increases in market-level BE incidence, and therefore,
that can be used to construct instrumental variables.

In practice, we define a vector of instrumental variables Zmt that includes dummies
indicating the periods after the first and last decree and corresponding deadline for each
market, with corresponding first stage equation given by:

BEmt = Z ′mtη +X ′mtγ + αm + δt + εmt (3.4)

The main exclusion restriction behind this strategy is that decrees and deadlines for a
given molecule were not set as a function of price shocks not captured by molecule fixed effects
and price effects. A violation to this assumption would happen if, for instance, decrees set
earlier deadlines for molecules that were expected to have earlier price increases. Although
we cannot directly test this hypothesis, the fact that decrees were set and modified mostly
because of capacity constraints of laboratories testing BE makes it unlikely that deadlines
were timed as a function of expected price increased of specific molecules.

The Table 3.4 shows the result of the first-stage for different subsets of instruments
available from the decrees. Consistent with the previous sections, the corresponding F
statistic shows that the instruments are strongly relevant.

Effects on prices

We start by discussing the results of estimating equation 3.3 on average prices and the
different components of equation 3.1. Specifically, we estimate equation 3.3 for five different
dependent variables: average market price Pmt, and the four components of the changes in
average market price from the decomposition in equation 3.1,

∑t−1
s=0 ∆PEX

ms ,
∑t−1

s=0 ∆PRW
ms ,∑t−1

s=0 ∆P PC
ms and

∑t−1
s=0 ∆PCS

ms .
The results in column (1) show the OLS results. They indicate that one additional

bioequivalent product in the market is associated with a 1.7 percent increase in the market
price Pmt. This increase is mostly the result of a 2.7 increase of the average price of incumbent
markets, combined with a 1.5 decrease in the effect on market shares, as shown by the
coefficent in Panel B associated with

∑t−1
s=0 ∆P PC

ms and
∑t−1

s=0 ∆PRW
ms , respectively. On the

other hand, the effect on the net-entry term and in the cross-correlation term are an order of
magnitude smaller. These results are consistent with the overall pattern seen for Metformin
in Figure 3.5.

Column (2) and (3) we show the coefficients of the instrumental-variable regressions that
exploit the time-variation of BE decrees, as discussed in the previous section. In column
(2), we use a dummy variable equal to 1 for dates after the last decree associated with the
drug, and after the last deadline set by such decree. In column (3), we also include a dummy
for dates after the first decree and after the first deadline. The IV results do not show
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any significant effect of the number of BE drugs on the average price and on the different
components of its evolution.

In Table 3.6 we show the results of estimating equation 3.3 on average prices and the
different components of equation 3.2, for each type of competitors to BE drugs: reference,
branded, and unbranded. Although the results highlight that the effects of BE are potentially
heterogeneous across the different components of the decomposition, the effects are not
precisely estimated, and overall indicate that the entry of BE drugs have not had a significant
effect overall prices across the different type of drugs, and on the different components of its
evolution.

Effects on market shares, number of products and competition

In Table 3.7 we show results for log of market share of each group defined previously: refer-
ence, branded, unbranded and bioequivalent. We only find a significant increase in the share
of bioequivalent products. The point estimate shows that one more bioequivalent introduced
in a market increases the bioequivalent market share between 1.2 and 1.6 percent. However,
we are not able to detect any significant increase in the market share of any other product
category, pointing towards the fact that bioequivalent products did not substitute clearly a
particular type of drug. This result is also aligned with those found in Table 3.8, where we
study the number of products and laboratories present in the market and in each type of
group. We find that an extra bioequivalent product corresponds to increase of 10-22 percent
in this market. Although the coefficients point towards a slight but significant decrease in
the total number of products, we do not find this effect to be particularly concentrated in
any other group.

Finally, we study whether there is change in the concentration of laboratories following
the introduction of bioequivalent drugs. Table 3.9 shows the effects on an extra bioequivalent
drug on the Herfindahl-Hirschman Index (HHI). The first panel calculates the HHI at the
laboratory level, and the second at the conglomerate level. We do not find a significant effect
of the introduction of bioequivalent drugs on these outcomes.

3.5 Discussion

In the last decade, Chile adopted bioequivalence requirements as the primary tool for regu-
lating the quality of generic drugs allowed in the market. Since then, and up to March 2015,
more than 600 generic drugs gained bioequivalence approval.

Although there were significant fears that bioequivalence requirements would lead to
less availability of generic drugs and to an increase in prices, in this paper we do not find
significant evidence to support those claims. Looking at average market prices and also at
prices for reference, branded, and generic drugs, we find that the entry of bioequivalent drugs
did not have a significant effect on prices. Moreover, our analysis shows that the market



CHAPTER 3. QUALITY REGULATION AND COMPETITION 109

share of these different types of drugs, as well as the market concentration of laboratories,
were not been significantly altered by the introduction of bioequivalents.

The lack of strong effects of bioequivalent entry on market prices suggest that cheaper
drugs are not disproportionally loosing their marketing license because of the requirements.
On the other hand, they suggest also that innovator drugs have not decreased their price
in reaction to the competitive pressure from bioequivalent drugs. This latter result is in
line with previous evidence in other contexts suggesting empirically small (and theoretically
ambiguous) price effects on branded drugs from the entry of generics after patent expiration.

It is important to highlight that this paper is an early attempt to study the impacts of
bioequivalence in the Chilean market, and within the time period of this study bioequivalents
reached a peak of only 6.5 percent of market share. We expect potentially stronger impacts
on prices and other outcomes as more bioequivalent drugs enter. In future research we plan
to extend our period of analysis to include several hundred new bioequivalence approvals not
covered in this study.
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Table 3.1: Timing of reform: Announcements and deadlines

1st decree 2nd decree 3rd decree

N Announced Deadline Announced Deadline Announced Deadline

1 2011-01-28 2011-02-16 2012-06-01 2012-07-06 2013-06-07 2013-12-31
2 2011-02-28 2011-01-31 2012-06-01 2012-07-06 2013-06-07 2013-12-31
3 2012-10-24 2013-10-24 2013-10-25 2014-04-30
4 2012-12-24 2013-01-31 2013-06-07 2013-12-31
5 2012-12-24 2013-12-31
6 2012-12-24 2014-12-31 2014-12-26 2015-12-31
7 2014-02-24 2015-12-31

Notes: This table displays the dates of announcement and deadlines of bioequivalence requirements
for different groups of molecules. Each group includes molecules subject to the same deadlines for
bioequivalence approval

Table 3.2: Timing of reform: Number of affected products

N # ATC # drugs # Bio.eq. # suspended

1 28 749 189 120
2 15 619 51 85
3 12 611 53 209
4 21 630 101 179
5 30 1427 69 384
6 49 1146 104 217
7 17 355 18 35

Notes: This table quantifies the number of affected products by in each group of molecules affected
by the bioequivalent decrees. Groups 1-7 are defined in table 3.1 and correspond to groups of
molecules subject to the same deadlines for bioequivalence approval. #ATC corresponds to the
number of molecules in each product. # of drugs corresponds to the number of different products.
# Bio.eq. is the number of products with bioequivalence approval by March 2015 and # suspended
is the number of products with suspended marketing license by March 2015.
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Table 3.3: Descriptive statistics for IMS data

Variable N Mean SD p10 p50 p90

Price per gram

All products 82,756 47.37 139.78 0.30 6.84 98.51
Reference 11,045 93.06 224.13 0.69 15.18 216.19
Branded 62,083 44.89 124.70 0.52 8.40 98.08
Unbranded 9,628 10.97 79.22 0.07 0.56 9.11
Bioequivalent 3,006 63.20 198.34 0.20 9.03 114.60

Market shares

Reference 8,808 0.19 0.27 0.00 0.05 0.59
Branded 8,808 0.56 0.36 0.00 0.64 1.00
Unbranded 8,808 0.25 0.35 0.00 0.04 1.00
Bioequivalent 8,808 0.02 0.10 0.00 0.00 0.03

Number of products

All products 9,231 13.99 13.56 2.00 10.00 32.00
Reference 9,231 1.83 2.30 0.00 1.00 5.00
Branded 9,231 10.81 11.97 0.00 7.00 27.00
Unbranded 9,231 1.35 1.76 0.00 1.00 3.00
Bioequivalent 9,231 0.43 1.45 0.00 0.00 1.00

Number of laboratories

All products 9,231 5.13 3.46 1.00 4.00 10.00
Reference 9,231 0.51 0.52 0.00 0.00 1.00
Branded 9,231 4.06 3.36 0.00 3.00 9.00
Bioequivalent 9,231 0.20 0.62 0.00 0.00 1.00

Notes: This table displays descriptive statistics from the IMS data. Statistics for prices are calcu-
lated at the product level, while the remainder are calculated at the market level. Market shares
are only observed for markets in which at least one product is sold in the period. Statistics for the
number of product and laboratories are computed using only observations for which the product
or laboratory is found to be active in the corresponding market.
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Table 3.4: First stage regressions

(1) (2) (3) (4) (5)

Dep. var.: Number of bioequivalents in market

Post first decree -1.898*** -1.584*** -1.534***
(0.066) (0.072) (0.073)

Post first deadline -0.700*** -1.270***
(0.066) (0.070)

Post last decree 0.742*** 0.508*** 1.067***
(0.065) (0.070) (0.067)

Post last deadline 0.773*** 1.032***
(0.082) (0.084)

Constant 0.218* 0.340*** 0.075 0.075 0.454***
(0.113) (0.113) (0.117) (0.117) (0.109)

Market FE Y Y Y Y Y
Month FE Y Y Y Y Y
N 9,027 9,027 9,027 9,027 9,027
R2 0.602 0.607 0.571 0.575 0.633
F-test 836.2 479.6 128.9 109.1 409.8

Notes: Each column in this table is a regression of the number bioequivalent products in market
m at period t on different sets of indicator variables related to policy events. All regressions are
weighted by market revenue at the beginning of the sample period. Reported F-tests test for
the joint significance of the coefficients on the respective policy indicators. Standard errors in
parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table 3.5: Price effects of bioequivalence: Type-level decomposition

(1) (2) (3)

Dep. var: OLS IV1 IV2

Panel A: Overall effect

Average market price: Pmt 0.017*** -0.027 0.008
(0.004) (0.042) (0.018)

R2 0.742 0.674 0.739

Panel B: Decomposed effect

Entry and exit:
∑t−1

s=0 ∆PEX
ms 0.001 0.003 0.000

(0.000) (0.003) (0.002)
R2 0.329 0.283 0.326

Market shares:
∑t−1

s=0 ∆PRW
ms -0.015 0.016 -0.099

(0.036) (0.234) (0.155)
R2 0.421 0.418 0.399

Price changes:
∑t−1

s=0 ∆P PC
ms 0.027** 0.129 0.058

(0.012) (0.149) (0.043)
R2 0.478 0.403 0.472

Correlation in changes:
∑t−1

s=0 ∆PCS
ms 0.004 -0.174 0.050

(0.042) (0.367) (0.169)
R2 0.447 0.407 0.444

Market FE Y Y Y
Month FE Y Y Y
N 5,916 5,916 5,916

Notes: Each cell in this column corresponds to the coefficient on the number of bioequivalent
products in the market. Each column corresponds to a different estimator. Column 1 displays
results from OLS regressions, column 2 and 3 display results from IV regressions. Column 2 uses
last decree and deadline indicators as instruments. Column 3 uses first and last decree and deadline
as instruments. Each row displays results for a different outcomes, each of which is one of the terms
in the price decomposition in equation 3.1. Clustered standard errors in parentheses. *** p<0.01,
** p<0.05, * p<0.1
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Table 3.6: Price effects of bioequivalence: Drug-level decomposition

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Reference Branded non-bioequivalent Unbranded

Dep.var: OLS IV1 IV2 OLS IV1 IV2 OLS IV1 IV2

Panel A: Overall effect

Average market price: 0.003 -0.000 0.015 0.020* 0.033 0.022 0.015 -0.022 -0.040
Pmt (0.004) (0.016) (0.011) (0.010) (0.027) (0.015) (0.011) (0.039) (0.065)
R2 0.693 0.692 0.674 0.783 0.778 0.783 0.716 0.689 0.657

Panel B: Decomposed effect

Entry and exit: -0.000 0.000 0.000 -0.003 0.000 0.001 -0.001 0.002 -0.003∑t−1
s=0 ∆PEX

ms (0.000) (0.002) (0.001) (0.004) (0.008) (0.006) (0.001) (0.002) (0.002)
R2 0.740 0.739 0.736 0.545 0.532 0.525 0.324 0.276 0.319

Market shares: 0.087 -0.006 0.278 0.008 0.437 0.162 -0.000 0.058 -0.051∑t−1
s=0 ∆PRW

ms (0.079) (0.451) (0.201) (0.036) (0.333) (0.113) (0.033) (0.094) (0.082)
R2 0.693 0.692 0.685 0.740 0.562 0.717 0.812 0.806 0.808

Price changes: 0.075 -0.115 0.266 0.001 0.344 0.124 -0.003 0.090 0.031∑t−1
s=0 ∆P PC

ms (0.077) (0.424) (0.195) (0.027) (0.268) (0.091) (0.030) (0.099) (0.045)
R2 0.695 0.687 0.687 0.771 0.641 0.754 0.844 0.833 0.843

Correlation in changes: -0.158 0.121 -0.528 0.014 -0.749 -0.265 0.020 -0.172 -0.018∑t−1
s=0 ∆PCS

ms (0.156) (0.871) (0.391) (0.056) (0.590) (0.207) (0.058) (0.182) (0.089)
R2 0.696 0.692 0.688 0.756 0.600 0.735 0.837 0.823 0.837

Market FE Y Y Y Y Y Y Y Y Y
Month FE Y Y Y Y Y Y Y Y Y
Observations 4,826 4,826 4,826 6,820 6,820 6,820 4,818 4,818 4,818

Notes: Each cell in this column corresponds to the coefficient on the number of bioequivalent
products in the market. Each column corresponds to a different estimator. Column 1 displays
results from OLS regressions, column 2 and 3 display results from IV regressions. Column 2 uses
last decree and deadline indicators as instruments. Column 3 uses first and last decree and deadline
as instruments. Each row displays results for a different outcomes, each of which is one of the terms
in the price decomposition in equation 3.1. Clustered standard errors in parentheses. *** p<0.01,
** p<0.05, * p<0.1
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Table 3.7: Quantity effects of bioequivalence

(1) (2) (3)

Dep. var: OLS IV1 IV2

Reference market share -0.002** 0.017 0.002
(0.001) (0.014) (0.004)

R2 0.974 0.948 0.973

Branded market share 0.003* -0.018 -0.002
(0.002) (0.015) (0.005)

R2 0.965 0.931 0.963

Unbranded market share 0.000 0.007 0.004
(0.002) (0.007) (0.004)

R2 0.949 0.941 0.947

Bioequivalent market share 0.012*** 0.019** 0.016**
(0.004) (0.009) (0.008)

R2 0.627 0.585 0.617

Market FE Y Y Y
Month FE Y Y Y
N 9,027 9,027 9,027

Notes: Each cell in this column corresponds to the coefficient on the number of bioequivalent
products in the market. Each column corresponds to a different estimator. Column 1 displays
results from OLS regressions, column 2 and 3 display results from IV regressions. Column 2 uses
last decree and deadline indicators as instruments. Column 3 uses first and last decree and deadline
as instruments. Each row displays results for a different outcome, each of which is the market share
of a segment of the market. Clustered standard errors in parentheses. *** p<0.01, ** p<0.05, *
p<0.1
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Table 3.8: Effects of bioequivalence on the number of products and laboratories

(1) (2) (3) (4) (5) (6)

Number of products Number of laboratories

Segment OLS IV1 IV2 OLS IV1 IV2

All segments 0.009** -0.109** -0.065* 0.007** -0.061* -0.042*
(0.005) (0.054) (0.036) (0.004) (0.033) (0.025)

R2 0.989 0.972 0.983 0.985 0.972 0.978

Reference segment 0.001 -0.060 -0.043 0.001 0.014 0.014
(0.005) (0.042) (0.036) (0.002) (0.024) (0.019)

R2 0.977 0.969 0.973 0.733 0.732 0.732

Branded segment 0.009* -0.036 -0.012 0.003 -0.023 -0.006
(0.005) (0.047) (0.018) (0.004) (0.023) (0.009)

R2 0.982 0.973 0.980 0.968 0.961 0.967

Bioequivalent segment 0.223*** 0.195*** 0.215*** 0.131*** 0.114*** 0.127***
(0.022) (0.057) (0.034) (0.012) (0.034) (0.018)

R2 0.924 0.920 0.924 0.834 0.829 0.833

Market FE Y Y Y Y Y Y
Month FE Y Y Y Y Y Y
N 9,027 9,027 9,027 9,027 9,027 9,027

Notes: Each cell in this column corresponds to the coefficient on the number of bioequivalent
products in the market. Each column corresponds to a different estimator. Columns 1 and 4
displays results from OLS regressions, columns 2, 3, 5 and 6 display results from IV regressions.
Columns 2 and 5 uses last decree and deadline indicators as instruments. Column 3 and 6 uses first
and last decree and deadline as instruments. Each row displays results for a different outcome, each
of which is the log of the number of products or laboratories in the market. Clustered standard
errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table 3.9: Effects of bioequivalence on market concentration

(1) (2) (3)

Dep. var: OLS IV1 IV2

Laboratory HHI -0.003*** 0.009 -0.001
(0.001) (0.009) (0.003)

R2 0.945 0.919 0.945

CO-Laboratory HHI -0.003** 0.009 -0.001
(0.001) (0.009) (0.003)

R2 0.934 0.911 0.934

Market FE Y Y Y
Month FE Y Y Y
N 8,808 8,808 8,808

Notes: Each cell in this column corresponds to the coefficient on the number of bioequivalent
products in the market. Each column corresponds to a different estimator. Column 1 displays
results from OLS regressions, column 2 and 3 display results from IV regressions. Column 2 uses
last decree and deadline indicators as instruments. Column 3 uses first and last decree and deadline
as instruments. Each row displays results for a different measure of HHI, one at laboratory level
and one at the level of laboratory ownership. Clustered standard errors in parentheses. *** p<0.01,
** p<0.05, * p<0.1
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Figure 3.1: Timing of entry for drugs with and without bioequivalence approval around
announcement and deadline
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(b) Around deadline
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Notes: Panel (a) shows the number of new registered drugs with and without bioequivalence
requirement, around the date of announcement. Panel (b) shows the number of new registered
drugs with and without bioequivalence requirement, around the deadline.
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Figure 3.2: Timing of bioequivalence approval relative to entry around time of announcement
and deadline
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Notes: Panel (a) shows the timing of approval against the time of entry, relative to the announce-
ment of the BE requirement. Panel (b) shows the timing of approval against the time of entry,
relative to the deadline imposed by the requirement.
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Figure 3.3: Timing of bioequivalence approval for drugs with previous registration around
announcement and deadline
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(b) Around deadline
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Notes: Panel (a) shows the timing of BE approval relative to the announcement for drugs registered
at least one year before the announcement. Panel (b) shows the timing of BE approval relative to
the deadline for drugs registered at least one year before the announcement
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Figure 3.4: Price evolution by group, Metformin
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Notes: This figure shows the evolution of the average price for Metformin as well as the evolution
of the price of each of the four groups : Reference, branded, bioequivalent, and generic. Series are
in logs and normalized to be equal to 0 for the average price in January 2011m1
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Figure 3.5: Decomposition of average market prices
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Notes: This figure displays an example for the decomposition proposed in equation 3.1. The market
utilized for the plot is Metformin, the largest one in our sample in terms of revenue. In particular,
lines in the figure plot the time series for each component of the decomposition. The observed
average market price is plotted in black for reference. The number of bioequivalent products in
this market is also included in the figure.
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Figure 3.6: Decomposition of average segment prices
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(b) Branded non-bioequivalent products
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(c) Branded bioequivalent products
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(d) Unbranded products
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Notes: This figure displays an example for the decomposition proposed in equation 3.2. The market
utilized for the plot is Metformin, the largest one in our sample in terms of revenue. In particular,
lines in the figure plot the time series for each component of the decomposition. The observed
average segment price is plotted in black for reference. The number of bioequivalent products in
this market is also included in each figure.
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Appendix A

Lock-in in Dynamic Health Insurance
Contracts

A.1 Multinomial logit for destination company

I specify the multinomial logit among switchers, for the probability that individual i chooses
firm k upon switching, as:

pki =
eX
′
iβ

k∑K
l=1 e

Xiβl

where βk are firm-specific coefficients and Xi are individual-specific regressors that include
pre-switching health status as well as other demographics. Table A.1 shows the estimated
β coefficients as well as the χ2 statistic for the null that all health coefficients are equal
to zero. Column (1) corresponds to a specification that only includes a dummy preex = 1
of a preexisting condition (equal to one if at any point in the past the individual received
treatment related to any condition). Column (2) adds age, gender and (the log) wage.
Column (3) replaces the preexisting condition dummy by a dummy of a preexisting condition
in the three months prior to switching, preex3m = 1. Finally (4) replaces this variable
by log(1 + healthpreex3m), where healthpreex3m summarizes the total health expenditures
related to preexisting conditions in the previous three months. The tables shows the X2

4

statistic and p-value for the Wald test that all variables related to pre-switching health
expenditures are equal to zero.



APPENDIX A. LOCK-IN IN DYNAMIC HEALTH INSURANCE CONTRACTS 130

Table A.1: Multinomial logit for destination company among switchers

(1) (2) (3) (4)

Firm = B
1(preex) 0.139** 0.091

(0.054) (0.063)
1(preex3m) -0.070

(0.121)
log(1 + healthpreex3m) 0.044

(0.176)
Firm = C
1(preex) -0.096 -0.319***

(0.081) (0.098)
1(preex3m) -0.627***

(0.212)
log(1 + healthpreex3m) -0.685*

(0.402)
Firm = D
1(preex) -0.004 -0.009

(0.059) (0.066)
1(preex3m) -0.245*

(0.132)
log(1 + healthpreex3m) -0.228

(0.226)
Firm = E
1(preex) -0.228*** -0.241***

(0.059) (0.068)
1(preex3m) -0.299**

(0.132)
log(1 + healthpreex3m) -0.664***

(0.234)
Demographics No Yes Yes Yes
N 16943 12971 12971 12427
χ2
4 47.0 37.6 13.1 12.6

(p− value) (0.00) (0.00) (0.01) (0.01)

Notes: Mulitnomial model estimated by ML for the probability of switching to each firm B-E among
switchers, as a function of health conditions and other demographics. A is the base category. if the
individual was treated for a preexisting condition at any point in time before switching. 1(preex3m)
calculates this indicator using the 3 months before switching. log(1 + healthpreex3m is the log of
1 plus the total health expenditures related to preexisting conditions in the 3 months prior to
switching. χ2

4 if for null that all coefficients related to health status are jointly equal to zero. The
corresponding p-value is in parenthesis. Robust standard errors for multinomial-logit coefficients
in parentheses * p<0.10, ** p<0.05, *** p<0.01
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A.2 Market shares for each geographical region

To understand the variation of preferences across geographic areas I investigate the role
of ”in-network providers”. I exploit the geographic variation in the presence of in-network
providers of different companies, and show that providers matter for the decision to enroll in
a given insurance company.1 Specifically, I investigate the relationship between in-network
providers and market share within each district by estimating:

ln (msharekd) = ηk + βNPkd + εkd (A.1)

where ηk are insurer fixed-effects, NPkc is an indicator variable that is equal to 1 if insurer
j has a network provider in district d and εkc is an error capturing other determinants of
market share.

Column (1) of the following Table shows the results of estimating equation A.1 for all
1934 districts. Column (2) restricts the sample to districts in which all ISAPREs have at
least one client (78% of the districts) while column (3) restrict the sample to districts in
which also the market is higher than 500 individuals (894 districts).

Table A.2: Market share and in-network providers

(1) (2) (3)
NP 0.258*** 0.259*** 0.321***

(0.048) (0.049) (0.062)
sample all all clients > 0 market > 500
N 1934 1620 894

Notes: Table shows OLS estimates of equation A.1. Standard errors in parentheses * p<0.10, **
p<0.05, *** p<0.01

In all three specifications I find that a network provider significantly increases the market
share of an insurance company, between 26 % and 32 % depending on the specification. In
the following Table I investigate the same relationship with narrower sources of identification
by adding region fixed effects (column 2) and province fixed effects (column 3) to equation
A.1. Using only within-region variation or within province variation I find smaller but still
significant effects.

1I identify the presence of in-network providers with the claims data, since claims are classified either
done at an “in-network” or at an ”out-network” provider.
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Table A.3: Market share and in-network providers

(1) (2) (3)
NP 0.321*** 0.189*** 0.118**

(0.062) (0.047) (0.054)
FE No Region Province
N 894 894 894

Notes: Table shows OLS estimates of equation A.1. Standard errors in parentheses * p<0.10, **
p<0.05, *** p<0.01

A.3 Multinomial logit for initial choice: Testing

forward-looking behavior

I test for forward looking behavior regarding insurance company enrollment, by testing future
health shocks on the current decision of health insurance company using a multinomial logit
specification.
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Table A.4: Multinomial logit: Active choice as a function of future health expenditures

Firm

A B C D
log(1 + hi,t) 0.011 -0.004 0.089** 0.015

(0.029) (0.026) (0.030) (0.026)
log(1 + hi,t+1) 0.02 -0.016 0.021 0.014

(0.017) (0.017) (0.024) (0.017)
log(1 + hi,t+2) 0.011 0.024 0.024 0.017

(0.019) (0.017) (0.023) (0.016)
wage 0.000 0.000 -0.000** 0.000***

(0.000) (0.000) (0.000) (0.000)
age -0.031*** -0.029* -0.034*** -0.029***

(0.009) (0.011) (0.008) (0.007)
gender 0.302 0.428 2.024*** -0.275

(0.359) (0.472) (0.286) (0.283)
stgo -0.365 -0.22 -0.113 -1.713***

(0.251) (0.288) (0.231) (0.173)
Plan Controls Yes Yes Yes Yes

Notes: Table shows ML estimation of a multinomial logit for the active choices of company as a
function of future health expenditures and other controls. Standard errors in parentheses * p<0.10,
** p<0.05, *** p<0.01

A.4 GHK algorithm

Here I give details on the steps to apply the GHK algorithm to a setting with varying choice
sets. I adapt the methodology outlined by John Geweke, Keane, and Runkle, 1997 and
Train, 2009.

Assume the following model for U jk
it , where j denotes plans and k companies.

U jk
it = αki + V jk

it + ujkit

where the αki are treated as random utility αki ∼ N
(
µk, σk

)
. Here I incorporate all the

(deterministically) time-varying portion of preference heterogeneity discussed in the text in
V jk
it .

I define εjkit = αki +ujkit as the composite random error term. I assume that u is an AR(1)
process, where I allow autocorrelation within the same plan, and also autocorrelation across
plans within a same company. Therefore the composite error has cross-sectional correlation
for plans of the same company and time-series correlation for plans of the same company
and within the same plan.
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Since in the choice set there is only one plan per insurance plus the guaranteed-renewable
plan, I drop from here on the j subscript, and denote the GR plan as the GR option. I also
drop the i subscript to simplify notation.

Let s̃ = {k1, k2} be the sequence of chosen options in period 1 and 2 and E (s) the define
the vector of stacked error terms across time periods for each individual as

E (s̃) =
(
ε11, ..., ε

K
1 , ε

1
2, ..., ε

K
2 , ε

GR
2 (s̃) , ε13, ..., ε

K
3 , ε

GR
3 (s̃)

)′
This vector depends on s̃ = {k1, k2} because the εGR2 and εGR3 are defined by the individ-

ual’s choice sequence. Similarly define

A (s̃) =
(
α1
1, ..., α

K
1 , α

1
2, ..., α

K
2 , α

GR
2 (s̃) , α1

3, ..., α
K
3 , α

GR
3 (s̃)

)′
and

U (s̃) =
(
u11, ..., u

K
1 , u

1
2, ..., u

K
2 , u

GR
2 (s) , u13, ..., u

K
3 , u

GR
3 (s̃)

)′
I can write succinctly,

E (s̃) = A (s̃) + U (s̃)

Let Ω (s̃) = cov (E (s̃)). Since u and α are assumed to be uncorrelated

Ω (s̃) = cov (A (s̃)) + cov (U (s̃))

= Γ (s̃) + Σ (s̃)

Let EK (s̃) = MK×E (s̃) where MK is the matrix such that I am taking differences with
respect alternative K in each period. The MK matrix is defined as

MK =

 MK
1 0 0

0 MK
2 0

0 0 MK
3


where MK

1 is a K − 1 identity matrix with an added column of −1′s in the Kth position.
Similarly, MK

2 and MK
3 is a K identity matrix with an added column of −1s in the K position

(periods 2 and 3 include in the last column the guaranteed-renewable contract). Let ΩK (s̃)
be the corresponding covariance matrix

ΩK (s̃) = MKΩ (s̃)

For each sequence s̃, calculate the Choleskly factor LK (s̃) such that

ΩK (s̃) = LK (s̃)′ LK (s̃)

Then I calculate for each sequence s̃ the Cholesky factor of the undifferentiated errors
by adding a row of zeros in the Kth row corresponding of each period, resulting in matrix
L (s̃). (Train, 2009).
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For each choice k in t I define the matrix M t
k as the Nt identity matrix with an extra

column of −1’s added in the Kth column. Note that N1 = K − 1 and Nt = K ∀t > 1 (since
the choice in every period after the first includes the choice from each company and the
guaranteed-renewable contract). For a given sequence s = {k1, k2, k3} = {s̃, k3} , I define
the matrix M(s) as

M (s) =

 M1
k1

0 0
0 M2

k2
0

0 0 M3
k3


I calculate for each sequence s the covariance matrix as

Ω(s) = (M (s)L (s̃)) (M (s)L (s̃))′

Finally, I take the Choleksy decomposition of Ω (s) = L (s)′ L (s). 2

The matrix L (s) is a K − 1 + (T − 1)×K lower-triangular matrix.

L (s) =

 L11 0 0
S21 L22 0
S31 s32 L33


The first (K − 1)× (K − 1) elements, L11, correspond to the Cholesky decomposition of the
differentiated errors in period 1 for an individual that chose k1 consistent with s. Then S21

is the Cholesky decomposition of the error terms in period 2 with respect to period 1 errors,
and so on. Therefore, the the stacked E (i), can be write as a function of series of vector
K − 1 + (T − 1)×K iid errors ηi as

εi = L (s)× ηi

where ηi is a normal iid.
Then, for period 1, I perform the following steps (see John Geweke, Keane, and Runkle,

1997)

step

(1) draw η1,r1 s.t. Ṽ 1
1

(
η1,r1

)
< 0

...

(c1 − 1) draw ηc1−1,r1 s.t. Ṽ c1−1
1

(
η1,r1 , ..., ηc1−1,r1

)
< 0

(c1) skip ηc1,r1

(c1 + 1) draw ηc1+1,r
1 s.t. Ṽ c1+1

1

(
η1,r1 , ..., ηc1−1,r1 , ηc1+1,r

1

)
< 0

...

(K − 1) draw ηK−1,r1 s.t. Ṽ K−1
1

(
η1,r1 , ..., ηc1−1,r1 , ηc1+1,r

1 , ...ηK−1,r1

)
< 0

2Note that with this procedure, the L (K,K,K) = LK , the Cholesky decomposition of the matrix ΩK I
used to parametrize the model
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Similarly, for period 2,

step

(1) draw η1,r2 s.t. Ṽ 1
2

(
η1,r1 , ..., ηK−1,r1 , η1,r2

)
< 0

...

(c2 − 1) draw ηc2−1,r2 s.t. Ṽ c2−1
2

(
η1,r1 , ..., ηK−1,r1 , η1,r2 , ..., ηc2−1,r2

)
< 0

(c1) skip ηc2,r2

(c1 + 1) draw ηc2+1,r
2 s.t. Ṽ c2+1

2

(
η1,r1 , ..., ηK−1,r1 , η1,r2 , ..., ηc2−1,r2 , ηc2+1,r

2

)
< 0

...

(K) draw ηK,r2 s.t. Ṽ K
2

(
η1,r1 , ..., ηK−1,r1 , η1,r2 , ..., ηc2−1,r2 , ηc2+1,r

2 , .., ηK,r2

)
< 0

and for period 3

step

(1) draw η1,r3 s.t. Ṽ 1
3

(
η1,r1 , ..., ηK,r2 , η1,r3

)
< 0

...

(c2 − 1) draw ηc3−1,r3 s.t. Ṽ c2−1
3

(
η1,r1 , ..., ηK,r2 , η1,r3 , ..., ηc3−1,r3

)
< 0

(c1) skip ηc3,r3

(c1 + 1) draw ηc3+1,r
3 s.t. Ṽ 1

3

(
η1,r1 , ..., ηK,r2 , η1,r3 , ..., ηc3−1,r3 , ηc3+1,r

3

)
< 0

...

(K) draw ηK,r3 s.t. Ṽ K
3

(
η1,r1 , ..., ηK,r2 , η1,r3 , ..., ηc3−1,r3 , ηc3+1,r

3 , .., ηK,r3

)
< 0

Calculate the simulated probability as

P r = P
(
Ṽ 1
1 < 0

)
× ΠK>1,K 6=c1Pr

(
Ṽ K
1 < 0

)
× ΠK,K 6=c2Pr

(
Ṽ K
2 < 0

)
Π,K 6=c3Pr

(
Ṽ K
3 < 0

)
and

PGHK =
1

R

∑
P r
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ΣK and ΓK

The first variance I am concerned about is the following:

Σ (s) = cov



u11
...
uK1
u12
...
uK2
uGR2
2

u13
...
uK3
uGR2
3



=


Σ11

Σ21

ΣGR2
1 ΣGR2

2 ΣGR2,GR2

Σ31 Σ32 Σ33

ΣGR3
2 ΣGR3

2 ΣGR3,GR2 ΣGR3,GR2 ΣGR3,GR3



The matrix Σ (s) depends on the chosen sequence s, as each sequence defines the company
to which the guaranteed renewable plan en each period belongs to and the corresponding
covariances. To normalize the utility of each period, I take differences with respect to
alternative K, resulting in vector ũ and covariance matrix

cov (ũ) = ΣK (s) =


Σ̃11

Σ̃21

Σ̃GR2
1 (s) Σ̃GR2

2 (s) Σ̃GR2,GR2 (s)

Σ̃31 Σ̃32 Σ̃33

Σ̃GR3
2 (s) Σ̃GR3

2 (s) Σ̃GR3,GR2 (s) Σ̃GR3,GR2 (s) Σ̃GR3,GR3 (s)


Similarly, I define α̃k = αK − αK , and the corresponding covariance

cov (α̃) = ΣK (s) =


Γ̃11

Γ̃21

ΓGR2
1 (s) Γ̃GR2

2 (s) Γ̃GR2,GR2 (s)

Σ̃31 Γ̃32 Γ̃33

Γ̃GR3
2 (s) Γ̃GR3

2 (s) Γ̃GR3,GR2 (s) Γ̃GR3,GR2 (s) Γ̃GR3,GR3 (s)


To set the scale and level of the utility, I normalize var

(
uKt
)

= 1, and σK = σK−1 = 0,
which leads to V ar (εtK) = V ar

(
εtK−1

)
= 1.

Cohort 0

I observe individuals from cohort 0 for 2009, 2010, and 2011. In all these periods they
have access to the GR plan as well as the spot plans. The correlation of errors across
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alternatives in 2009 depends on the entire choice path since individuals entered the market,
which unfortunately I do not observe. However, the GHK algorithm makes evident that the
choice in 2009 provides enough information about the correlation of errors to estimate the
choices in the following years.

Therefore, for cohort 0 I perform a “conditional” GHK estimation, taking their choice
in 2009 as given and calculating the likelihood of their choice in 2010 and 2011 given their
observed choice in 2009.

Note that cohort 0 in 2009 is comprised by individuals that either stayed in the their
contract or switched within their company between 2008 and 2009. Since I cannot observe
the GR contract for individuals that switched (and thus cannot construct the menu available
to them in 2009), I restrict the sample of cohort 0 only to those that did not switch plans
between 2009 and 2010, and thus picked the GR contract in 2009. I identify which are the
ones that did not switch based on the tenure of their plans.

• For the sample defined above, I construct the variance-covariance Ω (k0, k1, k2) consider-
ing the choice in 2009, 2010, and 2011, and the corresponding Cholesky decomposition
L (k0, k1, k2).

• Draw the error terms for each option in 2009 consistent with k0

• Draw the error terms for each option in 2010 and 2011 consistent with k1 and k2

• Calculate the simulated conditional probability, given the choice in 2009, as

P r|c1 = ΠK 6=c2Pr
(
Ṽ K
2 < 0

)
ΠK 6=c3Pr

(
Ṽ K
3 < 0

)
And therefore

PGHK |c1 =
1

R

∑
P r|c1

Average cost curves with preference heterogeneity

Here I provide a simple proof that preference heterogeneity decreases the average cost curve
at any price. Assume that there are two preferences, u1(h, ε) and u2(h, ε) that generate
the same demand curve but such that u1 entails a entails a higher degree of preference
heterogeneity (and normalize u1(0, 0) = u2(0, 0) = 0). Under my definition, this means that
∂u1/∂ε > ∂u2/∂ε ≥ 0.

For a given preference r = 1, 2 I define ur(h
∗
r, ε) − P ≡ 0. It follows that h∗2 > h∗1 (both

are assumed to exist). Let f() be the marginal distribution of ε with corresponding cdf F ().
The average cost at price P is given by

AC (P ) =

∫ ∞
−∞

Eh(h|h > h∗(ε, P ))f(ε)dε (A.2)

which is increasing in h∗.




