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ABSTRACT OF THE DISSERTATION

On two variant models of branching Brownian motion

by

Jiaqi Liu

Doctor of Philosophy in Mathematics

University of California San Diego, 2022

Professor Jason Schweinsberg, Chair

Branching Brownian motion is a random particle system which incorporates both the

tree-like structure and the diffusion process. We consider two variant models of branching

Brownian motion, branching Brownian motion with absorption and branching Brownian

motion with an inhomogeneous branching rate.

In the first variant model, branching Brownian motion with absorption, particles

move as Brownian motions with drift −ρ, undergo dyadic branching at rate 1, and are killed

when they reach the origin. Kesten (1978) first introduced this model and showed that

ρ =
√

2 is the critical value separating the supercritical case ρ <
√

2 and the subcritical case

ρ >
√

2. We study the transition of the model from the slightly subcritical regime to the

critical regime. Write ρ =
√

2 + 2ε. We obtain a Yaglom type asymptotic result, showing

that the long-run expected number of particles conditioned on survival grows exponentially

xiii



as 1/
√
ε as the process gets closer to being critical.

In the second variant model, branching Brownian motion with an inhomogeneous

branching rate, each particle independently moves as Brownian motion with negative drift,

each particle can die or undergo dyadic fission, and the difference between the birth rate

and the death rate is proportional to the particle’s location. This model was first considered

by Roberts and Schweinsberg (2021) and models the evolution of populations undergoing

selection. Aiming to understand the distribution of fitness levels of individuals in a large

population undergoing selection, we study the particle configurations of this model from the

left edge to the right edge. We show that, under certain assumptions, after a sufficiently

long time, the distribution of individual fitnesses from the least fit individuals to the most fit

individuals is approximately a traveling wave with a profile related to the Airy function. Our

work, complements the results in Roberts and Schweinsberg (2021), giving a fuller picture

of the fitness distribution.
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Chapter 1

Introduction

Branching Brownian motion (BBM) is a random particle system which incorporates both

the tree-like structure and the diffusion process. BBM has a natural interpretation as a

population model. Variations of BBM can be used to model the evolution of populations

under different constraints, and therefore provide mathematical justifications for biological

observations. Beyond the biological aspect, BBM also has intrinsic relations with partial

differential equations and statistical physics. In this chapter, we first introduce the definitions

of BBM and its variant models. In Section 1.2, we explain how BBM can be viewed as a

population model. In Section 1.3, we give a brief review of the results on the frontier of

BBM, showing how BBM is related to one type of partial differential equation, the F-KPP

equation. The chapter ends with two techniques that are widely used in the study of BBM.

1.1 Definition

The study of branching processes originated from the work of Bienaymé [18], and

Galton and Watson [86]. They considered stochastic models which record the number of

alive descendants in each generation, with the key feature that in every generation, each

individual gives birth to a random number of descendants independently of the others. In

1962, in order to describe both random growth and random dispersal of a population in
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continuous spaces at the same time, Adke and Moyal [5] introduced BBM. The following

definition is similar to the one given in [5], and we refer to it as the ordinary BBM. Let r > 0

be a fixed constant and (pk)
∞
k=0 be a probability law with support on non-negative integers.

Definition 1. The ordinary BBM is a continuous-time stochastic defined as follows.

• At time 0, there is a single particle at x ∈ R.

• During its lifetime, each particle independently moves according to one-dimensional

Brownian motion.

• Each particle has an exponentially distributed lifetime with rate r. The lifetime of each

particle is independent of its position and of all other particles.

• At the end of the lifetime, each particle independently splits into a random number of

offspring according to the probability law (pk)k∈N.

Here, r is the branching rate and (pk)k∈N is the branching distribution (or reproduction law).

In general, there are three places where we can modify the above definition and generate

variant models of BBM.

First, the motion of particles can be generalized to other stochastic processes other

than the standard Brownian motion. For example, particles can move as Brownian motion

with an inhomogeneous variance. To be more precise, let A(x) be the function which char-

acterizes the inhomogeneous variance of Brownian motion. The function A(x) is increasing

and right-continuous with A(0) = 0 and A(1) = 1. Let {Bt}t≥0 be the standard Brownian

motion. Fix a time horizon T and define (BA
t )0≤t≤T to be a time change of the standard

Brownian motion on [0, T ]

BA
t = BTA(t/T ).

We see that (BA
t )0≤t≤T is the Brownian motion with inhomogeneous variance A(x). BBM

with inhomogeneous variance is defined as the ordinary BBM except that particles move

as Brownian motion with inhomogeneous variance A(x). The case A(x) = x corresponds

2



to the ordinary BBM with homogeneous variance. Fang and Zeitouni [37], and Bovier and

Hartung [20] studied the case where A(x) is a piecewise linear function. The case studied by

Fang and Zeitouni [38], and Maillard and Zeitouni [64] falls in the regime where A(x) > x

for some x ∈ (0, 1). Bovier and Hartung [21] considered the weak correlation regime, where

A(x) < x for all x ∈ (0, 1). In [22], Bovier and Hartung studied the transitional behavior

of the process of by considering functions A(x) that lie slightly above or below A(x) = x.

Another well-studied variant model is the branching Ornstein-Uhlenbeck process. As the

name suggests, particles move according to the Ornstein-Uhlenbeck process satisfying the

stochastic differential equation

dY (t) = −µY (t)dt+ dBt,

where µ > 0. This model is interesting for two reasons. First, it was conjectured by Cortines

and Mallein [30] that branching Ornstein-Uhlenbeck process has unusual genealogical behav-

ior when undergoing selection (particles killed at a barrier). Second, the Ornstein-Uhlenbeck

process has a stationary distribution. After a period of time, positions of particles are ap-

proximately independent. Therefore, this branching process is know to satisfy a Law of

Large Numbers (see Enderle and Hering [35]). As for the Central Limit Theorems, the nor-

malization and limit depends on the relation between the branching parameter r and the

parameter of the Ornstein-Uhlenbeck process µ. See e.g. Adamczak and Mi loś [2, 3].

Second, selection criteria can be added to the branching particle system. For example,

particles hitting certain boundaries can be removed from the system. The most well-studied

model falls into this category is BBM with absorption, in which particles move as Brownian

motion with drift −ρ (ρ ∈ R), undergo dyadic branching at rate 1, and are killed when they

reach the origin. Kesten [56] first studied this model in 1978 and delineated the regions

where the process is subcritical, critical or supercritical. He showed that ρ =
√

2 is the

critical value separating the supercritical case ρ <
√

2 and the subcritical case ρ >
√

2.
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The critical behavior of the process was studied by [12, 13, 56, 61, 63]. Berestycki et al.

[10, 11] studied the slightly supercritical regime. The long run survival probability in the

subcritical case was studied by [48]. Another model with killing at barriers is BBM in a

strip, in which particles are killed not only at 0, but also at some K > 0. This model was

first studied by [51]. Another selection criterion is keeping the total number of particles in

the system fixed. Because of the strong interactions between particles, BBM processes under

such selection criteria are usually difficult to analyze rigorously. The model N -BBM is one

of them, in which the total number of particles is kept constant equal to N by killing the left-

most particle at each branching event. A discrete version of this model was first considered

by Brunet and Derrida [24] while studying the velocity of the traveling wave of an F-KPP

type equation. As a natural continuous time version of the previous process, N -BBM was

proposed by Maillard [62], and later on studied by De Masi et al. [31], and Berestycki et al.

[17]. A multi-dimensional version of this model is called Brownian bees, in which particles

independently move as Brownian motions in R2 and branch at rate 1, and the total number

of particles is kept constant equal to N by killing the particle that is furthest away from the

origin at each branching event. The stationary distribution and hydrodynamic limit of the

Brownian bees was fully understood by Berestycki et al. [15, 16]. A similar model, which is

called Barycentric Brownian bees was studied by Addario-Berry et al. [4].

Third, the branching rate can be inhomogeneous. For example, particles can breed

at a rate dependent on its position. BBM with a space-dependent branching rate was first

introduced by Harris and Harris [49]. In their model, each particle branches at a rate β|x|p,

which is proportional to its distance from the origin raised to the power p ∈ [0, 2]. Later,

Roberts and Schweinsberg [75] used BBM with an inhomogeneous branching rate to model

the evolution of populations undergoing selection.

Variant models of BBM can be considered with different physical and biological mo-

tivations. In this thesis, we are particularly interested in two variant models, BBM with

absorption and BBM with an inhomogeneous branching rate.
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1.2 Branching Brownian motion as a population model

BBM has a natural interpretation as a population model, where branching events

represent births, particles represent individuals in the population, positions of particles rep-

resent fitnesses of individuals and movements of particles represent changes in fitnesses over

generations. See e.g. [11, 12, 25, 26, 62]. In Chapter 3, we use a variant model of BBM,

BBM with an inhomogeneous branching rate to model the evolution of populations under-

going selection. In this section, we introduce a discrete population model which motivates

the construction of BBM with an inhomogeneous branching rate model in Chapter 3.

The simplest discrete population model is the Moran model, introduced by Moran [67]

in 1958. In the Moran model, there are N individuals in the population at all times. Every

individual independently lives for an exponentially distributed time. When an individual

dies, it is replaced by a new individual, whose parent is chosen uniformly at random from

the population. Note that in the Moran model, no selection acts on the population. To

incorporate selection, we construct a variation of the Moran model, which was considered in

[75]. We refer to it as the discrete population model with selection.

Definition 2. We construct the discrete population model with selection as follows.

• There are N individuals in the population at all time.

• Each individual independently acquires mutations at rate µN .

• All mutations are beneficial and the fitness of an individual depends on the number of

mutations this individual has acquired. Let sN be the selection rate. The fitness level

of an individual with j mutations at time t is

max
{

1 + sN(j −M(t)), 0
}

where M(t) is the average number of mutations of the population at time t.

5



• Each individual independently lives for an exponentially distributed time, then dies and

gets replaced by a new individual. The parent of the new individual is chosen at random

with probability proportional to the fitness.

In this model, when the rate of beneficial mutations µN is large but the selective ad-

vantage sN resulting from each mutation is small, an individual’s fitness level will evolve like

a random walk. With proper scaling, the fitness of each individual will move as a Brownian

motion with drift. Motivated by this discrete model, Roberts and Schweinsberg [75] con-

structed BBM with an inhomogeneous branching rate model in which particles independently

move as Brownian motion with drift, particles can die or undergo dyadic fission, and the

difference between the birth rate and the death rate is proportional to the particle’s location.

Particles with higher locations are more likely to branch, which implies that individuals with

higher fitnesses are more likely to reproduce offspring. Therefore, inhomogeneous branching

depicts the most important feature of populations undergoing selection. If we relate the

parameters µN , sN and N in the discrete model with the branching rate and the drift of

Brownian motion, we believe BBM with an inhomogeneous branching rate can serve as a

good approximation of the discrete population model with selection.

The discrete population model with selection is just one example of discrete pop-

ulation genetics models in which the effect of the natural selection is considered. Others

include the Wright-Fisher model with selection and the Moran model with selection defined

in Etheridge [36], and some other variations of the discrete population model with selection

studied in [34, 54, 80, 88].

1.3 F-KPP equation and the frontier of BBM

There has been a long-standing interest in the extremal position of BBM. In this

section, we will review some of the most exciting results regarding the maximal displacement

of the ordinary BBM. For simplicity, throughout this section, we assume that the branching

6



rate r = 1 and the branching distribution is p2 = 1.

1.3.1 F-KPP equation

The Fisher-Kolmogorov-Petrovskii-Piskounov equation, known as F-KPP equation is

a semilinear partial differential equation of the form

∂u

∂t
− 1

2

∂2u

∂x2
= F (u),

where F (u) is a sufficiently smooth function satisfying

F (0) = F (1) = 0, F (u) > 0 for all u ∈ (0, 1),

and

F ′(0) = β > 0, F ′(u) ≤ β for all u ∈ (0, 1].

The F-KPP equation is one of the simplest reaction-diffusion system that can be used to

model population growth and wave propagation.

The F-KPP equation is closely related to BBM. In 1975, McKean [65] first gave a

solution of the F-KPP equation expressed in terms of BBM. Consider the ordinary dyadic

BBM started from a single particle at x. We denote by Ex the expectation under the

probability measure of this process. Let Nt be the set of particles at time t and {Xu(t) : u ∈

Nt} be the set of positions of particles at time t.

Theorem 3. Let g ∈ C2(R) with 0 ≤ g(x) ≤ 1 for all x. If u : R+ × R 7→ R satisfies

u ∈ [0, 1] and solves the F-KPP equation with initial condition g,

∂u

∂t
=

1

2

∂2u

∂x2
+ u2 − u, u(0, x) = g(x), (1.1)

7



then we have the representation

u(t, x) = Ex

[ ∏
u∈Nt

g(Xu(t))

]
.

As a special example, if we let the initial condition to be the indicator g(x) = 1{x≥0},

then we have that the distribution function of the maximal displacement of BBM satisfies

the F-KPP equation. To be more precise, define Mt to be the maximal displacement of the

ordinary BBM. By Theorem 3,

u(t, x) = Ex

[ ∏
u∈Nt

1{Xu(t)≥0}

]

satisfies (1.1) with initial condition g(x). Note that after translation,

u(t, x) = P 0(Mt ≤ x),

which is the cumulative density function of the maximal displacement at time t. In fact, this

result can be seen directly from the branching property and the fact that the infinitesimal

generator of Brownian motion is ∆/2, where ∆ is the Laplacian operator.

1.3.2 Frontier of BBM

Let u(t, x) be the distribution function of the maximal displacement. It is known

that the solution of the F-KPP equation converges to a traveling wave. That is to say, there

exist functions m(t) and w(x) such that w is a probability distribution function and

u(t,m(t) + x)→ w(x) uniformly in x as t→∞,
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and the traveling wave solution w solves the ordinary differential equation

1

2
w′′ +

√
2w′ + w(w − 1) = 0.

Therefore, Mt −m(t) converges weakly to a limit whose distribution is given by w(x). The

exact asymptotic expression of the median position m(t) of the maximal displacement was

first given by Bramson [23] in 1978. Using the connection between the maximal displacement

Mt and the F-KPP equation, he showed that there exists a constant C such that

m(t) =
√

2t− 3

2
√

2
log t+ C + o(1) as t→∞.

If we compare m(t) with the median of the maximum of et independently and identically

distributed random variables with normal distribution N(0, t), then they have the same first

leading orders, but different second leading orders. Therefore, Bramson’s result reflects a

deep understanding of the branching structure. Bramson’s proof was further simplified by

Roberts [74] in 2013. Roberts also proved that

− 3

2
√

2
= lim inf

t→∞

Mt −
√

2t

log t
≤ lim sup

t→∞

Mt −
√

2t

log t
= − 1

2
√

2
.

This result was first established by Hu and Shi [52] in the discrete setting branching random

walk.

In 1987, Lalley and Sellke [58] noticed that despite the weak convergence of Mt−m(t),

the empirical distribution of the centered maximal displacement Mt−m(t) does not converge

to w(x) in the limit of large times. Instead, they proved a weak limit theorem which relates

the maximal displacement with a certain martingale in the limit of large times. It turns

out that this martingale encodes the fluctuation of the beginning of the BBM. Afterwards,

the behavior of the maximal displacement is approximately dominated by the extreme-value

9



mechanism. Let

Z(t) =
∑
u∈Nt

(√
2t−Xu(t)

)
e
√

2Xu(t)−2t.

Lalley and Sellke showed that (Z(t), t ≥ 0) is a martingale and

lim
t→∞

Z(t) = Z a.s.

where Z is strictly positive and almost surely finite. The process (Z(t), t ≥ 0) is often called

the derivative martingale. Lalley and Sellke proved that there exists some constant c such

that

w(x) = lim
t→∞

P

(
Mt ≤

√
2t− 3

2
√

2
log t+ x

)
= E

[
e−cZe

−
√

2x
]
. (1.2)

That is, conditioned on Z, the asymptotic distribution of Mt −m(t) is the Gumbel distri-

bution with random shift logZ.

Lalley and Sellke’s result suggests a random shift picture for the frontier of BBM.

The following question would be if we look at the BBM from its right-most particle, what is

the picture of the whole process. This question was answered in two papers with different

proofs, [6, 7]. Define the point measure

Et =
∑
u∈Nt

δXu(t)−m(t).

As t→∞, the random measure Et converges in law to a random intensity decorated Poisson

point process E . The distribution of E is determined by an intensity measure ν, which is a

random σ-finite measure on R and a random point process D on R. Let

ν = c
√

2Ze−
√

2x,

and

D(·) = lim
t→∞

P

(∑
u∈Nt

δ{Xu(t)−Mt} ∈ ·
∣∣∣∣Mt ≥

√
2t

)
.
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where c is the constant in (1.2). Conditionally on ν, we first construct a Poisson point

process with intensity ν, whose atoms are denoted by (xi)
∞
i=1. For each xi, we attach a point

measure Di where Di is an independent copy of D. We denote the points of Di as (di,j)
∞
j=1.

Then

E =
∞∑
i=1

∞∑
j=1

δxi+di,j .

1.4 Techniques

This section will introduce two extremely useful techniques in the study of branching

processes, the spine decomposition and the many-to-one type lemmas. The spine decompo-

sition is the cornerstone of the proofs in Chapter 2 and the many-to-one type lemmas are

extensively used in Chapter 3.

1.4.1 Spine decomposition

As the name suggests, the idea of the spine decomposition is to identify one particular

line of descent from the root as the spine and view all the other particles as descendants

branching off the spine. This idea first appeared in Chauvin and Rouault’s work [28] in

1988, and was later developed and generalized by Kurtz et al. [57], Lyons [59], Lyons et al.

[60], and Hardy and Harris [47]. The spine decomposition is usually done via the change of

measure. With different changes of measure, different spine decompositions can be obtained

and will be helpful in calculating the probability of certain events. Here we will present one

spine decomposition using the additive martingale, which follows from Chauvin and Rouault

[28].

Denote by P x the probability measure of the ordinary BBM started from a single

particle at x. Let (Ft)t≥0 be the natural filtration of this process up to time t and m =∑∞
k=1 kpk − 1. For the branching distribution, assume p0 = 0 and 0 < m < ∞. For every

11



λ ∈ R, define

Wλ(t) =
∑
u∈Nt

eλXu(t)e−rmt−λ
2t/2.

It is well known that (Wλ(t), t ≥ 0) is a positive martingale called the additive martingale,

and its limit Wλ = limt→∞Wλ(t) exists almost surely. When |λ| ≥
√

2rm, Wλ = 0 almost

surely and when |λ| <
√

2rm, Wλ is almost surely positive and is also the L1 limit. We

define the new measure Qx
λ via (Wλ, s ≥ 0),

dQx
λ

dP x

∣∣∣∣
Ft

=
Wλ(t)

Wλ(0)
.

Under the new measure Qx
λ, there is one chosen particle which is the spine whose law is

altered and all subtrees branching off the spine behave like the ordinary BBM. The spine

moves as a Brownian motion with drift λ starting from x. With accelerated rate (1 + m)r,

the spine splits into a random number of offspring according to the probability law (p̂k)
∞
k=1

where

p̂k =
kpk
m+ 1

, k = 1, 2, ....

The spine is chosen uniformly from the offspring, and the remaining offspring initiate inde-

pendent copies of the ordinary BBM starting from its birth position.

1.4.2 Many-to-one and many-to-two lemmas

Most of the proofs in BBM involve delicate moment estimates. Usually, the first

moment estimate gives the average value and the second moment estimate controls the fluc-

tuation. By many-to-one type lemmas, moment estimates for BBM can be transformed into

the moment calculations of a single particle, which will greatly simplify the calculation. We

present a many-to-one lemma and a many-to-two lemma for the general branching Markov

process. The many-to-one lemma follows from Theorem 8.5 in [47], and the many-to-two

lemma is adapted from Theorem 2.2 in [78].
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Consider a branching Markov process in which each particle independently moves

according to a one-dimensional Markov process (Ξt, t ≥ 0). For a particle at location x, it

dies at rate R(x). To be more precise, if the particle u ∈ Nt is alive at time t, then the

probability that it will die in the interval [t, t+ dt) is R(Xu(t))dt+ o(dt). At the end of the

lifetime, each particle independently splits into a random number of offspring according to

the probability law (pk)
∞
k=1 on the positive integers with finite mean. Let m =

∑∞
k=1 kpk−1.

As before, we denote by Nt the set of particles at time t, {Xu(t) : u ∈ Nt} the set of

positions of particles at time t and Ex the expectation under this branching Markov process.

We assume that the function R(x) and the process (Ξt, t ≥ 0) are smooth enough that R(Ξs)

is integrable as a function of s over the interval [0, t] for all t.

Lemma 4 (Many-to-one lemma). If f : R→ R is a measurable function, then

Ex

[ ∑
u∈Nt

f(Xu(t))

]
= Ex

[
e
∫ t
0 mR(Ξs)dsf(Ξt)

]
.

We further assume that the Markov process (Ξt, t ≥ 0) is time homogeneous. Let

pt(x, y) be the density for the branching Markov process. That is to say, if there is a single

particle at x at time 0, then the expected number of particles in the Borel set B ⊂ R is given

by
∫
B
pt(x, y)dy. The density pt(x, y) can be calculated from Lemma 4

pt(x, y)dy = Ex

[
e
∫ t
0 mR(Ξs)ds; Ξt ∈ dy

]
.

Lemma 5 (Many-to-two lemma). If f : R→ [0,∞) is a measurable function, then

Ex

[( ∑
u∈Nt

f(Xu(t))

)2]
=

∫ ∞
0

f(y)2pt(x, y)dy

+ 2

∫ t

0

∫ ∞
0

ps(x, z)

(∫ ∞
0

f(y)pt−s(z, y)dy

)2

dzds.
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1.5 Outline

This thesis focuses on two variant models of BBM, BBM with absorption and BBM

with an inhomogeneous branching rate. In Chapter 2, aiming to understand the transition

from the near critical regime to the critical regime for BBM with absorption, we study a

Yaglom type asymptotic result in the slightly subcritical regime. In Chapter 3, we use BBM

with an inhomogeneous branching rate to model the evolution of populations undergoing

selection and provides mathematical descriptions of the population evolution.
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Chapter 2

Branching Brownian motion with

absorption

We consider a slightly subcritical branching Brownian motion (BBM) with absorption,

where particles move as Brownian motions with drift −
√

2 + 2ε, undergo dyadic fission at

rate 1, and are killed when they reach the origin. We obtain a Yaglom type asymptotic

result, showing that the long run expected number of particles conditioned on survival grows

exponentially as 1/
√
ε as the process approaches criticality.

2.1 Introduction

BBM with absorption was first introduced by Kesten [56] in 1978. In this model,

particles move as Brownian motions with drift −ρ (ρ ∈ R), undergo dyadic branching at

rate 1, and are killed when they reach the origin. Kesten [56] showed that when ρ ≥
√

2, BBM

with absorption dies out almost surely while when ρ <
√

2, there is a positive probability of

survival. Therefore, ρ =
√

2 is the critical value separating the supercritical case ρ <
√

2 and

the subcritical case ρ >
√

2. We denote by P x
−ρ the probability measure for BBM started

from a single particle at x > 0 with drift −ρ and absorbed at 0.

There has been a long-standing interest in problems related to the asymptotic behav-
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ior of the survival probability. In the critical case, after introducing the model, Kesten [56]

obtained upper and lower bounds on the probability that the process survives until some

large time. Kesten’s result was further improved by Berestycki et al. [12]. Finally, Maillard

and Schweinsberg [63] established the precise asymptotic for the long run survival probabil-

ity. Let ζ be the extinction time. They showed that there exists a positive constant α such

that

lim
t→∞

P x
−
√

2
(ζ > t)

αx
e−
√

2x+(3π2t)1/3

= 1.

They also provided an expression for the constant α, which is related to the tail of the

derivative martingale of BBM. The asymptotic result for the survival probability in the su-

percritical case was obtained by Harris et al. [50] through studying the FKPP equation

associated with this process. Derrida and Simon [32] gave a quite precise prediction for

the survival probability in the slightly supercritical case through nonrigorous PDE methods,

where the drift ρ is slightly below the critical value. Rigorous probabilistic proofs were pro-

vided by [10]. In this chapter, we are interested in a nearly critical case, where ρ approaches

the critical value
√

2 from above. For notational simplicity, we write ρ2/2 − 1 = ε where

0 < ε < 1 and ε approaches to 0. We denote by N−ρt the set of surviving particles under

P x
−ρ at time t. The set of positions of particles at time t under P x

−ρ is {Yu(t) : u ∈ N−ρt } and

the number of particles at time t under P x
−ρ is N−ρt .

In the subcritical case, almost surely, the process becomes extinct. However, it is

interesting to consider the behavior of the process conditioned on survival up to a large

time. This type of result is called a Yaglom theorem and has been considered by Yaglom [87]

in ordinary branching processes. A similar question was studied by Chauvin and Rouault

[28] in the setting of BBM without absorption. Let P be the law of an ordinary BBM started

from 0 without drift and absorption and Nt be the set of particles at time t. Chauvin and

Rouault first gave an asymptotic expression for the probability of existence of particles to

the right of ρt + x at some large time, P (∃u ∈ Nt : Yu(t) > ρt + x). Then they obtained a

limit distribution for the number of particles that drift above ρt + x at time t conditioned
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on the presence of such particles for ρ >
√

2. Harris and Harris [48] obtained related results

for BBM with absorption. They derived a large-time asymptotic formula for the survival

probability in the subcritical case. They proved that for ρ >
√

2 and x > 0, there exists a

constant Kε that is independent of x but dependent on the drift ρ, and therefore on ε, such

that,

lim
t→∞

P x
−ρ(N

−ρ
t > 0)

√
2πt3

x
e−ρx+εt = Kε, (2.1)

and furthermore,

lim
t→∞

P x
−ρ(N

−ρ
t > 0)

Ex
−ρ[N

−ρ
t ]

=
1

2
ρ2Kε. (2.2)

Comparing this with Chauvin and Rouault’s result, as t goes to infinity, P x
−ρ(N

−ρ
t > 0) and

P (∃u ∈ Nt : Yu(t) > ρt + x) are the same on the exponential scale but different in terms

of the polynomial corrections. The constant Kε plays an important role in calculating the

limiting expected number of particles alive conditioned on at least one surviving. In fact, it

is pointed out by Harris and Harris in [48] that as a direct consequence of (2.2), we have

lim
t→∞

Ex
−ρ[N

−ρ
t |N

−ρ
t > 0] =

2

ρ2Kε

. (2.3)

Furthermore, by using the method of Chauvin and Rouault [28], it follows from (2.2) that

there is a probability distribution (πj)j≥1 such that

lim
t→∞

P x
−ρ(N

−ρ
t = j|N−ρt > 0) = πj.

Our main result, which is Theorem 8 below, analyzes the asymptotic behavior of (2.3) as ε

goes to 0. We show that the long-run expected number of particles conditioned on survival

grows exponentially as the process gets closer to being critical.

Theorem 6. There exist positive constants C1 and C2 such that for ε small enough,

eC1/
√
ε ≤ lim

t→∞
Ex
−ρ[N

−ρ
t |N

−ρ
t > 0] ≤ eC2/

√
ε. (2.4)
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Kesten [56] had a result of this type in the critical case. Recently, Maillard and

Schweinsberg [63] proved Yaglom-type limit theorems for more specific behaviors of the

process in the critical case. They derived the asymptotic distributions of the extinction time

ζ, the number of particles N−
√

2
t and the position of the right-most particle at time t, M−

√
2

t

for the process conditioned on survival for a long time. To be more precise, let V be an

exponentially distributed random variable with parameter 1. They proved that conditioned

on ζ > t, as t→∞ and ω = (3π2)1/3/
√

2,

(
t−2/3(ζ − t), t−2/9 logN−

√
2

t , t−2/9M−
√

2
t

)
⇒

(
3V√
2ω
,

(
3ω2V√

2

)1/3

,

(
3ω2V√

2

)1/3
)
,

where ⇒ represents the weak convergence. In the setting of supercritical branching random

walk (BRW), Gantert et al. [43] and Pain [69] considered problems with similar flavor. Let

γ be the asymptotic speed of the right-most position in the BRW. Gantert et al. [43] studied

the probability that there exists an infinite ray which stays above the line of slope γ − ε as

ε goes to 0. Having an infinite ray staying above the line with slope γ − ε can be viewed

as survival with slightly supercritical drift. They proved that when ε → 0, this probability

decays as exp(−(C+o(1))/
√
ε) where C is a positive constant depending on the distribution

of the branching random walk. In [69], Pain studied the near-critical Gibbs measure and the

partition function of parameter β on the n−th generation of the BRW. In his setting, the

inverse temperature β is a function of n and approaches to the critical value 1 both from

above and below. Our setting can be viewed as a iterated limit where we first let time t

go to infinity and then let the process approach to criticality, while Pain’s setting can be

viewed as a double limit where the process approaches to criticality at the same time when

the generation goes to infinity.

It is important to point out that Theorem 6 does not imply that as the process

approaches criticality, we have logN−ρt = O(ε−1/2) conditioned on survival up to time t in a

typical realization of the process. We conjecture that there is a big difference between the
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expected number and the typical number of surviving particles because the expectation is

dominated by rare events where an unusually large number of particles survive. We further

conjecture that for ε sufficiently small, the logarithm of the number of particles at time t

conditioned on survival up to time t is typically around ε−1/3.

The proof of Theorem 6 relies on a better understanding of Kε as the drift approaches

the critical value. According to (2.1), studying Kε boils down to finding an asymptotic

expression for the survival probability in the slightly subcritical regime. Here we apply a

spinal decomposition to transform survival probability to expectation of the reciprocal of a

martingale.

As in Harris and Harris [48], define

V (t) :=
∑

u∈N−ρt

Yu(t)e
ρYu(t)+εt.

Lemma 2 in [48] shows that {V (t)}t≥0 a martingale under P x
−ρ. We can define a new measure

Qx on the same probability space as P x
−ρ via {V (s)}s≥0,

dQx

dP x
−ρ

∣∣∣
Fs

=
V (s)

V (0)
. (2.5)

Under the measure Qx, there is one chosen particle which is called the spine whose law is

altered and all subtrees branching off the spine behave like the original BBM with absorption.

The spine moves as a Bessel-3 process starting from x. With accelerated rate 2, the initial

ancestor undergoes binary fission. The spine is chosen uniformly from the two offspring, and

the remaining offspring initiates an independent copy of the original BBM with absorption.

In this chapter Qx is used both for probability and expectation. Representing Kε under Qx

in (2.1),

Kε = lim
t→∞

Qx

[
V (0)

V (t)
;N−ρt > 0

]√
2πt3

x
e−ρx+εt = lim

t→∞

√
2πt3Qx

[
1∑

u∈N−ρt
Yu(t)eρYu(t)

]
.
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As a result, Theorem 6 follows from the following proposition.

Proposition 7. There exist positive constants C1 and C2 such that for ε small enough,

lim sup
t→∞

√
2πt3Qx

[
1∑

u∈N−ρt
Yu(t)eρYu(t)

]
≤ e−C1/

√
ε, (2.6)

lim inf
t→∞

√
2πt3Qx

[
1∑

u∈N−ρt
Yu(t)eρYu(t)

]
≥ e−C2/

√
ε. (2.7)

We point out here that we cannot specify choices of C1 and C2. We are only able to

determine upper and lower bounds for limt→∞E
x
−ρ[N

−ρ
t |N

−ρ
t > 0].

The rest of this chapter is organized as follows. In Section 2.2, results related to

Brownian motion and the Bessel-3 process will be summarized. Sections 2.3 and 2.4 will

be devoted to the proofs of the upper bound and lower bound in Proposition 7 respectively.

Throughout this chapter, for two nonzero functions f(t) and g(t), we use the notation f(t) ∼

g(t) as t → a to mean that limt→a f(t)/g(t) = 1. We summarize some of the notation that

are used throughout the chapter in Table 2.1.

Table 2.1: Index of notation in Chapter 2

P x
−ρ The probability measure of the BBM started from a single particle at

x > 0 with drift −ρ and absorbed at 0.

N−ρt The set of surviving paticles under P x
−ρ at time t.

Qx The probability measure on the same probability space as P x
−ρ defined via

a spine change of measure.

{ξt}t≥0 The trajectory of the spine.

{ζs}0≤s≤t The reversed trajectory of the spine up to time t, i.e. {ξt−s}0≤s≤t.

Qx,t,z The probability measure of the branching process under Qx whose spine

starts from x and is conditioned to end up at z at time t, i.e. Qx(·|ξt = z)

or Qx(·|ζ0 = z).
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Table 2.1: Index of notation in Chapter 2, Continued

{Bx,u,y
t }0≤t≤u Brownian bridge from x to y over time u.

{Xx,u,y
t }0≤t≤u Bessel bridge from x to y over time u. If clear from the context, we will

write {Xr}0≤r≤u for simplicity.

px,u,yt (·) The transition density of a Bessel process from x to y over time u at time

t.

{Rz
r}r≥0 Bessel-3 process started from z.

pt(x, ·) The transition density of a Bessel process started from x at time t.

2.2 Preliminary results

In this section, we will summarize results pertaining to Brownian motion and the

Bessel-3 process which will be used later in the proof. For further properties of the Brownian

motion and the Bessel process, we refer the reader to Borodin and Salminen [19].

Let{Bt}t≥0 be standard Brownian motion and {Bx,u,y
t }0≤t≤u be a Brownian bridge

from x to y over time u. Standard Brownian bridge refers to the Brownian bridge from 0 to

0 in time 1, {B0,1,0
t }0≤t≤1. Reflected Brownian bridge is the absolute value of the Brownian

bridge, {|Bx,u,y
t |}0≤t≤u. Now we will be able to state the following lemma. Lemma 8 derives

the limit of the probability that a reflected standard Brownian bridge always stays below a

line at+ b as b(a+ b) approaches 0. We will prove by first obtaining the explicit probability

formula written as an infinite sum and then analyzing its limiting behavior through Jacobi

theta functions.

Lemma 8. For a ≥ 0 and b > 0, we have

P
(

sup
0≤t≤1

(
|B0,1,0

t | − at
)
< b
)
∼

√
2π

b(a+ b)
e−

π2

8b(a+b) as b(a+ b) ↓ 0.
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Proof. According to Theorem 7 in [77], we have

P
(

sup
0≤t≤1

(
|B0,1,0

t | − at
)
< b
)

=
∞∑

k=−∞

(−1)ke−2k2b(a+b). (2.8)

To have a better understanding of this expression for small values of b(a + b), we need

to introduce the Jacobi theta functions of type 2, ϑ2(z|τ) and type 4, ϑ4(z|τ) and their

relationship. A good reference would be Section 16 of [1]. We have

ϑ2(z|τ) := 2eiπτ/4
∞∑
k=0

eiπτk(k+1) cos((2k + 1)z),

ϑ4(z|τ) :=
∞∑

k=−∞

(−1)keiπτk
2

e2kiz.

As a special case of Jacobi’s imaginary transformation,

ϑ4(0|τ) = (−iτ)−1/2ϑ2

(
0| − 1

τ

)
.

Then (2.8) can be written in terms of Jacobi theta functions,

P
(

sup
0≤t≤1

(
|B0,1,0

t | − at
)
< b
)

= ϑ4

(
0|2b(a+ b)i

π

)
=

√
π

2b(a+ b)
ϑ2

(
0| πi

2b(a+ b)

)
.

We want to explore the limiting behavior of P (sup0≤t≤1 |B
0,1,0
t |−at < b) as b(a+b) approaches

0. By the series representation for the theta function ϑ2, if eiπτ ∈ R and eiπτ → 0, then

ϑ2(0|τ) ∼ 2eiπτ/4.

Therefore, as b(a+ b) approaches 0 from above,

P
(

sup
0≤t≤1

(
|B0,1,0

t | − at
)
< b
)

=

√
π

2b(a+ b)
ϑ2

(
0| πi

2b(a+ b)

)
∼

√
2π

b(a+ b)
e−

π2

8b(a+b) .
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2

Below we will present a stochastic dominance relation between Brownian bridges with

the same length but different endpoints.

Lemma 9. For every t > 0, if x1 ≥ x2 and y1 ≥ y2, then {Bx1,t,y1
r }0≤r≤t stochastically

dominates {Bx2,t,y2
r }0≤r≤t. In other words, these two processes can be constructed on some

probability space such that almost surely for all r ∈ [0, t],

Bx1,t,y1
r ≥ Bx2,t,y2

r .

Proof. According to IV.21 of [19], after some computations, {Bx1,t,y1
r }0≤r≤t and {Bx2,t,y2

r }0≤r≤t

can be expressed in terms of {B0,t,0
r }0≤r≤t,

Bxi,t,yi
r =

t− r
t

xi +
r

t
yi +B0,t,0

r , for 0 ≤ r ≤ t and i = 1, 2.

Since x1 ≥ x2 and y1 ≥ y2, {Bx1,t,y1
r }0≤r≤t stochastically dominates {Bx2,t,y2

r }0≤r≤t from the

above coupling.

Next we are going to introduce results pertaining to the Bessel-3 process. The Bessel-

3 process is defined to be the radial part of a three-dimensional Brownian motion. Since

only the Bessel-3 process will be considered in this chapter, below we will write the Bessel

process for convenience. Also, the Bessel process is identical in law to a one dimensional

Brownian motion conditioned to avoid the origin. Let pt(x, y) be the transition density of a

Bessel process started from x at time t. We have

pt(x, y) =
y

x

1√
2πt

e−
(y−x)2

2t

(
1− e−2xy/t

)
.

Similarly to the Brownian motion setting, define {Xx,u,y
t }0≤t≤u as a Bessel bridge from x

to y over time u and px,u,yt (z) as its transition density at time t. Specifically, {X0,1,0
t }0≤t≤1

is a Brownian excursion. It is shown in the proof of Lemma 7 in [48] that a Bessel bridge
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is identical in law to a Brownian bridge that is conditioned to avoid the origin. Since a

time-reversed Brownian bridge is also a Brownian bridge, we see that a time-reversed Bessel

bridge is also a Bessel bridge. To be more precise,

{Xx,t,z
t−s }0≤s≤t

d
== {Xz,t,x

s }0≤s≤t.

As in the Brownian motion case, there is also a stochastic dominance relation between

Bessel bridges. The technical tool we use here is the comparison theorem for solutions of

stochastic differential equations and a good reference for it is [53].

Lemma 10. If x1 ≥ x2 ≥ 0 and y1 ≥ y2 ≥ 0, then {Xx1,1,y1
r }0≤r≤1 stochastically dominates

{Xx2,1,y2
r }0≤r≤1. In other words, these two processes can be constructed on some probability

space such that almost surely for all r ∈ [0, 1],

Xx1,1,y1
r ≥ Xx2,1,y2

r .

Proof. It is sufficient to show that for every 0 < δ < 1, the process {Xx1,1,y1
r }0≤r≤1−δ stochas-

tically dominates {Xx2,1,y2
r }0≤r≤1−δ. Note that the Bessel bridge is nonnegative. Instead of

working with Bessel bridges directly, we will prove the lemma for squared Bessel bridges,

for which the comparison theorem can be applied readily. Define squared Bessel bridges for

0 ≤ r ≤ 1− δ,

Y
x2
i ,1,y

2
i

r := (Xxi,1,yi
r )2, for i = 1, 2.

By (0.27) of [72] and Ito’s formula, letting {Br}r≥0 be a standard Brownian motion, squared

Bessel bridges {Y x2
1,1,y

2
1

r }0≤r≤1−δ and {Y x2
2,1,y

2
2

r }0≤r≤1−δ can be respectively represented as

pathwise unique solutions over [0, 1− δ] of the stochastic differential equations

Y
x2
i ,1,y

2
i

0 = x2
i , dY

x2
i ,1,y

2
i

r =

(
3 +

2yi

√
Y
x2
i ,1,y

2
i

r − 2Y
x2
i ,1,y

2
i

r

1− r

)
dr + 2

√
Y
x2
i ,1,y

2
i

r dBr
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where i = 1, 2. Set

bi(t, x) = 3 +
2yi
√
x− 2x

1− t
for i = 1, 2, σ(t, x) = 2

√
x.

We see that for x, y ∈ R and t ≥ 0,

|σ(t, x)− σ(t, y)| = 2|
√
x−√y| ≤ 2

√
|x− y| =: φ(|x− y|)

where φ is an increasing function such that φ(0) = 0 and

∫
0+

φ(x)−2dx =∞.

Furthermore, because bi(t, x) for i = 1, 2 and σ(t, x) are continuous on [0, 1−δ)×R, we have

{Y x2
1,1,y

2
1

r }0≤r≤1−δ stochastically dominates {Y x2
2,1,y

2
2

r }0≤r≤1−δ by Theorem 1.1 of [53]. Finally

after taking the square root, the lemma holds for Bessel bridges.

There is also one more fact on the relationship between the Bessel bridge and Bessel

process, which is borrowed from Lemma 7 of [48].

Lemma 11. As t→∞, the Bessel bridge converges to the Bessel process in the Skorokhod

topology on D[0,∞), i.e.

P z,t,x
BES ⇒ P z

BES.

2.3 Upper bound

2.3.1 Proof outline

In this section, we show the upper bound (2.6). Throughout this section, P x
−ρ is the

probability measure for the BBM started from a single particle at x > 0 with drift −ρ and

absorbed at 0. Let N−ρt be the set of surviving particles at time t. The configuration of
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particles at time t under P x
−ρ is written as {Yu(t) : u ∈ N−ρt }. For a particle u ∈ N−ρt , denote

by Ou the time that the ancestor of u branches off the spine. By convention, if u is the spinal

particle, Ou = t. Defined in (2.5), Qx is the law of a branching diffusion with the spine which

initiates from a single particle at x > 0. Under the measure Qx, let {ξt}t≥0 be the trajectory

of the spinal particle which diffuses as a Bessel-3 process. Define {ζs}0≤s≤t = {ξt−s}0≤s≤t to

be the reversed trajectory of the spinal particle. We denote by Qx,t,z the law of the branching

process whose spine starts from x and is conditioned to end up at z at time t, i.e.

Qx,t,z(·) = Qx(·|ξt = z) = Qx(·|ζ0 = z).

First we will control the case where the position of the spinal particle at time t is

greater than ε−1/2, which is Lemma 12 below.

Lemma 12. For all t and all ε sufficiently small, there exists a positive constant C3 such

that
√

2πt3Qx

[
1∑

u Yu(t)e
ρYu(t)

; ξt ≥ ε−1/2

]
≤ e−C3/

√
ε.

As a result, we only need to deal with the case where the spine ends up near the origin.

To prove (2.6), it is sufficient to show that there exists a constant C4 such that for ε small

enough,

lim sup
t→∞

√
2πt3Qx

[
1∑

u Yu(t)e
ρYu(t)

; ξt ≤ ε−1/2

]
≤ e−C4/

√
ε. (2.9)

It remains to prove equation (2.9). To obtain an upper bound, we only take particles that

branch off the spine within the last ε−3/2 time into account. Conditioned on the spine being

at y at time t− ε−3/2, we restart the process from y and let the process run for time ε−3/2.

Essentially, we will work on bounding

Qy

[
1∑

u Yu(ε
−3/2)eρYu(ε−3/2)

∣∣∣ξε−3/2 = z

]
. (2.10)

26



Considering the reversed trajectory of the spine, let

M = sup
0≤s≤ε−3/2

(
εζs −

1

ρ
ε2s
)
.

For any positive constant C > 2π, we will divide the proof for (2.9) into the small M and

large M cases,

(2.10) = Qy

[
1∑

u Yu(ε
−3/2)eρYu(ε−3/2)

1{M≥2C
√
ε}

∣∣∣ξε−3/2 = z

]
+Qy

[
1∑

u Yu(ε
−3/2)eρYu(ε−3/2)

1{M<2C
√
ε}

∣∣∣ξε−3/2 = z

]
. (2.11)

For the large M case, the main strategy is as follows:

• If M ≥ 2C
√
ε, then εζs − 1

ρ
ε2s stays above C

√
ε for a while. In other words, the

position of the spine at time t− s satisfies ξt−s ≥ C/
√
ε+ εs/ρ for some time. During

that time, many particles branch off the spine.

• For s ∈ [0, ε−3/2], each particle that branches off the spine at time t− s and is located

to the right of C/
√
ε+εs/ρ will have a descendant at time t above C/(4

√
ε) with some

nonzero probability which is independent of ε and s. When this occurs, it will follow

that, for sufficiently small ε,

1∑
u Yu(t)e

ρYu(t)
≤ 4
√
ε

C
e−Cρ/(4

√
ε) ≤ e−Cρ/(5

√
ε).

• Taking the number of branching events of the spine into consideration, the probability

that there exists at least one particle which stays to the right of C/(4
√
ε) at time t

converges to 1 as ε goes to 0.

From the above strategy, we can see why the ε−3/2 time period is considered here. The length

of this time period has to be large enough such that a considerable number of particles branch

off the spine and also small enough such that if a particle branches off the spine during that
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time, the position of its descendant at time t won’t be too far from its branching position.

Essentially, for C > 2π, we need to prove the following two lemmas.

Lemma 13. Let {t − ti}Nεi=1 be the set of times that particles branch off the spine between

time t − ε−3/2 and t. Then there exists a positive constant C5 such that for ε sufficiently

small, for every y ∈ (0,∞) and z ∈ (0, ε−1/2], we have

Qy

({ Nε∑
i=1

1{εζti−
1
ρ
ε2ti≥C

√
ε} ≤

1√
ε

}
∩ {M ≥ 2C

√
ε}
∣∣∣∣ξε−3/2 = z

)
≤
(

6 +
2

yz

)
e−C5/

√
ε.

Lemma 14. There exists a positive constant C6 such that for all sufficiently small ε and

s ∈ [0, ε−3/2],

P
C/
√
ε+εs/ρ

−ρ

(
∃u ∈ N−ρs : Yu(s) >

C

4
√
ε

)
> C6. (2.12)

With the help of Lemmas 13 and 14, we will be able to state the result regarding the large

M case.

Lemma 15. There exists a positive constant C7 such that for all sufficiently small ε, for all

y ∈ (0,∞) and z ∈ (0, ε−1/2],

Qy

[
1∑

u Yu(ε
−3/2)eρYu(ε−3/2)

1{M≥2C
√
ε}

∣∣∣∣ξε−3/2 = z

]
≤
(

2

yz2
+

7

z
+ 1

)
e−C7/

√
ε.

As for the small M case, Lemma 16 provides an upper bound. The key step is to bound the

probability that M is less than 2C
√
ε.

Lemma 16. There exists a positive constant C8 such that for sufficiently small ε, for all

y ∈ (0,∞) and z ∈ (0, ε−1/2],

Qy

[
1∑

u Yu(ε
−3/2)eρYu(ε−3/2)

1{M<2C
√
ε}

∣∣∣∣ξε−3/2 = z

]
≤ 1

z
e−C8/

√
ε. (2.13)

In the end, the upper bound (2.6) is proved in Section 2.3.2 by combining Lemmas 12, 15

and 16.
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In Section 2.3.2, we will gather all the lemmas to obtain the upper bound (2.6) and

in Section 2.3.3, we will provide proofs for the lemmas above.

2.3.2 Proof of upper bound

To begin with, conditioning on the end point of the spinal trajectory, we have

√
2πt3Qx

[
1∑

u Yu(t)e
ρYu(t)

; ξt ≤ ε−1/2

]
=
√

2πt3
∫ ε−1/2

0

Qx

[
1∑

u Yu(t)e
ρYu(t)

∣∣∣∣ξt = z

]
z

x

1√
2πt

e−(x−z)2/2t(1− e−2xz/t)dz

≤
√

2πt3
∫ ε−1/2

0

Qx

[
1∑

u Yu(t)e
ρYu(t)

∣∣∣∣ξt = z

]
z

x

1√
2πt

e−(x−z)2/2t2xz

t
dz

=

∫ ε−1/2

0

2z2e−(x−z)2/2tQx

[
1∑

u Yu(t)e
ρYu(t)

∣∣∣∣ξt = z

]
dz. (2.14)

Next, knowing that a reversed Bessel bridge is still a Bessel bridge, if {ξs}0≤s≤t is a Bessel

bridge from x to z within time t, then {ζs}0≤s≤t is also a Bessel bridge from z to x within

time t. Since we are going to obtain an upper bound, it is enough to only look at the set of

living particles at time t that branch off the spine in the last ε−3/2 time. For clarification,

under Qx, the set {u ∈ Nt : Ou ≥ t− ε−3/2} includes the spinal particle. We have

Qx

[
1∑

u Yu(t)e
ρYu(t)

∣∣∣∣ξt = z

]
≤ Qx,t,z

[
1∑

u Yu(t)e
ρYu(t)1{Ou≥t−ε−3/2}

]
=

∫ ∞
0

Qx,t,z

[
1∑

u Yu(t)e
ρYu(t)1{Ou≥t−ε−3/2}

∣∣∣∣ζε−3/2 = y

]
pz,t,x
ε−3/2(y)dy. (2.15)

According to the Markov property of BBM and the Bessel process,

Qx,t,z

[
1∑

u Yu(t)e
ρYu(t)1{Ou≥t−ε−3/2}

∣∣∣∣ζε−3/2 = y

]
= Qy,ε−3/2,z

[
1∑

u Yu(ε
−3/2)eρYu(ε−3/2)

]
.

(2.16)
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Note that 1− e−x ≤ x for all x ≥ 0 and 1− e−x ≥ x/2 for 0 ≤ x ≤ 1. For any fixed ε, if t is

large enough such that t/(t− ε−3/2) ≤ 2, then for all z ∈ (0, ε−1/2] and y ∈ (0,∞),

pz,t,x
ε−3/2(y) =

pε−3/2(z, y)pt−ε−3/2(y, x)

pt(z, x)

=
1√

2πε−3/2
· y
z
e−(y−z)2/(2ε−3/2)(1− e−2yzε3/2)

×
1√

2π(t−ε−3/2)
· x
y
e−(y−x)2/2(t−ε−3/2)(1− e−2yx/(t−ε−3/2))

1√
2πt
· x
z
e−(z−x)2/2t(1− e−2xz/t)

≤ 1√
2πε−3/2

y

z
e−(y−z)2/(2ε−3/2)2yzε3/2

√
t

t− ε−3/2

z

y
e(z−x)2/2t 2xy

t− ε−3/2

t

xz

=

√
8

π
ε9/4

(
t

t− ε−3/2

)3/2

y2e−(y−z)2/(2ε−3/2)e(z−x)2/2t

≤ 8√
π
ε9/4y2e−(y−z)2/(2ε−3/2)e(z−x)2/2t. (2.17)

By (2.14), (2.15), (2.16) and (2.17), for every fixed ε, if t is large enough, we have

√
2πt3Qx

[
1∑

u Yu(t)e
ρYu(t)

; ξt ≤ ε−1/2

]
≤
∫ ε−1/2

0

∫ ∞
0

16√
π
ε9/4Qy,ε−3/2,z

[
1∑

u Yu(ε
−3/2)eρYu(ε−3/2)

]
z2y2e−(y−z)2/(2ε−3/2)dydz.
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Furthermore, by Lemmas 15 and 16, it follows that for sufficiently small ε, if t is large enough,

√
2πt3Qx

[
1∑

u Yu(t)e
ρYu(t)

; ξt ≤ ε−1/2

]
≤
∫ ε−1/2

0

∫ ∞
0

16√
π
ε9/4

[(
2

yz2
+

7

z
+ 1

)
e−C7/

√
ε +

1

z
e−C8/

√
ε

]
z2y2e−(y−z)2/(2ε−3/2)dydz

≤ 16√
π
ε9/4

{∫ ε−1/2

0

∫ ∞
0

2e−C7/
√
εye−(y−z)2/(2ε−3/2)dydz

+

∫ ε−1/2

0

∫ ∞
0

(
7e−C7/

√
ε + e−C8/

√
ε
)
zy2e−(y−z)2/(2ε−3/2)dydz

+

∫ ε−1/2

0

∫ ∞
0

e−C7/
√
εz2y2e−(y−z)2/(2ε−3/2)dydz

}
=:

16√
π
ε9/4(I1 + I2 + I3). (2.18)

For the first term, by substitution, we obtain that

I1 = 2e−C7/
√
ε

∫ ε−1/2

0

∫ ∞
−z

(u+ z)e−u
2/(2ε−3/2)dudz

≤ 2e−C7/
√
ε

(∫ ε−1/2

0

∫ ∞
0

ue−u
2/(2ε−3/2)dudz +

∫ ε−1/2

0

z

∫ ∞
−∞

e−u
2/(2ε−3/2)dudz

)
=

(
2ε−2 +

√
2πε−7/4

)
e−C7/

√
ε. (2.19)

As for I2 and I3, because

∫ ∞
0

y2e−(y−z)2/(2ε−3/2)dy ≤
√

2πε−3/2

∫ ∞
−∞

y2 1√
2πε−3/2

e−(y−z)2/(2ε−3/2)dy

=
√

2πε−3/2
(
ε−3/2 + z2

)
,

we have

I2 ≤
√

2πε−3/4
(

7e−C7/
√
ε + e−C8/

√
ε
)∫ ε−1/2

0

z(ε−3/2 + z2)dz

≤
√

2πε−13/4
(

7e−C7/
√
ε + e−C8/

√
ε
)
, (2.20)
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and

I3 ≤
√

2πε−3/4e−C7/
√
ε

∫ ε−1/2

0

z2(ε−3/2 + z2)dz

≤
√

2πε−15/4e−C7/
√
ε. (2.21)

Setting 0 < C4 < min{C7, C8}, equation (2.9) follows from (2.18), (2.19), (2.20) and (2.21).

Finally, according to Lemma 12 and equation (2.9), the upper bound (2.6) is proved by

letting 0 < C1 < min{C3, C4}.

2.3.3 Proofs of Lemmas

Proof of Lemma 12. For all ε and all t, we have a trivial bound for the expectation

√
2πt3Qx

[
1∑

u Yu(t)e
ρYu(t)

; ξt ≥ ε−1/2

]
≤
√

2πt3Qx

[
1

ξteρξt
; ξt ≥ ε−1/2

]
=
√

2πt3
∫ ∞
ε−1/2

1

zeρz
pt(x, z)dz

=
√

2πt3
∫ ∞
ε−1/2

1

zeρz
z

x

1√
2πt

e−(x−z)2/2t(1− e−2xz/t)dz

≤
√

2πt3
∫ ∞
ε−1/2

1

zeρz
z

x

1√
2πt

2xz

t
dz

= 2

∫ ∞
ε−1/2

ze−ρzdz

=
2

ρ
e−ρ/

√
ε

(
1√
ε

+
1

ρ

)
.

Letting 0 < C3 <
√

2 ≤ ρ, Lemma 12 is established. 2

For the rest of this section we will denote by Xa,t,b a Bessel bridge from a to b in time

t and Ba,t,b a Brownian bridge from a to b in time t.
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Proof of Lemma 13. Observe that since C + 1/ρ ≤ 3C/2, for 0 ≤ ti ≤ ε−3/2,

Qy

({ Nε∑
i=1

1{εζti−
1
ρ
ε2ti≥C

√
ε} ≤

1√
ε

}
∩
{
M ≥ 2C

√
ε
}∣∣∣∣ξε−3/2 = z

)

≤ Qy,ε−3/2,z

({ Nε∑
i=1

1{ζti≥3C/(2
√
ε)} ≤

1√
ε

}
∩
{
M ≥ 2C

√
ε
})

.

So it is sufficient to show that there exists a constant C5 such that for every y ∈ (0,∞) and

z ∈ (0, ε−1/2],

Qy,ε−3/2,z

({ Nε∑
i=1

1{ζti≥3C/(2
√
ε)} ≤

1√
ε

}
∩
{
M ≥ 2C

√
ε
})
≤
(

4 +
1

yz

)
e−C5/

√
ε. (2.22)

According to the spinal decomposition and the formula for expectations of additive func-

tionals of Poisson point processes,

Qy,ε−3/2,z

( Nε∑
i=1

1{ζti≥3C/(2
√
ε)}

∣∣∣∣{ζs}0≤s≤ε−3/2

)
= 2

∫ ε−3/2

0

1{ζs≥3C/(2
√
ε)}ds.

Below for simplicity, we denote

Nε∑
i=1

1{ζti≥3C/(2
√
ε)} =: X,

2

∫ ε−3/2

0

1{ζs≥3C/(2
√
ε)}ds =: Y.

The proof of (2.22) can be separated into two parts with the help of the above conditional
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expectation,

Qy,ε−3/2,z

({
X ≤ 1√

ε

}
∩ {M ≥ 2C

√
ε}
)

= Qy,ε−3/2,z

({
X ≤ 1√

ε

}
∩
{
Y ≥ 2√

ε

}
∩ {M ≥ 2C

√
ε}
)

+Qy,ε−3/2,z

({
X ≤ 1√

ε

}
∩
{
Y ≤ 2√

ε

}
∩ {M ≥ 2C

√
ε}
)

≤ Qy,ε−3/2,z

({
X ≤ 1√

ε

}
∩
{
Y ≥ 2√

ε

})
+Qy,ε−3/2,z

({
Y ≤ 2√

ε

}
∩ {M ≥ 2C

√
ε}
)

=: J1 + J2. (2.23)

First, we will show that conditioned on the trajectory of the spine, the number of particles

that branch off the spine at a position and time (ζti , ti) satisfying ζti ≥ 3C/(2
√
ε) isn’t far

from its conditional expectation, which gives an upper bound for J1. Next we will find an

upper bound for J2 through analysis of the behavior of the spine.

For the first part, we will apply the following bound for the Poisson distribution (see,

e.g. [27]). For a Poisson distributed random variable Z with expectation λ, for any v > 0,

we have

P (|Z − λ| ≥ v) ≤ 2e−v
2/2(λ+v). (2.24)

We know that under Qy,ε−3/2,z, the conditional distribution of X given {ζs}0≤s≤ε−3/2 is a

Poisson distribution with parameter Y . Applying (2.24) under the conditional expectation

with λ = Y and v = Y/2, we have

J1 ≤ Qy,ε−3/2,z
(

1{Y≥2/
√
ε}Q

y,ε−3/2,z
(∣∣X − Y ∣∣ ≥ Y/2

∣∣{ζs}0≤s≤ε−3/2

))
≤ Qy,ε−3/2,z

(
1{Y≥2/

√
ε}2 exp

{
− (Y/2)2

2(Y + Y/2)

})
≤ 2Qy,ε−3/2,z

(
1{Y≥2/

√
ε}e
−Y/12

)
≤ 2e−1/(6

√
ε). (2.25)
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As for the second part, we have

J2 ≤ Qy,ε−3/2,z

({∫ ε−3/2

0

1{ζs≥3C/(2
√
ε)}ds ≤

1√
ε

}
∩
{

sup
0≤s≤ε−3/2

εζs ≥ 2C
√
ε

})

= Qy,ε−3/2,z

({∫ 1

0

1{ε3/4ζ
ε−3/2r

≥3Cε1/4/2}dr ≤ ε

}
∩
{

sup
0≤r≤1

ε3/4ζε−3/2r ≥ 2Cε1/4

})
.

Notice that under Qy,ε−3/2,z, the process {ζs}0≤s≤ε−3/2 is a Bessel bridge from z to y in time

ε−3/2. After scaling, {ε3/4ζε−3/2r}0≤r≤1 is a Bessel bridge from ε3/4z to ε3/4y within time 1.

Recall that {Xε3/4z,1,ε3/4y
r }0≤r≤1 is a Bessel bridge from ε3/4z to ε3/4y within time 1. For

simplicity, we will write {Xr}0≤r≤1 in place of {Xε3/4z,1,ε3/4y
r }0≤r≤1. Therefore, we have

J2 ≤ P

({∫ 1

0

1{Xr≥3Cε1/4/2}dr ≤ ε

}
∩
{

sup
0≤r≤1

Xr ≥ 2Cε1/4

})
. (2.26)

Define {X̄r}0≤r≤1 = {X1−r}0≤r≤1 to be the time reversed process of {Xr}0≤r≤1. Then

{X̄r}0≤r≤1 is a Bessel bridge from ε3/4y to ε3/4z in time 1. Thus the intersection of the

events in (2.26) is contained in the union of two events. One of the events is that {Xr}0≤r≤1

first reaches 2Cε1/4 before time 1/2 and then comes down below 3Cε1/4/2 in time less than

ε. The other event is that {X̄r}0≤r≤1 first reaches 2Cε1/4 before time 1/2 and then comes

down below 3Cε1/4/2 in time less than ε. Define

τ = inf
{
r ≥ 0 : Xr ≥ 2Cε1/4

}
, τ̄ = inf

{
r ≥ 0 : X̄r ≥ 2Cε1/4

}
.

We see that

P

({∫ 1

0

1{Xr≥3Cε1/4/2}dr ≤ ε

}
∩
{

sup
0≤r≤1

Xr ≥ 2Cε1/4

})

≤ P

({
τ ≤ 1

2

}
∩
{

min
0≤r≤ε

Xτ+r ≤
3Cε1/4

2

})
+ P

({
τ̄ ≤ 1

2

}
∩
{

min
0≤r≤ε

X̄τ̄+r ≤
3Cε1/4

2

})
. (2.27)
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Therefore, the proof for the second part of Lemma 13 boils down to Lemma 17, whose

statement and proof is deferred until later.

Letting 0 < C5 < min{1/6, C9}, with equations (2.23), (2.25), (2.26), (2.27) and

Lemma 17, formula (2.22) is proved and thus the proof of Lemma 13 is finished.

2

Below, we will state and prove Lemma 17.

Lemma 17. There exists a positive constant C9 such that for ε sufficiently small, for all

z ∈ (0,∞) and y ∈ (0,∞),

P

({
τ ≤ 1

2

}
∩
{

min
0≤r≤ε

Xτ+r ≤
3Cε1/4

2

})
≤
(

1

yz
+ 2

)
e−C9/

√
ε. (2.28)

Proof of Lemma 17. Let’s first consider the case when z ∈ (2Cε−1/2,∞). Under this scenario,

τ = 0 and thus

P

({
τ <

1

2

}
∩
{

min
0≤r≤ε

Xτ+r ≤
3Cε1/4

2

})
= P

(
min

0≤r≤ε
Xr ≤

3Cε1/4

2

)
. (2.29)

According to Lemma 10, the process {Xr}0≤r≤1 stochastically dominates {X2Cε1/4,1,ε3/4y
r }0≤r≤1,

which is a Bessel bridge from 2Cε1/4 to ε3/4y in time 1. Therefore

P

(
min

0≤r≤ε
Xr ≤

3Cε1/4

2

)
≤ P

(
min

0≤r≤ε
X2Cε1/4,1,ε3/4y
r ≤ 3Cε1/4

2

)
= P

({
τ ≤ 1

2

}
∩
{

min
0≤r≤ε

X
2Cε1/4,1,ε3/4y
τ+r ≤ 3Cε1/4

2

})
.

Therefore, it is sufficient to only consider the case when z ∈ (0, 2Cε−1/2].

For y, z > 0, denote by {Bε3/4z,1,ε3/4y
r }0≤r≤1 a Brownian bridge from ε3/4z to ε3/4y

within time 1. Define

τ0 = τ0(y, z) := inf
{
r ∈ [0, 1] : Bε3/4z,1,ε3/4y

r = 0
}
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and τ ′ to be τ under the setting of Brownian bridge

τ ′ := inf
{
r ≥ 0 : Bε3/4z,1,ε3/4y

r ≥ 2Cε1/4
}
.

By convention, inf ∅ = ∞. We know that (see, e.g., page 86 of [48]) the probability that a

Brownian bridge avoids the origin is

P (τ0 =∞) = 1− e−2ε3/2yz.

Furthermore, according to the first part of the proof of Lemma 7 in [48], a Brownian bridge

that is conditioned to avoid the origin has the same law as a Bessel bridge. Together with

the inequality

1

1− e−x
≤ 2

x
1{0<x<1} + 2 · 1{x≥1} ≤

2

x
+ 2,

we have for ε sufficiently small,

P

({
τ ≤ 1

2

}
∩
{

min
0≤r≤ε

Xτ+r ≤
3Cε1/4

2

})
= P

({
τ ≤ 1

2

}
∩
{

min
0≤r≤ε

(
Xτ+r −Xτ

)
≤ −Cε

1/4

2

})
= P

({
τ ′ ≤ 1

2

}
∩
{

min
0≤r≤ε

(
Bε3/4z,1,ε3/4y
τ ′+r −Bε3/4z,1,ε3/4y

τ ′

)
≤ −Cε

1/4

2

}∣∣∣∣τ0 =∞
)

=
P
({
τ ′ ≤ 1

2

}
∩
{

min0≤r≤ε

(
Bε3/4z,1,ε3/4y
τ ′+r −Bε3/4z,1,ε3/4y

τ ′

)
≤ −Cε1/4/2

}
∩ {τ0 =∞}

)
P (τ0 =∞)

≤
(

1

ε3/2yz
+ 2

)
P

({
τ ′ ≤ 1

2

}
∩
{

min
0≤r≤ε

(Bε3/4z,1,ε3/4y
τ ′+r −Bε3/4z,1,ε3/4y

τ ′ ) ≤ −Cε
1/4

2

})
.

(2.30)

Now we are going to bound the probability of the above event under the setting of the

Brownian bridge. Let Fτ ′ be the σ−field generated by the stopping time τ ′. Conditioning
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on Fτ ′ ,

P

({
τ ′ ≤ 1

2

}
∩
{

min
0≤r≤ε

(Bε3/4z,1,ε3/4y
τ ′+r −Bε3/4z,1,ε3/4y

τ ′ ) ≤ −Cε
1/4

2

})
= E

[
1{τ ′≤ 1

2
}P

(
min

0≤r≤ε

(
Bε3/4z,1,ε3/4y
τ ′+r −Bε3/4z,1,ε3/4y

τ ′

)
≤ −Cε

1/4

2

∣∣∣∣Fτ ′)]. (2.31)

Since the Brownian bridge is a strong Markov process (see, e.g., Proposition 1 of [41]), the

conditional distribution of min0≤r≤ε
(
Bε3/4z,1,ε3/4y
τ ′+r −Bε3/4z,1,ε3/4y

τ ′

)
given τ ′ = 1−u is the same

as the distribution of min0≤r≤εB
0,u,ε3/4y−2Cε1/4

r and is independent of Fτ ′ . Therefore, given

τ ′ = 1− u, the probability inside equation (2.31) can be written as

P

(
min

0≤r≤ε
B0,u,ε3/4y−2Cε1/4

r ≤ −Cε
1/4

2

)
= P

(
max
0≤r≤ε

B0,u,−ε3/4y+2Cε1/4

r ≥ Cε1/4

2

)
. (2.32)

To bound the probability inside the expectation, we will consider the cases where y ∈

(0, ε−1/2] and y ∈ (ε−1/2,∞) separately. For y ∈ (0, ε−1/2], we will apply Theorem 2.1

of [9], which gives the distribution of the maximum of the beginning period of a Brownian

bridge. Let β = Cε1/4/2, η = 2Cε1/4 − ε3/4y and s = ε. We have

P

(
max
0≤r≤ε

B0,u,−ε3/4y+2Cε1/4

r ≥ Cε1/4

2

)
= exp

{
− 2β(β − η)

u

}∫ (2βs−ηs−βu)/
√
us(u−s)

−∞

e−v
2/2

√
2π

dv +

∫ ∞
(βu−ηs)/

√
us(u−s)

e−v
2/2

√
2π

dv.

(2.33)

On the event {τ ′ ≤ 1/2}, we have 1/2 ≤ u < 1. Combined with the fact that C > 2π, we

can derive the following limits as ε approaches 0 for y ∈ (0, ε−1/2],

2β(β − η)

u
< 0,

2β(β − η)

u
= O(ε1/2), (2.34)

2βs− ηs− βu√
us(u− s)

< 0,
2βs− ηs− βu√

us(u− s)
= O(ε−1/4), (2.35)
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βu− ηs√
us(u− s)

> 0,
βu− ηs√
us(u− s)

= O(ε−1/4). (2.36)

Note that none of the asymptotic rates above depend on y. Moreover, it can be easily shown

that ∫ ∞
x

e−v
2/2

√
2π

dv ≤ e−x
2/2

x
√

2π
. (2.37)

By (2.33), (2.34), (2.35), (2.36) and (2.37), we see that there exists a positive constant C10

such that for ε sufficiently small, for all y ∈ (0, ε−1/2], given τ ′ = 1− u ≤ 1/2,

P

(
max
0≤r≤ε

B0,u,−ε3/4y+2Cε1/4

r ≥ Cε1/4

2

)
≤ e−C10/

√
ε. (2.38)

On the other hand, if y ∈ (ε−1/2,∞), given τ ′ = 1− u ≤ 1/2, by Lemma 9,

P

(
max
0≤r≤ε

B0,u,−ε3/4y+2Cε1/4

r ≥ Cε1/4

2

)
≤ P

(
max
0≤r≤ε

B0,u,(2C−1)ε1/4

r ≥ Cε1/4

2

)
≤ e−C10/

√
ε. (2.39)

As a result, when z ∈ (0, 2Cε−1/2], taking C9 < C10, equation (2.28) follows from (2.30),

(2.31), (2.32), (2.38) and (2.39).

2

Proof of Lemma 14. We first transform (2.12) from the setting of BBM with absorption and

drift into standard BBM. Let P be the law of a standard BBM started from 0 without drift

and absorption. We have for s ∈ [0, ε−3/2],

P
C/
√
ε+εs/ρ

−ρ

(
∃u ∈ N−ρs : Yu(r) > 0 ∀ r ≤ s, Yu(s) >

C

4
√
ε

)
= P

(
∃u ∈ Ns : Yu(r) +

C√
ε

+
εs

ρ
− ρr > 0 ∀r ≤ s, Yu(s) +

C√
ε

+
εs

ρ
− ρs > C

4
√
ε

)
≥ P

(
∃u ∈ Ns : Yu(r) > ρr − εs

ρ
− 3C

4
√
ε
∀r ≤ s

)
. (2.40)

Then we will apply Theorem 1 in Roberts [73], which gives the explicit formula of a curve
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such that at least one particle stays above this curve all the time with nonzero probability.

Borrowing notations from [73], we let Ac = 34/3π2/32−7/6 and

g(s) =
√

2s− Acs1/3 +
Acs

1/3

log2(s+ e)
− 1.

Theorem 1 in Roberts [73] states that there exists some nonzero absolute constant C6, such

that

P (∀s ≥ 0,∃u ∈ Ns : Yu(r) > g(r) ∀r ≤ s) > C6.

Together with our choice of C > 2π and the Taylor expansion for ρ, we have for ε sufficiently

small, for all r ≤ s,

ρr − εs

ρ
− 3C

4
√
ε

=
√

2r +
εr

ρ
+O(ε2)r − εs

ρ
− 3C

4
√
ε
≤
√

2r − 3C

4
√
ε

+O(ε1/2),

g(r) ≥
√

2r − Ac(ε−3/2)1/3 − 1 ≥
√

2r − 3C

4
√
ε

+O(ε1/2).

As a result, for all s ∈ [0, ε−3/2),

P

(
∃u ∈Ns : Yu(r) > ρr − εs

ρ
− 3C

4
√
ε
∀r ≤ s

)
≥ P

(
∀s ≤ 0,∃u ∈ Ns : Yu(r) > g(r) ∀r ≤ s

)
> C6. (2.41)

The lemma follows from (2.40) and (2.41). 2

Proof of Lemma 15. From Lemma 14, we know that if a particle starts from C/
√
ε + εs/ρ,

it will have a descendant at time s which stays to the right of C/(4
√
ε) with probability at

least C6. So if we have a particle branching off the spine at a position and time (t − ti, ζti)
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satisfying 0 ≤ ti ≤ ε−3/2 and C/
√
ε+ εti/ρ ≤ ζti , then

P
ζti
−ρ

(
∃u ∈ N ρ

ti : Yu(ti) >
C

4
√
ε

)
≥ P

C/
√
ε+εti/ρ

−ρ

(
∃u ∈ N ρ

ti : Yu(ti) >
C

4
√
ε

)
≥ C6.

Combined with Lemmas 13 and 14 and the branching property, we have

Qy,ε−3/2,z

({
∀u ∈ N−ρ

ε−3/2 , Yu(ε
−3/2) ≤ C

4
√
ε

}
∩ {M ≥ 2C

√
ε}
)

≤ Qy,ε−3/2,z

(
{M ≥ 2C

√
ε} ∩

{ Nε∑
i=1

1{εζti−
1
ρ
ε2ti≥C

√
ε} ≤

1√
ε

})

+Qy,ε−3/2,z

(
∀u ∈ N−ρ

ε−3/2 , Yu(ε
−3/2) ≤ C

4
√
ε

∣∣∣{M ≥ 2C
√
ε} ∩

{ Nε∑
i=1

1{εζti−
1
ρ
ε2ti≥C

√
ε}

≥ 1√
ε

})
×Qy,ε−3/2,z

({ Nε∑
i=1

1{εζti−
1
ρ
ε2ti≥C

√
ε} ≥

1√
ε

}
∩ {M ≥ 2C

√
ε}

)

≤
(

2

yz
+ 6

)
e−C5/

√
ε + (1− C6)1/

√
ε.

Note that if there exists a u ∈ N−ρ
ε−3/2 such that Yu(ε

−3/2) ≥ C/(4
√
ε), then for ε small

enough, there exists a 0 < C11 < Cρ/4 satisfying

1∑
u Yu(ε

−3/2)eρYu(ε−3/2)
≤ 4
√
ε

C
e−Cρ/(4

√
ε) ≤ e−C11/

√
ε.

As a result,

Qy
[ 1∑

u Yu(ε
−3/2)eρYu(ε−3/2)

1{M≥2C
√
ε}

∣∣∣ξε−3/2 = z
]

≤ 1

zeρz
Qy,ε−3/2,z

({
∀u ∈ N−ρ

ε−3/2 , Yu(ε
−3/2) ≤ C

4
√
ε

}
∩ {M ≥ 2C

√
ε}
)

+ e−C11/
√
εQy,ε−3/2,z

({
∃u ∈ N−ρ

ε−3/2 , Yu(ε
−3/2) >

C

4
√
ε

}
∩ {M ≥ 2C

√
ε}
)

≤ 2

yz2
e−C5

√
ε +

6

z
e−C5/

√
ε +

1

z
(1− C6)1/

√
ε + e−C11/

√
ε. (2.42)

Letting 0 < C7 < min{C5,− log(1− C6), C11}, the lemma is proved. 2
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Proof of Lemma 16. First note that if y ∈ [(2C + 1/ρ)ε−1/2,∞), then M ≥ 2C
√
ε and

therefore the inequality (2.13) holds trivially. It only remains to consider the case where

y ∈ (0, (2C + 1/ρ)ε−1/2).

Observe that there is a simple upper bound for (2.13)

Qy

[
1∑

u Yu(ε
−3/2)eρYu(ε−3/2)

1{M<2C
√
ε}

∣∣∣∣ξε−3/2 = z

]
≤ 1

z
Qy,ε−3/2,z(M < 2C

√
ε). (2.43)

Furthermore, because 1/ρ < C,

Qy,ε−3/2,z(M < 2C
√
ε) = Qy,ε−3/2,z

(
sup

0≤s≤ε−3/2

(εζs −
1

ρ
ε2s) < 2C

√
ε
)

≤ Qy,ε−3/2,z

(
sup

0≤s≤ε−3/2

ζs <
3C√
ε

)
= Qy,ε−3/2,z

(
sup

0≤r≤1
ε3/4ζε−3/2r < 3Cε1/4

)
.

Notice that under Qy,ε−3/2,z, the process {ε3/4ζε−3/2r}0≤r≤1 is a Bessel bridge from ε3/4z to

ε3/4y in time 1. Recall that {Xε3/4z,1,ε3/4y
r }0≤r≤1 denotes a Bessel bridge from ε3/4z to ε3/4y in

time 1. For simplicity, below we will omit the superscript of {Xε3/4z,1,ε3/4y
r }0≤r≤1. Therefore,

we have

Qy,ε−3/2,z(M < 2C
√
ε) ≤ P

(
sup

0≤r≤1
Xr < 3Cε1/4

)
. (2.44)

According to (0.22) of [72], let B0,1,0
(1) , B0,1,0

(2) , B0,1,0
(3) be three independent standard Brownian

bridges, we have

X0,1,0 d
==

√(
B0,1,0

(1)

)2

+
(
B0,1,0

(2)

)2

+
(
B0,1,0

(3)

)2

.

According to Lemma 10 and the above formula, letting {X0,1,0
r }0≤r≤1 be a Bessel bridge

from 0 to 0 in time 1 and {B0,1,0
r }0≤r≤1 be a Brownian bridge from 0 to 0 in time 1, for
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z ∈ (0, ε−1/2] and y ∈ (0, (2C + 1/ρ)ε−1/2), we get

P
(

sup
0≤r≤1

Xr < 3Cε1/4
)
≤ P

(
sup

0≤r≤1
X0,1,0
r < 3Cε1/4

)
≤
[
P
(

sup
0≤r≤1

|B0,1,0
r | < 3Cε1/4

)]3

.

(2.45)

From Lemma 8, for ε sufficiently small,

P
(

sup
0≤r≤1

|B0,1,0
r | < 3Cε1/4

)
≤ C−1ε−1/4 exp

{
− π2

72C2
√
ε

}
. (2.46)

In the end, setting 0 < C8 < π2/(24C2), by (2.43)–(2.46), Lemma 16 is proved. 2

2.4 Lower bound

2.4.1 Proof of the Lower bound

In this section, we will prove the lower bound (2.7). We first state two lemmas, which

are the key ingredients in the proof of the lower bound.

We observe that for ε sufficiently small, the probability that particles which branch

off the spine before a large time have descendants at time t is small. As a result, in order to

deal with the lower bound, we only need to consider particles that branch off the spine after

a large time. We will start by finding this cutoff time t∗.

Let 0 < δ1 < δ2 < 1/4. We denote

t∗ := t−
(

4

ε

)2/(1−2δ1)

, t′ := t− t1/2+δ2 .

Define V1 to be the event that particles that branch off the spine before time t′ have descen-

dants alive at time t and the spine stays below (t′)1/2+δ1 for all s ≤ t′. Define V2 to be the

event that particles that branch off the spine before time t′ have descendants alive at time

t and the spine crosses the curve (t′)1/2+δ1 for some s ≤ t′. Define V3 to be the event that

particles that branch off the spine between time t′ and t∗ have descendants alive at time t
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and the spine stays below the curve s1/2+δ1 for all s ∈ (t′, t∗]. Define V4 to be the event that

particles that branch off the spine between time t′ and t∗ have descendants alive at time t

and the spine crosses the curve s1/2+δ1 for some s ∈ (t′, t∗]. More precisely,

V1 = {∃u ∈ Nt : Ou ≤ t′} ∩ {ξs ≤ (t′)1/2+δ1 , ∀s ≤ t′}, (2.47)

V2 = {∃u ∈ Nt : Ou ≤ t′} ∩ {∃ s ≤ t′ : ξs > (t′)1/2+δ1}, (2.48)

V3 = {∃u ∈ Nt : t′ < Ou ≤ t∗} ∩ {ξs ≤ s1/2+δ1 , ∀s ∈ (t′, t∗]}, (2.49)

V4 = {∃u ∈ Nt : t′ < Ou ≤ t∗} ∩ {∃ s ∈ (t′, t∗] : ξs > s1/2+δ1}. (2.50)

Then we have,

{∃u ∈ Nt : Ou ≤ t∗} = V1 ∪ V2 ∪ V3 ∪ V4.

Lemma 18. For any 0 < δ < 1/2, if ε is sufficiently small, then for all z ∈ (0, ε−1/2],

lim sup
t→∞

Qx,t,z

( 4⋃
i=1

Vi

)
< δ. (2.51)

Note that as δ1 goes to 0, 2/(1 − 2δ1) goes to 2. Roughly speaking, this lemma

shows that only particles which branch off the spine within the last ε−2 time will contribute

significantly to our expectation in Proposition 7. For simplicity, letting κ = 4δ1/(1−2δ1) > 0,

we will also write the cutoff time t∗ as

t∗ = t−
(

4

ε

)2+κ

.

We need one more lemma to finish the proof of (2.7). Define

M ′ = sup
0≤s≤(4/ε)2+κ

(
εζs −

1

ρ
ε2s

)
.

Similarly to the proof of upper bound, we will divide the space into two parts, {M ′ ≤ C
√
ε}
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and {M ′ > C
√
ε} for some constant C > 2

√
3. Since this time we focus on the lower bound,

it is enough to consider only one of them.

Lemma 19. Let C > 2
√

3. There exists a positive constant C12 such that for ε sufficiently

small, for all z ∈ (0, ε−1/2] and y ∈ (0, ε−1−κ], we have

Qy,(4/ε)2+κ,z
(
M ′ ≤ C

√
ε
)
≥ ε−3/4e−C12/

√
ε.

Below, we will apply above lemmas, together with Jensen’s inequality and the mar-

tingale property to prove the lower bound.

Proof of (2.7). Conditioned on the endpoint of the spinal particle, we have

√
2πt3Qx

[
1∑

u Yu(t)e
ρYu(t)

]
≥
√

2πt3Qx

[
1∑

u Yu(t)e
ρYu(t)

; ξt ≤ ε−1/2

]
=
√

2πt3
∫ ε−1/2

0

Qx,t,z

[
1∑

u Yu(t)e
ρYu(t)

]
1√
2πt

z

x
e−(x−z)2/(2t)(1− e−2xz/t)dz.

For every ε and x, there exists a T (ε, x) such that for all t ≥ T (ε, x) and z ∈ (0, ε−1/2],

e−(x−z)2/(2t) ≥ 1

2
, 1− e−2xz/t ≥ 1

2
· 2xz

t
=
xz

t
.

Therefore,

√
2πt3Qx

[
1∑

u Yu(t)e
ρYu(t)

]
≥ 1

2

∫ ε−1/2

0

Qx,t,z

[
1∑

u Yu(t)e
ρYu(t)

]
z2dz. (2.52)

Next, we restrict the integrand to the case where all particles branch off the spine

after t∗. Letting

V =
{
∀u ∈ Nt : Ou > t∗

}
=

4⋂
i=1

V c
i ,
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we have

Qx,t,z

[
1∑

u Yu(t)e
ρYu(t)

]
≥ Qx,t,z

[
1V∑

u Yu(t)e
ρYu(t)

]
= Qx,t,z

[
1V∑

u Yu(t)e
ρYu(t)1{Ou>t∗}

]
. (2.53)

Define Gt to be the σ−field generated by V and the whole trajectory of the spine, {ξs}0≤s≤t.

In other words, Gt contains all the information regarding the movement of the spine and the

event that all descendants alive at time t branch off the spine after t∗. Conditioning on Gt,

Jensen’s inequality for conditional expectation gives

Qx,t,z

[
1V∑

u Yu(t)e
ρYu(t)1{Ou>t∗}

]
≥ Qx,t,z

[
1V ∩{M ′≤C√ε}∑

u Yu(t)e
ρYu(t)1{Ou>t∗}

]
= Qx,t,z

[
1V ∩{M ′≤C√ε}Q

x,t,z

[
1∑

u Yu(t)e
ρYu(t)1{Ou>t∗}

∣∣∣∣Gt]]
≥ Qx,t,z

[
1V ∩{M ′≤C√ε}

Qx,t,z
[∑

u Yu(t)e
ρYu(t)1{Ou>t∗}

∣∣Gt]
]
. (2.54)

To deal with the denominator, we need to use the fact that for every ε,
{∑

u Yu(t)e
ρYu(t)+εt

}
t≥0

is a martingale for the original BBM with absorption. Under the measure Q, particles branch

off the spine with rate 2 and initiate independent copies of the original BBM with absorption.

Note that ξs = ζt−s for 0 ≤ s ≤ t. Then by the spinal decomposition and the formula for

expectations of additive functionals of Poisson point processes, we have

Qx,t,z

[∑
u

Yu(t)e
ρYu(t)1{Ou>t∗}

∣∣∣Gt] = 2

∫ t

t∗
ξre

ρξr−ε(t−r)dr + zeρz

= 2

∫ (4/ε)2+κ

0

ζse
ρζs−εsds+ zeρz. (2.55)

Moreover, on the event {M ′ ≤ C
√
ε}, if ε is sufficiently small, for all 0 ≤ s ≤ (4/ε)2+κ,

ζs ≤
1

ρ

(
4

ε

)2+κ

ε+
C√
ε
≤ 42+κε−1−κ,
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and

ρζs − εs =
ρ

ε
(εζs −

1

ρ
ε2s) ≤ ρ

ε
C
√
ε =

Cρ√
ε
.

Thus, when M ′ ≤ C
√
ε, for all z ∈ (0, ε−1/2],

2

∫ (4/ε)2+κ

0

ζse
ρζs−εsds+ zeρz ≤ 2

(
4

ε

)2+κ

· 42+κε−1−κ · eCρ/
√
ε + ε−1/2eρ/

√
ε

≤ 210+4κε−3−2κeCρ/
√
ε. (2.56)

Combining (2.54), (2.55) and (2.56), we have

Qx,t,z

[
1V∑

u Yu(t)e
ρYu(t)1{Ou>t∗}

]
≥ 2−10−4κε3+2κe−Cρ/

√
εQx,t,z

(
V ∩ {M ′ ≤ C

√
ε}
)
. (2.57)

It remains to find a lower bound for the probability of the above event. Because

{ξs}0≤s≤t is a Markov process under Qx,t,z, we have {ξs}0≤s≤t∗ is conditionally independent

of {ξs}t∗≤s≤t given ξt∗ . Furthermore, note that V is the event that particles which branch

off the spine before time t∗ all become extinct before time t and once a particle branches

off the spine, it initiates a BBM independent of the future trajectory of the spine. As a

result, conditioned on ξt∗ , the events V and {M ′ ≤ C
√
ε} are independent. By Lemma 19,

we obtain

Qx,t,z
(
V ∩ {M ′ ≤ C

√
ε}
)

=

∫ ∞
0

Qx,t,z
(
V ∩ {M ′ ≤ C

√
ε}
∣∣∣ξt∗ = y

)
px,t,zt∗ (y)dy

=

∫ ∞
0

Qx,t,z
(
V
∣∣ξt∗ = y

)
Qx,t,z

(
M ′ ≤ C

√
ε
∣∣ξt∗ = y

)
px,t,zt∗ (y)dy

≥
∫ ε−1−κ

0

Qx,t,z
(
V
∣∣ξt∗ = y

)
Qy,(4/ε)2+κ,z

(
M ′ ≤ C

√
ε
)
px,t,zt∗ (y)dy

≥ ε−3/4e−C12/
√
εQx,t,z

(
V ∩

{
ξt∗ ≤ ε−1−κ})

= ε−3/4e−C12/
√
ε
[
Qx,t,z

(
ξt∗ ≤ ε−1−κ

)
−Qx,t,z

(
V c ∩

{
ξt∗ ≤ ε−1−κ})]. (2.58)
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As for the first term, note that {ξt∗ ≤ ε−1−κ} = {ζ(4/ε)2+κ ≤ ε−1−κ}, where {ζs}0≤s≤t is

a Bessel bridge from z to x in time t under Qx,t,z. Define {Rz
r}r≥0 to be a Bessel process

starting from z. We apply Lemma 11 to obtain,

lim
t→∞

Qx,t,z
(
ξt∗ ≤ ε−1−κ

)
= P

(
Rz

(4/ε)2+κ ≤ ε−1−κ
)
.

According to the scaling property of the Bessel process, we have for ε sufficiently small, for

all z ∈ (0, ε−1/2],

P
(
Rz

(4/ε)2+κ ≤ ε−1−κ
)

= P

((ε
4

)1+κ/2

Rz
(4/ε)2+κ ≤

(ε
4

)1+κ/2

ε−1−κ
)

= P

(
R
z(ε/4)1+κ/2

1 ≤ ε−κ/2

41+κ/2

)
>

1

2
.

Therefore, for ε small enough, for all z ∈ (0, ε−1/2], if t is large enough, we have

Qx,t,z
(
ξt∗ ≤ ε−1−κ

)
≥ 1

2
. (2.59)

As for the second term, according to Lemma 18, for ε sufficiently small, for all z ∈ (0, ε−1/2],

if t is large enough, then

Qx,t,z
(
V c ∩

{
ξt∗ ≤ ε−1−κ}) ≤ Qx,t,z

(
V c
)
<

1

4
. (2.60)

In the end, by (2.52), (2.53), (2.57)–(2.60) and Fatou’s Lemma, we proved that for ε
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small enough,

lim inf
t→∞

√
2πt3Qx

[
1∑

u Yu(t)e
ρYu(t)

]
≥ 1

2

∫ ε−1/2

0

2−10−4κε2+2κe−Cρ/
√
ε lim inf

t→∞
Qx,t,z

(
V ∩ {M ′ ≤ C

√
ε}
)
z2dz

≥ 2−13−4κ3−1ε3/4+2κe−(Cρ+C12)/
√
ε.

Consequently, the lower bound in Theorem 6 is proved as long as

C2 > 2C + C12 ≥ Cρ+ C12.

2

2.4.2 Proof of Lemmas

Before proving Lemma 18, we need one more ingredient. Recall that {Rz
r}z≥0 is a

Bessel process starting from z.

Lemma 20. For every fixed ε, we have

lim
t→∞

Qx,t,z

(
∃r ≥

(4

ε

)2/(1−2δ1)

: ζr ≥ r1/2+δ1

)
= P

(
∃r ≥

(4

ε

)2/(1−2δ1)

: Rz
r ≥ r1/2+δ1

)
.

Proof. According to Lemma 11, the Bessel bridge converges to the Bessel process in the

Skorokhod topology. Recall that under Qx,t,z, the process {ζr}0≤r≤t is a Bessel bridge from

z to x in time t. Since both Bessel bridges and the Bessel process are continuous, the

Skorokhod topology in this case coincides with the uniform topology. Thus, it is sufficient to

prove that for a Bessel process {Rz
r}r≥0 starting from z under P , for every constant c ≥ 1,

the event

A :=
{
∃r ≥ c : Rz

r ≥ r1/2+δ1
}
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is a continuity set under the uniform topology. That is to say, letting ∂A denote the boundary

set of A under the uniform topology, essentially, we want to prove that

P (∂A) = P
(
{ω : {Rz

r(ω)}r≥0 ∈ ∂A}
)

= 0. (2.61)

We first consider elements in ∂A, which can be approached both from A and Ac under

the uniform topology. Note that Ac = {∀r ≥ c, Rz
r < r1/2+δ1}. For {Rz

r(ω)}r≥0 ∈ ∂A, if there

exists an r ≥ c such that Rz
r(ω) > r1/2+δ1 , then {Rz

r(ω)}r≥0 cannot be approached from Ac.

As a result, Rz
r(ω) ≤ r1/2+δ1 for all r ≥ c. Furthermore, if infr≥c(r

1/2+δ1 − Rz
r(ω)) > 0, then

it cannot be approached from A. Thus, infr≥c(r
1/2+δ1 − Rz

r(ω)) = 0. Indeed, this infimum

must be attained at some finite value of r because of the law of iterated logarithm of the

Bessel process at infinity (see, e.g., IV.40 of [19]). More precisely, letting σ = inf{r ≥ c :

Rz
r = r1/2+δ1}, we see that

P ({σ =∞} ∩ ∂A) ≤ P
(
{σ =∞} ∩

{
inf
r≥c

(r1/2+δ1 −Rz
r) = 0

})
≤ P

(
lim
r→∞

(
r1/2+δ1 −Rz

r

)
= 0
)

= 0.

Note that σ is a stopping time and let Fσ be the σ− field generated by σ. By the strong

Markov property of the Bessel process, we have

P (∂A) = P (∂A ∩ {σ <∞})

≤ P
({
∀r ≥ c : Rz

r ≤ r1/2+δ1
}
∩ {σ <∞}

)
= E

[
1{σ<∞}P

(
∀r ≥ 0, Rσ1/2+δ1

r ≤ (r + σ)1/2+δ1
)]
. (2.62)

Using the same method as the proof of Lemma 10, it can be shown that the Bessel process
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{Rz
r}r≥0 stochastically dominates Brownian motion {Bz

r}r≥0. Thus, conditioned on Fσ,

P
(
∀r ≥ 0, Rσ1/2+δ1

r ≤ (r + σ)1/2+δ1
)
≤ P

(
∀r ≥ 0, Bσ1/2+δ1

r ≤ (r + σ)1/2+δ1
)

= P
(
∀r ≥ 0, Br ≤ (r + σ)1/2+δ1 − σ1/2+δ1

)
. (2.63)

By the law of the iterated logarithm at 0 for Brownian motion (see, e.g., IV.5 of [19]), we

have almost surely

lim sup
t→0

Bt√
2t ln ln(1/t)

= 1. (2.64)

Conditioned on Fσ, since 0 < δ1 < 1/4 and σ ≥ c ≥ 1, a Taylor expansion gives

(r + σ)1/2+δ1 − σ1/2+δ1 =

(
1

2
+ δ1

)
σ−1/2+δ1r + o(r) ≤

(
1

2
+ δ1

)
r + o(r).

Since 0 < δ1 < 1/4, conditioned on Fσ, there exists an α such that for all r ≤ α,

(r + σ)1/2+δ1 − σ1/2+δ1 <
3

4

√
2r ln ln

(
1

r

)
. (2.65)

From (2.64) and (2.65), conditioned on Fσ, we have

P (∀r ≥ 0, Br ≤ (r + σ)1/2+δ1 − σ1/2+δ1) = 0. (2.66)

By (2.62), (2.63) and (2.66), equation (2.61) is proved and the lemma follows.

Proof of Lemma 18. Let u(t, x) be the probability of survival at time t for a BBM starting

from x under P x
−ρ. It is pointed out in equation (5) of [48] that

u(t, x) ≤ eρx−εt. (2.67)

Moreover, we write 0 ≤ τ1 < τ2 < ... ≤ t for the successive branching times along the

spine. Note that under Qx, particles branch off the spine at rate 2. We define N i
t to be
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the the set of surviving particles at time t which have branched off the spine at time τi.

Inheriting notations from Section 2.3, we denote by ps(x, y) the transition probability of a

Bessel process and px,t,zs (y) the transition probability of a Bessel bridge from x to z within

time t.

Start with V1 which is defined in (2.47). Applying (2.67), we have

Qx,t,z(V1) ≤ Qx,t,z

[ ∑
i:τi≤t′

1{N it 6=∅}1{ξs≤(t′)1/2+δ1 , ∀s≤t′}

]

≤ 2

∫ t′

0

∫ (t′)1/2+δ1

0

u(t− s, y)px,t,zs (y)dyds

≤ 2

∫ t′

0

∫ (t′)1/2+δ1

0

eρy−ε(t−s)px,t,zs (y)dyds

≤ 2eρ(t′)1/2+δ1

∫ t′

0

e−ε(t−s)ds

≤ 2

ε
e−ε(t−t

′)+ρ(t′)1/2+δ1 . (2.68)

For every fixed ε, since 0 < δ1 < δ2 < 1/4, we have

lim
t→∞

ε(t− t′)
ρ(t′)1/2+δ1

=∞.

Therefore, for every fixed ε,

lim
t→∞

Qx,t,z(V1) = 0. (2.69)

As for V2 and V4, which are defined in equations (2.48) and (2.50) respectively, notice

that the process {ξs}0≤s≤t is a Bessel bridge from x to z in time t under Qx,t,z. According

to the scaling property of the Bessel bridge, {ξrt/
√
t}0≤r≤1 is a Bessel bridge from x/

√
t to

z/
√
t within time 1. Define {Xx/

√
t,1,z/

√
t

r }0≤r≤1 to be a Bessel bridge from x/
√
t to z/

√
t
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within time 1. Then we have 0 ≤ Qx,t,z(V2) and

Qx,t,z(V2) ≤ Qx,t,z
(
∃s ≤ t′, ξs > (t′)1/2+δ1

)
= P

(
∃r ≤ t′

t
,Xx/

√
t,1,z/

√
t

r >
(t′)1/2+δ1

t1/2

)
.

Note that

(t′)1/2+δ1

t1/2
=

(t− t1/2+δ2)1/2+δ1

t1/2
→∞, as t→∞.

Accordingly, for every fixed ε,

0 ≤ lim
t→∞

Qx,t,z(V2) ≤ lim
t→∞

P

(
∃r < 1, Xx/

√
t,1,z/

√
t

r >
(t′)1/2+δ1

t1/2

)
= 0. (2.70)

Similarly for V4,

Qx,t,z(V4) ≤ Qx,t,z
(
∃s ∈ (t′, t∗], ξs > s1/2+δ1

)
= P

(
∃r ∈

(
t′

t
,
t∗

t

]
, Xx/

√
t,1,z/

√
t

r >
(rt)1/2+δ1

t1/2

)
.

Because as t→∞, for all r ∈ (t′/t, t∗/t], (rt)1/2+δ1/t1/2 →∞, we have for fixed x and ε, for

all z ∈ (0, ε−1/2],

0 ≤ lim
t→∞

Qx,t,z(V4) ≤ lim
t→∞

P

(
∃r ∈

(
t′

t
,
t∗

t

]
, Xx/

√
t,1,z/

√
t

r >
(rt)1/2+δ1

t1/2

)
= 0. (2.71)

It remains to work on Qx,t,z(V3). Recall that V3 is defined in (2.49). We will separate

Qx,t,z(V3) into two parts and show both of them have small probability as t → ∞. For
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z ∈ (0, ε−1/2],

Qx,t,z(V3) = Qx,t,z
(
{∃u ∈ Nt : t′ < Ou ≤ t∗} ∩ {ξs ≤ s1/2+δ1 , ∀s ∈ (t′, t∗]}

)
≤ Qx,t,z

(
{∃u ∈ Nt : t′ < Ou ≤ t∗} ∩ {ξs ≤ (t− s)1/2+δ1 , ∀s ∈ (t′, t∗]}

)
+Qx,t,z

(
∃s ∈ (t′, t∗] : ξs ≥ (t− s)1/2+δ1

)
=: H1 +H2. (2.72)

For H1, we have

H1 ≤ Qx,t,z

[ ∑
i:t′<τt≤t∗

1{N it 6=∅}1{ξs≤(t−s)1/2+δ1 , ∀s∈(t′,t∗]}

]

≤ 2

∫ t∗

t′

∫ (t−s)1/2+δ1

0

u(t− s, y)px,t,zs (y)dyds.

Letting r = t − s and noting that a time-reversed Bessel bridge is also a Bessel bridge, we

get

H1 ≤ 2

∫ t1/2+δ2

t−t∗

∫ r1/2+δ1

0

u(r, y)pz,t,xr (y)dydr

≤ 2

∫ t1/2+δ2

t−t∗

∫ r1/2+δ1

0

eρy−εrpr(z, y)
pt−r(y, x)

pt(z, x)
dydr. (2.73)

We further observe that for large time t, the difference between the probability density

functions of the Bessel bridge and the Bessel process are negligible. Note that 1 − e−x ≤ x

for x ≥ 0 and 1− e−x ≥ x/2 for 0 ≤ x ≤ 1. Then for every fixed ε, when t is large enough,
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we have for all z ∈ (0, ε−1/2], y ∈ (0, r1/2+δ1 ], and r ∈ [t− t∗, t1/2+δ2 ] uniformly,

pt−r(y, x)

pt(z, x)
=

1√
2π(t−r)

· x
y
e−(y−x)2/2(t−r)(1− e−2yx/(t−r))

1√
2πt
· x
z
e−(z−x)2/2t(1− e−2xz/t)

≤
√

t

t− r

x
y
· 2yx
t−r

x
z
· 2

3
· xz
t

= 3

(
t

t− r

)3/2

≤ 4.

Also see that for r ≥ t− t∗, ρr1/2+δ1 ≤ ρεr/4. Based on the above two observations, we have

for sufficiently small ε, if t is large enough, then

2

∫ t1/2+δ2

t−t∗

∫ r1/2+δ1

0

eρy−εrpr(z, y)
pt−r(y, x)

pt(z, x)
dydr ≤ 8

∫ t1/2+δ2

t−t∗

∫ r1/2+δ1

0

eρy−εrpr(z, y)dydr

≤ 8

∫ t1/2+δ2

t−t∗
eρr

1/2+δ1−εrdr

≤ 8

∫ t1/2+δ2

t−t∗
e(ρεr/4)−εrdr

≤ 8

ε(1− ρ/4)
e−ε(1−ρ/4)(4/ε)2/(1−2δ1)

. (2.74)

Since 0 < δ1 < 1/4, together with (2.73) and (2.74), we have for any 0 < δ < 1, if ε is

sufficiently small,

lim sup
t→∞

H1 <
16

ε
e−1/ε <

δ

2
. (2.75)

As for H2, we will apply the law of the iterated logarithm for the Bessel process (see, e.g.,

IV.40 of [19]) for all z ∈ (0, ε−1/2],

P

(
lim sup
t→∞

Rz
t√

2t ln ln t
= 1

)
= 1.
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Then it follows that for all z ∈ (0, ε−1/2],

lim
t→∞

P
(
Rz
s < s1/2+δ1 , ∀s ≥ t

)
= 1. (2.76)

Recall that {ζs}0≤s≤t denotes the time-reversed Bessel bridge, which is a Bessel bridge from

z to x in time t under Qx,t,z. From Lemma 20 and (2.76), if ε is sufficiently small, we have

lim sup
t→∞

H2 = lim sup
t→∞

Qx,t,z
(
∃ t ∈ [t′, t∗] : ξs ≥ (t− s)1/2+δ1

)
≤ lim sup

t→∞
Qx,t,z

(
∃ r >

(4

ε

)2/(1−2δ1)

: ζr ≥ r1/2+δ1

)
= P

(
∃ r >

(4

ε

)2/(1−2δ1)

: Rz
r ≥ r1/2+δ1

)
<
δ

2
. (2.77)

Consequently, by (2.72), (2.75) and (3.273), for sufficiently small ε,

lim sup
t→∞

Qx,t,z(V3) < δ. (2.78)

Together with (2.69), (2.70) and (2.71), the lemma follows. 2

Proof of Lemma 19. Under Qy,(4/ε)2+κ,z, the reversed trajectory of the spine {ζs}0≤s≤(4/ε)2+κ

is a Bessel bridge from z to y within time (4/ε)2+κ. After scaling,
{

(ε/4)1+κ/2ζ(4/ε)2+κr

}
0≤r≤1

is a Bessel bridge from (ε/4)1+κ/2z to (ε/4)1+κ/2y within time 1. Recall that the process

{X(ε/4)1+κ/2z,1,(ε/4)1+κ/2y
r }0≤r≤1 is a Bessel bridge from (ε/4)1+κ/2z to (ε/4)1+κ/2y in time 1.

For simplicity, we will write {Xr}0≤r≤1 in place of {X(ε/4)1+κ/2z,1,(ε/4)1+κ/2y
r }0≤r≤1. Accordingly,
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we have

Qy,(4/ε)2+κ,z
(
M ′ ≤ C

√
ε
)

= Qy,(4/ε)2+κ,z

(
sup

0≤s≤(4/ε)2+κ

(
εζs −

1

ρ
ε2s

)
≤ C
√
ε

)
= Qy,(4/ε)2+κ,z

(
sup

0≤r≤1

((ε
4

)1+κ/2

ζ(4/ε)2+κr −
41+κ/2

ρ
ε−κ/2r

)
≤ C

41+κ/2
ε(κ+1)/2

)
= P

(
sup

0≤r≤1

(
Xr −

41+κ/2

ρ
ε−κ/2r

)
≤ C

41+κ/2
ε(κ+1)/2

)
.

By (0.22) of [72], we can represent {Xr}0≤r≤1 in terms of three independent standard Brow-

nian bridges, B0,1,0
(1) , B0,1,0

(2) , B0,1,0
(3) ,

Xr
d

==

√((ε
4

)1+κ/2

z(1− r) +
(ε

4

)1+κ/2

yr +B0,1,0
(1) (r)

)2

+
(
B0,1,0

(2) (r)
)2

+
(
B0,1,0

(3) (r)
)2

.

According to the two formulas above, because C > 2
√

3, we have for all z ∈ (0, ε−1/2] and

y ∈ (0, ε−1−κ],

Qy,(4/ε)2+κ,z
(
M ′ ≤ C

√
ε
)

≥ P

(
sup

0≤r≤1

((ε
4

)1+κ/2

z +
(ε

4

)1+κ/2

yr +
∣∣∣B0,1,0

(1) (r)
∣∣∣− 41+κ/2

√
3ρ

ε−κ/2r

)
≤ Cε(κ+1)/2

√
3 · 41+κ/2

)
×
[
P

(
sup

0≤r≤1

(∣∣∣B0,1,0
(2) (r)

∣∣∣− 41+κ/2

√
3ρ

ε−κ/2r

)
≤ C√

3 · 41+κ/2
ε(κ+1)/2

)]2

≥ P

(
sup

0≤r≤1

(∣∣∣B0,1,0
(1) (r)

∣∣∣− 1

2
ε−κ/2r

)
≤ 1

41+κ/2
ε(κ+1)/2

)
×
[
P

(
sup

0≤r≤1

(∣∣∣B0,1,0
(2) (r)

∣∣∣− 41+κ/2

√
3ρ

ε−κ/2r

)
≤ C√

3 · 41+κ/2
ε(κ+1)/2

)]2

. (2.79)

According to Lemma 8, for ε sufficiently small, we have

P

(
sup

0≤r≤1

(∣∣∣B0,1,0
(1) (r)

∣∣∣− 1

2
ε−κ/2r

)
≤ 1

41+κ/2
ε(κ+1)/2

)
≥ ε−1/4 exp

{
− 4π2

√
ε

}
, (2.80)
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P

(
sup

0≤r≤1

(∣∣∣B0,1,0
(2) (r)

∣∣∣− 41+κ/2

√
3ρ

ε−κ/2r

)
≤ C√

3 · 41+κ/2
ε(κ+1)/2

)
≥
√

3ρπ

C
ε−1/4 exp

{
− 3ρπ2

8C
√
ε

}
. (2.81)

Letting C12 > 4π2+12π2/(8C) ≥ 4π2+6ρπ2/(8C), the Lemma follows from equations (2.79),

(2.80) and (2.81). 2
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Chapter 3

Branching Brownian motion with an

inhomogeneous branching rate

Aiming to understand the distribution of fitness levels of individuals in a large pop-

ulation undergoing selection, we study the particle configurations of branching Brownian

motion (BBM) where each particle independently moves as Brownian motion with negative

drift, particles can die or undergo dyadic fission, and the difference between the birth rate

and the death rate is proportional to the particle’s location. Under some assumptions, we

obtain the limit in probability of the number of particles in any given interval and an explicit

formula for the asymptotic empirical density of the fitness distribution. We show that after

a sufficiently long time, the fitness distribution from the lowest to the highest fitness levels

approximately evolves as a traveling wave with a profile which is asymptotically related to

the Airy function. Our work complements the results in Roberts and Schweinsberg (2021),

giving a fuller picture of the fitness distribution.

3.1 Introduction

To understand the evolution of populations undergoing selection, we study the dis-

tribution of fitness levels of individuals. There is a well-known observation in the biology
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literature that in a large population where various beneficial mutations compete for fixation

simultaneously, the distribution of the fitness is well approximated by a traveling wave. This

observation goes back at least to the work of Tsimring, Levin and Kessler [84]. In a recent

paper by Melissa et al. [66], they showed using non-rigorous methods that the fitness distri-

bution within a population can be described as a traveling wave with a profile defined by the

Airy function. Roberts and Schweinsberg [75] used BBM with an inhomogeneous branching

rate to model a population undergoing selection. They showed that the empirical distribu-

tion of fitness levels of individuals is approximately Gaussian. Our work complements the

results in [75], giving a fuller picture of the fitness distribution and providing a mathemat-

ically rigorous justification of the biology conjecture in [66]. Based on the model in [75],

we show that after a sufficiently long time, the fitness distribution from the lowest to the

highest fitness levels approximately evolves as a traveling wave with a profile asymptotically

equivalent to the profile that is expressed in terms of the Airy function. This Airy traveling

wave profile has been obtained using nonrigorous methods in the biology literature. See e.g.

[29, 66, 68, 84].

The most intuitive model of fitness is the fitness landscape, which is a mapping from

the multidimensional genotype space to a real valued fitness space. This model is constructed

in a high-dimensional space where the number of dimensions is equal to the number of

nucleotides in the genome. Each point represents a particular genome and each genome

is assigned with a fitness level. Although the fitness landscape visualizes the relationship

between genotypes and fitness, limited quantitative analyses can be done in this model due to

its high dimensional construction, see e.g. [82]. In order to study the evolution on a smooth

fitness landscape, Tsimring, Levine and Kessler [84] introduced the traveling wave model in a

one-dimensional fitness space where they characterized the population density as a function

of time and the fitness level. Since then, the traveling wave model of fitness has become an

important model in adaptation and has been studied in the evolutionary context for more

than two decades with different model assumptions, see e.g. [8, 33, 34, 39, 44, 45, 55, 66, 68,
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71, 70, 76]. Some of these works demonstrated that in a large asexual population where the

influx of beneficial mutations is large enough, the distribution of the fitness will settle into a

bell-shaped density moving to higher fitness as a traveling wave and the population adapts.

For a complete summary of the dynamical behavior of the traveling wave fitness models

under different mutation settings (which is also known as mutation kernels or distribution

of fitness effects), see [46].

In the mathematics literature, most of the work related to the dynamical behavior of

fitness has been done under the framework of Moran model where the number of individuals

in the population is N at all times and the individual fitness level can only change discretely.

In the strong selection and weak mutation regime, one selective sweep occurs at a time.

This regime was mentioned in Desai and Fisher [33]. For rigorous analyses of this process,

see [81]. Yu, Etheridge and Cuthbertson [88], followed by Kelly [54] considered the very

fast mutation case and established the upper and lower bounds for the rate of increase of

mean fitness in the population. Durrett and Mayberry [34] first rigorously established the

non-Gaussian traveling wave behavior of fitness when the selection rate is constant and the

mutation rate is N−α for 0 < α < 1. Schweinsberg [80] considered slightly faster mutation

rates and showed that the distribution of fitness has a Gaussian-like tail behavior, though it

does not actually converge to a Gaussian distribution. Schweinsberg [80] rigorously proved

the results in earlier work of Desai and Fisher [33]. For Moran model, the explicit expression

for the distribution of the fitness has not been established precisely.

The idea of modeling the population evolution using branching processes has a long

history and rich literature. In the last decade or so, there has been some work that used

BBM to model the evolution of populations, see e.g. [11, 13, 25, 26, 62]. In these works, the

branching rate is homogeneous in space and selection was not fully considered. Recently,

Roberts and Schweinsberg [75] studied the evolution of a large population undergoing se-

lection using an inhomogeneous BBM model. They considered the case where the rate of

beneficial mutations is large but the selective advantage of each mutation is relatively small.
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In this scenario, since each individual acquires many mutations with a small selective ad-

vantage, the individual fitness level will behave like a continuous-time random walk. After

proper scaling, the fitness of each individual will move according to Brownian motion. To

incorporate the stochastic dynamics of discrete replicating individuals, they constructed an

inhomogeneous BBM model where each particle independently moves according to Brownian

motion with negative drift, particles can die or undergo dyadic fission, and the difference

between the birth rate and the death rate is proportional to the particle’s location. We will

work under the same setup and assumptions as [75]. We are interested in the bulk distribu-

tion of individual fitness levels from the least fit individuals to the most fit individuals, or

in other words, the particle configurations from the left edge to the right edge.

BBM with a space-dependent branching rate model was first introduced by Harris

and Harris in [49]. In their model, a particle at location y ∈ R will split into two particles

at rate β|y|p, where β > 0 and p ∈ [0, 2]. They didn’t include the case p > 2 because the

process will explode in finite time if p > 2. Our model is related to their model with p = 1.

They studied the right-most position for different values of p using martingales and the

related spine changes of measure. They proved that for p ∈ [0, 2), the maximal displacement

grows polynomially while for p = 2, the maximal displacement grows exponentially. Later on,

Berestycki et al. in [14] studied the particle configurations of such models for all p ∈ [0, 2). By

studying the large deviations probabilities for particles following certain rescaled paths, they

obtained the logarithmic order of the expected and almost sure number of particles whose

rescaled trajectories follow paths in some set. Tourniaire [83] studied a space-homogeneous

BBM with absorption model where particles branch at rate ρ/2 in the interval [0, 1] for

some ρ > 1, and at rate 1/2 in (1,∞). This branching particle system is an analytically

tractable system which can be used to study the so-called semi-pushed traveling waves. This

branching particle system can be viewed as a biological model which describes the invasion

of an uncolonized habitat by a species. Particle configurations for some of the BBM models

have been understood completely. Berestycki et al. in [13] studied configurations of particles
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in BBM with absorption at the origin. They proved that if the process settles into an

equilibrium configuration and there are N particles in total, then the density of particles

near y is roughly proportional to e−
√

2y sin(
√

2πy/ logN). Some of the ideas in this chapter

are inspired by [13].

3.1.1 The model

Consider a sequence of models indexed by n. In the n-th model, each particle moves

independently as Brownian motion with drift −ρn. For a particle at position x, it will either

die at rate dn(x) or branch into two particles at rate bn(x), where

bn(x)− dn(x) = βnx.

Here, each particle corresponds to an individual in the population. The positions of particles

represent fitness levels of individuals and the movements of particles illustrate changes in

fitness levels over generations. Branching events represent births. If the birth rate is less

than the death rate, unfit individuals will die and the corresponding lineage will become

extinct.

We assume that

lim
n→∞

ρ3
n

βn
=∞, (3.1)

lim
n→∞

ρn = 0, (3.2)

and there exists α ∈ (0, 1) such that

dn(x) ≥ α for all x ∈ R, n ∈ N and bn(x) ≤ 1/α for all x ≤ 1/βn, n ∈ N. (3.3)

We assume that (3.1) and (3.2) hold true throughout the rest of this chapter, even when

they are not specifically stated. In the n-th model, we denote by Nt,n the total number

of particles at time t, Nt,n the set of particles alive at time t and Nt,n(I) the number of
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particles in the interval I at time t. The set of positions of particles at time t is written

as {Xi,n(t), i ∈ Nt,n}. For i ∈ Nt,n, we denote {Xi,n(r), 0 ≤ r ≤ t} the past trajectory of

the particle i alive at time t. To state further assumptions, we need to introduce the Airy

function

Ai(x) =
1

π

∫ ∞
0

cos

(
y3

3
+ xy

)
dy.

The Airy function has an infinite number of zeros, all of which are negative. We denote the

zeros of the Airy function by (γk)
∞
k=1 such that · · · < γ2 < γ1 < 0. Specifically,

γ1 ≈ −2.338. (3.4)

We define

L∗n =
ρ2
n

2βn
, L†n = −5ρ2

n

8βn
. (3.5)

Roughly speaking, most particles will stay within [L†n, L
∗
n]. We call L∗n the right edge and

L†n the left edge. We define a boundary Ln that is slightly larger than L∗n so that almost no

particles will exceed Ln,

Ln =
ρ2
n

2βn
− (2βn)−1/3γ1. (3.6)

Let

Yn(t) =
∑
i∈Nt,n

eρnXi,n(t), (3.7)

and

Zn(t) =
∑
i∈Nt,n

eρnXi,n(t)Ai
(
(2βn)1/3(Ln −Xi,n(t)) + γ1)

)
1{Xi,n(t)<Ln}. (3.8)

We make the following assumptions regarding the initial configuration expressed in terms of

Yn(0) and Zn(0). We assume that

ρ2
ne
−ρnLnYn(0)→p 0, (3.9)
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and for all ε > 0, there exists a δ > 0 such that for n sufficiently large,

P

(
δ
β

1/3
n

ρ3
n

eρnLn ≤ Zn(0) ≤ 1

δ

β
1/3
n

ρ3
n

eρnLn
)
> 1− ε. (3.10)

It is mentioned in [75] that Zn(t) provides a natural measure of “size” of the process at time

t. Roughly speaking, assumption (3.9) requires that the “size” of the process at early time

will not be dominated by the descendants of a single particle in the initial configuration or

particles that are far from Ln at time 0. This assumption is biologically natural because

otherwise, a single lineage will quickly take over the whole population and we cannot expect

the population adapts and reach an evolutionary stable equilibrium. Assumption (3.10) is

roughly saying that the “size” of the initial configuration will be around β
1/3
n eρnLn/ρ3

n.

3.1.2 Main results

We will first introduce some notation that will be used throughout the chapter. For

two sequences of positive numbers (xn)∞n=1 and (yn)∞n=1, if xn/yn is bounded above by a

positive constant, we write xn . yn and if limn→∞ xn/yn = 0, we write xn � yn. We

define xn & yn and xn � yn correspondingly. Moreover, the notation xn � yn means that

xn/yn is bounded above and below by positive constants, and the notation xn ∼ yn means

that limn→∞ xn/yn = 1. We write xn = O(yn) if the sequence (xn/yn)∞n=1 is bounded and

xn = o(yn) if limn→∞ xn/yn = 0.

Before stating our new results, we briefly recall the main results that Roberts and

Schweinsberg [75] established for this model. Under assumptions (3.1), (3.2), (3.3), (3.9) and

(3.10), they showed that if ρ
2/3
n /β

8/9
n � tn−ρn/βn . ρn/βn, then most particles are near the

origin at time tn and the scaled empirical distribution of particles at time tn is Gaussian. More

precisely, define the random probability measure which represents the empirical distribution
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of the particle locations at time tn, scaled in space, to be

ζn(tn) =
1

Ntn,n

∑
i∈Ntn,n

δ
Xi,n(tn)

√
βn/ρn

. (3.11)

They showed as n→∞, that the random measures ζn(tn) converge weakly to the standard

normal distribution in the Polish space of probability measures on R equipped with the weak

topology. From the scaling in (3.11), this result implies that the empirical distribution of

particle locations at time t is approximately normal with mean 0 and variance ρn/βn. In

particular, this result describes the configuration of particles whose distance to the origin is

O(
√
ρn/βn).

Roberts and Schweinsberg [75] also provided an explicit characterization of the empir-

ical distribution of particles close to the right edge. They considered the empirical measure

where a particle at x is weighted by eρnx. Define the random probability measure

ξn(tn) =
1

Yn(tn)

∑
i∈Ntn,n

eρnXi,n(tn)δ(2βn)−1/3(Ln−Xi,n(tn)) (3.12)

Thus, particles with a higher fitness level will contribute more to ξn(tn). Let µ be the

probability measure on (0,∞) with probability density function

h(y) =
Ai(y + γ1)∫∞

0
Ai(z + γ1)dz

.

Roberts and Schweinsberg proved that under assumptions (3.1), (3.2), (3.3), (3.9) and (3.10),

if

β−2/3
n log1/3

(
ρn

β
1/3
n

)
� tn .

ρn
βn
,

then as n→∞, we have

ξn(tn)⇒ µ, (3.13)

where ⇒ refers to weak convergence in the Polish space of probability measures on R
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equipped with the weak topology. From the scaling in (3.12), we see that this conver-

gence result describes the configuration of particles whose distance from the right edge L∗n

is O(β
−1/3
n ).

Our goal in this chapter is to obtain a fuller understanding of the particle configura-

tions from the left edge L†n to the right edge L∗n. In other words, for this model, we aim to

characterize the long-run empirical distribution of the fitness levels of individuals in a large

population.

Consider a sequence of intervals {[an, bn]}∞n=1, where −∞ ≤ an < bn ≤ ∞, satisfying

the following three conditions:

bn − an � 1 (3.14)

L∗n − an � β−1/3
n (3.15)

bn − L†n � β−1/3
n . (3.16)

We are interested in the number of particles in the intervals [an, bn]. We include the conditions

(3.15) and (3.16) because we do not expect our results to describe the configuration of

particles which are within distance O(β
−1/3
n ) of the right edge L∗n or the left edge L†n. Also,

the particles within O(β
−1/3
n ) distance of the right edge were studied in Theorem 1.2 in [75].

Define

zn =


an if an ≥ 0,

0 if an < 0, bn > 0,

bn if bn ≤ 0.

(3.17)

Note that zn ∈ (L†n, L
∗
n), and the restrictions (3.15) and (3.16) are equivalent to

L∗n − zn � β−1/3
n , zn − L†n � β−1/3

n . (3.18)

Later, we will see that the asymptotic density of the number of particles in [an, bn] reaches
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its maximum at zn. As a result, the number of particles near zn dominates the total number

of particles in [an, bn].

For every n, we will define two important functions in the domain (−∞, L∗n]. First,

we let

tn(y) =

√
2

βn
(L∗n − y). (3.19)

We will later see that particles near y are most likely descended from ancestors that were

near the right edge approximately tn(y) time units in the past. For every n, we observe that

tn(y) is a decreasing function of y. We have tn(0) = ρn/βn. If L∗n − zn � β
−1/3
n , then

tn(zn)� β−2/3
n . (3.20)

Also, for y ∈ (−∞, L∗n], we define

gn(y) = ρn(L∗n − y)− 2
√

2βn
3

(L∗n − y)3/2. (3.21)

We will see shortly that in the long-run, the number of particles located near y is roughly

proportional to egn(y). Note that gn(y) is decreasing in [0, L∗n] and increasing in (−∞, 0].

The functions gn(y) and tn(y) were previously obtained in [75].

We now state our main result, which describes the configuration of particles from the

left edge to the right edge.

Theorem 21. Suppose assumptions (3.1), (3.2), (3.3), (3.9) and (3.10) hold. For every

sequence of intervals {[an, bn]}∞n=1 satisfying (3.14)-(3.16), define zn according to (3.17). If

ρ
2/3
n

β
8/9
n

� tn − tn(zn)� ρn
βn
, (3.22)
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then as n→∞,

Ntn,n

(
[an, bn]

)/( 1

Ai′(γ1)2
Zn(0)e−ρnL

∗
n

∫
[an,bn]∩(−∞,L∗n]

1√
2πtn(y)

egn(y)dy

)
→p 1. (3.23)

If

tn − tn(zn) � ρn
βn
, (3.24)

then as n→∞,

Ntn,n

(
[an, bn]

)/( 1

Ai′(γ1)2
Zn
(
tn − tn(zn)

)
e−ρnL

∗
n

∫
[an,bn]∩(−∞,L∗n]

1√
2πtn(y)

egn(y)dy

)
→p 1.

(3.25)

Theorem 21 describes the number of particles in any given interval in the long run.

The randomness is characterized by the stochastic process {Zn(t), t ≥ 0}, which measures

how the overall “size” of the process changes over time. The deterministic part has a density

formula proportional to egn(y)/
√

2πtn(y). To be more precise, shortly after time tn(zn), the

number of particles in the interval [an, bn] depends on the initial configuration of particles

through the value of Zn(0). For much later times tn, when tn − tn(zn) is of the order ρn/βn,

the number of particles in the interval [an, bn] depends on Z(tn− tn(zn)), which is the “size”

of the process tn(zn) time units in the past. Here zn is the point where the density of the

number of particles in [an, bn] is maximized. Later it will be shown in the proof that the

number of particles in any interval [an, bn] is dominated by the number of particles that are

close to zn. The proof of Theorem 21 indeed shows that most of the particles in the interval

[an, bn] at time tn are descendants of particles that are close to the right edge tn(zn) time

units in the past. This also explains why the number of particles in [an, bn] depends on

Z(tn − tn(zn)).

Corollary 22. Suppose assumptions (3.1), (3.2), (3.3), (3.9) and (3.10) hold. For every

sequence of intervals {[an, bn]}∞n=1 satisfying (3.14)-(3.16), define zn according to (3.17).
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Suppose

ρ
2/3
n

β
8/9
n

� tn −max
{
tn(zn), tn(0)

}
.
ρn
βn
. (3.26)

For y ∈ (−∞, L∗n], define

fn(y) =
1√

2πtn(y)
egn(y)−ρ3

n/6βn .

The sequence

(Dn)∞n=1 :=

{
Ntn,n

(
[an, bn]

)
Ntn

/(∫
[an,bn]∩(−∞,L∗]

fn(y)dy

)}∞
n=1

is tight. If 0 ∈ [an, bn] for all n, then Dn converges to 1 in probability as n→∞.

Corollary 22 shows that the ratio of the number of particles in any given interval to

the total number of particles is comparable to the integral of fn(y) over the given interval. We

can therefore regard fn(y) as the density of the limiting empirical distribution of the process,

or in other words, the asymptotic empirical density of the fitness levels of individuals.

To understand the connection with results on traveling waves in the biology and

physics literature, consider a translation of the model where each particle independently

moves as standard Brownian motion without drift. A particle at location y can either die

or split into two particles, and the difference between the birth rate and the death rate is

βn(y − ρnt). Corollary 22 shows that after a sufficiently long time, the empirical density of

individual fitness levels is

f ∗n(t, y) = fn(y − ρnt) =
1√

2πtn(y − ρnt)
egn(y−ρnt)−ρ3

n/6βn , for y ∈ (L†n + ρnt, L
∗
n + ρnt),

which is a traveling wave with profile fn(y).

The asymptotic empirical density fn(y) is closely related to the Airy function. For

y < L∗n, define

fAn (y) = (2βn)1/3e−ρny+ρ3
n/3βnAi

(
(2βn)1/3(L∗n − y)

)
. (3.27)
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According to (2.45) in [85],

lim
x→∞

2
√
πx1/4e(2/3)x3/2

Ai(x) = 1. (3.28)

Therefore, if L∗n − yn � β
−1/3
n , then as n→∞,

fn(yn) ∼ fAn (yn).

Note that the restriction L∗n − yn � β
−1/3
n is consistent with our requirement (3.15) on the

interval. The appearance of this Airy density function is not a coincidence. Using nonrigorous

methods, Melissa et al. in [66] showed that the fitness distribution within population can be

described as a traveling wave which has a steady-state shape f̃An (y)

f̃An (y) = e−ρnyAi
(

(2βn)1/3
( ρ2

n

2βn
− y
))
, for y < Ln (3.29)

after matching parameters. We will explain the derivation of equation (3.29) in more details

in Section 3.1.3. Note that f̃An (y) is proportional to fAn (y). Therefore, Corollary 22 shows

that, under certain assumptions, after a sufficiently long time, the bulk distribution of fitness

levels of individuals from the least fit individuals to the most fit individuals is approximately a

traveling wave with a profile asymptotically equivalent to the profile defined in citeMelissa,

providing mathematically rigorous justification for the result in [66]. The idea that the

traveling wave profile should have a shape given by the Airy function goes back to the early

work of Tsimring, Levine, and Kessler [84], and this Airy shape also appears, for example,

in [29, 68, 66]. Theorem 21 and Corollary 22 therefore provide rigorous justification for this

result in the biology and physics literature.

We also observe that the shape of fn(y) near 0 is very much like the Gaussian density
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Figure 3.1: Graph of the symptotic empirical density, Airy density formula and Gaussian
density formula when ρn = 10−4 and βn = 10−13

function with standard deviation
√
ρn/βn. Let

fGn (y) =
1√

2πρn/βn
exp

(
− βny

2

2ρn

)
. (3.30)

As noted in [75], the Taylor expansions of gn(y) and tn(y) around 0 give

gn(y) ≈ ρ3
n

6βn
− βny

2

2ρn
, tn(y) ≈

√
ρn
βn
.

Therefore, the asymptotic empirical density fn(y) can be approximated by the Gaussian

density formula fGn (y). This is consistent with Theorem 1.1 in [75].

Figure 3.1 illustrates the graphs of the asymptotic empirical density fn(y), the Airy

density formula fAn (y) and the Gaussian density formula fGn (y) from L†n to L∗n when ρn = 10−4

and βn = 10−13. We see that all three functions have similar shapes. The asymptotic

empirical density is very close to the Airy density formula in the bulk, especially in the

negative real line where y is far away from the right boundary L∗.

Let Mt,n = max{Xi,n(t), i ∈ Nt,n} be the position of the right-most particle at time

t and mt,n = min{Xi,n(t), i ∈ Nt,n} be the position of the left-most particle at time t.

Propositions 23 and 24 show that, under certain assumptions, with high probability the

right-most particle is close to L∗n and the left-most particle is close to L†n. This explains why
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we are able to refer to L∗n as the right edge and L†n as the left edge of the process.

Proposition 23. Suppose assumptions (3.1), (3.2), (3.3), (3.9) and (3.10) hold and (tn)∞n=1

satisfies

β−2/3
n log1/3

(
ρn

β
1/3
n

)
� tn .

ρn
βn
. (3.31)

For any positive constant C1, we have

lim
n→∞

P

(
Mtn,n ≥ Ln −

C1

β
1/3
n

)
= 1. (3.32)

If in addition, the birth rate bn(x) is non-decreasing and the death rate dn(x) is non-increasing,

then for any constant C2 ∈ R,

lim
n→∞

P

(
Mtn,n ≤ Ln +

C2

ρn

)
= 1. (3.33)

Therefore, we have as n→∞,

Mtn,n

L∗n
→p 1. (3.34)

Define

L̄n = −5

8

ρ2
n

βn
+ 2(2βn)−1/3γ1, (3.35)

which is slightly smaller than L†n. The following proposition shows that L̄n is the approximate

position of the left-most particle.

Proposition 24. Suppose assumptions (3.1), (3.2), (3.3), (3.9) and (3.10) hold and (tn)∞n=1

satisfies

ρ
2/3
n

β
8/9
n

� tn − tn(L̄n) .
ρn
βn
. (3.36)

For any κ > 0, there exists a positive constant C3 such that for n large enough,

P

(
mtn,n ≤ L̄n +

C3

β
1/3
n

)
> 1− κ. (3.37)
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If in addition, the birth rate bn(x) is non-decreasing and the death rate dn(x) is non-increasing,

then for any κ > 0, there exists a positive constant C4 such that for n large enough,

P

(
mtn,n ≥ L̄n −

C4

ρn

)
> 1− κ. (3.38)

Therefore, we have as n→∞,

mtn,n

L†n
→p 1. (3.39)

3.1.3 Ideas behind the proof

We have two perspectives to understand the expression of the asymptotic empirical

density fn(y) heuristically. The first one is through the large deviations techniques in [14]

and the second one is through the traveling wave approach in [29, 66, 68, 84].

The heuristics proposed in [14] inspired the derivation of the functions gn(zn) and

tn(zn), although the techniques they used are not sufficient to derive the exact asymptotic

rate of the number of particles like what we did in Theorem 21. Roberts and Schweinsberg

in [75] first derived the explicit formulas of gn(zn) and tn(zn) using the method of [14]. They

conjectured that the number of particles near zn in the long run is proportional to egn(zn) and

proved this conjecture when |zn| is around the origin (zn .
√
ρn/βn). Since these heuristics

are essential in understanding the behavior of the process and the main ideas of the proof,

we will briefly recall their calculations.

For every n, consider a large time tn and a path fn : [0, tn] → R. By Schilder’s

theorem and the many-to-one lemma, if the process starts with one particle at fn(0), the

expected number of particles that stay “close” to fn during [0, tn] is approximately

exp

(∫ tn

0

(
βnfn(u)− 1

2
(f ′n(u) + ρn)2

)
du

)
. (3.40)

Note that if fn(u) ≡ ρ2
n/2βn, then the integrand is 0. Thus the number of particles around

ρ2
n/2βn is O(1) and the right-most particle should stay close to ρ2

n/2βn, which is the right
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edge L∗n. We next consider the optimal trajectory f znn followed by particles that are near zn

at time tn. This path is optimal in the sense that particles which end up near zn must follow

this trajectory to achieve the maximum almost sure growth rate. According to Theorem 7 in

[14], there exists a cutoff time tn(zn) such that the optimal path will follow the trajectory of

the right-most particle up to some time tn − tn(zn) and then moves towards zn by following

a path that satisfies a certain differential equation. Therefore, f znn satisfies

f znn (u) = ρ2
n/2βn for u ∈ [0, tn − tn(zn)],

(f znn )′′(u) = −βn for u ∈ [tn − tn(zn), tn] ,

f znn (tn) = zn.

Solving the above equations, we get the expression (3.19) for tn(zn). Together with (3.40),

the number of particles near zn at time tn is approximately

exp(gn(zn)) = exp

(∫ tn

0

(
βf znn (u)− 1

2

(
(f znn )′(u) + ρn

)2
)
du

)
,

which gives (3.21) for all zn. Figure 3.2 is an illustration of the trajectory of f znn . It is also

worth mentioning that the expressions for the left edge L†n and the right edge L∗n emerge

from gn(zn). Solving gn(zn) = 0, we get two solutions

zn = −5ρ2
n

8βn
, zn =

ρ2
n

2βn
,

which correspond to L†n and L∗n respectively. These heuristics also explain why we need

assumptions (3.1) and (3.2). Note that the Taylor expansion of eg(z) is proportional to the

Gaussian density with mean 0 and variance ρn/βn. The standard deviation of the Gaussian

distribution should be much smaller than the right-most position, which leads to (3.1).

Moreover, the branching rate should be small around the right edge ρ2
n/2β, which leads to
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(3.2).

Time0 tn − tn(zn) tn

Space

zn

ρ2
n

2βn

Figure 3.2: Trajectory of f znn

According to the discussion after Corollary 22, we know that the asymptotic empirical

density fn(y) is closely related to the Airy density formula fAn (y), which is f̃A(y) after

matching parameters. Below we will follow the derivation of f̃A(y) in [66]. We assume that

there are N individuals in the population. Each individual subject to new mutations at rate

µ and the selective advantage s of each mutation is random and has a distribution with

probability density function ρ(s). Let q(x, t) be the density of particles with fitness x at

time t, which gives the distribution of fitnesses within the population. Define m(t) to be the

average fitness at time t with m(0) = 0. Let ν(s) = µρ(s). Then equation (4) in [66] shows

that q(x, t) will satisfy the following nonlinear stochastic differential equation,

∂

∂t
q(x, t) = (x−m(t))q(x, t) +

∫ (
p(x− s, t)− p(x, t)

)
ν(s)ds+

√
q(x, t)

N
η(x, t), (3.41)

where η is a Brownian noise term. By stochastic simulations, it was conjectured by multiple

biology literatures (e.g. [84]) that equation (3.41) has a traveling wave solution of the form

q(x, t) = ω(x− vt),

which moves at an unknown average rate of mean fitness change v = m(t)/t. Writing
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y = x− vt for the relative fitness and neglecting the noise term, equation (3.41) becomes

−vω′(y) = yω(y) +

∫ (
ω(y − s)− ω(y)

)
ν(s)ds.

Since the selective advantage s is sufficiently small, we can use Taylor expansion to approx-

imate

ω(y − s)− ω(y) ≈ −sω′(y) +
1

2
s2ω′′(y).

which leads to

−vω′(y) = yω(y)− µE[s]ω′(y) +
1

2
µE[s2]ω′′(y).

According to the Fisher’s Fundamental Theorem of Natural Selection [40], the speed of the

traveling wave v is the summation of the variance in the fitness distribution, written as σ2

and the direct contribution from mutations, written as D. Letting D = µE[s2]/2, we get

Dω′′(y) + σ2ω′(y) + yω(y) = 0. (3.42)

We note that the above equation will lead to a solution which take negative values at suf-

ficiently large y, which is impossible for a fitness distribution. To avoid this, we assume

that there is a cutoff value ycut, which can be understood as the maximum fitness of the

individuals in the population, such that

ω(y) = 0, for y > ycut. (3.43)

As a result, the solution of equations (3.42) and (3.43) is

ω(y) = e−σ
2y/2DAi

( σ4

4D4/3
− y

D1/3

)
, for y <

ρ2

2
− 2−1/3β2/3γ1. (3.44)

It remains to relate parameters σ2 and D with ρn and βn in our model. Recall that the

limiting distribution of (3.11) is the standard Gaussian distribution. Therefore, in our model,
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the empirical distribution of particles has variance ρn/βn. Because the branching rate, which

measures the fitness of the population, increases in the unit of βn, our model can be viewed

as the model in [66] scaled by βn. Thus the variance in the fitness distribution

σ2 = β2
n

ρn
βn

= ρnβn.

As for D, equation (1.20) in [75] states that βn = s
√
µ, which leads to

D =
µE[s2]

2
≈ µs2

2
=
β2
n

2
.

Plugging the above two formulas into (3.44) and taking the scaling into consideration, we

get

ω(βny) = e−ρnyAi
( ρ2

22/3β2/3
− 21/3β1/3y

)
, for y < Ln,

which is exactly the expression of f̃An (y) in (3.29). According to (3.28), f̃An (y) is essentially

the same as the asymptotic empirical density fn(y) expressed in terms of tn(y) and gn(y) in

the limit when L∗n − y � β
−1/3
n .

From the large deviations analysis, for n sufficiently large, particles near the right

edge should be in a stable configuration at time tn − tn(zn) according to (3.13), and a law

of large numbers behavior is expected. As a result, we are going to use a first and second

moment argument to prove Theorem 21. The argument consists of two parts. First, we

compute the expectation. Next, we control the fluctuations and show that Ntn,n([an, bn]) is

concentrated around its mean. Moreover, Ntn,n([an, bn]) is concentrated around the number

of particles that are close to zn. As for the first moment estimate, we denote by pnt (x, y) the

density at location y and time t for the process which starts from a single particle at x at

time 0. This means that if there is a single particle located at x at time 0, then the expected
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number of particles in the measurable set U at time t is

∫
U

pt(x, y)dy.

According to formula (2.11) in [75], by the many-to-one lemma

pnt (x, y) =
1√
2πt

exp

(
ρnx− ρny −

(x− y)2

2t
− ρ2

nt

2
+
βn(x+ y)t

2
+
β2
nt

3

24

)
. (3.45)

The first moment estimates involve expressing pntn(x, zn) in terms of gn(zn) and some other

controllable terms. As for the second moment, we will only control the fluctuations of the

number of particles that are close to zn. The remaining particles in the interval [an, bn] can

be dealt with using the first moment estimate. A direct second moment computation will

fail because without truncation, the expected number of particles around zn is dominated

by rare events in which one particle drifts very far to the right and generates a large number

of descendants around zn. As a result, we need to do a truncated second moment estimate

where particles are killed upon hitting the boundary Ln. This boundary Ln needs to be large

enough that particles which contribute most won’t hit this boundary and small enough that

we can control the second moment of the number of particles. It is pointed out in [75] that

(3.6) is an appropriate choice. We show that the major contribution of the first moment

comes from particles which stay close to Ln at time tn − tn(zn) and don’t hit the right

boundary Ln during time [tn − tn(zn), tn]. Since the proofs of the second moment estimates

are quite tedious, we defer them until Section 3.5.

3.1.4 Table of notation

We summarize some of the notation that is used throughout the rest of this chapter

in the following table.
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Table 3.1: Index of notation in Chapter 3

n Index of a sequence of processes.

ρn Particles move according to Brownian motion with drift −ρn.

βn Selection parameter. The difference between the birth rate and the death

rate for a particle at x is βnx.

Nt,n Total number of particles at time t.

Nt,n The set of particles alive at time t.

Nt,n(I) Number of particles in the interval I at time t.

Xi,n(t) Positions of the particle i at time t for i ∈ Nt,n.

γ1 The largest zero of the Airy function.

Ln The approximate position of right-most particle, Ln = ρ2
n/βn− (2βn)−1/3γ1.

LAn Defined to equal Ln − A/ρn for A ∈ R.

L̄n The approximate position of left-most particle, L̄n = −5ρ2
n/8βn −

2(2βn)−1/3γ1.

L∗n The position that is near the position of the right-most particle. We call it

the right edge. Explicitly, L∗n = ρ2
n/βn.

L†n The position that is near the position of the left-most particle. We call it

the left edge. Explicitly, L†n = −5ρ2
n/8βn.

Yn(t) Sum of eρnXi,n(t) for all i = 1, ..., Nt,n. Defined in (3.7).

Zn(t) Weighted sum used to characterize the size of the configuration at time t.

Defined in (3.8).

. Write xn . yn if xn/yn is bounded above by a positive constant. Define &

similarly.

� Write xn � yn if limn→∞ xn/yn = 0. Define � similarly.

� Write xn � yn if xn/yn is bounded above and below by positive constants.

O Write xn = O(yn) if the sequence (xn/yn)∞n=1 is bounded.
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Table 3.1: Index of notation in Chapter 3, Continued

o Write xn = o(yn) if limn→∞ xn/yn = 0.

[an, bn] Interval satisfying (3.14)-(3.16).

zn Roughly speaking, the asymptotic density of the number of particles in

[an, bn] is maximized at zn. Defined in (3.17).

ln Measures the length of the interval in which we are counting the number of

particles.

tn(y) For particles near y at time tn, tn − tn(y) is the time when their ancestors

start to leave the right boundary and drift toward y. Defined in (3.19).

gn(y) Function used to approximate the density of particles. Defined in (3.21).

Mt,n Position of the left-most particle at time t.

pnt (x, y) Density at location y and time t for the process which starts from a single

particle at x at time 0. Defined in (3.45).

pLnt (x, y) Density at location y and time t for the process where there is only one

particle at x at time 0 and particles are killed upon hitting Ln.

c0,n The ratio between zn and L∗n. Defined in (3.48).

cn Measures the distance between zn and L∗n. Defined in (3.87).

rLnx (v) Rate at which particles hit Ln at time v. Defined in 3.1.4.

NLn
t (I) Number of particles in the interval I at time t for the process in which

particles are killed at Ln.

(Ft, t ≥ 0) Natural filtration associated with the BBM process.

d Used to divide the length of the interval in the proof of Proposition 26.

Defined in (3.135).

s Constants used to adjust time. In the proof of Propositions 25 and 26, we

define s = C1β
−2/3
n .
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Table 3.1: Index of notation in Chapter 3, Continued

sy Constants used to adjust time for each y ∈ [z − l, z + l] based on the choice

of s. Defined to be t(y)− t(z) + s.

u1 The first cutoff time in the second moment calculation. See Lemma 42.

u2 The second cutoff time in the second moment calculation. Defined in

(3.284).

3.1.5 Organization of the chapter

The rest of this chapter is organized as follows. In Section 3.2, we show how to obtain

Theorem 21 and Corollary 22 from two other propositions, one of which controls the number

of particles in narrow intervals and one of which controls the number of particles in longer

intervals. In Section 3.3, we prove Propositions 23 and 24, and give the most important

arguments for the proofs of the two propositions that lead to Theorem 21. Proofs of some

technical lemmas are postponed until Section 3.4, and the second moment calculations are

presented in Section 3.5.

3.2 Structure of the proofs

In this section, we show how Theorem 21 and Corollary 22 follow from Propositions

25 and 26 below. We also introduce some notation that will be used throughout the chapter.

3.2.1 Division into larger and smaller intervals

The proof of Theorem 21 will be divided into two cases. First, we will deal with

intervals with smaller length. In such intervals, we will control the number of particles using

a second moment argument. Indeed, we will show that most particles that end up near zn
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at time tn stay close to Ln up to time tn − tn(zn) and then drift towards zn. Trajectories

of such particles are illustrated in Figure 3.2. Second, we will consider longer intervals. We

will show that the number of particles in the interval [an, bn] that are far away from zn is

negligible using a first moment argument, allowing us to estimate the number of particles in

the entire interval by the number of particles in a smaller interval around zn. The first step

will lead to Proposition 25 while the second step will lead to Proposition 26.

Consider a sequence (zn)∞n=1 satisfying (3.18) such that

|zn| &
√
ρn
βn

or |zn| �
√
ρn
βn
. (3.46)

We further assume that

zn ≥ 0 for all n or zn ≤ 0 for all n. (3.47)

Denote

c0,n =
zn
L∗n
. (3.48)

We consider intervals of the forms [zn, zn + ln] and [zn − ln, zn] where ln is the length of the

interval. By convention, if ln =∞, then [zn, zn + ln] = [zn,∞) and [zn − ln, zn] = (−∞, zn].

Proposition 25. Suppose assumptions (3.1), (3.2), (3.3), (3.9) and (3.10) hold. For every

sequence (zn)∞n=1 satisfying (3.18), (3.46) and (3.47), choose (ln)∞n=1 such that


1� ln . 1

|c0,n|ρn if |zn| &
√

ρn
βn
,

1� ln .
√

ρn
βn

if |zn| �
√

ρn
βn
.

(3.49)
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Consider intervals of the form

In =


[zn, zn + ln] if zn ≥ 0,

[zn − ln, zn] if zn ≤ 0.

(3.50)

If tn satisfies

ρ
2/3
n

β
8/9
n

� tn − tn(zn)� ρn
βn
, (3.51)

then for any κ > 0, we have

lim
n→∞

P

(
1− κ
Ai′(γ1)2

e−ρnL
∗
nZn(0)

∫
In

1√
2πtn(y)

egn(y)dy ≤ Ntn,n(In)

≤ 1 + κ

Ai′(γ1)2
e−ρnL

∗
nZn(0)

∫
In

1√
2πtn(y)

egn(y)dy

)
= 1. (3.52)

Proposition 26. Suppose assumptions (3.1), (3.2), (3.3), (3.9) and (3.10) hold. For every

sequence of (zn)∞n=1 satisfying (3.18), (3.46) and (3.47), choose (ln)∞n=1 such that


ln � 1

|c0,n|ρn if |zn| &
√

ρn
βn
,

ln �
√

ρn
βn

if |zn| �
√

ρn
βn
.

(3.53)

Consider intervals of the form

Jn =


[zn, zn + ln] if zn ≥ 0,

[zn − ln, zn] if zn ≤ 0.

(3.54)

If tn satisfies (3.51), then for any κ > 0, we have

lim
n→∞

P

(
1− κ
Ai′(γ1)2

e−ρnL
∗
nZn(0)

∫
Jn∩(−∞,L∗n]

1√
2πtn(y)

egn(y)dy ≤ Ntn,n(Jn)

≤ 1 + κ

Ai′(γ1)2
e−ρnL

∗
nZn(0)

∫
Jn∩(−∞,L∗n]

1√
2πtn(y)

egn(y)dy

)
= 1. (3.55)
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Next, we will explain heuristically why the interval length ln is divided into the above

two cases (3.49) and (3.53). Let us take the case zn ≥ 0 as an example. The case when

zn ≤ 0 is essentially the same. Our hope is to find a cutoff length ln depending on zn such

that the number of particles in [zn,∞) is dominated by the number of particles in [zn, zn+ln].

Since the number of particles near zn is approximately proportional to egn(zn)/
√

2πtn(zn),

this boils down to finding a cutoff length ln such that for any η > 0, if n is sufficiently large,

then ∫ ∞
zn

1√
2πtn(y)

egn(y)dy < (1 + η)

∫ zn+ln

zn

1√
2πtn(y)

egn(y)dy.

It turns out that if zn &
√
ρn/βn, then we can take ln � 1/c0,nρn, as shown in Lemma 36,

while if zn �
√
ρn/βn, then we take ln �

√
ρn/βn.

3.2.2 Proof of Theorem 21

In this subsection, we deduce Theorem 21 from Propositions 25 and 26. We first

review an important result from [75] which will be needed in the proof.

Remark 27. Proposition 2.3 in [75] states that if βntn/ρn converges to a positive real number

as n goes to infinity, then with probability tending to 1 as n → ∞, conditions (3.9) and

(3.10) hold with Yn(tn) and Zn(tn) in place of Zn(0) and Yn(0) respectively. Furthermore, if

tn � ρn/βn, then for every subsequence (nj)
∞
j=1, there exists a sub-subsequence (njk)

∞
k=1 such

that

lim
k→∞

βnjk tnjk
ρnjk

= τ ∈ (0,∞).

Consequently, by Proposition 2.3 in [75], with probability tending to 1 as k →∞, conditions

(3.9) and (3.10) hold with Ynjk (tnjk ) and Znjk (tnjk ) in place of Zn(0) and Yn(0) respectively.

Proof of Theorem 21. First, we consider the case when tn satisfies (3.22). To prove (3.23), it

suffices to show that for every subsequence (nj)
∞
j=1, there exists a sub-subsequence (njk)

∞
k=1,
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such that for any 0 < κ < 1,

lim
k→∞

P

(
1− κ
Ai′(γ1)2

e
−ρnjkL

∗
njkZnjk (0)

∫
[anjk

,bnjk
]∩(−∞,L∗njk

]

1√
2πtnjk (y)

e
gnjk

(y)
dy

≤ Ntnjk
,njk

(
[anjk , bnjk ]

)
≤ 1 + κ

Ai′(γ1)2
e
−ρnjkL

∗
njkZnjk (0)

∫
[anjk

,bnjk
]∩(−∞,L∗njk

]

1√
2πtnjk (y)

e
gnjk

(y)
dy

)
= 1.

(3.56)

Given a subsequence (nj)
∞
j=1, there exists a further subsequence (njk)

∞
k=1 such that one of

the following holds:

1. We have anjk ≥ 0 for all k. Let znjk = anjk and lnjk = bnjk − anjk . The subsequence

(znjk )∞k=1 satisfies (3.18), (3.46) and (3.47), and the subsequence (lnjk )∞k=1 satisfies (3.49)

or (3.53).

2. We have bnjk ≤ 0 for all k. Let znjk = bnjk and lnjk = bnjk − anjk . The subsequence

(znjk )∞k=1 satisfies (3.18), (3.46) and (3.47), and the subsequence (lnjk )∞k=1 satisfies (3.49)

or (3.53).

3. We have anjk < 0 and bnjk > 0 for all k. Let znjk = 0, l1,njk = −anjk and l2,njk = bnjk .

Both the subsequences (l1,njk )∞k=1 and (l2,njk )∞k=1 satisfy (3.49) or (3.53).

In cases 1 and 2, since [anjk , bnjk ] satisfies the hypotheses of either Proposition 25 or Propo-

sition 26, equation (3.56) follows from (3.52) or (3.55). As for case 3, we see that both

[anjk , 0] and [0, bnjk ] satisfy the hypotheses of Proposition 25 or Proposition 26. Thus, both

[anjk , 0] and [0, bnjk ] satisfy (3.56) with [anjk , 0] and [0, bnjk ] in place of [anjk , bnjk ] respectively.

Consequently, equation (3.56) also holds in this case. Therefore, equation (3.23) follows.

Next, consider the case when tn satisfies (3.24). Choose a sequence (hn)∞n=1 for which

ρ
2/3
n

β
8/9
n

� hn �
ρn
βn
. (3.57)
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Let

rn = tn − tn(zn)− hn. (3.58)

Note that rn � ρn/βn. By Remark 27, for every subsequence (nj)
∞
j=1, we can choose a

sub-subsequence (njk)
∞
k=1 such that assumptions (3.9) and (3.10) hold when Yn(0) and Zn(0)

are replaced by Ynjk (rnjk ) and Znjk (rnjk ). By using the Markov property at time rnjk and

applying the previous argument, there exists a further sub-subsequence (njkm )∞m=1 such that

equation (3.56) holds with Znjkm
(rnjkm

) in place of Z(0). As a result, we have for any

0 < κ < 1,

lim
n→∞

P

(
1− κ
Ai′(γ1)2

e−ρnL
∗
nZn(rn)

∫
[an,bn]∩(−∞,L∗n]

1√
2πtn(y)

egn(y)dy ≤ Ntn,n

(
[an, bn]

)
≤ 1 + κ

Ai′(γ1)2
e−ρnL

∗
nZn(rn)

∫
[an,bn]∩(−∞,L∗n]

1√
2πtn(y)

egn(y)dy

)
= 1. (3.59)

Note that equation (3.59) holds for all choices of (tn)∞n=1 satisfying (3.24) and (hn)∞n=1 satis-

fying (3.57). Thus for every (zn)∞n=1 satisfying (3.18), (tn)∞n=1 satisfying (3.24) and any two

sequences (h1,n)∞n=1, (h2,n)∞n=1 satisfying (3.57), we have

lim
n→∞

P

(
1− κ
1 + κ

Zn(r1,n) ≤ Zn(r2,n) ≤ 1 + κ

1− κ
Zn(r1,n)

)
= 1, (3.60)

where ri,n = tn− tn(zn)−hi,n for i = 1, 2. Choose (z∗n)∞n=1 satisfying (3.18), (t∗n)∞n=1 satisfying

(3.24) and (h1,n)∞n=1, (h2,n)∞n=1 satisfying (3.57) such that

tn − tn(zn) = t∗n − tn(z∗n)− h1,n, tn − tn(zn)− hn = t∗n − tn(z∗n)− h2,n.

For example, for any sequence of (h1,n)∞n=1 satisfying (3.57), we can take z∗n = zn, t∗n = tn+h1,n

and h2,n = h1,n + hn. By (3.58) and (3.60), we have

lim
n→∞

P

(
1− κ
1 + κ

Zn
(
tn − tn(zn)

)
≤ Zn(rn) ≤ 1 + κ

1− κ
Zn
(
tn − tn(zn)

))
= 1. (3.61)

87



Finally, equation (3.25) follows from (3.59) and (3.61). 2

Remark 28. The argument leading to (3.61) can be modified to show that for tn � ρn/βn

and hn � ρn/βn, as n→∞,

Zn(tn)

Zn(tn + hn)
→p 1. (3.62)

To see this, note that we can choose (z∗n)∞n=1 satisfying (3.18), (t∗n)∞n=1 satisfying (3.24), and

(h1,n)∞n=1 and (h2,n)∞n=1 satisfying (3.57) such that

tn = t∗n − tn(z∗n)− h1,n, tn + hn = t∗n − tn(z∗n)− h2,n.

For example, we can take (h2,n)∞n=1 to be any sequence satisfying (3.57) and (z∗n)∞n=1 to be

any sequence satisfying (3.18) such that tn(z∗n) � ρn/βn. Then we let h1,n = h2,n + hn and

t∗n = tn + tn(z∗n) + h1,n. Letting ri,n = t∗n − tn(z∗n)− hi,n for i = 1, 2, equation (3.62) follows

from (3.60).

As a byproduct of the proof of Theorem 21, the following lemma shows that the

number of particles in any given interval will not change much on a time scale shorter than

ρn/βn.

Lemma 29. Suppose (3.1), (3.2), (3.3), (3.9) and (3.10) hold. For every sequence

{[an, bn]}∞n=1 satisfying (3.14)-(3.16), define zn according to (3.17). Suppose

ρ
2/3
n

β
8/9
n

� tn − tn(zn) .
ρn
βn
,

ρ
2/3
n

β
8/9
n

� t′n − tn(zn) .
ρn
βn
. (3.63)

If

|tn − t′n| �
ρn
βn
, (3.64)

then as n→∞,

Ntn,n([an, bn])

Nt′n,n([an, bn])
→p 1. (3.65)
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Proof of Lemma 29. First, we consider the case ρ
2/3
n /β

8/9
n � tn − tn(zn) � ρn/βn. From

(3.64), we also have ρ
2/3
n /β

8/9
n � t′n − tn(zn) � ρn/βn. Therefore, both Ntn,n([an, bn]) and

Nt′n,n([an, bn]) satisfy (3.23) and equation (3.65) follows.

It remains to consider the case tn − tn(zn) � ρn/βn. By (3.64), we also have t′n −

tn(zn) � ρn/βn. Then both Ntn,n([an, bn]) and Nt′n,n([an, bn]) satisfy (3.25). As a result,

equation (3.65) follows from (3.25) and (3.62). 2

3.2.3 Proof of Corollary 22

In this subsection, we show how to obtain Corollary 22 from Theorem 21. We first

recall that Proposition 2.2 in [75] proves that if

ρ
2/3
n

β
8/9
n

� tn − tn(0)� ρn
βn
, (3.66)

then for all κ > 0,

lim
n→∞

P

(
1− κ
Ai′(γ1)2

e−ρ
3
n/3βnZn(0) ≤ Ntn,n ≤

1 + κ

Ai′(γ1)2
e−ρ

3
n/3βnZn(0)

)
= 1. (3.67)

Equation (3.67) also follows from (3.23) with an = −∞ and bn = ∞, once it is established

that for n sufficiently large, we have

1− η < e−ρ
3
n/6βn

∫ L∗n

−∞

1√
2πtn(y)

egn(y)dy < 1 + η. (3.68)

One can obtain (3.158) by comparing the density fn defined in the statement of Corollary

22 to the Gaussian density fGn defined in (3.30). We omit the details.

Proof of Corollary 22. By applying the same argument leading to (3.25) in the proof of

89



Theorem 21, equation (3.67) implies that if tn − tn(0) � ρn/βn, then

lim
n→∞

P

(
1− κ
Ai′(γ1)2

e−ρ
3
n/3βnZn

(
tn − tn(0)

)
≤ Ntn,n ≤

1 + κ

Ai′(γ1)2
e−ρ

3
n/3βnZn

(
tn − tn(0)

))
= 1.

(3.69)

If

ρ
2/3
n

β
8/9
n

� tn − tn(zn)� ρn
βn
,

ρ
2/3
n

β
8/9
n

� tn − tn(0)� ρn
βn
,

then by (3.23) and (3.67), we have for any κ > 0

lim
n→∞

P

(
1− κ
1 + κ

< Dn <
1 + κ

1− κ

)
= 1. (3.70)

Thus, the sequence (Dn)∞n=1 is tight. If

tn − tn(zn) � ρn
βn
,

ρ
2/3
n

β
8/9
n

� tn − tn(0)� ρn
βn
,

then by (3.25) and (3.67), we have for any κ > 0,

lim
n→∞

P

(
1− κ
1 + κ

Zn(tn − tn(zn))

Zn(0)
< Dn <

1 + κ

1− κ
Zn(tn − tn(zn))

Zn(0)

)
= 1. (3.71)

Note that Zn(0) satisfies (3.10) and Zn(tn − tn(zn)) also satisfies (3.10) by Remark 27.

Equation (3.71) thus implies that (Dn)∞n=1 is tight. The remaining two cases

ρ
2/3
n

β
8/9
n

� tn − tn(zn)� ρn
βn
, tn − tn(0) � ρn

βn
,

and

tn − tn(zn) � ρn
βn
, tn − tn(0) � ρn

βn
,

follow by essentially the same argument as the second case, using (3.69) in place of (3.67).

If 0 ∈ [an, bn], then (3.70) holds true and thus Dn → 1 in probability as n→∞. 2
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3.3 Proof of Propositions 23, 24, 25, and 26

In this section, we give the main arguments in the proofs of Propositions 23, 24, 25,

and 26. We defer the proofs of several technical lemmas until Section 3.4 and the proof of

the second moment estimates until Section 3.5.

3.3.1 A review of results from [75]

In this subsection, we will collect some of the results in [75] that will be used in the

proofs. Suppose (3.9) and (3.10) hold.

3.1.1 Lemma 6.1 in [75] shows that

lim
r→∞

e−r
3/3

∫ ∞
0

er(γ1+z)Ai(γ1 + z)dz = 1. (3.72)

Based on equations (6.5), (6.6) and Lemma 6.1 in [75], for any η > 0, there exists a

constant C5 ≥ 2 sufficiently large such that

(
1− η

2

)
eC

3
5/6 ≤

∫ ∞
0

e2−1/3C5(γ1+y)Ai(γ1 + y)dy ≤ (1 + η)eC
3
5/6, (3.73)

and

e−C
3
5/6

(1 + η)
√

2π

Ai′(γ1)2

∫ ∞
0

Ai(γ1 + y)dy < η (3.74)

hold. Furthermore, there exists a constant C6 ≥ −2−1/3γ1 sufficiently large such that

∫ ∞
21/3C6

e2−1/3C5(γ1+y)Ai(γ1 + y)dy <
η

2
eC

3
5/48. (3.75)

3.1.2 Fix A ∈ R. Define

LAn = Ln −
A

ρn
. (3.76)

Lemma 5.1 in [75] proves that there exists a constant C7 such that the probability
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that some particle that is to the right of LAn at time 0 has a descendant alive in the

population at time C7ρ
−2
n tends to 0 as n→∞. Moreover, according to the argument

leading to (5.9) in [75], for tn � ρn/βn, it follows that with probability tending to 1 as

n→∞, no particle that hits LAn before time tn −C7ρ
−2
n has descendants alive at time

tn.

3.1.3 Consider the process in which particles are killed upon hitting Ln. If this process starts

from a single particle at x, we denote the density of this process at time t by pLnt (x, y).

Lemma 2.5 in [75] implies that if x, y < Ln and

(2βn)1/6
(
(Ln − x)1/2 + (Ln − y)1/2

)
− 2−1/3β2/3

n tn → −∞, (3.77)

then there exits a constant C8 such that

pLntn (x, y) ≤ C4β
1/3
n eρnxAi((2βn)1/3(Ln−x)+γ1)e−ρnyAi((2βn)1/3(Ln−y)+γ1). (3.78)

Define

Hn(t) = Ln −
βnt

2

9
. (3.79)

Equation (5.5) in [75] states that if x ≤ Hn(tn), 0 ≤ ζn ≤ βntn/2 and β
−2/3
n � tn �

ρn/βn, then ∫ Ln

−∞
pLntn (x, y)e(ρn−ζn)ydy � eρnxe−β

2
nt

3
n/73. (3.80)

Equation (5.6) in [75] states that if x < Ln, 0 ≤ ζn ≤ βntn/2 and β
−2/3
n � tn � ρn/βn,

then ∫ Hn(tn)

−∞
pLntn (x, y)e(ρn−ζn)ydy � eρnxe−β

2
nt

3
n/73. (3.81)

3.1.4 Consider the process in which particles are killed upon hitting K. If the process starts

with a single particle at x < K, we denote by rKx,n(v) the rate at which particles hit K

at time v and rKx,n(u, t) the expected number of particles that are killed at K between
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times u and t. Then

rKx,n(u, t) =

∫ t

u

rKx,n(v)dv.

If K = Ln, then by (6.29) in [75], there exists a constant C9 such that

rLnx,n(v) ≤ C9(Ln − x)

v3/2
exp

(
ρnx− ρnLn −

(Ln − x)2

2v
− 2−1/3β2/3

n γ1v

)
. (3.82)

Furthermore, for K = LAn , define A− = max{−A, 0}. By Lemma 2.13 in [75], we have

for all x < Ln and 0 ≤ u < t,

rLnx,n(u, t) . eρnxe−ρnL
A
n e−β

2
nu

3/9+β2/3
n (t−u)e−ρnL

A
n eβnA−t/ρneρnxAi

(
(2βn)1/3(Ln−x)+γ1

)
.

(3.83)

3.1.5 Suppose

β−2/3 log1/3

(
ρ

β1/3

)
� tn �

ρn
βn
. (3.84)

Let f : R→ [0,∞) be a bounded measurable function. Define

Φn(f) =
∑

i∈Ntn,n

eρXi,n(tn)f
(
(2βn)1/3(Ln −Xi,n(tn))

)
. (3.85)

According to (5.8) in [75], we have for any κ > 0,

lim
n→∞

P

(
1− κ
Ai′(γ1)2

(∫ ∞
0

f(z)Ai(γ1 + z)

)
Zn(0) < Φn(f)

<
1 + κ

Ai′(γ1)2

(∫ ∞
0

f(z)Ai(γ1 + z)

)
Zn(0)

)
= 1. (3.86)

3.1.6 For β
−1/3
n � xn � β−1

n , consider the process started from a single particle at xn.

According to Lemma 2.14 in [75], there is a positive constant C10 such that for large

enough n, the probability that the process survives until time C10/(βnxn) is bounded

above by 2βnxn/α. Here, α is the constant appearing in assumption (3.3).
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3.3.2 Notation

Here we introduce one more piece of notation which will be used throughout the rest

of this chapter. Recall that c0,n = zn/L
∗
n. We denote

cn =
√

1− c0,n. (3.87)

We can now write

tn(zn) =
cnρn
βn

, L∗n − zn =
c2
nρ

2
n

2βn
. (3.88)

The notation c0,n and cn will be useful in simplifying expressions involving zn, L∗n − zn and

tn(zn). Therefore, we list some of the most useful formulas involving c0,n and cn below. We

see that for zn ∈ (L†n, L
∗
n),

− 5

4
< c0,n < 1, 0 < cn <

3

2
. (3.89)

We also have the following equivalent asymptotic expressions:

|1− cn| =
|c0,n|

1 + cn
� |c0,n|, (3.90)

|zn| &
√
ρn
βn
⇐⇒ |c0,n| &

β
1/2
n

ρ
3/2
n

, (3.91)

L∗n − zn �
1

β
1/3
n

⇐⇒ cn �
β

1/3
n

ρn
, (3.92)

zn − L†n �
1

β
1/3
n

⇐⇒ c0,n +
5

4
� β

2/3
n

ρ2
n

⇐⇒ 9

4
− c2

n �
β

2/3
n

ρ2
n

⇐⇒ 3

2
− cn �

β
2/3
n

ρ2
n

.

Moreover, if |zn| &
√
ρn/βn and zn satisfies assumption (3.18), then

|cnc0,n| &
β

1/2
n

ρ
3/2
n

. (3.93)
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Also if |zn| �
√
ρn/βn, then

cn � 1, |c0,n| �
β

1/2
n

ρ
3/2
n

. (3.94)

Table 3.2 might be helpful in keeping track of the asymptotic behavior of c0,n and cn.

Table 3.2: Asymptotic behavior of c0,n and cn

zn c0,n cn Other

|zn| �
√
ρn/βn |c0,n| � β

1/2
n /ρ

3/2
n cn � 1

zn &
√
ρn/βn,

L∗n − zn � β
−1/3
n

c0,n & β
1/2
n /ρ

3/2
n β

1/3
n /ρn � cn ≤ 1 cnc0,n & β

1/2
n /ρ

3/2
n

−zn &
√
ρn/βn,

zn − L†n � β
−1/3
n

|c0,n| & β
1/2
n /ρ

3/2
n 3/2− cn � β

2/3
n /ρ2

n |cnc0,n| & β
1/2
n /ρ

3/2
n

In the rest of this chapter, to lighten the burden of notation, we will usually omit the

subscript n in the notation. For example, we will write ρ in place of ρn, z in place of zn and

g(z) in place of gn(zn). However, it is important to keep in mind that these quantities do

depend on n.

3.3.3 Proof of Proposition 25

In this subsection, we will prove Proposition 25 using first and second moment esti-

mates. First, we have the following lemma which shows that y ∈ [z − l, z + l] satisfies the

restriction (3.18) with y in place of z.

Lemma 30. For every z satisfying (3.18), (3.46) and (3.47), choose l according to (3.49).

For all y ∈ [z − l, z + l], we have

L∗ − y � β−1/3 (3.95)
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and

y − L† � β−1/3. (3.96)

Next, we have the following lemmas which control the difference between t(z) and

t(y), and g(z) and g(y) for y ∈ [z − l, z + l].

Lemma 31. For every z satisfying (3.18), (3.46) and (3.47), choose l according to (3.49).

For all y ∈ [z − l, z + l], we have

|t(y)− t(z)| = o(β−2/3). (3.97)

Moreover, uniformly for all y ∈ [z − l, z + l],

lim
n→∞

t(y)

t(z)
= 1. (3.98)

Lemma 32. For every z satisfying (3.18), (3.46) and (3.47), choose l according to (3.49).

Then for all y ∈ [z − l, z + l], we have

|g(y)− g(z)| . 1. (3.99)

The following lemma controls the first moment.

Lemma 33. For every z satisfying (3.18), (3.46) and (3.47), choose l according to (3.49).

Let s ≥ 0 and

t = t(z)− s, x = L∗ − w, sy = t(y)− t(z) + s.

For all w ∈ R, s < t(z) and y ∈ R,

pt(x, y) ≤ 1√
2πt

exp

(
g(y)− ρw + βwsy −

β2

6
s3
y

)
. (3.100)
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Furthermore, if s � β−2/3, then for all |w| . β−1/3 and y ∈ [z − l, z + l],

pt(x, y) =
1√
2πt

exp

(
g(y)− ρw + βwsy −

β2

6
s3
y + o(1)

)
. (3.101)

A key step in the proof of Proposition 25 is the following second moment estimate.

Note that it is rare for a particle to drift to the right of L but once it does so, it will

generate a large number of descendants in the interval I at time t, which ruins the second

moment argument. Therefore, we need to consider a truncated second moment estimate

where particles are killed at L. For this process, we denote by NL
t (I) the number of particles

in the interval I at time t.

Lemma 34. Consider the process which starts from a single particle at x such that 0 ≤

L−x . β−1/3. For every z satisfying (3.18), (3.46) and (3.47), choose l according to (3.49).

Consider intervals I defined in (3.50). Suppose

s � β−2/3, t = t(z)− s.

Then for the process in which particles are killed upon hitting L, we have

E[NL
t (I)2] .

β2/3

ρ4
eρx+ρL−2ρL∗

(∫
I

1√
2πt(y)

eg(y)dy

)2

. (3.102)

To prove Proposition 25, we need one more technical lemma. Let η > 0. Choose

constants C5 ≥ 2 and C6 ≥ −2−1/3γ1 such that (3.73)-(3.75) hold. Then, C5 and C6 satisfy

(1− η)eC
3
5/6 ≤

∫ 21/3C6

0

e2−1/3C5(γ1+y)Ai(γ1 + y)dy ≤ (1 + η)eC
3
5/6. (3.103)

The next lemma is a slight generalization of Lemma 6.2 in [75].

Lemma 35. Suppose (3.9) and (3.10) hold. Let η > 0, and choose positive constants C5

and C6 such that (3.73)-(3.75) and (3.103) hold. Let s = C5β
−2/3 and u = t − t(z) + s for

97



all z. If

β−2/3 log1/3
( ρ

β1/3

)
� u� ρ

β
, (3.104)

then

lim
n→∞

P

(
1− 2η

Ai′(γ1)2
Z(0) ≤ exp

(
ρ2s

2
− β2s3

6

) ∑
j∈Nu

e(ρ−βs)Xj(u)1{L−C6β−1/3<Xj(u)<L}

≤ 1 + 2η

Ai′(γ1)2
Z(0)

)
= 1. (3.105)

Moreover, for every z satisfying (3.18), (3.46) and (3.47), choose l according to (3.49). For

every y ∈ [z − l, z + l], let sy = t(y)− t(z) + s and

Γy = exp

(
ρ2sy

2
−
β2s3

y

6

) ∑
j∈Nu

e(ρ−βsy)Xj(u)1{L−C6β−1/3<Xj(u)<L}. (3.106)

If (3.104) holds, then uniformly for all y ∈ [z − l, z + l],

lim
n→∞

P

(
1− 3η

Ai′(γ1)2
Z(0) ≤ Γy ≤

1 + 3η

Ai′(γ1)2
Z(0)

)
= 1. (3.107)

Lemmas 31, 33 and 35 will be proved in Section 3.4. Since the proof of Lemma 34

is rather technical and tedious, we defer it until Section 3.5. With the help of the above

lemmas, we will follow the same strategy as the proof of Proposition 2.2 of [75] to prove

Proposition 25.

Proof of Proposition 25. Let

s = C5β
−2/3, u = t− t(z) + s. (3.108)
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By (3.20), we have t− t(z) < u < t for n sufficiently large. For all y ∈ I, denote

sy = t(y)− t(z) + s.

By Lemma 31, for all y ∈ I, we see that sy = (C5± o(1))β−2/3 or equivalently, uniformly for

all y ∈ I,

lim
n→∞

β2/3sy = C5. (3.109)

Figure 3.3 might be helpful for keeping track of notation.

Time0 t− t(z) u t

Space

z

y

z + l

L

s

sy

Figure 3.3: Notation when z > 0

Recall that H(u) = L−βu2/9 by (3.79). For a particle i ∈ Nt, recall that {Xi(v), 0 ≤

v ≤ t} denotes its past trajectory. Define

S1 =
{
i ∈ Nt : Xi(u) ≤ H(u), Xi(v) < L for all v ∈ [0, u]

}
,

S2 =
{
i ∈ Nt : H(u) < Xi(u) ≤ L− C6β

−1/3, Xi(v) < L for all v ∈ [0, u]
}
,

S3 =
{
i ∈ Nt : L− C6β

−1/3 < Xi(u) < L,Xi(v) > L for some v ∈ (u, t)
}
,

S4 =
{
i ∈ Nt : L− C6β

−1/3 < Xi(u) < L,Xi(v) ≤ L for all v ∈ (u, t)
}
,

S5 = Nt \
(
S1 ∪ S2 ∪ S3 ∪ S4

)
.
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For j = 1, ..., 5, write

Θj =
∑
i∈Sj

1{Xi(t)∈I}.

Then

Nt(I) =
5∑
j=1

Θj.

We are going to show that the major contribution comes from Θ4, and Θ4 is concentrated

around its mean. Define (Ft, t ≥ 0) to be the natural filtration associated with the BBM

process.

Let us first consider Θ1. By inequality (3.100) and Tonelli’s theorem, we have

E[Θ1|Fu] =
∑
j∈Nu

∫
I
pt−u(Xj(u), y)1{∀v∈[0,u],Xj(v)<L}1{Xj(u)≤H(u)}dy

≤
∫
I

1√
2π(t− u)

exp

(
g(y)− ρL∗ +

ρ2sy
2
−
β2s3

y

6

)
×
∑
j∈Nu

e(ρ−βsy)Xj(u)1{∀v∈[0,u],Xj(v)<L}1{Xj(u)≤H(u)}dy. (3.110)

We denote by H1 the summation on the last line of (3.110). By (3.51), we have β−2/3 � u�

ρ/β. Furthermore, by equation (3.97), we see that 0 ≤ βsy � βu for all y ∈ I. Therefore,

by (3.81), we have for all y ∈ I,

E [H1|F0]� e−β
2u3/73Y (0). (3.111)

Since t− u = t(z)− s� β−2/3, equation (3.98) implies that uniformly for all y ∈ I,

lim
n→∞

t(y)

t− u
= 1. (3.112)

Also, for all y ∈ I, we see from (3.51) that

ρ2sy/2� β2u3. (3.113)
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Thus, from (3.110)–(3.113), we have

E[Θ1|F0]� e−ρL
∗−β2u3/74Y (0)

∫
I

1√
2πt(y)

eg(y)dy.

Then by the conditional Markov’s inequality, we can deduce that for any η > 0, if n is

sufficiently large,

P

(
Θ1 > ηe−ρL

∗
Z(0)

∫
I

1√
2πt(y)

eg(y)dy

∣∣∣∣F0

)
≤ Y (0)

ηZ(0)
e−β

2u3/74.

Based on assumptions (3.9) and (3.10), we have that for any η > 0,

lim
n→∞

P

(
Θ1 > ηe−ρL

∗
Z(0)

∫
I

1√
2πt(y)

eg(y)dy

)
= 0. (3.114)

We next consider Θ2. By (3.100) and Tonelli’s theorem again, we get

E[Θ2|F0] ≤
∫
I

1√
2π(t− u)

exp

(
g(y)− ρL∗ +

ρ2sy
2
−
β2s3

y

6

)
× E

[∑
j∈Nu

e(ρ−βsy)Xj(u)1{∀v∈[0,u],Xj(v)<L}1{H(u)<Xj(u)≤L−C6β−1/3}

∣∣∣∣F0

]
dy.

(3.115)

We can separate the expectation in the integrand into two parts by writing

E

[∑
j∈Nu

e(ρ−βsy)Xj(u)1{∀v∈[0,u],Xj(v)<L}1{H(u)<Xj(u)≤L−C6β−1/3}

∣∣∣∣F0

]

= E

[∑
j∈Nu

e(ρ−βsy)Xj(u)1{∀v∈[0,u],Xj(v)<L}1{Xj(0)≤H(u)}1{H(u)<Xj(u)≤L−C6β−1/3}

∣∣∣∣F0

]

+ E

[∑
j∈Nu

e(ρ−βsy)Xj(u)1{∀v∈[0,u],Xj(v)<L}1{H(u)<Xj(0)<L}1{H(u)<Xj(u)≤L−C6β−1/3}

∣∣∣∣F0

]

=: E[H2|F0] + E[H3|F0]. (3.116)
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Note that when H(u) < x < L and H(u) < y < L− C6β
−1/3,

(2β)1/6
(
(L− x)1/2 + (L− y)1/2

)
≤ (2β)1/6 · 2 · (L−H(u))1/2 = 27/63−1β2/3u.

Since 27/63−1 < 2−1/3 and β2/3u � 1, equation (3.77) is satisfied. Thus, in (3.116), we can

upper bound the first expectation by (3.80) and upper bound the second expectation by

(3.78). We have that for all y ∈ I,

E[H2 +H3|F0] ≤ e−β
2u3/73Y (0) + C8Z(0)

∫ L−C6β−1/3

H(u)

e−βsyvβ1/3Ai
(

(2β)1/3(L− v) + γ1

)
dv.

(3.117)

Substituting v with L− (2β)−1/3r, by (3.75) and (3.109), we have for n sufficiently large, for

all y ∈ I,

∫ L−C6β−1/3

H(u)

e−βsyvβ1/3Ai
(

(2β)1/3(L− v) + γ1

)
dv

≤ 2−1/3e−ρ
2sy/2

∫ ∞
21/3C6

e2−1/3β2/3sy(γ1+r)Ai(γ1 + r)dr

≤ (1 + η)2−1/3e−ρ
2sy/2

∫ ∞
21/3C6

e2−1/3C5(γ1+r)Ai(γ1 + r)dr

≤ (1 + η)2−1/3e−ρ
2sy/2

η

2
eC

3
5/48. (3.118)

Combining the above formula with (3.115) and (3.117), we have

E[Θ2|F0] ≤ e−β
2u3/73Y (0)e−ρL

∗
∫
I

1√
2π(t− u)

exp

(
g(y) +

ρ2sy
2
−
β2s3

y

6

)
dy

+
C8η(1 + η)

24/3
Z(0)e−ρL

∗
∫
I

1√
2π(t− u)

exp

(
g(y)−

β2s3
y

6
+
C3

5

48

)
dy.

By (3.113), if n is sufficiently large, then for all y ∈ I,

ρ2sy
2
− β2u3

73
≤ −β

2u3

74
. (3.119)
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Also note that for n large enough, β2s3
y/6 ≥ C3

5/48 for all y ∈ I. Then by (3.112), we obtain

that for n sufficiently large

E[Θ2|F0] ≤
(
e−β

2u3/74Y (0) +
C8η(1 + η)

24/3
Z(0)

)
e−ρL

∗
∫
I

1√
2πt(y)

eg(y)dy.

By (3.51), we have u � ρ2/3/β8/9, and therefore (3.9) and (3.10) imply that

e−β
2u3/74Y (0)/Z(0)→p 0. Thus, by the conditional Markov’s inequality,

lim sup
n→∞

P

(
Θ2 > η1/2e−ρL

∗
Z(0)

∫
I

1√
2πt(y)

eg(y)dy

)
≤ C8η

1/2(1 + η)

24/3
. (3.120)

We now consider Θ3 and Θ4. According to (3.101), (3.112) and Tonelli’s theorem,

there is a sequence of Fu-measurable random variables {θn}∞n=1 which converges uniformly

to 0 as n goes to infinity such that

E[Θ3 + Θ4|Fu] = (1 + θn)

∫
I

1√
2πt(y)

exp

(
g(y)− ρL∗ +

ρ2sy
2
−
β2s3

y

6

)
×
∑
j∈Nu

e(ρ−βsy)Xj(u)1{L−C6β−1/3<Xj(u)<L}dy.

We can deduce from (3.107) that

lim
n→∞

P

(
1− 4η

Ai′(γ1)2
e−ρL

∗
Z(0)

∫
I

1√
2πt(y)

eg(y)dy ≤ E[Θ3 + Θ4|Fu]

≤ 1 + 4η

Ai′(γ1)2
e−ρL

∗
Z(0)

∫
I

1√
2πt(y)

eg(y)dy

)
= 1. (3.121)

Next, we will estimate Θ3 and Θ4 individually. Note that Θ3 accounts for particles that

reach L between times u and t and then drift back to I. Consider a process which starts

from a single particle at L−C6β
−1/3 < x < L. Suppose we kill particles upon hitting L. For

v ∈ [0, t − u], recall rLx (v) is the rate at which particles hit L at time v. We further denote

by mz(v) the expected number of descendants in I at time t of a particle that reaches L at
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time u+v. Consider the process in which there is one particle at x at time u without killing.

Then the expected number of particles in I at time t whose trajectories cross L between

times u and t is ∫ t−u

0

rLx (v)mz(v)dv.

From the definition of mz(v), we have

mz(v) =

∫
I
pt−u−v(L, y)dy.

Setting w = (2β)−1/3γ1 and substituting s+ v in place of s in equation (3.100), we have

mz(v) ≤
∫
I

1√
2π(t− u− v)

exp

(
g(y)− ρ(2β)−1/3γ1 + β(2β)−1/3γ1

(
t(y)− (t− u− v)

)
− β2

6

(
t(y)− (t− u− v)

)3
)
dy. (3.122)

Note that t(y)− (t− u− v) = sy + v. Combining (3.122) with (3.82), we have

rLx (v)mz(v) ≤ C9(L− x)

v3/2

1√
2π(t− u− v)

∫
I

exp

(
ρx− ρL∗ − (L− x)2

2v
+ g(y)

+ 2−1/3β2/3γ1sy −
β2

6
(sy + v)3

)
dy.

We are going to deal with the terms involving sy by using an argument similar to the one

leading to (3.118). Notice that (sy + v)3 ≥ s3
y. By (3.109), the dominated convergence

theorem and Tonelli’s theorem, for n large enough, we obtain

∫ t−u

0

rLx (v)mz(v)dv

≤ C9(1 + η)√
2π

exp

(
ρx− ρL∗ + 2−1/3β2/3γ1s−

β2s3

6

)∫
I
eg(y)

×
(∫ (t−u)/2

0

L− x
v3/2

1√
(t− u− v)

exp

(
− (L− x)2

2v

)
dv +

∫ t−u

(t−u)/2

L− x
v3/2

1√
t− u− v

dv

)
.

(3.123)
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Lemma 4.1 in [75] states that for a > 0 and b > 0,

∫ ∞
0

1

v3/2
e−b

2/avdv =

√
πa

b
.

Thus we have

∫ (t−u)/2

0

L− x
v3/2

1√
(t− u− v)

exp

(
− (L− x)2

2v

)
dv

≤
√

2

t− u

∫ ∞
0

L− x
v3/2

exp

(
− (L− x)2

2v

)
dv

=
2
√
π√

t− u
. (3.124)

Noticing that L− x ≤ C6β
−1/3 �

√
t− u, we see that for n sufficiently large

∫ t−u

(t−u)/2

L− x
v3/2
√
t− u− v

dv ≤ 23/2(L− x)

(t− u)3/2

∫ t−u

(t−u)/2

1√
t− u− v

dv =
4(L− x)

t− u
≤ 1√

t− u
.

(3.125)

By equations (3.112), (3.123), (3.124) and (3.125), since γ1 < 0, we have for n large enough,

∫ t−u

0

rLx (v)mz(v)dv

≤
(
2
√
π + 1

)
C9(1 + η) exp

(
ρx− ρL∗ + 2−1/3β2/3γ1s−

β2s3

6

)∫
I

1√
2πt(y)

eg(y)dy

≤
(
2
√
π + 1

)
C9(1 + η) exp

(
ρx− ρL∗ − β2s3

6

)∫
I

1√
2πt(y)

eg(y)dy.

Summing over all particles at time u, we have for n large enough

E[Θ3|Fu] ≤
(
2
√
π + 1

)
C9(1 + η)Y (u) exp

(
− ρL∗ − β2s3

6

)∫
I

1√
2πt(y)

eg(y)dy. (3.126)

Furthermore, equation (6.31) in [75] states that

lim
n→∞

P

(
Yn(u) <

1 + η

Ai′(γ1)2
Zn(0)

∫ ∞
0

Ai(γ1 + z)dz

)
= 1. (3.127)
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Recall that s = C5β
−2/3. Combining (3.126) with (3.74) and (3.127), we have

lim
n→∞

P

(
E[Θ3|Fu] ≥

(√
2 +

1√
2π

)
C9η(1 + η)e−ρL

∗
Z(0)

∫
I

1√
2πt(y)

eg(y)dy

)
= 0. (3.128)

By the conditional Markov’s inequality,

lim sup
n→∞

P

(
Θ3 > η1/2e−ρL

∗
Z(0)

∫
I

1√
2πty

eg(y)dy

)
≤
(√

2 +
1√
2π

)
C9η

1/2(1 + η). (3.129)

Next, we are going to show that Θ4 is concentrated around its mean. By (3.121) and

(3.128), letting

C(η) = 4η +
(√

2 +
1√
2π

)
C9η(1 + η)Ai′(γ1)2,

we see that

lim
n→∞

P

(
E[Θ4|Fu] ≥

1− C(η)

Ai′(γ1)2
e−ρL

∗
Z(0)

∫
I

1√
2πt(y)

eg(y)dy

)
= 1. (3.130)

Considering the process in which particles are killed upon hitting L, we can bound the

conditional variance of Θ4 by Lemma 34. We get

Var(Θ4|Fu) ≤
∑
j∈Nu

EXj(u)

[
NL
t (I)2

]
1{L−C6β−1/3<Xj(u)<L}

.
∑
j∈Nu

β2/3

ρ4
eρXi(u)+ρL−2ρL∗

(∫
I

1√
2πt(y)

eg(y)dy

)2

1{L−C6β−1/3<Xj(u)<L}

≤ β2/3

ρ4
e−2ρL∗+ρLY (u)

(∫
I

1√
2πt(y)

eg(y)dy

)2

.

Then by Chebyshev’s inequality,

P

(∣∣∣Θ4 − E[Θ4|Fu]
∣∣∣ > ηe−ρL

∗
Z(0)

∫
I

1√
2πt(y)

eg(y)dy

∣∣∣∣Fu) ≤ β2/3eρL

η2ρ4

Y (u)

Z(0)2
. (3.131)
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On account of (3.10) and (3.127), as n→∞,

β2/3eρL

ρ4

Y (u)

Z(0)2
→p 0. (3.132)

As a result, by equations (3.121), (3.130), (3.131) and (3.132), we obtain

lim
n→∞

P

(∣∣∣∣Θ4 −
1

Ai′(γ1)2
e−ρL

∗
Z(0)

∫
I

1√
2πt(y)

eg(y)dy

∣∣∣∣
≤
(
η +

C(η)

Ai′(γ1)2

)
e−ρL

∗
Z(0)

∫
I

1√
2πt(y)

eg(y)dy

)
= 1.

(3.133)

It remains to consider Θ5. Define S∗5 to be the set consists of particles whose trajec-

tories cross L before time u, so

S∗5 =
{
i ∈ Nt : Xi(v) ≥ L for some v ∈ [0, u]

}
.

We observe that S5 ⊆ S∗5 . Note that u + 2C7ρ
−2 ≤ t since t − u = t(z) − s � β−2/3 by

(3.20). According to 3.1.2, the probability that particles that either are to the right of L at

time 0 or hit L before time u have descendants alive at time t goes to 0 as n goes to infinity.

Therefore,

lim
n→∞

P (Θ5 = 0) = 1. (3.134)

Consequently, for any κ > 0, by choosing η appropriately, equation (3.52) follows

from (3.114), (3.120), (3.129), (3.133) and (3.134). 2

3.3.4 Proof of Proposition 26

In this subsection, we will prove Proposition 26 with the help of Proposition 25.

Before starting the proof, we need two more lemmas to control the number of particles that

are far away from z.
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Lemma 36. Consider z such that (3.18) holds and |z| &
√
ρ/β. For any η > 0, there exists

a constant C11 large enough such that for

d =
C11

|c0|ρ
, (3.135)

the following hold:

1. The constant satisfies

C11 > 4, e−C11/2 < η. (3.136)

2. If z > 0 for all n, then for n sufficiently large

∫ L∗

z+d

1√
2πt(y)

eg(y)dy < η

∫ z+d

z

1√
2πt(y)

eg(y)dy. (3.137)

3. If z < 0 for all n, then for n sufficiently large

∫ z−d

−∞

1√
2πt(y)

eg(y)dy < η

∫ z

z−d

1√
2πt(y)

eg(y)dy. (3.138)

Since we expect that the density of the number of particles near y is roughly propor-

tional to eg(y)/
√

2πt(y), Lemma 36 indicates that most particles in [z, L∗] are in [z, z + d],

while most particles in (−∞, z] are in [z − d, z].

Suppose (3.18) holds and |z| &
√
ρ/β. For any η > 0, choose d according to Lemma

36. Note that (3.49) holds with d in place of l, and for l satisfying (3.53), we have 2d < l for

n sufficiently large. Denote

ζ =


z + 2d if z > 0,

z − 2d if z < 0,

Lemma 37. Consider z such that (3.47) holds and |z| &
√
ρ/β. Let

s � β−2/3, t = t(z)− s, x ≤ L.
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1. Suppose z > 0 for all n, and z satisfies (3.18). Choose d according to (3.135). For all

y ∈ [ζ,∞), we have for n sufficiently large,

pt(x, y) ≤ pt(x, ζ) exp

(
− ρ

2
(1− c)(y − ζ)

)
. (3.139)

2. Suppose z < 0 for all n. Write x = L∗−w. For all y, we have for n sufficiently large,

pt(x, y) ≤ 1√
2πt

exp

(
g(z)− (c− 1)ρ(z − y)− ρw + βsw − β2s3

6

)
. (3.140)

Furthermore, let sζ = t(ζ)− t(z) + s. If y ≤ ζ, then for n sufficiently large,

pt(x, y) ≤ 1√
2πt

exp

(
g(ζ)− (c− 1)ρ(ζ − y)− ρw + βsζw −

β2s3
ζ

6

)
. (3.141)

Proof of Proposition 26. Let us first consider the case |z| &
√
ρ/β. Define s, u and H(u) as

in (3.108) and (3.79). Denote

K =


[z, ζ] if z > 0,

[ζ, z] if z < 0.

Define

S1 =
{
i ∈ Nt : Xi(t) ∈ K

}
,

S2 =
{
i ∈ Nt \ S1 : Xi(v) ≥ L for some v ∈ [0, u]

}
,

S3 =
{
i ∈ Nt \ (S1 ∪ S2) : Xi(u) ≤ L− C6β

−1/3
}
,

S4 =
{
i ∈ Nt \ (S1 ∪ S2) : L− C6β

−1/3 < Xi(u) < L
}
.

For j = 1, ..., 4, write

Ξj =
∑
i∈Sj

1{Xi(t)∈J}.
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Then

Nt(J ) =
4∑
j=1

Ξj.

We will show that compared with Ξ1, the terms Ξ2, Ξ3 and Ξ4 are negligible.

We first consider Ξ1. Since 2d satisfies the restriction (3.49) in Proposition 25, ac-

cording to (3.52), (3.137) and (3.138)

lim
n→∞

P

(
1− η

(1 + η)Ai′(γ1)2
e−ρL

∗
Z(0)

∫
J

1√
2πt(y)

eg(y)dy ≤ Ξ1

≤ 1 + η

Ai′(γ1)2
e−ρL

∗
Z(0)

∫
J

1√
2πt(y)

eg(y)dy

)
= 1. (3.142)

For Ξ2, since u + C7ρ
−2 ≤ t, according to 3.1.2, the probability that particles that

either are to the right of L at time 0 or hit L before time u have descendants alive at time t

goes to 0 as n goes to infinity. Therefore,

lim
n→∞

P (Ξ2 = 0) = 1. (3.143)

It remains to consider Ξ3 and Ξ4. Let us first consider the case when z > 0. Recall

the definition of H1 in (3.110) and H2, H3 in (3.116). Since (3.49) holds with 2d in place of

l, by inequalities (3.100), (3.139) and Tonelli’s theorem, for n large enough, we have

E[Ξ3|Fu] =
∑
j∈Nu

∫ z+l

ζ

pt−u(Xj(u), y)1{∀v∈[0,u],Xj(v)<L}1{Xj(u)≤L−C6β−1/3}dy

≤
∑
j∈Nu

pt−u(Xj(u), ζ)1{∀v∈[0,u],Xj(v)<L}1{Xj(u)≤L−C6β−1/3}

∫ z+l

ζ

e−ρ(1−c)(y−ζ)/2dy

≤ 1√
2π(t− u)

exp

(
g(ζ)− ρL∗ +

ρ2sζ
2
−
β2s3

ζ

6

)∫ z+l

ζ

e−ρ(1−c)(y−ζ)/2dy

× (H1 +H2 +H3) (3.144)
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According to the choice of d, since c ∈ (0, 1) when z > 0, we have

2

ρ(1− c)
=

2(1 + c)

ρc0

≤ 4

ρc0

< d.

Also, by (3.98), uniformly for all y ∈ [z, ζ], we have t− u > t(y)/(1 + η) for sufficiently large

n. Combining this observation with the fact that g(y) is decreasing on (0, L∗) and (3.137),

we have

eg(ζ)√
2π(t− u)

∫ z+l

ζ

e−ρ(1−c)(y−ζ)/2dy ≤ 1√
2π(t− u)

2

ρ(1− c)
eg(ζ)

≤
∫ ζ

ζ−d

√
1 + η√
2πt(y)

eg(y)dy

≤ η
√

1 + η

∫
J∩(−∞,L∗]

1√
2πt(y)

eg(y)dy. (3.145)

Since (3.49) in Proposition 25 holds with 2d in place of l, equations (3.111), (3.117) and

(3.118) hold with sζ in place of sy. By (3.111), (3.117), (3.118), (3.144) and (3.145), along

with (3.119) with ζ in place of y, we get

E[Ξ3|F0] < η
√

1 + ηe−ρL
∗
(

2e−β
2u3/74Y (0) +

C8η(1 + η)

24/3
Z(0)

)∫
J∩(−∞,L∗]

1√
2πt(y)

eg(y)dy.

(3.146)

Therefore, equations (3.9), (3.10), (3.146) and the conditional Markov’s inequality imply

lim sup
n→∞

P

(
Ξ3 >

√
η(1 + η)e−ρL

∗
Z(0)

∫
J∩(−∞,L∗]

1√
2πt(y)

eg(y)dy

)
≤ C8η

3/2(1 + η)

24/3
.

(3.147)

As for Ξ4, according to the argument leading to (3.144), we have

E[Ξ4|Fu] ≤
1√

2π(t− u)
eg(ζ)−ρL

∗
∫ z+l

ζ

e−ρ(1−c)(y−ζ)/2dy × Γζ ,

where Γζ was defined in (3.106). By equations (3.107) and (3.145), and the conditional
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Markov’s inequality, we get

lim sup
n→∞

P

(
Ξ4 >

√
η(1 + η)e−ρL

∗
Z(0)

∫
J∩(−∞,L∗]

1√
2πt(y)

eg(y)dy

)
≤

(1 + 3η)
√
η

Ai′(γ1)2
. (3.148)

As a result, when z > 0, for any κ > 0, by choosing η appropriately, equation (3.55) follows

from (3.142), (3.143), (3.147) and (3.148).

When z < 0, by (3.141) and Tonelli’s theorem, for n large enough, we have

E[Ξ3|Fu] =
∑
j∈Nu

∫ ζ

z−l
pt−u(Xj(u), y)1{∀v∈[0,u],Xj(v)<L}1{Xj(u)≤L−C6β−1/3}dy

≤ 1√
2π(t− u)

exp

(
g(ζ)− ρL∗ +

ρ2sζ
2
−
β2s3

ζ

6

)∫ ζ

z−l
e−ρ(c−1)(ζ−y)dy

× (H1 +H2 +H3), (3.149)

where H1, H2, and H3 are defined as in (3.110) and (3.116) but with ζ in place of y. By

(3.98), uniformly for all y ∈ [ζ, z], we have t − u > t(y)/(1 + η) for sufficiently large n.

Combining this observation with the fact that g(y) is increasing on (−∞, 0), we have

eg(ζ)√
2π(t− u)

∫ ζ

z−l
e−ρ(c−1)(ζ−y)dy ≤ 1√

2π(t− u)

eg(ζ)

ρ(c− 1)
≤ 1

dρ(c− 1)

∫ ζ+d

ζ

√
1 + η√
2πt(y)

eg(y)dy.

(3.150)

By (3.89), (3.90) and (3.136), we see that

(c− 1)ρd =
(c− 1)C11

|c0|
=

C11

1 + c
>

4

1 + 3/2
=

8

5
. (3.151)

Also, by (3.138), we have

∫ ζ+d

ζ

1√
2πt(y)

eg(y) dy ≤
∫ z−d

−∞

1√
2πt(y)

eg(y) dy ≤ η

∫ z

z−d

1√
2πt(y)

eg(y) dy. (3.152)
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Therefore, by (3.150), (3.151) and (3.152), we obtain that for n sufficiently large,

eg(ζ)√
2π(t− u)

∫ ζ

z−l
e−ρ(c−1)(ζ−y)dy ≤ 5η

√
1 + η

8

∫
J∩(−∞,L∗]

1√
2πt(y)

eg(y)dy. (3.153)

Since 2d satisfies the restriction (3.49) in Proposition 25, equations (3.111), (3.117) and

(3.118) hold with sζ in place of sy. By (3.111), (3.117), (3.118), (3.149) and (3.153), we get

E[Ξ3|F0] <
5η
√

1 + η

8
e−ρL

∗
(

2e−β
2u3/74Y (0) +

C8η(1 + η)

24/3
Z(0)

)∫
J∩(−∞,L∗]

1√
2πt(y)

eg(y)dy.

(3.154)

Therefore, equations (3.9), (3.10), (3.154) and the conditional Markov’s inequality imply

lim sup
n→∞

P

(
Ξ3 >

5
√
η(1 + η)

8
e−ρL

∗
Z(0)

∫
J∩(−∞,L∗]

1√
2πt(y)

eg(y)dy

)
≤ C8η

3/2(1 + η)

24/3
.

(3.155)

As for Ξ4, according to the argument leading to (3.149), we have

E[Ξ4|Fu] ≤
1√

2π(t− u)
eg(ζ)−ρL

∗
∫ ζ

z−l
e−ρ(c−1)(z−y)dy × Γζ .

By equations (3.107) and (3.153), and the conditional Markov’s inequality, we get

lim sup
n→∞

P

(
Ξ4 >

5
√
η(1 + η)

8
e−ρL

∗
Z(0)

∫
J∩(−∞,L∗]

1√
2πt(y)

eg(y)dy

)
≤

(1 + 3η)
√
η

Ai′(γ1)2
.

(3.156)

As a result, when z < 0, for any κ > 0, by choosing η appropriately, equation (3.55) follows

from (3.142), (3.143), (3.155) and (3.156).

It remains to consider the case |z| �
√
ρ/β. Below we will only prove the result

under the scenario z > 0. The scenario when z < 0 can be proved using the same argument.
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The interval [z, z + l] can be divided into two intervals

[z, z + l] =
[
z, z +

√
ρ

β

]
∪
[
z +

√
ρ

β
, z + l

]
.

It is obvious that the first interval fits in the setting of Proposition 25. We further claim

that the second interval fits in the setting of the previous case. Indeed, according to Lemma

31, we know that

t(z)− t
(
z +

√
ρ

β

)
= o(β−2/3).

Thus (3.51) holds with z +
√
ρ/β in place of z. Also, letting c∗0 = (z +

√
ρ/β)/L∗, which is

the same as c0 but with z +
√
ρ/β in place of z, the length of the second interval satisfies

l −
√
ρ

β
�
√
ρ

β
� 1

c∗0ρ
.

According to Proposition 25 and the previous case, equation (3.52) holds with [z, z+
√
ρ/β]

in place of I and equation (3.55) holds with [z +
√
ρ/β, z + l] in place of J . Combining

these two equations, (3.55) follows. 2

Remark 38. Proposition 26 gives another proof for Equation (3.67) coming from [75]. Let

z = 0. Note that z satisfies (3.18), (3.46) and (3.47), and also the assumption (3.66) is

exactly the same as the assumption (3.66) in Proposition 26. Applying (3.55) to intervals

[0,∞) and (−∞, 0], we get for any η > 0,

lim
n→∞

P

(
1− η
Ai′(γ1)2

e−ρL
∗
Z(0)

∫ L∗

−∞

1√
2πt(y)

eg(y)dy ≤ Nt

≤ 1 + η

Ai′(γ1)2
e−ρL

∗
Z(0)

∫ L∗

−∞

1√
2πt(y)

eg(y)dy

)
= 1. (3.157)

We claim that for n sufficiently large,

(1− η)2 < e−ρ
3/6β

∫ L∗

−∞

1√
2πt(y)

eg(y)dy < (1 + η)2. (3.158)
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As a result, for any κ > 0, by choosing η appropriately, equations (3.157) and (3.158) implies

(3.67).

It remains to prove the claim. First, we choose a constant C7 large enough such that

(3.136), (3.137), (3.138) and

1− η <
∫ C7

−C7

1√
2π
e−y

2/2dy < 1 (3.159)

hold. By (3.137) and (3.138), we have for n sufficiently large,

∫ L∗

√
ρ/β

1√
2πt(y)

eg(y)dy < (1 + η)

∫ (1+C7/2)
√
ρ/β

√
ρ/β

1√
2πt(y)

eg(y)dy,

∫ −√ρ/β

−∞

1√
2πt(y)

eg(y)dy < (1 + η)

∫ −√ρ/β

−(1+C7/2)
√
ρ/β

1√
2πt(y)

eg(y)dy.

Thus, by (3.136), we get for n sufficiently large,

∫ C7

√
ρ/β

−C7

√
ρ/β

1√
2πt(y)

eg(y)dy <

∫ L∗

−∞

1√
2πt(y)

eg(y)dy < (1 + η)

∫ C7

√
ρ/β

−C7

√
ρ/β

1√
2πt(y)

eg(y)dy.

(3.160)

Next, we are going to show that eg(y)−ρ3/6β/
√

2πt(y) can be well approximated by fGn (y)

defined in (3.30) which comes from the Taylor expansions of g(y) and t(y) around 0.

Note that for 0 < x < 1, we have (1 − x)3/2 = 1 − 3x/2 + 3x2/8 + O(x3). For all

y ∈ [−C7

√
ρ/β, C7

√
ρ/β],

g(y)− ρ3

6β
+
βy2

2ρ
= ρ(L∗ − y)− ρ3

3β

(
1− y

L∗

)3/2

− ρ3

6β
+
βy2

2ρ

=
ρ3

3β
− ρy +

βy2

2ρ
− ρ3

3β

(
1− 3

2

y

L∗
+

3

8

( y
L∗

)2

+O

(( y3

L∗

)3
))

= O

(
β2

ρ3
y3

)
= o(1).
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Combining with (3.98), we get for n sufficiently large

(1− η)

∫ C7

√
ρ/β

−C7

√
ρ/β

fGn (y)dy < e−ρ
3/6β

∫ C7

√
ρ/β

−C7

√
ρ/β

1√
2πt(y)

eg(y)dy < (1 + η)

∫ C7

√
ρ/β

−C7

√
ρ/β

fGn (y)dy.

(3.161)

Observe that ∫ C7

√
ρ/β

−C7

√
ρ/β

fGn (y)dy =

∫ C7

−C7

1√
2π
e−y

2/2dy. (3.162)

The claim (3.158) follows from (3.159)–(3.162).

3.3.5 Proof of Proposition 23

In this subection, we will prove Proposition 23, which gives the maximal displacement

of the process. For any constant C2 ∈ R, define

A =


0 C2 > 0

1 C2 = 0

−2C2 C2 < 0

and C ′2 =


C2 C2 > 0

1 C2 = 0

−C2 C2 < 0.

(3.163)

The proof of Proposition 23 requires the following lemma which concerns the maximal dis-

placement of a slightly supercritical BBM with constant branching rate.

Lemma 39. Consider a BBM started from a single particle at LA. Each particle moves as

standard Brownian motion. Each particle independently dies at rate d(2L), and splits into

two particles at rate b(2L). Let M∗
t be the maximal position that is ever reached by a particle

before time t. For any constant C2 ∈ R, define C ′2 > 0 as in (3.163). There exists a constant

C12 such that if n is sufficiently large, then for all t,

P

(
M∗

t > LA +
C ′2
ρ

)
≤ C12ρ

2. (3.164)

Proof of Lemma 39. In this process, each individual lives for an exponentially distributed
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time with parameter b(2L) + d(2L), and then gives birth to 0 offspring with probability

d(2L)/(b(2L) + d(2L)) and 2 offspring with probability b(2L)/(b(2L) + d(2L)). Therefore,

the generating function for the offspring distribution is

f(s) =
d(2L)

b(2L) + d(2L)
+

b(2L)

b(2L) + d(2L)
s2.

Let B be the event of survival. By (3.3) and the formula for the survival probability of the

Galton-Watson process, there exists a constant C13 such that for all n,

P (B) =
b(2L)− d(2L)

b(2L)
≤ C13ρ

2.

For any time t, we get

P

(
M∗

t > LA +
C ′2
ρ

)
≤ P

(
M∗

t > LA +
C ′2
ρ

∣∣∣∣Bc

)
P (Bc) + P (B)

≤ P

(
M∗

t > LA +
C ′2
ρ

∣∣∣∣Bc

)
+ C15ρ

2. (3.165)

We are interested in the behavior of the process conditioned on the event Bc of extinction.

According to equation (4) of Gadag and Rajarshi [42], the conditioned process is equivalent

to a subcritical branching process with generating function

f̂(s) =
b(2L)f(sd(2L)/b(2L))

d(2L)
=

b(2L)

d(2L) + b(2L)
+

d(2L)

d(2L) + b(2L)
s2.

Thus, in the conditioned process, there is a single particle at LA at the beginning. Each

individual moves as standard Brownian motion. It lives for an exponentially distributed

time with parameter b(2L) + d(2L), and then gives birth to 0 offspring with probability

b(2L)/(b(2L) + d(2L)) and 2 offspring with probability d(2L)/(b(2L) + d(2L)). Consider a

critical branching process started from a single particle at LA. Each individual moves as

standard Brownian motion. Each particle lives for an exponentially distributed time with
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parameter b(2L) + d(2L), and then gives birth to 0 offspring with probability 1/2 and 2

offspring with probability 1/2. We observe that the right-most position that is ever reached

by particles up to time t in the conditioned process is stochastically dominated by the right-

most position that is ever reached by particles up to time t in the critical process. Letting

M be the all-time maximal displacement of the critical process, we have for all C2 > 0 and

all time t,

P

(
M∗

t > LA +
C ′2
ρ

∣∣∣∣Bc

)
≤ P

(
M > LA +

C ′2
ρ

)
(3.166)

According to equation (1.7) of Sawyer and Fleischman [79], we have for n large enough,

P

(
M > LA +

C ′2
ρ

)
≤ 6

(C ′2)2
ρ2. (3.167)

Letting C12 = C13 + 6/(C ′2)2, equations (3.165)-(3.167) imply (3.164). 2

Proof of Proposition 23. Let us first consider the case when

β−2/3 log1/3

(
ρ

β1/3

)
� t� ρ

β
.

We start with the proof of equation (3.32), which follows directly from results in [75]. For

any constant C1 > 0, define

f(x) =


1 x < 21/3C1

0 otherwise.

Define Φ(f) as in (3.85). By 3.1.5, we see that Φ(f) satisfies (3.86). For all C1 > 0 and
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0 < κ < 1, if n is sufficiently large, then

P

(
Mt ≥ L− C1

β1/3

)
= P

(
Φ(f) ≥ eρL−C1ρ/β1/3

)
≥ P

(
1− κ
Ai′(γ1)2

(∫ ∞
0

f(z)Ai(γ1 + z)dz

)
Z(0) ≥ eρL−C1ρ/β1/3

)
− κ

2
.

(3.168)

By (3.10), we have for n sufficiently large

P

(
1− κ
Ai′(γ1)2

(∫ ∞
0

f(z)Ai(γ1 + z)dz

)
Z(0) ≥ eρL−C1ρ/β1/3

)
≥ 1− κ

2
. (3.169)

Equation (3.32) follows from (3.168) and (3.169).

We next prove equation (3.33) under the additional assumption that the birth rate

function b(x) is non-decreasing and the death rate function d(x) is non-increasing. For any

constant C2, define A and C ′2 as in (3.163). We divide particles at time t into the following

categories:

S1 =
{
i ∈ Nt : Xi(v) < LA for all v ∈ [0, t]

}
,

S2 =
{
i ∈ Nt \ S1 : Xi(v) ≥ LA for some v ∈ [0, t− C7ρ

−2]
}
,

S3 = Nt \ (S1 ∪ S2).

For j = 1, 2, 3, write

M
Sj
t = max

{
Xi(t), i ∈ Sj

}
.

Note that

Mt = max
{
MS1

t ,MS2
t ,MS3

t

}
. (3.170)

For S1, it is obvious that for all constants C2,

P

(
MS1

t ≤ L+
C2

ρ

)
= P

(
MS1

t ≤ LA +
C ′2
ρ

)
= 1. (3.171)
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For S2, according to 3.1.2, with probability tending to 1, particles that either are to

the right of LA at time 0 or hit LA before time t−C7ρ
−2 will not have descendants alive at

time t. Thus for all constant C2,

lim
n→∞

P

(
MS2

t ≤ L+
C2

ρ

)
≥ lim

n→∞
P (S2 = 0) = 1. (3.172)

It remains to deal with S3, which consists of particles whose trajectories cross LA in

the last C7ρ
−2 units of time. Consider the process in which particles are killed upon hitting

LA. Let R be the number of particles that first hit LA between t−C7ρ
−2 and t. We denote

by {ri}Ri=1 the sequence of hitting times. For the process started from a single particle at x,

recall that rL
A

x (u, t) is the expected number of particles hitting LA between time u and t.

By (3.83), taking all the particles at time 0 into consideration, we have

E[R|F0] =
∑
i∈N0

rL
A

Xi(0)

(
t− C7

ρ2
, t

)
. exp

(
−ρLA− β

2(t− C7ρ
−2)3

9

)
Y (0)+

C7

ρ2
β2/3e−ρL

A

Z(0).

From (3.9) and (3.10), it now follows that for any κ > 0, there exists a constant C14 such

that for n sufficiently large,

P

(
E[R|F0] < C14

β

ρ3

1

ρ2

)
> 1− κ

4
.

Thus by the conditional Markov’s inequality, we have for n sufficiently large,

P

(
R > C14

β2/3

ρ2

1

ρ2

)
≤ E

[
E[R|F0]

C14β2/3ρ−4
1{E[R|F0]<C14β/ρ5}

]
+ P

(
E[R|F0] ≥ C14

β

ρ3

1

ρ2

)
<
κ

2
.

(3.173)

Therefore, with probability at least 1− κ/2, the number of particles that hit LA in the last

C7ρ
−2 unit of time is at most C14β

2/3/ρ4, which is o(ρ−2).

For every i = 1, ..., R, we consider three BBMs. All three processes start from a single

particle at LA at time ri. The first process has inhomogeneous birth rate b(x) and death
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rate d(x). Each particle moves as Brownian motion with drift −ρ. The second process is

constructed based on the first process with the extra restriction that particles are killed upon

hitting 2L. To be more precise, in the second process, particles give birth at rate b(x) and

die at rate d(x). Particles move as Brownian motion with drift −ρ and are absorbed at 2L.

In the third process, the birth rate is the constant b(2L) and the death rate is the constant

d(2L). Each particle moves as standard Brownian motion. We denote by M̄t−ri , M̄
2L
t−ri and

M∗
t−ri the maximal positions that are ever reached by particles before time t in the three

processes respectively. Because of the monotonicity of b(x) and d(x), we observe that M∗
t−ri

stochastically dominates M̄2L
t−ri . By Lemma 39, we have for sufficiently large n,

P

(
M̄2L

t−ri > LA +
C ′2
ρ

)
≤ P

(
M∗

t−ri > LA +
C ′2
ρ

)
≤ C12ρ

2.

Note that LA + C ′2/ρ < 2L for n sufficiently large. Thus, if M̄2L
t−ri ≤ LA + C ′2ρ

−1, then the

first process is identical to the second process up to time t − ri. Therefore, for sufficiently

large n,

P

(
M̄t−ri > L+

C2

ρ

)
= P

(
M̄t−ri > LA +

C ′2
ρ

)
= P

(
M̄2L

t−ri > LA +
C ′2
ρ

)
≤ C12ρ

2. (3.174)

Combining (3.173) with (3.174), for any κ > 0, we have for n sufficiently large,

P

(
MS3

t > L+
C2

ρ

)
≤ κ

2
+ C14

β2/3

ρ2

1

ρ2
· C12ρ

2 <
3κ

4
. (3.175)

As a result, equation (3.33) follows from (3.170), (3.171), (3.172) and (3.175).

Now let us consider the case when t satisfies (3.31). It suffices to show that for every

subsequence (nj)
∞
j=1, there exists a sub-subsequence (njk)

∞
k=1, such that

lim
k→∞

P

(
Mtnjk

,njk
≥ Lnjk −

C1

β
1/3
njk

)
= 1 (3.176)
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and under the additional assumption on the birth rate and the death rate,

lim
k→∞

P

(
Mtnjk

,njk
≤ Lnjk +

C2

ρnjk

)
= 1. (3.177)

By (3.31), given a subsequence (nj)
∞
j=1, we can choose a sub-subsequence (njk)

∞
k=1 for which

lim
k→∞

βnjk tnjk
ρnjk

= τ ∈ [0,∞).

If τ = 0, then according to the previous argument, (3.176) and (3.177) hold. If τ > 0, choose

times (vnjk )∞k=1 for which

β−2/3
njk

log1/3

(
ρnjk

β
1/3
njk

)
� vnjk �

ρnjk
βnjk

.

Let rnjk = tnjk − vnjk . By Remark 27, assumptions (3.9) and (3.10) hold with Ynjk (rnjk ) and

Znjk (rnjk ) in place of Z(0) and Y (0) respectively. Replacing Y (0) and Z(0) by Ynjk (rnjk )

and Znjk (rnjk ), the previous argument also works. Therefore, equations (3.176) and (3.177)

also hold in this case. Equation (3.34) follows from (3.32) and (3.33). 2

3.3.6 Proof of Proposition 24

In this subsection, we will prove Proposition 24, which gives the position of the left-

most particle of the process. Denote

t1 = t− 2C10

ρ2
, t2 = t+

2C10

ρ2
,

where C10 is defined in 3.1.6. We have the following lemma which controls the number of

particles below L̄ at any time between t1 and t2.

Lemma 40. Suppose

ρ2/3

β8/9
� t− t(L̄)� ρ

β
. (3.178)

122



For any ε > 0, if n is sufficiently large, then

P

(
Nt1

(
(−∞, L̄)

)
≤ 1

ρ2

β3/4

ρ9/4

)
> 1− ε. (3.179)

Moreover, for any ε > 0, if n is sufficiently large, then there exists an event B ∈ Ft1

satisfying

P (B) > 1− ε (3.180)

such that

E

[ ∫ t2

t1

Nr

(
(−∞, L̄)

)
dr · 1B

]
≤ 1

ρ4

β3/4

ρ9/4
. (3.181)

Proof of Lemma 40. Define s as in (3.108) and

u = t2 − t(L̄) + s = t− t(L̄) +
2C10

ρ2
+

C5

β2/3
.

Since 2C10ρ
−2 + C5β

−2/3 � ρ/β, by (3.178), we have ρ2/3/β8/9 � u � ρ/β. For any

r ∈ [t1, t2], define

sr = s− r + t2.

Note that

sr � s, r − u = t(L̄)− sr. (3.182)

For every r ∈ [t1, t2], denote

S1(r) = {i ∈ Nr : ∃v ∈ [0, u], Xi(v) ≥ L},

S2(r) = {i ∈ Nr : Xi(u) ≤ L− C6β
−1/3, Xi(v) < L for all v ∈ [0, u]},

S3(r) = {i ∈ Nr : L− C6β
−1/3 < Xi(u) < L,Xi(v) < L for all v ∈ [0, u]}.

For j = 1, 2, 3, write

Σj(r) =
∑
i∈Sj(r)

1{Xi(r)≤L̄}.
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Then

Nr

(
(−∞, L̄)

)
= Σ1(r) + Σ2(r) + Σ3(r). (3.183)

We first consider Σ1(r). Let B1 be the event that particles that are to the right of L

before time u have descendants alive at time t1. Then B1 ∈ Ft1 . Since u + C7ρ
−2 � t1, by

3.1.2, we have that for any η > 0, if n is sufficiently large, then

P (B1) < η.

Note that {Σ1(r) 6= 0} is a subset of B1 for all r ∈ [t1, t2]. Therefore, we have for sufficiently

large n, for all r ∈ [t1, t2],

P (Σ1(r) 6= 0) ≤ P (B1) < η. (3.184)

We now consider Σ2(r). Denote

cL̄ =

√
1− L̄

L∗
.

By (3.182), we see that for all r ∈ [t1, t2], equation (3.140) holds with r − u in place of t, L̄

in place of z, cL̄ in place of c and sr in place of s. By (3.140) and Tonelli’s theorem, for n

large enough, we have for all r ∈ [t1, t2],

E[Σ2(r)|Fu] ≤
1√

2π(r − u)
exp

(
g(L̄)− ρL∗ +

ρ2sr
2
− β2s3

r

6

)∫ L̄

−∞
e−ρ(cL̄−1)(L̄−y)dy

× (H1 +H2 +H3), (3.185)

where H1, H2 and H3 are defined as in (3.110) and (3.116) but with sr in place of sy. Since

sr � s, the upper bounds on H1, H2 and H3 in (3.111), (3.117), (3.118) also hold here. For

any η > 0, since r − u ∼ t(L̄) ∼ 3ρ/2β and cL̄ ∼ 3/2, we have for n sufficiently large,

1√
2π(r − u)

∫ L̄

−∞
e−ρ(cL̄−1)(L̄−y)dy =

1√
2π(r − u)

1

ρ(cL̄ − 1)
≤ 2(1 + η)√

3π

β1/2

ρ3/2
. (3.186)
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Also, because (1− x)3/2 ≥ 1− 3x/2, we have

g(L̄) = ρ
(
L∗ − L̄

)
− 2
√

2β

3

(
L∗ − L̄

)3/2

=
9ρ3

8β
− 22/3γ1ρ

β1/3
− 9ρ3

8β

(
1− 8β

9ρ2

22/3γ1

β1/3

)3/2

≤ ρ(2β)−1/3γ1. (3.187)

We get from equations (3.111), (3.117), (3.118), (3.185)–(3.187) that for all r ∈ [t1, t2], if n

is sufficiently large, then

E[Σ2(r)|F0] <
2(1 + η)√

3π

β1/2

ρ3/2
e−ρL

(
2e−β

2u3/74Y (0) +
C8η(1 + η)

24/3
Z(0)

)
. (3.188)

By (3.9) and (3.10), for any η > 0, there exists a δ > 0 such that for n sufficiently large

P

({
Y (0) >

1

ρ2
eρL
}
∪
{
Z(0) >

1

δ

β1/3

ρ3
eρL
})

< η. (3.189)

Define B2 to be the union of the previous two events. We see that B2 ∈ F0 ⊂ Ft1 . Note

that e−β
2u3/74 � β1/3/ρ. From equation (3.188), we have for all r ∈ [t1, t2],

E[Σ2(r)1Bc2 ] .
1

ρ2

β5/6

ρ5/2
� 1

ρ2

β3/4

ρ9/4
. (3.190)

Specifically, for r = t1, by (3.189) and (3.190), we have for n large enough

P

(
Σ2(t1) >

1

3ρ2

β3/4

ρ9/4

)
< 2η. (3.191)

Similarly for Σ3(r), by (3.140), (3.186), (3.187) and Tonelli’s theorem, we have for n

sufficiently large

E[Σ3(r)|Fu] <
2(1 + η)√

3π

β1/2

ρ3/2
e−ρL exp

(
ρ2sr

2
− β2s3

r

6

) ∑
j∈Nu

e(ρ−βsr)Xj(u)1{L−C6β−1/3<Xj(u)<L}.
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Because s ≤ sr ≤ s+ 4C10/ρ
2 for all r ∈ [t1, t2], we have

E[Σ3(r)|Fu] .
β1/2

ρ3/2
e−ρL exp

(
ρ2s

2
− β2s3

6

) ∑
j∈Nu

e(ρ−βs)Xj(u)1{L−C6β−1/3<Xj(u)<L}. (3.192)

By (3.10) and (3.105), for any ε > 0, there exists a δ > 0 such that for n sufficiently large,

P

(
exp

(
ρ2s

2
− β2s3

6

) ∑
j∈Nu

e(ρ−βs)Xj(u)1{L−C6β−1/3<Xj(u)<L} >
1

δ

1 + 2η

Ai′(γ1)2

β1/3

ρ3
eρL
)
< η.

(3.193)

Define B3 to be the event in the previous equation. Then B3 ∈ Fu ⊂ Ft1 . From (3.192), we

have for all r ∈ [t1, t2],

E[Σ3(r)1Bc3 ] .
1

ρ2

β5/6

ρ5/2
� 1

ρ2

β3/4

ρ9/4
. (3.194)

Specifically, for r = t1, by (3.193) and (3.194), we have for n sufficiently large,

P

(
Σ3(t1) >

1

3ρ2

β3/4

ρ9/4

)
< 2η. (3.195)

As a result, for any ε > 0, by choosing η appropriately, equation (3.179) follows from

(3.183), (3.184), (3.191) and (3.195). Let

B = Bc
1 ∩Bc

2 ∩Bc
3.

Then B ∈ Ft1 , and by (3.184), (3.189) and (3.193), for n large enough,

P (B) = 1− P (B1 ∪B2 ∪B3) > 1− 3η.
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From (3.183), (3.184), (3.190) and (3.194), we have for n sufficiently large

E

[ ∫ t2

t1

Nr

(
(−∞, L̄)

)
dr · 1B

]
≤ E

[ ∫ t2

t1

Σ1(r)dr · 1Bc1

]
+ E

[ ∫ t2

t1

Σ2(r)dr · 1Bc2

]
+ E

[ ∫ t2

t1

Σ3(r)dr · 1Bc3

]
≤ 1

ρ4

β3/4

ρ9/4

Letting η = ε/3, equations (3.180) and (3.181) follow. 2

Proof of Proposition 24. Let us first consider the case when ρ2/3/β8/9 � t− t(L̄)� ρ/β. We

start with the proof of equation (3.37). For any sequence (dn)∞n=1 satisfying β−1/3 � d �

ρ2/β, we claim that

lim
n→∞

P
(
mt ≤ L̄+ d

)
= 1. (3.196)

To prove the claim, we first note that L̄+ d satisfies assumptions (3.18), (3.46) and (3.47) in

Proposition 26. Furthermore, according to the Taylor expansion
√

1− x = 1−x/2 +O(x2),

we get

t(L̄)− t(L̄+ d) =

√
2

β
(L∗ − L̄)

(
1−

√
1− d

L∗ − L̄

)
=

√
2

β
(L∗ − L̄)

(
1− 1 +

d

2(L∗ − L̄)
+O

(
d2

(L∗ − L̄)2

))
=

d√
2β(L∗ − L̄)

+O

(
d2

√
β(L∗ − L̄)3/2

)
. (3.197)

Since d� ρ2/β, we have

d2

√
β(L∗ − L̄)3/2

� d√
2β(L∗ − L̄)

� ρ

β
.

Therefore,

ρ2/3

β8/9
� t− t(L̄+ d) = t− t(L̄) +

(
t(L̄)− t(L̄+ d)

)
� ρ

β
,

127



which is assumption (3.51). Since for 0 < x < 1, (1− x)3/2 = 1− 3x/2 +O(x2), we have for

n large enough,

g

(
L† +

d

2

)
= ρ

(
L∗ − L† − d

2

)
− 2
√

2β

3
(L∗ − L†)3/2

(
1− d

2(L∗ − L†)

)3/2

= ρ(L∗ − L†)− ρd

2
− 2
√

2β

3
(L∗ − L†)3/2

(
1− 3

2

d

2(L∗ − L†)
+O

(
d2

(L∗ − L†)2

))
= −ρd

2
+

3ρd

4
+O

(
βd2

ρ

)
≥ ρd

8
.

Thus for n sufficiently large,

∫
(−∞,L̄+d)

1√
2πt(y)

eg(y)dy ≥
∫

[L†+d/2,L̄+d)

1√
2πt(y)

eg(y)dy ≥ eρd/16. (3.198)

By Proposition 26 and equations (3.10) and (3.198), for any ε > 0, if n is sufficiently large,

then

P
(
mt > L̄+ d

)
= P

(
Nt

(
(−∞, L̄+ d]

)
= 0

)
< ε, (3.199)

which implies (3.196). Now we use (3.196) to prove (3.37). Suppose (3.37) is not true. Then

there exists κ > 0, such that for any constant C15 > 0, we have for infinitely many n,

P

(
mt ≤ L̄+

C15

β1/3

)
≤ 1− κ.

We can therefore choose a sequence of positive integers (nj)
∞
j=1 and another sequence of

positive constants (C15,j)
∞
j=1 satisfying

nj � 1 and 1� C15,j � ρ2
nj
/β2/3

nj
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such that for all j,

P

(
mtnj ,nj

≤ L̄nj +
C15,j

β
1/3
nj

)
≤ 1− κ. (3.200)

Let dnj = C15,jβ
−1/3
nj . Note that β

−1/3
nj � dnj � ρ2

nj
/βnj . Then (3.200) contradicts (3.196),

and (3.37) follows.

We next prove equation (3.38) under the additional assumption that for all n, the

birth rate function b(x) is non-decreasing and the death rate function d(x) is non-increasing.

Define

S1 =
{
i ∈ Nt : Xi(t1) < L̄

}
,

S2 =
{
i ∈ Nt \ S1 : Xi(v) ≥ L̄ for all v ∈ [t1, t2]

}
,

S3 = Nt \ (S1 ∪ S2).

For j = 1, 2, 3, we further denote

mSi
t = min{Xi(t), i ∈ Si}.

We have

mt = min
{
mS1
t ,m

S2
t ,m

S3
t

}
. (3.201)

For S1, we will show that particles below L̄ at time t1 will not have descendants

survive until time t. For x < L̄, consider one process starting from a single particle at x

at time t1, and another process starting from a single particle at L∗ at time t1. Because of

the monotonicity of the birth rate and the death rate, the probability that the first process

will survive until time t is dominated by the probability that the second process will survive

until time t, which is at most ρ2/α by 3.1.6. Thus by (3.179), for any ε > 0 and all positive
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constant C4, if n is sufficiently large,

P

(
mS1
t ≤ L̄− C4

ρ

)
≤ P (S1 6= ∅) ≤

ρ2

α

1

ρ2

β3/4

ρ9/4
+ ε < 2ε. (3.202)

For S2, it is obvious that for all C4,

P

(
mS2
t ≤ L̄− C4

ρ

)
= 0. (3.203)

We next deal with S3. Consider the process in which particles are killed when they

hit L̄ between times t1 and t. Let R be the number of particles that are killed at L̄ between

times t1 and t. For i ∈ 1, 2, ..., R, let ri ∈ [t1, t] be the time that this particle is killed at L̄.

For the ith particle that hits L̄ between t1 and t, consider a process without killing starts

from this particle and let Ki(v) be the number of descendants of this particle to the left of

L̄ at time ri + v. Define

Ki =

∫ 2C10/ρ2

0

Ki(v)dv.

Then
R∑
i=1

Ki ≤
∫ t2

t1

Nr

(
(−∞, L̄)

)
dr. (3.204)

For all i = 1, 2, ..., R, by Tonelli’s theorem and (3.45), and interchanging the roles of y and

L̄− y in the last step, we have for n large enough,

E[Ki] =

∫ 2C10/ρ2

0

E[Ki(v)]dv

=

∫ 2C10/ρ2

0

∫ L̄

−∞
pv(L̄, y)dydv

=

∫ 2C10/ρ2

0

∫ L̄

−∞

1√
2πv

exp

(
ρL̄− ρy − (L̄− y)2

2v
− ρ2v

2
+
β(L̄+ y)v

2
+
β2v3

24

)
dydv

≥
∫ 2C10/ρ2

0

∫ ∞
0

1√
2πv

exp

(
ρy − y2

2v
− C10 +

β(2L̄− y)v

2

)
dydv. (3.205)
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Since ρ� C10β/ρ
2, for n sufficiently large, we have for all y > 0 and v ≤ 2C10/ρ

2,

ρy +
β(2L̄− y)v

2
≥ −5

4
C10 + o(1). (3.206)

Thus by (3.205) and (3.206), we get for n sufficiently large,

E[Ki] ≥
∫ 2C10/ρ2

0

1

2
e−9C10/4+o(1)dv ≥ C10

ρ2
e−5C10/2. (3.207)

Note that random variables {Ki}Ri=1 are independently and identically distributed. Moreover,

conditioned on Ft1 , the random variables R and Ki are independent. Let B ∈ Ft1 be the

event defined in Lemma 40. By (3.204), we have

E[R|Ft1 ]E[Ki|Ft1 ]1B = E

[ R∑
i=1

Ki

∣∣∣∣Ft1]1B ≤ E

[ ∫ t2

t1

Nr

(
(−∞, L̄)

)
dr · 1B

∣∣∣∣Ft1]. (3.208)

Note that E[Ki|Ft1 ] = E[Ki]. By (3.181), (3.207) and (3.208), we have for n sufficiently

large,

E[R1B] ≤ 1

C10

e5C10/2
1

ρ2

β3/4

ρ9/4
. (3.209)

For every i = 1, ..., R, we consider three BBMs. All three processes start from a

single particle at L̄ at time ri. The first process has inhomogeneous birth rate b(x) and

death rate d(x). Each particle moves as Brownian motion with drift −ρ. The second process

is constructed based on the first process with the extra restriction that particles are killed

upon hitting 0. In the third process, the birth rate is the constant b(0) and the death

rate is the constant d(0). Each particle moves as standard Brownian motion without drift.

We denote by mt−ri and m0
t−ri the minimal displacement at time t in the first and second

processes respectively. We let M̄0
t−ri be the maximal position that is ever reached by a

particle before time t in the second process. Furthermore, for the third process, we denote

by m the all-time minimum and M the all-time maximum. Because of the monotonicity

of b(x) and d(x), we can couple the second and third processes such that M stochastically
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dominates M̄0
t−ri . Taking the drift into consideration, we also have that m0

t−ri + ρ(t − ri)

stochastically dominates m. Note that in the third process, since b(0) = d(0), the branching

is critical and the process dies out eventually. According to equation (1.7) of Sawyer and

Fleischman [79], we have for x large enough

P (m < L̄− x) ≤ 6

x2
, P (M > L̄+ x) ≤ 6

x2
. (3.210)

Thus, by the construction of the first and the second processes, we have

P

(
mt−ri < L̄− C4

ρ

)
≤ P

({
mt−ri < L̄− C4

ρ

}
∩
{
M̄0

t−ri < L̄+
C4

ρ

})
+ P

(
M̄0

t−ri ≥ L̄+
C4

ρ

)
= P

(
m0
t−ri < L̄− C4

ρ

)
+ P

(
M̄0

t−ri ≥ L̄+
C4

ρ

)
.

Note that t − ri ≤ 2C10/ρ
2 for all ri. By the stochastic dominance relations and equation

(3.210), for C4 > 2C10, we have for n large enough,

P

(
mt−ri < L̄− C4

ρ

)
≤ P

(
m < L̄− C4 − 2C10

ρ

)
+ P

(
M ≥ L̄+

C4

ρ

)
≤ 12

(C4 − 2C10)2
ρ2.

(3.211)

From (3.180), (3.209) and (3.211), we can choose constant C4 large enough such that for n

large enough,

P

(
mS3
t ≤ L̄− C4

ρ

)
≤ E

[ R∑
i=1

P

(
mt−ri < L̄− C4

ρ

)
1B

]
+ ε

≤ 48

C10(C4 − 2C10)2
e5C10/2

β3/4

ρ9/4
+ ε

< 2ε. (3.212)

For any κ > 0, by choosing ε appropriately, equation (3.38) follows from (3.201), (3.202),

(3.203) and (3.212).
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Next we consider the case when β(t− t(L̄))/ρ→ τ ∈ (0,∞) as n→∞. Choose time

v < t for which

ρ2/3

β8/9
� v − t(L̄)� ρ

β
.

Let r = t− v. By Remark 27, the previous argument still holds with Z(r) in place of Z(0)

and Y (r) in place of Y (0). As a result, equations (3.37) and (3.38) follow in this case.

Finally, when t satisfies (3.36), we prove equations (3.37) and (3.38) by contradiction.

Since the proofs of equations (3.37) and (3.38) are essentially the same, we only prove

equation (3.37). Suppose equation (3.37) does not hold true. Then there exists κ > 0 such

that for all positive constants C3, we have for infinitely many n,

P

(
mtn,n ≤ L̄n +

C3

β
1/3
n

)
≤ 1− κ.

We can therefore choose a sequence of positive integers (nj)
∞
j=1 and another sequence of

positive constants (C3,j)
∞
j=1, both of which tend to infinity as j →∞, such that

P

(
mtnj ,nj

≤ L̄nj +
C3,j

β
1/3
nj

)
≤ 1− κ. (3.213)

For every subsequence (nj)
∞
j=1, there exists a sub-subsequence (njk)

∞
k=1 such that

lim
k→∞

βnjk
(
tnjk − tnjk

(
L̄njk

))
ρnjk

= τ ∈ [0,∞). (3.214)

Fix any positive constant C3. Then C3 < C3,jk for k sufficiently large. From (3.213), we

have for k large enough,

P

(
mtnjk

,njk
≤ L̄njk +

C3

β
1/3
njk

)
≤ 1− κ. (3.215)

On the other hand, note that (tnjk )∞k=1 satisfies the assumptions of one of the previous two

cases by (3.214). Therefore, equation (3.37) holds with njk in place of n, which contradicts
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(3.215). Thus, equation (3.37) holds true. Equation (3.39) follows from (3.37) and (3.38). 2

3.4 Proofs of lemmas

In this section, we will prove all the lemmas except Lemma 34, whose proof is

deferred until Section 3.5.

Proof of Lemma 30. First, let us prove equation (3.95). When z ≤ 0, equation (3.95) holds

automatically. It remains to consider the case z > 0. If z �
√
ρ/β, then

l .
√
ρ

β
� ρ2

β
� L∗ − z.

If z &
√
ρ/β, then according to (3.88), (3.92) and (3.93)

l .
1

c0ρ
� c2ρ2

β
� L∗ − z.

For z satisfying (3.18) and y ∈ [z − l, z + l], we have L∗ − y ≥ L∗ − z − l � β−1/3, which

proves equation (3.95).

We next prove equation (3.96). When z ≥ 0, equation (3.96) is obvious. It remains

to consider the case z < 0. If −z �
√
ρ/β, then

l .
√
ρ

β
� ρ2

β
� z − L†.

If
√
ρ/β . −z � ρ2/β, then according to (3.91),

l .
1

|c0|ρ
.
√
ρ

β
� z − L†.
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If −z � ρ2/β, then

l .
1

|c0|ρ
� 1

ρ
� 1

β1/3
� z − L†.

For z satisfying (3.18) and y ∈ [z − l, z + l], we have y − L† ≥ z − L† − l � β−1/3, which

proves equation (3.96). 2

Proof of Lemma 31. Following similar calculations to those in (3.197), with the help of the

Taylor expansion
√

1− x = 1− x/2 +O(x2), we have for all y ∈ [z − l, z + l],

|t(y)− t(z)| =
∣∣∣∣√ 2

β
(L∗ − z)

(
1− y − z

2(L∗ − z)
+O

(( y − z
L∗ − z

)2
)
− 1

)∣∣∣∣
≤ l√

2β(L∗ − z)
+O

(
l2√

β(L∗ − z)3/2

)
.

Expressing the above formula in terms of c according to (3.87), we obtain for all y ∈ [z, z+ l],

|t(y)− t(z)| ≤ l

cρ
+O

(
βl2

c3ρ3

)
.

If |z| &
√
ρ/β, then l . 1/(|c0|ρ). By formulas (3.92) and (3.93), we get

l

cρ
.

1

c|c0|ρ2
� β−2/3,

βl2

c3ρ3
.

β

c2
0c

3ρ5
� β−2/3.

If |z| �
√
ρ/β, then l .

√
ρ/β and c � 1. We get

l

cρ
.

1

c
√
ρβ
� β−2/3,

βl2

c3ρ3
.

1

c3ρ2
� β−2/3.

Combining the above three formulas, equation (3.97) follows. Moreover, by (3.95), we have

t(y)� β−2/3 for all y ∈ [z − l, z + l] and equation (3.97) implies (3.98). 2

Proof of Lemma 32. Note that for 0 < x < 1, we have (1−x)3/2 = 1−3x/2+ 3x2/8+O(x3).

135



For all y,

g(y)−g(z)

= ρ(z − y) +
2
√

2β

3
(L∗ − z)3/2

(
1−

(
1− y − z

L∗ − z

)3/2
)

= ρ(z − y) +
2
√

2β

3
(L∗ − z)3/2

(
1− 1 +

3(y − z)

2(L∗ − z)
− 3(y − z)2

8(L∗ − z)2
+O

( |y − z|3
(L∗ − z)3

))
= ρ(z − y)−

√
2β(L∗ − z)(z − y)−

√
β

8(L∗ − z)
(z − y)2 +O

(
β1/2|z − y|3

(L∗ − z)3/2

)
.

Because L∗ − z = c2ρ2/(2β), the above equation can be expressed in terms of c as

g(y)− g(z) = ρ(1− c)(z − y)− β

2cρ
(z − y)2 +O

(
β2|z − y|3

c3ρ3

)
. (3.216)

For all y ∈ [z − l, z + l], we have

|g(y)− g(z)| ≤ ρl|1− c|+ βl2

2cρ
+O

(
β2l3

c3ρ3

)
. (3.217)

If |z| &
√
ρ/β, then according to (3.90), (3.91) and (3.93), we see that

βl2

2cρ
. ρl|1− c| . |1− c|

|c0|
=

1

1 + c
� 1,

β2l3

c3ρ3
.

β2

|cc0|3ρ6
.
β1/2

ρ3/2
� 1. (3.218)

If |z| �
√
ρ/β, then according to (3.90) and (3.94), we see that

ρl|1− c| . ρ3/2

β1/2
|c0| � 1,

β2l3

c3ρ3
� βl2

2cρ
.

1

c
� 1. (3.219)

The lemma follows from (3.217), (3.218), and (3.219). 2

Proof of Lemma 33. We are going to express pt(x, y) in terms of sy and w. Writing t =
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t(y)− sy and using (3.45), we have

pt(x, y) =
1√
2πt

exp

(
ρ(L∗ − w)− ρy − (L∗ − y − w)2

2t(y)

∞∑
k=0

(
sy
t(y)

)k
− ρ2

2
(t(y)− sy)

+
β(y + L∗ − w)(t(y)− sy)

2
+
β2(t(y)− sy)3

24

)
=

1√
2πt

exp

(
ρL∗ − ρy − (L∗ − y)2

2t(y)
− ρ2t(y)

2
+
β(y + L∗)t(y)

2
+
β2t(y)3

24

)
× exp

(
− ρw − βwt(y)

2
+
β(L∗ − y)sy

2
+
βwsy

2
−
β2s3

y

24
+
β2t(y)s2

y

8
− β2t(y)2sy

8

− (L∗ − y)2

2t(y)

(
sy
t(y)

+
s2
y

t(y)2
+

s3
y

t(y)3

)
+
w(L∗ − y)

t(y)

(
1 +

sy
t(y)

)
− (L∗ − y)2

2t(y)

∞∑
k=4

(
sy
t(y)

)k
− w2

2t(y)

∞∑
k=0

(
sy
t(y)

)k
+
w(L∗ − y)

t(y)

∞∑
k=2

(
sy
t(y)

)k)
.

(3.220)

Using that t(y) =
√

2(L∗ − y)/β and y + L∗ = ρ2/β − (L∗ − y), we get

ρL∗ − ρy − (L∗ − y)2

2t(y)
− ρ2t(y)

2
+
β(y + L∗)t(y)

2
+
β2t(y)3

24

= ρ(L∗ − y)− β1/2(L∗ − y)3/2

2
√

2
− ρ2t(y)

2
+

(
ρ2t(y)

2
− β1/2(L∗ − y)3/2

√
2

)
+
β1/2(L∗ − y)3/2

6
√

2

= ρ(L∗ − y)− 2
√

2β

3
(L∗ − y)3/2

= g(y). (3.221)

Also notice that

− (L∗ − y)2

2t(y)

∞∑
k=4

(
sy
t(y)

)k
− w2

2t(y)

∞∑
k=0

(
sy
t(y)

)k
+
w(L∗ − y)

t(y)

∞∑
k=2

(
sy
t(y)

)k
= − 1

2(t(y)− sy)

(
(L∗ − y)

( sy
t(y)

)2

− w
)2

= −
(βs2

y − 2w)2

8t
. (3.222)

For all w, according to (3.220), (3.221) and (3.222), replacing t(y) with
√

2(L∗ − y)/β, we
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have

pt(x, y) =
1√
2πt

exp

(
g(y)− ρw − βwt(y)

2
+
β(L∗ − y)sy

2
+
βwsy

2
−
β2s3

y

24

+
β2t(y)s2

y

8
− β2t(y)2sy

8
− (L∗ − y)2

2t(y)

(
sy
t(y)

+
s2
y

t(y)2
+

s3
y

t(y)3

)
+
w(L∗ − y)

t(y)

(
1 +

sy
t(y)

)
−

(βs2
y − 2w)2

8t

)
=

1√
2πt

exp

(
g(y)− ρw + βwsy −

β2

6
s3
y −

(βs2
y − 2w)2

8t

)
. (3.223)

For all w ∈ R, s < t(z) and y ∈ R, since −(βs2
y − 2w)2/8t ≤ 0, formula (3.100) follows.

Furthermore, if s � β−2/3, then by Lemma 31, we have sy � β−2/3 for all y ∈ [z − l, z + l].

Then for |w| . β−1/3, we get
(βs2

y − 2w)2

8t
= o(1).

and therefore (3.223) implies (3.101). 2

Proof of Lemma 35. Equation (3.105) follows from Lemma 6.2 in [75] directly. We use a

similar strategy as in the proof of Lemma 6.2 in [75] to prove (3.107). For every y ∈ [z−l, z+l],

define

fy(x) =


e2−1/3β2/3syx 0 < x < 21/3C6

0 otherwise

and f(x) =


e2−1/3C5x 0 < x < 21/3C6

0 otherwise.

We can express Γy in terms of the function fy by writing

Γy = exp

(
2−1/3β2/3syγ1 −

β2s3
y

6

) ∑
j∈Nu

eρXj(u)eβsy(L−Xj(u))1{L−C6β−1/3<Xj(u)<L}

= exp

(
2−1/3β2/3syγ1 −

β2s3
y

6

) ∑
j∈Nu

eρXj(u)fy

(
(2β)1/3

(
L−Xj(u)

))
. (3.224)
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According to Lemma 31, we see that β2/3sy → C5 uniformly for y ∈ [z − l, z + l]. Thus

exp

(
2−1/3β2/3syγ1 −

β2s3
y

6

)
→ exp

(
2−1/3γ1C5 −

C3
5

6

)
, as n→∞. (3.225)

Also, for every η > 0, if n is sufficiently large, then for all x,

sup
y∈[z,z+l]

|fy(x)− f(x)| < ηf(x).

Therefore, for every η > 0, if n is large enough, then for all y ∈ [z − l, z + l],

∣∣∣∣ ∑
j∈Nu

eρXj(u)f
(

(2β)1/3
(
L−Xj(u)

))
−
∑
j∈Nu

eρXj(u)fy

(
(2β)1/3

(
L−Xj(u)

))∣∣∣∣
≤ η

∑
j∈Nu

eρXj(u)f
(

(2β)1/3
(
L−Xj(u)

))
. (3.226)

Furthermore, since u satisfies (3.84), equation (3.86) implies that

1

Z(0)

∑
j∈Nu

eρXj(u)f
(

(2β)1/3
(
L−Xj(u)

))
→p

1

Ai′(γ1)2

∫ 21/3C6

0

e2−1/3C5yAi(γ1 + y)dy. (3.227)

As a result, equation (3.107) follows from (3.103), (3.224)–(3.227). 2

Proof of Lemma 36. First, let us summarize properties of the function g(y) that will be

useful throughout the proof. For y ∈ (−∞, L∗), we have

g′(y) = −ρ+
√

2β(L∗ − y), g′′(y) = −

√
β

2(L∗ − y)
< 0.

The function g(y) is increasing in the interval (−∞, 0) and decreasing in the interval [0, L∗).

The derivative of g(y) is decreasing and g(y) is a concave function. Thus g(y) is bounded
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above by its first order Taylor approximation. We have for all x1, x2 ∈ (−∞, L∗],

g(x2) ≤ g(x1) + g′(x1)(x2 − x1). (3.228)

First consider the case z ≥ 0. By (3.228) and the fact that the derivative of g is

decreasing, we have for all y ∈ [z, z + d],

g(y) ≥ g(z) + g′(y)(y − z) ≥ g(z) + g′(z + d)(y − z).

Also noticing that t(y) is a decreasing function of y, we have

∫ z+d

z

1√
2πt(y)

eg(y)dy ≥ 1√
2πt(z)

eg(z)
∫ z+d

z

eg
′(z+d)(y−z)dy

=
1√

2πt(z)
eg(z)

1

|g′(z + d)|
(1− edg′(z+d)).

According to the definitions of c0 in (3.48) and c in (3.87), we get

dg′(z + d) ≤ dg′(z) = − C11

1 + c
≤ −C11

2
.

Therefore,

∫ z+d

z

1√
2πt(y)

eg(y)dy ≥ 1√
2πt(z)

eg(z)
1

|g′(z + d)|
(1− e−C11/2). (3.229)

Moreover, since t(z) = cρ/β and |g′(z + d)| ≤ ρ, we see that

∫ z+d

z

1√
2πt(y)

eg(y)dy &
β1/2

c1/2ρ3/2
eg(z). (3.230)

On the other hand, we will separate the integral on the left hand side of (3.137) into
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two parts and upper bound each of them. Define

h = β−1/6
√
L∗ − z =

cρ√
2β2/3

. (3.231)

We claim that d� h and h� L∗ − z. Indeed, since z &
√
ρ/β, equation (3.93) gives

c0c &
β1/2

ρ3/2
� β2/3

ρ2
,

which implies

d � 1

c0ρ
� cρ

β2/3
� h.

Furthermore, because c� β1/3/ρ, we have

h � cρ

β2/3
� c2ρ2

β
� L∗ − z. (3.232)

We denote

∫ L∗

z+d

1√
2πt(y)

eg(y)dy =

∫ z+h

z+d

1√
2πt(y)

eg(y)dy +

∫ L∗

z+h

1√
2πt(y)

eg(y)dy =: K1 +K2. (3.233)

We first consider K1. By (3.228), we have g(y) ≤ g(z + d) + g′(z + d)(y − z − d) for

y ∈ [z + d, z + h]. Hence,

K1 ≤
1√

2πt(z + h)
eg(z+d)

∫ z+h

z+d

eg
′(z+d)(y−z−d)dy ≤ 1√

2πt(z + h)
eg(z+d) 1

|g′(z + d)|
. (3.234)

Since z &
√
ρ/β, by (3.90) and (3.93), we have

ρd(1− c)� β2d3

c3ρ3
. (3.235)
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According to equations (3.90) and (3.216), we have for n sufficiently large,

g(z + d) = g(z)− ρd(1− c)− βd2

2cρ
+O

(
β2d3

c3ρ3

)
≤ g(z)− ρd(1− c)

2

= g(z)− C11

2(1 + c)

≤ g(z)− C11

4
. (3.236)

Also by (3.232), we have for n large

t(z + h) =

√
1− h

L∗ − z
t(z) ≥ 1

2
t(z).

Combining the above two observations with (3.234), we have for n large enough,

K1 ≤ e−C11/4
1√
πt(z)

eg(z)
1

|g′(z + d)|
. (3.237)

We next consider K2. Recalling that the function g(y) is decreasing when y ∈ [0, L∗] and

t(y) =
√

2/β
√
L∗ − y, we get

K2 ≤ eg(z+h)

∫ L∗

z

β1/4

23/4
√
π

(L∗ − y)−1/4dy =
25/4β1/4

3
√
π

(L∗ − z)3/4eg(z+h). (3.238)

We are going to apply the same argument that led to (3.236). Because z &
√
ρ/β, we have

ρc0 � β2/3/(cρ) by (3.93). Thus by (3.90) and (3.231), we get

ρh(1− c) � ρhc0 �
β2/3

cρ
h � β2h3

c3ρ3
.

According to (3.216) and (3.231), since cc0 � β7/12/ρ7/4 by (3.93), we have for n sufficiently

large,

g(z + h) ≤ g(z)− ρh(1− c)
2

= g(z)− cc0ρ
2

2
√

2β2/3(1 + c)
≤ g(z)− ρ1/4

β1/12
.
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Combining this result with (3.238), we get for n large,

K2 ≤
25/4β1/4

3
√
π

(L∗ − z)3/4 exp

(
g(z)− ρ1/4

β1/12

)
� c3/2ρ3/2

β1/2
exp

(
g(z)− ρ1/4

β1/12

)
. (3.239)

Furthermore, since c ≤ 1 and ρ3 � β, we notice that

c3/2ρ3/2

β1/2
exp

(
g(z)− ρ1/4

β1/12

)
� β1/2

c1/2ρ3/2
eg(z), (3.240)

As a result, equations (3.242), (3.239) and (3.240) imply

K2 �
∫ z+d

z

1√
2πt(y)

eg(y)dy. (3.241)

For any η > 0, choosing C11 large enough such that η(1 − e−C11/2)/
√

2 > e−C11/4, equation

(3.137) follows from (3.229), (3.233), (3.237) and (3.241).

Next consider the case z ≤ 0. The proof is similar to the previous case. By (3.228)

and the fact that the derivative of g is decreasing, we have for all y ∈ [z − d, z],

g(y) ≥ g(z)− g′(y)(z − y) ≥ g(z)− g′(z − d)(z − y).

Also, note that t(y) is a decreasing function of y. Thus,

∫ z

z−d

1√
2πt(y)

eg(y)dy ≥ 1√
2πt(z − d)

eg(z)
∫ z

z−d
e−g

′(z+d)(z−y)dy

=
1√

2πt(z − d)
eg(z)

1

g′(z − d)
(1− e−dg′(z−d)).

According to the definitions of c0 in (3.48) and c in (3.87), since c ∈ [1, 3/2), we get

−dg′(z − d) ≤ −dg′(z) = − C11

1 + c
≤ −2C11

5
.
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Therefore,

∫ z

z−d

1√
2πt(y)

eg(y)dy ≥ 1√
2πt(z − d)

eg(z)
1

g′(z − d)
(1− e−2C11/5). (3.242)

On the other hand, since g(y) ≤ g(z − d) + g′(z − d)(y − z + d) by (3.228) and t(y)

is decreasing, we get

∫ z−d

−∞

1√
2πt(y)

eg(y)dy ≤ 1√
2πt(z − d)

eg(z−d)

∫ z−d

−∞
eg
′(z−d)(y−z+d)dy

≤ 1√
2πt(z − d)

eg(z−d) 1

g′(z − d)
. (3.243)

We will apply the argument that led to (3.236) again. Note that under the current scenario

c0 < 0 and 1 ≤ c < 3/2. From (3.90), (3.216) and (3.235), we get for n sufficiently large,

g(z − d) ≤ g(z) +
ρd(1− c)

2
= g(z)− C11

2(1 + c)
≤ g(z)− C11

5
.

Combining the above formula with (3.243), we get for n large

∫ z−d

−∞

1√
2πt(y)

eg(y)dy ≤ 1√
2πt(z − d)

eg(z)
1

g′(z − d)
e−C11/5. (3.244)

For any η > 0, choosing C11 large enough such that η(1 − e−2C11/5) > e−C11/5, equation

(3.138) follows from (3.242) and (3.244). Therefore, for any η > 0, we can choose C11 large

enough such that (3.136)–(3.138) all hold and the lemma follows. 2

Proof of Lemma 37. First consider the case z > 0. For x ≤ L and y ∈ [ζ,∞), from (3.45),

pt(x, y)

pt(x, ζ)
= exp

(
− (y − ζ)

(
ρ− βt

2
− 2x− ζ − y

2t

))
. (3.245)
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Using that x ≤ L and y ≥ ζ, we have

ρ− βt

2
− 2x− ζ − y

2t
≥ ρ− βt(z)

2
+
βs

2
− 2(L− z − 2d)

2t

≥ ρ− βt(z)

2
+
βs

2
− L∗ − z

t
+

2−1/3β−1/3γ1

t
.

Note that we can expand 1/t as a geometric sum and thus

L∗ − z
t

=
L∗ − z
t(z)

+
(L∗ − z)s

t(z)2
+

(L∗ − z)s2

t(z)3

∞∑
k=0

(
s

t(z)

)k
=
L∗ − z
t(z)

+
(L∗ − z)s

t(z)2
+

(L∗ − z)s2

t(z)2t
.

Recall from (3.88) that t(z) = cρ/β and L∗ − z = c2ρ2/(2β). Therefore, from the above two

formulas, we get

ρ− βt

2
− 2x− ζ − y

2t
≥ ρ(1− c)− βs2

2t
+

2−1/3β−1/3γ1

t
.

Since z &
√
ρ/β, we have ρ(1− c)� β2/3/(cρ) by (3.90) and (3.93). Thus,

∣∣∣∣− βs2

2t
+

2−1/3β−1/3γ1

t

∣∣∣∣ � β2/3

cρ
� ρ(1− c).

Therefore, for n sufficiently large, we have for all x ≤ L and y ∈ [ζ,∞),

ρ− βt

2
− 2x− ζ − y

2t
≥ ρ

2
(1− c). (3.246)

Equation (3.139) follows from (3.245) and (3.246).

Next consider the case z < 0. We are going to apply an argument that is similar to

the proof of (3.100). Writing r = z − y and expressing pt(x, y) in terms of s, w, r and z, we
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have

pt(x, y)

=
1√
2πt

exp

(
ρ(L∗ − w)− ρ(z − r)− (L∗ − z + r − w)2

2t(z)

∞∑
k=0

(
s

t(z)

)k
− ρ2

2
(t(z)− s)

+
β(z − r + L∗ − w)(t(z)− s)

2
+
β2(t(z)− s)3

24

)
=

1√
2πt

exp

(
ρL∗ − ρz − (L∗ − z)2

2t(z)
− ρ2t(z)

2
+
β(z + L∗)t(z)

2
+
β2t(z)3

24

)
× exp

(
− ρw + ρr − β(r + w)t(z)

2
+
β(L∗ − z)s

2
+
β(r + w)s

2
− β2s3

24
+
β2t(z)s2

8

− β2t(z)2s

8
− (L∗ − z)2

2t(z)

(
s

t(z)
+

s2

t(z)2
+

s3

t(z)3

)
− (r − w)(L∗ − z)

t(z)

(
1 +

s

t(z)

)
− (L∗ − z)2

2t(z)

∞∑
k=4

(
s

t(z)

)k
− (r − w)2

2t(z)

∞∑
k=0

(
s

t(z)

)k
− (r − w)(L∗ − z)

t(z)

∞∑
k=2

(
s

t(z)

)k)
.

(3.247)

By a computation similar to the one leading to (3.222), we get

− (L∗ − z)2

2t(z)

∞∑
k=4

(
s

t(z)

)k
− (r − w)2

2t(z)

∞∑
k=0

(
s

t(z)

)k
− (r − w)(L∗ − z)

t(z)

∞∑
k=2

(
s

t(z)

)k
= −(βs2 + 2r − 2w)2

8t
,

which is negative. Combining the previous two formulas with (3.88) and (3.221), we have

pt(x, y) ≤ 1√
2πt

exp

(
g(z)− ρw + ρr − β(r + w)t(z)

2
+
β(L∗ − z)s

2
+
β(r + w)s

2
− β2s3

24

+
β2t(z)s2

8
− β2t(z)2s

8
− (L∗ − z)2

2t(z)

(
s

t(z)
+

s2

t(z)2
+

s3

t(z)3

)
− (r − w)(L∗ − z)

t(z)

(
1 +

s

t(z)

))
=

1√
2πt

exp

(
g(z)− (c− 1)ρr − ρw + βsw − β2s3

6

)
,
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which is (3.140). Furthermore, let

cζ =

√
1− ζ

L∗
.

Note that that t = t(ζ) − sζ and sζ � β−2/3 by (3.97). Thus for y ≤ ζ, equation (3.140)

holds with ζ in place of z, cζ in place of c and sζ in place of s, so we have

pt(x, y) ≤ 1√
2πt

exp

(
g(ζ)− (cζ − 1)ρ(ζ − y)− ρw + βsζw −

β2s3
ζ

6

)
. (3.248)

Since ζ ≤ z < 0, we have cζ > c > 1. Therefore, equation (3.141) follows from (3.248). 2

3.5 Second moment estimate

3.5.1 Proof of Lemma 34

A key step in the proof of Lemma 34 is the following second moment estimate, which

will be proved in Section 3.5.2. Recall that pLt (x, y) is the density of the process in which

particles are killed at L.

Lemma 41. For every z satisfying (3.18), (3.46) and (3.47), let

0 ≤ s . β−2/3, t = t(z)− s.

Suppose 0 ≤ L− x . β−1/3. Then

∫ t

0

∫ L

−∞
pLu(x, r)

(
pLt−u(r, z)

)2

drdu .
β2/3

t(z)ρ4
exp

(
ρx− 2ρz + ρL− 4

√
2β

3
(L∗ − z)3/2

)
.

(3.249)

Note that equation (3.249) means that the ratio between the left hand side and

the right hand side is bounded above by a positive constant uniformly for all n and all z
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satisfying (3.18), (3.46) and (3.47).

Proof of Lemma 34. According to the standard second moment formula (see e.g. Theorem

2.2 in [78]), we have

E[NL
t (I)2] .

∫
I
pLt (x, y)dy + 2

∫ t

0

∫ L

−∞
pLu(x, r)

(∫
I
pLt−u(r, y)dy

)2

drdu. (3.250)

Regarding the first term in (3.250), we upper bound pLt (x, y) by pt(x, y) and then

apply (3.100) to get

∫
I
pLt (x, y)dy ≤

∫
I

1√
2πt

exp

(
g(y)− ρ(L∗ − x) + β(L∗ − x)(t(y)− t)− β2

6
(t(y)− t)3

)
dy.

On account of (3.97), we observe that 0 ≤ t(y) − t � β−2/3 for y ∈ I. Also notice that

|L∗ − x| . β−1/3. Therefore, we get

∫
I
pLt (x, y)dy

.
∫
I

1√
2πt(y)

exp

(
g(y)− ρL∗ + ρx

)
dy

=
β2/3

ρ4
eρx+ρL−2ρL∗

(∫
I

1√
2πt(y)

eg(y)dy

)2
ρ4

β2/3
e−ρL+ρL∗

(∫
I

1√
2πt(y)

eg(y)dy

)−1

.

(3.251)

For z satisfying (3.18), we see that g(z) ≥ 0 and t(y) ≤ 2t(z) for all y ∈ I when n is large

enough. Also note that c < 3/2, ρ/β1/3 � 1 and γ1 < 0. By (3.88), we get for n large,

ρ4

β2/3
e−ρL+ρL∗

(∫
I

1√
2πt(y)

eg(y)dy

)−1

≤ ρ4

β2/3
e−ρL+ρL∗

(
l

2
√
πt(z)

)−1

=
2
√
πc1/2ρ

l

(
ρ

β1/3

)7/2

exp

(
γ1ρ

21/3β1/3

)
� 1. (3.252)
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By (3.251) and (3.252), we have

∫
I
pLt (x, y)dy � β2/3

ρ4
eρx+ρL−2ρL∗

(∫
I

1√
2πty

eg(y)dy

)2

. (3.253)

Regarding the second part of (3.250), by the Cauchy-Schwarz inequality and Tonelli’s

theorem, we have

∫ t

0

∫ L

−∞
pLu(x, r)

(∫
I
pLt−u(r, y)dy

)2

drdu ≤ l

∫
I

∫ t

0

∫ L

−∞
pLu(x, r)

(
pLt−u(r, y)

)2
drdudy.

(3.254)

We want to apply Lemma 41 to upper bound the above expression. First, by Lemma 30, we

know that (3.18) holds with y in place of z. Also, by Lemma 31, for all y ∈ I,

t(y) = t(z)± o(β−2/3).

As a result, the assumptions in Lemma 41 are satisfied, and we can apply Lemma 41 to get

l

∫
I

∫ t

0

∫ L

−∞
pLu(x, r)

(
pLt−u(r, y)

)2
drdudy

.
lβ2/3

ρ4

∫
I

1

2πt(y)
exp

(
ρx− 2ρy + ρL− 4

√
2β

3
(L∗ − y)3/2

)
dy

=
β2/3

ρ4
eρx+ρL−2ρL∗l

∫
I

1

2πt(y)
e2g(y)dy. (3.255)

According to Lemma 32, we have for all y ∈ I,

eg(z) � eg(y).

From the previous equation and (3.98), we get

l

∫
I

1

2πt(y)
e2g(y)dy �

(∫
I

1√
2πt(y)

eg(y)dy

)2

. (3.256)
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By equations (3.254), (3.255) and (3.256), we obtain

∫ t

0

∫ L

−∞
pLu(x, r)

(∫
I
pLt−u(r, y)dy

)2

drdu .
β2/3

ρ4
eρx+ρL−2ρL∗

(∫
I

1√
2πt(y)

eg(y)dy

)2

.

(3.257)

The lemma follows from (3.250), (3.253) and (3.257). 2

3.5.2 Proof of Lemma 41

The proof of Lemma 41 will be divided into the following three lemmas.

Lemma 42. For every z satisfying (3.18), (3.46) and (3.47), let

0 ≤ s . β−2/3, t = t(z)− s, u1 = β−7/12(L∗ − z)1/4.

Suppose 0 ≤ L− x . β−1/3. Then

I1 : =

∫ u1

0

∫ L

−∞
pLu(x, r)

(
pLt−u(r, z)

)2

drdu

.
β2/3

t(z)ρ4
exp

(
ρx− 2ρz + ρL− 4

√
2β

3
(L∗ − z)3/2

)
. (3.258)

Lemma 43. For every z satisfying

L∗ − z � β−1/3 log4/3(ρ/β1/3), z − L† � β−1/3, (3.259)

let

0 ≤ s . β−2/3, t = t(z)− s, u1 = β−7/12(L∗ − z)1/4.

Suppose 0 ≤ L− x . β−1/3. Then

I2 : =

∫ t

u1

∫ L

−∞
pLu(x, r)

(
pLt−u(r, z)

)2

drdu .
β2/3

t(z)ρ4
exp

(
ρx− 2ρz + ρL− 4

√
2β

3
(L∗ − z)3/2

)
.

(3.260)
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Lemma 44. For every positive z satisfying

β−1/3 � L∗ − z . β−1/3 log4/3(ρ/β1/3), (3.261)

let

0 ≤ s . β−2/3, t = t(z)− s, u1 = β−7/12(L∗ − z)1/4.

Suppose 0 ≤ L− x . β−1/3. Then (3.260) holds.

Proof of Lemma 41. It suffices to show that for every subsequence (nj)
∞
j=1, there exists a

sub-subsequence (njk)
∞
k=1, such that

∫ tnjk

0

∫ Lnjk

−∞
p
Lnjk
u (xnjk , r)

(
p
Lnjk
tnjk
−unjk

(r, znjk )
)2

drdu

.
β

2/3
njk

tnjk (znjk )ρ4
njk

exp

(
ρnjkxnjk − 2ρnjkznjk + ρnjkLnjk −

4
√

2βnjk

3
(L∗njk

− znjk )3/2

)
.

(3.262)

Given a subsequence (nj)
∞
j=1, there exists a further subsequence (njk)

∞
k=1 such that one of

the following holds:

1. L∗njk
− znjk � β

−1/3
njk

log4/3(ρnjk/β
1/3
njk

) and znjk − L
†
njk
� β

−1/3
njk

.

2. β
−1/3
njk
� L∗njk

− znjk . β
−1/3
njk

log4/3(ρnjk/β
1/3
njk

).

In case 1, equation (3.262) follows from Lemmas 42 and 43. In case 2, equation (3.262)

follows from Lemmas 42 and 44. 2

The second moment estimate relies on delicate estimates of the density. Different

approximations to the density pLt (x, y) were obtained in [75]. The following results come

from Lemmas 2.6, 2.7 and 2.8 in [75].
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Lemma 45. For all t ≥ 0 and x, y < L, we have

pLt (x, y) . min

{
1

t1/2
,
(L− x)(L− y)

t3/2

}
exp

(
ρx− ρy − (y − x)2

2t
− ρ2t

2
+ βLt

)
. (3.263)

Moreover, when t ≥ 2β−2/3, 0 ≤ L− x . β−1/3 and y < L, we have

pLt (x, y) .
β1/3(L− x)√

t
max

{
1,

1

β1/3t

(
L− y − βt2

2

)}
× exp

(
ρx− ρy − (y − x)2

2t
− ρ2t

2
+
β(x+ y)t

2
+
β2t3

24
+

1

2β1/3t

(
L− y − βt2

2

))
.

(3.264)

It remains now to prove Lemmas 42, 43 and 44.

Proof of Lemma 42. For all u ∈ [0, u1], we see that t − u ≥ t/2 � β−2/3 for n sufficiently

large. We will bound pLu(x, r) by equation (3.263) and pLt−u(r, z) by equations (3.45) and

(3.264). We have

I1 .
∫ u1

0

∫ L

−∞
min

{
1

u1/2
,
(L− x)(L− r)

u3/2

}
exp

(
ρx− ρr − (x− r)2

2u
− ρ2u

2
+ βLu

)
× 1

t− u

(
1{L−r>β−1/3} + β2/3(L− r)2

(
max

{
1,

1

β1/3(t− u)

(
L− z − β(t− u)2

2

)})2

× exp

(
1

β1/3(t− u)

(
L− z − β(t− u)2

2

))
1{0≤L−r≤β−1/3}

)

× exp

(
2ρr − 2ρz − (r − z)2

t− u
− ρ2(t− u) + β(r + z)(t− u) +

β2(t− u)3

12

)
drdu.

Denote

M(u, r, x) = min

{
1

u1/2
,
(L− x)r

u3/2

}
,
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and

N(u, r, z) = 1{r>β−1/3} + β2/3r2

(
max

{
1,

1

β1/3(t− u)

(
L− z − β(t− u)2

2

)})2

× exp

(
1

β1/3(t− u)

(
L− z − β(t− u)2

2

))
1{0≤r≤β−1/3}.

Interchanging the roles of r and L− r, we have

I1 .
∫ u1

0

∫ ∞
0

1

t− u
M(u, r, x)N(u, r, z) exp

(
ρx− 2ρz + ρL− ρr − (x− L+ r)2

2u

− (L− r − z)2

t− u
+
ρ2u

2
− ρ2t+ βLu+ β(L− r)(t− u) + βz(t− u) +

β2(t− u)3

12

)
drdu.

Since t = t(z)− s, L = L∗ − (2β)−1/3γ1 and

1

t− u
=

1

t(z)

∞∑
k=0

(
u+ s

t(z)

)k
, (3.265)

we can express −(L− r − z)2/(t− u) as

− (L∗ − z)2

t(z)

∞∑
k=0

(
u+ s

t(z)

)k
− ((2β)−1/3γ1 + r)2

t− u
+

2(L∗ − z)r

t− u
+

2(L∗ − z)(2β)−1/3γ1

t− u

≤ −(L∗ − z)2

t(z)
− (L∗ − z)2

t(z)2
(u+ s)− (L∗ − z)2

t(z)3
(u+ s)2 − (L∗ − z)2

t(z)4
(u+ s)3

+
2(L∗ − z)r

t− u
+

2(L∗ − z)(2β)−1/3γ1

t− u
. (3.266)
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Rearranging all the terms, I1 can be further bounded as follows:

I1 . exp

(
ρx− 2ρz + ρL− ρ2t(z) + βL∗t(z) + βzt(z) +

β2t(z)3

12
− (L∗ − z)2

t(z)

)
∫ u1

0

∫ ∞
0

1

t− u
×M(u, r, x)N(u, r, z) exp

(
− ρr − ((L− x)− r)2

2u
− (L∗ − z)2

t(z)2
(u+ s)

− (L∗ − z)2

t(z)3
(u+ s)2 − (L∗ − z)2

t(z)4
(u+ s)3 +

2(L∗ − z)r

t− u
+

2(L∗ − z)(2β)−1/3γ1

t− u
+
ρ2u

2

+ ρ2s− β(2β)−1/3γ1t− β(t− u)r − βz(u+ s)− βL∗s− β2(u+ s)3

12

− β2t(z)2(u+ s)

4
+
β2t(z)(u+ s)2

4

)
drdu. (3.267)

Note that

− ρ2t(z) + βL∗t(z) + βzt(z) +
β2t(z)3

12
− (L∗ − z)2

t(z)
= −4

√
2β

3
(L∗ − z)3/2. (3.268)

Also,

2(L∗ − z)(2β)−1/3γ1

t− u
− β(2β)−1/3γ1t

<
2(L∗ − z)(2β)−1/3γ1

t(z)
− β(2β)−1/3γ1t(z) + β(2β)−1/3γ1s

= β(2β)−1/3γ1s

< 0,

and

ρ2u

2
+ ρ2s− βz(u+ s)− βL∗s = β(L∗ − z)(u+ s).
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Combining the above four formulas, we get

I1 .
1

t
exp

(
ρx− 2ρz + ρL− 4

√
2β

3
(L∗ − z)3/2

)
∫ u1

0

∫ ∞
0

M(u, r, x)N(u, r, z) exp

(
− r
(
ρ+ β(t− u)− 2(L∗ − z)

t− u

)
− ((L− x)− r)2

2u

− (L∗ − z)2

t(z)2
(u+ s)− (L∗ − z)2

t(z)3
(u+ s)2 − (L∗ − z)2

t(z)4
(u+ s)3 + β(L∗ − z)(u+ s)

− β2(u+ s)3

12
− β2t(z)2(u+ s)

4
+
β2t(z)(u+ s)2

4

)
drdu.

Observe that

−(L∗ − z)2

t(z)2
(u+ s) + β(L∗ − z)(u+ s)− β2t(z)2(u+ s)

4
= 0,

−(L∗ − z)2

t(z)3
(u+ s)2 +

β2t(z)(u+ s)2

4
= 0,

−(L∗ − z)2

t(z)4
(u+ s)3 − β2(u+ s)3

12
≤ −β

2u3

3
.

Therefore,

I1 .
1

t
exp

(
ρx− 2ρz + ρL− 4

√
2β

3
(L∗ − z)3/2

)∫ u1

0

∫ ∞
0

M(u, r, x)N(u, r, z)

exp

(
− r
(
ρ+ β(t− u)− 2(L∗ − z)

t− u

)
− ((L− x)− r)2

2u
− β2u3

3

)
drdu. (3.269)

Denote the double integral as J . Write J = J1 + J2 where J1 is the portion of the double

integral for which r > β−1/3 and J2 is the portion of the double integral for which 0 ≤ r ≤

β−1/3. We first estimate J1. Since u ≤ u1 = β−7/12(L∗ − z)1/4 and s � u1, we see that
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β(u+ s)� ρ. Thus, according to (3.265), for n sufficiently large we get

ρ+ β(t− u)− 2(L∗ − z)

t− u
= ρ+ t(z)β − β(u+ s)− 2(L∗ − z)

t(z)

∞∑
k=0

(
u+ s

t(z)

)k
= ρ− β(u+ s)− 2(L∗ − z)

t(z)

∞∑
k=1

(
u+ s

t(z)

)k
= ρ− β(u+ s)− βt(z)(u+ s)

t− u

≥ ρ

2
. (3.270)

Therefore,

J1 .
∫ u1

0

∫ ∞
β−1/3

M(u, r, x)N(u, r, z)e−ρr/2drdu

≤
∫ ρ−2

0

1

u1/2

∫ ∞
β−1/3

e−ρr/2drdu+

∫ u1

ρ−2

∫ ∞
β−1/3

(L− x)r

u3/2
e−ρr/2drdu

≤ e−ρ/2β
1/3

(
4

ρ2
+

4(L− x)

β1/3
+

8(L− x)

ρ

)
.

Since L− x . β−1/3, for n sufficiently large,

e−ρ/2β
1/3

(
4

ρ2
+

4(L− x)

β1/3
+

8(L− x)

ρ

)
. e−ρ/2β

1/3

β−2/3 =
β2/3

ρ4

( ρ

β1/3

)4

e−ρ/2β
1/3 � β2/3

ρ4
.

Combining the above two equations, we have

J1 �
β2/3

ρ4
. (3.271)
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Next, we estimate J2. Note that

1

β1/3(t− u)

(
L− z − β(t− u)2

2

)
=

1

β1/3(t− u)

(
− (2β)−1/3γ1 −

β(u+ s)2

2
+ βt(z)(u+ s)

)
=

1

β1/3(t− u)

(
− β(u+ s)2

2
+ βt(z)(u+ s)

)
+ o(1).

(3.272)

We will expand 1/(t−u) as a geometric sum. Using that t = t(z)− s, u ≤ u1 = β−7/12(L∗−

z)1/4 and s . β−2/3, we see that u+ s� t(z). Using also (3.88) and (3.265), we get

1

β1/3(t− u)

(
L− z − β(t− u)2

2

)
≤ β2/3(u+ s)

∞∑
k=0

(
u+ s

t(z)

)k
+ o(1)

= β2/3(u+ s)

(
1 +O

(u+ s

t(z)

))
+ o(1)

= β2/3u+O(1).

Equation (3.270) and the previous formula imply that

J2 .
∫ u1

0

∫ β−1/3

0

M(u, r, x)β2/3r2
(

max
{

1, β2/3u
})2

× exp

(
− ρr

2
− (L− x− r)2

2u
− β2u3

3
+ β2/3u

)
drdu

.
∫ ρ−2

0

1

u1/2

∫ β−1/3

0

β2/3r2e−ρr/2drdu

+

∫ 3β−2/3

ρ−2

1

u3/2

∫ β−1/3

0

(L− x)β2/3r3 exp

(
− ρr

2
− (L− x− r)2

2u

)
drdu

+

∫ u1

3β−2/3

1

u3/2

∫ β−1/3

0

(L− x)β2/3r3 exp

(
− ρr

2
− (L− x− r)2

2u

)
× exp

(
− (β2/3u)3

3
+ β2/3u+ 2 log(β2/3u)

)
drdu.
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When x ≥ 3, we have −x3/3 + x+ 2 log x ≤ 0. Therefore,

J2 .
∫ ρ−2

0

1

u1/2

∫ β−1/3

0

β2/3r2e−ρr/2drdu

+

∫ u1

ρ−2

1

u3/2

∫ β−1/3

0

(L− x)β2/3r3 exp

(
− ρr

2
− (L− x− r)2

2u

)
drdu

.
β2/3

ρ4
+ (L− x)β2/3

∫ u1

ρ−2

1

u3/2

∫ β−1/3

0

r3 exp

(
− ρr

2
− (L− x− r)2

2u

)
drdu. (3.273)

Note that u1 . ρ1/2β−5/6. By applying exactly the same calculation as in equations (8.54),

(8.55) and (8.56) of [75], we see that

(L− x)β2/3

∫ u1

ρ−2

1

u3/2

∫ β−1/3

0

r3 exp

(
− ρr

2
− (L− x− r)2

2u

)
drdu .

β2/3

ρ4
. (3.274)

Combining equations (3.269), (3.271), (3.273) and (3.274), we have

I1 .
β2/3

tρ4
exp

(
ρx− 2ρz + ρL− 4

√
2β

3
(L∗ − z)3/2

)
,

which implies (3.258). 2

Proof of Lemma 43. The restriction (3.259) is equivalent to

c� β1/3

ρ
log2/3

(
ρ

β1/3

)
,

3

2
− c� β2/3

ρ2
. (3.275)

In particular, c � β1/3ρ−1 and 0 < c < 3/2. For u1 ≤ u ≤ t, we will bound both pLu(x, r)

and pLt−u(r, z) by equation (3.45). Similar to the calculation for I1, interchanging the roles
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of r and L− r, we have

I2 . exp

(
ρx− 2ρz + ρL− ρ2t+ βLt+ βzt

)
×
∫ t

u1

u−1/2(t− u)−1 exp

(
ρ2u

2
+
βxu

2
− βzu− βLu

2
+
β2u3

24
+
β2(t− u)3

12

)
∫ ∞

0

exp

(
− r
(
ρ+ βt− βu

2

)
− (L− x− r)2

2u
− (L− z − r)2

t− u

)
drdu. (3.276)

Using (3.88), to prove (3.260), it is equivalent to show that

I2 .
β5/3

cρ5
exp

(
ρx− 2ρz + ρL− 2c3

3

ρ3

β

)
. (3.277)

To simplify I2, we are going to estimate K in two ways depending on the value of u.

This cutoff value u2 will be defined based on yc introduced below. Denote

∆ =

√
9c2

4
+ c+ 1, yc =

3

2
+

1

c
− 1

c
∆. (3.278)

Note that yc < 1 since for 0 < c ≤ 3/2,

1− yc = −1

2
+

(∆− 1)(∆ + 1)

c(∆ + 1)

=
9c

4(∆ + 1)
−
(

1

2
− 1

∆ + 1

)
=

9c

4(∆ + 1)
− (∆− 1)(∆ + 1)

2(∆ + 1)2

=
9c

4(∆ + 1)
− c

2(∆ + 1)2
− 9c2

8(∆ + 1)2

≥ 1

(∆ + 1)2

(
9c

2
− c

2
− 9c2

8

)
> 0. (3.279)
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Choose a constant C16 > 0 small enough such that the following hold:

1

3
− 3C16

2
> C16, (3.280)

− 4

3(3 +
√

17)(1 +
√

17/2)
+ 2C16 < −C16, (3.281)

− 7

2(3 +
√

17)(1 +
√

17/2)
+

3

2
C16 + 6C16 < 0, (3.282)

−8

9(3 · 3
2

+ 2 · 11
4

)(11
4

+ 1)
+ 9C16 < −C16. (3.283)

Then define

u2 =

(
3

2
+

1

c
− 1

c

√
9c2

4
+ c+ 1− C16c

)
t. (3.284)

Since yc < 1 by (3.279), we see that u2 < t. Also, when 0 < c ≤ 3/2, one can show that

3/2 + 1/c−∆/c− C16c is a decreasing function of c. Thus by (3.280),

u2 ≥
(

3

2
+

2

3
− 2

3

√
9

4
· 9

4
+

3

2
+ 1− 3C16

2

)
t =

(
1

3
− 3C16

2

)
t > C16t (3.285)

and u2 > u1 for sufficiently large n.

Denote the inner integral in (3.276) as K. When u1 < u ≤ u2, letting a = (ρ + βt−

βu/2)(t− u) and b = L− z, K can be written as

K =

∫ ∞
0

exp

(
− (r − (b− a/2))2 + ab− a2/4

t− u
− (L− x− r)2

2u

)
dr. (3.286)

For u1 ≤ u ≤ u2, we claim that b − a/2 ≤ 0. Because b − a/2 is an increasing function of

u, it is sufficient to show that for u = u2, we have b − a/2 ≤ 0. Recall from (3.88) that

t = cρ/β − s and L∗ − z = c2ρ2/2β. Writing

y2 =
u2

t
= yc − C16c, (3.287)
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we have that

b− a

2
= (1− c0)

ρ2

2β
− (2β)−1/3γ1 −

1

2

(
(1 + c)ρ− βs− cy2ρ

2
+
βy2s

2

)
(1− y2)

(
c
ρ

β
− s
)

=
ρ2

β

(
− c2y2

2

4
+ y2

(3c2

4
+
c

2

)
− c

2

)
+ ρs(1− y2)

(
1

2
+ c− cy2

2

)
+O(β−1/3).

(3.288)

We observe that yc is one root of

− c2y2

4
+ y
(3c2

4
+
c

2

)
− c

2
= 0. (3.289)

Therefore, according to (3.287) and (3.289), equation (3.288) implies that

b− a

2
= −c

2ρ2

β

(
C2

16c
2

4
+
C16∆

2

)
+ ρs

(
1− yc + C16c

)(
1

2
+ c− cy2

2

)
+O(β−1/3).

Because 1 − yc ≤ 9c/4(∆ + 1) by the second line of (3.279) and 1/2 + c − cy2/2 ≤ 2 for

0 < c ≤ 3/2, it follows that

b− a

2
≤ −C16∆c2ρ2

2β
+ 2ρsc

(
9

4(∆ + 1)
+ C16

)
+O(β−1/3).

Since c� β1/3ρ−1 by (3.259) and s . β−2/3, we see that c2ρ2/β � ρsc and c2ρ2/β � β−1/3.

As a result, for u = u2, and thus for all u1 < u ≤ u2, for n sufficiently large,

b− a

2
≤ 0. (3.290)

From (3.286) and (3.290), we obtain that for u1 < u ≤ u2,

K ≤
∫ ∞

0

exp

(
− (L− z)2

t− u
− (L− x− r)2

2u

)
dr ≤

√
2πu exp

(
− (L− z)2

t− u

)
. (3.291)

When u2 ≤ u ≤ t, we upper bound K by the formula for the moment generating function of
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the normal distribution to get

K ≤
∫ ∞
−∞

exp

(
− r
(
ρ+ βt− βu

2
− L− x

u
− 2(L− z)

t− u

)
− r2

2

t+ u

u(t− u)
− (L− x)2

2u
− (L− z)2

t− u

)
dr

=

√
2πu(t− u)

t+ u
exp

(
u(t− u)

2(t+ u)

(
ρ+ βt− βu

2
− L− x

u
− 2(L− z)

t− u

)2

− (L− x)2

2u
− (L− z)2

t− u

)
. (3.292)

According to (3.276), (3.291) and (3.292), we have

I2 . exp

(
ρx− 2ρz + ρL− ρ2t+ βLt+ βzt

)
×
∫ u2

u1

(t− u)−1 exp

(
ρ2u

2
+
βxu

2
− βzu− βLu

2
+
β2u3

24
+
β2(t− u)3

12
− (L− z)2

t− u

)
du

+ exp

(
ρx− 2ρz + ρL− ρ2t+ βLt+ βzt

)
×
∫ t

u2

√
1

(t− u)(t+ u)
exp

(
ρ2u

2
+
βxu

2
− βzu− βLu

2
+
β2u3

24
+
β2(t− u)3

12

)
× exp

(
u(t− u)

2(t+ u)

(
ρ+ βt− βu

2
− L− x

u
− 2(L− z)

t− u

)2

− (L− x)2

2u
− (L− z)2

t− u

)
du

=: R1 +R2. (3.293)

We first estimate R1. Let y1 = u1/t and y2 = u2/t. After making the change of

variables u = yt and writing z = c0L
∗ and t = cρ/β − s, we obtain

R1 = exp

(
ρx− 2ρz + ρL− ρ2

(
c
ρ

β
− s
)

+ β
( ρ2

2β
− (2β)−1/3γ1

)(
c
ρ

β
− s
)

+ βc0
ρ2

2β

(
c
ρ

β
− s
))∫ y2

y1

1

1− y
exp

(
ρ2y

2

(
c
ρ

β
− s
)
− β(L− x)y

2

(
c
ρ

β
− s
)

− βc0
ρ2

2β

(
c
ρ

β
− s
)
y +

β2y3

24

(
c
ρ

β
− s
)3

+
β2(1− y)3

12

(
c
ρ

β
− s
)3

− ((1− c0)ρ2/2β − (2β)−1/3γ1)2

(cρ/β − s)(1− y)

)
dy.
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Observing that

−((1− c0)ρ2/2β − (2β)−1/3γ1)2

(cρ/β − s)(1− y)
≤ −(1− c0)2ρ3

4cβ(1− y)

∞∑
k=0

(sβ
cρ

)k
≤ −(1− c0)2ρ3

4cβ(1− y)
− (1− c0)2ρ2s

4c2(1− y)
− (1− c0)2ρβs2

4c3(1− y)
,

we get

R1 . exp

(
ρx− 2ρz + ρL− c3

2

ρ3

β
+
c2ρ2s

2
− 2−1/3γ1c

ρ

β1/3

)
∫ y2

y1

1

1− y
exp

(
ρ3

β

(cy
2
− cc0y

2
+
c3y3

24
+
c3(1− y)3

12
− (1− c0)2

4c(1− y)

)
− β(L− x)y

2

(
c
ρ

β
− s
)

+ ρ2s
(
− y

2
+
c0y

2
− c2y3

8
− c2(1− y)3

4
− (1− c0)2

4c2(1− y)

)
+ cρβs2

(y3

8
+

(1− y)3

4

)
− β2s3

(y3

24
+

(1− y)3

12

)
− (1− c0)2ρβs2

4c3(1− y)

)
dy. (3.294)

Note that for s . β−2/3 and all y ∈ [y1, y2],

0 < −2−1/3γ1c
ρ

β1/3
+ cρβs2

(y3

8
+

(1− y)3

4

)
= O

( cρ

β1/3

)
.

Since
√

1− c0 = c, the upper bound of R1 in (3.294) can further be expressed as

R1 . exp

(
ρx− 2ρz + ρL− 2c3

3

ρ3

β
+O

( cρ

β1/3

))∫ y2

y1

1

1− y
exp

(
− cρβs2

4(1− y)

)
exp

(
c3ρ3

4β

(
− y3

6
+ y2 + y + 1− 1

1− y

)
+ c2ρ2s

(1

2
− y

2
− y3

8
− (1− y)3

4
− 1

4(1− y)

))
dy. (3.295)

Let

h(y) =
1

2
− y

2
− y3

8
− (1− y)3

4
− 1

4(1− y)
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Since for y ∈ [0, 1],

h′(y) = −1

2
− 3y2

8
+

3(1− y)2

4
− 1

4(1− y)2
=

1

4

(
1− 1

(1− y)2

)
+

3y

2

(
y

4
− 1

)
≤ 0,

we get h(y) ≤ h(0) = 0. Also for all y ∈ [y1, y2],

c3

4

(
− y3

6
+ y2 + y + 1− 1

1− y

)
= −c

3y3

4

(1

6
+

1

1− y

)
≤ −c

3y3
1

24
.

Thus,

R1 . exp

(
ρx− 2ρz + ρL− 2c3

3

ρ3

β
+O

( cρ

β1/3

)
− c3y3

1ρ
3

24β

)∫ y2

y1

1

1− y
exp

(
− cρβs2

4(1− y)

)
dy.

(3.296)

By (3.275), we have that

c3y3
1ρ

3

24β
=
c3ρ3

24β

(β−7/12(L∗ − z)1/4

t

)3

∼ c3ρ3

24β

(β−7/12(c2ρ2/2β)1/4

cρ/β

)3

=
c3/2ρ3/2

24 · 23/4 · β1/2
� cρ

β1/3
.

Also, because cρβs2 � 1, after changing variables twice, we get

∫ y2

y1

1

1− y
exp

(
− cρβs2

4(1− y)

)
dy ≤

∫ 1

0

1

y
exp

(
− cρβs2

4y

)
dy

=

∫ ∞
1

1

y
exp

(
− cρβs2y

4

)
dy

� 1. (3.297)

Therefore, in equation (3.296), the term O(cρ/β1/3) can be absorbed into −c3y3
1ρ

3/24β in

the exponent and the integral can be neglected. By (3.275), we conclude that

R1 .
β5/3

cρ5
exp

(
ρx− 2ρz + ρL− 2c3

3

ρ3

β

)
cρ5

β5/3
exp

(
− c3/2ρ3/2

48β1/2

)
� β5/3

cρ5
exp

(
ρx− 2ρz + ρL− 2c3

3

ρ3

β

)
. (3.298)
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Here we want to point out that this is the only place in the proof of Lemma 43 where we need

to use the assumption c� β1/3ρ−1 log2/3(ρβ−1/3) instead of the weaker one c� β1/3ρ−1.

Next, we estimate R2. Letting u = yt, by similar computations as for R1, we have

R2 . exp

(
ρx− 2ρz + ρL− c3

2

ρ3

β
+
c2ρ2s

2
− 2−1/3γ1c

ρ

β1/3

)
∫ 1

y2

1√
(1 + y)(1− y)

exp

(
c3ρ3

β

(y
2

+
y3

24
+

(1− y)3

12

)
− c2ρ2s

(y
2

+
y3

8
+

(1− y)3

4

)
+ cρβs2

(y3

8
+

(1− y)3

4

)
− β2s3

(y3

24
+

(1− y)3

12

))
× exp

(
ty(1− y)

2(1 + y)

(
ρ+ βt− βyt

2
− L− x

yt
− 2(L− z)

t(1− y)

)2

− (L− x)2

2yt
− (L− z)2

t(1− y)

)
dy.

(3.299)

Denote the exponent on the last line of (3.299) as A. For x < L and y ∈ [y2, 1], we get

A =
ty(1− y)

2(1 + y)

[(
ρ+ βt− βyt

2

)2

+
(L− x)2

y2t2
+

4(L− z)2

t2(1− y)2
− 2(L− x)

yt

(
ρ+ βt− βyt

2

)
− 4(L− z)

t(1− y)

(
ρ+ βt− βyt

2

)
+

4(L− x)(L− z)

t2y(1− y)

]
− (L− x)2

2yt
− (L− z)2

t(1− y)

=
t

2

y(1− y)

1 + y

(
ρ+ βt− βyt

2

)2

− (L− x)2

t(1 + y)
− (L− z)2

t(1 + y)
− 1− y

1 + y
(L− x)

(
ρ+ βt− βyt

2

)
− 2y

1 + y
(L− z)

(
ρ+ βt− βyt

2

)
+

2(L− x)(L− z)

t(1 + y)

≤ t

2

y(1− y)

1 + y

(
ρ+ βt− βyt

2

)2

− (L− z)2

t(1 + y)
− 2y

1 + y
(L− z)

(
ρ+ βt− βyt

2

)
+

2(L− x)(L− z)

t(1 + y)
.

Recalling that t = cρ/β − s and L∗ − z = c2ρ2/2β, we have

A ≤ y(1− y)

2(1 + y)

(cρ
β
− s
)(

ρ+ β
(cρ
β
− s
)
− βy

2

(cρ
β
− s
))2

− (c2ρ2/2β − (2β)−1/3γ1)2

(1 + y)(cρ/β − s)

− 2y

1 + y

c2ρ2

2β

(
ρ+ β

(cρ
β
− s
)
− βy

2

(cρ
β
− s
))

+
2(L− x)(c2ρ2/2β − (2β)−1/3γ1)

(cρ/β − s)(1 + y)
.

(3.300)
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Because L− x . β−1/3 and s . β−2/3, we see that for y ∈ [y2, 1],

2(L− x)(c2ρ2/2β − (2β)−1/3γ1)

(cρ/β − s)(1 + y)
.

cρ

β1/3
.

We also observe that ρβs2 . ρ/β1/3, β2s3 � ρ/β1/3 and

−(c2ρ2/2β − (2β)−1/3γ1)2

(1 + y)(cρ/β − s)
≤ − c4ρ4/4β2

(1 + y)cρ/β

∞∑
k=0

(
s

cρ/β

)k
≤ − c3ρ3

4β(1 + y)
− c2ρ2s

4(1 + y)
.

Therefore, equation (3.300) implies that

A ≤ρ
3

β

[
y(1− y)

2(1 + y)
c

(
1 + c− cy

2

)2

− c3

4(1 + y)
− y

1 + y
c2

(
1 + c− cy

2

)]
+ ρ2s

[
− c2

4(1 + y)

−
(

1− y

2

)(
1 + c− cy

2

)cy(1− y)

1 + y
− y(1− y)

2(1 + y)

(
1 + c− cy

2

)
+

y

1 + y

(
1− y

2

)
c2

]
+O

(
ρ

β1/3

)
. (3.301)

By (3.299) and (3.301), we have

R2 . exp

(
ρx− 2ρz + ρL− 2c3

3

ρ3

β
+O

( ρ

β1/3

))∫ 1

y2

1√
(1 + y)(1− y)

× exp

(
ρ3

β

(
c3y

4
+
c3y2

4
− c3y3

24
+
c3

4
+
y(1− y)

2(1 + y)
c
(

1 + c− cy

2

)2

− c3

4(1 + y)

− y

1 + y
c2
(

1 + c− cy

2

))
+ ρ2s

(
c2

2
− c2y

2
− c2y3

8
− c2(1− y)3

4
− c2

4(1 + y)

−
(

1− y

2

)(
1 + c− cy

2

)cy(1− y)

1 + y
− y(1− y)

2(1 + y)

(
1 + c− cy

2

)2

+
y

1 + y

(
1− y

2

)
c2

))
dy.

(3.302)

Define

φ(y) = −2y3

3
+
(10

3
+

2

c

)
y2 −

( 2

c2
+

6

c

)
y +

2

c2
, (3.303)
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and

ψ(y) =
c2y3

2
−
(5c2

2
+ c
)
y2 +

(
2c2 + 3c+

1

2

)
y − 2c− 1

2
. (3.304)

After algebraic calculation, equation (3.302) is equivalent to

R2 . exp

(
ρx− 2ρz + ρL− 2c3

3

ρ3

β
+O

( ρ

β1/3

))∫ 1

y2

1√
(1 + y)(1− y)

× exp

(
c3ρ3

β

y

4(1 + y)
φ(y) + ρ2s

y

1 + y
ψ(y)

)
dy. (3.305)

Below we will obtain the upper bounds for φ(y) and ψ(y) in the cases z ≥ 0 and z < 0.

Let us first study φ(y). Note that for every c, we have φ′′(y) > 0 for all y ∈ [y2, 1].

Therefore, for y ∈ [y2, 1], the function φ(y) reaches its maximum either at 1 or at y2. When

y = 1, we have for all c ∈ (0, 3/2),

φ(1) =
8

3
− 4

c
= −8(3/2− c)

3c
< 0. (3.306)

For c ∈ (0, 3/2), since 0 < y2 = yc − C16c ≤ 1, after rearranging terms, we have

φ(y2) =
2

3
y2

2(1− yc + C16c) +
(8

3
+

2

c

)
y2

2 −
( 2

c2
+

6

c

)
(yc − C16c) +

2

c2

≤ 2

3
y2
c (1− yc) +

(8

3
+

2

c

)
y2
c −

( 2

c2
+

6

c

)
yc +

2

c2
+

2C16c

3
+

2C16

c
+ 6C16

= φ(yc) +
2C16c

3
+

2C16

c
+ 6C16.

Since yc satisfies (3.289), we have y2
c = yc(3 + 2/c)−2/c. Replacing y2

c with yc(3 + 2/c)−2/c
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in the first step and replacing yc with 3/2 + 1/c−∆/c in the second step, we get

φ(yc) = 4yc −
2

3c2
yc −

8

3c
+

2

3c2

= 6− 4∆

c
+

4

3c
− 1

3c2
− 2

3c3
+

2∆

3c3

=
2(9c2 − 4∆2)

c(3c+ 2∆)
+

4

3c
− 1

3c2
+

2(∆2 − 1)

3c3(∆ + 1)

=
−8c− 8

(3c+ 2∆)c
+

4

3c
+

3

2c(∆ + 1)
− 1

3c2
+

2

3c2(∆ + 1)
.

For c ∈ (0, 3/2), we have ∆ > 1. According to the above two formulas, we have

φ(y2) ≤ −8c− 8

(3c+ 2∆)c
+

4

3c
+

3

2c(∆ + 1)
+

2C16c

3
+

2C16

c
+ 6C16

=
−24∆c+ 3c− 14∆− 48 + 16∆2

6c(3c+ 2∆)(∆ + 1)
+

2C16c

3
+

2C16

c
+ 6C16. (3.307)

If z ≥ 0, then c ∈ (0, 1] and 1 < ∆ ≤
√

17/2. We have

−24∆c+ 3c < −21c,

and

−14∆− 48 + 16∆2 = 14∆(∆− 1)− 48 + 2∆2

≤ 14 ·
√

17

2

(√
17

2
− 1

)
− 48 + 2

(√
17

2

)2

< −8.

Therefore, combining the above two observations with equations (3.281), (3.282) and (3.307),
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we obtain

φ(y2) ≤
(
− 4

3(3 +
√

17)(1 +
√

17/2)
+ 2C16

)
1

c
− 7

2(3 +
√

17)(1 +
√

17/2)
+

2

3
C16 + 6C16

< −C16

c
. (3.308)

According to equations (3.306) and (3.308), we get when z ≥ 0, or equivalently c ∈ (0, 1],

max
y∈[y2,1]

φ(y) ≤ max

{
− 8(3/2− c)

3c
,−C16

c

}
= −C16

c
. (3.309)

If z < 0, then c ∈ (1, 3/2) and
√

17/2 < ∆ < 11/4. We have

−24∆c+ 3c− 14∆− 48 + 16∆2 < −21∆c+ 14∆(∆− 1) + 2∆2 − 48

< −21 ·
√

17

2
· 1 + 14 · 11

4

(11

4
− 1
)

+ 2 · 11

4
· 11

4
− 48

< −8.

Therefore, combining the above two observations with equations (3.283) and (3.307), since

c ∈ (0, 3/2), we obtain

φ(y2) ≤ −8

9(3 · 3
2

+ 2 · 11
4

)(11
4

+ 1)
+ 9C16 < −C16.

According to equations (3.306) and (3.308), we get when z ≤ 0, or equivalently c ∈ (1, 3/2),

max
y∈[y2,1]

φ(y) ≤ max

{
− 8(3/2− c)

3c
,−C16

}
. (3.310)

We next study ψ(y). Let us first consider the case z ≥ 0, or equivalently, c ∈ (0, 1].

For all y ∈ [y2, 1], we have

ψ(y) ≤ c2y2

2
−
(5c2

2
+ c
)
y2 + (2c2 + c)y = c(2c+ 1)y(1− y) ≤ 3c. (3.311)
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If z < 0, we claim that for all y ∈ [y2, 1] and c ∈ (0, 3/2), we have

ψ(y) ≤ −3c2φ(y)/4. (3.312)

Indeed, for every y, we can view −3c2φ(y)/4− ψ(y) as a quadratic function of c:

−3c2φ(y)

4
− ψ(y) = −2yc2 + c

(
− 1

2
y2 +

3

2
y + 2

)
+ y − 1 =: ϕ(c).

Note that for every y ∈ (0, 1], the quadratic function ϕ(c) for c ∈ [1, 3/2] reaches its minimum

at either c = 1 or c = 3/2. Since for all y ∈ (0, 1], we have

ϕ(1) = −1

2
(y2 − y − 2) > 0, ϕ

(3

2

)
= −1

4
(3y2 + 5y − 8) ≥ 0,

the claim follows.

Now it remains to apply the upper bounds of φ(y) and ψ(y) in (3.305). By (3.285),

for all y ∈ [y2, 1], we have

C16/2 ≤ y/(1 + y) ≤ 1. (3.313)

When z ≥ 0, combining (3.305) with (3.309), (3.311) and (3.313), we obtain

R2 . exp

(
ρx− 2ρz + ρL− 2c3

3

ρ3

β
− C2

17

8

c2ρ3

β
+ 3cρ2s+O

( ρ

β1/3

))
. (3.314)

Recalling that c� β1/3/ρ and s . β−2/3, we have

c2ρ3

β
� cρ2s,

c2ρ3

β
� ρ

β1/3
, exp

(
− C2

17

16

c2ρ3

β

)
� β5/3

cρ5
.

Consequently,

R2 .
β5/3

cρ5
exp

(
ρx− 2ρz + ρL− 2c3

3

ρ3

β

)
. (3.315)

If z < 0, since c3ρ3/β � c2ρ2s, according to (3.305), (3.310), (3.312) and (3.313), we have
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for n sufficiently large

R2 . exp

(
ρx− 2ρz + ρL− 2c3

3

ρ3

β
+O

( ρ

β1/3

))
×
∫ 1

y2

1√
(1 + y)(1− y)

exp

(
c3ρ3

β

yφ(y)

8(1 + y)

)
dy

. exp

(
ρx− 2ρz + ρL− 2c3

3

ρ3

β
− C16

16

c3ρ3

β
min

{
8(3/2− c)

3c
, C16

}
+O

( ρ

β1/3

))
.

By (3.275), since c > 1, we have

c3ρ3

β
min

{
8(3/2− c)

3c
, C16

}
� ρ

β1/3
, exp

(
− c3ρ3

β
min

{
8(3/2− c)

3c
, C16

})
� β5/3

cρ5
.

Therefore, equation (3.315) also holds when z < 0.

Finally, combining (3.298) and (3.315), equation (3.277) is proved and the lemma

follows. 2

Proof of Lemma 44. Recall that in the proof of Lemma 43, the only place where we used

the assumption L∗ − z � β−1/3 log4/3(ρ/β1/3) is equation (3.298). Thus to prove Lemma

44, it is sufficient to prove that for z satisfying β−1/3 � L∗ − z . β−1/3 log4/3(ρ/β1/3), or

equivalently, β1/3ρ−1 � c . β1/3ρ−1 log2/3(ρ/β1/3), we have

I ′2 :=

∫ u2

u1

∫ L

−∞
pLu(x, r)

(
pLt−u(r, z)

)2

drdu .
β5/3

cρ5
exp

(
ρx− 2ρz + ρL− 2c3

3

ρ3

β

)
. (3.316)

The portion of the double integral in I2 for which u2 ≤ u ≤ t has been dealt with in Lemma

43. By (3.4), we can choose constant C17 > 0 such that

2−1/3γ1 + C17 + 1 < −1

2
(3.317)
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According to equations (3.88) and (3.287), and the fourth equality in (3.279), we get

t− u2 = t(1− y2) = t(1− yc + C16c) ≤ t(z)

(
9c

4(∆ + 1)
+ C16c

)
� c2ρ

β
� β−2/3. (3.318)

Thus t− u2 < 2β−2/3 for n large enough. Therefore, for n large enough, we can write

I ′2 = P1 + P2 + P3,

where P1 is the part of the double integral for which L − C17β
−1/3 ≤ r ≤ L and u1 ≤

u ≤ t − 2β−2/3, P2 is the part of the double integral for which L − C17β
−1/3 ≤ r ≤ L and

t − 2β−2/3 < u ≤ u2, and P3 is the part of the double integral for which r < L − C17β
−1/3

and u1 ≤ u ≤ u2.

To bound P1, we are going to bound pLu(x, r) by (3.263) and pLt−u(r, z) by (3.264). We

get

P1 .
∫ t−2β−2/3

u1

∫ L

L−C17β−1/3

(L− x)(L− r)
u3/2

exp

(
ρx− ρr − (x− r)2

2u
− ρ2u

2
+ βLu

)
× β2/3(L− r)2

t− u

(
max

{
1,

1

β1/3(t− u)

(
L− z − β(t− u)2

2

)})2

× exp

(
2ρr − 2ρz − (r − z)2

t− u
− ρ2(t− u) + β(r + z)(t− u) +

β2(t− u)3

12

+
1

β1/3(t− u)

(
L− z − β(t− u)2

2

))
drdu.

172



Note that L− x . β−1/3 and t = t(z)− s. Interchanging the roles of r and L− r, we have

P1 .
∫ t−2β−2/3

u1

β1/3

u3/2(t− u)

(
max

{
1,

1

β1/3(t− u)

(
L− z − β(t− u)2

2

)})2

exp

(
ρx− 2ρz + ρL− ρ2u

2
+ βLu− ρ2

(
t(z)− s− u

)
+
β2(t(z)− s− u)3

12

+
1

β1/3(t− u)

(
L− z − β(t− u)2

2

))∫ C17β−1/3

0

r3 exp

(
− ρr − (L− x− r)2

2u

− (L− r − z)2

t− u
+ β(L− r + z)(t(z)− s− u)

)
drdu. (3.319)

We first estimate the term (L− z − β(t− u)2/2)/(β1/3(t− u)). For u ≥ u1, we see that

β(u+ s)2

2
≥ βu2

1

2
=
β

2

(
β−7/12(L∗ − z)1/4

)2 � cρ

β2/3
� β−1/3 � (2β)−1/3|γ1|.

Thus by (3.272), we have for n large enough

1

β1/3(t− u)

(
L− z − β(t− u)2

2

)
≤ βt(z)(u+ s)

β1/3(t− u)
=
β2/3t(z)(u+ s)

t− u
. (3.320)

Furthermore, we note that

β2/3t(z)(u+ s)

t− u
≥ β2/3t(z)u1

t(z)
= β2/3u1 �

c1/2ρ1/2

β1/6
� 1.

Moreover, we will upper bound the term −(L−r−z)2/(t−u) by (3.266). By (3.266), (3.319)
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and (3.320), after rearranging terms, we get for n large

P1 . exp

(
ρx− 2ρz + ρL− ρ2t(z) + βL∗t(z) + βzt(z) +

β2t(z)3

12
− (L∗ − z)2

t(z)

)
∫ t−2β−2/3

u1

β5/3t(z)2(u+ s)2

u3/2(t− u)3
exp

(
− ρ2u

2
+ βLu+ ρ2(u+ s)− β2(u+ s)3

12

+
β2t(z)(u+ s)2

4
− β2t(z)2(u+ s)

4
+
β2/3t(z)(u+ s)

t− u
− βL(u+ s)− 2−1/3β2/3γ1t(z)

− βz(u+ s)− (L∗ − z)2(u+ s)

t(z)2
− (L∗ − z)2(u+ s)2

t(z)3
− (L∗ − z)2(u+ s)3

t(z)4

)
∫ C17β−1/3

0

r3 exp

(
− ρr − βr(t(z)− s− u)− (L− x− r)2

2u

+
2(L∗ − z)((2β)−1/3γ1 + r)

t− u

)
drdu.

Notice that since t(z) =
√

2/β
√
L∗ − z, L = L∗− (2β)−1/3γ1 and s . β−2/3, we observe that

− ρ2u

2
+ βLu+ ρ2(u+ s)− β2t(z)2(u+ s)

4
− βL(u+ s)− βz(u+ s)− (L∗ − z)2(u+ s)

t(z)2

=
ρ2u

2
+ ρ2s− βLs− βz(u+ s)− β(L∗ − z)(u+ s)

=
(ρ2

2
− βL

)
s

= O(1).

Also

β2t(z)(u+ s)2

4
− (L∗ − z)2(u+ s)2

t(z)3
= 0

and

−β
2(u+ s)3

12
− (L∗ − z)2(u+ s)3

t(z)4
= −β

2(u+ s)3

3
.
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By the above four equations and (3.268), we can further bound P1 as follows:

P1 . exp

(
ρx− 2ρz + ρL− 4

√
2β

3
(L∗ − z)3/2

)∫ t−2β−2/3

u1

β5/3t(z)2(u+ s)2

u3/2(t− u)3

× exp

(
− β2(u+ s)3

3
+
β2/3t(z)(u+ s)

t− u
− 2−1/3β2/3γ1t(z)

+
2(L∗ − z)(2−1/3γ1 + C17)β−1/3

t− u

)
×
∫ C17β−1/3

0

r3e−ρrdrdu.

Recall that c� β1/3/ρ. By equation (3.88), for n sufficiently large, for all u1 ≤ u ≤ t−2β−2/3,

we have

−β
2(u+ s)3

3
− 2−1/3β2/3γ1t(z) ≤ −β

2u3
1

3
− γ1cρ

21/3β1/3
= − c3/2ρ3/2

3 · 23/4β1/2
− γ1cρ

21/3β1/3
≤ −c

3/2ρ3/2

6β1/2
.

Also, by equations (3.88) and (3.317), since u + s ≤ t(z) = cρ/β, we have for all u1 ≤ u ≤

t− 2β−2/3,

β2/3t(z)(u+ s)

t− u
+

2(L∗ − z)(2−1/3γ1 + C17)β−1/3

t− u

=
cρ

β1/3(t− u)

(
(u+ s) +

cρ

β

(
2−1/3γ1 + C17

))
≤ c2ρ2

β4/3(t− u)

(
1 + 2−1/3γ1 + C17

)
≤ − c2ρ2

2β4/3(t− u)
.

Combining the above three equations with (3.88), after some standard calculations, we get

P1 .
c2

ρ2β1/3
exp

(
ρx− 2ρz + ρL− 2c3

3

ρ3

β
− c3/2ρ3/2

6β1/2

)
∫ t−2β−2/3

u1

(u+ s)2

u3/2(t− u)3
exp

(
− c2ρ2

2β4/3(t− u)

)
du.

Note that for n large, we have u + s ≤ 2u for all u1 ≤ u ≤ t − 2β−2/3. Let v = t − u. The
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integral in the previous equation can be upper bounded by

4

∫ t−2β−2/3

u1

u1/2

(t− u)3
exp

(
− c2ρ2

2β4/3(t− u)

)
du ≤ 4c1/2ρ1/2

β1/2

∫ t−u1

2β−2/3

v−3 exp
(
− c2ρ2

2β4/3v

)
dv

≤ 4c1/2ρ1/2

β1/2

∫ ∞
0

v−3 exp
(
− c2ρ2

2β4/3v

)
dv

=
4c1/2ρ1/2

β1/2
· 4β8/3

c4ρ4
. (3.321)

Combining the above two formulas, because cρ/β1/3 � 1, we get

P1 .
β11/6

c3/2ρ11/2
exp

(
ρx− 2ρz + ρL− 2c3

3

ρ3

β
− c3/2ρ3/2

6β1/2

)
� β5/3

cρ5
exp

(
ρx− 2ρz + ρL− 2c3

3

ρ3

β

)
. (3.322)

We next estimate P2. We are going to bound both pLu(x, r) and pLt−u(r, z) by (3.263).

Interchanging the roles of r and L− r, we get

P2 . (L− x)(L− z)2 exp

(
ρx− 2ρz + ρL− ρ2t+ 2βLt

)
×
∫ u2

t−2β−2/3

1

u3/2(t− u)3
exp

(
ρ2u

2
− βLu

)
∫ C17β−1/3

0

r3 exp

(
− ρr − (L− x− r)2

2u
− (L− r − z)2

t− u

)
drdu. (3.323)

By (3.317), we have for all 0 ≤ r ≤ C17β
−1/3,

−(L− r − z)2

t− u
= −(L∗ − z)2

t− u
− ((2β)−1/3γ1 + r)2

t− u
+

2(L∗ − z)((2β)−1/3γ1 + r)

t− u
≤ −(L∗ − z)2

t− u
.

Thus for t− 2β−2/3 ≤ u ≤ u2, the inner integral in (3.323) can be upper bounded by

∫ ∞
0

r3 exp

(
− ρr − (L∗ − z)2

t− u

)
dr .

1

ρ4
exp

(
− (L∗ − z)2

t− u

)
≤ 1

ρ4
exp

(
− (L∗ − z)2

2(t− u)
− (L∗ − z)2

2 · 2β−2/3

)
.
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Then equation (3.323) becomes

P2 .
(L− x)(L− z)2

ρ4
exp

(
ρx− 2ρz + ρL− ρ2t+ 2βLt− β2/3(L∗ − z)2

4

)
∫ u2

t−2β−2/3

1

u3/2(t− u)3
exp

(
ρ2u

2
− βLu− (L∗ − z)2

2(t− u)

)
du.

Expressing L− z and t in terms of c, since L− x . β−1/3, we get

P2 .
c4

β7/3
exp

(
ρx− 2ρz + ρL− 22/3γ1

cρ

β1/3
− c4ρ4

16β4/3

)
×
∫ u2

t−2β−2/3

1

u3/2(t− u)3
exp

(
− c4ρ4

8β2(t− u)

)
du.

By applying the same argument as in (3.321), the integral in the previous equation can be

upper bounded by

1

(t− 2β−2/3)3/2

∫ u2

t−2β−2/3

1

(t− u)3
exp

(
− c4ρ4

8β2(t− u)

)
.

β3/2

c3/2ρ3/2

∫ ∞
0

1

v3
exp

(
− c4ρ4

8β2v

)
dv

� β11/2

c19/2ρ19/2
.

Combining the above two equations, since cρ/β1/3 � 1, we have

P2 .
β19/6

c11/2ρ19/2
exp

(
ρx− 2ρz + ρL− 22/3γ1

cρ

β1/3
− c4ρ4

16β4/3

)
� β5/3

cρ5
exp

(
ρx− 2ρz + ρL− 2c3

3

ρ3

β

)
. (3.324)

It remains to estimate P3. We are going to bound both pLu(x, r) and pLt−u(r, z) by
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(3.45). By a similar calculation as in (3.276), we get

P3 . exp

(
ρx− 2ρz + ρL− ρ2t+ βLt+ βzt

)
×
∫ u2

u1

u−1/2(t− u)−1 exp

(
ρ2u

2
+
βxu

2
− βzu− βLu

2
+
β2u3

24
+
β2(t− u)3

12

)
∫ ∞
C17β−1/3

exp

(
− r
(
ρ+ βt− βu

2

)
− (L− x− r)2

2u
− (L− z − r)2

t− u

)
drdu

≤ exp

(
ρx− 2ρz + ρL− ρ2t+ βLt+ βzt− C17ρ

β1/3

)
×
∫ u2

u1

(t− u)−1 exp

(
ρ2u

2
+
βxu

2
− βzu− βLu

2
+
β2u3

24
+
β2(t− u)3

12

)
du.

Note that the above upper bound is very similar to R1 defined in (3.293). Therefore, by

carrying out the same calculation as for R1 in (3.295), we obtain

P3 . exp

(
ρx− 2ρz + ρL− 2c3

3

ρ3

β
− C17ρ

β1/3
+O

( cρ

β1/3

))
×
∫ y2

y1

1

1− y
exp

(
c3ρ3

4β

(
− y3

6
+ y2 + y + 1

)
+ c2ρ2s

(1

2
− y

2
− y3

8
− (1− y)3

4

))
dy,

(3.325)

where y1 = u1/t and y2 = u2/t. We see that for c . β1/3ρ−1 log2/3(ρ/β1/3) and y ∈ [y1, y2],

c3ρ3

4β

(
− y3

6
+ y2 + y + 1

)
≤ 3c3ρ3

4β
� ρ

β1/3
,

c2ρ2s
(1

2
− y

2
− y3

8
− (1− y)3

4

)
.
c2ρ2

β2/3
� ρ

β1/3
.

Thus the integral in (3.325) can be bounded by

exp

(
o
( ρ

β1/3

))∫ y2

y1

1

1− y
dy ≤ exp

(
o
( ρ

β1/3

))∫ 1

1−y2

1

v
dv = exp

(
o
( ρ

β1/3

))
log
( 1

1− y2

)
.

(3.326)

According to (3.278) and (3.284), we see that 1 − y2 = 1 − yc + C16c ≥ C16c. Thus, since

178



c� β1/3ρ−1, we have

log
( 1

1− y2

)
≤ log

( 1

C16c

)
. log

( ρ

β1/3

)
. (3.327)

Combining (3.326) and (3.327) with (3.325), since c . β1/3ρ−1 log2/3(ρ/β1/3), we get

P3 . log
( ρ

β1/3

)
exp

(
ρx− 2ρz + ρL− 2c3

3

ρ3

β
− C17ρ

β1/3
+O

( cρ

β1/3

)
+ o
( ρ

β1/3

))
� β5/3

cρ5
exp

(
ρx− 2ρz + ρL− 2c3

3

ρ3

β

)
. (3.328)

Finally, equation (3.316) follows from (3.322), (3.324) and (3.328) and the lemma follows.
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