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Abstract

Robust Learning Techniques for Deep Neural Networks

by

Metehan Cekic

Deep Neural Networks (DNNs) yield state-of-the-art performance in an increasing

array of applications. Despite the pervasive impact of DNNs, there remain significant

concerns regarding their (lack of) stability and robustness. In this thesis, we explore

several complementary approaches for guiding DNNs to learn robust and stable features,

including domain expertise, domain-specific measures, and neuro-inspired modifications.

We present novel augmentation techniques, cost functions, and data rejection methods

that supplement conventional DNN training for reliable feature extraction.

We first study the robustness in the presence of strong confounding factors for Radio-

frequency (RF) fingerprinting in which the aim is to distinguish devices using subtle

hardware imperfections which vary from device to device. However, the features such

as carrier frequency offset and wireless channel misguide DNNs. We point out that,

unless proactively discouraged from doing so, DNNs learn these strong confounding

features rather than the nonlinear device-specific characteristics that we seek to learn.

We investigate and evaluate strategies based on augmentation and estimation to promote

generalization across realizations of these confounding factors using WiFi data.

In our second study, we present robustness measures in the context of self-supervised

contrastive learning. We investigate how to pretrain speaker recognition models by lever-

aging dialogues between customers and smart-speaker devices. However, the supervisory

information in such dialogues is inherently noisy, as multiple speakers may speak to a

device in the course of the same dialogue. To address this issue, we propose an effective
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rejection mechanism that selectively learns from dialogues based on their acoustic ho-

mogeneity. We also present a novel cost function particularly designed for a corrupted

dataset in the contrastive learning setting.

Lastly, we introduce a promising neuro-inspired architectural DNN design and a cost

function to learn robust and interpretable features. We develop a software framework

in which end-to-end costs can be supplemented with costs which depend on layer-wise

activations, permitting more fine-grained control of features. We apply this framework to

include Hebbian/anti-Hebbian (HaH) learning in a discriminative setting, demonstrating

promising gains in robustness for the CIFAR10 image classification.
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Chapter 1

Introduction

Introduction

Deep neural networks have come a long way to attain outstanding performance in a

wide variety of fields, including vision [6, 7], game-playing agents [8, 9], natural language

processing [10, 11], and speech [12]. Arguably, a key contributor to this explosive growth

is the evolution of a powerful yet generic computational infrastructure for training DNNs

with a very large number of parameters with variants of stochastic gradient descent on an

end-to-end cost function without requiring domain expertise. In other words, abundant

data combined with computational infrastructure empowered them to substitute domain

expertise with solely data-driven models. On the other hand, the lack of robustness in

DNNs are still in question: these networks are vulnerable to noise [4], distribution shifts

[13], label corruptions [14, 15], and adversarial perturbations [16, 17]. The network learns

the easiest set of features that it can in order to accomplish the desired task on training

data: these features, depending on the task, can be unstable over time, easy to manipulate

for an adversary, or inaccurate. In this thesis, we show how domain knowledge and

particular measurements can help DNNs learn stable and reliable features. To enhance

1



Introduction Chapter 1

traditional DNN training for accurate feature extraction, we provide new augmentation

techniques, cost functions, and data rejection strategies.

In the first part of this thesis, we focus on robustness in radio frequency (RF)

fingerprinting, in which the goal is to classify wireless devices using nonlinear circuit-level

variations. While these subtle variations are enough to distinguish between devices, deep

neural networks rather use strong spurious correlations such as wireless channel and carrier

frequency offset [13], which are not stable over time. We are interested in discouraging

neural networks from capturing these spurious correlations instead of utilizing the stable

yet subtle nonlinear physical layer features.

Our second study presents novel techniques for dealing with highly noisy data in a

self-supervised learning setting for speaker recognition. We aim to train a robust deep

neural network to distinguish between different speakers using an unlabelled dialogue

sessions dataset. While most of the dialogues consist of a single speaker, the presence of

multi-speaker dialogues poses a threat to learning good speaker ID features. Therefore, we

present a self-supervised rejection mechanism in order to ignore multi-speaker dialogues

and complement it with a novel loss function to deal with noisy data. Lastly, we present

a neuro-inspired approach to improve the robustness of deep neural networks to small

adversarial perturbations. We demonstrate that our neuro-inspired model is substantially

more robust to a range of corruptions than a baseline end-to-end trained model.

1.1 RF Fingerprints

Recent advances in wireless communication systems and the availability of cheaper

and more compact computational infrastructure flourished the IoT devices. Nowadays,

more IoT devices are readily in use than the human population on Earth. Therefore, it

is unsurprising that more and more effort is put into securing these devices and their

2



Introduction Chapter 1

networks. In this work, we focus on RF fingerprints and their potential use in the security

of IoT devices. In short, RF fingerprints are subtle nonlinear features in wireless signals

due to the nonlinear variations across circuit components in wireless transmitters. RF

fingerprinting is interested in using these features as a unique identity for devices.

The most recent body of work demonstrates that end-to-end deep neural networks,

including complex-valued convolutional neural networks [18], recurrent neural networks

[19], and transformers [20], are very successful at teasing out these features to classify

devices. In this work, we inspect the stability of these DNNs; specifically, we evaluate

these networks under strong confounding factors such as wireless channel and carrier

frequency offset. We demonstrate that these networks have stability issues, especially if

they are trained with data collected over a short period of time. Confounding factors such

as wireless channel and CFO stays consistent among the packets collected from the same

device; therefore, they deliver a spurious correlation that a DNN can exploit to classify

devices.

Our key message is that given subtle stable features and strong confounding factors,

neural networks fail to choose/extract appropriately. As a result, the blind adoption of

these networks may result in disastrous stability issues. We explore using signal model-

ings to discourage neural networks from learning spurious correlations. We specifically

demonstrate the usefulness of augmentation strategies in learning stable RF signatures

while highlighting their inherent limits in a small dataset setting.

Our contributions are summarized below.

1.1.1 Contributions

• Using controlled emulations on a clean WiFi dataset, we demonstrate the vulnerability

of conventional CNN training to confounding factors such as propagation channels and

3



Introduction Chapter 1

Device #1
Device #2

Device #3

Figure 1.1: Classification of devices using deep neural networks.

frequency offsets, which are far stronger than the nonlinear effects we seek to capture.

• We develop augmentation strategies based on signal models for the impact of confound-

ing factors, and evaluate performance against compensation techniques that explicitly

try to undo them. We find that compensation works well if the undesired features are

simple enough, like the CFO. However, for more complex effects such as a multipath

channel, model-driven augmentation outperforms explicit estimation and compensation

for learning robust signatures.

• We make publicly available a simulation-based dataset based on models of some typical

circuit-level nonlinearities [21–23]. The results we obtain on this dataset are comparable

to those from the measurement-based dataset, enabling reproducibility. The dataset

and code are available at [24].

1.2 Robust Self-Supervised Speaker Recognition

Speaker recognition answers the fundamental question “who is speaking” based on a

sample of speech, thereby enabling both personalization and authentication in speech-

based applications. Most speaker recognition model training is supervised, in the sense

4
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that it relies on both clean and sufficient speaker-labeled data [25–27]. However, labeling

data in the quantities required for production-level models is a substantial bottleneck.

Recent work [28–34] is turning to unlabeled data for pretraining a speech model first, and

then fine-tuning it on a smaller labeled dataset. In this work, we focus on how to pretrain

a speech model suitable for speaker recognition tasks.

We propose a contrastive self-supervised method specialized in speaker recognition.

To achieve this goal, we leverage unlabeled dialogues between smart-speaker devices and

their users. Figure 1.2 shows two dialogue samples, where each dialogue is composed

of spoken interactions between customers and a smart speaker. We presume that most

dialogues, such as Dialogue 1, are clean in the sense that each involves customer utterances

from a single speaker only. Therefore, customer utterances from the same dialogue serve

as positive instances, while customer utterances from different dialogues form negative

instances. However, a few dialogues, e.g., Dialogue 2, are noisy with respect to speaker

identities, i.e., contain customer utterances from more than one speaker. In order to avoid

contaminating the model training with positive samples involving different speakers, we

develop a rejection module and all-vs-all loss. The rejection module allows the model to

effectively learn from clean dialogues and give less weight to the noisy ones, leading to a

more accurate and robust speaker recognition model [15]. On the other hand, all-vs-all

loss solves the problem of inaccurate centroids resulting from multi-speaker dialogues.

1.2.1 Contributions

Thus, our contribution is a robust self-supervised learning method for speaker recogni-

tion systems, demonstrating that

• a dialogue dataset from human-device interactions is an effective unlabeled data

source that can be leveraged in self-supervised pretraining of speaker recognition

5
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Who is the president of the USA?

How old is he?

Joe Biden.

78 years old.

What is the largest animal on the planet?

What is the largest animal 
living on the land?

Blue Whales

Elephants

Dialogue 1

Dialogue 2

Figure 1.2: Most dialogues contain a single human speaker; however, there are dialogues

with more than one human speaker.

models;

• our proposed all-vs-all metric loss improves the performance of the self-supervised

training with a highly noisy dataset.

• self-supervised rejection is a very effective tool to deal with false positive pairs

caused by multi-speaker dialogues, providing more than 15% equal error rate (EER)

improvement even without fine-tuning;

• fine-tuning the pretrained model utilizing our framework can further improve speaker

recognition and relative EER improvement is as high as 41.28%.

1.3 Hebbian/Anti-Hebbian Learning

[17] and [16] showed the existence of adversarial examples which can fool the deep

neural networks. These adversarial examples are nothing more than natural examples

with tiny, well-crafted, and (nearly) imperceptible perturbations that can render state-of-

the-art models unusable (see fig. 1.3). Therefore, a plethora of defense measures have
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Figure 1.3: Even an imperceivable perturbation can render InceptionV3 [2] classifier into

classifying a cat image as "guacamole". Image is taken from the Github repository of [3].

been devised to fight these attacks, only to be defeated by stronger adversaries [3, 35, 36].

The state-of-the-art defense that stands still against adversarial attacks is adversarial

training (see [37] and variants thereof), which augments the input data with adversarial

perturbations during training, while the cost function in [38] seeks to trade off clean

accuracy and attacked accuracy. However, these methods only provide robustness against

the adversaries used in the training phase.

In chapter 4, we explore a complementary approach to robustness based on supple-

menting the end-to-end cost function with layer-wise costs aimed at shaping the features

extracted by intermediate layers of the DNN. Specifically, while standard DNNs produce

a large fraction of small activations at each layer, we seek architectures which produce a

small fraction of strong activations, while continuing to utilize existing network architec-

tures for feedforward inference and existing software infrastructure for stochastic gradient

training. To this end, we introduce neuro-inspired mechanisms creating competition

between neurons during both training and inference.

7
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1.3.1 Contributions

Specifically, we propose neuro-inspired Hebbian/anti-Hebbian (HaH) learning. Instead

of the huge proportion of small activations produced by a typical DNN, we attempt to

develop sparse activation patterns with a small fraction of large activations. With HaH

costs, neurons which are strongly activated by an input take a step in the direction of

the input, while the remaining neurons take a step in the direction opposite to the input.

We also introduce changes in the inference framework, replacing a standard DNN layer

with a HaH block which includes implicit weight normalization for each neuron, allowing

us to interpret its output as a projection, and divisive output normalization, allowing us

to suppress weak activations using strong ones. These result in invariance to input and

weight scaling.

We demonstrate the effectiveness of our framework against the state-of-the-art gradient-

based adversarial attacks [37, 39] as well as common corruptions which include noise

injection, weather condition, common blur, and digital corruptions. Therefore, our neuro-

inspired work provides a valuable path towards general-purpose robustness against noise,

adversarial perturbations, and common corruptions [1, 40, 41].
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Chapter 2

Learning stable and robust RF

fingerprints

In this chapter, we discuss the importance of being proactive in guiding deep neural

networks to extract stable and robust features. We present our work in the radio frequency

(RF) fingerprinting setting and explore the effects of confounding factors on learning.

We provide the background on RF fingerprinting along with related work in this area

in section 2.1. Furthermore, we explain the issue of the confounding factors in the RF

context. We then discuss the details of our approach to deal with these confounding

factors in section 2.2. Furthermore, we present and share our simulated WiFi dataset

with the community to spark further exploration in this direction.

2.1 Introduction

An important tool in wireless security is a “fingerprint” based on physical layer charac-

teristics, capable of distinguishing between different devices even if they are transmitting

exactly the same message. This is possible due to subtle hardware imperfections that
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Figure 2.1: Block diagram of a transmitter and several sources of nonlinear features.

occur even in devices made by the same manufacturer [42, 43]. Figure 2.1 depicts the

potential sources of nonlinear features such as digital-to-analog converters (DACs) [44],

power amplifiers (PAs) [45, 46] and I/Q imbalances [21]. These components deviate

slightly from their ideal values (differently for each device) in a typical regime provided by

IEEE standards for wireless communications. The goal of RF fingerprinting is to translate

these signatures into a device fingerprint.

Fingerprints based on such variations could potentially serve as a powerful authentica-

tion tool at the physical layer, complementing conventional security schemes in higher

layers of the networking stack [18]. Since these subtle nonlinear effects are difficult to

model explicitly, deep learning is a natural approach to teasing out transceiver signatures

10
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based on them. In this work, we investigate the efficacy of extracting fingerprints which

are robust to variations across time and location, using one-dimensional complex-valued

convolutional neural networks (CNNs) that operate on the complex baseband signal at

the receiver.

Our results show that deep learning is a promising tool for wireless fingerprinting, while

sounding a cautionary note. The key message is that the network learns the easiest set of

features that it can in order to accomplish the desired task (in our case, discriminating

between transmitters based on the received wireless signal), hence we must be extremely

proactive in promoting robustness across effects that we do not want the network to

lock on to, which we term confounding factors. For instance, we would like the radio

frequency (RF) signature for a transmitter to be robust across time and for different

wireless channels. However, if we employ training data collected over a short period of

time when the channel and carrier frequency offset (CFO) for a transmitter are relatively

constant, the CNN will lock onto these rather than to subtle nonlinear effects. This gives

unreasonably excellent accuracy on test data collected over the same time period, but

disastrous results for data collected on a different day, when both the channel and the

CFO can be different. Figure 2.2 depicts this difference between multiple days.

We develop augmentation strategies based on signal models for the impact of con-

founding factors, and evaluate performance against classical compensation techniques

that explicitly try to undo them. We find that compensation works well if the undesired

features are simple enough, like the CFO. However, for more complex effects such as

a multipath channel, model-driven augmentation outperforms explicit estimation and

compensation for learning robust signatures. A significant finding is that augmentation is

useful not just during training, but also during inference: averaging of predictions from

multiple augmented versions of the same input provides significant performance gains.

In order to perform controlled experiments, we evaluate our approach on emulated

11
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Figure 2.2: Strong confounding factors such as multipath fading channel and carrier

frequency offset change over time.

data, in which “clean” measured data is passed through simulated channels and CFO.

Since this measured data, obtained as part of the DARPA RFMLS program, cannot be

made public, we also make publicly available a simulation-based dataset based on models

of some typical circuit-level nonlinearities [21–23]. The results we obtain on this dataset

are comparable to those from the measurement-based dataset, enabling reproducibility.

The dataset and code are available at [24].

Since we wish to be robust against software spoofing, we focus on extracting fingerprints

only from the packet preamble. This is a worst-case approach motivated by prior work

[18] demonstrating the tendency of CNNs to lock on to any packet field correlated with

the ID field (which is easily spoofed) as the “shortest path” to meeting the classification

objective.

2.1.1 Related Work

There are many papers over the past decade using machine learning to derive finger-

prints. Much of this work involves significant protocol-specific preprocessing, in contrast

to the protocol-agnostic approach considered in this work. An early example is the use

12
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of support vector machine (SVM) in [43] based on demodulation error metrics such as

frequency offset and I/Q offset. However, this detection method was defeated in [47, 48],

who showed that these modulation features could be impersonated via software-defined

radios. Other examples of machine learning based, protocol-specific fingerprints include: a

k-nearest neighbor (k-NN) classifier in [49] based on spectral analysis of WiFi preambles;

linear discriminant analysis (LDA) in [50] after pilot-aided compensation of RF nonlinear-

ities caused by the receiver; k-means clustering of features based on inter-arrival times

of ADS-B messages [51]; a neural network in [52] and k-NN in [53] operating on WiFi

inter-arrival times; frequency compensation of ZigBee data, followed by a CNN [54]; and a

CNN operating on the error signal obtained after subtracting out an estimated ideal signal

from frequency-corrected received data [55]. Section 2.2 evaluates the robustness of our

approach against protocol-specific estimation strategies, showing that, while estimation

works well for simple phenomena such as CFO variations, the augmentation approach

that we study has a clear advantage for more complex effects such as channel variations.

Modern CNNs learning directly from I/Q data include [56, 57] for modulation clas-

sification, and [58, 59] for device fingerprinting. This line of work employs real-valued

networks, with real and imaginary parts of complex data treated as different channels.

Such networks have more degrees of freedom compared to a complex network where

the convolution operation is more restricted. Consider a complex convolution operation

between input X and weight W , resulting in output Y :

Re(Y ) + j Im(Y ) = (Re(W ) + j Im(W )) ∗ (Re(X) + j Im(X))

This can be rewritten in the following form [60, 61] with the real and imaginary parts of

the input stacked as different channels:Re(Y )

Im(Y )

 =

Re(W ) − Im(W )

Im(W ) Re(W )

 ∗

Re(X)

Im(X)

 (2.1)
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Therefore, a complex network with the CReLU activation function (ReLU(Re(x)) +

jReLU(Im(x))) can be considered a regularized form of a real ReLU network, with the

weight matrix restricted to the structure in (2.1). This reduction in number of degrees

of freedom has been shown to improve generalization performance [62]. We note that

this analysis does not hold for complex networks with the ModReLU activation function

(ReLU(|x|) exp(j∠x)), which we find yields better performance than CReLU for our

application; ModReLU-based architectures cannot be realized by a real ReLU network. It

has been observed in recent work that complex networks provide advantages over real

networks for the tasks of MRI fingerprinting [63], radar-based terrain classification [64],

audio source separation [65], music transcription [61] and channel equalization [66]. Our

results on the gain provided for the fingerprinting problem are in line with such prior work,

and motivate further exploration of neural networks tailored to complex-valued data. It is

worth noting that, for real-valued networks, standard DNNs and CNNs are compared with

multi-stage training (MST) of simple building blocks for fingerprinting in [67], with MST

yielding the best performance. Such work highlights the need for continued architectural

experimentation for both real- and complex-valued networks.

The present work builds on our conference paper [18], which considers the impact of

ID spoofing and SNR on CNN-based fingerprinting. To our knowledge, [18] was the first

to employ complex-valued CNNs for wireless fingerprinting; it precedes and is independent

of [68], which also uses complex-valued networks. The main focus of this work is different:

we investigate robustness of fingerprints to variations in the CFO and wireless channel.

While [18] considers noise augmentation to handle SNR mismatch between training and

test data, in the present work, we consider augmentation and compensation strategies

for CFO and channel, and introduce the concept of test time augmentation for handling

confounding factors. We should note that the concept of test time augmentation proposed

here is different from classical ensemble methods such as boosting or bagging [69, 70]:
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Figure 2.3: Block diagram of a wireless communication system. Subtle nonlinearities

unique to each device can provide a fingerprint. However, easy-to-learn features such as

the CFO and channel are not stable over time and location, affecting generalization.
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Figure 2.4: Complex-valued 1D CNN architecture for WiFi signals.

rather than averaging over an ensemble of machines, we are averaging over an ensemble

of inputs. Given recent promising results on the use of boosting techniques in multilayer

settings [71–73], it is of interest to explore comparison and possibly combination of

such techniques with our augmentation strategy for deriving RF signatures robust to

confounding factors.

In [74], channel-resilient fingerprinting was studied by modifying the transmitter using

a finite impulse response (FIR) filter. Our work on channel resilience is based solely

on modifying DNN training and does not involve transmitter-side alterations. In recent

work, [75, 76] reported a significant degradation in accuracies when training and test

data were from different days, with fingerprints extracted using real-valued CNNs. While
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equalization was observed to improve performance in the different day scenario, it caused a

drop in accuracy when training and test data were from the same day. These results are in

line with our observations in Section 2.2.3: while equalization can help, the residual error

from this approach appears to swamp out the nonlinear characteristics we are interested

in. We find model-based augmentation to be a more effective strategy for learning robust

fingerprints.

2.2 Stability to CFO and Channel Variations

In this section, we use a clean WiFi dataset for controlled experiments emulating the

effect of frequency drift and channel variations. This dataset contains a mix of IEEE

802.11a (fc = 5.8 GHz) and IEEE 802.11g (fc = 2.4 GHz) packets from 19 commercial-off-

the-shelf devices, collected indoors without channel distortion using a Tektronix RSA5126B

receiver. When using the preamble alone, we can obtain 99.5% fingerprinting accuracy

for 19 WiFi devices using a complex-valued CNN. (Detailed information about CNN

architecture and training parameters can be found in section 2.3.) However, as we show

below, CFO and channel variations can result in a disastrous effect on performance. We

study compensation and augmentation strategies to promote robustness.

2.2.1 Nuisance Parameters, Compensation and Augmentation

Before providing specific results, we lay out our overall framework.

Consider input data x (the packet preamble in our case) fed to a neural network which

aims to classify the device ID y. In our present context, we may think of this input data as

a transformation of an ideal input xideal capturing the desired characteristics of the device,

passed through a transformation fθ, where θ is a nuisance parameter such as a CFO

or channel: x = fθ(xideal). A network trained with such inputs would ideally produce
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posteriors p(y|x) = p(y|fθ(xideal)) as the softmax outputs. In the scenarios of interest,

we define a single “day” of training as a scenario in which θ is fixed during the training

period for a given device, but differs across different devices. In this case, it is natural for

the DNN to use information in θ to classify devices. Indeed, if the discrimination based

on θ is easier than that based on the subtle nonlinear signatures buried in xideal, then the

DNN will focus on using θ rather than the information in xideal. When we then test on a

different “day” when the value of the nuisance parameter θ is different, we understandably

get poor performance.

Compensation: If we have detailed protocol-level information and good enough models,

then it is possible to try to invert fθ to recover xideal from x, and to then train the DNN

based on this estimate. For example, we can estimate and undo a CFO, or equalize a

channel. For the particular experiments we do, we find that compensation works well for

simple nuisance parameters such as the CFO, but that the residual errors after equalization

are enough to swamp out the subtle nonlinear effects we are after.

Augmentation: An alternative to protocol-specific compensation strategies is to use

models for how the nuisance parameters operate on the input to augment the data.

Specifically, we create new inputs of the form x′ = fθaug(x), where we choose θaug from a

set Θ such that

x′ = fθaug(x) = fθaug(fθ(xideal)) ≈ fθ′(xideal) , θ′ ∈ Θ

where θ′ is an “effective” nuisance parameter. Now, if we train the DNN using multiple

augmentations of x, then we hope that the network learns to use xideal to a greater

extent than before, since we are varying θ′ for a given device. Nevertheless, standard

training does not guarantee marginalization over θ′. Rather, it allows the network to

produce posteriors of the form p(y|x′) = p
(
y|fθaug(fθ(xideal))

)
≈ p(y|fθ′(xideal)), where

hopefully the information from xideal is being used to a greater extent because of training
17
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augmentation. When we are now presented with a fresh test input x = fθ(xideal), we are

not guaranteed that this particular realization of the nuisance parameter θ is comfortably

far from the decision boundaries that the network has learnt. On the other hand, test

time augmentation allows us to generate multiple effective nuisance parameter realizations

which we can average over.

1

|Θtest|
∑

θaug∈Θtest

p
(
y|fθaug(fθ(xideal))

)
(2.2)

Thus, we are effectively averaging over |Θtest| realizations of the “effective” nuisance

parameters θ′.

Residual approach: An interesting way to combine the above two strategies is by

excising a reconstruction of the transmitted message based on a linear model to obtain

a residual signal containing device nonlinearities. Using the known preamble sequence

and estimated CFO and channel, we can compute an ideal noiseless reconstruction x̂

of the received signal x. The residual noise x − x̂ can then fed as input to a neural

network. Since this residual signal still contains CFO and channel effects, we find that

this technique does not work well on its own. However, it can be used in combination

with augmentation to confer robustness.

In the following sections, we assess performance using the average of five different

runs, with different random realizations of CFOs and channels used for emulation and

augmentation, as well as different random seeds for CNN weight initialization. In all

graphs, error bars denote one standard deviation from the mean over different runs.

2.2.2 Carrier Frequency Offset

The carrier frequency offset, caused by frequency mismatch in the crystal oscillators at

the transmitter and receiver, could potentially be used as a feature to fingerprint devices
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[43, 77]. However, we treat it here as a confounding factor for our goal of obtaining a

fingerprint which is stable over time. Oscillator frequencies are affected by a few parts

per million (ppm) for every 1◦C change in temperature [78], and therefore drift daily, and

are also affected by aging [79]. The CFO can also be spoofed by a sophisticated enough

adversary manipulating baseband signals [47, 48]. While the CFO could still be a useful

feature as a defense against simpler attacks (e.g., for systems with relatively frequent

transmissions, its slow drift could be tracked across packets to detect abrupt transitions),

its role as a confounding factor in our study enables us to benchmark augmentation

against compensation for an effect which can be accurately modeled. We investigate this

by inserting offsets in data, emulating an oscillator frequency tolerance of ± 20 parts per

million as specified in the IEEE 802.11 standard [23]. We begin with an example where

only the test data is offset.

Offset in test data alone: We find that networks trained on clean data do not generalize

to offset data, even when the offset is very small: as shown in the first row of Table 2.1,

accuracy drops to 4.6% at an offset of 20 ppm. In order to alleviate this, we augment

the training set with randomly chosen CFOs and report results in the second and third

rows of Table 2.1. We consider two types of random offsets: Bernoulli {−20, 20} ppm and

uniform (−20, 20) ppm, augmenting the size of the training set by 5x in each scenario.
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Table 2.1: Performance when only the test data is offset, with CFOs in the range (-20,

20) ppm. The first row shows that this results in poor accuracies if we do not modify our

training strategy. Rows 2 and 3 then demonstrate that augmenting training data with

uniformly distributed CFOs helps confer robustness.

Type of data

augmentation

CFO in test set

None Bernoulli Uniform

None 99.50 4.63 13.58

Bernoulli 3.32 99.32 13.53

Uniform 96.21 90.79 95.37

This strategy can significantly help in learning robust fingerprints, but the type of

augmentation matters: in particular, it is insufficient to augment with worst-case offsets

alone. When we train with Bernoulli offsets, the network becomes robust to Bernoulli

test offsets (99.3%), but fails to generalize to any offset smaller than 20 ppm, including

an offset of zero. In contrast, when we augment data with uniformly chosen offsets, we

obtain resilience (>90%) to all test set offsets in the desired range.

"Different day" scenario (no augmentation or compensation): We now emulate

collecting training data on one day and testing on another: given clean data xideal, we add

CFOs θ to emulate the effect of different days: fθ(xideal). We insert different “physical”

offsets for each device, but fix the offset for all packets from a particular device. The

offsets are randomly chosen in the range (−40, 40) ppm (since both the transmitter and

receiver oscillators can vary by ±20 ppm). Oscillator drift across days is realized via

different random seeds for training and test offsets.

This “different day” setting makes it particularly easy for the network to focus on the
20
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Table 2.2: Comparison of augmentation, compensation and the residual approach in the

“different day” CFO scenario. The training and test datasets are augmented by 20 and

100 times respectively.

Training strategy Test accuracy

Baseline (no augmentation or compensation) 9.68

Augmentation 91.47

Residual + Augmentation 93.21

Compensation 96.37

CFO as a fingerprint: since each device has a different offset on each day, training on

a single day leads to the DNN focusing on using the CFO as a means of distinguishing

between devices. This results in artificially high training accuracies (94.2%), but poor

test set performance (9.7%) on a different day when the devices have different CFOs. We

now explore two strategies to restore performance: data augmentation with randomly

chosen CFOs, and frequency compensation.

"Different day" scenario with augmentation: In order to promote robustness, we

add new, randomly chosen CFOs θaug on top of the CFOs used for different day emulation:

fθaug(fθ(xideal)). Table 2.3 reports on the efficacy of various CFO augmentation strategies,

capable of increasing test accuracy to 91.5%. For training data, we find that the best

augmentation technique is to use a different augmentation offset for each packet from

a device, but the same set of offsets across devices, which discourages the network

from learning the CFO as a means of distinguishing between devices. We term this an

“orthogonal” strategy: we are trying to train in a direction “orthogonal” to the tendency

to lock onto the “physical” CFO as a signature.
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A novel finding is that data augmentation for testing leads to significant performance

gains when we add up soft outputs across augmented versions of each test packet. The

best result is obtained when we insert a different randomly chosen CFO for each of a

100 copies of each test data packet, and then sum up the softmax outputs across the

augmented data. We find that averaging of logits also improves performance, but not to

the extent of the softmax average.

Table 2.3: Effect of augmentation in the “different day” CFO setting, with CFOs in the

range (-40, 40) ppm. “Random” training augmentation uses a new randomly chosen CFO

for each packet, while the “orthogonal” type uses the same set of offsets across devices. In

both cases, the offsets are drawn from a uniform distribution.

Training

augmentation

Test time augmentation

None 5 20 100

None – 9.68 7.84 8.74 8.47

Random 5 74.21 71.84 74.21 77.37

20 72.79 75.84 78.05 80.05

Orthogonal 5 69.58 75.11 81.05 83.63

20 82.37 82.32 86.21 91.47

"Different day" scenario with frequency compensation: We can also estimate and

correct the offset using knowledge of the periodic structure of the preamble. Consider a pe-

riodic signal s[n] with period L, and frequency offset θ resulting in r[n] = s[n] exp(j2πn θ).

Since we know that s[n] = s[n+ L], the CFO can be estimated by correlating r with its
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Figure 2.5: Plots showing how test augmentation affects the histogram of softmax outputs

p(ŷ) (averaged over augmentations) for data from two specific devices (y = 4 and y = 7), in

the “different day” channel setting. Histograms are normalized to be probability densities.

As the number of test augmentations increases, the probability of correct prediction

p(ŷ = 4|y = 4) and p(ŷ = 7|y = 7) shifts towards 1.

shifted version:

θ̂ =
1

2πL
∠

(∑
n

r[n] r∗[n+ L]

)
.

We follow a two-step approach [80] involving a coarse estimate from the 802.11 short

training sequence (L = 16) and then a fine estimate from the long training field (L = 64).

This method restores accuracy to 96.4%, and, as shown in table 2.2, its accuracy is about

4.9% better than that with augmentation.

Residual approach: We could also use the estimated CFO to compute a residual

signal that can be fed as input to a CNN, as described in Section 2.2.1. This approach

can be combined with augmentation to obtain a performance improvement over pure

augmentation, as shown in Table 2.2. Stripping out the message in this manner makes it

easier for the network to learn nonlinear signatures.
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2.2.3 Multipath Channels

The wireless channel is another important source of distribution shift between training

and test data. Since multipath components in the channel depend on propagation

geometry, a network that locks on to the channel will fail to generalize to test data

collected on a different day or location. If the training data does not span a sufficiently

diverse set of geometries, it could contain channels that are highly correlated with the

transmitter ID, necessitating the use of channel augmentation or equalization strategies

to improve robustness.

Table 2.4: Power-delay profile for the EPA multipath fading model. Tap amplitudes Ak

are Rayleigh distributed with variance Pk.

k 1 2 3 4 5 6 7

τk (ns) 0 30 70 90 110 190 410

Pk (dB)0.0 -1.0 -2.0 -3.0 -8.0 -17.2 -20.8
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Table 2.5: Performance in the “different day” channel setting when we train on 2 days

and test on a third day. “Random” augmentation uses a randomly drawn channel for each

packet, while the “orthogonal” type uses the same set of channels across devices.

Training

augmentation

Test time augmentation

None 1 5 20 100

None – 5.74 6.74 7.26 7.21 7.26

Random 5 39.58 39.79 54.05 59.84 62.68

20 54.05 52.84 63.21 67.68 68.47

Orthogonal 5 41.16 42.16 52.89 56.68 58.68

20 56.16 54.74 66.47 71.00 71.84

We study the impact of multipath on fingerprinting using a Rayleigh fading model [81]

with L multipath components: h(t) =
∑L

k=1Ake
jϕkδ(t− τk), where Ak ∼ Rayleigh (Pk),

ϕk ∼ Uniform (0, 2π) and δ(·) is the Dirac delta function. We use the Extended Pedestrian

A (EPA) profile, a well-known statistical channel model used in LTE system testing [82].

As shown in Table 2.4, this profile quantifies the delays τk and relative powers Pk of the

multipath components.

“Different day” scenario (no augmentation or equalization): We investigate

training and testing on different emulated days similar to prior CFO experiments. Using

the EPA profile, we use different realizations of the channel vector for each day and

for each device. Each realization has 7 multipath components chosen from a Rayleigh

distribution with relative powers and delays specified in Table IV. We do not vary the

channel realization for a given device on a given day, hence we are modeling quasi-static

environments. With single day training, we get excellent performance when testing on
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the same day (98%), but very poor accuracy if we test on a different day (5.8%). This

clearly indicates a lack of robustness to channel variations, with the network involuntarily

locking on to the channel as a means of discriminating between devices.

"Different day" scenario with augmentation: Assuming the received data is

fθ(xideal), we study the effect of channel augmentation θaug on top of the emulated

data: fθaug(fθ(xideal)). We find that augmentation helps, but accuracy increases only to

47.8% in the “train on one day, test on another” setting. We can boost performance to

71.8% if we are allowed access to training data over 2 emulated days (without increasing

the size of the training set) and test on a third day, as shown in Table 2.5. Note that

accuracy without augmentation is still low. If training data spans 3 days, augmentation

improves accuracy even further to 79.7%.

This phenomenon can be understood by modeling channel variations in the frequency

domain. Suppose transmitter i sends message Xi over “physical” channel Hi: Yi(f) =

Hi(f)Xi(f), and we augment with randomly chosen channels G: Ỹi(f) = G(f)Yi(f) =

G(f)Hi(f)Xi(f). The effective channel G(f)Hi(f) will still contain all the nulls of Hi,

which could potentially be correlated with the transmitter ID. Thus, augmentation alone

cannot completely remove the effect of the underlying physical channel. Access to more

varied training data, when combined with augmentation, increases the diversity of the

overall channel that the network sees.

The preceding results are achieved using 20 training and 100 test augmentations (with

soft outputs added up over 100 augmented copies of each test packet). As before, we

find that the “orthogonal” approach works the best for training: using the same set of

channels across devices discourages the network from learning to use the channel as a

fingerprint. Fig. 2.5 illustrates the impact of test time augmentation on the distribution

of soft outputs p(ŷ) for two sample devices. If we do not augment the test set, many
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Figure 2.6: Comparison of channel equalization and augmentation as we increase the

number of emulated days for training (with the size of the training set kept constant).

Baseline accuracies are reported for a network trained without augmentation or equaliza-

tion.
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samples from device 4 are misclassified as device 7 (shown in the first row of Fig. 2.5a). As

the number of test augmentations increases (Fig. 2.5b, 2.5c), we get increasingly precise

estimates of the desired prediction (2.2), causing p(ŷ = 7|y = 4) to shift towards 0, and

p(ŷ = 4|y = 4) towards 1.

“Different day” scenario with equalization: Another strategy to remove channel

influence would be to equalize signals using the long training field of the WiFi preamble.

We equalize data in the frequency domain and compare results with augmentation in Fig.

2.6. Each experiment is performed with 5 different seeds, with error bars denoting one

standard deviation from the mean. We find that equalization performs much poorer than

channel augmentation, with a performance gap of 26.5% even with 20 training days. It

appears that the residual distortion after equalization is large enough to swamp out the

nonlinear characteristics that we are interested in.

Residual approach: As previously described (Section 2.2.1), we can use the estimated

channel to obtain residual noise and use it as CNN input. When combined with aug-

mentation, we obtain accuracies that are competitive with, but not better than, pure

augmentation, as shown in Fig. 2.6. We speculate that errors in channel estimation

prevent the residual method from offering a clear advantage in accuracy, in contrast to

the simpler setting of CFO uncertainty considered in Section 2.2.2.

Overall, augmentation is the best of the three considered strategies for making networks

insensitive to channel effects: with 10 training days, it can restore accuracy to 97.7%.

2.2.4 Combination of Channel and Carrier Offsets

Lastly, we focus on a combination of channel and carrier offsets across different days.

This is a harsher and more realistic setting than prior experiments, with test set accuracy

without augmentation or compensation no better than random guessing (5%) even if
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training data spans 20 emulated days.

Augmentation: We explore data augmentation with randomly generated channels and

CFOs, and report results in Figures 2.7 and 2.8. We find an equal number of augmented

CFOs and channels to work well: when using 20 training days, performance improves

from 5% to 84.4% with training augmentation alone, and to 90.1% with both training

and test augmentation. We observe that the amount of test augmentation is important:

as shown in Fig. 2.9, if we only augment test data 2 times, we observe a drop in accuracy.

This is because the Bayesian average (2.2) requires a large number of realizations of the

two nuisance parameters (CFO, channel) in order to be accurate.

Estimation: Table 2.6 reports on comparisons with estimation strategies, the residual

approach and also a mix of estimation and augmentation. We find that equalization, when

combined with either CFO compensation or augmentation, results in poor accuracies

and therefore do not include it in the comparison. The best result is obtained by a

combination of CFO compensation and channel augmentation for both training and test

sets, with competitive performance from pure augmentation when the number of days of

training is large.

Table 2.6: Comparison of augmentation, estimation and the residual approach when both

the CFO and channel vary.

Training strategy

Number of days

2 5 10 20

Residual + augmentation 19.11 26.21 67.50 78.95

Pure augmentation 24.90 49.36 77.83 90.10

CFO comp. + channel aug. 33.96 62.63 88.96 91.40
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Figure 2.7: Performance of training augmentation across days when there is a combination

of CFO and channel variations. We use the orthogonal augmentation approach for

channels and the random method for CFOs.
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Figure 2.8: Accuracy as a function of the amount of training augmentation when both

the CFO and channel fluctuate. We augment the CFO and channel by equal amounts,

with the x-axis denoting the number of augmentations for each.

31



Learning stable and robust RF fingerprints Chapter 2

1 2 3 4 5 6 7 8 9 10

Number of test augmentations

60

70

80

90

100
A

cc
u

ra
cy

10 days

20 days

No test aug.

No test aug.

Figure 2.9: Accuracy as a function of the amount of test augmentation when both the

CFO and channel fluctuate. We augment the CFO and channel by equal amounts, with

the x-axis denoting the number of augmentations for each.

2.2.5 Simulation-Based Dataset

Since the datasets used in the previous sections are not publicly available, in the

interest of reproducibility and as a contribution to the community, we have created a

simulation-based WiFi dataset [24] based on models of some typical nonlinearities [21–23].

We implement two different kinds of circuit-level impairments: I/Q imbalance and power

amplifier nonlinearity with Figure 2.10 depicting the order in which the nonlinear effects

were added. We skip effects of the digital to analog converter such as DNL and INL.

32



Learning stable and robust RF fingerprints Chapter 2

In a manner similar to prior sections, we perform experiments to study the effect of

channel and CFO variations on fingerprinting performance. We now discuss the models

and parameters used to generate the nonlinear effects.

IQ Imbalance Power Amplifier 
Nonlinearity

Ideal Preamble AWGN Output

Figure 2.10: Block diagram for generation of the simulation-based dataset.

Table 2.7: Fingerprinting performance on the simulated dataset in the “different day”

scenario for both CFOs and channels, when using 20 days for training.

Training strategy
Test time augmentation

None 1 100

No augmentation or compensation 7.61 6.68 8.30

Pure augmentation 81.38 77.56 86.24

CFO comp. + channel aug. 81.59 81.98 91.80

I/Q Imbalance: The I/Q imbalance [21] can be modeled as follows, with parameters ϵ

and ϕ representing gain and phase mismatch respectively:

s̃RF(t) = sc(t)
(
1 +

ϵ

2

)
cos

(
2πfct+

ϕ

2

)
− ss(t)

(
1− ϵ

2

)
sin

(
2πfct−

ϕ

2

)
(2.3)

Since the IEEE 802.11 WiFi standard [23] specifies an error vector magnitude (EVM) of

−19 dB, we set ϵ ≤ 0.2 and |ϕ| ≤ π/30. In order to simulate 19 different devices (similar to

original dataset) we choose distinct ϵ values for each device from the set [0, 0.2] uniformly,
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i.e. {0, 0.2/19, 0.4/19...}. Similarly, we pick ϕ from the set [−π/30, π/30] uniformly. We

note that all the values are shuffled randomly before matching to each device, hence

extreme cases for both parameters are most likely not on the same device. An example of

I/Q imbalance for 4-QAM modulation is provided on figure 2.11

4-QAM Constellation

Figure 2.11: Scatterplots of noisy 4-QAM constellation points with and without I-Q

imbalance.

Power Amplifier Nonlinearity: The power amplifier (PA) is another source of circuit-

level nonlinearity that varies across devices. There are a number of different models for

this nonlinearity [45, 46, 83, 84]. We model PA nonlinearities as a saturated third-order

polynomial function [22]:

y(t) =


x(t) ·

(
1− 0.44|x(t)|2

3P1dB

)
if |x(t)|2 ≤ P1dB

0.44
,

x(t)

|x(t)|
√
P1dB if |x(t)|2 > P1dB

0.44
.

This function is parametrized by the 1 dB compression point P1dB, defined as the

output power level at which the gain decreases 1 dB from its constant value. Similar
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to I/Q imbalance, we determine the range of the values for P1dB that satisfy the EVM

specifications. We choose P1dB values for each device uniformly from the set [8.45, 20].

The corresponding transfer functions are depicted on figure 2.12.
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Figure 2.12: Simulated power amplifier nonlinearities for different devices.

Adding AWGN: After obtaining preamble signals with nonlinear features for 19 different

devices, we create training, validation and test datasets by adding additive white Gaussian

noise (AWGN) such that SNR = 20 dB for each dataset. For training, we use 200 signals

per device from 19 devices. The validation and test sets contain 100 signals per device.

Overall, the dataset contains 3800 signals for training, 1900 signals for validation and

1900 signals for the test set.

Results: We use the same CNN and training hyperparemeters as before, except for the

number of epochs, which we set to 100. We observe trends similar to our results on

emulation of “different days” with the measured WiFi data: model-based augmentation

can significantly help improve performance when training over multiple emulated days
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and testing on a different day. We report on these results in Table 2.7.

2.3 Implementation details

Network architecture details can be found in Table 2.8. We use a complex-valued

ModReLU architecture similar to [18], and perform complex backpropagation using the

framework of [61], taking partial derivatives of the cost with respect to the real and

imaginary parts of each parameter. Networks are trained for 200 epochs with a batch size

of 100, using the Adam optimizer with learning rate η = 0.001 and weight decay constant

λ = 0.0001. We normalize all signals to unit power. For weight initialization, we use

the complex-valued Glorot initialization from [61] for complex layers, and the real-valued

Glorot [85] for real layers. For all experiments, we use Keras [86] with Theano backend,

since complex-valued layers are implemented in Keras.

To assess performance, we have used the average of 5 different runs with different

random seeds for initial weights and with different random realizations of CFOs and

channels used for emulation and augmentation. In all the graphs in Section 2.2, error

bars denote one standard deviation from the mean over different runs. We have also

carried out 5-fold cross validation, where we use 5 different randomly chosen partitions

of the data for training and testing, with the result that there is very little variation in

performance.
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Table 2.8: Architecture details for the CNN used in WiFi fingerprinting. Kernel sizes

follow the notation [convolution size, input channels, output channels] for convolutional

layers, and [input size, output size] for fully connected layers.

Layer Kernel size Bias size Output shape

Complex Input – – [3200, 1]

Complex Conv. [200, 1, 100] [100] [31, 100]

ModRelu – [100] [31, 100]

Complex Conv. [10, 100, 100] – [22, 100]

ModRelu – [100] [22, 100]

Absolute Value – – [22, 100]

Real Fully Conn. [100, 100] [100] [22, 100]

Real Fully Conn. [100, 100] [100] [22, 100]

Global Avg. Pool – – [100]

Real Fully Conn. [100, 19] [19] [19]
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Chapter 3

Robust Learning in a self-supervised

setting

In this chapter, we study how to train a speaker recognition system utilizing an unlabeled

dialogue dataset. We demonstrate the potential pitfalls caused by the dataset and how

to handle them carefully. Section 3.1 presents the motivation along with a discussion of

the prior work on self-supervised training of speech models. We then present our method

in section 3.2. Finally, we present our empirical findings demonstrating the effectiveness

of our proposed techniques in handling corrupt data while also teaching the model the

features important to speaker identity.

3.1 Introduction

With the proliferation of mobile and smart devices in everyday life, the total amount

of data created and captured has significantly increased. However, only a tiny fraction of

this data finds its use in training the machine learning models. The facts that just a small

portion of this data is labeled and that supervised learning require high-quality labeled
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datasets are the major factors in this. All of these considered, it is not a big surprise

that self-supervised learning gains significant attention from the deep-learning community

[87, 88].

While self-supervised learning offers to employ unlabeled datasets, the lack of quality

checks on data poses a problem for learning quality features. In this work, we take a look

at this problem in a self-supervised speaker recognition setting. We propose to employ

a large unlabeled yet well-structured dialogue dataset that contains human-machine

dialogues from thousands of households. In a typical setting, a dialogue session is between

a human speaker and a smart device. Therefore each utterance from a single dialogue

corresponds to a data point with the same hypothetical label. While this assumption

holds for a large part of the dialogues, there is a non-negligible amount of dialogues

corrupt in some way. These include background human speakers, multiple speakers in

multiple turns, and dialogues without intelligible human sounds. For example, table 3.1

gives an example of a good quality dialogue and a bad quality dialogue in our setting.

In this work, we propose two techniques to handle low-quality dialogues. First, we

propose a novel metric learning loss function specifically designed to deal with multi-

speaker dialogues. Secondly, we introduce a self-supervised rejection mechanism similar

to the ones used in noisy data problem [89, 90]. We observe great benefits from both the

loss function and rejection mechanism.

3.1.1 Related Work

In general, there are two types of self-supervised methods to pretrain speech models,

namely, based on reconstruction or based on contrastive learning. For the former, one or a

few consecutive frames are masked and then models are trained to reconstruct or predict

the original features, such as APC [30], MockingJAY [31], DeCoAR [91] and HuBERT [33].
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Table 3.1: Sample dialogues. Dialogue A corresponds to good quality dialogue containing

a conversation of a single human speaker with a smart device. On the other hand, Dialogue

B is a low-quality dialogue in which there are multiple human speakers.

Dialogue ID Device type Time Source Utterance

A Google Home

2021-07-03 12:12:02 Customer Hey Google, what’s the weather like tomorrow?

2021-07-03 12:12:12 Device In New York city, it will be mostly sunny with the highest 77 and lowest 64.

2021-07-03 12:12:20 Customer Thanks Google.

2021-07-03 12:12:27 Device No problem.

B Echo

2020-07-01 09:10:01 Customer Alexa, add eggs to my shopping list.

2020-07-01 09:10:08 Device A dozen of eggs of organic large brown eggs have been added into your cart.

2020-07-01 09:10:15 Customer Alexa, I also want dark chocolate. Can I have that, Daddy?

2020-07-01 09:10:25 Device Sorry, I did not recognize your voice. Would you like to get enrolled?

As the masked features are reconstructed based on context, reconstruction-based methods

are more suitable to speech recognition tasks and less effective on speaker recognition

tasks. For the latter, positive and negative instances are constructed and models are

optimized by conducting comparisons, which aim to group positive instances together

while separating negative instances, such as COLA [28], CPC [34], and wav2vec [92].

Therefore, to effectively distinguish utterances from different speakers, contrastive learning

methods are more appropriate.

3.2 Method

The unlabeled dialogue data is noisy because the customer utterances in the same

dialogue can come from different speakers. It follows that the positive instances constructed

by pairing utterances from the same dialogue are not reliable all the time. To alleviate

this issue, we propose a new all-versus-all loss function and a rejection mechanism. Unlike

angular prototypical loss [25] and GE2E loss [93], all-versus-all loss avoids using a centroid

to represent a dialogue, but rather conducts comparisons for each utterance in a dialogue.
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Figure 3.1: Each batch contains M = 2 utterances from N = 4 different dialogues,

M ·N utterances in total. We multiply the loss from each utterance depending on the

compactness of the dialogue the utterance is extracted from.

In this way, the model will suffer less from centroids aggregating multiple speakers while

learning from all utterances in a dialogue. In addition, the rejection mechanism guides

the model in learning more from clean dialogues instead of noisy ones by weighting their

loss contributions differently.

Figure 3.1 shows the proposed modeling framework. Given N dialogues (N = 4 in

our case), we randomly sample M customer utterances per dialogue (M = 2 here) to

construct a batch of M ·N utterances. An encoder is employed to extract an embedding

for each utterance in the batch. Then, a loss for each utterance is calculated based on its

similarities to other utterances in the same dialogue and those in other dialogues, which

are stored in a similarity matrix. At the same time, a compactness score is calculated

for each dialogue, expressing the speaker purity of the dialogues. The overall batch loss

is defined by a weighted sum of utterance losses considering the dialogue compactness

scores.

3.2.1 All-versus-All Loss

The presence of the multiple speaker dialogues in the dataset causes the class centroids

of GE2E loss to be flawed, as different speakers will have completely different embeddings.
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Specifically, if there are multiple speakers in a dialogue, the negative pair centroids would

not be ideal as the centroids are not reliable and the aggregation step leads to information

loss, causing wrong gradient directions. In this work, we propose all-versus-all (AvA) loss

function to alleviate the negative pair centroid problem. We compare the embedding to all

the other embeddings without relying on centroids, not only avoiding the flawed centroid

problem but also increasing the effective number of negative pairs. For positive pairs, we

compare the query embedding with the centroid of the embeddings coming from the same

dialogue, excluding the query utterance. The similarity between the utterances coming

from same dialogue is promoted whereas the similarity between the utterances coming

from different dialogues is penalized. If we form our batch with M utterances coming

from N different dialogues, then the number of comparison pairs will be M · (N − 1) + 1

with only one of them being positive. GE2E and angular prototypical loss, on the other

hand, have N − 1 negative pairs and a single positive pair. [94] demonstrated that larger

batch sizes, meaning more negative pairs, help improve the performance of self-supervised

learning; therefore AvA gives a better loss function for our problem. Figure 3.2 visualizes

all the loss functions considered and explains the main differences among them. Formally,

xi,j = f(ui,j) (3.1)

s(xi,j, xk,l) =
xT
i,jxk,l

||xi,j||2||xk,l||2
(3.2)

ci,j =
1

M − 1

M∑
k=1,k ̸=j

xi,k (3.3)

ℓi,j = − log
es(xi,j ,ci,j)∑

k,l,k ̸=i e
s(xi,j ,xk,l) + es(xi,j ,ci,j)

(3.4)

42



Robust Learning in a self-supervised setting Chapter 3

Positive Pair
Negative Pair

Support-set
Support-set Centroid

Query-set

Support/Query

All-vs-All Loss GE2E Loss Angular Prototypical Loss

Contributes to centroid 

Centroid/Query

Figure 3.2: Comparison between the effect of all-versus-all loss (AvA), generalized end-to-

end loss (GE2E), and angular prototypical loss (AP). Dashed lines represent distances

encouraged to increase, while solid lines represent distances being decreased. Centroids

denoted by black nodes are computed as the mean of the support set during training.

where f is an encoder model that produces embedding representation xi,j from an utterance

ui,j, where ui,j is the j-th utterance from dialogue i. s calculates the cosine similarity

between two embeddings. ci,j is the positive centroid of a given utterance ui,j based on

dialogue i. ℓi,j is the cross entropy loss for a given utterance ui,j.

3.2.2 Self-supervised Rejection

Although AvA loss is solving part of the negative pair centroid problem, it does not

offer a solution for the positive pair errors caused by the multiple speaker dialogues.

Since the model will try to distinguish all the provided training data as well as possible,

multi-speaker examples may push the neural network to learn some non-robust and SID-

unrelated features. This is similar to the problem of noisy labels in supervised learning

[89, 90]. We employ the idea of loss reweighing to decrease the contributions from noisy

dialogues. Our method works on the fly, providing single-pass training with a significant

performance improvement. We believe this framework also works for speaker recognition

with datasets with noisy labels. Furthermore, our rejection mechanism works without

significant additional computational cost since the similarities are already computed for
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the loss functions.

Given the dialogue embeddings, we compute the average of the pairwise cosine

similarities, which we call the compactness of the given dialogue. Then, we pass the

compactness values through a sigmoid function with two hyper-parameters: temperature

and threshold.

Ci =
1

M(M − 1)

M∑
j=1

M∑
k=1,k ̸=j

s(xi,j, xi,k) (3.5)

wi = σ(T ∗ (Ci − t)) (3.6)

where T is the temperature controlling the steepness of the sigmoid function, and t is a

predefined threshold that determines the center of the sigmoid σ(·). We allow T to be

learned by the model; however, we do not propagate derivatives through compactness Ci,

letting it function simply as a scaling factor for the loss values.

Our final loss function becomes the weighted sum of the per-utterance losses:

L =
∑
i,j

wi · ℓi,j (3.7)

When the similarity between two utterances coming from the same dialogue is relatively

small the weight of that particular dialogue will also be small. The idea is decreasing

the loss contribution from multi-speaker dialogues, since their compactness will be much

lower than that of single-speaker dialogues.

3.3 Experiments

Across all our experiments we employ a model consisting of a multi-layer unidirectional

LSTM followed by a fully connected layer network. The dimensionality of each LSTM

layer is 768, whereas the last linear layer has 256 units.
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Table 3.2: Pretraining results. For each loss function, improvements relative to batch size

32 without rejection are shown.

Loss
Batch Size

32 64 128 256

All-vs-All 0.00% +2.91% +6.56% +8.20%

Rejection + All-vs-All +3.76% +7.65% +18.76% +19.00%

A-Proto 0.00% +7.32% +8.52% +12.93%

Rejection + A-proto +7.55% +12.58% +16.76% +25.85%

GE2E 0.00% +3.24% +3.06% +6.36%

Rejection + GE2E +10.64% +17.75% +17.99% +13.83%

We pretrain our models on the AWS platform using 8 NVIDIA V100 GPUs with 16GB

memory for 200 epochs. We employ the Adam optimizer with an initial learning rate of

0.0004, decreasing by 2% every 10000 iterations. For all of the experiments, we save the

model giving the best validation EER value on a small subset of the labeled dataset.

The pretraining is conducted on deidentifed speech dialogues. The dataset is composed

of 927,000 dialogues, comprising about 1800 hour of speech data. Since the number of

dialogues is large, the chance of having multiple dialogues from the same speaker is very

low per batch. As a dialogue contains at least two customer utterances, we form each batch

by collecting two utterances from N different dialogues. We conduct our experiments using

three different loss functions: GE2E, all-versus-all, and angular prototypical. Moreover,

in order to investigate the effect of the rejection mechanism we conduct a number of
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Table 3.3: Fine-tuning results. For all experiments we take the model trained from scratch

as our baseline and report the relative improvement.

Pretraining Loss Episodes
Labeled Dataset Speaker Count

1,024 2,048 4,096 8,192

- GE2E 1000 0.00% 0.00% 0.00% 0.00%

COLA GE2E 300 -8.81% -23.57% -37.07% -44.21%

APC GE2E 300 +24.34% +23.13% +19.48% +15.35%

VoxCeleb2 GE2E 300 +31.38% +25.91% +20.95% +15.61%

Dialogue+AvA (ours) GE2E 300 +40.18% +34.19% +31.10% +27.10%

Dialogue+A-Proto (ours) GE2E 300 +41.28% +34.77% +30.03% +26.57%

Dialogue+GE2E (ours) GE2E 300 +40.12% +32.86% +27.49% +23.42%

experiments with varying batch sizes.

The evaluation dataset is constructed by first randomly sampling de-identified ut-

terances from a year’s traffic. Then each sampled utterance and the enrollment data of

speakers are sent to multiple annotators to obtain ground-truth labels independently. To

reduce annotation errors, we select utterances that have consistent annotation labels for

the final evaluation dataset.

3.3.1 Model Performance with Rejection Mechanism

We first investigate how the rejection mechanism helps us learn from the noisy

unlabeled dialogue data. Table 3.2 reports relative EER improvements by taking a batch

size of 32, without using rejection, as a baseline.

There are two observations. First, the rejection mechanism helps improve EER

performance on all three loss functions and different batch sizes. For example, when
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all-versus-all loss is applied and the batch size is 32, we observe 3.76% relative EER

improvement. This demonstrates the effectiveness of the rejection mechanism, helping

the model focus on clean dialogues rather than noisy ones. Second, a large batch size

also contributes to better EER performance, especially when the rejection mechanism is

applied. For example, when all-versus-all loss is applied, the EER improves by 8.2% by

increasing the batch size from 32 to 256. It improves by 19.0% if the rejection mechanism

is involved. A large batch involves utterances from more dialogues and forces the model to

learn harder tasks, distinguishing more speakers in a batch. This results in more accurate

speaker recognition.

3.3.2 Model Performance before Fine-tuning

In this section, we investigate the performance of speaker recognition without fine-

tuning the pretrained models. To compare with other self-supervised methods, we also

pretrain a reconstruction-based APC model [30], and COLA [95] based on contrastive

learning. As there are several public labeled datasets, we also train a supervised model

based on the VoxCeleb2 dataset [26] to serve as an additional pretrained model. Here the

supervised pretrained model based on the VoxCeleb2 dataset serves as the reference. In

addition, we further train four fully supervised models based on labeled Alexa datasets

with varying number of speakers.

We highlight three observations based on Table 3.4. First, we note that the pretrained

models COLA and APC are worse than the supervised model trained on the VoxCeleb2

dataset. These two methods aim to learn general audio features and they strongly depend

on fine-tuning steps in order to achieve comparable performance for a downstream task.

Therefore, they perform poorly on speaker recognition task without fine-tuning. Second,

the proposed model and its variants consistently outperform the reference model trained
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Table 3.4: Comparison of pretrained models, our method outperforms reference model

trained on the VoxCeleb2 labeled dataset without fine-tuning. Its performance is even

comparable to fully supervised models trained on labeled Alexa datasets.

Training Data Method type Loss EER

Alexa Dialogue Self-supervised COLA -129.56%

Alexa Dialogue Self-supervised APC -108.32%

VoxCeleb2 Supervised GE2E 0%

Alexa (1024 spk) Supervised GE2E +12.75%

Alexa (2048 spk) Supervised GE2E +27.11%

Alexa (4096 spk) Supervised GE2E +34.79%

Alexa (8192 spk) Supervised GE2E +39.17%

Alexa Dialogue Self-supervised AvA +28.81%

Alexa Dialogue Self-supervised A-Proto +30.84%

Alexa Dialogue Self-supervised GE2E +28.49%

on the VoxCeleb2 labeled dataset, with EER reduced by as much as 30.84% relative.

This clearly demonstrates the effectiveness of the proposed model in exploiting implicit

speaker information in human-machine dialogues. The utilization of Alexa human-machine

dialogues helps us overcome the domain mismatch between Alexa users and speech from

other sources, such as the YouTube excerpts assembled in VoxCeleb. Third, the proposed

model achieves EER reductions comparable to the models trained from scratch on Alexa

labeled datasets. For example, our best performing model achieves 30.84% EER reduction

while the fully supervised model trained on the Alexa labeled 4096-speaker dataset achieves

34.79% reduction. This shows that the proposed model trained with unlabeled dialogue

data is effective in learning speaker identity features.
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3.3.3 Model Performance after Fine-tuning

We fine-tune the pretrained network on different labeled Alexa datasets with varying

number of speakers, where the total utterance duration for a speaker is around 150 seconds

on average. All fine-tuning results based on the various pretrained models are summarized

in Table 3.3. Here the four models trained from scratch with 1024, 2048, 4096, and 8192

labeled speakers serve as the reference baselines. Due to limited space, we show the

fine-tuned model performance for GE2E loss only.

There are four key observations. First, the pretrained COLA model is not effective

at learning speaker identities on the dialogue data, as we observe performance drop

compared to the model trained from scratch for all four fine-tuning datasets. The

utterances in dialogues are very short (one to two seconds duration). COLA further

separates each utterance into two segments in order to form positive instances. Moreover,

the background environment tends to be identical within the same utterance. Without

massive and effective data augmentations, COLA tends to perform poorly on speaker

recognition tasks.

Second, we notice that the pretrained APC model [96] helps improve the recognition

performance with fine-tuning. For example, compared with the model trained with 1024

speakers from scratch, fine-tuning the APC model with the same labeled dataset improves

EER by 24.34%.

Third, fine-tuning the supervised model pretrained on the VoxCeleb2 dataset also

helps improve the EER performance, in spite of the domain mismatch between VoxCeleb2

(YouTube recordings) and Alexa traffic. We observe 31.38% relative EER improvement

when the model is fine-tuned with 1,024 speakers.

Fourth, the proposed method achieves the largest relative EER improvements on all

four fine-tuning datasets compared to COLA, APC, and the supervised model trained
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on the VoxCeleb2 dataset. The best results are highlighted in bold in Table 3.3. This

demonstrates the superiority of the proposed method for our speaker recognition scenario,

learning to distinguish speakers by selectively learning from the unlabeled human-machine

dialogues.
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Chapter 4

A Neuro-inspired Approach To

Robustness

This chapter discusses how incorporating appropriately engineered neuro-inspired princi-

ples into DNN architectures and training yields promising results to combat ℓp bounded

adversarial perturbations and common corruptions. We provide the background in adver-

sarial attacks and common corruptions in section 4.1 along with related work in adversarial

machine learning. We then present the details of our neuro-inspired Hebbian/anti-Hebbian

framework to enhance the robustness of the deep neural networks in section 4.4. We

provide another perspective to evaluate the robustness of a model in section 4.5. Finally,

we show our framework’s effectiveness against various corruptions and adversarial attacks,

supported by extensive experimental results in section 4.5.

4.1 Background

Since their original breakthrough in image classification performance, DNNs trained

with backpropagation have attained outstanding performance in a wide variety of fields
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[8–10, 97]. However, fundamental concerns remain regarding the lack of robustness in

DNNs (e.g, to adversarial perturbations and common corruptions).

While deep learning models accurately classify natural data points, they suffer when

encountering a carefully designed adversarial example. In traditional DNNs, even a slight

change in the input image gets amplified, propagating through the layers and eventually

causing a misclassification. A game of cat and mouse between attackers and defenders

was set in motion after the susceptible nature of deep neural networks was first pointed

out by [16], and [17]. We now detail state-of-the-art adversarial attacks.

4.1.1 Adversarial Attacks

In this work, we only report on inference time attacks, also called evasion attacks [16].

The goal of evasion attacks is to change the classification outcome of DNN with the smallest

possible perturbation. In general, some constraints limit adversarial perturbations to avoid

changing the input’s ground truth label (human prediction). The most commonly used

constraints for adversarial attacks are ℓp distance measures, ℓ∞ being the most popular

amongst them. Furthermore, attacks can be grouped into two classes, whether they have

access to the inner structure and the parameters of the model or not: respectively, white-

box attacks and black-box attacks. Since white-box attacks are stronger than black-box

ones by definition, we limit our focus to white-box attacks, specifically gradient-based

attacks. Gradient-based attacks, including the fast gradient sign method (FGSM) [98], the

iterative version of FGSM known as the basic iterative method [99], employ the normalized

gradients with respect to the inputs to generate the perturbation. These methods are also

referred to as projected gradient descent (PGD) [37], a well-known technique to solve a

constrained optimization problem. Formally, ℓ∞ bounded PGD computes the adversarial

perturbation as follows:
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ei+1 = clipϵ

[
ei + δ · sign(∇eL(f(x+ ei),y))

]
(4.1)

where x and y correspond to input and label respectively, ei corresponds to the perturba-

tion at iteration i, ϵ corresponds to the attack budget, δ is step size, L corresponds to the

loss function, and f corresponds to the neural network. Most recently, an ensemble of

parameter-free versions of PGD and state-of-the-art black-box attacks are benchmarked

as AutoAttack [100] to evaluate the empirical robustness of a defense reliably. In this

work, we use AutoAttack to evaluate the robustness of our framework.

Figure 4.1: Common corruptions suggested by [4]. Figure is taken from [4]. Although

these corruptions change the outcome of the most successful deep neural networks, humans

are not confused with these corruptions.
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4.1.2 Common Corruptions

The vulnerability of deep neural networks are not limited to adversarial examples;

[4] showed that common corruptions that does not affect the decision of human vision

system affects the DNNs’ outcomes significantly. Figure 4.1 shows these corruptions that

include noise, blur, weather, and digital corruptions all of which are not uncommon in

real life. Therefore, getting robust against these corruptions are also essential. Here in

this work, we aim to get robust against both adversarial attacks and common corruptions

unlike the other defense techniques against adversarial examples which aim to be robust

against a specific attack type.

4.2 Approach and Contributions

Conventional top-down training employs a cost function based on the DNN output,

thus providing little insight and no guarantees on the features extracted by the layers of

the DNN. The use of the resulting “black box” DNNs in many safety- and security-critical

applications is blocked by concerns about their lack of interpretability and robustness.

While data augmentation has been shown to enhance robustness to some extent (e.g,

the use of adversarial examples generated on the fly during adversarial training), it is

only a partial solution. In this work, we explore the thesis that a first step to alleviating

these problems is to exert more control on the features being extracted by DNNs. We

develop a training framework aimed at shaping the features generated by a DNN layer, by

supplementing end-to-end costs with costs that depend on the activations at each layer.

We seek to generate sparse activation patterns with a small fraction of large activations,

instead of the large proportion of small activations produced by a standard DNN.

In order to attain sparse, strong activations at each layer, we employ the following

neuro-inspired strategy for modifying standard DNN training and architecture:
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Hebbian/anti-Hebbian (HaH) Training: We supplement a standard end-to-end discrimina-

tive cost function with layer-wise costs at each layer which promote neurons producing

large activations and demote neurons producing smaller activations. The goal is to

develop a neuronal basis that produces a distributed sparse code, without requiring a

reconstruction cost as in standard sparse coding [101].

Neuronal Competition via Normalization: We further increase sparsity by introducing

Divisive Normalization (DN), which enables larger activations to suppress smaller acti-

vations. In order to maintain a fair competition among neurons, we introduce Implicit

ℓ2 Normalization of the neuronal weights, so that each activation may be viewed as a

geometric projection of the layer input onto the “direction” of the neuron. (Using implicit

rather than explicit weight normalization in our inference architecture simplifies training.)

We report on experiments with CIFAR-10 image classification, comparing a baseline

VGG-16 network trained end-to-end against the same architecture with HaH training

and DN. Both architectures employ implicit weight normalization, which we have verified

does not adversely impact accuracy. We demonstrate that the activations in our proposed

architecture are indeed more sparse than for the baseline network. In order to isolate

the impact of our training approach and inference architecture, we do not employ noise

augmentation or adversarial training in these initial experiments. For CIFAR10 classifica-

tion, we show that our model is significantly more robust than a baseline model against

both noise and adversarial perturbations. Against the broader set of corruptions in the

CIFAR10-C dataset (Common corruptions dataset), our model is generally more resilient

than both the baseline model and an adversarially trained model.
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4.3 Related Work

Hebbian learning has a rich history in artificial neural networks, dating back to the

neocognitron [102], and including recent attempts at introducing it into deep architectures

[103]. However, to the best of our knowledge, ours is the first paper to clearly demonstrate

gains in robustness from its incorporation in DNNs. Divisive normalization is a widely

accepted concept in neuroscience [104, 105], and versions of it have been shown to be

competitive with other normalization techniques in deep networks [106]. Our novel

contribution is in showing that divisive normalization can be engineered to enhance

sparsity and robustness. Finally, sparse coding with a reconstruction objective was shown

to lead to neuro-plausible outcomes in a groundbreaking paper decades ago [101]. In

contrast to the iterative sparse coding and dictionary learning in such an approach, our

HaH-based training targets strong sparse activations in a manner amenable to standard

stochastic gradient training.

Recent work showing potential robustness gains by directly including known aspects

of mammalian vision in DNNs includes [107], which employs Gabor filter blocks and

stochasticity, and [108], which employs neural activity measurements from mice for

regularization in DNNs. Rather than incorporating specific features from biological vision,

we use neuro-inspiration to extract broad principles that can be folded into data-driven

learning and inference in DNNs.

4.4 Model

We now describe how we incorporate HaH training and divisive normalization into a

standard CNN for image classification. We consider a “classical” CNN for our experiments–

VGG-16 [109] applied to CIFAR-10, rather than variants of ResNet [110], because residual
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Figure 4.2: Our model consists of two different types of blocks: first 6 blocks are Hebbian-

anti-Hebbian (HaH) while the rest are regular VGG blocks. HaH blocks use a weight

normalized convolutional layer, followed by ReLU, divisive normalization and thresholding.

Regular VGG blocks use a weight normalized convolutional layer followed by ReLU and

batch norm.

connections complicate our interpretation of building models from the bottom-up using

HaH learning. Since we wish to build robustness from the bottom up, we modify the first

few convolutional blocks to incorporate neuro-inspired principles. We term these modified

blocks “HaH blocks.”

Each HaH block employs convolution with implicit weight normalization, followed by

ReLU, then divisive normalization, and then thresholding. Implicit weight normalization

enables us to interpret the convolution outputs for each filter as projections, and we have

verified that employing it in all blocks of a baseline VGG-16 architecture does not adversely

impact accuracy (indeed, it slightly improves it). Each standard (non-HaH) block in

our architecture therefore also employs convolution with implicit weight normalization,

followed by ReLU, but uses batch norm rather than divisive normalization. Each HaH

block contributes a HaH cost for training, so that the overall cost function used for

training is the standard discriminative cost and the sum of the HaH costs from the HaH

blocks.

We now describe the key components of our architecture, shown in Figure 4.2.
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4.4.1 Inference in a HaH block

Implicit weight normalization: Representing the convolution output at a given spatial

location from a given filter as a tensor inner product ⟨·, ·⟩ between the filter weights w

and the input x, the output of the ReLU unit following the filter is given by

y = ReLU
(⟨w,x⟩

||w||2

)
(4.2)

This effectively normalizes the weight tensor of each filter to unit ℓ2 norm, without actually

having to enforce an ℓ2 norm constraint in the cost.

Divisive normalization: If we have N filters in a given HaH block, let y1(loc), ..., yN (loc)

denote the corresponding activations computed as in (Equation 4.2) for a given spatial

location loc. Let M(loc) = 1
N

∑N
k=1 yk(loc) denote the mean of the activations at a

given location, and let Mmax = maxlocM(loc) denote the maximum of this mean over all

locations. We normalize each activation using these terms as follows:

zk(loc) =
yk(loc)

σMmax + (1− σ)M(loc)
, k = 1, ..., N (4.3)

where 0 ≤ σ ≤ 1 is a hyperparameter which can be separately tuned for each HaH block.

Thus, in addition to creating competition among neurons at a given location by dividing

by M(loc), we also include Mmax in the denominator in order to suppress contributions at

locations for which the input is “noise” rather than a strong enough “signal” well-aligned

with one or more of the filters. This particular implementation of divisive normalization

ensures that the output of a HaH-block is scale-invariant (i.e., we get the same output if

we scale the input to the block by any positive scalar).

Adaptive Thresholding: Finally, we ensure that each neuron is producing significant

outputs by neuron-specific thresholding after divisive normalization. The output of the
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kth neuron at location loc is given by

ok(loc) =

{
zk(loc) if zk(loc) ≥ τk

0, otherwise
(4.4)

where the threshold τk is neuron and image specific. For example, we may set τk to the

90th percentile of the statistics of zk(loc) in order to get an activation rate of 10% for

each neuron for every image. Another simple choice that works well, but gives higher

activation rates, is to set τk to the mean of zk(loc) for each image.

4.4.2 HaH Training

For an N -neuron HaH block with activations yk(loc), k = 1, ..., N at location loc, the

Hebbian/anti-Hebbian cost seeks to maximize the average of the top K activations, and to

minimize the average of the remaining N −K activations, where K is a hyperparameter.

Thus, sorting the activations {yk(loc)} so that y(1)(loc) ≥ y(2)(loc) ≥ ... ≥ y(N)(loc), the
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Figure 3: a: To compute the SNR at the nth block inputs, we divide the ℓ2 norm of

the block input corresponding to clean image by the ℓ2 norm of the difference of block

corresponding to clean and noisy images. b: Comparison of SNR values of the block

inputs for the standard base model (gray) and ours (red).
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contribution to the HaH cost (to be maximized) is given by

Lblock(loc) =
1

K

K∑
k=1

y(k)(loc)− λ
1

N −K

N∑
k=K+1

y(k)(loc) (4.5)

where λ ≥ 0 is a hyperparameter determining how much to emphasize the anti-Hebbian

component of the adaptation. The overall HaH cost for the block, Lblock, which we wish

to maximize, is simply the mean over all locations and images.

The overall loss function to be minimized is now given by

L = Ldisc −
∑

HaH blocks

αblockLblock (4.6)

where Ldisc is the standard discriminative loss, and {αblock ≥ 0} are hyper-parameters

determining the relative weight of the HaH costs across blocks.

4.4.3 Insight into HaH updates

In this section, we provide quick analytical and geometric insight into the HaH

framework. By rewarding large activations y, the HaH cost targets learning weight tensors

more aligned with input tensors. To see this, consider an activation y = ⟨w,x⟩/||w||2
which among the top K, and is therefore receiving a Hebbian update. The gradient along

which w is to be updated can be computed as

∂y

∂w
=

⟨w,w⟩x− ⟨w,x⟩w
||w||32

=
P⊥

wx

||w||2
(4.7)

where P⊥
wx denotes the projection of the input x orthogonal to the one-dimensional

subspace spanned by w. The update ∆w = η ∂y
∂w

is therefore proportional to this

orthogonal component, and moving in this direction reduces the angle between w and

x, provided that η is small enough. We skip details due to lack of space, but note

the following geometric interpretation. Because of implicit normalization, the original

activation can be written as

y = ⟨w,x⟩/||w||2 = ||x||2 cos θ (4.8)
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where θ is the angle between w and x. By reducing θ via the weight update, we increase

the implicitly normalized activation. Thus,

ynew = ⟨w +∆w,x⟩/||w +∆w||2 > yold = ⟨w,x⟩/||w||2 (4.9)

Note that exactly the opposite phenomenon occurs for an anti-Hebbian update: those

weight vectors become less aligned with the input.

This procedure trains the neurons such that, during inference, the highly activated

neurons at a given location tend to be better aligned with the input. Not only does this

make these top activations more resilient to the impact of noise or perturbations, but

larger activations also help attenuate the impact of noise on smaller activations by virtue

of divisive normalization. In fact, many of these smaller noisy activations get eliminated

via the thresholding applied after divisive normalization.

4.5 Experiments

We consider VGG-16 with the first 6 blocks (each block includes conv, ReLU, batch

norm) replaced by HaH blocks (each block includes conv, ReLU, divisive norm, thresh-

olding). In our training, we use Adam optimizer [111] with an initial learning rate of

10−3, multiplied by 0.1 at epoch 60 and again at epoch 80. We train all models for 100

epochs on CIFAR-10. We choose τk in Equation 4.4 to keep 20% of activations. We use

[4.5× 10−3, 2.5× 10−3, 1.3× 10−3, 1× 10−3, 8× 10−4, 5× 10−4] for α in Equation 4.6.

We use 0.1 for λ and set K to 10% of number of filters in each layer in Equation 4.5 and

set σ = 0.1 in Equation 4.3. Details about other hyper-parameters can be found in our

code in supplementary materials.

Sparser activations: To ensure that HaH blocks are operating as intended and achieving

the sparse and strong activations we test the sparsity levels of intermediate representations
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Figure 2: HaH blocks yield sparser activations than baseline. The measure of sparsity is

the Hoyer ratio [5] of ℓ1 norm to ℓ2 norm of activations across channels, averaged across

spatial locations, and then normalized to lie in [0,1] (lower values correspond to more

sparsity).

and plot them in Figure 2. Sparsity is computed by the ratio of ℓ1 norm to ℓ2 norm (also

known as Hoyer term [5]) of each spatial location’s representation across the channel

dimension. We then linearly normalize the values to lie in [0,1]. Lower values represent

sparser representations. The activations in these first 6 blocks are indeed more sparse for

our architecture than for baseline VGG.

Enhanced robustness to noise: We borrow the concept of signal-to-noise-ratio (SNR)

from wireless communication to obtain a block-wise measure of robustness. Let fn(x)

denote the input tensor at block n in response to clean image x, and fn(x+ w) the input

tensor when the image is corrupted by noise w. As illustrated in Figure 3a, we define

SNR as

SNRn = 10 log10

(
Ex∼Dtest

[
||fn(x)||22

||fn(x+w)−fn(x)||22

])
dB (4.10)
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Figure 4: Comparison of classification accuracies as a function of noise σ. To provide a

concrete sense of the impact of noise, noisy images at increasing values of σ are shown

below the graph.

converting to logarithmic decibel (dB) scale as is common practice. Figure 3b shows that

the SNR for our model comfortably exceeds that of the standard model, especially in the

first 6 HaH blocks.

These higher SNR values also translate to gains in accuracy with noisy images: Figure 4

compares the accuracy of our model and the base model for different levels of Gaussian

noise. There are substantial accuracy gains at high noise levels: 64% vs. 26% at a noise

standard deviation of 0.1, for example.

Enhanced robustness to adversarial attacks: While we have not trained with

adversarial examples, we find that, as expected, the noise rejection capabilities of the

HaH blocks also translates into gains in adversarial robustness relative to the baseline

VGG model. This holds for state-of-the-art gradient-based attacks [37, 39], as well as

AutoAttack, an ensemble of parameter-free attacks suggested by RobustBench [100].
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We observe no additional benefit of using gradient-free attacks, and conclude that the

robustness provided by our scheme is not because of gradient-masking. Because of

space constraints, we only report on results from minimum-norm adversarial attacks and

AutoAttack.

Figure 5 shows that the minimum distortion needed to flip the prediction of our model

(computed using the recently proposed fast minimum norm computation method [39]) is

higher for our model for all the ℓp attacks considered.

We have also obtained substantial gains in adversarial accuracy against all four ℓp

norm attacks (p = 0, 1, 2,∞) used as benchmarks in adversarial machine learning. Table 1

displays a subset of results demonstrating accuracy gains against noise and adversarial

perturbations, at the expense of a slight decrease in clean accuracy.

Enhanced robustness to common corruptions: Finally, we evaluate our neuro-

inspired framework for common corruptions suggested by [112]. These corruptions include

noise injection, weather condition, common blur, and digital corruptions. Table 2 compares

Corruptions →
Clean

Noise Weather Blur Digital Mean

Models ↓ Gauss. Shot Speckle Impulse Snow Fog Frost Bright. Defocus Gauss. Motion Zoom Contrast Elastic Pixelate Spatter of all

Standard 92.5 32.4 40.0 45.5 27.5 72.9 64.5 61.6 87.4 45.5 34.8 59.7 58.9 23.0 74.8 51.0 68.6 53.0

Adv(8/255) 78.7 74.2 74.4 73.4 62.9 62.3 29.7 59.0 60.4 69.8 67.5 67.2 72.0 18.0 72.5 75.4 71.5 63.1

HaH (Ours) 87.3 64.7 63.9 61.2 50.2 74.4 63.3 73.3 83.3 65.9 59.9 65.8 69.5 76.3 73.8 62.1 76.3 67.7

Table 2: Common corruption accuracies across different models. While standard and

adversarially trained models are VGG16, HaH (ours) uses the aforementioned modified

version of VGG16. Adversarially trained models perform poorly on fog and contrast

corruptions while excelling on high-frequency corruptions like noise. On the other hand,

the HaH framework consistently improves the robustness against all sorts of corruptions.

Bright. stands for brightness, Gauss. stands for Gaussian, Elastic stands for elastic

transformation
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Figure 5: The average norm of minimum-norm adversarial attacks is higher for our model

for all ℓp norms considered.

the accuracies obtained by our model with those for a standard model and an adversarially

trained model. We see that our neuro-inspired design is effective in increasing robustness

against these common corruptions. It is worth noting that, while adversarially trained

models perform well against noise type corruptions, they perform drastically worse against

more complex corruptions like fog and contrast [113, 114]. In contrast, our HaH framework

not only performs relatively well (performing substantially better than the standard model)

for noise corruptions but also performs significantly better on more complex corruptions

such as fog and contrast. Furthermore, the HaH-VGG16 outperforms both the standard

model and adversarially trained model in terms of mean corruption accuracy. Given that

such corruptions barely affect human vision, these results indicate that neuro-inspiration

provides a valuable path towards general-purpose robustness against noise, adversarial

perturbations, and common corruptions.

Ablation: Since we have different components in our HaH blocks, we explore the

effectiveness of each component by doing an ablation study. Table 3 summarizes the

contribution from each of the components. We see that all of the components (HaH
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Table 1: Enhanced accuracy against noise and adversarial attacks.

Clean
Noisy

(σ = 0.1)

Adv (ℓ∞)

(ϵ = 2/255)

Adv (ℓ2)

(ϵ = 0.25)

Standard 92.5% 26.6% 10.4% 13.9%

Ours 87.3% 64.0% 21.5% 27.6%

training, divisive normalization, adaptive thresholding) play an important role in obtaining

the reported gains in robustness to noise and adversarial attacks.

Furthermore, the number of HaH blocks plays a crucial role in obtaining robustness.
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Figure 6: Ablation study for number of HaH blocks. Every additional HaH block

contributes to the robustness of the model with a slight compromise on clean accuracy.
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Table 3: Accuracies for ablation study.

Clean
Noisy

(σ = 0.1)

Adv (ℓ∞)

(ϵ = 2/255)

Adv (ℓ2)

(ϵ = 0.25)

All included 87.3% 64.0% 21.5% 27.6%

No HaH loss 89.7% 50.4% 8.8% 11.7%

Batch norm

instead of

divisive norm

90.4% 46.7% 12.3% 17.4%

No

thresholding
89.9% 37.5% 3.7% 2.5%

Figure 6 shows the trade-off between clean accuracy and robust accuracy when the number

of HaH blocks changes. Note that we successfully trained a model at most with 6 HaH

blocks. Like earlier bio-inspired defenses, robustness through the HaH blocks also comes

with a slight compromise on clean accuracy.

4.6 Software Release

We release our framework as a software toolbox to motivate the community to explore

these ideas further. Table 4 shows the metadata for our software framework. We

implement our ideas via a publicly available extension module to Pytorch [115] called

HaH (Hebbian/Anti-Hebbian): a neuro-inspired DNN toolbox, with aforementioned new

components such as Cost, Regularizer, Divisive normalizer, and Threshold.

We also provide additional utility functions to extract and use the layer outputs. We

provide a wrapper class for torch.nn.Module which utilizes forward hooks from PyTorch

to extract all the outputs and inputs of a specific layer type from a DNN while training.

67



A Neuro-inspired Approach To Robustness Chapter 4

C1 Current code version v0.0.5

C2 Permanent link to code/repository

used for this code version

https://github.com/metehancekic/HaH

C3 Permanent link to Reproducible Cap-

sule

https://codeocean.com/capsule/0731065/tree/v1

C4 Legal Code License MIT License

C5 Code versioning system used Git

C6 Software code languages, tools, and

services used

Python

C7 Compilation requirements, operating

environments & dependencies

Python >= 3.8.2 with the following dependencies

PyTorch 1.10.2; Numpy 1.19.2

C8 If available Link to developer docu-

mentation/manual

https://github.com/metehancekic/HaH

C9 Support email for questions metehancekic@ucsb.edu

Table 4: Software metadata

The wrapper expects a model and the layer type and makes the layer outputs and inputs

accessible whenever an input is fed to the neural network.
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Chapter 5

Conclusions and Future Work

One of the promises of deep neural networks is to supersede domain expertise by extracting

features automatically and learning complicated tasks from extensive data. State-of-the-

art DNNs deliver this promise; however, they are far less stable and robust than the

traditional systems they replace. They operate like large statistical machines looking

for the strongest features that explain the data fed to them, ignoring whether they are

spurious correlations or not; therefore, their performance and robustness heavily depend

on the training data. In this thesis, through different case studies, we tackle this problem

by proposing domain-specific measures to improve their stability and robustness. Our

main point is that the impetuous employment of DNNs might lead to disastrous security,

stability, and performance issues. In particular, we demonstrate the importance of being

proactive in identifying and preventing potential problems due to the data and given task.

Now we detail our concluding remarks and the future directions.

69



Conclusions and Future Work Chapter 5

5.1 Robust RF Fingerprinting

While complex-valued CNNs are a promising tool for learning RF signatures, we

conclude that blind adoption of these networks is dangerous due to confounding factors that

impede generalization across space and time. We show that model-based augmentation is

a useful tool for handling such confounding factors; a novel finding is that augmentation

is helpful not just for training, but also during inference. A lower-complexity alternative

to augmentation is to estimate and undo the effects of confounding factors using detailed,

protocol-specific models, but, depending on the phenomenon of interest, the residual errors

(e.g., from channel estimation) may swamp out the weaker nonlinear effects that we wish to

learn. A judicious combination of estimation and augmentation can confer robustness, but

augmentation alone is a competitive approach when we seek protocol-agnostic strategies.

Our results highlight the promise and pitfalls of deep learning for RF signatures,

rather than providing definitive answers. There are a number of open issues for further

investigation, including alternative DNN architectures and fundamental detection-theoretic

limits to provide benchmarks for robust fingerprinting, Another important area for future

work is exploration of the robustness of DNN-based RF signatures to adversarial attacks.

Adversarial attacks and defenses are a topic of intensive investigation in the context of

standard image datasets [37, 98, 116], but it is of interest to explore threat models that

are specifically tailored to wireless physical layer security. Finally, it is important to

investigate RF and mixed signal circuit design issues associated with the concept of RF

signatures, including the potential for deliberately introducing manufacturing variations

to enable discrimination, and characterization of the stability of device nonlinearities to

environmental variations (e.g., in temperature and moisture).
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5.2 Robust Self-Supervised Learning

Extracting quality features from an unlabeled dataset is a challenging task that

requires careful task definition and cautious handling of the data. In this work, we present

a self-supervised learning method for speaker recognition tasks designed to exploit implicit

speaker identity information in unlabeled human-machine dialogues. We propose an

effective soft rejection mechanism to deal with dialogues containing multiple speakers.

Experiments on de-identified smart-speaker production data show that the proposed

algorithm is effective at handling unsupervised speaker information, giving performance

comparable to supervised models. When used for model pretraining before supervised

training, our method reduces EER by up to 41% relative, compared to no pretraining,

and is superior both to other self-supervised pretraining methods and to pretraining on a

large labeled (but domain-mismatched) dataset.

These findings open up new research directions for learning from corrupt datasets.

While we reject the corrupt data points with our soft rejection mechanism, we sacrifice

valuable hard examples. Therefore, the potential next step is to explore ways to distinguish

hard examples from corrupt examples.

5.3 Neuro-Inspired Robustness

Given the shortcomings of standard DNNs in terms of both interpretability and robust-

ness, we believe it is time to explore how to control better the features generated within a

DNN. We present our HaH framework as the first step in this direction. Our preliminary

results demonstrate the promise of enhancing the end-to-end training paradigm in DNNs

with layer-wise HaH costs in order to control the features extracted by intermediate layers.

In particular, our neuro-inspired approach to neuronal competition during training and in-
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ference demonstrably results in sparser, stronger activations and robustness against noise,

common corruptions, and adversarial perturbations than baseline models. Indeed, based

on our experiments with the CIFAR10-C (common corruptions) dataset, the robustness

provided by our approach, trained in these preliminary results without any augmentation,

appears to be more general-purpose than that obtained by adversarial training. We note

that recent work on bio-inspired adversarial defenses appears to yield similar observations

[113].

We hope these results motivate a systematic inquiry into enhancing end-to-end training

with layer-wise cost functions for various architectures (specifically the ones using skip

connections), training techniques (including unsupervised and semi-supervised learning,

and data augmentation), and applications. In particular, for robust machine learning, a

natural next step is to explore the combination of data augmentation strategies (including

adversarial training) with HaH architectures. Another critical area for future exploration

is the effectiveness of the HaH framework in different domains, such as speech, audio, and

natural language processing.
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