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Graphical abstract
Public summary

- We present the first near-real-time Global Gridded Daily CO2 Emissions Dataset (GRACED)

- GRACED can be updated in near real time with a spatial resolution of 0.1� and a temporal resolution of 1 day

- GRACED shows gridded emissions of seven sectors: power, industry, residential consumption, ground transport, domestic aviation,
international aviation, and international shipping

- Regular updates of GRACED will enable policymakers to more closely monitor the effectiveness of climate and energy policies and quickly
adapt on various spatial scales
ll www.cell.com/the-innovation
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Precise and high-resolution carbon dioxide (CO2) emission data is of great
importance in achieving carbon neutrality around the world. Here we present
for the first time the near-real-time Global Gridded Daily CO2 Emissions Data-
set (GRACED) from fossil fuel andcement productionwith a global spatial res-
olution of 0.1� by 0.1� and a temporal resolution of 1 day. Gridded fossil emis-
sions are computed for different sectors based on the daily national CO2

emissions from near-real-time dataset (Carbon Monitor), the spatial patterns
of point source emission dataset Global Energy Infrastructure Emissions
Database (GID), Emission Database for Global Atmospheric Research
(EDGAR), and spatiotemporal patters of satellite nitrogen dioxide (NO2) re-
trievals. Our study on the global CO2 emissions responds to the growing
and urgent need for high-quality, fine-grained, near-real-time CO2 emissions
estimates to support global emissions monitoring across various spatial
scales.We show the spatial patterns of emission changes for power, industry,
residential consumption, ground transportation, domestic and international
aviation, and international shipping sectors from January 1, 2019, to
December 31, 2020. This gives thorough insights into the relative contribu-
tions from each sector. Furthermore, it provides the most up-to-date and
fine-grained overview of where and when fossil CO2 emissions have
decreased and rebounded in response to emergencies (e.g., coronavirus dis-
ease 2019 [COVID-19]) and other disturbances of human activities of any pre-
viously published dataset. As the world recovers from the pandemic and de-
carbonizes its energy systems, regular updates of this dataset will enable
policymakers tomore closelymonitor the effectiveness of climate and energy
policies and quickly adapt.

INTRODUCTION
Although human emissions of carbon dioxide (CO2) to the atmosphere are the

main cause of global climate change, detailed and spatially explicit estimates of
suchemissionsare updated infrequently, typically laggingemissionsbyat least a
year. However, with the rising ambition of climate policies and mitigation ef-
forts,1,2 a reliable, spatially explicit, andup-to-date datasetof fossil CO2emissions
is becoming increasingly important. For example, such detailed data are neces-
sary to link emissions to observable atmospheric concentration signals and
constrain regional CO2 fluxes, and can help decision makers to more quickly
assess both the effectiveness of policies and local priorities for further
mitigation.3,4

Since the end of 2019, the coronavirus disease 2019 (COVID-19) pandemic has
caused major disruptions of human activities and energy use. Governments
around the world have imposed compulsory lockdowns that restrict in-person
educational and commercial activities to reduce the spread of coronavirus. In
turn, industries and factories reduced their activities and production, people’s
local and long distancemobility was reduced, and human activities were reduced
on a large scale, resulting in a substantial decrease in fossil energy consumption
and CO2 emissions, albeit with large regional differences.4–6 As lockdown restric-
tions have relaxed in many countries and economic activities have recovered in
some sectors, the effect of the pandemic on CO2 emissions has weakened,
even during large second waves of cases. A timely and finely gridded emissions
ll
dataset enables quantitative analysis of temporal and spatial changes in CO2

emissions in each country in response to emergencies (e.g., COVID-19) and other
disturbances of human activities, and helps to constrain predictions of future
trends.
Existing datasets of global gridded (i.e., spatially explicit) CO2 emissions

include the Open-source Data Inventory for Anthropogenic CO2 (ODIAC), which
distributes national emission totals estimated by the Carbon Dioxide Informa-
tion Analysis Center (CDIAC) in space, using a combination of geospatial prox-
ies such as satellite observations of nighttime lights and geolocations of major
power plants (Carbon Monitoring for Action list): ODIAC provides maps of
monthly CO2 emissions on a 1-km grid for the period 2000 to 2019, as of today,
including emissions from power plant, transportation, cement production/in-
dustrial facilities, and gas flares over land regions.7–9 Similarly, the Community
Emissions Data System (CEDS) uses data from a number of existing inven-
tories to provide a monthly gridded dataset of all emission species for the
Climate Model Inter-comparison Program (CMIP6) over the period 1750 to
2014 at a resolution of up to 0.1� , including sectors of energy transformation
and extraction, industry, residential, commercial, transportation, agriculture,
solvent production and application, waste, shipping, and other.10–13 Another
prominent example is the Emission Database for Global Atmospheric
Research (EDGAR). EDGAR estimates emissions based on national CO2 emis-
sions reported by the Global Carbon Project (GCP) and emission factors,
broken down to Intergovernmental Panel on Climate Change (IPCC)-relevant
source-sector levels. EDGAR uses spatial geospatial proxies such as point
and line source locations at a 0.1� 3 0.1� resolution for the period 1970 to
2019, including sectors of agriculture, power, transport, residential, industry,
manufacturing, and a number of others.14–16 More recently, The Global Carbon
Grid (http://gidmodel.org) establishes high-resolution maps of global CO2

emissions from fossil fuel combustion and cement production based on a
framework that integrates multiple data flows, including point sources, coun-
try-level sectoral activities and emissions, and transport emissions and distri-
butions. The Global Carbon Grid v1.0 provides global 0.1� 3 0.1� CO2 emission
maps of six source sectors: power, industry, residential, transport, shipping,
and aviation in 2019.17–19

Even themost current of the gridded CO2 emissions datasets described above
lag emissions by a year or more and do not reflect sub-monthly temporal varia-
tions related to seasonality, weather, economic activities, or policies. Nassar et al.
made a first attempt to further downscale these global datasets at theweekly and
diurnal scale using static local temporal scaling factors.20 However, during a
normal year, day-to-day variations are due mainly to weather affecting heating/
cooling demands of residences and commercial buildings and the generation
of renewable energy, as well as weekends and holidays. Since the pandemic
began in early 2020, though, daily variations have been perturbed by a multitude
of other factors, including lockdowns, industrial production drops and recoveries,
and changes in human behavior. Timely and quantitative analysis on the effects
of these COVID-related changes on CO2 emissions using tools such as inversion
systems thus requires dynamic knowledge of global CO2 emissions. It was
this need for data that led to our development of the Carbon Monitor, a
The Innovation 3(1): 100182, January 25, 2022 1
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Figure 1. The fossil fuel and cement CO2 emissions distributions of GRACED in 2020 The value is given in the unit of kilograms of carbon per day per cell
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near-real-time daily dataset of global CO2 emission at the national level (https://
carbonmonitor.org).3,4 Chevallier et al. disaggregated the daily national Carbon
Monitor totals on a worldwide uniform grid using satellite retrievals of a pollutant
co-emitted with CO2 as a spatial proxy, without sectoral distinction.21 Here, we
considerably refine the approach by downscaling the daily national emissions
fromCarbonMonitor into a 0.1� 3 0.1� grid for each of the seven sectors (power,
industry, residential, ground transportation, domestic aviation, international avia-
tion, and international shipping), using sector-specific geospatial data from the
Global Carbon Grid (GID) v1.0, the EDGARv5.0_FT2019 database for 2019, and
NO2 retrievals from the Tropospheric Monitoring Instrument (TROPOMI) on
board the Sentinel-5 Precursor satellite to provide a new spatially explicit dataset
of daily global CO2 emissions covering the last 2 years since January 1, 2019,
which we name GRACED. The first high-resolution near-real-time gridded fossil
CO2 emission GRACED we presented will facilitate the adaptive management
of emissions and the implementation of climate policy, which is of great impor-
tance of achieving carbon neutrality around the world.

RESULTS
Quarterly mean emissions

The global daily average emissions from all sectors of GRACED in 2020 are
shown in Figure 1. GRACED demonstrates fine-grained emission differences pro-
duced by the allocation of emissions at the sub-national level. Emissions are
shown at a common 0.1� 3 0.1� resolution. In the figure, the five major global re-
gions (US mainland, Europe, Southeast Asia, East Africa and Middle East, South
America) are enlarged and displayed. It is shown that the spatial distribution char-
acteristics of daily average emissions throughout 2020 are clustered, concen-
trated in areas such as eastern US, western Europe, southeastern China, South
Korea, Japan, and India, with megacities as hotspots. The daily average total
emissions in 2020 are approximately 3,821 kg of carbon per day (kgC/d) per
cell. The cell with the maximum emission value is 41,320 tC per day per cell.

We also calculate quarterly daily average total (Figure S1) and sectoral (Fig-
ure S2) emissions of 2020. We define January, February, and March as the first
quarter, and then define other months included in other quarters. The average to-
tal emission in the first quarter is the highest, with 3,969 kgC per day per cell, and
the average total emission quarter is the lowest in the second quarter, with
3,381 kgC per day per cell.
2 The Innovation 3(1): 100182, January 25, 2022
As about 90% of the world’s population is located in the northern hemisphere,
the level of human activities in the northern hemisphere dominates the values of
global emissions. The residential consumption sector and the aviation sectors
generate themost emissions in the fourth quarter, resulting in the highest average
total emissions in the first quarter. Except for the residential consumption, indus-
trial, and international shipping sectors, the average lowest emissions from the
other sectors all appear in the second quarter, which dominates the results of
the lowest average total emissions in the second quarter.

Difference between weekend and weekday emissions
We then investigate the difference between weekend emissions and weekday

emissions in Figure 2. It can be seen that, on average, the global CO2 emissions
on weekends are generally less than the CO2 emissions on weekdays. The global
average of this difference is�248 kgC per day per grid. It can be further seen that
the more developed regions have more significant differences between week-
days and weekends than the less developed regions (shown as the dark blue
areas in the figure). Moreover, the spatial distribution characteristics of this differ-
ence showed an obvious linear relationship with the ground transportation sec-
tor’s emission. It indicates that the reduction of human driving activities on week-
ends has a very important impact on the reduction of weekend emissions.
In 2019, on average, the global carbon emission on weekends was generally

less than the emission on weekdays (Figure S7). The average value of this differ-
ence is�303 kgC per day per grid globally, which is higher compared with 2020.
This is mainly because, affected by COVID-19 in 2020, general human travel has
generally reduced under the lockdown measures; at the same time, the imple-
mentation of the home office policy has weakened commuting travel during
weekdays, making the difference in emissions betweenweekends andweekdays
in 2020 less significant.

Emission changes due to COVID-19
Affected by the COVID-19 pandemic in 2020, compared with 2019, total emis-

sions have generally declined worldwide (Figure 3). There were, however, a few
regions experiencing an emission increase, such as the eastern US, the United
Kingdom, some areas of Europe, southeastern India, some of Japan’s provinces,
and central and western China. For percentage change information, please see
Figure S8 for the details.
www.cell.com/the-innovation
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Figure 2. Map of weekend minus weekday emissions in 2020
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The dateswith themaximum reduction and themaximum rebound in different
regions in 2020 compared with 2019 reflect the sequence of the significant
reduction in human activities caused by the severe impact of COVID-19 (Fig-
ure 4A). In this study, we define the date with the maximum rebound as the
date that appears to have the biggest increase in emissions in 2020 compared
Figure 3. Difference in daily average CO2 emissio

ll
with 2019. The dates with the maximum rebound in different regions in 2020
compared with 2019 reflect the sequence of the largest economic recovery in
the later period (Figure 4B).
In Figure 4A, obviously, some international aviation and international shipping

was the first to be hit, which is shown in dark blue lines. From a national
ns between 2020 and 2019 (2020 minus 2019)

The Innovation 3(1): 100182, January 25, 2022 3
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Figure 4. The day of the year with the biggest
change in 2020 compared with 2019 (A and B) The
day of the year with (A) the maximum reduction, and
(B) the maximum rebound of each grid in 2020
compared with 2019.
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perspective, China’s largest decline in 2020 appeared earliest compared with
other countries, and timewise is closely related to China’s first hit by COVID-19,
while, the US, Spain, and other countries experienced the largest emission reduc-
tion later. Most regions of India and Japan experienced this situation soon after.
This may be mainly related to the late impact of the first wave of COVID-19 in
these countries and the more severe impact of COVID-19’s second wave in the
later period.

Judging from the date with the largest rebound (Figure 4B), China; Russia;
Myanmar; some European countries, such as the Netherlands, Poland, and Italy;
and some other countries experienced the largest rebound later, while, in India;
some states in the US, and some European countries, such as Spain, Belarus,
and Ukraine, the biggest rebound occurred earlier.

Sectoral emissions share
Different sectors exhibit various spatial patterns. The sector share

of CO2 emissions in 2020 and its difference between 2020 and 2019
are shown in Figure 5. The emissions shares of various sectors in 2020 are
shown in Figures 5A–5G. At the grid level, changes in sector share between
2020 and 2019 are also observed (Figures 5H–5N). Please see the sectoral
emissions share part in the supplemental information file for the detailed
descriptions.

Uncertainty analysis
The uncertainties are from Carbon Monitor, GID, and EDGAR dataset.
4 The Innovation 3(1): 100182, January 25, 2022
The uncertainty analysis of Carbon Monitor
was presented in our related paper recently
published at Nature Communications.4 We fol-
lowed the 2006 IPCC Guidelines for National
Greenhouse Gas Inventories to conduct an
uncertainty analysis of the data. First, the
uncertainties were calculated for each
sector. The uncertainty ranges of the
power, ground transport, industry, residential,
aviation, and international shipping sector
are ±14.0%, ±9.3%, ±36.0%, ±40.0%, ±10.2%,
and ±13.0%, respectively. The uncertainty in
the emission projection for 2019 is estimated
as 2.2% by combining the reported uncertainty
of the projected growth rates and the EDGAR
estimates in 2018. Then, we combine all the
uncertainties by following the error propaga-
tion equation from the IPCC. Equation 5 shows
that the overall uncertainty range of Carbon
Monitor is ±7.2%.

As for GID and EDGAR, uncertainty is intro-
duced in the magnitude of national-level total
emissions, the magnitude and location of large
point sources, the magnitude and distribution of
non-point sources, and from the use of proxy
data to characterize emissions. As pointed out
by Hogue et al., the largest uncertainty contribu-
tion in gridded emission datasets comes from
how well the distribution of the proxy used for
spatial disaggregation represents the distribution
of emissions.22 So, for the gridded data from GID
and EDGAR used in this research, the largest
contribution to uncertainty comes from the
spatial disaggregation process of national-level
emissions and the accuracy of the spatial proxy
parameters. The subtraction of the sumof all pre-
cise point sourceswith little uncertainty from the national total of a specific sector
leaves a remaining emission composed of smaller sources. Due to lack of infor-
mation, the remaining emission is usually allocated based on, e.g., a population
density proxy. The uncertainties of the point sources and the remaining smaller
sources are greatly different, being larger than the uncertainty of the national total
of a specific sector. The representative information about the selected character-
istic parameters of the point sources ismost critical and needs to be evaluated by
measurements (such as on-site atmosphericmeasurement of CO2 emission pol-
lutants), but in-depth analysis beyond the scope of this paper would be required.

DISCUSSION
This research presents for the first time the near-real-time high-resolution

gridded fossil CO2 emissions from fossil fuel and cement production, which
is based on the Carbon Monitor project.4 In this work, we developed a near-
real-time global gridded emission dataset called GRACED to provide a high-
quality, fine-grained dataset since January 1, 2019. This dataset is a daily grid-
ded map with a spatial resolution of 0.1� 3 0.1�. One of the advantages of
GRACED is that it can support global near-real-time carbon emission monitoring
on various fine spatial scales (such as cities) at sub-national level, which can
further improve our understanding of the spatiotemporal variability in emissions
and human activities. Through the long time series of GRACED, we provide
important daily-scale input for the analysis of emission trends during the
COVID-19 pandemic, which will help to carry out more local and adaptive man-
agement of climate change mitigation in post-COVID era.
www.cell.com/the-innovation
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Figure 5. Sector share of CO2 emissions and its dif-
ference between 2020 and 2019 (A–G) Sector share
of CO2 emissions in 2020 (A–G). (H–N) Difference in
sector share of CO2 emissions between 2020 and
2019 (2020 minus 2019) (H–N).
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We found that carbon emissions are mainly concentrated in the eastern
US, western Europe, southeastern China, South Korea, Japan, and India
spatially. A sharp decline of CO2 emissions in 2020 was identified in the central
and eastern US, the United Kingdom, France, and Germany in Europe, and in
India, Japan, South Korea, and eastern China. Various sectors show different
spatial distribution characteristics, which is mainly explained by the emission
sources.
ll The In
In general, the current statistical data cannot
fully grasp the fine-grained dynamics of CO2

emissions under the COVID-19 pandemic, and
further monitoring, observation, and data collect-
ing are urgently needed. The ability of near-real-
time fine-grained monitoring of daily emission
trends we demonstrate here helps to take timely
local actions in regional, sub-national, or urban
areas, and has policy implications for local
climate change mitigation and earth system
management.

GRACED provides the first global near-real-
time gridded carbon emissions data. This
globality and timeliness comes at the expense
of reduced accuracy due to near-real-time
spatial allocation information. Therefore, it is
recommended that potential users of
GRACED carefully consider these limitations
when using this dataset. Inevitably, with the
updated version of proxy data, the accuracy
of emission spatial allocation in future ver-
sions of GRACED can be further improved.
With Carbon Monitor national-level data and
satellite retrievals data publicly updated in
near real time, there are no restrictions on
continuing to produce updated future versions
of GRACED products within the same model
framework.

MATERIALS AND METHODS
Datasets used in the study

(1) A near-real-time daily dataset of global sectoral

CO2 emission from fossil fuel and cement production

at national level since January 1, 2019, published as Car-

bon Monitor (data available at https://carbonmonitor.

org/).4 (2) Global sectoral CO2 emissions annual data

with high resolution of 0.1� in 2019 based on a frame-

work that integrates multiple data flows, including point

sources, country-level sectoral activities and emissions,

and transport emissions and distributions released by

the Global Carbon Grid (http://gidmodel.org).17–19,23–25

(3) Global monthly gridded emissions at a 0.1� 3 0.1�

resolution in 2019 defined for a large number of IPCC

sub-sectors provided by the EDGAR (https://edgar.jrc.

ec.europa.eu/overview.php?v=50_GHG).16,26 (4) Daily

NO2 Thermal Chemical Vapor Deposition (TCVD) re-

trievals data in 2019 and 2020 from the Tropospheric

Monitoring Instrument (TROPOMI) on board the

Sentinel-5 Precursor satellite, launched inOctober 2017.

The ground resolution of the TROPOMINO2 retrievals

was 7 3 3.5 km2 at nadir until 5 August 2019 and has

been 5.5 3 3.5 km2 since then, achieving near-global

coverage in 1 day. Standard retrievals from the official
offline processing with a quality assurance value greater than 0.75 were aggregated to daily

time scale on a regular 0.1� 3 0.1� global grid and averaged over 14-day averaging periods in
order to reduce the retrieval noise and limit gaps in the retrievals.

Spatial gridding methodology
Grouping the GID and EDGAR sectors into Carbon Monitor categories. First, we link

the Carbon Monitor emission sectors to GID and EDGAR sectors according to Table S1.
novation 3(1): 100182, January 25, 2022 5
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Figure 6. The framework of top-down spatially
gridding methodology
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We consider that GID has the highest accuracy in source location and we rely on this data-

base as much as possible. However, for the domestic aviation, international aviation, and in-

ternational shipping sectors, GID does not distinguish between related domestic and interna-

tional sub-sectors: we therefore directly use EDGAR’smonthly spatial patterns for the spatial

distribution in these sectors.
Spatially gridding procedure. Second, we do a spatially gridding procedure. We use

the global annual spatial patterns of CO2 emission from the GID sub-sectors and global

monthly CO2 emission spatial patterns from EDGAR sub-sectors for the year 2019 for

spatially downscaling Carbon Monitor daily national-level emissions. We assume that

the spatial pattern of emissions remained unchanged after the last year of GID and EDGAR

(2019). The validity of this assumption will depend on the country and on the time horizon

for the adjustment, while the sub-national emission may change rapidly within a country

from 2019 to 2020 as there was a great difference in the timing and degree of the impact

of COVID-19 in various regions. Therefore, for large emitters that have a significant impact

on global total emissions, we use sub-national proxy based on TROPOMI NO2 retrievals

data to allocate national carbon emission totals into regional totals, before doing a second

downscaling at 0.1� based on the GID and EDGAR spatial patterns. The analysis can be

updated consistently with the latest high-resolution emission maps and other spatial prox-

ies for each year.

The spatial disaggregation framework used in theGRACED is shown inFigure 6. It is a top-

downmethodology that allocates CarbonMonitor national-level daily emissions to finer-grid

cells using spatial patterns provided by GID and EDGAR and sub-national proxy based on

TROPOMI NO2 retrievals.

The detailed process of the model is presented as follows:
6 The Innovation 3(1): 100182, January 25, 2022
(1) First, we use the spatial patterns provided by
GID to allocate the national-level emissions
of the four sectors of Carbon Monitor (power,
industry, residential consumption, ground
transport sector; see Table S1) from Carbon
Monitor to obtain the daily gridded emissions
under GID’s annual spatial patterns. We then
integrate the monthly spatial patterns of
EDGAR for further correction, to correct the
previous daily gridded emission based on
GID’s annual spatial patterns under the
monthly spatial patterns. For the domestic
aviation sector, international aviation sector,
and international shipping sector, as GID
does not distinguish between related domes-
tic and international sub-sectors compared
with EDGAR, we directly use EDGAR’s
monthly spatial patterns for distribution.
The first version value of emission
Emi v1g;d;s for grid g, date d, and sector s is:

Emi v1g;d;s1 = CMcountry;d;s1 � GIDg;s1Pn
i= 1GIDi;s1

�

EDGARg;m;s1P12
j= 1EDGARg;j;s1

� 12 (Equation 1)

Emi v1g;d;s2 =CMcountry;d;s2 � EDGARg;m;s2Xn

i= 1
EDGARi;m;s2

(Equation 2)

where CMcountry;d;s means the value of Carbon
Monitor for country country that grid point g be-
longs to, day d, and sector s. s1 belongs to one
of the sectors power, industry, residential con-
sumption, and ground transport. s2 includes in-
ternational aviation, domestic aviation, and inter-
national shipping. GIDg;s1 means the value of
GID gridded CO2 emission for grid point g and
sector s1. n is the total number of grid points
within this country. EDGARg;m;s means the value
of EDGAR for grid point g, month m that date
d belongs to, and sector s. j is the index of
a month.
(2) For large emitters, sub-national emission patterns can vary significantly
from one year to the next, which has a great impact on the global total emis-
sions. This was particularly obvious in 2020 with regional variations in the
COVID-19 crisis, for instance, between eastern and western US, or between
eastern and western China. Capturing those sub-national emission changes
is important to having a competitive product that could avoid the negative
impact on the dataset’s accuracy caused by ignoring significant variations
of large emitters’ sub-national emission patterns, and is not addressed by
Equations 1 and 2, which use a climatological emission pattern. It is re-
ported that the global changes in emissions are also consistent with global
changes in the NO2 inventory from satellite data.6 Therefore, we assume
that the sub-national emission changes follow the pattern of the differences
in NO2 column concentration between 2020 and 2019. In detail, we calculate
an index R of each province of large emitters, which is the averaged NO2

concentration of each province, according to TROPOMI NO2 retrievals data
in year y:

Rp;y =NO2p; y (Equation 3)

where p represents province (state), and y represents the year. NO2p; y is the satellite NO2

concentration averaged temporally over rolling 14-day period in year y for province p (as
explained above) and spatially over the 5% grid points within each province (state) that
has the largest NO2 average over the year. The choice of the 5% largest values allows ex-
tracting clear patterns very close to emission location. In the following step, we remove any
negative NO2 value for the 5% grid points over the year 2019 and 2020 that may be gener-
ated and attribute the mass gain to the other 5% pixels. Last, we calculate index R of each
province in 2019 (2020) according to TROPOMI NO2 retrievals data.
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http://www.thennovation.org
http://www.thennovation.org


Report
Then we generate CMp;d;s1;2020, the daily provincial emission in day d and for sector s1

adjusted by the TROPOMI NO2 retrievals in day d and for sector s in 2020 that matches

the daily national total from Carbon Monitor following Equation 4:

CMp;d;s1;2020 =
CMp;d;s1;2019 � Rp;2020

�
Rp;2019Xnp

p= 1
CMp;d;s1;2019 � Rp;2020

�
Rp;2019

3CMcountry;d;s1;2020 (Equation 4)

whereCMp;d;s1;2019 meansthefirst versionof theemissionvalueofaprovince indaydand for
sectors1 in 2019.np is thenumberofprovincesof thecountry. Indetail,first,wecalculate the
ratio of change in the R index in 2020 comparedwith 2019, which is Rp;2020=Rp;2019. Second,
multiply the provincial emission value aggregated from our first version dataset for 2019,
CMp;d;s;2019 , to update the provincial emission value for 2020. Last, divide the updated
provincial emission value by the sum of the updated provincial emission valuePnp

p= 1CMp;d;s1;2019 � Rp;2020=Rp;2019 in 2020 to do the normalization processing in the Equa-
tion 4. So, the sum of the updated provincial emissions within a country can be consistent
with the national-level emission value from CarbonMonitor in 2020 aftermultiplying the na-
tional-level emission CMcountry;d;s1;2020 from Carbon Monitor.

Then, based on the updated provincial emission CMp;d;s1;2020 in 2020, we use GID and

EDGAR data as the spatial patterns to distribute the emission data of each province for large

emitters to obtain our final version gridded emission value Emi v2g;d;s :

Emi v2g;d;s1 =CMp;d;s1;2020 � GIDg;s1Xn

i= 1
GIDi;s1

� EDGARg;m;s1X12

j=1
EDGARg;j;s1

� 12 (Equation 5)

where n means the total number of grids within this province.
After revising the gridded emissions for large emitters Brazil, China, France, Germany, In-

dia, Italy, Japan, Spain, US, and UK in 2020, GRACED is finally generated.
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