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Abstract
System current state estimation (or condition monitoring) and future state prediction (or failure
prognostics) constitute the core elements of condition-based maintenance programs. For
complex systems whose internal state variables are either inaccessible to sensors or hard to
measure under normal operational conditions, inference has to be made from indirect
measurements using approaches such as Bayesian learning. In recent years, the auxiliary
particle filter (APF) has gained popularity in Bayesian state estimation; the APF technique,
however, has some potential limitations in real-world applications. For example, the diversity of
the particles may deteriorate when the process noise is small, and the variance of the importance
weights could become extremely large when the likelihood varies dramatically over the prior.
To tackle these problems, a regularized auxiliary particle filter (RAPF) is developed in this
paper for system state estimation and forecasting. This RAPF aims to improve the performance
of the APF through two innovative steps: (1) regularize the approximating empirical density
and redraw samples from a continuous distribution so as to diversify the particles; and
(2) smooth out the rather diffused proposals by a rejection/resampling approach so as to
improve the robustness of particle filtering. The effectiveness of the proposed RAPF technique
is evaluated through simulations of a nonlinear/non-Gaussian benchmark model for state
estimation. It is also implemented for a real application in the remaining useful life (RUL)
prediction of lithium-ion batteries.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Condition-based maintenance is a program that recommends
maintenance decisions based on the information collected
through system condition monitoring (or system state
estimation) and equipment failure prognostics (or system state
forecasting) [1–5]. For complex systems whose internal
state variables are either inaccessible to sensors or hard to
measure under normal operational conditions, inference has to
be made from indirect measurements using approaches such

4 Author to whom any correspondence should be addressed.

as Bayesian learning [6]. The Bayesian learning based system
state estimation is to calculate the complete density function
of the current system state based on a sequence of noisy
measurements, whereas the Bayesian learning based system
state forecasting is to compute the complete density function of
the future system state based on the prediction model identified
in parallel with state estimation [7, 8].

The formal recursion for the density function can
be achieved for linear/Gaussian systems by applying the
commonly used Kalman filtering [9]; however, there is
usually no closed-form solution for nonlinear/non-Gaussian
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systems [10]. To numerically handle the estimation
problem in nonlinear/non-Gaussian systems, particle filters
were introduced [11]. The particle filtering is a process
to apply the sequential Monte Carlo method in numerical
simulations and to represent the posterior distribution of the
state variables by a number of weighted particles that are
evolved recursively as new observations (or measurements)
become available [12, 13]. In the 1990s, there was a surge of
research and development (R&D) in particle filtering [11, 14].
Among these developments, two fundamental approaches
were primarily used: the standard sampling and importance
resampling particle filter (SIR-PF) [15] and the auxiliary
particle filtering (APF) [13, 16]. In the standard SIR-PF, the
prior distribution is usually chosen as an importance function to
simplify computation. Unfortunately, such a selection may not
be efficient in many applications in which many of the particles
could be generated in the regions with low likelihoods. An
improvement over the standard SIR-PF was made by the APF,
in which the most recent observation is used to make new
proposals and the samples are drawn from the joint distribution
of both the prior and the likelihood; such an advantage of the
APF, however, can be demonstrated only in some restrictive
cases where the process noise is small and the likelihood
does not vary dramatically over the prior. Nevertheless, a
contradictory scenario may exist: when the prior distribution is
tightly peaked and differs significantly from the likelihood, the
samples drawn from the joint distribution could suffer a severe
reduction in diversity; as a result, many predictive particles
could still be generated in the regions with low likelihood.
Furthermore, the APF is usually vulnerable to the outlying
proposals, and the variance of the resulting importance weights
could become extremely large when the process noise rises.

To tackle the aforementioned challenges, a regularized
auxiliary particle filtering (RAPF) technique is proposed in this
work to improve the effectiveness and robustness of the APF.
The goal is to develop a more reliable engineering tool for
system state estimation and forecasting. The proposed RAPF
technique is new in the following aspects: (1) the empirical
density regularization is implemented into the APF and the
proposal samples are redrawn from a continuous distribution to
diversify the particles; and (2) a rejection/resampling approach
is proposed to reject the predictive proposal outliers to improve
the robustness of the APF.

The remainder of this paper is organized as follows. The
proposed RAPF technique is described in section 2. The
effectiveness of the RAPF is demonstrated in section 3 via both
simulations of a nonlinear/non-Gaussian benchmark model and
an application in battery RUL prognostics. Some important
observations and conclusive remarks are summarized in
section 4.

2. The regularized auxiliary particle filter

2.1. Problem statement

Consider a general state space model with unobserved states
αt and an observed time series yt , t = 1, . . . , n. Assume
that αt is a Markov process with an initial density p(α0) and

the probability transition density is represented by f (αt |αt−1).
Given {α1, α2, . . . , αt }, the observations Yt � {y1, y2, . . . , yt}
are conditionally independent and have a marginal distribution
f (yt |αt ). The inference of the property of the states αt relies
on the marginal filtering density f (αt |Yt). Suppose that the
density f (αt−1|Yt−1) is available at time instant t − 1, then the
prior density of the state at time instant t can be estimated via
the transition density f (αt | αt−1) such that

f (αt |Yt−1) =
∫

f (αt |αt−1) f (αt−1|Yt−1) dαt−1. (1)

Correspondingly, the marginal filtering density is com-
puted via the Bayes’ theorem,

f (αt |Yt ) = f (yt |αt ) f (αt |Yt−1)

f (yt |Yt−1)
, (2)

where the normalizing constant is determined by

f (yt |Yt−1) =
∫

f (yt |αt ) f (αt |Yt−1) dαt . (3)

The above equations constitute the formal solution to the
Bayesian recursive estimation problem. However, except in
very special scenarios, these density functions do not admit a
closed-form solution and thus numerical approximations are
usually employed.

Particle filtering is a technique for implementing the
recursive Bayesian filtering via Monte Carlo simulations,
whereby the posterior density function f (αt |Yt) is represented
by a set of random samples (particles) α1

t , . . . , α
M
t and their

associated weights π1
t , . . . , π M

t ,

f (αt |Yt) ≈
M∑

i=1

π i
t δ(αt − αi

t ),

M∑
i=1

π i
t = 1, (4)

where M is the number of particles; the weights π i
t can be

recursively updated using the importance sampling with an
importance density g(αt |αi

t−1, yt),

π i
t ∝ π i

t−1

f (yt |αi
t ) f (αi

t |αi
t−1)

g(αi
t |αi

t−1, yt )
. (5)

There are several choices for the importance function
g(αt |αi

t−1, yt); in terms of minimizing the weight vari-
ance [14], the optimal one is given by

g(αt |αi
t−1, yt) = f (yt |αt , α

i
t−1) f (αt |αi

t−1)

f (yt |αi
t−1)

. (6)

Substituting (6) into (5) yields

π i
t ∝ π i

t−1 f (yt | αi
t−1) = π i

t−1

∫
f (yt | αt ) f (αt | αi

t−1) dαt .

(7)
For nonlinear and non-Gaussian systems, the integral in (7)
does not admit a closed-form expression unless αt is a finite set.
In the APF, this integration problem was addressed by using a
single-point approximation f (yt |αt) = f (yt |μ(αt−1)), where
μ(αt−1) is the mean, or the mode, or a random draw associated
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with the density f (αt |αt−1). Thus, the samples can be drawn
from the joint density,

g(αt , k|Yt ) = g(k|Yt)g(αt |k, Yt ) = g(k|Yt) f (αt |αk
t−1),

k = 1, 2, . . . , M,∝ π k
t−1 f (yt |μk

t ) f (αt |αk
t−1), (8)

where μk
t denotes μ(αk

t−1); the index k is related to the initial
proposal αk

t−1, which was used as an auxiliary variable in the
first-stage simulation. The proposal αk

t−1 that corresponds to a
larger g(k|yt) is more likely (or to be chosen more times) to
survive in the second-stage sampling. It can be seen that the
most recent observation yt has been employed in making new
proposals. Accordingly, more particles will be generated in
the regions of the state space with larger predictive likelihood
f (yt |μk

t ), and thus the statistical efficiency of the sampling
process can be improved. Correspondingly, the second-stage
weights are updated by

π i
t ∝ f (yt |αi

t )

f (yt |μki

t )
, i = 1, 2, . . . , M (9)

where the index ki means that the i th draw αi
t in the second-

stage sampling is related to the initial proposal αk
t−1 through

the density f (αi
t |αk

t−1).
Although the APF technique is attractive in new proposal

generation, it has two potential limitations in real applications:
(1) when the process noise is small (or the transition density
f (αt |αt−1) is tightly peaked), and the likelihood f (yt |αt )

differs significantly from the prior f (αt |αt−1), the index
sampling from g(k|yt) may lead to repeated draws from a
specific discrete point, which can result in the problem of loss
of diversity among the newly generated particles. (2) The
second-stage weight estimation will be very sensitive to the
proposal outliers that occur when f (αt |αt−1) is rather diffused
and the likelihood f (yt |αt ) varies dramatically over the
prior f (αt |αt−1); in such a scenario, an excessive difference
between μki

t and αi
t can lead to a large (or even an infinite)

importance weight in (9).

2.2. The regularized auxiliary particle filter (RAPF)

The proposed RAPF technique aims to overcome the
aforementioned limitations of the APF through two innovative
processes.

2.2.1. Regularization of the empirical density g(k|yt)

associated with the first-stage weights. A diversity problem
exists in the APF. The first step in the APF is to sample
the index k from the density g(k|yt), where k is the index
of the initial proposal αk

t−1. The proposal αk
t−1 with a

higher probability π k
t−1 f (yt |μk

t ) will be selected repeatedly
in the sampling process, whereas the proposal αk

t−1 with a
lower probability π k

t−1 f (yt |μk
t ) is prone to dying out. The

surviving particles will then go to the second-stage sampling
through the density f (αi

t |αki

t−1). When the process noise

is small, the resulting αi
t from the repeatedly selected αki

t−1
may drop into a very narrow neighborhood; this diversity
problem will become more severe if the likelihood f (yt |αt )

differs significantly from the prior f (αt |αt−1). In the proposed

RAPF technique, this diversity problem will be solved by
regularizing the empirical density g(k|yt) (given αk

t−1, π k
t−1,

and yt ) and redrawing the samples (denoted as α
j
t−1, j =

1, 2, . . . , M) from a continuous distribution. The rationale
behind this approach is to implement the empirical density
regularization into the APF to diversify particle generation.
Kernel density estimation is a fundamental technique in
statistics to estimate the probability density function of a
random variable, given a set of samples from a population.
The challenging part in the related research actually lies in
how to properly implement this technique in particle filtering
to effectively diversify the particles. The regularized particle
filter in [17] suggested an approach to realize the empirical
density regularization in the standard particle filter (SIR-
PF). However, the implementation of the empirical density
regularization in the auxiliary particle filter (APF) proves
to be more indispensable and challenging, because the joint
distribution of both the prior and the likelihood usually vary
more dramatically than a single distribution. In this work,
we will apply the kernel smoothing on the empirical density
associated with this joint distribution, which shows it to be
an effective approach through both simulations and real-world
applications, as demonstrated in section 3. Specifically, the
samples α

j
t−1 are drawn from the following regularized density:

g(αt−1|yt) ≈
M∑

k=1

π k
t−1 f (yt |μk

t )Kh(αt−1 − αk
t−1), (10)

where μk
t can be the mean, the mode, or a random draw

associated with the density of f (αt |αt−1). Kh(·) is the rescaled
kernel function [17] given by

Kh(x) = h−n K (x/h), (11)

where h > 0 is the scalar kernel bandwidth and n is the
dimension of the state vector x . The kernel function is a
symmetric probability density:∫

x K (x) dx = 0,

∫
‖ x ‖2 K (x) dx > ∞. (12)

The kernel Kh(·) and the bandwidth should be properly
chosen to minimize the mean integrated square error (MISE)
between the true density g(αt−1|yt) and its corresponding regu-
larized empirical representation

∑M
k=1 π k

t−1 f (yt |μk
t )Kh(αt−1−

αk
t−1). If the weights are equal, the optimal kernel will be

Kopt(x) =
⎧⎨
⎩

n + 2

2cn
(1− ‖ x ‖2) if ‖ x ‖> 1

0 otherwise
(13)

where cn is the volume of the n-dimensional hypersphere and
Kopt(x) is the Epanechnikov kernel. The n-dimensional unit
hypersphere is the set of points that are one unit away from the
origin and its volume is given by

cn =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2 n = 1

π n = 2

4π/3 n = 3

...
...

2πcn−2/n n = n.

(14)
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When the underlying density is Gaussian with a unit covariance
matrix, the optimal bandwidth will be

hopt = [8c−1
n (n + 4)(2π)n]1/n+4 M−1/n+4. (15)

For a general case with an arbitrary underlying density, it
is necessary to assume that the density is Gaussian and its
covariance matrix S equals the empirical covariance matrix of
the samples from this density. Accordingly, the kernel function
in (11) can be applied in the form of

Kh(x) = (det A)−1h−n K (A−1x/h), (16)

where A is the square root matrix of S such that AAT = S.
Interested readers can refer to [19] for more information about
the kernel density estimation.

2.2.2. A rejection/resampling approach for the second-stage
weight updating. The APF technique may not be used
effectively to reduce the variance of the second-stage weights
when there exist some outlying proposals from the density
f (αt |αt−1); that is, the second-stage weights are actually not
upper-bounded [20]. A large (or even an infinite) weight
variance could be incurred when f (αt |αt−1) is rather diffused
while the likelihood f (yt |αt) varies dramatically over the
prior f (αt |αt−1). We have observed this problem in our
research and we believe it is worth documenting because this
pitfall could lead to a serious particle degeneracy problem
in applications. Correspondingly in this work we will
propose a rejection/resampling approach to address this large-
variance issue. The acceptance–rejection method has been
used in statistics and signal processing for sampling from
probability distributions; however, the criterion/mechanism
that drives each acceptance–rejection test usually differs from
one application to another, such as those in the Metropolis–
Hastings algorithm [21], the prior editing [15], and the
resample-move algorithm [22]. The approach proposed in this
work aims to artificially boost the new proposals α

j
t in the

vicinity of μ
j
t , where μ

j
t = E(αt |α j

t−1). It should be noted

that the term μk
t has a similar meaning to the term μ

j
t except

that the index k is the auxiliary variable originating from the
initial proposal αk

t−1 whereas the index j is the resampled
index. In other words, k ∈ {1, 2, 3, . . . , M} and can be
repeatable, whereas j = 1, 2, 3, . . . , M and is not repeatable.
This approach subjects the proposals drawn from the second-
stage sampling to a pragmatic acceptance test by the following
steps.

(a) Take the initial proposal α
j
t−1 at the time instant t −

1 and pass it through the transition density f (αt |αt−1) to
generate a new proposal α

j
t for the time instant t .

(b) Compute the second-stage weight by

π
j

t ∝ f (yt |α j
t )

f (yt |μ j
t )

. (17)

(c) Accept α
j
t if 1/W � π

j
t � W ; otherwise, reject α

j
t and

return to step (a) to redraw a sample α
j
t , and repeat the

test.

Figure 1. Performance comparison over 20 exemplar runs by
(a) SIR-PF; (b) APF; (c) RAPF. The solid (red) line represents the
true states whereas the dotted (black) lines represent the estimated
states.

(d) Set j = j + 1 and repeat steps (a)–(d) until j > M .

The weight threshold W is a design parameter. If W is
infinitely large, the proposed rejection/resampling approach
will accept all of the newly generated proposals and the
variance of the weights π

j
t may become extremely large as has

been observed in the APF; in this sense, the APF is actually
a special case of the developed RAPF technique. As W
becomes smaller, the proposed rejection/resampling approach
will smooth out the outlying proposals and make the weights
π

j
t less variable. By testing, W = 2 is employed in the

experiments in section 3.
A pseudo-code description of the proposed RAPF

technique is summarized in table 1.

3. Performance evaluation

The effectiveness of the proposed RAPF technique will be
examined in this section firstly by simulations based on a
benchmark model and then it will be implemented for battery
state prognosis. Its performance will be compared with the
standard SIR-PF and the APF.

3.1. Simulation on a nonlinear/non-Gaussian benchmark
model

Consider the following model that has been widely used in the
related research [11]:

xk = 1

2
xk−1 + 25xk−1

1 + x2
k−1

+ 8 cos[1.2(k − 1)] + wk, (18)

4
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Figure 2. Test results, in terms of (a) mean and (b) standard deviation of RMSE, from three different particle filters when the variance of the
process noise is 1. APF: dotted lines (magenta); SIR-PF: dash-dotted lines (red); RAPF: solid lines (blue).

Table 1. The regularized auxiliary particle filter.

[{α j
t , π

j
t }M

j=1] = RAPF[{αi
t−1, π

i
t−1}M

i=1, yt ]
• FOR i = 1 : M

– Estimate μi
t = E(αt |αi

t−1)

– Calculate λi ∝ g(i|Yt ) ∝ π i
t−1 f (yt |μi

t )• END FOR
• Calculate the total weight: Q = SUM[{λi}M

i=1]• FOR i = 1:M
– Normalize λi = Q−1λi

• END FOR
• Calculate the empirical covariance matrix St−1 of {αi

t−1, λ
i}M

i=1
– Compute At−1 such that At−1 AT

t−1 = St−1 (Cholesky decomposition)
• Perform resampling by using some appropriate resampling algorithm (e.g. multinomial resampling and residual resampling)

– [{α j
t−1, π

j
t−1 = 1/M}M

j=1] = RESAMPLE[{αi
t−1, λ

i}M
i=1]• FOR j = 1 : M

– Generate ε ∼ K , Epanechnikov kernel
– Calculate hopt using (15)
– Compute α

j∗
t−1 = α

j
t−1 + hopt At−1ε

• END FOR
• FOR j = 1 : M

– Estimate μ
j
t = E(αt |α j∗

t−1)

– Draw α
j
t ∼ f (αt |α∗

t−1)

– Compute π
j

t ∝ f (yt |α j
t )/ f (yt |μ j

t ); if π
j

t < 1/W OR π
j

t > W , go back to the above step to redraw α
j
t and then check if

the weight of this new sample satisfies 1/W � π
j

t � W .
• END FOR

yk = 1
20 x2

k + vk, (19)

where {wk} and {vk} are the Gaussian white noise sequences
that have zero means; k = 50 in this test. The variance of
{vk} is 1, whereas the variance of {wk} is set to 1, 4, and 10,
respectively, in three different simulation scenarios. The initial
state is taken to be x0 = 0.1. In the tests, all the particle filters
have 50 particles (i.e. M = 50). The multinomial resampling
technique is implemented at each time step. The SIR-PF uses
the prior density as the importance function. The testing results
from 20 random runs using the same state/observation data

set are shown in figure 1. It can be seen that the proposed
RAPF outperforms both the standard SIR-PF and the APF.
The RAPF can provide a more reliable state estimation thanks
to its capability in enhancing the diversity of the particles as
well as its robustness to the effects of outlying proposals. The
relatively poor performance of the APF is mainly due to its
limitations as stated in section 2.

More extensive simulations have been conducted to
further verify the effectiveness of the proposed RAPF. The
variance of the process noise {wk} is set to be 1, 4, and 10,

5



Smart Mater. Struct. 20 (2011) 075021 J Liu et al

Figure 3. Test results, in terms of (a) mean and (b) standard deviation of RMSE, from three different particle filters when the variance of the
process noise is 4. APF: dotted lines (magenta); SIR-PF: dash-dotted lines (red); RAPF: solid lines (blue).

Figure 4. Test results, in terms of (a) mean and (b) standard deviation of RMSE, from three different particle filters when the variance of the
process noise is 10. APF: dotted lines (magenta); SIR-PF: dash-dotted lines (red); RAPF: solid lines (blue).

respectively, in three testing scenarios. In each scenario, 200
data sets in total are randomly generated by using the model
given by equations (18) and (19). For each state/observation
data set, three particle filters are implemented and tested
over 50 runs. The root mean square error (RMSE) between
the actual states and the estimated states are calculated for
each run. The performance of the related particle filters is
compared in terms of the mean and standard deviation of these
RMSEs over 50 runs, and the testing results are illustrated in
figures 2–4, respectively. The averaged mean and standard
deviation of RMSEs over 200 data sets are summarized in

table 2. It can be seen that the proposed RAPF can provide
a more accurate (i.e. with a lower mean) and more reliable
(i.e. with a smaller variance) state estimation than the other
two classical particle filters. This is because the RAPF
technique can effectively diversify the particles and further
enhance its robustness against outlying proposals. It is also
worth mentioning that in the state estimation the initial density
p(α0) is usually chosen (often arbitrarily) to presumably cover
the effective range of the system states. In this work, both
uniform distribution and Gaussian distribution have been tested
as the initial density; it has been found that there is no clear

6
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Figure 5. Lumped-parameter model for a lithium-ion battery.

difference in estimation performance when these two different
distributions are implemented respectively.

3.2. Application for battery remaining useful life prediction

Batteries are widely used in various engineering and household
systems. An effective prognostic tool is critically needed to
predict the future condition of a battery in order to estimate its
RUL. The reliable RUL information can be used not only for
battery fault detection to prevent performance degradation of
the related equipment, but also for scheduling battery change
which is critical in many applications such as the emerging
electric vehicle and aerospace industries. Particle filtering
based prognostics has been investigated by the Prognostics
Center of Excellence research group at NASA Ames Research
Center based on the classical particle filtering techniques [7].
In this work, the developed RAPF is implemented for the RUL
prediction of lithium-ion batteries. The lumped-parameter
model in [7] is adopted in this investigation, as reproduced in
figure 5, where RE denotes the electrolyte resistance, RCT is
the charge transfer resistance, RW is the Warburg impedance,
and CDL is the dual layer capacitance.

In general, a lithium-ion battery is deemed to fail when its
capacity C/1 fades by 30% of the rated value. The batteries’
capacity, however, is usually inaccessible to the measurement;
therefore, the lumped parameters RE and RCT are employed
for battery RUL prediction. RE + RCT is usually inversely
proportional to the capacity C/1 [18], and can be estimated
through the electrochemical impedance spectroscopy test. The
state and measurement equations that describe the battery
model [7] are given by

{
Z0 = C; �0 = � Zk = Zk−1 exp �k + wk

�k = �k−1 + vk Xk = [Zk; �k] Yk = Zk + υk

(20)
where the vector Z denotes RE or RCT, and C and � are
exponential growth model parameters. The Z and � vectors
are combined to form the state vector X . The measurement
vector Y comprises of the battery parameters inferred from
measured data. The value of C takes the initial value of RE

or RCT. The value of � will be recursively updated in the
estimation process, whose initial value is derived from the
training data using a least square estimator. The vectors w,
v, and υ are zero mean Gaussian noise. The developed RAPF,
the standard SIR-PF, and the APF are implemented for system

R
E
R

C
T
(Ω

)

Figure 6. State tracking and future state prediction at week 24 for the
battery parameters RE and RCT by using three different particle
filters; solid line (green): ground truth of RE and RCT; ◦-mark line
(blue): results by SIR-PF; ×-mark line (black): results by APF;
	-mark line (red): results by the proposed RAPF.

C
/1

 C
ap

ac
ity

 (
m

A
h)

Figure 7. Battery RUL prediction at week 24 using three different
particle filters; solid line (green): real measurement data; ◦-mark
line (blue): results by SIR-PF; ×-mark line (black): results by APF;
	-mark line (red): results by the proposed RAPF.

state estimation and model parameter identification using the
first part of RE or RCT trajectory (measurements); the identified
model is then applied to predict the remaining part of the
trajectory. In each iteration, 2500 particles are employed for
the processing of this two-dimensional problem. The time to
trigger the prognosis is arbitrarily chosen. Figure 6 shows both
the state tracking and future state prediction for the data RE

and RCT. The prognosis is initiated at week 24. It can be
seen that the RAPF provides a more accurate forecasting for
the battery parameters. Through a linear transformation as
discussed in [7], the derived capacities are plotted in figure 7.
The RUL threshold is chosen to be 70% of the rated capacity.
The RAPF technique yields an RUL error of 1.54 weeks early,
which outperforms the SIR-PF (6.62 weeks early) and the APF
(5.71 weeks early), respectively.
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Table 2. The averaged mean and standard deviation of RMSEs over 200 data sets.

Averaged mean of RMSE Averaged standard deviation of RMSE

Variance of process noise APF SIR-PF RAPF APF SIR-PF RAPF

1 4.731 4.372 3.954 1.546 1.318 0.917
4 5.129 4.731 4.495 1.385 1.151 0.631

10 6.037 5.499 5.379 1.564 1.267 0.584

R
E
R

C
T
(Ω

)

Figure 8. State tracking and future state prediction at week 36 for the
battery parameters RE and RCT by using three different particle
filters; solid line (green): ground truth of RE and RCT; ◦-mark line
(blue): results by SIR-PF; ×-mark line (black): results by APF;
	-mark line (red): results by the proposed RAPF.

Figures 8 and 9 show the testing results when the
prognosis is triggered at week 36. It is seen that as more
measurements become available over the period of state
estimation, all three particle filters can improve learning
to update the prediction model and generate more accurate
forecasting RUL results. In this test, the RAPF yields an
RUL error of 0.37 week late, which is much more accurate
than the SIR-PF (2.33 weeks late) and APF (1.56 weeks
late), respectively. The superior prognostic performance of
the developed RAPF technique over the other two classical
particle filters lies in the fact that the RAPF cannot only further
diversify the particles but also effectively learns and updates
the system states from a limited number of measurements.

4. Conclusions

In this paper, a regularized auxiliary particle filter (RAPF)
has been developed for system current state estimation
(monitoring) and future state prediction (prognosis). This
RAPF technique can enhance the diversity of particles
through empirical distribution regularization. A second-
stage rejection/resampling technique is used to improve
the robustness of the RAPF to outlying proposals. The
effectiveness of the developed RAPF has been demonstrated
through simulations of a nonlinear and non-Gaussian
benchmark model. Testing results have shown that the
proposed RAPF technique can provide more accurate and more
reliable state estimation than the SIR-PF and the APF. The
developed RAPF has also been implemented to predict the
remaining useful life (RUL) of lithium-ion batteries. The

C
/1

 C
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ac
ity

 (
m

A
h)

Figure 9. Battery RUL prediction at week 36 by using three different
particle filters; solid line (green): real measurement data; ◦-mark
line (blue): results by SIR-PF; ×-mark line (black): results by APF;
	-mark line (red): results by the proposed RAPF.

results of this investigation have demonstrated that the RAPF
technique can effectively learn system states from a limited
number of measurements to update the nonlinear prediction
model. It outperforms the related classical particle filters in
battery RUL predictions.
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